NE612A [NXP]

Double-balanced mixer and oscillator; 双平衡混频器和振荡器
NE612A
型号: NE612A
厂家: NXP    NXP
描述:

Double-balanced mixer and oscillator
双平衡混频器和振荡器

振荡器
文件: 总8页 (文件大小:164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors  
Product specification  
Double-balanced mixer and oscillator  
NE/SA612A  
DESCRIPTION  
PIN CONFIGURATION  
The NE/SA612A is a low-power VHF monolithic double-balanced  
mixer with on-board oscillator and voltage regulator. It is intended for  
low cost, low power communication systems with signal frequencies  
to 500MHz and local oscillator frequencies as high as 200MHz. The  
mixer is a “Gilbert cell” multiplier configuration which provides gain  
of 14dB or more at 45MHz.  
D, N Packages  
1
2
3
4
8
7
6
5
INPUT A  
INPUT B  
GND  
V
CC  
OSCILLATOR  
OSCILLATOR  
OUTPUT B  
SR00098  
OUTPUT A  
The oscillator can be configured for a crystal, a tuned tank  
operation, or as a buffer for an external L.O. Noise figure at 45MHz  
is typically below 6dB and makes the device well suited for high  
performance cordless phone/cellular radio. The low power  
consumption makes the NE/SA612A excellent for battery operated  
equipment. Networking and other communications products can  
benefit from very low radiated energy levels within systems. The  
NE/SA612A is available in an 8-lead dual in-line plastic package and  
an 8-lead SO (surface mounted miniature package).  
Figure 1. Pin Configuration  
APPLICATIONS  
Cordless telephone  
Portable radio  
VHF transceivers  
FEATURES  
Low current consumption  
RF data links  
Sonabuoys  
Low cost  
Communications receivers  
Broadband LANs  
Operation to 500MHz  
Low radiated energy  
HF and VHF frequency conversion  
Cellular radio mixer/oscillator  
Low external parts count; suitable for crystal/ceramic filter  
Excellent sensitivity, gain, and noise figure  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
0 to +70°C  
ORDER CODE  
DWG #  
SOT97-1  
SOT96-1  
SOT97-1  
SOT96-1  
8-Pin Plastic Dual In-Line Plastic (DIP)  
8-Pin Plastic Small Outline (SO) package (Surface-Mount)  
8-Pin Plastic Dual In-Line Plastic (DIP)  
8-Pin Plastic Small Outline (SO) package (Surface-Mount)  
NE612AN  
NE612AD  
SA612AN  
SA612AD  
0 to +70°C  
-40 to +85°C  
-40 to +85°C  
BLOCK DIAGRAM  
8
7
6
5
V
CC  
OSCILLATOR  
VOLTAGE  
REGULATOR  
GROUND  
1
2
3
4
SR00099  
Figure 2. Block Diagram  
1
1990 Sep 17  
853-0391 00446  
Philips Semiconductors  
Product specification  
Double-balanced mixer and oscillator  
NE/SA612A  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
Maximum operating voltage  
RATING  
9
UNIT  
V
V
CC  
T
STG  
Storage temperature  
-65 to +150  
°C  
Operating ambient temperature range  
T
A
NE  
SA  
0 to +70  
-40 to +85  
°C  
AC/DC ELECTRICAL CHARACTERISTICS  
T =25°C, V = 6V, Figure 3  
A
CC  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITION  
UNIT  
Min  
Typ  
Max  
8.0  
V
Power supply voltage range  
DC current drain  
4.5  
V
CC  
2.4  
500  
200  
5.0  
-13  
17  
3.0  
mA  
MHz  
MHz  
dB  
f
f
Input signal frequency  
Oscillator frequency  
IN  
OSC  
Noise figured at 45MHz  
Third-order intercept point at 45MHz  
Conversion gain at 45MHz  
RF input resistance  
RF =-45dBm  
dBm  
dB  
IN  
14  
R
C
1.5  
k  
IN  
IN  
RF input capacitance  
3
pF  
Mixer output resistance  
(Pin 4 or 5)  
1.5  
kΩ  
radio 2nd IF and demodulator, the NE/SA612A is capable of  
receiving -119dBm signals with a 12dB S/N ratio. Third-order  
DESCRIPTION OF OPERATION  
The NE/SA612A is a Gilbert cell, an oscillator/buffer, and a  
temperature compensated bias network as shown in the equivalent  
circuit. The Gilbert cell is a differential amplifier (Pins 1 and 2) which  
drives a balanced switching cell. The differential input stage  
