NE5210 [NXP]

Transimpedance amplifier 280MHz; 跨阻放大器280MHz
NE5210
型号: NE5210
厂家: NXP    NXP
描述:

Transimpedance amplifier 280MHz
跨阻放大器280MHz

放大器
文件: 总14页 (文件大小:176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
DESCRIPTION  
PIN CONFIGURATION  
The NE5210 is a 7ktransimpedance wide band, low noise  
amplifier with differential outputs, particularly suitable for signal  
recovery in fiber-optic receivers. The part is ideally suited for many  
other RF applications as a general purpose gain block.  
D Package  
1
2
3
4
5
6
7
14 OUT (–)  
GND  
GND  
2
2
13  
12  
11  
10  
9
GND  
2
NC  
OUT (+)  
FEATURES  
Low noise: 3.5pA/Hz  
GND  
1
I
IN  
Single 5V supply  
NC  
GND  
1
Large bandwidth: 280MHz  
Differential outputs  
V
V
GND  
1
CC1  
CC2  
8
GND  
1
Low input/output impedances  
High power supply rejection ratio  
High overload threshold current  
Wide dynamic range  
TOP VIEW  
SD00318  
Wideband gain block  
Medical and scientific instrumentation  
Sensor preamplifiers  
7kdifferential transresistance  
Single-ended to differential conversion  
Low noise RF amplifiers  
APPLICATIONS  
Fiber-optic receivers, analog and digital  
RF signal processing  
Current-to-voltage converters  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
ORDER CODE  
DWG #  
14-Pin Plastic Small Outline (SO) Package  
0 to +70°C  
NE5210D  
SOT108-1  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
6
UNIT  
V
V
CC  
Power supply  
T
Operating ambient temperature range  
Operating junction temperature range  
0 to +70  
-55 to +150  
-65 to +150  
1.0  
°C  
A
T
°C  
J
T
STG  
Storage temperature range  
°C  
1
P
Power dissipation, T =25°C (still air)  
W
DMAX  
INMAX  
A
2
I
Maximum input current  
5
mA  
NOTES:  
1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance: θ =125°C/W.  
JA  
2. The use of a pull-up resistor to V for the PIN diode, is recommended.  
CC  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
RATING  
4.5 to 5.5  
0 to +70  
0 to +90  
UNIT  
V
V
CC  
Supply voltage  
T
A
Ambient temperature range  
Junction temperature range  
°C  
T
J
°C  
1
1995 Apr 26  
853-1654 15170  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
DC ELECTRICAL CHARACTERISTICS  
Min and Max limits apply over operating temperature range at V =5V, unless otherwise specified. Typical data applies at V =5V and  
CC  
CC  
T =25°C.  
A
LIMITS  
Typ  
0.8  
3.3  
0
SYMBOL  
PARAMETER  
Input bias voltage  
TEST CONDITIONS  
UNIT  
Min  
0.6  
2.8  
Max  
0.95  
3.7  
80  
V
V
V
V
IN  
Output bias voltage  
V
±
O
Output offset voltage  
Supply current  
mV  
mA  
mA  
µA  
OS  
I
I
I
21  
3
26  
32  
CC  
1
Output sink/source current  
Input current (2% linearity)  
4
OMAX  
IN  
Test Circuit 8, Procedure 2  
Test Circuit 8, Procedure 4  
±120  
±160  
Maximum input current  
overload threshold  
I
±160  
±240  
µA  
INMAX  
NOTES:  
1. Test condition: output quiescent voltage variation is less than 100mV for 3mA load current.  
AC ELECTRICAL CHARACTERISTICS  
Typical data and Min/Max limits apply at V =5V and T =25°C.  
CC  
A
LIMITS  
Typ  
SYMBOL  
PARAMETER  
Transresistance  
TEST CONDITIONS  
UNIT  
kΩ  
Min  
Max  
DC tested, R =∞  
L
R
R
R
R
4.9  
7
10  
T
O
T
(differential output)  
Test Circuit 8, Procedure 1  
Output resistance  
(differential output)  
DC tested  
16  
30  
3.5  
15  
42  
5
Transresistance  
(single-ended output)  
DC tested, R =∞  
2.45  
kΩ  
L
Output resistance  
(single-ended output)  
DC tested  
8
21  
