NE566D [NXP]

Function generator; 函数信号发生器
NE566D
型号: NE566D
厂家: NXP    NXP
描述:

Function generator
函数信号发生器

模拟波形发生功能 信号电路 光电二极管
文件: 总5页 (文件大小:52K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors Linear Products  
Product specification  
Function generator  
NE/SE566  
DESCRIPTION  
PIN CONFIGURATIONS  
The NE/SE566 Function Generator is a voltage-controlled oscillator  
of exceptional linearity with buffered square wave and triangle wave  
outputs. The frequency of oscillation is determined by an external  
resistor and capacitor and the voltage applied to the control terminal.  
The oscillator can be programmed over a ten-to-one frequency  
range by proper selection of an external resistance and modulated  
over a ten-to-one range by the control voltage, with exceptional  
linearity.  
D, N Packages  
1
2
3
4
8
7
6
5
GROUND  
V+  
NC  
C
R
1
1
SQUARE WAVE OUTPUT  
MODULATION INPUT  
TRIANGLE WAVE OUTPUT  
TOP VIEW  
FEATURES  
Wide range of operating voltage (up to 24V; single or dual)  
APPLICATIONS  
High linearity of modulation  
Tone generators  
Frequency shift keying  
FM modulators  
Highly stable center frequency (200ppm/°C typical)  
Highly linear triangle wave output  
Frequency programming by means of a resistor or capacitor,  
Clock generators  
Signal generators  
Function generators  
voltage or current  
Frequency adjustable over 10-to-1 range with same capacitor  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
0 to +70°C  
ORDER CODE  
NE566D  
DWG #  
0174C  
0581B  
0404B  
0404B  
8-Pin Plastic Small Outline (SO) Package  
14-Pin Ceramic Dual In-Line Package (CERDIP)  
8-Pin Plastic Dual In-Line Package (DIP)  
8-Pin Plastic Dual In-Line Package (DIP)  
0 to +70°C  
NE566F  
0 to +70°C  
NE566N  
-55°C to +125°C  
SE566N  
BLOCK DIAGRAM  
V+  
R
1
6
8
V
C
SCHMITT  
TRIGGER  
BUFFER  
AMPLIFIER  
CURRENT  
SOURCES  
3
4
5
MODULATION  
INPUT  
BUFFER  
AMPLIFIER  
7
C
1
398  
April 15, 1992  
853-0910 06454  
Philips Semiconductors Linear Products  
Product specification  
Function generator  
NE/SE566  
EQUIVALENT SCHEMATIC  
R
1
(EXTERNAL)  
8
6
V+  
5
V
C
7
3
4
C
1
(EXTER–  
NAL)  
5k  
1
GROUND  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
Maximum operating voltage  
RATING  
UNIT  
V+  
26  
3
V
V
IN  
, V  
C
Input voltage  
V
P-P  
T
Storage temperature range  
Operating ambient temperature range  
NE566  
-65 to +150  
°C  
STG  
T
A
0 to +70  
-55 to +125  
300  
°C  
°C  
SE566  
P
Power dissipation  
mW  
D
399  
April 15, 1992  
Philips Semiconductors Linear Products  
Product specification  
Function generator  
NE/SE566  
DC ELECTRICAL CHARACTERISTICS  
T =25°C, V =±6V, unless otherwise specified.  
A
CC  
SE566  
Typ  
NE566  
Typ  
SYMBOL  
General  
PARAMETER  
UNIT  
Max  
Min  
Max  
Min  
T
Operating ambient temperature range  
Operating supply voltage  
-55  
125  
±12  
12.5  
0
70  
°C  
V
A
V
±6  
±6  
±12  
12.5  
CC  
I
Operating supply current  
7
7
mA  
CC  
1
VCO  
f
Maximum operating frequency  
Frequency drift with temperature  
Frequency drift with supply voltage  
1
500  
0.1  
1
1
600  
0.2  
1
MHz  
ppm/°C  
%/V  
MAX  
1
2
2
Control terminal input impedance  
M  
FM distortion (±10% deviation)  
Maximum sweep rate  
Sweep range  
0.2  
1
0.75  
0.4  
1
1.5  
%
MHz  
10:1  
10:1  
Output  
Triangle wave output  
impedance  
voltage  
50  
2.4  
0.2  
50  
2.4  
0.5  
1.9  
1.9  
V
P-P  
linearity  
%
Square wave input  
impedance  
voltage  
50  
5.4  
50  
20  
50  
50  
5.4  
50  
20  
50  
5
5
V
P-P  
duty Cycle  
Rise time  
45  
55  
40  
60  
%
t
t
ns  
ns  
R
Fall Time  
F
NOTES:  
1. The external resistance for frequency adjustment (R ) must have a value between 2kand 20k.  
1
2. The bias voltage (V ) applied to the control terminal (Pin 5) should be in the range V+V V+.  
C
C
400  
April 15, 1992  
Philips Semiconductors Linear Products  