provides gain and determines the noise figure and signal handling  
performance of the system.  
intercept is typically -15dBm (that’s approximately +5dBm output  
intercept because of the RF gain). The system designer must be  
cognizant of this large signal limitation. When designing LANs or  
other closed systems where transmission levels are high, and  
small-signal or signal-to-noise issues not critical, the input to the  
NE/SA612A should be appropriately scaled.  
The NE/SA612A is designed for optimum low power performance.  
When used with the NE614A as a 45MHz cordless phone/cellular  
2
1990 Sep 17  
Philips Semiconductors  
Product specification  
Double-balanced mixer and oscillator  
NE/SA612A  
TEST CONFIGURATION  
0.5 to 1.3µH  
22pF  
10pF  
34.545MHz THIRD OVERTONE CRYSTAL  
1nF  
5.5µH  
V
CC  
100nF  
6.8µF  
10nF  
8
7
6
5
150pF  
OUTPUT  
1.5 to  
44.2µH  
612A  
330pF  
120pF  
1
2
3
4
47pF  
0.209 to  
0.283µH  
INPUT  
220pF  
100nF  
SR00101  
Figure 3. Test Configuration  
8
V
CC  
18k  
BUFFER  
6
7
1.5k  
4
1.5k  
5
25k  
BIAS  
BIAS  
2
1
BIAS  
1.5k  
1.5k  
3
GND  
SR00102  
Figure 4. Equivalent Circuit  
3
1990 Sep 17  
Philips Semiconductors  
Product specification  
Double-balanced mixer and oscillator  
NE/SA612A  
Besides excellent low power performance well into VHF, the  
NE/SA612A is designed to be flexible. The input, output, and  
oscillator ports can support a variety of configurations provided the  
designer understands certain constraints, which will be explained  
here.  
permissible oscillation frequency. If the required L.O. is beyond  
oscillation limits, or the system calls for an external L.O., the  
external signal can be injected at Pin 6 through a DC blocking  
capacitor. External L.O. should be 200mV  
maximum.  
minimum to 300mV  
P-P  
P-P  
The RF inputs (Pins 1 and 2) are biased internally. They are  
symmetrical. The equivalent AC input impedance is approximately  
1.5k || 3pF through 50MHz. Pins 1 and 2 can be used  
interchangeably, but they should not be DC biased externally. Figure  
5 shows three typical input configurations.  
Figure 7 shows several proven oscillator circuits. Figure 7a is  
appropriate for cordless phones/cellular radio. In this circuit a third  
overtone parallel-mode crystal with approximately 5pF load  
capacitance should be specified. Capacitor C3 and inductor L1 act  
as a fundamental trap. In fundamental mode oscillation the trap is  
omitted.  
The mixer outputs (Pins 4 and 5) are also internally biased. Each  
output is connected to the internal positive supply by a 1.5kΩ  
resistor. This permits direct output termination yet allows for  
balanced output as well. Figure 6 shows three single-ended output  
configurations and a balanced output.  
Figure 8 shows a Colpitts varacter tuned tank oscillator suitable for  
synthesizer-controlled applications. It is important to buffer the  
output of this circuit to assure that switching spikes from the first  
counter or prescaler do not end up in the oscillator spectrum. The  
dual-gate MOSFET provides optimum isolation with low current.  
The FET offers good isolation, simplicity, and low current, while the  
bipolar circuits provide the simple solution for non-critical  
applications. The resistive divider in the emitter-follower circuit  
should be chosen to provide the minimum input signal which will  
assume correct system operation.  
The oscillator is capable of sustaining oscillation beyond 200MHz in  
crystal or tuned tank configurations. The upper limit of operation is  
determined by tank “Q” and required drive levels. The higher the Q  
of the tank or the smaller the required drive, the higher the  
612A  
612A  
612A  
1
2
1
2
1
2
INPUT  