O
f
Bandwidth (-3dB)  
Input resistance  
Input capacitance  
Test Circuit 1, T =25°C  
200  
280  
60  
MHz  
3dB  
A
R
C
IN  
IN  
7.5  
pF  
Transresistance power  
supply sensitivity  
R/V  
R/T  
V
=5±0.5V  
9.6  
0.05  
3.5  
20  
0.1  
6
%/V  
%/°C  
CC  
Transresistance ambient  
temperature sensitivity  
T =T  
A
-T  
A MAX A MIN  
RMS noise current spectral density  
(referred to input)  
f=10MHz, T =25°C  
A
I
N
pA/Hz  
Test Circuit 2  
T =25°C  
A
Test Circuit 2  
f=100MHz  
f=200MHz  
f=300MHz  
f=100MHz  
f=200MHz  
f=300MHz  
Integrated RMS noise current over  
the bandwidth (referred to input)  
37  
56  
71  
40  
66  
89  
1
C =0  
S
I
T
nA  
C =1pF  
S
2
2
2
2
Power supply rejection ratio  
DC tested, V =0.1V  
Equivalent AC test circuit 3  
CC  
PSRR  
PSRR  
PSRR  
PSRR  
20  
20  
36  
36  
65  
23  
dB  
dB  
dB  
dB  
(V  
CC1  
=V  
CC2  
)
Power supply rejection ratio  
(V  
DC tested, V =0.1V  
CC  
)
Equivalent AC test circuit 4  
CC1  
Power supply rejection ratio  
(V  
DC tested, V =0.1V  
CC  
)
Equivalent AC test circuit 5  
CC2  
Power supply rejection ratio (ECL  
configuration)  
f=0.1MHz, Test Circuit 6  
2
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
AC ELECTRICAL CHARACTERISTICS (Continued)  
LIMITS  
Typ  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Min  
Max  
Maximum output voltage swing dif-  
ferential  
R =∞  
L
V
OMAX  
V
INMAX  
2.4  
3.2  
V
P-P  
Test Circuit 8, Procedure 3  
Maximum input amplitude for  
Test Circuit 7  
650  
mV  
P-P  
3
output duty cycle of 50±5%  
Rise time for 50 mV  
output signal  
P-P  
t
R
Test Circuit 7  
0.8  
1.2  
ns  
4
NOTES:  
1. Package parasitic capacitance amounts to about 0.2pF  
2. PSRR is output referenced and is circuit board layout dependent at higher frequencies. For best performance use RF filter in V line.  
CC  
3. Guaranteed by linearity and overload tests.  
4. t defined as 20-80% rise time. It is guaranteed by a -3dB bandwidth test.  
R
TEST CIRCUITS  
SINGLE-ENDED  
DIFFERENTIAL  
NETWORK ANALYZER  
V
V
OUT  
OUT  
R
R
[
R
+
2 @ S21 @ R  
R
+
R + 4 @ S21 @ R  
T
T
V
V
IN  
IN  
S-PARAMETER TEST SET  
O Ť1 S22Ť *  
)
O Ť1 S22Ť *  
)
[ Z  
33  
R
+
2Z  
66  
O
O
1
*
S22  
1 * S22  
PORT 1  
PORT 2  
5V  
V
V
CC2  
CC1  
0.1µF  
0.1µF  
Z
= 50  
= 50  
33  
O
OUT  
OUT  
0.1µF  
R = 1k  
Z
= 50  
O
IN DUT  
33  
R
50  
L
GND  
GND  
1
2
Test Circuit 1  
SPECTRUM ANALYZER  
5V  
A
= 60DB  
V
V
V
CC2  
CC1  
0.1µF  
0.1µF  
Z
= 50  
= 50  
O
33  
OUT  
OUT  
IN DUT  
NC  
33  
R
L
GND  
GND  
1
2
Test Circuit 2  
SD00319  
3
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
TEST CIRCUITS (Continued)  
NETWORK ANALYZER  
5V  
S-PARAMETER TEST SET  
10µF  
10µF  
0.1µF  
PORT 1  
PORT 2  
CURRENT PROBE  
1mV/mA  
0.1µF  
16  
CAL  
V
V
CC1  
CC2  
0.1µF  
0.1µF  
33  
33  
OUT  
50  
TEST  
100  
BAL.  
IN  
TRANSFORMER  
NH0300HB  
UNBAL.  
OUT  
GND  
GND  
2
1
Test Circuit 3  
NETWORK ANALYZER  
5V  
S-PARAMETER TEST SET  
10µF  
0.1µF  
PORT 1  
PORT 2  
CURRENT PROBE  
1mV/mA  
10µF  
10µF  
0.1µF  
16  
CAL  
5V  
V
V
CC2  
CC1  
0.1µF  
0.1µF  
33  
33  
OUT  
50  
0.1µF  
IN  
TEST  
100  
BAL.  
TRANSFORMER  
NH0300HB  
UNBAL.  
OUT  
GND  
GND  
2
1
Test Circuit 4  
SD00320  
4
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
TEST CIRCUITS (Continued)  
NETWORK ANALYZER  
5V  
S-PARAMETER TEST SET  
10µF  
0.1µF  
PORT 1  
PORT 2  
CURRENT PROBE  
1mV/mA  
10µF  
10µF  
0.1µF  
16  
CAL  
5V  
V
V
CC1  
CC2  
