NE56625-20D [NXP]

IC 1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, 3.90 MM, PLASTIC, MS-012, SOP-8, Power Management Circuit;
NE56625-20D
型号: NE56625-20D
厂家: NXP    NXP
描述:

IC 1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO8, 3.90 MM, PLASTIC, MS-012, SOP-8, Power Management Circuit

光电二极管
文件: 总15页 (文件大小:196K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
NE56625-20  
System reset with Watchdog timer  
Product data  
2003 Oct 15  
Supersedes data of 2002 Mar 25  
Philips  
Semiconductors  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
GENERAL DESCRIPTION  
The NE56625-20 is comprised of a power-on reset, a Watchdog  
timer and low battery detection circuit. The NE56625 is designed to  
generate an Active-LOW reset signal for a variety of microprocessor  
and logic systems. Accurate reset signals are generated during  
momentary power interruptions or whenever power supply voltages  
sag to intolerable levels. The built-in Watchdog timer monitors the  
microprocessor and ensures it is operating properly. Any abnormal  
system operations due to microprocessor malfunctions are  
terminated by a system reset generated by the Watchdog. To  
accommodate a wide range of system requirements, the Watchdog  
Monitoring Time and power-on reset delay time are programmable  
from 10 ms to 10 sec.  
The NE56625-20 is designed for low voltage battery powered  
applications with low battery detection threshold at 2.2 V. It is offered  
in the 8-lead small outline surface mount package (SOP005).  
FEATURES  
APPLICATIONS  
Microcomputer systems and logic systems  
2 V cordless phones  
Accurate threshold detection voltages:  
Low battery: 2.2 V ±3%  
Power-on reset: 2.0 V ±3%  
Various portable, battery operated equipment  
Low hysteresis voltage (both low battery check and power-on  
reset): 50 mV typ.  
Low supply current: 150 µA typ.  
Programmable power-on reset detection voltage  
Programmable power-on reset delay: 10 ms to 10 s  
Internal Watchdog timer programmable with external resistor and  
capacitor: 10 ms to 10 s  
Reset assertion with V down to 0.8 V (typical)  
CC  
DC  
Few external components required  
SIMPLIFIED SYSTEM DIAGRAM  
V
CC  
R
CT  
LOGIC SYSTEM  
R
CT  
6
5
NE56625-20  
BC  
BATTERY  
CHECK  
NMI  
2
8
V
S
7
RESET  
CLK  
RESET  
GENERATOR  
RESET  
V
REF  
C
PROGRAMMABLE  
WATCHDOG  
TIMER  
CLK  
3
GND  
4
1
GND  
C
T
SL01593  
Figure 1. Simplified system diagram.  
2
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
ORDERING INFORMATION  
PACKAGE  
TEMPERATURE  
RANGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
SOP005  
NE56625-20D  
SO8  
plastic small outline package; 8 leads; body width 3.9 mm  
–20 to +75 °C  
PIN CONFIGURATION  
TOP VIEW  
C
1
2
3
4
8
7
6
5
RESET  
T
BC  
CLK  
GND  
V
S
R
CT  
CC  
V
SL01586  
Figure 2. Pin configuration.  
PIN DESCRIPTION  
PIN  
SYMBOL  
DESCRIPTION  
, t times are dependent on the value of external C capacitor used. See Figure 17 (Timing  
1
C
t
, t  
, t  
, t adjustment pin.  
T
WDM WDR PR  
t
WDM WDR PR  
T
Diagram) for definition of t  
, t  
, t times.  
WDM WDR PR  
2
3
4
5
6
BC  
Battery check Active-LOW output.  
Clock input pin from logic system for Watchdog timer.  
Circuit ground.  
CLK  
GND  
V
CC  
Positive supply voltage.  
R
Watchdog timer control pin.  
The Watchdog timer is enabled when this pin is pulled-up to V with a resistor, and disabled when this pin  
CT  
CC  
is connected to ground.  
7
8
V
Detection threshold adjustment pin.  
The detection threshold can be decreased by connecting this pin to V with a pull-up resistor. The  
detection threshold can be increased by connecting this pin to ground with a pull-down resistor.  
S
CC  
RESET  
Reset Active-LOW output.  
MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
MIN.  
–0.3  
–0.3  
–0.3  
–0.3  
–20  
–40  
MAX.  
7
UNIT  
V
V
V
V
V
Power supply voltage  
pin voltage  
CC  
VS  
V
S
7
V
CLK pin voltage  
7
V
CLK  
OH  
RESET and BC pin voltage  
Operating temperature  
Storage temperature  
Power dissipation  
7
V
T
+75  
+125  
300  
°C  
°C  
mW  
oper  
T
stg  
P
3
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
RATING  
1.9 to 6.5  
0 to 500  
0 to 5.0  
< 1.0  
UNIT  
V
V
Power supply voltage  
RESET sink current  
CC  
I
µA  
mA  
V
OLR  
OLC  
I
BC sink current  
V
V
HIGH-level clock input voltage  
LOW-level clock input voltage  
Clock monitoring time  
Clock rise and fall times  
CKH  
< 0.2  
V
CKL  
t
t
t
t
1 to 10,000  
< 100  
ms  
µs  
µs  
µs  
°C  
WD  
, t  
r(CLK) f(CLK)  
r(VCC)  
Power supply voltage rise time  
Power supply voltage fall time  
Operating ambient temperature  
TC capacitance  
< 100  
< 50  
f(VCC)  
T
–20 to +70  
amb  
C
0.0022 to 2.2  
µF  
T
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= 25 °C, V = 2.6 V, unless otherwise specified.  
CC  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
I
Supply current during Watchdog timer  
operation  
no load  
0.7  
1.0  
mA  
CC  
V
RESET detection threshold  
V
V
= falling; R : GND; V = open  
1.94  
2.0  
2.06  
V
SLR  
CC  
CT  
S
V /T  
Temperature coefficient of reset detection  
voltage  
–20 °C T 70 °C  
amb  
±0.01  
±0.05  
%/°C  
SR  
amb  
V
V
RESET threshold hysteresis  
Battery detection voltage  
= falling; R : GND; V = open  
25  
2.13  
50  
100  
2.27  
mV  
V
hysR  
CC  
CT  
S
V
CC  
= falling; R = 10 kΩ  
2.20  
±0.01  
SLB  
LB  
V /T  
Temperature coefficient of battery  
detection voltage  
±0.05  
%/°C  
SB  
amb  
V
Battery hysteresis voltage  
V
= falling; R = 10 kΩ  
25  
175  
0.8  
50  
200  
1.2  
0
100  
225  
2.0  
1
mV  
mV  
V
hysB  
CC  
LB  
V  
Detection voltage difference  
CLK input threshold  
V = V  
– V  
SLB SLR  
SL  
SL  
V
TH  
I
IH  
I
IL  
HIGH-level CLK input current  
LOW-level CLK input current  
HIGH-level output voltage, RESET  
HIGH-level output voltage, BC  
LOW-level output voltage, RESET  
LOW-level output voltage, BC  
RESET output sink current  
Battery Check output sink current  
RESET output source current  
V
CLK  
= 2.6 V  
µA  
µA  
V
V
CLK  
= 0 V  
–15  
2.0  
2.0  
–6  
–2  
V
V
V
V
I
= –1.0 µA; V = open  
2.2  
2.2  
0.3  
0.3  
700  
7
OHR  
OHB  
OLR  
OLB  
OLR  
OLB  
OHR  
CT1  
RESET  
S
R
= 10 kΩ  
V
LB  
I
= 500 µA; V = 1.8 V  
0.5  
0.5  
V
RESET  
CC  
I
= 5 mA; V = 1.8 V  
V
BC  
CC  
I
I
I
I
V
= 0.5 V; V = 1.8 V  
500  
5
µA  
mA  
µA  
µA  
RESET  
CC  
V
= 0.5 V; V = 1.8 V  
BC  
CC  
V
= 2.0 V  
2
4
RESET  
V
CT  
= 0.5 V;  
–0.3  
–0.15  
–0.075  
C charge current  
T
during Watchdog operation  
I
V
= 0.5 V;  
–0.3  
–0.15  
0.8  
–0.075  
1.0  
µA  
CT2  
CT  
during power-on reset operation  
V
Supply voltage to assert reset operation  
V
= 0.4 V; I = 0.05 mA  
V
CCL  
RESET  
RESET  
4
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
AC ELECTRICAL CHARACTERISTICS  
Characteristics measured with V = 2.6 V, and T  
= 25 °C, unless otherwise specified.  
CC  
amb  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
t
P1  
Minimum power supply pulse width for  
detection  
4.0 V negative-going V pulse 5.0 V  
8.0  
µs  
CC  
t
t
t
t
t
t
t
Clock input pulse width  
3.0  
20  
50  
1.0  
50  
µs  
µs  
CLKW  
Clock input cycle  
CLK  
Watchdog monitoring time (Notes 1, 6)  
Watchdog reset time (Notes 2, 6)  
Power-on reset delay time (Notes 3, 6)  
RESET propagation delay time (Note 4)  
C = 0.022 µF; R = open  
100  
2.0  
100  
10  
150  
3.0  
150  
ms  
ms  
ms  
µs  
WDM  
WDR  
PR  
T
CT  
C = 0.022 µF  
T
V
