P1014CSE5DHB [NXP]

IC 32-BIT, 533 MHz, RISC PROCESSOR, PBGA425, 19 X 19 MM, 1.90 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, PLASTIC, TEPBGA-425, Microprocessor;
P1014CSE5DHB
型号: P1014CSE5DHB
厂家: NXP    NXP
描述:

IC 32-BIT, 533 MHz, RISC PROCESSOR, PBGA425, 19 X 19 MM, 1.90 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, PLASTIC, TEPBGA-425, Microprocessor

时钟 外围集成电路
文件: 总100页 (文件大小:802K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: P1014EC  
Rev. 4, 05/2014  
P1014  
P1014 QorIQ Integrated  
Processor Hardware  
Specifications  
TePBGA1-425  
19 mm x 19 mm  
The following list provides an overview of the P1014 feature  
set:  
• Programmable interrupt controller (PIC) compliant with  
OpenPIC standard  
• One 4-channel DMA controller  
• Two I C interfaces  
• Four UART interfaces  
• Integrated Flash controller (IFC)  
• TDM  
• High-performance 32-bit Book E-enhanced core based on  
the Power Architecture technology:  
– 36-bit physical addressing  
2
– Double-precision floating-point support  
– 32-Kbyte L1 instruction cache and 32-Kbyte L1 data  
cache  
• 16 general-purpose I/O signals  
• Operating temperature (Ta - T ) range: 0–105C (standard)  
– 400- to 1000-MHz clock frequency  
• 256-Kbyte L2 cache with ECC. Also configurable as  
SRAM and stashing memory  
• Two enhanced three-speed Ethernet controllers (eTSECs)  
– 10/100/1000 Mbps support  
j
and –40C to 105C (extended)  
• 19 19 mm 425-ball wirebond TePBGA-1 package with  
0.8 mm pitch  
– TCP/IP acceleration, quality of service, and  
classification capabilities  
– IEEE Std 1588™ support  
– RGMII, SGMII  
– eTSEC1 supports both RGMII/SGMII interfaces and  
eTSEC2 support SGMII interface  
• High-speed interfaces supporting the following  
multiplexing options:  
– Two PCI Express 1.1 interfaces  
– Two SATA Revision 2.0 interfaces  
– Five lanes of high-speed serial interfaces to be shared  
between PCI Express, SATA, and SGMII  
• High-speed USB controller (USB 2.0)  
– Host and device support  
– On-chip USB 2.0 high-speed PHY  
– Enhanced host controller interface (EHCI)  
– ULPI interface  
• Enhanced secure digital host controller (SD/MMC)  
• Enhanced serial peripheral interface (eSPI)  
• Integrated security engine (ULE CAAM)  
– Protocol support includes DES, AES, RNG, CRC,  
MDE, PKE, SHA, and MD5.  
• DDR3/DDR3L SDRAM memory controller supports and  
16-bit with ECC  
This document contains information on a new product. Specifications and information herein  
are subject to change without notice.  
© Freescale Semiconductor, Inc., 2011-2014. All rights reserved.  
Table of Contents  
1
2
Pin assignments and reset states. . . . . . . . . . . . . . . . . . . . . . .4  
2.21 PCI Express. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
2.22 Serial ATA (SATA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Hardware design considerations. . . . . . . . . . . . . . . . . . . . . . 84  
3.1 System clocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
3.2 Supply power default setting . . . . . . . . . . . . . . . . . . . . 87  
3.3 Power supply design and sequencing . . . . . . . . . . . . . 88  
3.4 Decoupling recommendations. . . . . . . . . . . . . . . . . . . 89  
3.5 SerDes block power supply decoupling  
1.1 Ball layout diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.2 Pinout assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2.1 Overall DC electrical characteristics . . . . . . . . . . . . . . .21  
2.2 Power sequencing. . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
2.3 Power-down Requirements. . . . . . . . . . . . . . . . . . . . . .25  
2.4 Reset Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
2.5 Power-on ramp rate. . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
2.6 Power characteristics . . . . . . . . . . . . . . . . . . . . . . . . . .26  
2.7 Input clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
2.8 DDR3, and DDR3L SDRAM controller . . . . . . . . . . . . .31  
2.9 eSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
2.10 DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
2.11 Ethernet: Enhanced Three-Speed Ethernet (eTSEC) .40  
2.12 USB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
2.13 Integrated flash controller . . . . . . . . . . . . . . . . . . . . . . .55  
2.14 Enhanced secure digital host controller (eSDHC) . . . .59  
2.15 Programmable Interrupt Controller (PIC)  
3
recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
3.6 Connection recommendations. . . . . . . . . . . . . . . . . . . 89  
3.7 Pull-up and pull-down resistor requirements . . . . . . . . 89  
3.8  
Output buffer DC impedance . . . . . . . . . . . . . . . . . . . 90  
3.9 Configuration pin muxing. . . . . . . . . . . . . . . . . . . . . . . 90  
3.10 JTAG configuration signals . . . . . . . . . . . . . . . . . . . . . 91  
3.11 Guidelines for high-speed interface termination . . . . . 93  
3.12 Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
4.1 Package parameters for P1014 . . . . . . . . . . . . . . . . . . 96  
4.2 Mechanical dimensions of P1014 WB-TePBGA . . . . . 96  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
5.1 Part marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Product documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
4
5
specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
2.16 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
2.17 I2C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
2.18 GPIO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
2.19 TDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
2.20 High-Speed Serial Interfaces (HSSI) . . . . . . . . . . . . . .70  
6
7
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
2
Freescale Semiconductor  
This figure shows the major functional units within the P1014.  
P1014  
Power Architecture  
e500 Core  
Security  
DDR3/DDR3L  
Acceleration  
SDRAM Controller  
256-Kbyte  
L2 Cache  
32-Kbyte 32-Kbyte  
XOR  
2 x DUART,  
2 x I2C, Timers,  
Interrupt Control,  
SD/MMC, SPI,  
USB 2.0/ULPI,  
L1  
I-Cache  
L1  
D-Cache  
GPIO  
Coherency Module  
SystemBus  
Integrated Flash  
Controller  
(IFC)  
On-Chip Network  
2 x PCI Express  
2 x Gigabit  
Ethernet  
TDM  
4 Ch DMA  
2 x SATA  
5-lane SERDES  
Core  
Acceleration  
Interface  
Figure 1. P1014 block diagram  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
3
Pin assignments and reset states  
1
Pin assignments and reset states  
1.1  
Ball layout diagrams  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
UART_ UART_  
A
GPIO  
_2  
IIC1_  
SDA  
IIC2_  
SDA  
VSS  
VSS  
MA_06 MA_13  
MA_09 MA_02  
SD2_ S2VDD  
RX_1  
X2VDD  
VSS  
UART_ UART_  
MA_04 MA_07 MA_11  
MA_15 MCS_2  
_B  
S2VDD  
SD2_  
RX_0  
SPI_  
CTS_  
CTS_  
1_B  
A
MOSI SOUT_2 SOUT_3 _0_B  
SD2_  
S2VSS  
RXE_  
B
VSS  
IIC1_SCL GPIO  
_4  
VSS GPIO_3  
X2VSS X2VSS  
VSS  
UART_  
SIN_3  
B
C
MCS0_B  
NC  
MA_03  
VSS  
VSS  
MCS_3 X2VDD S2VSS  
_B  
SD2_RX  
0_B  
SPI_  
MISO  
B
UART_  
RTS_  
B00  
UART_  
SOUT  
_00  
C
D
E
UART_ IIC2_ OVDD IRQ_3  
SOUT01 SCL  
S2VDD SD2_REF  
_CLK  
SD2_TX S2VDD  
_0  
OVDD  
MCKE_1MCS1_B MA_14 MBA_0 MBA_1 MA_08 MA_05 MDIC_1 X2VDD  
SD2_  
TX_1  
X2VDD  
SPI_CLK  
IRQ_  
OUT_  
B
SD2_  
TX1_  
1_B  
UART_  
RTS_  
B01  
MA_00 MBA_2  
MA_01  
OVDD  
GPIO_01 GPIO_0  
D
MA_10  
VSS  
VSS  
SD2_REF  
S2VSS  
SPI_CS0  
_B  
UART_  
SIN00  
MA_12  
MDIC_0 X2VSS  
X2VSS SD2_TX S2VSS  
_0_B  
UART_  
SIN_2  
_CLK_B  
UART_ IRQ_1 GPIO_05HRESET  
SIN01 _B  
E
MODT  
_1  
MCKE  
_0  
VSS  
MWE_B  
MCK  
MODT  
_0  
F
MRAS  
_B  
MCK_B  
F
MCAS  
_B  
RTC READY IRQ_2 IRQ_0  
SEE DETAIL B  
SEE DETAIL A  
SD2_IMP  
_CAL_TX  
SD2_IMP  
_CAL_RX  
SD2_PLL SD2_ SD2_PLL  
BVDD_  
VSEL_0  
G
H
J
MDQ  
_10  
G
H
MDQ  
_06  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
OVDD  
TCK  
VSS  
TDI  
TDD  
VSS  
GVDD GVDD GVDD  
_TPA  
VDD  
VSS  
AVDD  
_TPD  
S2VDD  
VSS  
SCAN  
_MODE  
_B  
BVDD_  
VSEL_1  
AVDD_  
SD2_  
AVSS  
HRESET  
_REQ_B  
MDQ  
_12  
VSS  
MDQS  
_0  
MDQ  
_08  
VDD  
VDD  
VSS  
VDD  
TRST_B  
OVDD  
GVDD  
VDD  
CORE  
VSS  
USB  
VDD1_8  
VSS  
VSS  
VSS  
MDQS  
_1  
MVREF VDD  
J
VDD  
VDD  
VDD  
VDD  
MDQS  
_0_B  
TMS USBVSS  
USBVSS UDP  
MDQ  
_14  
MDQ  
_02  
USB  
VDD1_8  
K
MDQ  
_00  
VSS  
VSS  
VSS  
K
GVDD  
GVDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VVSSSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
MDQS  
_1_B  
MDQ_04  
USBVDD3  
_3  
VUSB  
CLMP  
L
L
MDQ_07 VSS  
MDM_1  
USBVDD3  
_3  
USBVSS UDM  
IBIAS  
MDQ  
_9  
TEMP_  
VSS  
VSS  
VSS  
GVDD  
GVDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
M
N
P
M
N
MDQ_01  
MDM_0  
MDQ_11  
USBVSS  
_REXT  
MDQ_15  
USBPHY  
_CLK  
USBVSS  
VSS  
MDQ_05  
MDQ_03  
VSS  
VSS  
FA_  
VDD  
NC  
NC  
SYSCLK  
VSS  
MDQ_13 VSS  
VDD AVDD_  
DDR  
IFC_  
AD_00  
VSS  
VSS  
VDD AVDD_  
PLAT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P
GVDD  
GVDD  
VDD  
VDD  
NC  
NC  
NC  
NC  
VSS  
MECC_6  
MECC_2  
MDQS_2  
VSS  
IFC_  
AD_08  
VDD  
VDD  
VDD  
R
R
T
IFC_AD  
_09  
IFC_AD  
_01  
MECC_0  
MECC_4  
IFC_  
ADDR  
_02  
IFC_  
AD_10  
GVDD  
LVDD  
VDD  
VDD  
VDD  
X1VDD SD1_ S1VDD VDD  
AVSS  
VDD  
BVDD  
T
VSS  
NC  
NC  
NC  
IFC_AD  
_11  
IFC_AD  
_03  
IFC_  
ADDR  
_04  
IFC_  
AD_12  
LVDD  
VDD SD1_IMP SD1_PLL SD1_ SD1_PLLSD1_IMP VDD  
_CAL_RX _TPD  
AVDD _TPA _CAL_TX  
BVDD BVDD  
U
U
V
MDQS  
_2_B  
VSS  
BVDD  
IFC_AD  
_05  
IFC_  
ADDR  
_06  
IFC_  
AD_13  
V
NC  
NC  
MECC_7  
NC  
MECC_1  
IFC_AD  
_14  
IFC_AD  
_07  
SEE DETAIL C  
SEE DETAIL D  
IFC_  
ADDR_  
17  
IFC_  
ADDR  
_16  
W
Y
MDM_2 MECC_3  
IFC_AD  
_15  
VSS  
W
Y
VSS  
IFC_  
S1VDD SD1_RX X1VDD SD1_ S1VSS SD1_REF S1VDD SD1_TX X1VDD Other S1VSS CLK_0  
TX_1 _CLK_B  
_0 _2  
IFC_  
VSS ADDR_  
21  
TSEC1_  
GTX_  
CLK125  
IFC_  
ADDR  
_19  
IFC_  
ADDR  
_18  
TSEC1_  
RX_CLK  
IFC_  
RB_B  
SENSE  
VSS  
NC  
NC  
MECC_5  
VSS  
IFC_  
PERR_  
B
IFC_  
ADDR  
_23  
IFC_  
ADDR  
_20  
TSEC1_TSEC1_  
GTX_CLKTXD_3  
EC_  
MDC  
SENSE  
VDD  
IFC_  
BCTL  
AA  
AB  
AC  
TSEC1_  
TXD_2  
S1VSS SD1_RX X1VSS SD1_TX S1VDD SD1_REF S1VSS SD1_TX X1VSS  
_1_B _CLK  
_0_B _2_B  
Other  
S1VDD  
IFC_CLE IFC_CS  
_0_B  
AA  
AB  
AC  
IFC_  
ADDR  
_22  
TSEC1_  
RXD_2  
TSEC1_  
RXD_1  
SD1_  
TX_0  
NC  
VSS  
LVDD TSEC1_ S1VDD X1VDD  
RX_DV  
S1VDD SD1_RX S1VDD SD1_RX S1VDD  
_1  
NC  
X1VDD S1VSS IFC_PAR BVDD IFC_OE IFC_CS  
VSS  
_2  
_1  
_B  
_1_B  
IFC_  
ADDR  
_24  
TSEC1_ EC_  
TXD01 MDIO  
TSEC1_ TSEC1_  
RXD_3 RXD_0  
TSEC1_ TSEC1_ VSS  
X1VSS SD1_TX S1VSS SD1_RX S1VSS SD1_RX S1VSS  
NC  
X1VSS  
VSS  
IFC_WP  
_B  
IFC_CLK IFC_PAR  
IFC_WE IFC_AVD  
_B  
TXD_0  
_1_B  
TX_EN  
0_B  
_2_B  
_1  
_0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
4
Freescale Semiconductor  
Pin assignments and reset states  
DETAIL A  
1
2
3
4
5
6
7
8
9
10  
11  
12  
VSS  
VSS  
MA_06 MA_13  
MA_09 MA_02  
SD2_ S2VDD  
RX_1  
MA_04 MA_07 MA_11  
MA_15 MCS_2  
_B  
S2VDD  
A
B
C
D
E
F
SD2_  
RXE_  
S2VSS  
MCS0_B  
NC  
MA_03  
VSS  
VSS  
MCS_3 X2VDD S2VSS  
_B  
B
S2VDD SD2_REF  
_CLK  
MCKE_1MCS1_B MA_14 MBA_0 MBA_1 MA_08 MA_05 MDIC_1 X2VDD  
SD2_  
TX_1  
SD2_  
TX1_  
1_B  
MBA_2  
VSS  
MA_00  
MA_01  
VSS  
VSS  
MA_10  
SD2_REF  
_CLK_B  
MA_12  
MDIC_0 X2VSS  
S2VSS  
MODT  
_1  
MCKE  
_0  
MODT  
_0  
MRAS  
_B  
MCK_B  
MCAS  
_B  
MWE_B  
MCK  
SD2_IMP  
_CAL_TX  
SD2_PLL SD2_  
MDQ  
_10  
G
H
J
MDQ  
_06  
VSS  
GVDD GVDD GVDD  
AVDD_  
_TPA  
VDD  
VSS  
AVDD  
SD2_  
AVSS  
MDQ  
_12  
MDQS  
_0  
VSS  
MDQ  
_08  
VDD  
VSS  
GVDD  
VDD  
CORE  
VSS  
VSS  
MDQS  
_1  
MVREF VDD  
MDQS  
_0_B  
MDQ  
_14  
MDQ  
_02  
MDQ  
_00  
VSS  
VSS  
K
L
VSS  
GVDD  
GVDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VVSSSS  
MDQS  
_1_B  
MDQ_04  
MDQ_07  
MDQ_01  
VSS  
MDM_1  
MDQ  
_9  
TEMP_  
VSS  
VSS  
GVDD  
VDD  
VSS  
VSS  
M
MDQ_11  
MDM_0  
MDQ_15  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
5
Pin assignments and reset states  
DETAIL B  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
UART_  
CTS_  
_0_B  
UART_  
CTS_  
1_B  
A
B
C
D
E
F
GPIO  
_2  
IIC1_  
SDA  
IIC2_  
SDA  
X2VDD VSS  
X2VSS X2VSS  
UART_ UART_  
SOUT_2 SOUT_3  
SD2_  
RX_0  
SPI_  
MOSI  
VSS  
IIC1_SCL  
GPIO_3  
IRQ_3  
GPIO  
_4  
VSS  
VSS UART_  
SIN_3  
SD2_RX  
0_B  
SPI_  
MISO  
UART_  
RTS_  
B00  
UART_  
OVDD  
UART_  
SOUT01  
IIC2_ OVDD  
SCL  
SD2_TX S2VDD  
_0  
X2VDD  
SPI_CLK  
SOUT  
_00  
IRQ_  
OUT_  
B
UART_  
RTS_  
B01  
OVDD  
GPIO_0  
GPIO_01  
SPI_CS0  
_B  
UART_  
SIN00  
X2VSS SD2_TX S2VSS  
_0_B  
UART_  
SIN_2  
UART_  
SIN01  
HRESET  
_B  
IRQ_1 GPIO_05  
RTC  
IRQ_0  
TDD  
READY IRQ_2  
SD2_IMP  
_CAL_RX  
SD2_PLL  
_TPD  
BVDD_  
VSEL_0  
G
H
J
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
OVDD  
VDD  
TCK  
VSS  
SCAN  
_MODE  
_B  
BVDD_  
VSEL_1  
HRESET  
_REQ_B  
VDD  
VSS  
VDD  
VSS  
TRST_B  
OVDD  
S2VDD  
VSS  
TDI  
USB  
VDD1_8  
VDD  
VDD  
VDD  
VDD  
USBVSS  
TMS  
USB  
VDD1_8  
K
L
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
USBVDD3  
_3  
UDP  
UDM  
USBVSS  
USBVSS  
VUSB  
CLMP  
USBVDD3  
_3  
IBIAS  
_REXT  
VSS  
VSS  
VSS  
M
USBPHY  
_CLK  
USBVSS  
USBVSS  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
6
Freescale Semiconductor  
Pin assignments and reset states  
DETAIL C  
VSS  
VSS  
VSS  
VSS  
GVDD  
VDD  
MDQ_05  
MDQ_03  
MDQ_13  
NC  
VSS  
NC  
N
P
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
GVDD  
GVDD  
VDD  
VDD  
VSS  
MECC_6  
MECC_2  
MDQS_2  
NC  
NC  
MECC_0  
MECC_4  
R
GVDD  
LVDD  
VDD  
VDD  
VDD  
X1VDD SD1_  
AVSS  
VSS  
NC  
NC  
NC  
T
LVDD  
VDD SD1_IMP SD1_PLL SD1_  
MDQS  
_2_B  
VSS  
U
_CAL_RX _TPD  
AVDD  
MECC_7  
MDM_2  
NC  
NC  
NC  
MECC_1  
V
MECC_3  
VSS  
VSS  
W
Y
TSEC1_  
GTX_  
CLK125  
TSEC1_  
RX_CLK  
SENSE  
VSS  
NC  
NC  
MECC_5  
SD1_RX  
_0  
S1VSS  
S1VDD  
S1VDD  
S1VSS  
X1VDD SD1_  
TX_1  
SD1_REF  
_CLK_B  
TSEC1_TSEC1_  
GTX_CLKTXD_3  
EC_  
MDC  
SENSE  
VDD  
TSEC1_  
TXD_2  
SD1_RX  
_0_B  
X1VSS SD1_TX  
_1_B  
SD1_REF  
_CLK  
AA  
AB  
AC  
TSEC1_  
RXD_2  
TSEC1_  
RXD_1  
SD1_  
TX_0  
LVDD  
X1VDD  
X1VSS  
SD1_RX  
_1  
NC  
VSS  
TSEC1_ S1VDD  
RX_DV  
S1VDD  
S1VDD  
S1VSS  
TSEC1_ TSEC1_  
RXD_3 RXD_0  
TSEC1_ EC_  
TXD01 MDIO  
TSEC1_  
TXD_0  
SD1_RX  
_1_B  
TSEC1_ VSS  
TX_EN  
SD1_TX S1VSS  
0_B  
1
2
3
4
5
6
7
8
9
10  
11  
12  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
7
Pin assignments and reset states  
DETAIL D  
VSS  
VSS  
VSS  
N
VSS  
VSS  
NC  
SYSCLK  
VSS  
VDD AVDD_  
FA_  
VDD  
NC  
DDR  
IFC_  
AD_00  
VDD AVDD_  
PLAT  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
P
VSS  
IFC_  
AD_08  
VDD  
VDD  
VDD  
R
IFC_AD  
_09  
IFC_AD  
_01  
IFC_  
ADDR  
_02  
IFC_  
AD_10  
S1VDD VDD  
VDD  
BVDD  
T
IFC_AD  
_11  
IFC_AD  
_03  
IFC_  
ADDR  
_04  
IFC_  
AD_12  
SD1_PLLSD1_IMP VDD  
_TPA _CAL_TX  
BVDD BVDD  
U
BVDD  
IFC_AD  
_05  
IFC_  
ADDR  
_06  
IFC_  
AD_13  
V
IFC_AD  
_14  
IFC_AD  
_07  
IFC_  
ADDR_  
17  
IFC_  
ADDR  
_16  
IFC_AD  
_15  
VSS  
W
Y
IFC_  
CLK_0  
IFC_  
ADDR_  
21  
IFC_  
ADDR  
_19  
IFC_  
ADDR  
_18  
IFC_  
RB_B  
S1VDD  
SD1_TX  
_2  
X1VDD Other S1VSS  
VSS  
IFC_  
PERR_  
B
IFC_  
ADDR  
_23  
IFC_  
ADDR  
_20  
IFC_  
BCTL  
SD1_TX  
_2_B  
S1VSS  
X1VSS  
NC  
Other S1VDD  
X1VDD S1VSS  
IFC_CLE  
IFC_CS  
_0_B  
AA  
AB  
AC  
IFC_  
ADDR  
_22  
S1VDD  
SD1_RX  
_2  
IFC_OE  
_B  
IFC_PAR BVDD  
_1  
IFC_CS  
_1_B  
VSS  
IFC_  
ADDR  
_24  
S1VSS  
SD1_RX  
_2_B  
NC  
X1VSS  
VSS  
IFC_WP  
_B  
IFC_CLK IFC_PAR  
IFC_WEIFC_AVD  
_B  
_1  
_0  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
8
Freescale Semiconductor  
Pin assignments and reset states  
Table 1: Signals color coding  
Name  
Color  
DDR Signals  
Dew  
LVDD, SVDD, BVDD,  
S1VDD, X1VD, OVDD,  
GVDD, X2VDD, S2VDD  
Cloud LT  
VDD  
AVDD  
VSS  
Mist  
Yellow  
Cork DK  
Cyan  
IFC  
UDP, UDM  
Green  
SYSCLK, RTC  
Dew  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
9
Pin assignments and reset states  
Table 1: Signals color coding (continued)  
Name  
Color  
S1VSS, X1VSS  
Cork DK  
Mist DK  
Slate  
Serdes  
TSEC1  
NC  
Yellow LT  
SENSE  
Moss DK  
Ethernet Management  
Blue  
USB  
IRQ  
Dew DK  
Mist DK  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
10  
Freescale Semiconductor  
Pin assignments and reset states  
Table 1: Signals color coding (continued)  
Name  
Color  
DUART  
Magenta  
READY, SCAN, VUSB,  
IBIAS, FA  
Orange  
Cork  
HRESET_B  
TCK, TDD, TDI, TMS,  
TRST_B  
Orange  
Yellow  
MVREF  
1.2  
Pinout assignments  
This table provides the pinout listing for the P1014.  