0.1µF  
0.1µF  
33  
33  
OUT  
50  
0.1µF  
IN  
TEST  
100  
BAL.  
TRANSFORMER  
NH0300HB  
UNBAL.  
OUT  
GND  
GND  
2
1
Test Circuit 5  
NETWORK ANALYZER  
S-PARAMETER TEST SET  
GND  
PORT 1  
PORT 2  
CURRENT PROBE  
1mV/mA  
10µF  
0.1µF  
16  
CAL  
GND  
GND  
1
2
0.1µF  
0.1µF  
33  
33  
OUT  
50  
TEST  
100  
BAL.  
IN  
TRANSFORMER  
NH0300HB  
UNBAL.  
OUT  
V
V
CC1  
CC2  
5.2V  
10µF  
0.1µF  
Test Circuit 6  
SD00321  
5
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
TEST CIRCUITS (Continued)  
PULSE GEN.  
V
V
CC2  
CC1  
0.1µF  
0.1µF  
33  
33  
OUT  
OUT  
A
B
Z
= 50Ω  
0.1µF  
IN  
O
1k  
DUT  
OSCILLOSCOPE  
= 50Ω  
Z
O
50  
Measurement done using  
differential wave forms  
GND  
GND  
2
1
Test Circuit 7  
SD00322  
6
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
TEST CIRCUITS (Continued)  
Typical Differential Output Voltage  
vs Current Input  
5V  
+
OUT +  
V
(V)  
OUT  
IN  
DUT  
OUT –  
I
(µA)  
IN  
GND  
GND  
2
1
2.00  
1.60  
1.20  
0.80  
0.40  
0.00  
–0.40  
–0.80  
–1.20  
–1.60  
–2.00  
–400  
–320  
–240  
–160  
–80  
0
80  
160  
240  
320  
400  
CURRENT INPUT (µA)  
NE5210 TEST CONDITIONS  
Procedure 1  
R
R
measured at 60µA  
T
T
= (V  
O1  
– V )/(+60µA – (–60µA))  
O2  
Where: V  
Measured at I = +60µA  
O1  
IN  
V
Measured at I = –60µA  
O2  
IN  
Procedure 2  
Linearity = 1 – ABS((V  
– V  
OB  
) / (V  
O3  
– V ))  
O4  
OA  
Where: V  
Measured at I = +120µA  
O3  
IN  
V
Measured at I = –120µA  
O4  
IN  
V
+ R @ () 120mA) ) V  
OA  
T
OB  
OB  
V
+ R @ (* 120mA) ) V  
OB  
= V  
T
Procedure 3  
Procedure 4  
V
– V  
OMAX  
Where: V  
O7  
O8  
Measured at I = +260µA  
O7  
IN  
V
Measured at I = –260µA  
O8  
IN  
I
Test Pass Conditions:  
IN  
V
– V  
O5  
> 20mV and V – V > 20mV  
06 O5  
O7  
Where: V  
Measured at I = +160µA  
O5  
IN  
V
Measured at I = –160µA  
O6  
O7  
O8  
IN  
V
Measured at I = +260µA  
IN  
V
Measured at I = –260µA  
IN  
SD00323  
Test Circuit 8  
7
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
TYPICAL PERFORMANCE CHARACTERISTICS  
NE5210 Supply Current  
vs Temperature  
NE5210 Output Bias Voltage  
Output Voltage  
vs Input Current  
vs Temperature  
32  
4.5  
3.0  
3.50  
3.46  
3.42  
3.38  
3.34  
3.30  
+85°C  
–55°C  
V
= 5.0V  
+25°C  
30  
28  
26  
24  
22  
20  
18  
CC  
+125°C  
PIN 14  
PIN 12  
+125°C  
+85°C  
2.5  
–300.0  
–10  
0
10 20 30 40 50 60 70 80  
–10  
0
10 20 30 40 50 60 70 80  
0
+300.0  
INPUT CURRENT (µA)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
NE5210 Input Bias Voltage  
vs Temperature  
NE5210 Output Bias Voltage  
vs Temperature  
Differential Output Voltage  
vs Input Current  
4.1  
900  
2.0  
5.5V  
PIN 14  
5.5V  
5.5V  
3.9  
3.7  
3.5  
3.3  
3.1  
2.9  
2.7  
5.0V  
5.0V  
850  
4.5V  
4.5V  
5.0V  
4.5V  
0
800  
4.5V  
750  
700  
5.0V  
5.5V  
–2.0  
–300.0  
–10  
0
10 20 30 40 50 60 70 80  
0
+300.0  
–10  
0
10 20 30 40 50 60 70 80  
INPUT CURRENT (µA)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
NE5210 Output Offset Voltage  
vs Temperature  
NE5210 Differential Output Swing  
vs Temperature  
Differential Output Voltage  
vs Input Current  
20  
4.0  
2.0  
DC TESTED  
3.8  
V
= V  
OUT12  
– V  
OUT14  
OS  
R
= ∞  
L
0
–20  
–40  
3.6  
5.5V  
4.5V  
3.4  
3.2  
5.0V  
0
5.0V  
5.5V  
3.0  
2.8  
2.6  
4.5V  
–55°C  
+25°C  
+85°C  
+125°C  
–60  
–80  
2.4  
2.2  
–2.0  
–300.0  
–10  
0
10 20 30 40 50 60 70 80  
0
+300.0  
–10  
0
10 20 30 40 50 60 70 80  
