NE592D14 [NXP]

Video amplifier; 视频放大器
NE592D14
型号: NE592D14
厂家: NXP    NXP
描述:

Video amplifier
视频放大器

视频放大器
文件: 总8页 (文件大小:145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
DESCRIPTION  
PIN CONFIGURATIONS  
The NE592 is a monolithic, two-stage, differential output, wideband  
video amplifier. It offers fixed gains of 100 and 400 without external  
components and adjustable gains from 400 to 0 with one external  
resistor. The input stage has been designed so that with the addition  
of a few external reactive elements between the gain select  
terminals, the circuit can function as a high-pass, low-pass, or  
band-pass filter. This feature makes the circuit ideal for use as a  
video or pulse amplifier in communications, magnetic memories,  
display, video recorder systems, and floppy disk head amplifiers.  
Now available in an 8-pin version with fixed gain of 400 without  
external components and adjustable gain from 400 to 0 with one  
external resistor.  
D, N Packages  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
INPUT 2  
NC  
INPUT 1  
NC  
G
G
GAIN SELECT  
G
G
GAIN SELECT  
GAIN SELECT  
2B  
2A  
GAIN SELECT  
V-  
1B  
1A  
V+  
NC  
NC  
8
OUTPUT 2  
OUTPUT 1  
TOP VIEW  
FEATURES  
120MHz unity gain bandwidth  
D, N Packages  
Adjustable gains from 0 to 400  
Adjustable pass band  
1
2
3
4
8
7
6
5
INPUT 2  
INPUT 1  
G GAIN SELECT  
1A  
G
GAIN SELECT  
V-  
1B  
No frequency compensation required  
Wave shaping with minimal external components  
MIL-STD processing available  
V+  
OUTPUT 2  
OUTPUT 1  
TOP VIEW  
APPLICATIONS  
Floppy disk head amplifier  
Video amplifier  
Pulse amplifier in communications  
Magnetic memory  
Video recorder systems  
BLOCK DIAGRAM  
+V  
R1  
R2  
R8  
R10  
R9  
Q6  
Q5  
Q4  
Q3  
R11  
R12  
OUTPUT 1  
OUTPUT 2  
INPUT 2  
INPUT 1  
G1A  
Q1  
Q2  
G1B  
G2B  
Q8  
R3  
R5  
G2A  
Q7B  
Q9  
Q10  
Q11  
Q7A  
R7A  
R7B  
R15  
R16  
R13  
R14  
-V  
250  
April 15, 1992  
853-0911 06456  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
ORDERING INFORMATION  
DESCRIPTION  
14-Pin Plastic Dual In-Line Package (DIP)  
14-Pin Small Outline (SO) package  
8-Pin Plastic Dual In-Line Package (DIP)  
8-Pin Small Outline (SO) package  
NOTES:  
TEMPERATURE RANGE  
0 to +70°C  
ORDER CODE  
DWG #  
0405B  
0175D  
0404B  
0174C  
NE592N14  
NE592D14  
NE592N8  
NE592D8  
0 to +70°C  
0 to +70°C  
0 to +70°C  
N8, N14, D8 and D14 package parts also available in “High” gain version by adding “H” before  
package designation, i.e., NE592HDB  
ABSOLUTE MAXIMUM RATINGS  
T =+25°C, unless otherwise specified.  
A
SYMBOL  
PARAMETER  
RATING  
UNIT  
V
V
V
Supply voltage  
±8  
±5  
V
V
CC  
IN  
Differential input voltage  
Common-mode input voltage  
Output current  
±6  
V
CM  
OUT  
I
10  
mA  
°C  
°C  
T
A
Operating ambient temperature range  
Storage temperature range  
Maximum power dissipation,  
0 to +70  
-65 to +150  
T
STG  
P
D MAX  
T =25°C (still air)1  
A
D-14 package  
D-8 package  
N-14 package  
N-8 package  
0.98  
0.79  
1.44  
1.17  
W
W
W
W
NOTES:  
1. Derate above 25°C at the following rates:  
D-14 package at 7.8mW/°C  
D-8 package at 6.3mW/°C  
N-14 package at 11.5mW/°C  
N-8 package at 9.3mW/°C  
251  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