= rising from 0 V; C = 0.022 µF  
T
CC  
V
= falling; R = 100 k; C = 15 pF  
LR LR  
PDR  
PDB  
CC  
Battery Check propagation delay time  
(Note 4)  
V
= falling; R = 10 k; C = 15 pF  
10  
µs  
CC  
LB  
LB  
t
t
t
t
RESET rise time (Note 5)  
R
R
= 100 k; C = 15 pF  
10  
2
µs  
µs  
µs  
µs  
RR  
FR  
RB  
FB  
LR  
LR  
LR  
RESET fall time (Note 5)  
= 100 k; C = 15 pF  
LR  
Battery Check rise time (Note 5)  
Battery Check fall time (Note 5)  
R
= 10 k; C = 15 pF  
10  
2
LB  
LB  
LB  
R
= 10 k; C = 15 pF  
LB  
NOTES:  
1. ‘Watchdog monitoring time’ (t  
) is the duration from the last pulse (negative-going edge) of the timer clear clock pulse until reset output  
WDM  
pulse occurs (see Figure 17). A reset signal is output if a clock pulse is not input during this time.  
2. ‘Watchdog reset time’ (t ) is the reset pulse width. Do not confuse this with the power-on reset delay time (t ).  
WDR  
PR  
3. The power-on reset delay or hold time is the duration measured from the time V exceeds the upper detection threshold (V  
) and  
SHR  
CC  
power-on reset release is experienced (RESET output HIGH).  
4. ‘Reset response time’ is the duration from when the supply voltage sags below the lower detection threshold (V ) and reset occurs (RESET  
SL  
output LOW).  
5. Reset rise and fall times and Battery Check rise and fall times are measured at 10% and 90% output levels.  
6. Watchdog monitoring time (t  
), Watchdog reset time (t ), and power-on reset delay time (t ) during power-on can be modified by  
WDR PR  
WDM  
varying the C capacitance. The times can be approximated by applying the following formula. The recommended range for C is 0.0022 µF  
T
T
to 2.2 µF.  
Formula 1. Calculation for approximate t , t  
, and t  
values:  
WDR  
PR WDM  
t
t
t
(ms) 4500 × C (µF)  
T
PR  
(ms) 4500 × C (µF)  
WDM  
WDR  
T
(ms) 90 × C (µF)  
T
Example: When C = 0.022 µF and R = open:  
T
CT  
t
100 ms  
PR  
t
t
100 ms  
2.0 ms  
WDM  
WDR  
5
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
TYPICAL PERFORMANCE CURVES  
–2.95  
180  
V
= 2.4 V  
CC  
170  
160  
NO LOAD  
–3.00  
–3.05  
150  
140  
130  
–3.10  
–3.15  
–3.20  
V
V
= 2.4 V  
CC  
= 0 V  
CLK  
120  
110  
–3.25  
100  
–25  
0
25  
50  
75  
100  
–25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T (°C)  
amb  
amb  
SL01818  
SL01819  
Figure 3. Supply current versus ambient temperature.  
Figure 4. LOW-level CLK input current versus  
ambient temperature.  
6
6
5
4
3
V
R
FALLING  
= 10 k  
V
R
FALLING  
CC  
CC  
LB  
= 100 kΩ  
LR  
R
= GND  
CT  
= OPEN  
5
4
3
V
S
T
amb  
= –25 °C  
T
amb  
= –25 °C  
T
amb  
= +25 °C  
T
amb  
= +25 °C  
2
1
0
2
1
0
T
= +75 °C  
T
= +75 °C  
amb  
amb  
T
amb  
= +100 °C  
T
amb  
= +100 °C  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
CC  
CC  
SL01820  
SL01821  
Figure 5. Battery detection votlage versus supply voltage.  
Figure 6. RESET detection voltage versus supply voltage.  
600  
2.50  
T
amb  
= –25 °C  
T
amb  
= –25 °C  
500  
400  
300  
T
= +25 °C  
amb  
2.00  
1.50  
T
= +25 °C  
amb  
T
= +75 °C  
amb  
T
amb  
= +75 °C  
T
amb  
= +100 °C  
1.00  
0.50  
0.00  
200  
100  
0
T
amb  
= +100 °C  
I
R
V
= 1 µA  
= 10 kΩ  
= OPEN  
RESET  
LB  
S
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
SUPPLY VOLTAGE, V (V)  
HIGH-LEVEL OUTPUT CURRENT, I  
(µA)  
OH  
CC  
SL01822  
SL01823  
Figure 7. Supply current versus supply voltage.  
Figure 8. HIGH-level output voltage versus  
HIGH-level output current  
6
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
1.0  
0.9  
0.8  
1.2  
I
= 5 mA  
= 0.5 V  
I
= 500 µA  
BC  
RESET  
V
V
V
V
V
= 0.5 V  
BC  
RESET  
1.0  
0.8  
0.6  
= 2.0 V  
= 2.0 V  
CC  
CC  
T
= +100 °C  
amb  
= 0 V  
S
0.7  
0.6  
T
amb  
= +75 °C  
