NE56611-39GW [NXP]

Family of devices designed to generate a reset signal for a variety of microprocessor and logic systems; 家庭设备的设计,以产生一个复位信号,适用于各种微处理器和逻辑系统的
NE56611-39GW
型号: NE56611-39GW
厂家: NXP    NXP
描述:

Family of devices designed to generate a reset signal for a variety of microprocessor and logic systems
家庭设备的设计,以产生一个复位信号,适用于各种微处理器和逻辑系统的

电源电路 电源管理电路 微处理器 光电二极管
文件: 总9页 (文件大小:126K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NE56610/11/12 Series  
System Reset  
Rev 0  
February, 2001  
Preliminary Product Specification  
General Description  
The NE56610/11/12 series is a family of devices designed to generate a reset signal for a  
variety of microprocessor and logic systems. Accurate reset signals are generated during  
momentary power interruptions or when ever power supply voltages sag to intolerable levels.  
The NE56610/11/12 incorporates an internal timer to provide reset delay and ensure proper  
operating voltage has been attained. In addition, a manual reset pin is available. An Open  
Collector output topology is incorporated to provide adaptability for a wide variety of logic and  
microprocessor systems.  
5
1
2
VCC  
M/R  
SUB  
4
3
GND  
VOUT  
TSSOP5  
NE56610/11/12 is available in the TSSOP5 surface mount package.  
Features  
• 12V DC Maximum Operating Voltage  
• Low Operating Voltage (0.65 V)  
• Internal Reset Delay Timer  
• NE56610 (50 mS Typical)  
• Offered in Reset Thresholds of 2.0, 2.7, 2.8, 2.9, 3.0, 3.1, 4.2,  
4.3, 4.4, 4.5, 4.7 V DC  
• Available in SSOP5 Surface Mount Package  
• Manual Reset Input  
• NE56611 (100mS Typical)  
• NE56612 (200mS Typical)  
Applications  
• Micro-Computer Systems  
• Logic Systems  
• Battery Monitoring Systems  
• Back-Up Power Supply Circuits  
• Voltage Detection Circuits  
• Mechanical Reset Circuits  
Simplified Device Diagram  
5
VCC  
NE56610/11/12  
VOUT  
4
Reset  
Delay  
+
3
GND  
VREF  
1
M/R  
2
SUB  
Ordering Information  
Description  
Temperature Range  
Order Code  
DWG#  
5-pin SOT23 (TSSOP5) plastic surface mount  
-20 - +75 °C  
-20 - +75 °C  
-20 - +75 °C  
NE56610-xxGW  
NE56611-xxGW  
NE56612-xxGW  
TSSOP5  
TSSOP5  
TSSOP5  
System Reset (100mS Typical Internal Reset Delay)  
System Reset (200mS Typical Internal Reset Delay)  
Note: Each device has 6 (six) detection voltage options, indicated by the -xx on the order code:  
XX  
Detect Voltage (Typ.)  
XX  
Detect Voltage (Typ.)  
-25  
-27  
-29  
2.5  
2.7  
2.9  
-39  
-42  
-45  
3.9  
4.2  
4.5  
Philips Semiconductors  
NE56610/11/12 Series  
System Reset  
Pin Designation and Description  
Pin Designation  
Pin No  
Pin Name  
Function  
1
2
3
4
5
M/R  
SUB  
GND  
VOUT  
VCC  
Manual Reset input. Connect to ground when not using.  
Substrate Pin. Connect to ground.  
Ground  
5
1
2
3
Reset High Output pin  
4
Positive Power Supply Input  
Maximum Ratings  
Parameter  
Symbol  
Rating  
Unit  
Storage Temperature Range  
Ambient Operating Temperature Range  
Power Supply Voltage  
TSTG  
TA  
-40 - +125  
-20 - +75  
-0.3 - +12  
-0.3 - +12  
150  
°C  
°C  
V
VCC max.  
VRES max  
Pd  
Manual Reset Input Voltage  
Power Dissipation  
V
mW  
Recommended Operating Conditions  
Parameter  
Symbol  
Rating  
Unit  
Ambient Operating Temperature Range  
Power Supply Voltage  
TA  
-20 - +75  
-0.3 - +12  
°C  
VCC max.  
V
February 23, 2001  
2 of 9  
document number here  
Philips Semiconductors  
NE56610/11/12 Series  
System Reset  