1
Table 1. 1014 pinout listing  
Pin  
Type  
Signal  
Pin Number  
Supply  
Note  
DDR Memory Controller Interface  
MDQ_00  
MDQ_01  
MDQ_02  
MDQ_03  
MDQ_04  
MDQ_05  
MDQ_06  
K4  
M3  
J4  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
N4  
K3  
N3  
G3  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
11  
Pin assignments and reset states  
1
Table 1. 1014 pinout listing (continued)  
Pin  
Type  
Signal  
Pin Number  
Supply  
Note  
MDQ_07  
MDQ_08  
MDQ_09  
MDQ_10  
MDQ_11  
MDQ_12  
MDQ_13  
MDQ_14  
MDQ_15  
MECC_0  
MECC_1  
MECC_2  
MECC_3  
MECC_4  
MECC_5  
MECC_6  
MECC_7  
MDQS_0  
MDQS_1  
MDQS_2  
MDQS_0_B  
MDQS_1_B  
MDQS_2_B  
MDM_0  
L3  
H2  
L1  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
G1  
M2  
H1  
N1  
J2  
M1  
R4  
V4  
R3  
W4  
T4  
Y2  
P3  
V3  
H3  
J1  
T3  
J3  
K1  
U3  
M4  
L2  
MDM_1  
O
MDM_2  
W3  
D3  
D7  
B6  
B3  
A2  
C7  
A5  
A3  
O
MA_00  
O
MA_01  
O
MA_02  
O
MA_03  
O
MA_04  
O
MA_05  
O
MA_06  
O
MA_07  
O
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
12  
Freescale Semiconductor  
Pin assignments and reset states  
1
Table 1. 1014 pinout listing (continued)  
Pin  
Type  
Signal  
Pin Number  
Supply  
Note  
MA_08  
C6  
B5  
D1  
A4  
D5  
A6  
C3  
A7  
C4  
C5  
D4  
B1  
C2  
A8  
B8  
F1  
F2  
F4  
E3  
C1  
G4  
F3  
E2  
E1  
D8  
C8  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
IO  
IO  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
GVDD  
6
MA_09  
MA_10  
MA_11  
MA_12  
MA_13  
MA_14  
MA_15  
MBA_0  
MBA_1  
MBA_2  
MCS_0_B  
MCS_1_B  
MCS_2_B  
MCS_3_B  
MRAS_B  
MCAS_B  
MWE_B  
MCKE_0  
MCKE_1  
MCK  
6
18  
19  
MCK_B  
MODT_0  
MODT_1  
MDIC_0  
MDIC_1  
Ethernet MI  
EC_MDC/cfg_cpu_boot  
EC_MDIO  
AA6  
AC2  
O
LVDD  
LVDD  
3
IO  
eTSEC1/1588/DMA/GPIO  
TSEC1_TXD_0/1588_ALARM_OUT1/cfg_rom_loc[0]  
TSEC1_TXD_1/1588_ALARM_OUT2/cfg_rom_loc[1]  
TSEC1_TXD_2/1588_PULSE_OUT1/cfg_rom_loc[2]  
TSEC1_TXD_3/1588_PULSE_OUT2/cfg_rom_loc[3]  
AC5  
AC1  
AA5  
AA4  
O
O
O
O
LVDD  
LVDD  
LVDD  
LVDD  
21  
21  
21  
21  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
13  
Pin assignments and reset states  
1
Table 1. 1014 pinout listing (continued)  
Pin  
Type  
Signal  
Pin Number  
Supply  
Note  
TSEC1_TX_EN/cfg_svr  
AC6  
AC4  
O
I
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
LVDD  
3, 11  
7
TSEC1_RXD_0/1588_TRIG_IN1  
TSEC1_RXD_1/1588_TRIG_IN2/GPIO_12  
TSEC1_RXD_2/1588_CLK_IN  
AB4  
AB3  
AC3  
AB6  
Y6  
IO  
I
TSEC1_RXD_3/1588_CLK_OUT  
IO  
IO  
IO  
O
IO  
TSEC1_RX_DV/DMA_DREQ_0_B/GPIO_13  
TSEC1_RX_CLK/DMA_DACK_0_B/GPIO_14  
TSEC1_GTX_CLK/DMA_DDONE_0_B  
TSEC1_GTX_CLK125/GPIO_15  
AA3  
Y5  
IFC/eSDHC/USB ULPI/DMA  
IFC_AD_00/cfg_sys_pll_0  
P21  
R22  
T23  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
21  
21  
21  
21  
21  
21  
3
IFC_AD_01/cfg_sys_pll_1  
IFC_AD_02/cfg_sys_pll_2  
IFC_AD_03/cfg_core_pll_0  
T22  
IFC_AD_04/cfg_core_pll_1  
U23  
U22  
V23  
V22  
R21  
R20  
T21  
IFC_AD_05/cfg_core_pll_2  
IFC_AD_06/cfg_core_speed  
IFC_AD_07/cfg_ddr_pll_0  
21  
21  
3
IFC_AD_08/cfg_ddr_pll_1  
IFC_AD_09/cfg_ifc_pb_0  
IFC_AD_10/cfg_ifc_pb_1  
3
IFC_AD_11/cfg_ifc_pb_2  
T20  
3
IFC_AD_12/cfg_srds_refclk  
U21  
V21  
V20  
W20  
W23  
W21  
Y23  
Y22  
AA23  
Y21  
AB23  
AA22  
3
IFC_AD_13/cfg_io_ports_0  
3
IFC_AD_14/cfg_io_ports_1  
3
IFC_AD_15/cfg_ifc_adm  
3
IFC_ADDR_16/SDHC_CLK/USB_CLK/IFC_CS_2_B  
IFC_ADDR_17/SDHC_CMD/USB_D_0/DMA_DREQ_1_B  
IFC_ADDR_18/SDHC_DATA_0/USB_D_1/DMA_DACK_1_B  
IFC_ADDR_19/SDHC_DATA_1/USB_D_2/DMA_DDONE_1_B  
IFC_ADDR_20/SDHC_DATA_2/USB_D_3  
IFC_ADDR_21/SDHC_DATA_3/USB_D_4  
IFC_ADDR_22/SDHC_WP/USB_D_5  
IFC_ADDR_23/SDHC_CD/USB_D_6  
8
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
14  
Freescale Semiconductor  
Pin assignments and reset states  
1
Table 1. 1014 pinout listing (continued)  
Pin  
Type  
Signal  
Pin Number  
Supply  
Note  
IFC_ADDR_24/USB_D_7  
IFC_AVD/cfg_dram_type  
IFC_CS_0_B  
AC23  
AC22  
AA21  
AB21  
AC21  
AA20  
AB20  
AC20  
Y19  
IO  
O
O
O
O
O
O
O
I
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
BVDD  
3
3
IFC_CS_1_B  
IFC_WE_B/cfg_ifc_flash_mode  
IFC_CLE/cfg_host_agt_0  
IFC_OE_B/cfg_host_agt_1  
IFC_WP_B  
3
3
7
IFC_RB_B  
3
IFC_BCTL/cfg_boot_seq_0  
IFC_PAR_0/USB_STP  
IFC_PAR_1/cfg_plat_speed  
IFC_PERR_B/USB_DIR  
IFC_CLK_0  
AA19  
AC19  
AB18  
AA18  
Y18  
O
IO  
IO  
I
7
3
8
O
IO  
IFC_CLK_1/USB_NXT/IFC_CS_3_B  
AC18  
SPI/GPIO  
SPI_MOSI/GPIO_6  
SPI_MISO/GPIO_7  
SPI_CLK/GPIO_8  
SPI_CS0_B/GPIO_9  
A16  
B16  
C16  
D16  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
DUART/TDM  
UART_SOUT_2/TDM_TX_DATA/cfg_boot_seq_1  
UART_SIN_2/TDM_RX_DATA  
UART_SOUT_3/TDM_TFS  
A17  
D17  
A18  
B18  
O
OVDD  
OVDD  
OVDD  
OVDD  
3
IO  
IO  
IO  
UART_SIN_3/TDM_RFS  
DUART/TDM/GPIO  
UART_SOUT_0  
C18  
D18  
A19  
C19  
C20  
E20  
A20  
O
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
7
3
UART_SIN_0  
UART_CTS_0_B  
I
UART_RTS_0_B/cfg_ifc_ecc_0  
UART_SOUT_1/cfg_ifc_ecc_1  
UART_SIN_1  
O
O
I
3
UART_CTS_1_B/GPIO_10/TDM_TX_CLK/IRQ_10  
IO  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
15  
Pin assignments and reset states  
1
Table 1. 1014 pinout listing (continued)  
Pin  
Type  
Signal  
Pin Number  
Supply  
Note  
UART_RTS_1_B/GPIO_11/IRQ_11/TDM_RX_CLK  
D19  
IO  
OVDD  
I2C  
IIC1_SDA  
IIC1_SCL  
IIC2_SDA  
IIC2_SCL  
A21  
B20  
A22  
C21  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
10  
10  
10  
10  
Interrupts  
IRQ_0  
F23  
E21  
F22  
C23  
D21  
I
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
10  
IRQ_1  
IRQ_2/TRIG_IN  
IRQ_3/SRESET_B/TMP_DETECT  
IRQ_OUT_B  
I
I
O
GPIO  
GPIO_0/IRQ_4/DRVVBUS/MDVAL  
D23  
D22  
A23  
B23  
B21  
E22  
IO  
IO  
IO  
IO  
IO  
IO  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
9
GPIO_1/IRQ_5/VBUSPWRFAULT/MSRCID_0  
GPIO_2/IRQ_6/CKSTP_IN_B/MSRCID_1  
GPIO_3/IRQ_7/CKSTP_OUT_B/MSRCID_2  
GPIO_4/IRQ_8/MCP_B/MSRCID_3/CLK_OUT  
GPIO_5/IRQ_9/UDE_B/MSRCID_4  
System Control/Power Management  
HRESET_B  
E23  
H23  
F21  
I
OVDD  
OVDD  
OVDD  
7
HRESET_REQ_B  
READY/TRIG_OUT/ASLEEP  
O
O
7
Clocking  
SYSCLK  
RTC  
P23  
F20  
M20  
I
I
I
OVDD  
OVDD  
OVDD  
USBPHY_CLK  
IO_VSEL  
BVDD_VSEL_0  
BVDD_VSEL_1  
G17  
H17  
I
I
OVDD  
OVDD  
DFT  
SCAN_MODE_B  
H21  
I
OVDD  
2
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
16  
Freescale Semiconductor  
Pin assignments and reset states  
1
Table 1. 1014 pinout listing (continued)  
Pin  
Type  
Signal  
Pin Number  
Supply  
Note  
JTAG  
TCK  
G21  
H22  
G23  
J22  
I
I
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
4
TDI  
TDO  
O
I
6
TMS  
4
TRST_B  
H20  
I
4
Serdes1 (x3)  
SD1_TX_2  
Y14  
Y10  
O
O
O
O
O
O
I
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
12  
13  
SD1_TX_1  
SD1_TX_0  
AB9  
AA14  
AA10  
AC9  
AB13  
AB11  
Y8  
SD1_TX_2_B  
SD1_TX_1_B  
SD1_TX_0_B  
SD1_RX_2  
SD1_RX_1  
I
SD1_RX_0  
I
SD1_RX_2_B  
SD1_RX_1_B  
SD1_RX_0_B  
SD1_REF_CLK  
SD1_REF_CLK_B  
SD1_IMP_CAL_TX  
SD1_IMP_CAL_RX  
SD1_PLL_TPA  
SD1_PLL_TPD  
AC13  
AC11  
AA8  
AA12  
Y12  
I
I
I
I
I
U14  
I
U10  
I
U13  
O
O
U11  
Serdes2 (x2)  
SD2_TX_1  
C10  
C14  
D10  
D14  
A11  
A13  
B11  
O
O
O
O
I
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
SD2_TX_0  
SD2_TX_1_B  
SD2_TX_0_B  
SD2_RX_1  
SD2_RX_0  
SD2_RX_1_B  
I
I
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
17  
Pin assignments and reset states  
1
Table 1. 1014 pinout listing (continued)  
Pin  
Type  
Signal  
Pin Number  
Supply  
Note  
SD2_RX_0_B  
B13  
C12  
D12  
G10  
G14  
G11  
G13  
I
I
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
XVDD  
12  
13  
SD2_REF_CLK  
SD2_REF_CLK_B  
SD2_IMP_CAL_TX  
SD2_IMP_CAL_RX  
SD2_PLL_TPA  
I
I
I
O
O
SD2_PLL_TPD  
USB PHY  
VBUSCLMP  
IBIAS_REXT  
UDP  
L21  
M22  
K23  
L23  
IO  
I
USBVDD3_3  
USBVDD3_3  
USBVDD3_3  
USBVDD3_3  
14  
IO  
IO  
UDM  
Analog  
MVREF  
J7  
GVDD/2  
5
SENSEVDD  
SENSEVSS  
AA2  
Y3  
5
Other  
Other Signals  
Y16, AA16  
17  
Power and Ground Pins  
AVDD_CORE  
AVDD_PLAT  
AVDD_DDR  
FA_VDD  
H9  
5
P17  
N17  
N21  
SD1_AVDD  
SD2_AVDD  
SD1_AVSS  
SD2_AVSS  
BVDD  
U12  
G12  
T12  
H12  
T17,U16, U17,U20, AB19  
GVDD  
G7,G8,G9,  
H7,K7,L7,M7,N7,P7,  
R7,T7  
LVDD  
U7,U8,AB5  
OVDD  
C17,C22, D20,G20, J20  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
18  
Freescale Semiconductor  
Pin assignments and reset states  
1
Table 1. 1014 pinout listing (continued)  
Pin  
Type  
Signal  
Pin Number  
Supply  
Note  
S1VDD  
S1VSS  
T13,Y7,Y13,AA11,AA17,  
AB7, AB10,AB12,AB14  
Y11,Y17, AA7,AA13,  
AB17,AC10,AC12,AC14  
S2VDD  
A10,A12, C11,C15, H13  
B10,B12, D11,D15  
L17,M17  
20  
16  
S2VSS  
USBVDD1_0  
USBVDD1_8  
USBVDD3_3  
USBVSS  
VDD  
J21,K21  
K20,L20  
J23,K22,L22,M21,M23  
G15,G16,H8,H10,H11,  
H14,H15, H16,  
J8,J16,J17,  
K8,K16,K17,L8,L16,M8,  
M16,N8,N16,P8,P16,R8,  
R16,R17,T8,T9,T10,T14,  
T15,T16,U9,U15  
VSS  
A1,A9,B4,  
A15,B7,B17,B19,B22,D2,  
D6,E4,G2, G22,H4,J9,  
J10,J11,J12,J13,J14,J15,  
K2,K9,K10,  
K11,K12,K13,K14,K15,L4  
,L9,L10,L11,  
L12,L13,L14,L15,M9,M10  
,M11,M12, M13,M14,  
M15,N2,N9,N10,N11,  
N12,N13,  
N14,N15,P4,P9,P10,P11,  
P12,P13, P14,P15,  
P20,R9,R10,R11,R12,  
R13,R14,  
R15,R23,T2,U4,W2,W22,  
Y4,Y20,AB2,AB22,AC7,  
AC17,P22, N20  
X1VDD  
X1VSS  
X2VDD  
X2VSS  
T11,Y9,Y15,AB8,AB16  
AA9,AA15, AC8,AC16  
A14,B9,C9, C13  
B14,B15,D9,D13  
Not Connected  
NC  
B2,N22, AA1, N23,  
AB1,R2,V2,P1,W1,R1,  
Y1,P2,U2, AB15, AC15,  
T1, U1, V1  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
19  
Pin assignments and reset states  
1
Table 1. 1014 pinout listing (continued)  
Pin  
Type  
Signal  
Pin Number  
Supply  
Note  
Note:  
1. All multiplexed signals are listed only once and do not re-occur. For example,  
IFC_ADDR[17]/SDHC_CMD/USB_D[1]/DMA_DREQ_B[1] is listed only once in the IFC section, and is not mentioned in  
the DMA section even though the pin also functions as DMA_DREQ_B[1].  