INPUT CURRENT (µA)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
SD00324  
8
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
NE5210 Differential Transresistance  
vs Temperature  
Gain vs Frequency  
Gain vs Frequency  
8.6  
8
7
8
7
PIN 12  
PIN 12  
= 5V  
R
= ∞  
L
V
R
= 5V  
= 50Ω  
V
CC  
5.5V  
4.5V  
5.5V  
4.5V  
CC  
L
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
6
6
R
= 50Ω  
L
5
5
4
4
5.0V  
5.0V  
3
3
5.5V  
2
2
5.0V  
4.5V  
1
1
0
0
–1  
–1  
1
10  
100  
1000  
1
10  
100  
1000  
–10  
0
10 20 30 40 50 60 70 80  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
AMBIENT TEMPERATURE (°C)  
Gain vs Frequency  
Gain vs Frequency  
NE5210 Bandwidth vs Temperature  
450  
8
7
8
7
PIN 12  
= 5V  
PIN 12  
PIN 14  
= 5V  
V
SINGLE-ENDED  
V
CC  
+125°C  
–55°C  
CC  
400  
6
6
5.5V  
R
= Ω  
L
5
–55°C  
5
–55°C  
350  
300  
250  
200  
4
4
5.0V  
4.5V  
3
3
+125°C  
+85°C  
25°C  
85°C  
25°C  
2
2
1
1
0
+125°C  
0
–1  
–1  
1
10  
100  
1000  
1
10  
100  
1000  
–10  
0
10 20 30 40 50 60 70 80  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
AMBIENT TEMPERATURE (°C)  
NE5210 Typical  
Bandwidth Distribution  
(70 Parts from 4 Wafer Lots)  
Gain and Phase Shift  
vs Frequency  
Gain and Phase Shift  
vs Frequency  
8
7
6
5
4
3
2
1
0
180  
90  
8
360  
270  
180  
90  
50  
40  
30  
20  
10  
0
PIN 12  
PIN 12  
SINGLE-ENDED  
PIN 14  
V
T
= 5.0V  
7
6
CC  
= 25°C  
V
T
= 5V  
CC  
= 25°C  
V
T
= 5V  
CC  
= 25°C  
A
R
= 50Ω  
L
A
A
5
0
4
3
–90  
–180  
2
1
0
0
–1  
–1  
1
10  
100  
1000  
1
10  
100  
1000  
223  
255  
287  
319  
351  
383  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SD00325  
9
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
NE5210 Output Resistance  
vs Temperature  
NE5210 Output Resistance  
vs Temperature  
NE5210 Output Resistance  
vs Temperature  
17  
16  
15  
16  
15  
14  
13  
12  
17  
16  
15  
14  
13  
V
= 5.0V  
PIN 12  
OUTPUT REFERRED  
PIN 14  
OUTPUT REFERRED  
CC  
DC TESTED  
PIN 14 R  
OUT  
4.5V  
5.0V  
4.5V  
5.0V  
5.5V  
5.0V  
5.5V  
14  
5.0V  
PIN 12 R  
OUT  
13  
12  
–10  
0
10 20 30 40 50 60 70 80  
–10  
0
10 20 30 40 50 60 70 80  
–10  
0
10 20 30 40 50 60 70 80  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Output Resistance  
vs Frequency  
NE5210 Power Supply Rejection Ratio  
vs Temperature  
Group Delay  
40  
10  
8
V
= V = 5.0V  
CC2  
CC1  
V = ±0.1V  
V
= 5V  
80  
70  
60  
50  
40  
30  
20  
10  
0
CC  
39  
38  
37  
36  
35  
34  
33  
V
= 5.0V  
CC  
CC  
DC TESTED  
OUTPUT REFERRED  
T
= 25°C  
A
6
T
= 25°C  
A
4
2
PIN 12  
0
PIN 14  
100 200  
0.1  
1
10  
FREQUENCY (MHz)  
0.1 20 40 60 80 100 120 140 160 180 200  
FREQUENCY (MHz)  
–10  
0
10 20 30 40 50 60 70 80  
AMBIENT TEMPERATURE (°C)  
Output Step Response  
V
T
= 5V  
CC  
= 25°C  
A
20mV/Div  
0
2
4
6
8
10  
(ns)  
12  
14  
16  
18  
20  
SD00326  
10  
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
THEORY OF OPERATION  
Transimpedance amplifiers have been widely used as the  
preamplifier in fiber-optic receivers. The NE5210 is a wide  
bandwidth (typically 280MHz) transimpedance amplifier designed  
primarily for input currents requiring a large dynamic range, such as  
those produced by a laser diode. The maximum input current before  
output stage clipping occurs at typically 240µA. The NE5210 is a  
bipolar transimpedance amplifier which is current driven at the input  
and generates a differential voltage signal at the outputs. The  