DC ELECTRICAL CHARACTERISTICS  
T =+25°C V =±6V, V =0, unless otherwise specified. Recommended operating supply voltages V =±6.0V. All specifications apply to both  
A
SS  
CM  
S
standard and high gain parts unless noted differently.  
NE592  
Typ  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Min  
Max  
A
VOL  
Differential voltage gain,  
standard part  
1
Gain 1  
R =2k, V  
=3V  
OUT P-P  
250  
80  
400  
100  
600  
120  
V/V  
V/V  
L
2, 4  
Gain 2  
R
C
Input resistance  
IN  
1
Gain 1  
4.0  
30  
kΩ  
kΩ  
pF  
µA  
µA  
2, 4  
Gain 2  
10  
2
4
Input capacitance  
Gain 2  
2.0  
0.4  
9.0  
12  
IN  
I
Input offset current  
5.0  
30  
OS  
I
Input bias current  
BIAS  
V
V
Input noise voltage  
Input voltage range  
Common-mode rejection ratio  
BW 1kHz to 10MHz  
µV  
RMS  
NOISE  
±1.0  
V
IN  
CMRR  
4
Gain 2  
V
±1V, f<100kHz  
60  
86  
60  
dB  
dB  
CM  
4
Gain 2  
V
±1V, f=5MHz  
CM  
PSRR  
Supply voltage rejection ratio  
4
Gain 2  
V =±0.5V  
50  
70  
dB  
S
V
OS  
Output offset voltage  
Gain 1  
R =∞  
1.5  
1.5  
V
V
V
V
V
L
4
Gain 2  
R =∞  
L
3
Gain 3  
R =∞  
L
0.35  
2.9  
0.75  
3.4  
V
V
Output common-mode voltage  
Output voltage swing  
differential  
R =∞  
L
2.4  
3.0  
CM  
R =2kΩ  
L
4.0  
OUT  
R
Output resistance  
20  
18  
OUT  
I
Power supply current  
R =∞  
L
24  
mA  
CC  
NOTES:  
1. Gain select Pins G and G connected together.  
1A  
1B  
2. Gain select Pins G and G connected together.  
2A  
2B  
3. All gain select pins open.  
4. Applies to 14-pin version only.  
252  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
DC ELECTRICAL CHARACTERISTICS  
DC Electrical CharacteristicsV =±6V, V =0, 0°C T 70°C, unless otherwise specified. Recommended operating supply voltages V =±6.0V.  
SS  
CM  
A
S
All specifications apply to both standard and high gain parts unless noted differently.  
NE592  
Typ  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Min  
Max  
A
VOL  
Differential voltage gain,  
standard part  
1
Gain 1  
R =2k, V  
=3V  
OUT P-P  
250  
80  
600  
120  
V/V  
V/V  
L
2, 4  
Gain 2  
R
Input resistance  
IN  
2, 4  
Gain 2  
8.0  
kΩ  
µA  
µA  
V
I
I
Input offset current  
6.0  
40  
OS  
Input bias current  
BIAS  
V
IN  
Input voltage range  
±1.0  
50  
CMRR  
Common-mode rejection ratio  
4
Gain 2  
V
CM  
±1V, f<100kHz  
dB  
dB  
PSRR  
Supply voltage rejection ratio  
4
Gain 2  
V =±0.5V  
50  
S
Output offset voltage  
Gain 1  
1.5  
1.5  
1.0  
V
V
R =∞  
V
OS  
L
4
Gain 2  
Gain 3  
3
Output voltage swing differential  
Power supply current  
R =2kΩ  
L
2.8  
V
OUT  
I
R =∞  
L
27  
mA  
CC  
NOTES:  
1. Gain select Pins G and G connected together.  
1A  
1B  
2. Gain select Pins G and G connected together.  
2A  
2B  
3. All gain select pins open.  
4. Applies to 14-pin versions only.  
AC ELECTRICAL CHARACTERISTICS  
T =+25°C V =±6V, V =0, unless otherwise specified. Recommended operating supply voltages V =±6.0V. All specifications apply to both  
A
SS  
CM  
S
standard and high gain parts unless noted differently.  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
NE/SA592  
Typ  
UNIT  
Min  
Max  
Bandwidth  
1
BW  
Gain 1  
40  
90  
MHz  
MHz  
2, 4  
Gain 2  
Rise time  
1
t
t
Gain 1  
Gain 2  
V
V
=1V  
=1V  
10.5  
4.5  
12  