2. These are test signals for factory use only and must be pulled up (with 100 –1 k) to OVDD for normal operation.  
3. This pin is a reset configuration pin. It has a weak internal pull-up P-FET which is enabled only when the processor is in  
the reset state. This pull-up is designed such that it can be overpowered by an external 4.7-k pull-down resistor. However,  
if the signal is intended to be high after reset, and if there is any device on the net which might pull down the value of the  
net at reset, then a pullup or active driver is needed.  
4. These pins have weak internal pull-up P-FETs that are always enabled.  
5. Treat these pins as no connects (NC).  
6. This output is actively driven during reset rather than being three-stated during reset.  
7. This pin must NOT be pulled down, by a resistor or the component it is connected to, during power-on reset.  
8. If this pin is configured for chip select usage than it is recommend to have a weak pull-up resistor (2-10 K) be placed on  
this pin to BVDD, to ensure no random chip select assertion due to possible noise and etc.  
9. If this pin is configured for check stop usage than it will behave as an open drain signal.  
10.This pin is an open drain signal.  
11.This pin must be pulled down during power-on reset.  
12.This pin should be pulled down with 1001ꢀ resistor if used in autocalibration mode and should be tied to 1V if fixed  
calibration mode is used.  
13.This pin should be pulled down with 2001ꢀ resistor if used in autocalibration mode and should be tied to 1V if fixed  
calibration mode is used.  
14.For this pin the recommendations mentioned in Section 2.12.4, “IBIAS_REXT filter and Section 2.12.5, “Threshold detect  
increase must be followed.  
15.This pin is used for fuse programming. Should be tied to Vss for normal operation (fuse read). See section Section 2.2,  
“Power sequencing” for more details.  
16.This pin should be connected to Vss through 1F.No need to supply power to this pin. 1.8V output may be observed on  
this pin during normal working conditions.  
17.Connect these pins to Vss.  
18.This is a DDR drive strength calibration pin. This should be connected to VSS through a 20(Full-strength mode) or 40  
(Half-strength mode) precision 1ꢀ resistor.  
19.This is a DDR drive strength calibration pin. This should be connected to GVDD through a 20(Full-strength mode) or 40  
(Half-strength mode) precision 1ꢀ resistor.  
20.This pin and VDD should be fed from the same source, with a filter circuit as described in Section 3.3.1, “PLL power supply  
filtering.  
21.This pin is a reset configuration pin. During reset sequence this should be pulled-up or down as needed, to the  
corresponding power bank, with a weak pull-up/down resistor.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
20  
Freescale Semiconductor  
Electrical characteristics  
2
Electrical characteristics  
This section provides the AC and DC electrical specifications for the P1014. The P1014 is currently targeted to these  
specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete  
reference.These are not purely I/O buffer design specifications.  
2.1  
Overall DC electrical characteristics  
This section covers the ratings, conditions, and other characteristics.  
2.1.1  
Absolute maximum ratings  
This table provides the absolute maximum ratings.  
Table 2. Absolute maximum ratings  
1
Characteristic  
Symbol  
Max Value  
Unit Note  
Platform supply voltage  
PLL supply voltage  
VDD  
–0.3 to 1.05  
–0.3 to 1.05  
V
V
7
AVDD_CORE  
AVDD_DDR  
AVDD_PLAT  
SD1_AVDD  
SD2_AVDD  
Core power supply for SerDes transceivers  
Pad power supply for SerDes transceivers  
USB PHY supply  
S1VDD  
S2VDD  
–0.3 to 1.05  
–0.3 to 1.05  
V
V
V
V
V
X1VDD  
X2VDD  
USBVDD1_0  
USBVDD3_3  
–0.3 to 1.05  
–0.3 to 3.63  
DDR3/DDR3L DRAM I/O voltage  
GVDD  
–0.3 to 1.65  
–0.3 to 1.45  
Three-speed Ethernet I/O (eTSEC), MII management,  
GPIO_(12-15), DMA, 1588 voltage  
LVDD  
–0.3 to 2.75  
SPI, DUART, TDM, I2C, GPIO_(0-11) and JTAG I/O voltage  
IFC, eSDHC, USB-ULPI voltage  
OVDD  
BVDD  
–0.3 to 3.63  
V
V
–0.3 to 3.63  
–0.3 to 2.75  
–0.3 to 1.98  
Input voltage  
DDR3/DDR3L DRAM signals  
DDR3/DDR3L DRAM reference  
MVIN  
MVREF  
LVIN  
–0.3 to (GVDD + 0.3)  
–0.3 to (GVDD/2 + 0.3)  
–0.3 to (LVDD + 0.3)  
V
V
V
2, 6  
Three-speed Ethernet,1588, DMA,  
GPIO_(12-15), signals  
3, 6  
IFC, USB, eSDHC signals  
BVIN  
OVIN  
–0.3 to (BVDD + 0.3)  
–0.3 to (OVDD + 0.3)  
V
4
DUART, SYSCLK, system control and power  
management, I2C, eSPI, clocking, I/O voltage  
select, GPIO_(0-11)and JTAG I/O voltage  
5, 6  
Serdes signals  
XVIN  
–0.3 to (XVDD + 0.3)  
V
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
21  
Electrical characteristics  
1
Table 2. Absolute maximum ratings (continued)  
Characteristic  
Symbol  
Max Value  
Unit Note  
C  
Storage temperature range  
TSTG  
–55 to 150  
Note:  
1. Functional operating conditions are given in Table 3. Absolute maximum ratings are stress ratings only, and functional  
operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
3. Caution: LVIN must not exceed LVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
4. Caution: BVIN must not exceed BVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
5. Caution: OVIN must not exceed OVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
6. (X,B,G,L,O)VIN and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.  
7. AVDD is measured at the input to the filter and not at the pin of the device. The filter circuit is provided in Section 3.3.1,  
“PLL power supply filtering.  
2.1.2  
Recommended operating conditions  
This table provides the recommended operating conditions for this device. Note that the values in Table 3 are the recommended  
and tested operating conditions. Proper device operation outside these conditions is not guaranteed.  
3
Table 3. Recommended operating conditions  
Recommended  
Value  
Characteristic  
Symbol  
Unit Note  
Platform supply voltage  
PLL supply voltage  
VDD  
1
1
50 mV  
V
V
AVDD_CORE  
AVDD_DDR  
AVDD_PLAT  
SD1_AVDD  
SD2_AVDD  
50 mV  
Core power supply for SerDes transceivers  
Pad power supply for SerDes transceivers and PCI Express  
USB PHY supply  
S1VDD  
S2VDD  
1
1
1
50 mV  
50 mV  
50 mV  
V
V
V
X1VDD  
X2VDD  
USBVDD1_0  
USBVDD3_3  
3.3 V 165 mV  
DDR3 DRAM I/O voltage  
DDR3L DRAM I/O voltage  
GVDD  
GVDD  
1.5 V 75 mV  
1.35 V +100mV /  
-67mV  
Three-speed Ethernet I/O (eTSEC), MII management, GPIO_(12-15),  
DMA, 1588 voltage  
LVDD  
2.5 V 125 mV  
V
V
DUART, system control and power management, I2C, GPIO_(0-11),  
and JTAG I/O voltage  
OVDD  
3.3 V 165 mV  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
22  
Freescale Semiconductor  
Electrical characteristics  
3
Table 3. Recommended operating conditions  
Recommended  
Value  
Characteristic  
Integrated Flash Controller I/O  
Symbol  
Unit Note  
BVDD  
3.3 V 165 mV  
2.5 V 125 mV  
1.8 V 90 mV  
V
1
Input voltage  
DDR3/DDR3L DRAM signals  
MVIN  
MVREF  
LVIN  
GND to GVDD  
GND to GVDD/2  
GND to LVDD  
V
V
V
2
DDR3/DDR3L DRAM reference  
Three-speed Ethernet,1588, DMA, GPIO_(12-15),  
signals  
IFC, USB, eSDHC signals  
BVIN  
OVIN  
GND to BVDD  
GND to OVDD  
V
V
2
2
DUART, SYSCLK, system control and power  
management, I2C, eSPI, GPIO_(0-11) and JTAG  
signals  
Serdes signals  
XVIN  
TA/TJ  
GND to X1VDD  
V
2
Operating  
Temperature  
range  
Standard Temperature Range  
TA=0 (min) to  
TJ=105 (max)  
C  
Extended Temperature Range  
TA/TJ  
TA=–40 (min) to  
TJ=105 (max)  
C  
Note:  
1. BVDD = 3.3 V or 1.8 V is selected for USB, all other signals associated with BVDD must meet all VIH requirements  
associated with external device inputs.  
2. (L,X,B,O,G)VIN may overshoot (for VIH) or undershoot (for VIL) to the voltages and maximum duration shown in Figure 2.  
3. Power should be applied to all power pins even if the corresponding interface is not used.  
This figure shows the undershoot and overshoot voltages at the interfaces of the P1014.  
NOTE  
1. t  
refers to the clock period associated with the respective interface:  
CLOCK  
2
For I C and JTAG, t  
references SYSCLK.  
CLOCK  
For DDR, t  
references MCLK.  
CLOCK  
For eTSEC, t  
references EC_GTX_CLK125.  
CLOCK  
For IFC, t  
references IFC_CLK.  
CLOCK  
For SERDES, t  
references SDx_REF_CLK.  
CLOCK  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
23  
Electrical characteristics  
X/B/G/L/OVDD + 20ꢀ  
X/B/G/L/OVDD + 5ꢀ  
X/B/G/L/OVDD  
VIH  
GND  
GND – 0.3 V  
VIL  
GND – 0.7 V  
Not to Exceed 10ꢀ  
1
of tCLOCK  
Figure 2. Overshoot/Undershoot voltage for BV /MV /LV /OV /XV  
IN  
IN  
IN  
IN  
IN  
The core voltage must always be provided at nominal 1V (see Table 3 for actual recommended core voltage). Voltage to the  
processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 3.  
The input voltage threshold scales with respect to the associated I/O supply voltage. BV , OV and LV -based receivers  
DD  
DD  
DD  
are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR3 SDRAM interface uses a  
differential receiver referenced the externally supplied MV signal (nominally set to GV /2). The DDR DQS receivers  
REF  
DD  
cannot be operated in single-ended fashion. The complement signal must be properly driven and cannot be grounded.  
2.1.3  
Output driver characteristics  
This table provides information on the characteristics of the output driver strengths. The values are preliminary estimates.  
Table 4. Output drive capability  
Driver Type  
IFC, GPIO, USB, eSDHC  
Output Impedance ()  
Supply Voltage  
Note  
45  
45  
45  
BVDD = 3.3 V  
BVDD = 2.5 V  
BVDD = 1.8 V  
DDR3 signal (Programmable)  
20 (full strength)  
40 (half strength)  
GVDD = 1.5 V DDR3  
GVDD = 1.35 V DDR3L  
1
TSEC signals  
45  
45  
45  
LVDD = 2.5V  
OVDD = 3.3 V  
OVDD = 3.3 V  
DUART, system control, JTAG, SPI  
I2C  
Note:  
1. The drive strength of the DDR3 interface in half-strength mode is at Tj = 105C and at GVDD (min).  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
24  
Freescale Semiconductor  
Electrical characteristics  
2.2  
Power sequencing  
The P1014 requires its power rails to be applied in a specific sequence in order to ensure proper device operation. These  
requirements are as follows for power up:  
1.  
V
, AV  
, AV  
AV  
SD1_AV , SD2_AV  
S1V , S2V , X1V , X2V , BV  
,
DD  
DD_CORE  
DD_DDR,  
DD_PLAT,  
DD  
DD,  
DD  
DD  
DD  
DD  
DD  
LV , OV  
.
DD  
DD  
2. USBV  
, GV  
DD3_3  
DD.  
NOTE  
POVDD must be stable at 1.5 V prior to initiating fuse programming.  
All supplies must be at their stable values within 50 ms from the start of first supply.  
Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered  
sequentially such that voltage rails on a previous step must reach 90% of their value before the voltage rails on the current step  
reach 10% of theirs.  
In order to guarantee MCKE low during power-up, the above sequencing for GV is required. If there is no concern about any  
DD  
of the DDR signals being in an indeterminate state during power-up, then the sequencing for GV is not required.  
DD  
NOTE  
From a system standpoint, if any of the I/O power supplies ramp prior to the V core  
DD  
supply, the I/Os associated with that I/O supply may drive a logic one or zero during  
power-up, and extra current may be drawn by the device.  
2.3  
Power-down Requirements  
The power-down cycle must complete such that power supply values are below 0.4 V before a new power-up cycle can be  
started.  
2.4  
Reset Initialization  
This section describes the AC electrical specifications for the RESET initialization timing requirements. This table provides the  
RESET initialization AC timing specifications.  
Table 5. RESET initialization timing specifications  
Parameter  
Min Max  
Unit  
Note  
Required assertion time of HRESET  
600  
25  
3
1
s  
ns  
1, 2, 5  
Minimum assertion time of TRESET simultaneous to HRESET assertion  
Maximum rise/fall time of HRESET  
3
4
tSYSCLK  
tSYSCLK  
s  
Minimum assertion time for SRESET  
PLL input setup time with stable SYSCLK before HRESET negation  
25  
4
4
Input setup time for POR configurations (other than PLL configuration) with respect to negation  
of HRESET  
tSYSCLK  
Input hold time for all POR configurations (including PLL configuration) with respect to  
negation of HRESET  
2
5
tSYSCLK  
4
4
Maximum valid-to-high impedance time for actively driven POR configurations with respect to  
negation of HRESET  
tSYSCLK  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
25  
Electrical characteristics  
Table 5. RESET initialization timing specifications  
Parameter  
Min Max  
Unit  
Note  
Note:  
1. There may be some extra current leakage when driving signals high during this time.  
2. Reset assertion timing requirements for DDR3 DRAMs may differ.  
3. TRST is an asynchronous level sensitive signal. For guidance on how this requirement can be met, refer to the JTAG signal  
termination guidelines in Section 3.10.1, “Termination of unused signals.”  
4. SYSCLK is the primary clock input for the P1014.  
5. Reset initialization should start only after all power supplies are stable.  
This table provides the PLL lock times.  
Table 6. PLL lock times  
Parameter  
Min  
Max  
Unit  
Note  
PLL lock times  
100  
s  
2.5  
Power-on ramp rate  
This section describes the AC electrical specifications for the power-on ramp rate requirements. Controlling the maximum  
Power-On Ramp Rate is required to avoid falsely triggering the ESD circuitry. This table provides the power supply ramp rate  
specifications.  
Table 7. Power supply ramp rate  
Parameter  
Min  
Max  
Unit  
Note  
Required ramp rate for all voltage supplies (including OVDD/GVDD/BVDD/SVDD/LVDD, All VDD  
supplies, MVREF and all AVDD supplies except USBVDD3_3.)  
36000 Volts/Sec 1,3  
Required ramp rate for USBVDD3_3  
3300 Volts/Sec  
2
Note:  
1. Ramp rate is specified as a linear ramp from 10 to 90ꢀ. If non-linear (for example, exponential), the maximum rate of change  
from 200 to 500 mV is the most critical as this range might falsely trigger the ESD circuitry.  
2. Ramp rate is specified as a linear ramp from 10 to 90ꢀ.  
3. Over full recommended operating temperature range. See Table 3.  
2.6  
Power characteristics  
This table shows the power dissipations of the V supply for various operating core complex bus clock (CCB_clk) frequencies  
DD  
versus the core and DDR clock frequencies. Note that these numbers are based on design estimates only and are preliminary.  
More accurate power numbers will be available after the measurement on the silicon is complete.  
Table 8. P1014 power dissipation  
Core CCB  
Frequency Frequency  
DDR  
Data Rate  
(MHz)  
Junction  
Temperature  
(C)  
Power  
Mode  
VDD Core  
(V)  
Core1 Power  
(W)  
SVDD  
Power (W)  
Note  
(MHz)  
(MHz)  
Typical  
65  
1.04  
1.97  
2.17  
0.20  
0.20  
0.20  
2, 3  
5, 7  
533  
266  
667  
1.0  
Thermal  
105  
105  
Maximum  
4, 6, 7  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
26  
Freescale Semiconductor  
Electrical characteristics  
Table 8. P1014 power dissipation (continued)  
Core  
CCB  
DDR  
Data Rate  
(MHz)  
Junction  
Temperature  
(C)  
Power  
Mode  
VDD Core  
(V)  
Core1 Power  
(W)  
SVDD  
Power (W)  
Frequency Frequency  
Note  
(MHz)  
(MHz)  
Typical  
65  
105  
105  
65  
1.08  
2.06  
2.27  
1.13  
2.15  
2.37  
0.20  
0.20  
0.20  
0.20  
0.20  
0.20  
2, 3  
5, 7  
667  
333  
667  
800  
1.0  
1.0  
Thermal  
Maximum  
Typical  
4, 6, 7  
2, 3  
800  
400  
Thermal  
Maximum  
Note:  
105  
105  
5, 7  
4, 6, 7  
1. Combined power of all 1 volt supplies except SVDD with DDR controller/s and all SerDes banks active. Does not include  
I/O power.  
2. Typical power assumes that Dhrystone is running with an activity factor of 90ꢀ and executing DMA on the platform with  
90ꢀ activity factor.  
3. Typical power based on nominal processed device.  
4. Maximum power assumes that Dhrystone is running with an activity factor of 100ꢀ and executing DMA on the platform at  
100ꢀ activity factor.  
5. Thermal power assumes a Dhrystone activity factor of 90ꢀ and executing DMA on the platform at 90ꢀ activity factor.  
6. Maximum power provided for power supply design sizing.  
7. Thermal and maximum power are based on worst case processed device.  
2.6.1  
I/O DC power supply recommendation  
This table provides estimated I/O power numbers for each block: DDR, PCI Express, eLBC, eTSEC, SGMII, eSDHC, USB,  
eSPI, DUART, I2C and GPIO.  