DC ELECTRICAL CHARACTERISTICS  
TA = 25°C, unless otherwise specified.  
Note 1: Unless otherwise stated, M/R pin should always be connected to ground.  
Test  
Circuit  
Parameter  
Symbol  
Part#  
Min  
Typ  
Max  
Unit  
Threshold Detection  
VS  
1
-45  
-42  
-39  
-29  
-27  
-25  
All  
4.3  
4.0  
4.5  
4.2  
4.7  
4.4  
V
VCC Falling  
RL = 470Ω,  
VOL 0.4V  
3.7  
3.9  
4.1  
2.75  
2.55  
2.35  
30  
2.90  
2.70  
2.50  
50  
3.05  
2.85  
2.65  
100  
Hysteresis Voltage  
VS  
1
mV  
VCC = Rising then Falling (VS = VSH-VSL)  
RL = 470Ω  
Threshold Temperature Coefficient  
TC / VS  
VOL  
1
1
1
1
1
2
All  
All  
All  
All  
All  
±0.01  
0.1  
% / °C  
V
RL = 470Ω, TA = -20°C - +75°C  
Low-level Output Voltage  
0.4  
±0.1  
500  
25  
VCC = VS min. -0.05V, RL = 470Ω  
Output Leakage Current  
VCC = 10V  
IOH  
µA  
Circuit ON Current  
ICCL  
300  
15  
µA  
VCC = VS min. -0.05V, RL = ∞  
Circuit OFF Current  
ICCH  
TDLH  
µA  
VCC = VS typ./0.85V, RL = ∞  
Reset Delay Time High (see note 1)  
RL = 4.7kΩ  
NE56610  
NE56611  
NE56612  
All  
30  
60  
50  
100  
200  
20  
75  
mS  
150  
300  
CL = 100pF  
120  
Reset Delay Time Low (see note 2)  
TPHL  
VOPL  
IOL1  
IOL2  
2
1
1
1
mS  
V
RL = 4.7kΩ, CL = 100pF  
Operating Supply Voltage  
All  
All  
All  
0.65  
0.85  
RL = 4.7kΩ, VOL 0.4V  
Output ON Current 1  
8
6
mA  
mA  
VCC = VS min. -0.05V, RL = 0  
Output On Current 2  
VCC = VS min. -0.05V, RL = 0  
TA = -20°C - +75°C  
M/R Threshold High  
VM/RH  
IM/RH  
All  
All  
2.0  
V
M/R Threshold High  
VM/RH = 2.0v  
10  
60  
µA  
M/R Threshold Low  
VM/RL  
All  
-0.3  
0.8  
V
NOTES:  
2. TDLH measured with VCC = (VS typ. -0.4V) and abruptly transitioning to (VS typ. +0.4)V. TDLH is duration from VCC transition high  
to output transition high.  
3. TDHL measured with VCC (VS typ. +0.4V) and abruptly transitioning to (VS typ. -0.4)V. TDHL is duration from VCC transition low  
to output transition low.  
4. Ramp M/R voltage until Output Reset goes low.  
February 23, 2001  
3 of 9  
document number here  
Philips Semiconductors  
NE56610/11/12 Series  
System Reset  
Typical Performance Curves  
Figure 1. Normalized Detection versus Temperature  
Figure 2. Circuit ON Current versus Temperature  
0.10  
500  
400  
300  
200  
100  
VCC = VS min. -0.05V  
RL = ∞  
Threshold Normalized to 25°C  
RL (Pull-Up to VCC) 470Ω  
VOL 0.4V  
0.05  
0.00  
-0.05  
-0.10  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
TA, TEMPERATURE (°C)  
TA, TEMPERATURE (°C)  
Figure 3.Detection Hysteresis versus Temperature  
Figure 4. Circuit OFF Current versus Temperature  
30  
80  
VS = VSH - VSL  
VCC = VS typ. +0.85V  
RL (Pull-Up to VCC) = 470Ω  
RL = ∞  
25  
70  
60  
50  
40  
20  
15  
10  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
TA, TEMPERATURE (°C)  
TA, TEMPERATURE (°C)  
Figure 5. Low-Level Output Voltage versus Temperature  
Figure 6. Operating Supply Voltage versus Temperature  
900  
120  
VCC = VS min. -0.05V  
RL (Pull-Up to VCC) 470Ω  
VOL 0.4V  
RL4.7kΩ  
800  
100  
80  
700  
600  
500  
400  
60  
40  
-50  
-50  
-25  
0
25  
50  
75  
100 125  
-25  
0
25  
50  
75  
100 125  
TA, TEMPERATURE (°C)  
TA, TEMPERATURE (°C)  
February 23, 2001  
4 of 9  
document number here  
Philips Semiconductors  
NE56610/11/12 Series  
System Reset  
Typical Performance Curves (continued)  
Figure 7. Output ON Current versus Temperature  
Figure 8. M/R Input High Current versus Temperature  