forward transfer function is therefore a ratio of the differential output  
voltage to a given input current with the dimensions of ohms. The  
main feature of this amplifier is a wideband, low-noise input stage  
which is desensitized to photodiode capacitance variations. When  
connected to a photodiode of a few picoFarads, the frequency  
response will not be degraded significantly. Except for the input  
stage, the entire signal path is differential to provide improved  
power-supply rejection and ease of interface to ECL type circuitry. A  
block diagram of the circuit is shown in Figure 1. The input stage  
(A1) employs shunt-series feedback to stabilize the current gain of  
the amplifier. The transresistance of the amplifier from the current  
OUTPUT +  
A3  
INPUT  
A1  
A2  
R
F
A4  
OUTPUT –  
SD00327  
Figure 1. NE5210 – Block Diagram  
BANDWIDTH CALCULATIONS  
The input stage, shown in Figure 3, employs shunt-series feedback  
to stabilize the current gain of the amplifier. A simplified analysis can  
determine the performance of the amplifier. The equivalent input  
source to the emitter of Q is approximately the value of the  
3
capacitance, C , in  
feedback resistor, R =3.6k. The gain from the second stage (A2)  
IN  
F
parallel with the source, I , is approximately 7.5pF, assuming that  
and emitter followers (A3 and A4) is about two. Therefore, the  
S
C =0 where C is the external source capacitance.  
differential transresistance of the entire amplifier, R is  
S
S
T
V
OUT(diff)  
IIN  
Since the input is driven by a current source the input must have a  
RT  
+
+ 2RF + 2(3.6K) + 7.2k  
low input resistance. The input resistance, R , is the ratio of the  
IN  
incremental input voltage, V , to the corresponding input current, I  
IN  
IN  
The single-ended transresistance of the amplifier is typically 3.6k.  
and can be calculated as:  
The simplified schematic in Figure 2 shows how an input current is  
converted to a differential output voltage. The amplifier has a single  
input for current which is referenced to Ground 1. An input current  
from a laser diode, for example, will be converted into a voltage by  
VIN  
IIN  
RF  
3.6K  
71  
RIN  
+
+
+
+ 51  
1 ) AVOL  
More exact calculations would yield a higher value of 60.  
the feedback resistor R . The transistor Q1 provides most of the  
F
Thus C and R will form the dominant pole of the entire amplifier;  
IN  
IN  
open loop gain of the circuit, A  
70. The emitter follower Q  
2
VOL  
1
minimizes loading on Q . The transistor Q , resistor R , and V  
B1  
f*3dB  
+
1
4
7
2
RIN CIN  
provide level shifting and interface with the Q – Q differential  
15  
16  
pair of the second stage which is biased with an internal reference,  
. The differential outputs are derived from emitter followers Q  
Assuming typical values for R = 3.6k, R = 60, C = 7.5pF  
F
IN  
IN  
V
B2  
11  
1
f*3dB  
+
+ 354MHz  
Q
Q
which are biased by constant current sources. The collectors of  
12  
2
7.5pF 60  
– Q are bonded to an external pin, V  
, in order to reduce  
11  
12  
CC2  
the feedback to the input stage. The output impedance is about 17Ω  
single-ended. For ease of performance evaluation, a 33resistor is  
used in series with each output to match to a 50test system.  
V
CC1  
R
V
CC2  
R
R
R
1
3
12  
13  
Q
Q
Q
2
4
11  
INPUT  
+
Q
Q
12  
3
Q
1
Q
Q
16  
OUT–  
OUT+  
15  
R
R
2
R
14  
15  
GND  
1
R
+
7
PHOTODIODE  
VB2  
R
5
R
4
GND  
2
SD00328  