Table 9. I/O power supply estimated values  
Interface  
Parameter  
Symbol  
Typical  
Max  
Unit  
Note  
DDR3  
(16 bit, w/ ECC)  
667 MHz data rate  
800 MHz data rate  
667 MHz data rate  
800 MHz data rate  
×1, 2.5 G-baud  
×1, 1.25G-baud  
3.0G-baud  
GVDD (1.5 V)  
GVDD (1.5 V)  
GVDD (1.35 V)  
GVDD (1.35 V)  
XVDD (1.0 V)  
XVDD (1.0 V)  
XVDD (1.0 V)  
BVDD (1.8 V)  
BVDD (2.5 V)  
BVDD (3.3 V)  
LVDD (2.5 V)  
0.40  
0.40  
0.45  
0.45  
W
W
W
W
W
W
W
W
W
W
W
1, 2, 6  
1, 2, 6  
1,2  
DDR3L  
(16 bit, w/ ECC)  
0.35  
0.40  
0.35  
0.40  
1,2  
PCI Express  
SGMII  
SATA  
0.02  
0.02  
1
0.014  
0.022  
0.017  
0.03  
0.014  
0.022  
0.025  
0.038  
0.063  
0.1  
1
1
IFC  
16-bit, 100MHz  
1,3,7  
1,3,7  
1,3,7  
1,3,4,7  
0.047  
0.075  
RGMII  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
27  
Electrical characteristics  
Table 9. I/O power supply estimated values (continued)  
Interface  
Parameter  
Symbol  
Typical  
Max  
Unit  
Note  
eSDHC  
x8  
x8  
BVDD (1.8 V)  
BVDD (3.3 V)  
BVDD (1.8 V)  
BVDD (2.5 V)  
BVDD (3.3 V)  
USBVDD3_3 (3.3V)  
OVDD (1.8 V)  
OVDD (3.3 V)  
OVDD (3.3 V)  
OVDD (3.3 V)  
LVDD (2.5 V)  
0.0042  
0.014  
0.004  
0.008  
0.012  
0.15  
0.0053  
0.0175  
0.004  
0.008  
0.012  
0.15  
W
W
W
W
W
W
W
W
W
W
W
W
W
1,3,7  
1,3  
USB (ULPI)  
1,3  
1,3  
1,3  
USB (PHY)  
eSPI  
1,3,7  
1,3,7  
1,3  
0.01  
0.0125  
0.002  
0.008  
0.005  
0.005  
0.011  
0.009  
I2C  
0.002  
0.006  
0.004  
0.004  
0.009  
0.007  
DUART  
TDM  
1,3,7  
1,3,7  
1,3,7  
1,3,5,7  
1,3,5,7  
IEEE1588  
GPIO  
OVDD (3.3 V)  
LVDD (2.5 V)  
Note:  
1. The typical values are estimates based on simulations at 65C junction temperature.  
2. Typical DDR power numbers are based on one rank DIMM with 40ꢀ utilization.  
3. Assuming 15pF total capacitance load per pin.  
4. The current values are per each eTSEC used.  
5. GPIO are supported on OVDD and LVDD power rails.  
6. Maximum DDR power numbers are based on two ranks DIMM with 75ꢀ utilization.  
7. The maximum values are estimated and they are based on simulations at 105C junction temperature.  
2.7  
Input clocks  
2.7.1  
System clock specifications  
This table provides the system clock (SYSCLK) 3.3 V DC specifications.  
Table 10. SYSCLK DC electrical characteristics  
At recommended operating conditions with OVDD = 3.3 V 165 mV  
Parameter  
Input high voltage  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
VIH  
VIL  
CIN  
IIN  
2.0  
7
0.8  
15  
50  
V
V
1
1
Input low voltage  
Input capacitance  
Input current (VIN= 0 V or VIN = VDD)  
Note:  
pf  
2
A  
1. The min VILand max VIH values are based on the respective min and max OVIN values found in Table 3.  
2. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 3.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
28  
Freescale Semiconductor  
Electrical characteristics  
This table provides the system clock (SYSCLK) AC timing specifications.  
Table 11. SYSCLK AC timing specifications  
At recommended operating conditions with OVDD = 3.3 V 165 mV  
Parameter/Condition  
SYSCLK frequency  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
fSYSCLK  
64  
10  
40  
1
100  
15.6  
60  
MHz  
ns  
1, 2  
1, 2  
2
SYSCLK cycle time  
tSYSCLK  
SYSCLK duty cycle  
tKHK/ tSYSCLK  
SYSCLK slew rate  
4
V/ns  
ps  
3
SYSCLK peak period jitter  
SYSCLK jitter phase noise at –56 dBc  
AC Input Swing Limits at 3.3 V OVDD  
Note:  
1.9  
150  
500  
4
kHz  
V
VAC  
1. Caution: The relevant clock ratio settings must be chosen such that the resulting SYSCLK frequency does not exceed their  
respective maximum or minimum operating frequencies.  
2. Measured at the rising edge and/or the falling edge at OVDD/2.  
3. Slew rate as measured from 0.3 VAC at the center of peak to peak voltage at clock input.  
4. Phase noise is calculated as FFT of TIE jitter.  
2.7.2  
Spread spectrum sources  
Spread spectrum clock sources are an increasingly popular way to control electromagnetic interference emissions (EMI) by  
spreading the emitted noise to a wider spectrum and reducing the peak noise magnitude in order to meet industry and  
government requirements. These clock sources intentionally add long-term jitter in order to diffuse the EMI spectral content.  
The jitter specification given in Table 12 considers short-term (cycle-to-cycle) jitter only. The clock generator’s cycle-to-cycle  
output jitter should meet the P1014 input cycle-to-cycle jitter requirement. Frequency modulation and spread are separate  
concerns. The P1014 is compatible with spread spectrum sources if the recommendations listed in Table 12 are observed.  
Table 12. Spread spectrum clock source recommendations  
At recommended operating conditions. See Table 3.  
Parameter  
Min  
Max  
Unit  
Note  
Frequency modulation  
Frequency spread  
Note:  
60  
kHz  
1.0  
1, 2  
1. SYSCLK frequencies resulting from frequency spreading, and the resulting core and VCO frequencies, must meet the  
minimum and maximum specifications given in Table 78.  
2. Maximum spread spectrum frequency may not result in exceeding any maximum operating frequency of the device  
CAUTION  
The processor’s minimum and maximum SYSCLK, core, and VCO frequencies must not  
be exceeded, regardless of the type of clock source. Therefore, systems in which the  
processor is operated at its maximum rated e500 core frequency should avoid violating the  
stated limits by using down-spreading only.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
29  
Electrical characteristics  
2.7.3  
Real time clock specifications  
The RTC input is sampled by the platform clock (CCB clock). The output of the sampling latch is then used as an input to the  
counters of the PIC and the TimeBase unit of the e500. There is no jitter specification. The minimum pulse width of the RTC  
signal should be greater than 2x the period of the CCB clock; that is, minimum clock high time is 2 t  
, and minimum clock  
CCB  
low time is 2 t  
. There is no minimum RTC frequency; RTC may be grounded, if not needed.  
CCB  
2.7.4  
eTSEC gigabit reference clock specifications  
This table lists the eTSEC gigabit reference clock (TSEC1_GTX_CLK125) DC electrical characteristics for the P1014.  
Table 13. eTSEC gigabit reference clock DC electrical characteristics  
Parameter  
High-level input voltage  
Symbol  
Min  
Max  
Unit  
Note  
VIH  
VIL  
IIN  
1.7  
0.8  
40  
V
V
1
1
2
Low-level input voltage  
Input current (VIN = 0 V or VIN = VDD)  
Note:  
A  
1. The max VIH, and min VIL values can be found in Table 3.  
2. The symbol VIN, in this case, represents the OVIN symbol referenced in Table 3.  
This table provides the eTSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications for the P1014.  
Table 14. EC_GTX_CLK125 AC timing specifications  
At recommended operating conditions with LVDD = 2.5 0.125 mV  
Parameter/Condition  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
EC_GTX_CLK125 frequency  
EC_GTX_CLK125 cycle time  
tG125  
tG125  
tG125R/tG125F  
125  
8
MHz  
ns  
1
EC_GTX_CLK rise and fall time  
LVDD = 2.5 V  
ns  
0.75  
EC_GTX_CLK125 duty cycle  
1000Base-T for RGMII  
tG125H G125  
/t  
2
2
47  
53  
EC_GTX_CLK125 jitter  
150  
ps  
Note:  
1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for LVDD = 2.5 V and from 0.6.  
2. EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2ꢀ degradation. The  
EC_GTX_CLK125 duty cycle can be loosened from 47ꢀ/53ꢀ as long as the PHY device can tolerate the duty cycle  
generated by the eTSEC GTX_CLK. See Section 2.11.1.2, “RGMII AC timing specifications,for the duty cycle for 10Base-T  
and 100Base-T reference clock.  
2.7.5  
Other input clocks  
A description of the overall clocking of this device is available in the P1014 QorIQ Integrated Processor Reference Manual, in  
the form of a clock subsystem block diagram. For information about the input clock requirements of other functional blocks  
such as SerDes, Ethernet Management, eSDHC, and IFC, see the specific interface section.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
30  
Freescale Semiconductor  
Electrical characteristics  
2.8  
DDR3, and DDR3L SDRAM controller  
This section describes the DC and AC electrical specifications for the DDR3, and DDR3L SDRAM controller interface. Note  
that the required GV (typ) voltage is 1.5 V, and 1.35 V when interfacing to DDR3, or DDR3L SDRAMrespectively.  
DD  
2.8.1  
DDR3, and DDR3L SDRAM interface DC electrical characteristics  
This table provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3  
SDRAM.  
Table 15. DDR3 SDRAM interface DC electrical characteristics  
At recommended operating condition with GVDD = 1.5 V1  
Parameter  
I/O reference voltage  
Symbol  
Min  
Max  
Unit  
Note  
MVREFn  
VIH  
0.49 GVDD  
MVREFn + 0.100  
GND  
0.51 GVDD  
GVDD  
V
V
2, 3, 4  
Input high voltage  
Input low voltage  
I/O leakage current  
Note:  
5
5
6
VIL  
MVREFn – 0.100  
50  
V
IOZ  
–50  
A  
1. GVDD is expected to be within 50 mV of the DRAM’s voltage supply at all times. The DRAM’s and memory controller’s  
voltage supply may or may not be from the same source.  
2. MVREFn is expected to be equal to 0.5 GVDD and to track GVDD DC variations as measured at the receiver. Peak-to-peak  
noise on MVREFn may not exceed 1ꢀ of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made, and it is expected to be  
equal to MVREFn with a min value of MVREFn – 0.04 and a max value of MVREFn + 0.04. VTT should track variations in  
the DC level of MVREFn.  
4. The voltage regulator for MVREFn must meet the specification states in Table 18.  
5. Input capacitance load for DQ, DQS, and DQS are available in the IBIS models.  
6. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
This table provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3L  
SDRAM.  
Table 16. DDR3L SDRAM interface DC electrical characteristics  
At recommended operating condition with GVDD = 1.35 V1  
Parameter  
I/O reference voltage  
Symbol  
Min  
Max  
Unit  
Note  
MVREFn  
VIH  
0.49 GVDD  
0.51 GVDD  
V
V
2, 3, 4  
5
Input high voltage  
MVREFn + 0.09  
GVDD  
Input low voltage  
VIL  
GND  
MVREFn – 0.09  
V
5
Output high current (VOUT = 0.641V)  
Output low current (VOUT = 0.641 V)  
I/O leakage current  
IOH  
–23.3  
mA  
mA  
A  
6, 7  
6, 7  
8
IOL  
23.3  
–50  
IOZ  
50  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
31  
Electrical characteristics  
Table 16. DDR3L SDRAM interface DC electrical characteristics (continued)  
At recommended operating condition with GVDD = 1.35 V1  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Note:  
1. GVDD is expected to be within 50 mV of the DRAM’s voltage supply at all times. The DRAM’s and memory controller’s  
voltage supply may or may not be from the same source.  
2. MVREFn is expected to be equal to 0.5 GVDD and to track GVDD DC variations as measured at the receiver.Peak-to-peak  
noise on MVREFn may not exceed the MVREFn DC level by more than 1ꢀ of GVDD (i.e. 13.5 mV).  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made, and it is expected to be  
equal to MVREFn with a min value of MVREFn – 0.04 and a max value of MVREFn + 0.04. VTT should track variations in  
the DC level of MVREFn.  
4. The voltage regulator for MVREFn must meet the specification states in Table 18.  
5. Input capacitance load for DQ, DQS, and DQS are available in the IBIS models.  
6. IOH and IOL are measured at GVDD = 1.282 V  
7. See the IBIS model for the complete output IV curve characteristics.  
8. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
This table provides the DDR controller interface capacitance for DDR3.  
Table 17. DDR3 SDRAM capacitance  
At recommended operating conditions with GVDD of 1.5 V 5ꢀ for DDR3 or 1.35 V 5ꢀ for DDR3L  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input/output capacitance: DQ, DQS, DQS  
CIO  
6
8
pF  
pF  
Delta input/output capacitance: DQ, DQS, DQS  
CDIO  
0.5  
This table provides the current draw characteristics for MVREFn.  
Table 18. Current draw characteristics for MVREFn  
For recommended operating conditions, seeTable 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Current draw for DDR3 SDRAM for MVREFn  
Current draw for DDR3L SDRAM for MVREFn  
IMVREFn  
IMVREFn  
1250  
1150  
A  
A  
2.8.2  
DDR3 and DDR3L SDRAM interface AC timing specifications  
This section provides the AC timing specifications for the DDR SDRAM controller interface. The DDR controller supports  
DDR3 memories. Note that the required GV (typ) voltage is 1.5 V or 1.35 V when interfacing to DDR3 or DDR3L SDRAM  
DD  
respectively.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
32  
Freescale Semiconductor  
Electrical characteristics  
2.8.2.1  
DDR3 and DDR3L SDRAM interface Input AC timing specifications  
This table provides the input AC timing specifications for the DDR controller when interfacing to DDR3 SDRAM.  
Table 19. DDR3 SDRAM interface input AC timing specifications  
At recommended operating conditions with GVDD of 1.5 V 5ꢀ  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
AC input low voltage  
AC input high voltage  
VILAC  
VIHAC  
MVREFn – 0.175  
V
V
MVREFn + 0.175  
This table provides the input AC timing specifications for the DDR controller when interfacing to DDR3L SDRAM.  
Table 20. DDR3L SDRAM interface Input AC timing specifications  
At recommended operating conditions with GVDD of 1.35 V 5ꢀ  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
AC input low voltage  
AC input high voltage  
VILAC  
VIHAC  
MVREFn – 0.160  
V
V
MVREFn + 0.160  
This table provides the input AC timing specifications for the DDR controller when interfacing to DDR3 SDRAM.  
Table 21. DDR3, and DDR3L SDRAM interface input AC timing specifications  
At recommended operating conditions with GVDD of 1.5 V 5ꢀ for DDR3 or 1.35 V 5ꢀ for DDR3L  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Controller Skew for MDQS—MDQ/MECC  
800 MHz data rate  
tCISKEW  
ps  
1
1
1
3
3
3
–350  
–390  
350  
390  
667 MHz data rate  
Tolerated Skew for MDQS—MDQ/MECC  
800 MHz data rate  
tDISKEW  
ps  
–275  
–360  
275  
360  
667 MHz data rate  
Note:  
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that  
is captured with MDQS[n]. This should be subtracted from the total timing budget.  
2. DDR3 only  
3. The amount of skew that can be tolerated from MDQS to a corresponding MDQ signal is called tDISKEW.This can be  
determined by the following equation: tDISKEW  
absolute value of tCISKEW  
= (T 4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is the  
.
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
33  
Electrical characteristics  
This figure shows the DDR3 SDRAM interface input timing diagram.  
MCK[n]  
MCK[n]  
tMCK  
MDQS[n]  
tDISKEW  
MDQ[x]  
D0  
D1  
tDISKEW  
tDISKEW  
Figure 3. DDR3 SDRAM interface input timing diagram  
2.8.2.2  
DDR3 SDRAM interface output AC timing specifications  
This table contains the output AC timing targets for the DDR3 and DDR3L SDRAM interface.  
Table 22. DDR3 SDRAM interface output AC timing specifications  
At recommended operating conditions with GVDD of 1.5 V 5ꢀ for DDR3 or 1.35 V 5ꢀ for DDR3L  
Parameter  
MCK[n] cycle time  
Symbol1  
Min  
Max  
Unit  
Note  
tMCK  
2.5  
3
ns  
ns  
2
3
3
3
3
3
3
3
3
3
3
3
3
ADDR/CMD output setup with respect to MCK  
800 MHz data rate  
tDDKHAS  
0.767  
0.95  
667 MHz data rate  
ADDR/CMD output hold with respect to MCK  
800 MHz data rate  
tDDKHAX  
tDDKHCS  
tDDKHCX  
ns  
ns  
ns  
0.767  
0.95  
667 MHz data rate  
MCS[n] output setup with respect to MCK  
800 MHz data rate  
0.767  
0.95  
667 MHz data rate  
MCS[n] output hold with respect to MCK  
800 MHz data rate  
0.767  
0.95  
667 MHz data rate  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
34  
Freescale Semiconductor  
Electrical characteristics  
Table 22. DDR3 SDRAM interface output AC timing specifications (continued)  
At recommended operating conditions with GVDD of 1.5 V 5ꢀ for DDR3 or 1.35 V 5ꢀ for DDR3L  
Parameter  
MCK to MDQS Skew  
Symbol1  
Min  
Max  
Unit  
Note  
tDDKHMH  
–0.525  
–0.6  
0.525  
0.6  
ns  
4
4
4
5
800 MHz data rate  
667 MHz data rate  
MDQ/MECC/MDM output setup with respect  
to MDQS  
tDDKHDS,  
tDDKLDS  
ps  
ps  
800 MHz data rate  
667 MHz data rate  
225  
325  
5
5
5
MDQ/MECC/MDM output hold with respect to  
MDQS  
tDDKHDX,  
tDDKLDX  
800 MHz data rate  
667 MHz data rate  
MDQS preamble  
MDQS postamble  
Note:  
225  
5
5
325  
tDDKHMP  
tDDKHME  
0.9 tMCK  
0.4 tMCK  
ns  
ns  
0.6 tMCK  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs  
(A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference  
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK and MDQS/MDQS referenced measurements are made from the crossing of the two signals.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.  
4. tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing (DD) from  
the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through control of  
the MDQS override bits (called WR_DATA_DELAY) in the TIMING_CFG_2 register. This is typically set to the same delay  
as in DDR_SDRAM_CLK_CNTL[CLK_ADJUST]. The timing parameters listed in the table assume that these two  
parameters have been set to the same adjustment value. See the P1014 QorIQ Integrated Processor Reference Manual for  
a description and explanation of the timing modifications enabled by use of these bits.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC  
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
NOTE  
For the ADDR/CMD setup and hold specifications in Table 22, it is assumed that the clock  
control register is set to adjust the memory clocks by ½ applied cycle.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
35  
Electrical characteristics  
This figure shows theDDR3 SDRAM interface output timing for the MCK to MDQS skew measurement (t  
).  
DDKHMH  
MCK[n]  
MCK[n]  
tMCK  
tDDKHMHmax) = 0.6 ns or 0.375 n  
s
MDQS  
MDQS  
tDDKHMH(min) = –0.6 ns or –0.375 ns  
Figure 4. t  
timing diagram  
DDKHMH  
This figure shows the DDR3 SDRAM output timing diagram.  