10  
ns  
ns  
R
OUT  
P-P  
2, 4  
Propagation delay  
1
Gain 1  
Gain 2  
7.5  
6.0  
ns  
ns  
PD  
OUT  
P-P  
2, 4  
NOTES:  
1. Gain select Pins G and G connected together.  
1A  
1B  
2. Gain select Pins G and G connected together.  
2A  
2B  
3. All gain select pins open.  
4. Applies to 14-pin versions only.  
253  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
TYPICAL PERFORMANCE CHARACTERISTICS  
Common-Mode Rejection Ratio  
as a Function of Frequency  
Output Voltage Swing as  
a Function of Frequency  
Pulse Response  
100  
90  
7.0  
6.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= +6V  
GAIN 2  
S
V
T
= +6V  
S
A
L
o
V
T
= +6V  
T
= 25 C  
o
S
A
= 25 C  
o
80  
70  
60  
50  
40  
30  
= 25 C  
R
= 1k  
A
L
R
= 1k  
5.0  
4.0  
3.0  
2.0  
1.0  
0
GAIN 2  
GAIN 1  
20  
10  
0
-0.2  
-0.4  
10k  
100k  
1M  
10M  
100M  
1
5
10  
50 100  
5001000  
-15 -10 -5  
0
5
10 15 20 25 30 35  
FREQUENCY – Hz  
FREQUENCY – MHz  
TIME – ns  
Supply Current as a  
Function of Temperature  
Pulse Response as a  
Function of Supply Voltage  
Pulse Response as a  
Function of Temperature  
1.6  
1.4  
1.2  
1.6  
28  
24  
GAIN 2  
o
GAIN 2  
o
T
= 25 C  
A
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25 C  
A
V
= +  
S
L
6V  
V
= +8V  
R
= 1kΩ  
S
L
R
= 1kΩ  
1.0  
0.8  
0.6  
V
V
= +6V  
= +3V  
S
S
o
= 0 C  
T
amb  
20  
16  
12  
8
o
= 25 C  
T
A
0.4  
0.2  
o
= 70 C  
T
A
0
-0.2  
-0.4  
-0.2  
-0.4  
-15 -10 -5  
0
5
10 15 20 25 30 35  
-15 -10 -5  
0
5
10 15 20 25 30 35  
3
4
5
6
7
8
SUPPLY VOLTAGE – +V  
TIME – ns  
TIME – ns  
Voltage Gain as a  
Function of Temperature  
Gain vs. Frequency as a  
Function of Temperature  
Voltage Gain as a  
Function of Supply Voltage  
1.4  
1.10  
1.08  
1.06  
1.04  
1.02  
1.00  
0.98  
0.96  
0.94  
60  
50  
40  
GAIN 2  
o
T
= 25 C  
V
= +  
6V  
amb  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
S
V
= +  
S
L
6V  
R
= 1kΩ  
GAIN 2  
30  
o
T
= –55 C  
A
GAIN 2  
20  
10  
0
o
T
= 25 C  
GAIN 1  
A
0.7  
o
T
= 125 C  
0.6  
0.5  
0.4  
A
GAIN 1  
0.92  
0.90  
-10  
0
10  
20 30  
40 50  
60  
70  
1
5
10  
50 100  
500 1000  
3
4
5
6
7
8
o
TEMPERATURE –  
C
FREQUENCY – MHz  
SUPPLY VOLTAGE – +V  
254  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Gain vs. Frequency as a  
Function of Supply Voltage  
Voltage Gain  
Adjust Circuit  
Voltage Gain as a  
Function of RADJ (Figure 3)  
60  
50  
40  
1000  
V
T
= +6V  
f = 100kHz  
GAIN 2  
o
0.2µF  
S
12  
T
= 25 C  
A
14  
1
11  
8
o
= 25 C  
100  
10  
1
R
= 1kΩ  
A
L
FIGURE 3  
592  
0.2µF  
7
4
3
30  
20  
V
S
= +8V  
51  
51  
V
R
1k  
1k  
ADJ  
V
= +6V  
S
10  
0
.1  
V
S
= +3V  
o
T = 25 C  
A
= +6V  
S
.01  
-10  
1
5
10  
50 100  
500 1000  
1
10  
100  
1K  
10K 100K  
Ω  
1M  
FREQUENCY – MHz  
R
ADJ  
Output Voltage and Current  
Swing as a Function of  
Supply Voltage  
Supply Current as a  
Function of Temperature  
Differential Overdrive  
Recovery Time  
70  
60  
50  
40  
21  
20  
7.0  
o
V
= +6V  
T
= 25 C  
S
A
V
= +6V  
S
6.0  
5.0  
o
T
= 25 C  
A
GAIN 2  
19  
18  
17  
VOLTAGE  
4.0  
3.0  
2.0  
30  
20  
10  
CURRENT  
16  
15  
14  
1.0  
0
0
-20  
20  
60  
100  
140  
-60  
0
20 40 60 80 100 120 140 160 180 200  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