70  
25  
VCC = 5.0V  
VM/RH = 2.0V  
VCC = VS min. -0.05V  
RL  
= 0  
20  
60  
50  
40  
30  
15  
10  
5.0  
125  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100  
TA, TEMPERATURE (°C)  
TA, TEMPERATURE (°C)  
Figure 9. Reset Delay Time High versus Temperature  
Figure 10. M/R Threshold High versus Temperature  
250  
1.6  
VCC = 5.0V  
225  
SA56612  
1.4  
200  
175  
RL4.7kΩ  
CL = 100pF  
1.2  
1.0  
0.8  
0.6  
150  
125  
SA56611  
100  
75  
SA56610  
50  
25  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
TA, TEMPERATURE (°C)  
TA, TEMPERATURE (°C)  
Figure 11. Reset Delay Time Low versus Temperature  
Figure 12. Icc and Vout versus Supply Voltage  
14  
500  
5.0  
4.0  
3.0  
2.0  
1.0  
RL4.7kΩ  
CL = 100pF  
VOUT  
RL = 470Ω  
TA = 25°C  
400  
300  
200  
100  
0
13  
12  
11  
10  
VS  
ICC  
0
-50  
-25  
0
25  
50  
75  
100 125  
0
1.0  
2.0  
3.0  
4.0  
5.0  
VCC, SUPPLY VOLTAGE (V)  
TA, TEMPERATURE (°C)  
February 23, 2001  
5 of 9  
document number here  
Philips Semiconductors  
NE56610/11/12 Series  
System Reset  
Typical Performance Curves (continued)  
Figure 13. Output Sink Current versus Output Voltage  
40  
VCC = VS min. -0.05V  
RL  
= 0  
35  
30  
25  
20  
15  
10  
5
TA = 25°C  
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
VOUT, OUTPUT VOLTAGE (V)  
Technical Discussion  
Figure 14. Functional Schematic  
VCC  
5
delay  
OSC  
T
Q
VOUT Reset  
R
4
GND  
SUB  
3
2
M/R  
1
February 23, 2001  
6 of 9  
document number here  
Philips Semiconductors  
TIMING DIAGRAM  
NE56610/11/12 Series  
System Reset  
The Timing Diagram shown in Figure 15 depicts the operation  
of the device. Letters indicate events on the Time axis.  
E-F: Between "E" and "F", VCC recovers and starts  
increasing.  
A: At start-up, event "A", the VCC and Reset voltages begin to  
rise. Also the Reset voltage initially rises but then abruptly  
returns to a low state. This is due to VCC reaching the level  
(approximately 0.8V) that activates the internal bias circuitry.  
F: At "F", VCC reaches the VSH upper threshold. Once again,  
the "H" transport delay time (TPLH) is initiated.  
G: At "G", VCC is above the undervoltage detect threshold  
and the "H" transport delay time (TPLH) has elapsed. At this point  
B: At event "B", the "H" transport delay time (TPLH) is initiated. the device removes the hold on the VOUT reset. VOUT Reset  
This is caused by and coincident to VCC reaching the threshold  
level of VSH. At this level the device is in full operation. The  
Reset output remains off as VCC rises above VSH. This is  
normal.  
goes high.  
H-J: At event "H", VCC is normal, but a manual reset signal  
from the logic device is applied at the M/R pin. With the falling  
edge of the manual reset signal, the "H" transport delay time  
(TPLH) is initiated. At "J", transport delay time (TPLH) has  
elapsed and the Vout reset goes high.  
C: At event "C" VCC is above the undervoltage detect  
threshold and the "H" transport delay time (TPLH) has elapsed.  
At this point the device removes the hold on the VOUT reset.  
VOUT Reset goes high.  
K: At event "K" VCC sags to the point where the VSL  
undervoltage threshold point is reached and at that level VOUT  
reset goes low.  
In a microprocessor based system these events remove the  
reset from the microprocessor, allowing it to function normally.  
L: At event "L" the VCC voltage has deteriorated to a level  