MCK  
MCK  
tMCK  
tDDKHAS, tDDKHCS  
tDDKHAX, tDDKHCX  
ADDR/CMD  
Write A0  
tDDKHMP  
NOOP  
tDDKHMH  
MDQS[n]  
MDQ[x]  
tDDKHME  
tDDKHDS  
tDDKLDS  
D0  
D1  
tDDKLDX  
tDDKHDX  
Figure 5. DDR3 output timing diagram  
This figure provides the AC test load for the DDR3 controller bus.  
Output  
GVDD/2  
Z0 = 50   
RL = 50   
Figure 6. DDR3 controller bus AC test load  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
36  
Freescale Semiconductor  
Electrical characteristics  
2.8.2.3  
DDR3 and DDR3L SDRAM differential timing specifications  
This section describes the DC and AC differential timing specifications for the DDR3 SDRAM controller interface. This figure  
shows the differential timing specification.  
GVDD  
VTR  
GVDD/2  
VOX or VIX  
VCP  
GND  
Figure 7. DDR3, and DDR3L SDRAM differential timing specifications  
NOTE  
VTR specifies the true input signal (such as MCK or MDQS) and VCP is the  
complementary input signal (such as MCK or MDQS).  
This table provides the DDR3 differential specifications for the differential signals MDQS/MDQS and MCK/MCK.  
Table 23. DDR3 SDRAM differential electrical characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input AC Differential Cross-Point Voltage  
Output AC Differential Cross-Point Voltage  
Note:  
VIXAC  
0.5 GVDD – 0.150 0.5 GVDD + 0.150  
0.5 GVDD – 0.115 0.5 GVDD + 0.115  
V
V
1
1
VOXAC  
1. I/O drivers are calibrated before making measurements.  
This table provides the DDR3 differential specifications for the differential signals MDQS/MDQS and MCK/MCK.  
Table 24. DDR3L SDRAM differential electrical characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input AC Differential Cross-Point Voltage  
Output AC Differential Cross-Point Voltage  
Note:  
VIXAC  
0.5 GVDD – 0.135 0.5 GVDD + 0.135  
0.5 GVDD – 0.105 0.5 GVDD + 0.105  
V
V
1
1
VOXAC  
1. I/O drivers are calibrated before making measurements.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
37  
Electrical characteristics  
2.9  
eSPI  
This section describes the DC and AC electrical specifications for the SPI of the P1014.  
2.9.1  
SPI DC electrical characteristics  
This table provides the DC electrical characteristics for the device SPI.  
Table 25. SPI DC Electrical characteristics  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
VIH  
VIL  
2.0  
0.8  
10  
V
V
1
1
Input current (0 V VIN CVDD  
)
IIN  
A  
V
2
Output high voltage (IOH = –6.0 mA)  
Output low voltage (IOL = 6.0mA)  
Output low voltage (IOL = 3.2mA)  
Note:  
VOH  
VOL  
2.4  
0.5  
0.4  
V
V
V
OL  
1. The min VILand max VIH values are based on the respective min and max OVIN values found in Table 3.  
2. The symbol VIN, in this case, represents the OVIN symbol referenced in Section 2.1.2, “Recommended operating conditions.”  
2.9.2  
eSPI AC timing specifications  
This table provides the SPI input and output AC timing specifications.  
Table 26. SPI AC timing specifications  
1
For recommended operating conditions, see Table 3.  
Characteristic  
Symbol  
Min  
Max  
Unit  
Note  
SPI clock (SPI_CLK) clock period  
tSPK  
10  
ns  
ns  
SPI outputs—Master data (internal clock) hold time  
tNIKHOX  
0.5+(tIPSPI  
xSPMODE  
[HO_ADJ])  
2, 3  
SPI outputs—Master data (internal clock) delay  
tNIKHOV  
2.5+(tIPSPI  
x
ns  
2, 3  
SPMODE  
[HO_ADJ])  
SPI_CS outputs—Master data (internal clock) hold time  
SPI_CS outputs—Master data (internal clock) delay  
SPI inputs—Master data (internal clock) input setup time  
SPI inputs—Master data (internal clock) input hold time  
tNIKHOX2  
tNIKHOV2  
tNIIVKH  
0
5
6.0  
ns  
ns  
ns  
ns  
2
2
tNIIXKH  
0
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
38  
Freescale Semiconductor  
Electrical characteristics  
1
Table 26. SPI AC timing specifications (continued)  
For recommended operating conditions, see Table 3.  
Characteristic  
Symbol  
Min  
Max  
Unit  
Note  
Note:  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOV symbolizes the NMSI  
outputs internal timing (NI) for the time tSPI memory clock reference (K) goes from the high state (H) until outputs (O) are  
valid (V).  
2. Output specifications are measured from the 50ꢀ level of the rising edge of CLKIN to the 50ꢀ level of the signal. Timings  
are measured at the pin.  
3. tIPSPI represents the clock period of the clock on which eSPI block is running. In P1010/14 eSPI runs on CCB/2 freq.  
This figure provides the AC test load for the SPI.  
Output  
OVDD/2  
Z0 = 50   
RL = 50   
Figure 8. SPI AC Test Load  
This figure represents the AC timing, from Table 26, in master mode (internal clock). Note that although the specifications  
generally refer to the rising edge of the clock, Figure 8 also applies when the falling edge is the active edge. Also, note that the  
clock edge is selectable on SPI.  
SPICLK (output)1  
tNIIXKH  
tNIIVKH  
Input Signals:  
SPIMISO  
tNIKHOX  
tNIKHOV  
Output Signals:  
SPIMOSI  
tNIKHOX2  
tNIKHOV2  
Output Signals:  
SPI_CS_01  
Note:  
1
A part of SPICLK has been shown as dotted because SPICLK appears on the interface only after CS assertion.  
Figure 9. SPI AC timing in master mode (internal clock) diagram  
2.10 DUART  
This section describes the DC and AC electrical specifications for the DUART interface of the P1014.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
39  
Electrical characteristics  
2.10.1 DUART DC electrical characteristics  
This table provides the DC electrical characteristics for the DUART interface.  
Table 27. DUART DC electrical characteristics  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
VIH  
VIL  
2
2.4  
0.8  
40  
V
V
1
1
Input current (OVIN = 0 V or OVIN = OVDD  
)
IIN  
A  
V
2
Output high voltage (OVDD = mn, IOH = –mA)  
Output low voltage (OVDD = min, IOL = 2 mA)  
Note:  
VOH  
VOL  
0.4  
V
1. The min VILand max VIH values are based on the respective min and max OVIN values found in Figure 3.  
2. The symbol OVIN represents the input voltage of the supply. It is referenced in Figure 3.  
2.10.2 DUART AC electrical specifications  
This table provides the AC timing parameters for the DUART interface.  
Table 28. DUART AC timing specifications  
Parameter  
Minimum baud rate  
Value  
Unit  
Note  
CCB clock/1,048,576  
CCB clock/16  
16  
baud  
baud  
1
2
3
Maximum baud rate  
Oversample rate  
Note:  
1. CCB clock refers to the platform clock.  
2. Actual attainable baud rate is limited by the latency of interrupt processing.  
3. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the  
start bit. Subsequent bit values are sampled each 16th sample.  
2.11 Ethernet: Enhanced Three-Speed Ethernet (eTSEC)  
This section provides the AC and DC electrical characteristics for enhanced three-speed Ethernet10/100/1000 controller and  
MII management.  
2.11.1 RGMII interface electrical specifications  
This section provides AC and DC electrical characteristics of RGMII interface for eTSEC.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
40  
Freescale Semiconductor  
Electrical characteristics  
2.11.1.1 RGMII DC electrical characteristics  
This table shows the RGMII DC electrical characteristics when operating from a 2.5-V supply.  
Table 29. RGMII DC electrical characteristics (2.5 V)  
At recommended operating conditions with LVDD = 2.5 V  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
VIH  
VIL  
IIH  
1.70  
0.70  
V
V
1
Input high current (VIN = LVDD  
Input low current (VIN = GND)  
)
10  
A  
A  
V
IIL  
–15  
Output high voltage (LVDD = min, IOH = –1.0 mA)  
Output low voltage (LVDD = min, IOL = 1.0 mA)  
Note:  
VOH  
VOL  
2.00  
LVDD + 0.3  
0.40  
GND– 0.3  
V
1. The min VILand max VIH values are based on the respective min and max LVIN values found in Table 3.  
2. The symbol VIN, in this case, represents the LVIN symbols referenced in Table 3.  
2.11.1.2 RGMII AC timing specifications  
This table presents the RGMII AC timing specifications.  
Table 30. RGMII AC timing specifications  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol1  
Min  
Typ  
Max  
Unit  
Note  
Data to clock output skew (at transmitter)  
Data to clock input skew (at receiver)  
Clock period duration  
tSKRGT_TX  
tSKRGT_RX  
tRGT  
–500  
1.0  
7.2  
40  
0
500  
2.6  
8.8  
60  
ps  
ns  
ns  
5
2
8.0  
50  
50  
3
Duty cycle for 10BASE-T and 100BASE-TX  
Duty cycle for Gigabit  
tRGTH RGT  
tRGTH/tRGT  
tRGTR  
tRGTF  
/t  
3, 4  
45  
55  
Rise time (20ꢀ–80ꢀ)  
0.75  
0.75  
ns  
ns  
Fall time (20ꢀ–80ꢀ)  
Note:  
1. In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII  
and RTBI timing. For example, the subscript of tRGT represents the TBI (T) receive (RX) clock. Note also that the  
notation for rise (R) and fall (F) times follows the clock symbol that is being represented. For symbols representing  
skews, the subscript is skew (SK) followed by the clock that is being skewed (RGT).  
2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns  
is added to the associated clock signal. Many PHY vendors already incorporate the necessary delay inside their chip.  
If so, additional PCB delay is probably not needed.  
3. For 10 and 100 Mbps, tRGT scales to 400 ns 40 ns and 40 ns 4 ns, respectively.  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains  
as long as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed  
transitioned between.  
5. The frequency of RX_CLK should not exceed the frequency of GTX_CLK125 by more than 300 ppm.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
41  
Electrical characteristics  
This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.  
tRGT  
tRGTH  
GTX_CLK  
(At MAC, output)  
tSKRGT_TX  
tSKRGT_TX  
TXD[8:5][3:0]  
TXD[7:4][3:0]  
TXD[8:5]  
TXD[7:4]  
TXD[3:0]  
(At MAC, output)  
TXD[9]  
TXERR  
TXD[4]  
TXEN  
TX_CTL  
(At MAC, output)  
PHY equivalent to t  
PHY equivalent to t  
SKRGT_RX  
SKRGT_RX  
TX_CLK  
(At PHY, input)  
t
RGT  
tRGTH  
RX_CLK  
(At PHY, output)  
RXD[8:5][3:0]  
RXD[7:4][3:0]  
RXD[8:5]  
RXD[7:4]  
RXD[3:0]  
PHY equivalent to t  
(At PHY, output)  
SKRGT_TX  
PHY equivalent to t  
SKRGT_TX  
RXD[9]  
RXERR  
RXD[4]  
RXDV  
RX_CTL  
(At PHY, output)  
tSKRGT_RX  
tSKRGT_RX  
RX_CLK  
(At MAC, input)  
Figure 10. RGMII and RTBI AC timing and multiplexing diagrams  
WARNING  
Freescale guarantees timings generated from the MAC. Board designers must ensure delays  
needed at the PHY or the MAC.  
2.11.2 SGMII Interface electrical characteristics  
Each SGMII port features a 4-wire AC-Coupled serial link from the dedicated SerDes interface of P1014, as shown in Figure 11,  
where C is the external (on board) AC-Coupled capacitor. Each output pin of the SerDes transmitter differential pair features  
TX  
50-output impedance. Each input of the SerDes receiver differential pair features 50-on-die termination to SGND_SRDS.  
The reference circuit of the SerDes transmitter and receiver is shown in Figure 42.  
2.11.2.1 SGMII DC electrical characteristics  
This section discusses the electrical characteristics for the SGMII interface.  
2.11.2.1.1  
DC requirements for SGMII SD_REF_CLK and SD_REF_CLK  
The characteristics and DC requirements of the separate SerDes reference clock are described in Section 2.20.2.2, “DC level  
requirement for SerDes reference clocks.”  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
42  
Freescale Semiconductor  
Electrical characteristics  
2.11.2.1.2  
SGMII transmit DC Timing specifications  
This table describes the SGMII SerDes transmitter AC-Coupled DC electrical characteristics. Transmitter DC characteristics  
are measured at the transmitter outputs (SDn_TX[n] and SDn_TX[n]), as shown in Figure 11.  
Table 31. SGMII DC transmitter electrical characteristics  
For recommended operating conditions, see Table 3.  
Symbo  
l
Parameter  
Min  
Typ  
Max  
Unit  
Note  
Output high voltage  
VOH  
XVDD_SRDS2-Typ/2+ mV  
|VOD -max/2  
1
|
Output low voltage  
VOL  
XVDD_SRDS2-Typ/2  
mV  
1
– |VOD -max/2  
|
Output differential voltage2, 3, 4 |VOD  
|
304  
279  
254  
229  
202  
178  
152  
40  
475  
436  
396  
357  
316  
277  
237  
50  
689  
632  
574  
518  
459  
402  
344  
60  
mV Equalization setting: 1.0x  
Equalization setting: 1.09x  
Equalization setting: 1.2x  
Equalization setting: 1.33x  
Equalization setting: 1.5x  
Equalization setting: 1.71x  
Equalization setting: 2.0x  
Output impedance  
(single-ended)  
RO  
Note:  
1. This does not align to DC-coupled SGMII.  
2. |VOD| = |VSD2_TXn – VSD2_TXn|. |VOD| is also referred as output differential peak voltage. VTX-DIFFp-p = 2*|VOD .  
|
3. The |VOD| value shown in the table assumes the following transmit equalization setting in the XMITEQAB (for SerDes  
lanes A and B) or XMITEQEF (for SerDes lanes E and E) bit field of P1014’s SerDes 2 Control Register:  
4. The MSB (bit 0) of the above bit field is set to zero (selecting the full VDD-DIFF-p-p amplitude - power up default);  
5. The LSB (bit [1:3]) of the above bit field is set based on the equalization setting shown in table.  
6. The |VOD| value shown in the Typ column is based on the condition of XVDD_SRDS2-Typ=1.0V, no common mode offset  
variation (VOS =500 mV), SerDes transmitter is terminated with 100-differential load between SD_TX[n] and SD_TX[n].  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
43  
Electrical characteristics  
SD_TX  
SD_RX  
SD_RX  
50   
50   
CTX  
50   
50   
Receiver  
Transmitter  
CTX  
SD_TX  
SD_RX  
P1014 SGMII  
SerDes Interface  
CTX  
SD_TX  
50   
50   
50   
Receiver  
Transmitter  
50   
CTX  
SD_RX  
SD_TX  
Figure 11. 4-Wire AC-coupled SGMII serial link connection example  
P1014 SGMII  
SerDes Interface  
SD_TXn  
50   
50  
50  
Transmitter  
Vos  
VOD  
50   
SD_TXn  
Figure 12. SGMII transmitter DC measurement circuit  
2.11.2.1.3  
SGMII DC receiver timing specification  
This table lists the SGMII DC receiver electrical characteristics. Source synchronous clocking is not supported. The clock is  
recovered from the data.  
5
Table 32. SGMII DC receiver electrical characteristics  
For recommended operating conditions, see Table 3.  
Parameter  
DC Input voltage range  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
N/A  
1
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
44  
Freescale Semiconductor  
Electrical characteristics  
Table 32. SGMII DC receiver electrical characteristics (continued)  
5
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Input differential voltage  
LSTS = 001  
LSTS = 100  
LSTS = 001  
LSTS = 100  
VRX_DIFFp-p  
100  
175  
30  
1200  
mV  
2, 4  
Loss of signal threshold  
VLOS  
100  
175  
120  
mV  
3, 4  
65  
Receiver differential input impedance  
ZRX_DIFF  
80  
Note:  
1. Input must be externally AC-coupled.  
2. VRX_DIFFp-p is also referred to as peak-to-peak input differential voltage.  
3. The concept of this parameter is equivalent to the Electrical Idle Detect Threshold parameter in PCI Express. See  
Section Table 64., “PCI Express (2.5 Gb/s) differential receiver (RX) input DC specifications section for further explanation.  
4. The LSTS shown in the table refers to the EIC2[0:2] or EIC3[0:2] bit field of P1014’s SerDes Control Register.  
5. The supply voltage is 1 V.  
2.11.2.2 SGMII AC timing specifications  
This section describes the AC timing specifications for the SGMII interface.  
2.11.2.2.1  
AC requirements for SGMII SD_REF_CLK and SD_REF_CLK  
Note that the SGMII clock requirements for SD_REF_CLK and SD_REF_CLK are intended to be used within the clocking  
guidelines specified by Section 2.20.2.3, “AC requirements for SerDes reference clocks.”  
2.11.2.2.2  
SGMII transmit AC timing specifications  
This table provides the SGMII transmit AC timing specifications. A source synchronous clock is not supported. The AC timing  
specifications do not include RefClk jitter  
Table 33. SGMII Transmit AC Timing Specifications  
At recommended operating conditions with XVDD_SRDS = 1V 50mV  
Parameter  
Deterministic Jitter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
JD  
JT  
0.17  
0.35  
UI p-p  
UI p-p  
ps  
3
Total Jitter  
Unit Interval  
UI  
799.92  
5
800  
100  
800.08  
200  
AC coupling capacitor  
CTX  
nF  
Note:  
1. Each UI is 800 ps 100 ppm.  
2. See Figure 14 for single frequency sinusoidal jitter limits.  
3. The external AC coupling capacitor is required. It is recommended that it be placed near the device transmitter outputs.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
45  
Electrical characteristics  
2.11.2.2.3  
SGMII AC measurement details  
Transmitter and receiver AC characteristics are measured at the transmitter outputs (SD_TX[n] and SD_TX[n]) or at the receiver  
inputs (SD_RX[n] and SD_RX[n]) as depicted in Figure 13, respectively.  
Figure 13. SGMII AC test/measurement load  
2.11.2.2.4  
SGMII receiver AC timing specifications  
This table provides the SGMII receive AC timing specifications. The AC timing specifications do not include RefClk jitter.  
Source synchronous clocking is not supported. Clock is recovered from the data.  
Table 34. SGMII receive AC timing specifications  
At recommended operating conditions with XVDD_SRDS2 = 1 V 50 mV  
Parameter  
Deterministic jitter tolerance  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
JD  
JDR  
JT  
0.37  
0.55  
0.65  
UI p-p  
UI p-p  
UI p-p  
1, 2  
1, 2  
1, 2  
Combined deterministic and random jitter tolerance  
Total jitter tolerance  
Bit error ratio  
BER  
UI  
10-12  
800.08  
Unit interval  
799.92  
800  
ps  
3
Note:  
1. Measured at receiver  
2. See RapidIO™ 1x/4x LP Serial Physical Layer Specification for interpretation of jitter specifications.  
3. Each UI is 800 ps 100 ppm.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
46  
Freescale Semiconductor  
Electrical characteristics  
The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region of this figure.  
8.5 UI p-p  
Sinusoidal  
Jitter  
Amplitude  
0.10 UI p-p  
22.1 kHz  
Frequency  
1.875 MHz  
20 MHz  
Figure 14. Single frequency sinusoidal jitter limits  
2.11.3 MII management  
This section provides electrical and thermal design recommendations for successful application of the P1014.  