Figure 2. Transimpedance Amplifier  
11  
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
For a given wavelength λ; (meters)  
V
hc  
CC  
Energy of one Photon =  
watt sec (Joule)  
I
R3  
-34  
C1  
R1  
Where h=Planck’s Constant = 6.6 × 10 Joule sec.  
c = speed of light = 3 × 10 m/sec  
c / λ = optical frequency (Hz)  
8
INPUT  
Q2  
I
B
I
Q3  
IN  
No. of incident photons/sec= where P=optical incident power  
Q1  
R2  
P
hs  
I
V
F
EQ3  
No. of incident photons/sec =  
V
IN  
where P = optical incident power  
P
R
F
R4  
hs  
No. of generated electrons/sec =  
@
SD00329  
where η = quantum efficiency  
no. of generated electron hole paris  
no. of incident photons  
Figure 3. Shunt-Series Input Stage  
+
The operating point of Q1, Figure 2, has been optimized for the  
lowest current noise without introducing a second dominant pole in  
the pass-band. All poles associated with subsequent stages have  
been kept at sufficiently high enough frequencies to yield an overall  
single pole response. Although wider bandwidths have been  
achieved by using a cascode input stage configuration, the present  
solution has the advantage of a very uniform, highly desensitized  
frequency response because the Miller effect dominates over the  
external photodiode and stray capacitances. For example, assuming  
P
hs  
I +  
@
@ e Amps (Coulombs sec.)  
-19  
where e = electron charge = 1.6 × 10 Coulombs  
@e  
hs  
Responsivity R =  
Amp/watt  
I + P @ R  
a source capacitance of 1pF, input stage voltage gain of 70, R  
=
IN  
Assuming a data rate of 400 Mbaud (Bandwidth, B=200MHz), the  
noise parameter Z may be calculated as:  
60then the total input capacitance, C = (1+7.5) pF which will  
IN  
1
lead to only a 12% bandwidth reduction.  
IEQ  
qB  
66 @ 10*9  
(1.6 @ 10*19)(200 @ 106)  
Z +  
+
+ 2063  
NOISE  
where Z is the ratio of  
noise output to the peak response to a  
RMS  
Most of the currently installed fiber-optic systems use non-coherent  
transmission and detect incident optical power. Therefore, receiver  
noise performance becomes very important. The input stage  
achieves a low input referred noise current (spectral density) of  
3.5pA/Hz. The transresistance configuration assures that the  
external high value bias resistors often required for photodiode  
biasing will not contribute to the total noise system noise. The  
single hole-electron pair. Assuming 100% photodetector quantum  
efficiency, half mark/half space digital transmission, 850nm  
lightwave and using Gaussian approximation, the minimum required  
-9  
optical power to achieve 10 BER is:  
hc  
P
avMIN + 12 B Z + 12 2.3 @ 10*19  
equivalent input  
quiescent current of Q , the feedback resistor R , and the  
bandwidth; however, it is not dependent upon the internal  
Miller-capacitance. The measured wideband noise was 66nA  
a 200MHz bandwidth.  
noise current is strongly determined by the  
RMS  
200 @ 106 2063  
1
F
+ 1139nW + * 29.4dBm  
in  
RMS  
where h is Planck’s Constant, c is the speed of light, λ is the  
wavelength. The minimum input current to the NE5210, at this input  
power is:  
DYNAMIC RANGE CALCULATIONS  
The electrical dynamic range can be defined as the ratio of  
maximum input current to the peak noise current:  
IavMIN + qP  
avMIN hc  
1139 @ 10*9 @ 1.6 @ 10*19  
+
2.3 @ 10*19  
Electrical dynamic range, D , in a 200MHz bandwidth assuming  
E
I
= 240µA and a wideband noise of I =66nA  
for an  
= 792nA  
INMAX  
EQ  
RMS  
external source capacitance of C = 1pF.  