0.5  
0.4  
T
amb  
= +75 °C  
T
amb  
= +100 °C  
0.4  
0.2  
0.0  
0.3  
0.2  
T
amb  
= +25 °C  
T
amb  
= +25 °C  
0.1  
T
amb  
= –25 °C  
T
amb  
= –25 °C  
0.0  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0.0  
0.3  
0.6  
0.9  
1.2  
1.5  
1.8  
2.1  
2.4  
(mA)  
2.7  
3.0  
BATTERY CHECK OUTPUT SINK CURRENT, I  
(mA)  
RESET OUTPUT SINK CURRENT, I  
OLB  
OLR  
SL01824  
SL01825  
Figure 9. Battery check LOW-level output voltage versus  
battery check output sink current  
Figure 10. LOW-level RESET output voltage versus  
RESET output sink current.  
2.40  
2.35  
200  
180  
V
SHB  
V  
SL  
160  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
V
SLB  
140  
120  
100  
V
SHR  
80  
60  
40  
20  
V
V
HYSB  
HYSR  
V
SLR  
–25  
0
25  
50  
75  
100  
–25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T (°C)  
amb  
amb  
SL01826  
SL01827  
Figure 11. RESET and battery detection voltages versus  
temperature.  
Figure 12. RESET and battery hysteresis voltages versus  
temperature.  
95  
100  
V
= 2.4 V  
= 0.022 µF  
= OPEN  
CC  
V
C
V
= 2.4 V  
= 0.022 µF  
rising from 0 V to 2.4 V  
CC  
T
CC  
C
T
90  
85  
80  
75  
70  
65  
60  
R
CT  
80  
60  
40  
20  
–25  
0
25  
50  
75  
100  
–25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T (°C)  
amb  
amb  
SL01828  
SL01829  
Figure 13. Power-on reset delay time versus temperature.  
Figure 14. Watchdog monitoring time versus temperature.  
7
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
V
= 2.4 V  
CC  
1.1  
1.0  
C
= 0.022 µF  
T
–25  
0
25  
50  
75  
100  
AMBIENT TEMPERATURE, T  
(°C)  
amb  
SL01830  
Figure 15. Watchdog reset delay time versus temperature.  
8
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
The Watchdog timer requires a pulse input. Normally this signal  
comes from the system microprocessor’s clock. For operation, pin 6  
TECHNICAL DESCRIPTION  
The NE56625-20 combines a Watchdog timer, a Battery Check and  
an Undervoltage Reset functions in a single SO8 surface mount  
package. This provides a space-saving solution for maintaining  
proper operation of typical 2.0 volt cordless telephone and other low  
voltage portable, handheld communication and industrial equipment.  
is not connected (open) or an external resistor (R ) of 1 Mor  
CT  
greater is connected from Pin 6 to V and an external capacitor  
CC  
(C ) is placed from Pin 1 to ground. The recommended range for C  
T
T
capacitor is 2.2 nF to 2.2 µF. The external R resistor and C  
CT  
T
capacitor establish the required minimum frequency of Watchdog  
input signal for the device to not output a reset signal. The R  
While the Watchdog monitors the microprocessor operation, the  
Battery Check and Undervoltage Reset monitor the supply voltage  
to the microprocessor. If the microprocessor clock signal ceases or  
becomes erratic, the NE56625-20 outputs a reset signal to the  
microprocessor. If the microprocessor supply voltage sags to  
2.0 volts or less, the NE56625-20 outputs a reset signal for the  
duration of the supply voltage deficiency. The Undervoltage Reset  
signal allows the microprocessor to shut down in an orderly manner  
to avoid system corruption. In addition to a RESET output, the  
NE56625-20 has a Battery Check output for system use. If the  
supply voltage sags below 2.2 volts or less, the Battery Check  
output goes LOW and remains LOW until the supply voltage  
recovers. Both the undervoltage detection threshold and battery  
check detection threshold incorporate hysteresis to prevent  
generating erratic resets.  
CT  
resistor establishes, in part, the rate of charge of the C capacitor. In  
T
the absence of a Watchdog input pulse, the C capacitor charges to  
T