2.11.3.1 MII management DC electrical characteristics  
The MDC and MDIO are defined to operate at a supply voltage of 2.5 V. The DC electrical characteristics for MDIO and MDC  
are provided in this table.  
Table 35. MII management DC electrical characteristics  
At recommended operating conditions with LVDD = 2.5 V  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Output high voltage  
VOH  
2.00  
LVDD + 0.3  
V
(LVDD = Min, IOH = –1.0 mA)  
Output low voltage  
VOL  
GND– 0.3  
0.40  
V
(LVDD = Min, IOL = 1.0 mA)  
Input high voltage  
Input low voltage  
Input high current  
VIH  
VIL  
IIH  
1.70  
–0.3  
LVDD + 0.3  
0.70  
V
V
10  
A  
1, 2  
(VIN = LVDD  
)
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
47  
Electrical characteristics  
Table 35. MII management DC electrical characteristics  
At recommended operating conditions with LVDD = 2.5 V  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input low current  
(VIN = GND)  
IIL  
–15  
A  
Note:  
1. EC1_MDC and EC1_MDIO operate on LVDD  
.
2. In this case, the symbol VIN represents the LVIN and TVIN symbols referenced in Table 3.  
2.11.3.1.1  
MII management AC electrical specifications  
This table provides the MII management AC timing specifications.  
Table 36. MII Management AC Timing Specifications  
Parameter/Condition  
MDC frequency  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
fMDC  
tMDC  
2.5  
400  
MHz  
ns  
2
MDC period  
MDC clock pulse width high  
MDC to MDIO delay  
MDIO to MDC setup time  
MDIO to MDC hold time  
Note:  
tMDCH  
32  
ns  
tMDKHDX  
tMDDVKH  
tMDDXKH  
(16*tplb_clk) – 3  
(16*tplb_clk) + 3  
ns  
3, 4  
5
0
ns  
ns  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes  
management data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or  
data hold time. Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D)  
reach the valid state (V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall  
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. This parameter is dependent on the platform clock frequency (MIIMCFG [MgmtClk] field determines the clock frequency  
of the MgmtClk Clock EC_MDC).  
3. This parameter is dependent on the platform clock frequency. The delay is equal to 16 platform clock periods 3 ns. For  
example, with a platform clock of 333 MHz, the min/max delay is 48 ns 3 ns. Similarly, if the platform clock is 400 MHz,  
the min/max delay is 40 ns 3 ns.  
4. tplb_clk is the platform (CCB) clock.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
48  
Freescale Semiconductor  
Electrical characteristics  
This figure shows the MII management interface timing diagram.  
tMDC  
tMDCR  
MDC  
tMDCF  
tMDCH  
MDIO  
(Input)  
tMDDVKH  
tMDDXKH  
MDIO  
(Output)  
tMDKHDX  
Figure 15. MII management interface timing diagram  
2.11.4 eTSEC IEEE Std 1588™ timing specifications  
2.11.4.1 eTSEC IEEE Std 1588 DC electrical characteristics  
This table shows the IEEE 1588 DC electrical characteristics when operating at LV = 2.5 V supply.  
DD  
Table 37. eTSEC IEEE 1588 DC Electrical Characteristics (LV = 2.5 V)  
DD  
For recommended operating conditions with LVDD = 2.5 V  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
VIH  
VIL  
1.70  
0.70  
40  
V
V
2
Input current (LVIN = 0 V or LVIN = LVDD  
)
IIH  
A  
V
Output high voltage (LVDD = min, IOH = –1.0 mA)  
Output low voltage (LVDD = min, IOL = 1.0 mA)  
Note:  
VOH  
VOL  
2.00  
0.40  
V
1. The min VILand max VIH values are based on the respective min and max LVIN values found in Table 3..  
2. The symbol VIN, in this case, represents the LVIN symbols referenced in Table 2 and Table 3..  
2.11.5 eTSEC IEEE 1588 AC specifications  
This table provides the IEEE 1588 AC timing specifications.  
Table 38. eTSEC IEEE 1588 AC timing specifications  
For recommended operating conditions, see Table 3.  
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
TSEC_1588_CLK clock period  
TSEC_1588_CLK duty cycle  
tT1588CLK  
tCCB/2  
40  
TRX_CLK*7  
60  
ns  
1, 3, 4  
tT1588CLKH  
/tT1588CLK  
50  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
49  
Electrical characteristics  
Table 38. eTSEC IEEE 1588 AC timing specifications (continued)  
For recommended operating conditions, see Table 3.  
Parameter/Condition  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
TSEC_1588_CLK peak-to-peak jitter  
Rise time eTSEC_1588_CLK (20ꢀ–80ꢀ)  
Fall time eTSEC_1588_CLK (80ꢀ–20ꢀ)  
TSEC_1588_CLK_OUT clock period  
TSEC_1588_CLK_OUT duty cycle  
tT1588CLKINJ  
tT1588CLKINR  
tT1588CLKINF  
tT1588CLKOUT  
50  
250  
2.0  
2.0  
ps  
ns  
ns  
ns  
1.0  
1.0  
2 x tT1588CLK  
30  
tT1588CLKOTH  
/tT1588CLKOUT  
70  
TSEC_1588_PULSE_OUT  
TSEC_1588_TRIG_IN pulse width  
Note:  
tT1588OV  
0.5  
3.0  
ns  
ns  
2
tT1588TRIGH  
2*tT1588CLK_MAX  
1. TRX_CLK is the max clock period of eTSEC receiving clock selected by TMR_CTRL[CKSEL]. See the P1014 QorIQ  
Integrated Processor Reference Manual for a description of TMR_CTRL registers.  
2. It needs to be at least two times the clock period of the clock selected by TMR_CTRL[CKSEL]. See the P1014 QorIQ  
Integrated Processor Reference Manual for a description of TMR_CTRL registers.  
3. The maximum value of tT1588CLK is not only defined by the value of TRX_CLK, but also defined by the recovered clock. For  
example, for 10/100/1000 Mbps modes, the maximum value of tT1588CLK is 2800, 280, and 56 ns respectively.  
4. tCCB denotes the clock period of system clock (CCB).  
This figure shows the data and command output AC timing diagram.  
NOTE  
In the following figure, the output delay is counted by starting at the rising edge if  
t
is non-inverting. Otherwise, it is counted starting at the falling edge.  
T1588CLKOUT  
tT1588CLKOUT  
tT1588CLKOTH  
TSEC_1588_CLK_OUT  
tT1588OV  
TSEC_1588_PULSE_OUT  
TSEC_1588_TRIG_OUT  
Figure 16. eTSEC IEEE 1588 output AC timing  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
50  
Freescale Semiconductor  
Electrical characteristics  
This figure shows the data and command input AC timing diagram.  
tT1588CLK  
tT1588CLKH  
TSEC_1588_CLK  
TSEC_1588_TRIG_IN  
tT1588TRIGH  
Figure 17. eTSEC IEEE 1588 input AC timing  
2.12 USB  
This section provides the AC and DC electrical specifications for the USB interface.  
2.12.1 USB DC electrical characteristics  
This table provides the DC electrical characteristics for the ULPI interface when operating at BV = 3.3 V.  
DD  
Table 39. USB DC electrical characteristics (3.3 V)  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
VIH  
VIL  
2
0.8  
40  
V
V
1
1
2.8  
Input current (BVIN = 0 V or BVIN = BVDD  
)
IIN  
A  
V
2
Output high voltage (BVDD = min, IOH = –2 mA)  
Output low voltage (BVDD = min, IOL = 2 mA)  
Note:  
VOH  
VOL  
0.3  
V
1. The min VILand max VIH values are based on the respective min and max BVIN values found in Table 3.  
2. The symbol BVIN represents the input voltage of the supply. It is referenced in Table 3.  
This table provides the DC electrical characteristics for the ULPI interface when operating at BV = 2.5 V.  
DD  
Table 40. USB DC electrical characteristics (2.5 V)  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
VIH  
VIL  
1.7  
0.7  
40  
V
V
1
1
Input current (BVIN = 0 V or BVIN = BVDD  
)
IIN  
A  
V
2
Output high voltage (BVDD = min, IOH = –2 mA)  
VOH  
2.0  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
51  
Electrical characteristics  
Table 40. USB DC electrical characteristics (2.5 V) (continued)  
For recommended operating conditions, see Table 3.  
Output low voltage (BVDD = min, IOL = 2 mA)  
VOL  
0.4  
V
Note:  
1. The min VILand max VIH values are based on the respective min and max BVIN values found in Table 3.  
2. The symbol BVIN represents the input voltage of the supply. It is referenced in Table 3.  
This table provides the DC electrical characteristics for the ULPI interface when operating at BV = 1.8 V.  
DD  
Table 41. USB DC Electrical characteristics (1.8 V)  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
VIH  
VIL  
1.25  
0.6  
40  
V
V
1
1
Input current (BVIN = 0 V or BVIN = BVDD  
)
IIN  
A  
V
2
Output high voltage (BVDD = min, IOH = –2 mA)  
Output low voltage (BVDD = min, IOL = 2 mA)  
Note:  
VOH  
VOL  
1.35  
0.4  
V
1. The min VILand max VIH values are based on the respective min and max BVIN values found in Table 3.  
2. The symbol BVIN represents the input voltage of the supply. It is referenced in Table 3.  
2.12.2 USB AC electrical specifications  
This table describes the general timing parameters of the USB interface of the device.  
6
Table 42. USB general timing parameters (ULPI Mode Only)  
For recommended operating conditions, see Table 3.  
Parameter  
USB clock cycle time  
Symbol1  
Min  
Max  
Unit  
Note  
tUSCK  
tUSIVKH  
tUSIXKH  
tUSKHOV  
tUSKHOX  
15  
4
7
ns  
ns  
ns  
ns  
ns  
2, 3, 4, 5  
2, 3, 4, 5  
2, 3, 4, 5  
2, 3, 4, 5  
2, 3, 4, 5  
Input setup to USB clock—all inputs  
input hold to USB clock—all inputs  
USB clock to output valid—all outputs  
Output hold from USB clock—all outputs  
1
2
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
52  
Freescale Semiconductor  
Electrical characteristics  
6 (continued)  
Table 42. USB general timing parameters (ULPI Mode Only)  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol1  
Min  
Max  
Unit  
Note  
Note:  
1. The symbols for timing specifications follow the pattern of t(First two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tUSIXKH symbolizes USB  
timing (US) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also,  
tUSKHOX symbolizes USB timing (US) for the USB clock reference (K) to go high (H) with respect to the output (O) going  
invalid (X) or output hold time.  
2. All timings are in reference to USB clock.  
3. All signals are measured from BVDD/2 of the rising edge of the USB clock to 0.4 OVDD of the signal in question for 3.3  
V signaling levels.  
4. Input timings are measured at the pin.  
5. For active/float timing measurements, the high impedance or off state is defined to be when the total current delivered  
through the component pin is less than or equal to that of the leakage current specification.  
6. When switching the data pins from outputs to inputs using the USBn_DIR pin, the output timings will be violated on that  
cycle because the output buffers are tristated asynchronously. This should not be a problem, because the PHY should  
not be functionally looking at these signals on that cycle as per ULPI specifications.  
These two figures provide the USB AC test load and signals, respectively.  
Output  
OVDD/2  
Z0 = 50   
RL = 50   
Figure 18. USB AC test load  
USB_CLK  
tUSIXKH  
tUSIVKH  
Input Signals  
tUSKHOV  
tUSKHOX  
Output Signals:  
Figure 19. USB signals  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
53  
Electrical characteristics  
This table provides the USB clock input (USB_CLK) AC timing specifications.  
Table 43. USB_CLK AC timing specifications  
Parameter/Condition  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Frequency range  
Steady state  
fUSB_CLK_IN  
tCLK_TOL  
tCLK_DUTY  
tCLK_PJ  
59.97  
–0.05  
40  
60  
0
60.03  
0.05  
60  
MHz  
Clock frequency tolerance  
Reference clock duty cycle Measured at 1.6 V  
50  
Total input jitter/time interval Peak-to-peak value measured with a  
200  
ps  
error  
second order high-pass filter of 500 kHz  
bandwidth  
2.12.3 On-chip USB PHY  
This section describes the AC electrical specifications for the on-chip USB PHY. See Chapter 7 in the USB Specifications, Rev.  
2, for more information.  
This table provides the USB clock input (USBPHY_CLK) AC timing specifications.  
Table 44. USBPHY_CLK AC Timing specifications  
For recommended operating conditions, see Table 3.  
Parameter  
Conditions  
Symbol1  
Min  
Max  
Unit Note  
Frequency range  
Steady state  
fUSB_CLK_IN  
tUSRF  
24  
24  
MHz  
ns  
Rise/Fall time  
6
+0.005  
60  
Clock frequency tolerance  
tCLK_TOL  
tCLK_DUTY  
tCLK_PJ  
–0.005  
40  
Reference clock duty cycle Measured at 1.6 V  
Total input jitter/time  
interval error  
RMS value measured with a second order  
high-pass filter of 500 kHz bandwidth  
5
ps  
2.12.4 IBIAS_REXT filter  
Following filter circuit must be implemented on IBIAS_REXT pin.  
Filter component should be placed as much close to SoC pin as possible.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
54  
Freescale Semiconductor  
Electrical characteristics  
P1010/14  
IBIAS_REXT  
100  
10k   
100nf  
VSS  
Figure 20. IBIAS_REXT filter circuit  
2.12.5 Threshold detect increase  
Following register programming should be performed during USB PHY initialization  
1. Read S1[26:31]  
2. Set C1[8] and C1[9] to '1'  
3. Write C2[11] = 1 and C2[13:15] = S1[29:31] and C2[16:18] = S1[26:28]  
where C1 is the register at (CCSRBAR + 0xe5000), C2 is the register at (CCSRBAR + 0xe5004) and S1 is the register at  
(CCSRBAR + 0xe5014).  
2.13 Integrated flash controller  
This section describes the DC and AC electrical specifications for the integrated flash controller.  
2.13.1 Integrated flash controller DC electrical characteristics  
This table provides the DC electrical characteristics for the integrated flash controller when operating at BV = 3.3 V.  
DD  
Table 45. Integrated flash controller DC electrical characteristics (3.3 V)  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
IIN  
2
0.8  
40  
V
V
1
1
2
A  
(VIN = 0 V or VIN = BVDD)  
Output high voltage  
(BVDD = min, IOH = –1 mA)  
VOH  
2.8  
V
V
Output low voltage  
VOL  
0.4  
(BVDD = min, IOH = 2 mA)  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
55  
Electrical characteristics  
Table 45. Integrated flash controller DC electrical characteristics (3.3 V) (continued)  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Note:  
1. The min VILand max VIH values are based on the respective min and max BVIN values found in Table 3.  
2. The symbol VIN, in this case, represents the BVIN symbol referenced in Section 2.1.2, “Recommended operating conditions.”  
This table provides the DC electrical characteristics for the integrated flash controller when operating at BV = 2.5 V.  
DD  
Table 46. Integrated flash controller DC electrical characteristics (2.5 V)  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
IIN  
1.7  
0.7  
40  
V
V
1
1
2
A  
(VIN = 0 V or VIN = BVDD)  
Output high voltage  
(BVDD = min, IOH = –1 mA)  
VOH  
2.0  
V
V
Output low voltage  
VOL  
0.4  
(BVDD = min, IOL = 1 mA)  
Note:  
1. The min VILand max VIH values are based on the respective min and max BVIN values found in Table 3.  
2. The symbol VIN, in this case, represents the BVIN symbol referenced in Section 2.1.2, “Recommended operating conditions.”  
This table provides the DC electrical characteristics for the integrated flash controller when operating at BV = 1.8 V.  
DD  
Table 47. Integrated Flash controller DC electrical characteristics (1.8 V)  
For recommended operating conditions, see Table 3.  
Parameter  
Input high voltage  
Symbol  
Min  
Max  
Unit  
Note  
VIH  
VIL  
IIN  
1.25  
0.6  
40  
V
V
1
1
2
Input low voltage  
Input current  
A  
(VIN = 0 V or VIN = BVDD  
)
Output high voltage  
(BVDD = min, IOH = –0.5 mA)  
VOH  
1.35  
V
V
Output low voltage  
VOL  
0.4  
(BVDD = min, IOL = 0.5 mA)  
Note:  
1. The min VILand max VIH values are based on the respective min and max BVIN values found in Table 3.  
2. The symbol VIN, in this case, represents the BVIN symbol referenced in Section 2.1.2, “Recommended operating conditions.”  
2.13.2 Integrated flash controller AC Timing specifications  
This section describes the AC timing specifications for the integrated flash controller.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
56  
Freescale Semiconductor  
Electrical characteristics  
2.13.2.1 Integrated flash controller AC timing specifications  
All output signal timings are relative to the falling edge of any IFC_CLK. The external circuit must use the rising edge of the  
IFC_CLKs to latch the data. All input timings are relative to the rising edge of IFC_CLKs.  
This table describes the timing specifications of the integrated flash controller interface.  
Table 48. Integrated Flash controller timing specifications (BV = 3.3 V, 2.5 V, and 1.8 V)  
DD  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol1  
Min  
Max Unit Note  
IFC_CLK cycle time  
IFC_CLK duty cycle  
IFC_CLK[n] skew to IFC_CLK[m]  
Input setup  
tIBK  
10  
45  
4
55  
150  
1.5  
1
ns  
2
tIBKH/tIBK  
tIBKSKEW  
tIBIVKH  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
5
Input hold  
tIBIXKH  
1
Output delay (Except AVD)  
Output delay (For AVD)  
Output hold  
tIBKLOV1  
tIBKLOV2  
tIBKLOX  
tIBKLOZ  
tIBONOT  
–2  
0.5  
2
IFC_CLK to output high impedance for AD  
AVD output negation to AD output transition (LATCH hold time)  
Note:  
3
4
1. All signals are measured from BVDD/2 of the rising/falling edge of IFC_CLK to BVDD/2 of the signal in question.  
2. Skew is measured between different IFC_CLK signals at BVDD/2.  
3. For the purposes of active/float timing measurements, the high impedance or off state is defined to be when the total current  
delivered through the component pin is less than or equal to the leakage current specification.  
4. tIBONOT is a measurement of the maximum time between the negation of AVD and any change in AD when  
FTIM0_CSn[TEAHC]=0.  
5. Here the negative sign means output transit happens earlier than the falling edge of IFC_CLK.  
2.13.2.2 Test condition  
This figure provides the AC test load for the integrated flash controller.  
BVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 21. Integrated flash controller AC Test load  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
57  
Electrical characteristics  
This figure shows the AC timing diagram.  
IFC_CLK[m]  
Input Signals  
tIBIXKH  
tIBIVKH  
tIBKLOV1  
tIBKLOX  
Output Signals  
(Except AVD)  
AD  
(address phase)  
tIBKLOV2  
tIBONOT  
AVD  
tIBKLOZ  
tIBKLOX  
AD  
(data phase)  
Figure 22. Integrated flash controller signals  
This figure applies to all the controllers that IFC supports.  
For input signals, the AC timing data is used directly for all controllers. For output signals, each type of controller provides its  
own unique method to control the signal timing. The final signal delay value for output signals is the programmed delay plus  
the AC timing delay.  
This figure shows how the AC timing diagram applies to GPCM. The same principle also applies to other controllers of IFC.  
NOTE  
In the following figure, t , t , t , t , t , t , t , t are programmable. See the  
aco rad eahc eadc acse cs ch wp  
P1014 reference manual.  