where normal internal circuit bias is no longer able to maintain a  
VOUT reset and as a result may exhibit a slight rise to something  
less than 0.8V. As VCC decays even further, VOUT reset also  
decreases to zero.  
D-E: At "D", VCC begins to ramp down causing VOUT to follow  
it. VCC continues to sag until the VSL undervoltage threshold is  
reached at "E". At that time, reset signal is generated (VOUT  
Reset goes low).  
Figure 15. Timing Diagram  
V
B
C
D
F
H
K
L
VS  
VSH  
VSL  
VS  
VCC  
V
V
VOUT  
TPLH  
TPLH  
TPLH  
A
B
C
E
G
J
K
L
M/R  
VRES  
H
TIME  
February 23, 2001  
7 of 9  
document number here  
Philips Semiconductors  
NE56610/11/12 Series  
System Reset  
Application Information  
When the manual reset is not needed, the M/R, manual reset  
The second example, shown in Figure 17 - Manual Reset  
pin is connected to ground as shown in Figure 16 - Typical Hard Circuit, incorporates a manual reset switch from the M/R pin to  
Reset Circuit. A capacitor connected from VCC to ground is  
recommended when the VCC supply impedance is appreciably  
high. This may be the situation with a poor quality or aged  
battery.  
VCC. When the manual switch is closed, VOUT reset is logic  
high. Conversely, when it is opened, VOUT reset is logic low. As  
a precaution a clamp diode is placed from the M/R pin to ground  
to insure that the pin does not go below - 0.3V.  
Figure 16. Typical Hard Reset Circuit  
Figure 17. Manual Reset Circuit  
To CPU  
Reset Pin  
To VCC  
To VCC  
To CPU  
Reset Pin  
RL  
RL  
Manual  
Switch  
5
4
5
4
VCC  
VOUT  
VCC  
VOUT  
M/R  
1
SUB GND  
M/R  
1
SUB GND  
2
3
2
3
Clamp  
Diode  
Test Circuits  
Figure 16. Test Circuit 1  
Figure 17. Test Circuit 2  
A2  
RL  
A1  
10µF  
/ 10V  
5
RL  
4
10µF  
5
4
/ 10V  
VOUT  
VCC  
VOUT  
VCC  
Input  
5.0 V  
Pulse  
GND  
M/R SUB  
GND  
M/R SUB  
V2  
VCC  
V1  
2
1
3
2
1
3
CRT  
VRES  
CL = 100pF  
CRT = Oscilliscope  
A - DC Ammeter  
V = DC Voltmeter  
Input Pulse  
VS typ  
+0.4V  
-0.4V  
VS typ  
0V  
February 23, 2001  
8 of 9  
document number here  
Philips Semiconductors  
NE56610/11/12 Series  
System Reset  
Packing Method  
The NE56610/11/12 is packed in reels, as shown here  
Guard  
Band  
Tape Detail  
Tape  
Cover  
Tape  
Reel  
Assembly  
Carrier  
Tape  
Barcode  
Label  
Box  
LEGAL DISCLAIMER GOES HERE  
February 23, 2001  
9 of 9  
document number here  

相关型号:

NE56611-39GW-G

暂无描述
NXP

NE56611-42GW

Family of devices designed to generate a reset signal for a variety of microprocessor and logic systems
NXP

NE56611-42GW-G

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, PLASTIC, SOT-23, 5 PIN, Power Management Circuit
NXP

NE56611-45GW

Family of devices designed to generate a reset signal for a variety of microprocessor and logic systems
NXP

NE56611-45GW-G

暂无描述
NXP

NE56611-45WG

IC,VOLT DETECTOR,FIXED,+4.5V,TSOP,5PIN,PLASTIC
NXP

NE56612

Family of devices designed to generate a reset signal for a variety of microprocessor and logic systems
NXP

NE56612-25GW

Power Management Circuit, Fixed, +2.5VV, PDSO5,
PHILIPS

NE56612-25GW-G

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, PLASTIC, SOT-23, 5 PIN, Power Management Circuit
NXP

NE56612-27GW

Analog IC
ETC

NE56612-27GW-G

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, PLASTIC, SOT-23, 5 PIN, Power Management Circuit
NXP

NE56612-29GW

Power Management Circuit, Fixed, +2.9VV, PDSO5,
PHILIPS