the 0.2 volt threshold of the internal comparator, causing a reset  
signal to be output. If microprocessor clock signals are received  
within the required interval, no Watchdog reset signal will be output.  
The Watchdog function can be disabled by grounding Pin 6 without  
affecting the undervoltage detection function.  
Although the temperature coefficient of detection threshold is  
specified over a temperature of –20 °C to +70 °C, the device will  
support operation in excess of this temperature range. See the  
supporting curves for performance over the full temperature range of  
–25 °C to +100 °C. Some degradation in performance will be  
experienced at the temperature extremes and the system designer  
should take this into account.  
V
CC  
R
CT  
V
2
BC  
6
R
CT  
5
CC  
C
230 kΩ  
0.1 V  
1 µA  
(typ.)  
Q
S
R
V
S
7
S
R
Q
1.25 V (typ.)  
Q
S
R
250 kΩ  
C
0.2 V  
PULSE  
GENERATOR  
CLK  
3
1
4
8
GND  
C
T
RESET  
SL01594  
Figure 16. Functional diagram.  
9
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
Timing diagram  
The timing diagram shown in Figure 17 depicts the operation of the  
device. Letters indicate events on the TIME axis.  
within normal operating range. V continues to sag until the V  
CC SLB  
battery check undervoltage threshold is reached. At that time (G),  
BC output goes LOW. V sags still further until V reset  
CC  
SLR  
A: At start-up ‘A’, the V voltage begins to rise. Also the RESET  
and Battery Check (BC) voltages initially rise, but then abruptly  
return to a LOW state. This is due to V reaching the level of 0.8 V  
that activates the internal bias circuitry, asserting RESET and BC.  
CC  
undervoltage threshold is reached. At this point (H), reset is  
asserted and RESET goes LOW. Between ‘H’ and ‘I’, V starts to  
CC  
CC  
rise, however, C voltage does not start to ramp up until ‘I’, when  
T
V
CC  
reaches the V  
upper reset threshold. Also, the RESET  
SHR  
delay is initiated.  
B: Just before ‘B’, the C voltage starts to ramp up. This is caused  
T
by, and coincident to, V reaching the threshold level of V  
. At  
SHR  
CC  
J–K: At ‘J’, the BC output goes HIGH when V rises to V  
.
SHB  
CC  
this level the device initiates the RESET delay time, t  
. V  
CC  
PLH  
Between ‘J’ and ‘K, C reaches the upper threshold level again. At  
T
continues to rise above V  
.
SHR  
‘K’, RESET delay time elapses and the reset is released and  
RESET goes HIGH.  
C: At ‘C’, V rises to the threshold level of V  
, the upper  
SHB  
CC  
voltage BC detection threshold. At this level, the BC output goes  
L–M: From ‘L’ to ‘M’, the R is shorted to ground. This disables  
CT  
HIGH. BC output follows V to its normal operating level.  
CC  
the Watchdog timer by shorting C to ground. At other times R is  
T
CT  
open or taken to V with a resistor of 1 Mor greater. This  
D: At ‘D’, V is above the undervoltage detect threshold and C  
CC  
CC  
T
configuration enables the Watchdog timer.  
has ramped up to its upper detect level. At this point, an internal  
ramp discharge transistor activates, discharging C . Reset assertion  
is still in effect since the delay time has not elapsed.  
T
N: After ‘N’, normal CLK signals are received, but at a lower  
frequency than those following event ‘D’. The frequency is above the  
minimum frequency required to keep the device from outputting  
reset signals.  
E: At ‘E’, the delay time has elapsed and the device removes the  
hold on the reset. RESET goes HIGH.  
O–P: At ‘O’, V is normal, CLK signals are being received, and  
In a microprocessor based system these events remove the reset  
from the microprocessor, allowing it to function normally. The system  
must send clock signals to the Watchdog Timer often enough to  
CC  