S
Choosing the maximum peak overload current of I  
maximum mean optical power is:  
=240µA, the  
avMAX  
(Max. input current) (PK)  
DE + 20log  
(Peak noise current) (RMS) @ 2  
hcIavMAX  
q
2.3 @ 10*19  
1.6 @ 10*19  
PavMAX  
+
+
240 @ 10*6  
(240 @ 10*6  
( 2 66 10*9  
)
+ 20log  
+ 68dB  
)
Thus the optical dynamic range, D is:  
O
In order to calculate the optical dynamic range the incident optical  
power must be considered.  
D
= P  
- P  
= -4.6 -(-29.4) = 24.8dB.  
O
avMAX  
avMIN  
12  
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
This represents the maximum limit attainable with the NE5210  
operating at 200MHz bandwidth, with a half mark/half space digital  
transmission at 850nm wavelength.  
quiescent values of 3.3V (for a 5V supply), then the circuit may be  
oscillating. Input pin layout necessitates that the photodiode be  
physically very close to the input and Ground 1. Connecting Pins 3  
and 5 to Ground 1 will tend to shield the input but it will also tend to  
increase the capacitance on the input and slightly reduce the  
bandwidth.  
APPLICATION INFORMATION  
Package parasitics, particularly ground lead inductances and  
parasitic capacitances, can significantly degrade the frequency  
response. Since the NE5210 has differential outputs which can feed  
back signals to the input by parasitic package or board layout  
capacitances, both peaking and attenuating type frequency  
response shaping is possible. Constructing the board layout so that  
Ground 1 and Ground 2 have very low impedance paths has  
produced the best results. This was accomplished by adding a  
ground-plane stripe underneath the device connecting Ground 1,  
Pins 8–11, and Ground 2, Pins 1 and 2 on opposite ends of the  
SO14 package. This ground-plane stripe also provides isolation  
As with any high-frequency device, some precautions must be  
observed in order to enjoy reliable performance. The first of these is  
the use of a well-regulated power supply. The supply must be  
capable of providing varying amounts of current without significantly  
changing the voltage level. Proper supply bypassing requires that a  
good quality 0.1µF high-frequency capacitor be inserted between  
V
CC1  
and V  
, preferably a chip capacitor, as close to the package  
CC2  
pins as possible. Also, the parallel combination of 0.1µF capacitors  
with 10µF tantalum capacitors from each supply, V and V , to  
CC1  
CC2  
the ground plane should provide adequate decoupling. Some  
applications may require an RF choke in series with the power  
supply line. Separate analog and digital ground leads must be  
maintained and printed circuit board ground plane should be  
employed whenever possible.  
between the output return currents flowing to either V  
or Ground  
CC2  
2 and the input photodiode currents to flowing to Ground 1. Without  
this ground-plane stripe and with large lead inductances on the  
board, the part may be unstable and oscillate near 800MHz. The  
easiest way to realize that the part is not functioning normally is to  
measure the DC voltages at the outputs. If they are not close to their  
Figure 4 depicts a 50Mb/s TTL fiber-optic receiver using the BPF31,  
850nm LED, the NE5210 and the NE5214 post amplifier.  
+V  
CC  
GND  
47µF  
C1  
C2  
.01µF  
L1  
10µH  
C5  
1.0µF  
R1  
100  
D1  
LED  
R2  
220  
C7  
LED  
C
GND  
1
20  
19  
V
V
IN  
IN  
8
9
7
6
CC  
1B  
1A  
100pF  
C8  
C9  
C3  
10µF  
.01µF  