o
TEMPERATURE –  
C
SUPPLY VOLTAGE – +V  
DIFFERENTIAL INPUT VOLTAGE – mV  
Input Noise Voltage  
as a Function of  
Source Resistance  
Output Voltage Swing as a  
Function of Load Resistance  
Input Resistance as a  
Function of Temperature  
7.0  
6.0  
100  
90  
70  
GAIN 2  
GAIN 2  
V
T
= +6V  
S
V
= +6V  
V
= +6V  
S
60  
50  
40  
S
o
= 25 C  
A
o
80  
70  
60  
50  
40  
30  
T
= 25 C  
A
BW = 10MHz  
5.0  
4.0  
3.0  
2.0  
1.0  
0
30  
20  
20  
10  
0
10  
0
1
10  
100  
1K  
10K  
-60  
-20  
0
20  
60  
100  
140  
10  
50 100  
500 1K  
5K 10K  
o
LOAD RESISTANCE – Ω  
TEMPERATURE –  
C
SOURCE RESISTANCE – Ω  
255  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
Phase Shift as a  
Function of Frequency  
Phase Shift as a  
Function of Frequency  
0
0
-50  
GAIN 2  
V
T
= +6V  
S
A
V
T
= +6V  
o
S
= 25 C  
-5  
o
= 25 C  
A
-100  
-10  
-15  
-150  
-200  
-250  
GAIN 2  
GAIN 1  
-20  
-25  
-300  
-350  
1
10  
100  
1000  
0
1
2
3
4
5
6
7
8
9
10  
FREQUENCY – MHz  
FREQUENCY – MHz  
Voltage Gain as a  
Function of Frequency  
Voltage Gain as a  
Function of Frequency  
60  
50  
V
T
= +6V  
S
V
T
= +6V  
S
A
40  
30  
20  
10  
GAIN 1  
GAIN 2  
o
= 25 C  
o
amb  
= 25 C  
R
= 1KΩ  
GAIN 3  
L
40  
30  
0
-10  
-20  
20  
10  
0
-30  
-40  
-50  
1
10  
100  
1000  
.01  
.1  
1
10  
100  
1000  
FREQUENCY – MHz  
FREQUENCY – MHz  
TEST CIRCUITS T = 25°C, unless otherwise specified.  
A
V
V
592  
IN  
R
OUT  
L
51Ω  
51Ω  
0.2µF  
0.2µF  
e
in  
592  
e
e
out  
out  
51Ω  
51Ω  
1k 1k  
256  
April 15, 1992  
Philips Semiconductors RF Communications Products  
Product specification  
Video amplifier  
NE592  
TYPICAL APPLICATIONS  
+6  
2r  
e
11  
14  
10  
5
V
V
0
592  
4
1
NOTE:  
1
7
V
v
(s)  
4
1.4 @ 10  
Z(S) ) 2r  
0
[
(s)  
e
1
Z
4
1.4 @ 10  
[
Z(S) ) 32  
-6  
+6  
Basic Configuration  
+5  
0.2µF  
+6  
11  
14  
1
10  
2KΩ  
10  
1
9
4
8
8
7
V
529  
592  
V
0
1
7
5
Q
Q
11  
14  
1
0.2µF  
10  
8
7
5
4
592  
C
5
2
3
4
2KΩ  
-6  
AMPLITUDE: 1-10 mV p-p  
FREQUENCY: 1-4 MHz  
NOTE:  
6
For frequency F << 1/2 π (32) C  
1
-6  
dVi  
4
V
] 1.4 x 10 C  
O
dT  
READ HEAD  
DIFFERENTIATOR/AMPLIFIER  
ZERO CROSSING DETECTOR  
Differentiation with High  
Common-Mode Noise Rejection  
Disc/Tape Phase-Modulated Readback Systems  
FILTER NETWORKS  
V
(s) TRANSFER  
(s) FUNCTION  
FILTER  
TYPE  
0
1
Z NETWORK  
V
R
L
4
1.4   10  
1
ƪ
ƫ
LOW PASS  
L
s ) RńL  
R
R
C
L
4
1.4   10  
s
ƪ
ƫ
R
HIGH PASS  
BAND PASS  
s ) 1ńRC  
C
4
1.4   10  
s
ƪ
ƪ
ƫ
ƫ
L
2
s
) RńLs ) 1ńLC  
L
2
4
s
) 1ńLC  
2
) 1ńLC ) sńRC  
R
1.4   10  
BAND REJECT  
R
s
C
NOTES:  
In the networks above, the R value used is assumed to include 2r , or approximately 32.  
e
S = jω  
ω = 2πf  
257  
April 15, 1992  

相关型号:

NE592D14-T

Video Amplifier, 1 Channel(s), 1 Func, Bipolar, PDSO14
YAGEO

NE592D14G

Video Amplifier
ONSEMI

NE592D14R2

Video Amplifier
ONSEMI

NE592D14R2G

Video Amplifier
ONSEMI

NE592D8

Video amplifier
NXP

NE592D8

Video Amplifier
ONSEMI

NE592D8

Video Amplifier, 1 Channel(s), 1 Func, Bipolar, PDSO8
YAGEO

NE592D8-T

Video Amplifier, 1 Channel(s), 1 Func, Bipolar, PDSO8
YAGEO

NE592D8G

Video Amplifier
ONSEMI

NE592D8R2

Video Amplifier
ONSEMI

NE592D8R2G

Video Amplifier
ONSEMI

NE592F

Video Amplifier, Bipolar, CDIP14
PHILIPS