Product specification  
Function generator  
NE/SE566  
TYPICAL PERFORMANCE CHARACTERISTICS  
Normalized Frequency as a  
Function of Control Voltage  
Normalized Frequency as a  
Function of Resistance (R1)  
Change in Frequency as a  
Function of Temperature  
2.5  
2.0  
100  
50  
+2.5  
+2.0  
+1.5  
V+ = 12 VOLTS  
V+ = 12 VOLTS  
V+ = 12 VOLTS  
V
= 10 VOLTS  
C
V
= 10 VOLTS  
C
+1.0  
20  
10  
5
1.5  
1.0  
+0.5  
0
TYPICAL  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
0.5  
2
1
0
0.5  
1.0  
1.5  
2.0  
2.5 3.0  
0.1 0.2  
0.5  
1
2
5
10  
–75 –50 –25  
0
+25 +50 +75 +100 +125  
o
CONTROL VOLTAGE  
(BETWEEN PIN 8 AND PIN 5) — VOLTS  
TEMPERATURE — ( C)  
NORMALIZED FREQUENCY  
Power Supply Current as a  
Function of Supply Voltage  
Frequency as a Function  
of Capacitance (C1)  
VCO Output Waveforms  
20.0  
10  
V+ = 12 VOLTS  
6
5
4
V+ = 12 VOLTS  
R
= 4kΩ  
t
MAXIMUM  
17.5  
15.0  
V
= 10 VOLTS  
= 4k  
C
1.0  
0.1  
R
1
TYPICAL  
12  
10  
12.5  
0.01  
10.0  
7.5  
5
8
6
0.001  
4
0.0001  
10  
13  
16  
19  
22  
25  
2
3
4
5
6
10  
10  
10  
10  
10  
1
10  
FREQUENCY — Hz  
SUPPLY VOLTAGE — V  
2 [(V )) * (VC)]  
R1 C1 V )  
OPERATING INSTRUCTIONS  
The NE/SE566 Function Generator is a general purpose  
fO  
+
voltage-controlled oscillator designed for highly linear frequency  
modulation. The circuit provides simultaneous square wave and  
triangle wave outputs at frequencies up to 1MHz. A typical  
and R should be in the range 2k< R <20k.  
1
1
A small capacitor (typically 0.001µF) should be connected between  
Pins 5 and 6 to eliminate possible oscillation in the control current  
source.  
connection diagram is shown in Figure 1. The control terminal (Pin  
5) must be biased externally with a voltage (V ) in the range  
C
V+V V+  
C
If the VCO is to be used to drive standard logic circuitry, it may be  
desirable to use a dual supply as shown in Figure 2. In this case the  
square wave output has the proper DC levels for logic circuitry. RTL  
can be driven directly from Pin 3. For DTL or TTL gates, which  
require a current sink of more than 1mA, it is usually necessary to  
connect a 5kresistor between Pin 3 and negative supply. This  
increases the current sinking capability to 2mA. The third type of  
where V is the total supply voltage. In Figure 1, the control  
CC  
voltage is set by the voltage divider formed with R and R . The  
modulating signal is then AC coupled with the capacitor C . The  
modulating signal can be direct coupled as well, if the appropriate  
DC bias voltage is applied to the control terminal. The frequency is  
given approximately by  
2
3
2
401  
April 15, 1992  
Philips Semiconductors Linear Products  
Product specification  
Function generator  
NE/SE566  
interface shown uses a saturated transistor between the 566 and  
the logic circuitry. This scheme is used primarily for TTL circuitry  
which requires a fast fall time (<50ns) and a large current sinking  
capability.  
5K  
R
1.5K  
10K  
1
.001 F  
µ
+
V
RTL  
2
DTL OR T  
WITH FAST  
FALL TIME  
L
10K  
5K  
R
1.5K  
2
R
6
8
1
.001 F  
3
µ
5
V
C
SE/NE 566  
DTL  
&
4
7
1
6
8
4
2
5
C
2
T
L
C
V
1
C
SE/NE 566  
3
1
7
R
3
–6 VOLTS  
10K  
C
1
Figure 2.  
Figure 1.  
402  
April 15, 1992  

相关型号:

NE566D-T

Waveform Generator/Support
ETC

NE566DSIIB

Waveform Generation, BIPolar, PDSO8
PHILIPS

NE566F

Function generator
NXP

NE566F-B

Waveform Generator/Support
ETC

NE566N

Function generator
NXP

NE566N-B

Waveform Generator/Support
ETC

NE566T

Waveform Generation, BIPolar, MBCY8
PHILIPS

NE566T

IC SQUARE; TRIANGULAR, WAVEFORM GENERATION, MBCY8, Analog Waveform Generation Function
NXP

NE566V

Waveform Generation, BIPolar, PDIP8
PHILIPS

NE567

Tone decoder/phase-locked loop
NXP

NE56700

TRANSISTOR | BJT | NPN | 12V V(BR)CEO | 60MA I(C) | CHIP
ETC

NE56708

TRANSISTOR | BJT | NPN | 12V V(BR)CEO | 60MA I(C) | MICRO-X
ETC