C4  
.01µF  
2
PKDET  
GND  
GND  
GND  
CC  
NC  
100pF  
THRESH  
3
18  
10  
11  
5
4
C
C6  
AZP  
AZN  
GND  
A
I
IN  
4
5
17  
16  
C
0.1µF  
BPF31  
OPTICAL  
INPUT  
R3  
47k  
FLAG  
JAM  
NC  
OUT  
OUT  
12  
13  
3
2
1B  
L2  
10µH  
6
7
15  
14  
GND  
GND  
GND  
OUT  
IN  
8B  
V
CCD  
OUT  
14  
1
1A  
C11  
C10  
V
CCA  
8
13  
12  
10µF  
.01µF  
IN  
R
8A  
GND  
D
9
HYST  
R
TTL  
10  
11  
C12  
10µF  
PKDET  
OUT  
L3  
10µH  
C13  
.01µF  
R4  
4k  
V
(TTL)  
OUT  
NOTE:  
The NE5210/NE5217 combination can operate at data rates in excess of 100Mb/s NRZ  
The capacitor C7 decreases the NE5210 bandwidth to improve overall S/N ratio in the DC–50MHz band, but does create extra high frequency noise  
on the NE5210 V pin(s).  
CC  
SD00330  
Figure 4. A 50Mb/s Fiber Optic Receiver  
13  
1995 Apr 26  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (280MHz)  
NE5210  
1
14  
OUT (–)  
GND 2  
2
13  
GND 2  
GND 2  
12  
3
OUT (+)  
NC  
GND 1  
11  
4
INPUT  
NC  
10  
GND 1  
5
GND 1  
VCC1  
9
6
ECN No.: 06027  
1992 Mar 13  
GND 1  
7
8
VCC 2  
SD00488  
Figure 5. NE5210 Bonding Diagram  
carriers, it is impossible to guarantee 100% functionality through this  
process. There is no post waffle pack testing performed on  
individual die.  
Die Sales Disclaimer  
Due to the limitations in testing high frequency and other parameters  
at the die level, and the fact that die electrical characteristics may  
shift after packaging, die electrical parameters are not specified and  
die are not guaranteed to meet electrical characteristics (including  
temperature range) as noted in this data sheet which is intended  
only to specify electrical characteristics for a packaged device.  
Since Philips Semiconductors has no control of third party  
procedures in the handling or packaging of die, Philips  
Semiconductors assumes no liability for device functionality or  
performance of the die or systems on any die sales.  
All die are 100% functional with various parametrics tested at the  
wafer level, at room temperature only (25°C), and are guaranteed to  
be 100% functional as a result of electrical testing to the point of  
wafer sawing only. Although the most modern processes are  
utilized for wafer sawing and die pick and place into waffle pack  
Although Philips Semiconductors typically realizes a yield of 85%  
after assembling die into their respective packages, with care  
customers should achieve a similar yield. However, for the reasons  
stated above, Philips Semiconductors cannot guarantee this or any  
other yield on any die sales.  
14  
1995 Apr 26  

相关型号:

NE5210D

Transimpedance amplifier 280MHz
NXP

NE52118

L to S BAND LOW NOISE AMPLIFIER NPN GaAs HBT
NEC

NE52118-T1

L to S BAND LOW NOISE AMPLIFIER NPN GaAs HBT
NEC

NE52118_00

L TO S BAND LOW NOISE AMPLIFIER NPN GaAs HBT
NEC

NE5211D

Current-Feedback Operational Amplifier
ETC

NE5212AD

RF/Microwave Amplifier, 140 MHz RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER
NXP

NE5212AD

Telecom Circuit, PDSO8,
PHILIPS

NE5212AD-T

RF/Microwave Amplifier, 140 MHz RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER
NXP

NE5212AFE

RF/Microwave Amplifier, 100 MHz RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER
NXP

NE5212AN

RF/Microwave Amplifier, 140 MHz RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER
NXP

NE5212AN

Telecom Circuit, PDIP8,
PHILIPS

NE5212D

IC SPECIALTY ANALOG CIRCUIT, PDSO8, PLASTIC, SOIC-8, Analog IC:Other
NXP