no reset signals are output. At event ‘P’, the V starts falling,  
CC  
causing RESET and BC to also fall.  
prevent C from ramping up to the C threshold, to prevent reset  
signals from being generated. Each clock signal discharges C .  
T
T
T
Q: At event ‘Q’ V sags to the point where the V  
threshold point is reached, and at that level reset signal is outputted  
(RESET to a LOW state).  
undervoltage  
SLR  
CC  
E–F: Midway between ‘E’ and ‘F’, the CLK signals cease allowing  
the C voltage to ramp up to its RESET threshold at ‘F’. At this time  
reset signals are generated (RESET goes LOW). The device  
T
R: At event ‘R’ the V voltage has deteriorated to a level where  
normal internal circuit bias is no longer able to maintain a RESET,  
and as a result may exhibit a slight rise to something less than 0.8 V.  
CC  
attempts to come out of reset as the C voltage is discharged, and  
T
finally does come out of reset when CLK signals are reestablished  
As V decays even further, RESET also decreases to zero.  
CC  
after two attempts of C .  
T
G–I: Immediately before ‘G’, falling V causes the RESET and  
CC  
BC outputs to sag. CLK signals are still being received, and C is  
T
10  
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
V
V
V
SHB  
SLB  
SHR  
V
CC  
V
SLR  
0.8 V  
t
CLKW  
t
CLK  
CLK  
C
T
t
WDM  
t
PR  
RESET  
t
WDR  
BC  
R
CT  
OPEN  
F
A
B C  
D E  
G H I J  
K
L
M
N
O
PQ  
R
SL01592  
Figure 17. Timing diagram.  
11  
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
The Reset Detection Threshold can be increased by connecting an  
APPLICATION INFORMATION  
external resistor R from Pin 7 to ground, as shown in Figure 18.  
1
See Figure 19 to determine the approximate value of R to use. The  
threshold made be varied somewhat linearly from 2.4 V to 3.0 V.  
Detection threshold  
1
The detection threshold voltage can be adjusted by externally  
influencing the internal divider reference voltage. Figures 18 and 20  
show a method to raise and lower the threshold voltage. Figures 19  
and 21 show the influence of the pull-down and pull-up resistors on  
the threshold voltage. The use of a capacitor (1000 pF or larger)  
from pin 7 to ground is recommended to filter out noise from being  
imposed on the threshold voltages.  
The Reset Detection Threshold can be decreased by connecting an  
external resistor R from Pin 7 to V , as shown in Figure 20. See  
2
CC  
Figure 21 to determine the approximate value of R to use. The  
2
lower thresholds may be varied in a linear fashion from 1.85 V to  
1.65 V.  
V
CC  
3.1  
LOGIC SYSTEM  
T
amb  
= 25 °C  
3.0  
RESET  
8
7
6
5
1
2
3
4
2.9  
2.8  
CLK  
NMI  
2.7  
2.6  
2.5  
2.4  
C
T
GND  
V
SHR  
R
2
1000 pF  
V
SLR  
2.3  
200  
300  
400  
500  
600  
700  
800  
900  
R , EXTERNAL PIN 7 TO GROUND RESISTOR (k)  
1
SL01588  
SL01590  
Figure 18. Circuit to raise detection threshold.  
Figure 19. Reset detection threshold versus external R .  
1
V
CC  
1.9  
LOGIC SYSTEM  
T
amb  
= 25 °C  
R
1
RESET  
CLK  
8
7
6
5
1
2
3
4
V
SHR  
1.8  
1.7  
V
SLR  
NMI  
C
T
GND  
1000 pF  
1.6  
200  
300  
400  
500  
600  
700  
800  
900  
R , EXTERNAL PIN 7 TO V  
2
RESISTOR (k)  
CC  
SL01589  
SL01591  
Figure 20. Circuit to lower detection threshold.  
Figure 21. Reset detection threshold versus external R .  
2
12  
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
Watchdog monitoring time  
The Watchdog timer’s external component values are critical to its  
performance.  
100  
80  
C
T
= 0.0022 µF  
= 25 °C  
T
amb  
The values of R and C affect the Watchdog monitoring time  
CT  
T
(t  
WDM  
), the Watchdog reset time (t  
), and power-on reset delay  
WDR  
time (t ). See Formula 1 in the AC Electrical Characteristics and  
60  