For output signals, each type of controller provides its own unique method to control the  
signal timing. The final signal delay value for output signals is the programmed delay plus  
the AC timing delay.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
58  
Freescale Semiconductor  
Electrical characteristics  
IFC_CLK  
AD[0:31]  
address  
read data  
address  
write data  
teahc + t  
IBKLOV  
teadc + t  
IBKLOV  
AVD  
tacse + t  
IBKLOV  
CE_B  
taco + t  
IBKLOV  
trad + t  
IBKHOV  
OE_B  
WE_B  
tch + t  
IBKLOV  
tcs+ t  
IBKLOV  
twp + t  
IBKLOV  
BCTL  
read  
write  
Figure 23. GPCM output timing diagram  
2.14 Enhanced secure digital host controller (eSDHC)  
This section describes the DC and AC electrical specifications for the eSDHC interface of the P1014.  
2.14.1 eSDHC DC electrical characteristics  
This table provides the DC electrical characteristics for the eSDHC interface of the P1014.  
Table 49. eSDHC interface DC electrical characteristics  
At recommended operating conditions with BVDD = 3.3 V or 1.8V  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
Note  
VIH  
VIL  
0.625 BVDD  
0.25 BVDD  
V
V
1
Input low voltage  
Output high voltage  
Output low voltage  
Input/output leakage current  
Note:  
0.75 BVDD  
1
VOH  
VOL  
IOH = –100 uA at BVDDmin  
IOL = 100uA at BVDDmin  
V
0.125 BVDD  
10  
V
IIN/IOZ  
–10  
uA  
1. The min VILand max VIH values are based on the respective min and max BVIN values found in Table 3.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
59  
Electrical characteristics  
2.14.2 eSDHC AC timing specifications  
This table provides the eSDHC AC timing specifications as defined in Figure 25.  
Table 50. eSDHC AC Timing Specifications  
At recommended operating conditions with BVDD = 3.3 V or 1.8V  
Parameter  
SDHC_CLK clock frequency:  
Symbol  
Min  
Max  
Unit  
Note  
fSFSCK  
MHz  
2, 4  
SD/SDIO Full-speed/High-speed mode  
MMC Full-speed/High-speed mode  
0
25/50  
20/52  
SDHC_CLK clock low time—Full-speed/High-speed mode  
SDHC_CLK clock high time—Full-speed/High-speed mode  
SDHC_CLK clock rise and fall times  
tSFSCKL  
tSFSCKH  
tSFSCKR/  
10/7  
10/7  
3
ns  
ns  
ns  
4
4
4
tSFSCKF  
Input setup times: SDHC_CMD, SDHC_DAT_x, SDHC_CD to  
SDHC_CLK  
tSFSIVKH  
tSFSIXKH  
tSHSKHOV  
2.5  
2.5  
–3  
3
ns  
ns  
ns  
4
3,4  
4
Input hold times: SDHC_CMD, SDHC_DAT_x, SDHC_CD to  
SDHC_CLK  
Output delay time: SDHC_CLK to SDHC_CMD, SDHC_DAT_x  
valid  
Note:  
1. The symbols used for timing specifications herein follow the pattern of t(first three letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first three letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tFHSKHOV  
symbolizes eSDHC high speed mode device timing (SHS) clock reference (K) going to the high (H) state, with respect to  
the output (O) reaching the invalid state (X) or output hold time. Note that, in general, the clock reference symbol  
representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
2. In full speed mode, clock frequency value can be 0–25 MHz for a SD/SDIO card and 0–20 MHz for a MMC card. In high  
speed mode, clock frequency value can be 0–50 MHz for a SD/SDIO card and 0–52 MHz for a MMC card.  
3. To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2ns.  
4. CCARD 10 pF, (1 card), and CL = CBUS + CHOST + CCARD 40 pF  
This figure provides the eSDHC clock input timing diagram.  
eSDHC  
External Clock  
VM  
VM  
VM  
operational mode  
tSHSCKL  
tSHSCKH  
tSHSCK  
VM = Midpoint Voltage (OVDD/2)  
Figure 24. eSDHC Clock input timing diagram  
tSHSCKF  
tSH SC KR  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
60  
Freescale Semiconductor  
Electrical characteristics  
This figure provides the data and command input/output timing diagram.  
VM  
VM  
VM  
VM  
SD_CK  
External Clock  
tSHSIXKH  
tSH SIVKH  
SD_DAT/CMD  
Inputs  
SD_DAT/CMD  
Outputs  
tSHSKHOV  
VM = Midpoint Voltage (OVDD/2)  
Figure 25. eSDHC data and command input/output timing diagram referenced to clock  
2.15 Programmable Interrupt Controller (PIC)  
specifications  
This section describes the DC and AC electrical specifications for PIC on the P1014.  
2.15.1 PIC DC electrical characteristics  
This table provides the DC electrical characteristics for the PIC interface.  
Table 51. PIC DC electrical characteristics  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
VIH  
VIL  
2
0.8  
40  
V
V
1
1
2.4  
Input current (OVIN = 0V or OVIN = OVDD  
)
IIN  
A  
V
2
Output high voltage (OVDD = min, IOH = –2 mA)  
Output low voltage (OVDD = min, IOL = 2 mA)  
Note:  
VOH  
VOL  
0.4  
V
1. The min VILand max VIH values are based on the respective min and max OVIN values found in Table 3.  
2. The symbol OVIN represents the input voltage of the supply. It is referenced in Table 3.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
61  
Electrical characteristics  
2.15.2 PIC AC timing specifications  
This table provides the PIC input and output AC timing specifications.  
Table 52. PIC input AC timing specifications  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
PIC inputs—minimum pulse width  
tPIWID  
3
SYSCLK  
1
Note:  
1. PIC inputs and outputs are asynchronous to any visible clock. PIC outputs should be synchronized before use by any  
external synchronous logic. PIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when working  
in edge-triggered mode.  
2.16 JTAG  
This section describes the AC electrical specifications for the IEEE Std 1149.1™ (JTAG) interface of the P1014.  
2.16.1 JTAG DC electrical characteristics  
This table provides the JTAG DC electrical characteristics.  
Table 53. JTAG DC electrical characteristics  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
VIH  
VIL  
2
0.8  
40  
V
V
1
1
2.4  
Input current (OVIN = 0V or OVIN = OVDD  
)
IIN  
A  
V
2
Output high voltage (OVDD = min, IOH = –2 mA)  
Output low voltage (OVDD = min, IOL = 2 mA)  
Note:  
VOH  
VOL  
0.4  
V
1. The min VILand max VIH values are based on the respective min and max OVIN values found in Table 3  
2. The symbol OVIN represents the input voltage of the supply. It is referenced in Table 3.  
2.16.2 JTAG AC timing specifications  
This table provides the JTAG AC timing specifications as defined in Figure 26 through Figure 29.  
Table 54. JTAG AC timing specifications  
For recommended operating conditions see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
fJTG  
tJTG  
0
30  
15  
0
33.3  
MHz  
ns  
JTAG external clock pulse width measured at 1.4 V  
JTAG external clock rise and fall times  
tJTKHKL  
ns  
tJTGR and tJTGF  
2
ns  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
62  
Freescale Semiconductor  
Electrical characteristics  
Table 54. JTAG AC timing specifications (continued)  
For recommended operating conditions see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
TRST assert time  
Input setup times  
tTRST  
25  
ns  
2
Boundary-scan USB only  
14  
4
tJTDVKH  
ns  
ns  
TDI, and TMS  
3
Input hold times  
tJTDXKH  
10  
Output valid times  
Boundary Scan Data  
TDO  
tJTKLDV  
15  
10  
ns  
Output hold times  
tJTKLDX  
tJTKLDZ  
30  
4
ns  
ns  
3
JTAG external clock to output high impedance  
10  
Note:  
1. The symbols used for timing specifications follow the pattern t(first two letters of functional block)(signal)(state)(reference)(state) for inputs  
and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device timing  
(JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K) going  
to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals (D)  
reaching the invalid state (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that in general, the clock  
reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall  
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).  
2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
3. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question.  
The output timings are measured at the pins. All output timings assume a purely resistive 50-load. Time-of-flight delays  
must be added for trace lengths, vias, and connectors in the system.  
This figure provides the AC test load for TDO and the boundary-scan outputs.  
Z0 = 50   
Output  
OVDD/2  
RL = 50   
Figure 26. AC Test load for the JTAG interface  
This figure provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
tJTKHKL  
VM  
VM  
tJTGR  
tJTGF  
tJTG  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 27. JTAG clock input timing diagram  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
63  
Electrical characteristics  
This figure provides the TRST timing diagram.  
TRST  
VM  
VM  
tTRST  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 28. TRST Timing Diagram  
This figure provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTDVKH  
tJTDXKH  
Boundary  
Data Inputs  
Input  
Data Valid  
tJTKLDV  
tJTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
tJTKLDZ  
Boundary  
Output Data Valid  
Data Outputs  
VM = Midpoint Voltage (OV /2)  
DD  
Figure 29. Boundary-scan timing diagram  
2
2.17 I C  
This section describes the DC and AC electrical characteristics for the I C interfaces of the P1014.  
2
2.17.1 I2C DC electrical characteristics  
2
This table provides the DC electrical characteristics for the I C interfaces.  
2
Table 55. I C DC electrical characteristics  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Input high voltage  
Input low voltage  
Output high voltage  
Output low voltage  
VIH  
VIL  
2
2.4  
0
0.8  
V
V
1
1
VOH  
VOL  
tI2KHKL  
II  
V
2
0.4  
50  
10  
V
Pulse width of spikes which must be suppressed by the input filter  
0
ns  
A  
3
Input current each I/O pin (input voltage is between 0.1 OVDD  
and 0.9 OVDD(max)  
–10  
4
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
64  
Freescale Semiconductor  
Electrical characteristics  
2
Table 55. I C DC electrical characteristics (continued)  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Capacitance for each I/O pin  
Note:  
CI  
10  
pF  
1. The min VILand max VIH values are based on the respective min and max OVIN values found in Table 3.  
2. Output voltage (open drain or open collector) condition = 3 mA sink current.  
3. See the P1014 QorIQ Integrated Processor Reference Manual for information on the digital filter used.  
4. I/O pins obstruct the SDA and SCL lines if OVDD is switched off.  
2.17.2 I2C AC electrical specifications  
2
This table provides the AC timing parameters for the I C interfaces.  
2
Table 56. I C AC electrical specifications  
For recommended operating conditions see Table 3. All values refer to VIH (min) and VIL (max) levels (see Table 55)  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
SCL clock frequency  
fI2C  
tI2CL  
0
400  
kHz  
s  
2
Low period of the SCL clock  
1.3  
0.6  
0.6  
0.6  
High period of the SCL clock  
tI2CH  
s  
Setup time for a repeated START condition  
tI2SVKH  
tI2SXKL  
s  
Hold time (repeated) START condition (after this period, the first  
clock pulse is generated)  
s  
Data setup time  
Data hold time:  
tI2DVKH  
tI2DXKL  
100  
ns  
3
s  
0
CBUS compatible masters  
I2C bus devices  
Data output delay time  
tI2OVKL  
0.6  
0.9  
s  
s  
s  
V
4
Set-up time for STOP condition  
t
I2PVKH  
Bus free time between a STOP and START condition  
tI2KHDX  
VNL  
1.3  
Noise margin at the LOW level for each connected device  
(including hysteresis)  
0.1 OVDD  
Noise margin at the HIGH level for each connected device  
(including hysteresis)  
VNH  
Cb  
0.2 OVDD  
V
Capacitive load for each bus line  
400  
pF  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
65  
Electrical characteristics  
2
Table 56. I C AC electrical specifications (continued)  
For recommended operating conditions see Table 3. All values refer to VIH (min) and VIL (max) levels (see Table 55)  
Parameter  
Symbol  
Min  
Max  
Unit  
Note  
Note:  
1. The symbols used for timing specifications herein follow the pattern t(first two letters of functional block)(signal)(state)(reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH symbolizes I2C timing  
(I2) with respect to the time data input signals (D) reaching the valid state (V) relative to the tI2C clock reference (K) going to  
the high (H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with respect to the START  
condition (S) went invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time. Also, tI2PVKH  
symbolizes I2C timing (I2) for the time that the data with respect to the STOP condition (P) reaches the valid state (V) relative  
to the tI2C clock reference (K) going to the high (H) state or setup time.  
2. The requirements for I2C frequency calculation must be followed. See Freescale application note AN2919, “Determining the  
I2C Frequency Divider Ratio for SCL.”  
3. As a transmitter, the P1014 provides a delay time of at least 300 ns for the SDA signal (referred to as the VIHmin of the SCL  
signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of a START or STOP  
condition. When the P1014 acts as the I2C bus master while transmitting, it drives both SCL and SDA. As long as the load  
on SCL and SDA are balanced, the P1014 does not generate an unintended START or STOP condition. Therefore, the 300  
ns SDA output delay time is not a concern. If under some rare condition, the 300 ns SDA output delay time is required for  
the P1014 as transmitter, application note AN2919 referred to in note 4 below is recommended.  
4. The maximum tI2OVKL has only to be met if the device does not stretch the LOW period (tI2CL) of the SCL signal.  
2
This figure provides the AC test load for the I C.  
Output  
OVDD/2  
Z0 = 50   
RL = 50   
2
Figure 30. I C AC test load  
2
This figure shows the AC timing diagram for the I C bus.  
SDA  
tI2DVKH  
tI2KHKL  
tI2CL  
tI2SXKL  
SCL  
tI2SXKL  
tI2CH  
tI2SVKH  
tI2PVKH  
tI2DXKL, I2OVKL  
t
S
Sr  
P
S
2
Figure 31. I C Bus AC timing diagram  
2.18 GPIO  
This section describes the DC and AC electrical specifications for the GPIO interface of the P1014.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
66  
Freescale Semiconductor  
Electrical characteristics  
2.18.1 GPIO DC electrical characteristics  
This table provides the DC electrical characteristics for the GPIO interface when operating from 3.3V supply.  
Table 57. GPIO_[0:11] DC electrical characteristics (3.3 V)  
For recommended operating conditions, see Table 3.  
Parameter  
Input high voltage  
Symbol  
Min  
Max  
Unit  
Note  
VIH  
VIL  
IIN  
2
0.8  
40  
V
V
1
1
2
Input low voltage  
Input current  
A  
(OVIN = 0 V or OVIN = OVDD  
)
Output high voltage  
VOH  
2.4  
V
V
(OVIN= min, IOH = –2 mA)  
Low-level output voltage  
(OVIN = min, IOL = 2 mA)  
VOL  
0.4  
Note:  
1. The min VILand max VIH values are based on the min and max OVIN respective values found in Table 3.  
2. The symbol OVIN represents the input voltage of the supply. It is referenced in Table 3.  
This table provides the DC electrical characteristics for the GPIO interface when operating from 2.5V supply.  
Table 58. GPIO_[12:15] DC electrical characteristics (2.5 V)  
For recommended operating conditions, see Table 3.  
Parameter  
Input high voltage  
Symbol  
Min  
Max  
Unit  
Note  
VIH  
VIL  
IIN  
1.7  
0.7  
40  
V
V
1
1
2
Input low voltage  
Input current  
A  
(LVIN = 0 V or LVIN = LVDD  
)
Output high voltage  
(LVIN = min, IOH = 2 mA)  
VOH  
1.7  
V
V
Low-level output voltage  
(LVIN = min, IOL = 2 mA)  
VOL  
0.7  
Note:  
1. The min VILand max VIH values are based on the min and max LVIN respective values found in Table 3.  
2. The symbol LVIN represents the input voltage of the supply. It is referenced in Table 3.  
NOTE  
GPIO_[0:11] are powered by OV  
.
DD  
GPIO_[12:15] are powered by LV  
.
DD  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
67  
Electrical characteristics  
2.18.2 GPIO AC timing specifications  
This table provides the GPIO input and output AC timing specifications.  
Table 59. GPIO input AC timing specifications  
For recommended operating conditions, see Table 3.  
Parameter  
Symbol  
Min  
Unit  
Note  
GPIO inputs—minimum pulse width  
tPIWID  
20  
ns  
1
Note:  
1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by any  
external synchronous logic. GPIO inputs are required to be valid for at least tPIWID to ensure proper operation.  
This figure provides the AC test load for the GPIO.  
OVDD/2  
Output  
Z = 50  
0
R = 50  
L
Figure 32. GPIO AC test load  
2.19 TDM  
This section describes the DC and AC electrical specifications for the TDM of the P1014  
2.19.1 TDM DC electrical characteristics  
This table provides the DC electrical characteristics TDM.  
Table 60. TDM DC electrical characteristics  
For recommended operating conditions, see Table 3.  
Characteristic  
Input high voltage  
Symbol  
Min  
Max  
Unit  
Note  
VIH  
VIL  
2.0  
–0.3  
0.8  
40  
V
V
1
1
Input low voltage  
Input current (OVIN = 0V or OVIN = OVDD  
)
IIN  
A  
V
2
Output high voltage (OVDD = min, IOH = –2 mA)  
Output low voltage (OVDD = min, IOL = 2 mA)  
Note:  
VOH  
VOL  
2.4  
0.4  
V
1. The min VILand max VIH values are based on the min and max BVIN respective values found in Table 3.  
2. The symbol BVIN represents the input voltage of the supply. It is referenced in Table 3.  
2.19.2 TDM AC electrical characteristics  
This table provides input and output AC timing specifications for TDM interface.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
68  
Freescale Semiconductor  
Electrical characteristics  
Table 61. TDM AC timing specifications  
Parameter/Condition  
TDM_TX_CLK/TDM_RX_CLK  
Symbol  
Min  
Max  
Unit  
Note  
tDM  
62.5  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
TDM_TX_CLK/TDM_RX_CLK rise/fall time  
TDM_TX_CLK/TDM_RX_CLK high pulse width  
TDM_TX_CLK/TDM_RX_CLK low pulse width  
TDM all input setup time  
tDMR DMF  
tDM_HIGH  
tDM_LOW  
/t  
8.0  
8.0  
3.0  
3.5  
2.0  
4.0  
tDMIVKH  
TDM_RX_DATA hold time  
tDMRDIXKH  
tDMFSIXKH  
tDM_OUTAC  
tDMTKHOV  
tDMTKHOX  
tDM_OUTHI  
TDM_TFS/TDM_RFS input hold time  
TDM_TX_CLK High to TDM_TX_DATA output active  
TDM_TX_CLK High to TDM_TX_DATA output valid  
TDM_TX_DATA hold time  
2
14.0  
2.0  
TDM_TX_CLK High to TDM_TX_DATA output high  
impedance  
10.0  
TDM_TFS/TDM_RFS output valid  
TDM_TFS/TDM_RFS output hold time  
Note:  
tDMFSKHOV  
tDMFSKHOX  
13.5  
ns  
ns  
2.5  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)  
(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tTDMIVKH  
symbolizes TDM timing (DM) with respect to the time the input signals (I) reach the valid state (V) relative to the TDM Clock,  
tTC, reference (K) going to the high (H) state or setup time. Also, output signals (O), hold (X).  
2. Output values are based on 30 pF capacitive load.  
3. Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming  
edge they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. TDMxTCK and  
TDMxRCK are shown using the rising edge.  