a. Single-Ended Tuned Input  
b. Balanced Input (For Attenuation  
of Second-Order Products)  
c. Single-Ended Untuned Input  
SR00103  
Figure 5. Input Configuration  
4
1990 Sep 17  
Philips Semiconductors  
Product specification  
Double-balanced mixer and oscillator  
NE/SA612A  
C
*
12pF  
T
5
5
CFU455  
or Equivalent  
612A  
612A  
Filter K&L 38780 or Equivalent  
*C matches 3.5kto next stage  
T
4
4
a. Single-Ended Ceramic Filter  
b. Single-Ended Crystal Filter  
5
5
612A  
612A  
4
4
c. Single-Ended IFT  
d.. Balanced Output  
SR00104  
Figure 6. Output Configuration  
L
C
1
2
C
3
XTAL  
C
1
8
7
6
5
8
7
6
5
8
7
6
5
612A  
612A  
612A  
1
2
3
4
1
2
3
4
1
2
3
4
TC02101S  
TC02111S  
TC02121S  
a. Colpitts Crystal Oscillator  
(Overtone Mode)  
c. Hartley L/C Tank Oscillator  
b. Colpitts L/C Tank Oscillator  
SR00105  
Figure 7. Oscillator Circuits  
5
1990 Sep 17  
Philips Semiconductors  
Product specification  
Double-balanced mixer and oscillator  
NE/SA612A  
5.5µH  
+6V  
0.1µF  
10µF  
0.10pF  
1
2
8
7
TO  
BUFFER  
612A  
10pF  
7pF  
3
4
6
5
1000pF  
DC CONTROL VOLTAGE  
FROM SYNTHESIZER  
1000pF  
0.06µH  
MV2105  
OR EQUIVALENT  
0.01µF  
100k  
2k  
3SK126  
2N918  
0.01pF  
2N5484  
2pF  
TO SYNTHESIZER  
0.01µF  
330  
100k  
TO SYNTHESIZER  
100k  
1.0nF  
SR00106  
Figure 8. Colpitts Oscillator Suitable for Synthesizer Applications and Typical Buffers  
6
1990 Sep 17  
Philips Semiconductors  
Product specification  
Double-balanced mixer and oscillator  
NE/SA612A  
TEST CONFIGURATION  
0.5 to 1.3µH  
22pF  
5.6pF  
44.545MHz THIRD OVERTONE CRYSTAL  
5.5µH  
1nF  
V
CC  
6.8µF  
100nF  
10nF  
8
7
6
5
612A  
1
2
3
4
455kHZ  
SFG455A3  
OR EQUIVALENT  
47pF  
0.209 to 0.283µH  
INPUT  
220pF  
45MHz IN  
100nF  
SR00107  
Figure 9. Typical Application for Cordless/Cellular Radio  
7
1990 Sep 17  
Philips Semiconductors  
Product specification  
Double-balanced mixer and oscillator  
NE/SA612A  
3.50  
3.25  
6.00  
5.75  
5.50  
5.25  
5.00  
4.75  
4.50  
4.5V  
6.0V  
8.5V  
3.00  
2.75  
2.50  
2.25  
2.00  
1.75  
1.50  
8.5V  
6.0V  
4.5V  
4.25  
4.00  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
O
O
TEMPERATURE  
C
TEMPERATURE  
C
SR00111  
SR00108  
Figure 10. I vs Supply Voltage  
Figure 13. Noise Figure  
CC  
RF = 45MHz, IF = 455kHz, RF = 45.06MHz  
1
2
20.0  
3rd ORDER PRODUCT  
19.5  
19.0  
20  
0
18.5  
18.0  
17.5  
6.0V  
8.5V  
4.5V  
17.0  
16.5  
–20  
–40  
–60  
FUND. PRODUCT  
16.0  
15.5  
15.0  
14.5  
14.0  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
O
TEMPERATURE  
C
SR00109  
–80  
–60  
–40  
–20  
0
20  
Figure 11. Conversion Gain vs Supply Voltage  
RF INPUT LEVEL (dBm)  
SR00112  
Figure 14. Third-Order Intercept and Compression  
–10.0  
–10.5  
–11.0  
–11.5  
–10  
–11  
–12  
–13  
–14  
–15  
–12.0  
–12.5  
–13.0  
–13.5  
–14.0  
–14.5  
–15.0  
–15.5  
–16.0  
–16.5  
–17.0  
–16  
–17  
–18  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90  
O
TEMPERATURE  
C
SR00110  
4
5
6
7
8
9
10  
V
(VOLTS)  
CC  
Figure 12. Third-Order Intercept Point  
SR00113  
Figure 15. Input Third-Order Intermod Point vs V  
CC  
8
1990 Sep 17  

相关型号:

NE612AD

Double-balanced mixer and oscillator
NXP

NE612AD-T

IC 1-BAND, AUDIO TUNER, PDSO8, Tuner IC
NXP

NE612AN

Double-balanced mixer and oscillator
NXP

NE612A_1

Double-balanced mixer and oscillator
NXP

NE612D

RF/Microwave Mixer, BIPolar
PHILIPS

NE612D-T

RF/Microwave Mixer, BIPolar
PHILIPS

NE612N

Double Balanced Mixer
YAGEO

NE612N

RF/Microwave Mixer, BIPolar
PHILIPS

NE614A

Low power FM IF system
NXP

NE614AD

IC FM, AUDIO DEMODULATOR, PDSO16, Receiver IC
NXP

NE614AD-T

IC FM, AUDIO DEMODULATOR, PDSO16, Receiver IC
NXP

NE614AN

IC FM, AUDIO DEMODULATOR, PDIP16, Receiver IC
NXP