PR  
the timing diagram shown in Figure 17 for parameter definitions.  
The effect of RCT on the Watch-Dog Timer Monitoring Time at room  
temperature for CT = 0.0022 µF is shown in Figure 22.  
40  
20  
0
10k  
100k  
1M  
10M  
100M  
R
, WATCHDOG TIMER CURRENT RESISTOR ()  
CT  
SL01587  
Figure 22. Watchdog monitoring vs. pull-up resistor R  
.
CT  
PACKING METHOD  
The NE56625-20 is packed in reels, as shown in Figure 23.  
GUARD  
BAND  
TAPE  
TAPE DETAIL  
REEL  
ASSEMBLY  
COVER TAPE  
CARRIER TAPE  
BARCODE  
LABEL  
BOX  
SL01305  
Figure 23. Tape and reel packing method.  
13  
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOP005  
14  
2003 Oct 15  
Philips Semiconductors  
Product data  
System reset with Watchdog timer  
NE56625-20  
REVISION HISTORY  
Rev  
Date  
Description  
_2  
20031015  
Product data (9397 750 12124). ECN 853-2327 30314 of 08 September 2003.  
Supersedes data of 2002 Mar 25 (9397 750 09645).  
Modifications:  
Change package version to SOP005 in Ordering information and Package outline sections.  
_1  
20020325  
Product data (9397 750 09645). ECN 853-2327 27919 of 25 March 2002.  
Data sheet status  
Product  
status  
Definitions  
[1]  
Level  
Data sheet status  
[2] [3]  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development.  
Philips Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
Production  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1] Please consult the most recently issued data sheet before initiating or completing a design.  
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL  
http://www.semiconductors.philips.com.  
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
LimitingvaluesdefinitionLimiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given  
in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no  
representation or warranty that such applications will be suitable for the specified use without further testing or modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be  
expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree  
to fully indemnify Philips Semiconductors for any damages resulting from such application.  
Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described  
or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’), relevant changes will be communicated  
viaaCustomerProduct/ProcessChangeNotification(CPCN).PhilipsSemiconductorsassumesnoresponsibilityorliabilityfortheuseofanyoftheseproducts,conveys  
nolicenseortitleunderanypatent, copyright, ormaskworkrighttotheseproducts, andmakesnorepresentationsorwarrantiesthattheseproductsarefreefrompatent,  
copyright, or mask work right infringement, unless otherwise specified.  
Koninklijke Philips Electronics N.V. 2003  
Contact information  
All rights reserved. Printed in U.S.A.  
For additional information please visit  
http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
Date of release: 10-03  
9397 750 12124  
For sales offices addresses send e-mail to:  
sales.addresses@www.semiconductors.philips.com.  
Document order number:  
Philips  
Semiconductors  

相关型号:

NE56631-19

Active-LOW system reset
NXP

NE56631-19D

Active-LOW system reset
NXP

NE56631-19D-G

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, 1.60 MM, PLASTIC, MO-178, SOP-5, Power Management Circuit
NXP

NE56631-20

Active-LOW system reset
NXP

NE56631-20D

Active-LOW system reset
NXP

NE56631-27

Active-LOW system reset
NXP

NE56631-27D

Active-LOW system reset
NXP

NE56631-27D-G

暂无描述
NXP

NE56631-28

Active-LOW system reset
NXP

NE56631-28D

Active-LOW system reset
NXP

NE56631-28D-G

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, 1.60 MM, PLASTIC, MO-178, SOP-5, Power Management Circuit
NXP

NE56631-29

Active-LOW system reset
NXP