This figure shows the TDM receive signal timing.  
tDM  
tDM_HIGH  
tDM_LOW  
TDM_RX_CLK  
tDMIVKH  
tDMRDIXKH  
TDMxRD  
tDMFSIXKH  
tDMIVKH  
TDMxRFS  
tDMFSKHOV  
tDMFSKHOX  
TDM_RFS (output)  
Figure 33. TDM receive signals  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
69  
Electrical characteristics  
This figure shows the TDM transmit signal timing.  
tDM  
tDM_HIGH  
tDM_LOW  
tDM_OUTHI  
tDMTKHOX  
TDM_TX_CLK  
tDMTKHOV  
tDM_OUTAC  
TDM_TX_DATA  
TDM_RX_CLK  
tDMFSKHOV  
tDMFSKHOX  
TDM_TFS (output)  
tDMFSIXKH  
tDMIVKH  
TDMxTFS (input)  
_
Figure 34. TDM Transmit Signals  
2.20 High-Speed Serial Interfaces (HSSI)  
The P1014 features one Serializer/Deserializer (SerDes) interfaces to be used for high-speed serial interconnect applications.  
The SerDes interface can be used for PCI Express data transfers and for SGMII application.  
This section describes the common portion of SerDes DC electrical specifications, which is the DC requirement for SerDes  
Reference Clocks. This section also shows the SerDes data lane’s transmitter and receiver reference circuits.  
2.20.1 Signal terms definition  
The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description  
and specification of differential signals.  
Figure 35 shows how the signals are defined. For the purpose of illustration, only one SerDes lane is used for description. The  
figure shows the waveform for either a transmitter output (SDn_TX and SDn_TX) or a receiver input (SDn_RX and SDn_RX).  
Each signal swings between A volts and B volts where A > B.  
Using this waveform, the definitions are as follows. To simplify illustration, the following definitions assume that the SerDes  
transmitter and receiver operate in a fully symmetrical differential signaling environment.  
1. Single-Ended Swing  
The transmitter output signals and the receiver input signals SDn_TX, SDn_TX, SDn_RX and SDn_RX each have a  
peak-to-peak swing of A – B volts. This is also referred as each signal wire’s Single-Ended Swing.  
2. Differential Output Voltage, V (or Differential Output Swing):  
OD  
The Differential Output Voltage (or Swing) of the transmitter, V , is defined as the difference of the two  
OD  
complimentary output voltages: V  
– V  
The V value can be either positive or negative.  
SDn_TX  
SDn_TX. OD  
3. Differential Input Voltage, V (or Differential Input Swing):  
ID  
The Differential Input Voltage (or Swing) of the receiver, V , is defined as the difference of the two complimentary  
ID  
input voltages: V  
– V  
The V value can be either positive or negative.  
SDn_RX  
SDn_RX. ID  
4. Differential Peak Voltage, V  
DIFFp  
The peak value of the differential transmitter output signal or the differential receiver input signal is defined as  
Differential Peak Voltage, V = |A – B| Volts.  
DIFFp  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
70  
Freescale Semiconductor  
Electrical characteristics  
5. Differential Peak-to-Peak, V  
DIFFp-p  
Since the differential output signal of the transmitter and the differential input signal of the receiver each range from  
A – B to –(A – B) Volts, the peak-to-peak value of the differential transmitter output signal or the differential receiver  
input signal is defined as Differential Peak-to-Peak Voltage, V  
= 2 V  
= 2 |(A – B)| Volts, which is twice  
DIFFp-p  
DIFFp  
of differential swing in amplitude, or twice of the differential peak. For example, the output differential peak-peak  
voltage can also be calculated as V  
= 2 |V |.  
TX-DIFFp-p  
OD  
6. Differential Waveform  
The differential waveform is constructed by subtracting the inverting signal (SDn_TX, for example) from the  
non-inverting signal (SDn_TX, for example) within a differential pair. There is only one signal trace curve in a  
differential waveform. The voltage represented in the differential waveform is not referenced to ground. See Figure 35  
as an example for differential waveform.  
7. Common Mode Voltage, V  
cm  
The Common Mode Voltage is equal to one half of the sum of the voltages between each conductor of a balanced  
interchange circuit and ground. In this example, for SerDes output, V = (VSDn_TX + VSDn_TX)/2 = (A + B) /  
cm_out  
2, which is the arithmetic mean of the two complimentary output voltages within a differential pair. In a system, the  
common mode voltage may often differ from one component’s output to the other’s input. Sometimes, it may even be  
different between the receiver input and driver output circuits within the same component. It is also referred to as the  
DC offset occasionally.  
SDn_TX or  
SDn_RX  
A Volts  
Vcm = (A + B)/2  
SDn_TX or  
SDn_RX  
B Volts  
Differential Swing, VID or VOD = A – B  
Differential Peak Voltage, VDIFFp = |A – B|  
Differential Peak-Peak Voltage, VDIFFpp = 2*VDIFFp (not shown)  
Figure 35. Differential Voltage Definitions for Transmitter or Receiver  
To illustrate these definitions using real values, consider the case of a current mode logic (CML) transmitter that has a common  
mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing that goes between 2.5 V and 2.0 V. Using these values,  
the peak-to-peak voltage swing of each signal (TD or TD) is 500 mV p-p, which is referred as the single-ended swing for each  
signal. In this example, since the differential signaling environment is fully symmetrical, the transmitter output’s differential  
swing (V ) has the same amplitude as each signal’s single-ended swing. The differential output signal ranges between 500  
OD  
mV and –500 mV, in other words, V is 500 mV in one phase and –500 mV in the other phase. The peak differential voltage  
OD  
(V  
) is 500 mV. The peak-to-peak differential voltage (V  
) is 1000 mV p-p.  
DIFFp  
DIFFp-p  
2.20.2 SerDes reference clocks  
The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by the corresponding  
SerDes lanes. The SerDes reference clock inputs are SD_REF_CLK and SD_REF_CLK for PCI Express and SGMII interface.  
The following sections describe the SerDes reference clock requirements and some application information.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
71  
Electrical characteristics  
2.20.2.1 SerDes reference clock receiver characteristics  
This figure shows a receiver reference diagram of the SerDes reference clocks.  
50  
SDn_REF_CLK  
Input  
Amp  
SDn_REF_CLK  
50   
Figure 36. Receiver of SerDes reference clocks  
The characteristics of the clock signals are as follows:  
The supply voltage requirements for XV  
are specified in Table 2 and Table 3.  
DD_SRDS2  
SerDes reference clock receiver reference circuit structure:  
— The SD_REF_CLK and SD_REF_CLK are internally AC-coupled differential inputs as shown in Figure 36. Each  
differential clock input (SD_REF_CLK or SD_REF_CLK) has a 50-termination to SGND_SRDS followed by  
on-chip AC-coupling.  
— The external reference clock driver must be able to drive this termination.  
— The SerDes reference clock input can be either differential or single-ended. See the Differential Mode and  
Single-ended Mode description below for further detailed requirements.  
The maximum average current requirement that also determines the common mode voltage range:  
— When the SerDes reference clock differential inputs are DC coupled externally with the clock driver chip, the  
maximum average current allowed for each input pin is 8 mA. In this case, the exact common mode input voltage  
is not critical as long as it is within the range allowed by the maximum average current of 8 mA (refer to the  
following bullet for more detail), since the input is AC-coupled on-chip.  
— This current limitation sets the maximum common mode input voltage to be less than 0.4 V (0.4 V/50 = 8 mA)  
while the minimum common mode input level is 0.1 V above SGND_SRDS. For example, a clock with a 50/50  
duty cycle can be produced by a clock driver with output driven by its current source from 0mA to 16mA  
(0-0.8 V), such that each phase of the differential input has a single-ended swing from 0 V to 800 mV with the  
common mode voltage at 400 mV.  
— If the device driving the SD_REF_CLK and SD_REF_CLK inputs cannot drive 50 to SGND_SRDS DC, or it  
exceeds the maximum input current limitations, then it must be AC-coupled off-chip.  
The input amplitude requirement is described in detail in the following sections.  
2.20.2.2 DC level requirement for SerDes reference clocks  
The DC level requirement for the P1014 SerDes reference clock inputs is different depending on the signaling mode used to  
connect the clock driver chip and SerDes reference clock inputs as described below.  
Differential Mode  
— The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-peak (or  
between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have  
a single-ended swing less than 800 mV and greater than 200 mV. This requirement is the same for both external  
DC-coupled or AC-coupled connection.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
72  
Freescale Semiconductor  
Electrical characteristics  
— For external DC-coupled connection, as described in Section 2.20.2.1, “SerDes reference clock receiver  
characteristics,” the maximum average current requirements sets the requirement for average voltage (common  
mode voltage) to be between 100 mV and 400 mV. Figure 37 shows the SerDes reference clock input requirement  
for DC-coupled connection scheme.  
— For external AC-coupled connection, there is no common mode voltage requirement for the clock driver. Since  
the external AC-coupling capacitor blocks the DC level, the clock driver and the SerDes reference clock receiver  
operate in different command mode voltages. The SerDes reference clock receiver in this connection scheme has  
its common mode voltage set to SGND_SRDS. Each signal wire of the differential inputs is allowed to swing  
below and above the command mode voltage (SGND_SRDS). Figure 38 shows the SerDes reference clock input  
requirement for AC-coupled connection scheme.  
200 mV < Input Amplitude or Differential Peak < 800 mV  
SD_REF_CLK  
Vmax < 800 mV  
100mV < Vcm < 400 mV  
Vmin > 0 V  
SD_REF_CLK  
Figure 37. Differential reference clock input DC requirements (external DC-coupled)  
200 mV < Input Amplitude or Differential Peak < 800mV  
SDn_REF_CLK  
Vmax < Vcm + 400 mV  
Vcm  
Vmin > Vcm – 400 mV  
SDn_REF_CLK  
Figure 38. Differential Reference clock input DC requirements (external AC-coupled)  
Single-ended Mode  
— The reference clock can also be single-ended. The SD_REF_CLK input amplitude (single-ended swing) must be  
between 400 mV and 800 mV peak-peak (from V  
tied to ground.  
to V  
) with SD_REF_CLK either left unconnected or  
MIN  
MAX  
— The SD_REF_CLK input average voltage must be between 200 and 400 mV. Figure 39 shows the SerDes  
reference clock input requirement for single-ended signaling mode.  
— To meet the input amplitude requirement, the reference clock inputs might need to be DC or AC-coupled  
externally. For the best noise performance, the reference of the clock could be DC or AC-coupled into the unused  
phase (SD_REF_CLK) through the same source impedance as the clock input (SD_REF_CLK) in use  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
73  
Electrical characteristics  
.
400mV < SD_REF_CLK Input Amplitude < 800mV  
SD_REF_CLK  
SD_REF_CLK  
0 V  
Figure 39. Single-Ended reference clock input DC requirements  
2.20.2.3 AC requirements for SerDes reference clocks  
This table lists the AC requirements, for the PCI Express and SGMII SerDes reference clocks, that should be guaranteed by the  
customer’s application design.  
Table 62. SD_REF_CLK and SD_REF_CLK input clock requirements  
Parameter  
Symbol  
Min  
Typ Max Unit Note  
SD_REF_CLK/ SD_REF_CLK frequency range  
tCLK_REF  
100/12  
5
MHz  
1
SD_REF_CLK/ SD_REF_CLK clock frequency tolerance  
tCLK_TOL  
-350  
+35 ppm  
0
SD_REF_CLK/ SD_REF_CLK reference clock duty cycle  
tCLK_DUTY  
tCLK_DJ  
40  
50  
60  
42  
4
SD_REF_CLK/ SD_REF_CLK max deterministic peak-peak Jitter at 10-6  
BER  
ps  
SD_REF_CLK/ SD_REF_CLK total reference clock jitter at 10-6 BER  
(Peak-to-peak jitter at refClk input)  
tCLK_TJ  
1
86  
4
ps  
V/ns  
mV  
2
3
SD_REF_CLK/ SD_REF_CLK rising/falling edge rate  
tCLKRR/tCLKFR  
Differential input high voltage  
Differential input low voltage  
VIH  
VIL  
200  
4
4
–20 mV  
0
Rising edge rate (SDn_REF_CLK) to falling edge rate (SDn_REF_CLK)  
matching  
Rise-Fall  
Matching  
20  
5, 6  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
74  
Freescale Semiconductor  
Electrical characteristics  
Table 62. SD_REF_CLK and SD_REF_CLK input clock requirements (continued)  
Parameter Symbol Min Typ Max Unit Note  
Note:  
1. Only 100/125 have been tested. Other in-between values do not work correctly with the rest of the system.  
2. Limits from PCI Express CEM Rev 2.0  
3. Measured from –200 mV to +200 mV on the differential waveform (derived from SDn_REF_CLK minus SDn_REF_CLK).The  
signal must be monotonic through the measurement region for rise and fall time. The 400-mV measurement window is  
centered on the differential zero crossing.  
4. Measurement is taken from the differential waveform.  
5. Measurement is taken from the single-ended waveform.  
6. Matching applies to the rising edge for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a  
200 mV window centered on the median cross point where SDn_REF_CLK rising meets SDn_REF_CLK falling. The median  
cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rise edge  
rate of SDn_REF_CLK should be compared to the fall edge rate of SDn_REF_CLK, the maximum allowed difference should  
not exceed 20ꢀ of the slowest edge rate. See Figure 41.  
Rise Edge Rate  
Fall Edge Rate  
VIH = +200 mV  
0.0 V  
VIL = –200 mV  
SDn_REF_CLK –  
SDn_REF_CLK  
Figure 40. Differential measurement points for rise and fall time  
Figure 41. Single-ended measurement points for rise and fall time matching  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
75  
Electrical characteristics  
2.20.2.4 SerDes transmitter and receiver reference circuits  
This figure shows the reference circuits for SerDes data lane’s transmitter and receiver.  
SD_RXn  
SD_TXn  
50  
50  
50  
50  
Transmitter  
Receiver  
SD_TXn  
SD_RXn  
Figure 42. SerDes transmitter and receiver reference circuits  
The DC and AC specification of SerDes data lanes are defined in each interface protocol section below, based on the application  
usage:  
Section 2.21, “PCI Express”  
Section 2.22, “Serial ATA (SATA)”  
Section 2.11.2, “SGMII Interface electrical characteristics”  
Note that external AC Coupling capacitor is required for the above three serial transmission protocols per the protocol’s standard  
requirements.  
2.21 PCI Express  
This section describes the DC and AC electrical specifications for the PCI Express bus of the P1014.  
2.21.1 DC requirements for PCI Express SD_REF_CLK and SD_REF_CLK  
For more information, see Section 2.20.2.2, “DC level requirement for SerDes reference clocks.”  
2.21.2 PCI Express DC physical layer specifications  
This section contains the DC specifications for the physical layer of PCI Express on this device.  
2.21.2.1 PCI Express DC physical layer transmitter specifications  
This section discusses PCI Express DC physical layer transmitter specifications for 2.5 Gb/s.  
This table defines the PCI Express (2.5 Gb/s) DC specifications for the differential output at all transmitters (TXs). The  
parameters are specified at the component pins.  
Table 63. PCI Express (2.5Gb/s) Differential transmitter (TX) output DC specifications  
For recommended operating conditions, see Table 3.  
Symbol  
Parameter  
Min Typical Max Unit  
Comments  
VTX-DIFFp-p Differential Peak-to-Peak  
Output Voltage  
800 1000 1200 mV VTX-DIFFp-p = 2*|VTX-D+ – VTX-D-|. See Note 1.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
76  
Freescale Semiconductor  
Electrical characteristics  
Table 63. PCI Express (2.5Gb/s) Differential transmitter (TX) output DC specifications (continued)  
For recommended operating conditions, see Table 3.  
Symbol  
Parameter  
Min Typical Max Unit  
Comments  
VTX-DE-RATIO De- Emphasized Differential 3.0  
Output Voltage (Ratio)  
3.5  
4.0  
dB Ratio of the VTX-DIFFp-p of the second and following  
bits after a transition divided by the VTX-DIFFp-p of  
the first bit after a transition. See Note 1.  
ZTX-DIFF-DC DC Differential TX  
Impedance  
80  
40  
100  
50  
120  
60  
TX DC Differential mode Low Impedance  
ZTX-DC  
Transmitter DC Impedance  
Required TX D+ as well as D- DC Impedance  
during all states  
Note:  
1. Specified at the measurement point into a timing and voltage compliance test load, as shown in Figure 43, and measured  
over any 250 consecutive TX UIs.  
2.21.2.2 PCI Express DC physical layer receiver specifications  
This section discusses PCI Express DC physical layer receiver specifications for 2.5 Gb/s.  
This table defines the PCI Express (2.5 Gb/s) DC specifications for the differential output at all transmitters (TXs). The  
parameters are specified at the component pins.  
Table 64. PCI Express (2.5 Gb/s) differential receiver (RX) input DC specifications  
For recommended operating conditions, see Table 3.  
Symbol  
VRX-DIFFp-p  
Parameter  
Min  
Typical  
Max  
Unit  
Comments  
Differential Input  
Peak-to-Peak Voltage  
175  
1200  
mV  
VRX-DIFFp-p = 2*|VRX-D+ – VRX-D-|.  
See Note 1.  
ZRX-DIFF-DC  
DC Differential Input  
Impedance  
80  
40  
100  
50  
120  
60  
RX DC Differential mode impedance.  
See Note 2  
ZRX-DC  
DC Input Impedance  
Required RX D+ as well as D- DC  
Impedance (50 20ꢀ tolerance). See  
Notes 1 and 2.  
ZRX-HIGH-IMP-DC  
Powered Down DC  
Input Impedance  
50 k  
65  
Required RX D+ as well as D- DC  
Impedance when the Receiver  
terminations do not have power. See  
Note 3.  
VRX-IDLE-DET-DIFFp-p Electrical Idle Detect  
Threshold  
235  
mV  
VRX-IDLE-DET-DIFFp-p = 2*|VRX-D+ -VRX-D-  
Measured at the package pins of the  
Receiver  
|
Note:  
1. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 43 should be used  
as the RX device when taking measurements. If the clocks to the RX and TX are not derived from the same reference clock,  
the TX UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.  
2. Impedance during all LTSSM states. When transitioning from a Fundamental Reset to Detect (the initial state of the LTSSM)  
there is a 5 ms transition time before Receiver termination values must be met on all un-configured Lanes of a Port.  
3. The RX DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps  
ensure that the receiver detect circuit does not falsely assume a Receiver is powered on when it is not. This term must be  
measured at 300 mV above the RX ground.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
77  
Electrical characteristics  
2.21.3 PCI Express AC physical layer specifications  
This section contains the DC specifications for the physical layer of PCI Express on this device.  
2.21.3.1 PCI Express AC physical layer transmitter specifications  
This section discusses the PCI Express AC physical layer transmitter specifications for 2.5Gb/s.  
This table defines the PCI Express (2.5Gb/s) AC specifications for the differential output at all transmitters (TXs). The  
parameters are specified at the component pins. The AC timing specifications do not include RefClk jitter.  
Table 65. PCI Express (2.5Gb/s) differential transmitter (TX) output AC specifications  
Symbol  
Parameter  
Min Typical Max  
Unit  
Comments  
UI  
Unit Interval  
399.8 400.00 400.1  
ps Each UI is 400 ps 300 ppm. UI does not account for  
Spread Spectrum Clock dictated variations. See Note 1.  
8
2
TTX-EYE  
Minimum TX  
Eye Width  
0.70  
UI The maximum Transmitter jitter can be derived as  
TTX-MAX-JITTER = 1 – TTX-EYE= 0.3 UI.  
See Notes 2 and 3.  
TTX-EYE-MEDIAN-to Maximum time  
0.15  
200  
UI Jitter is defined as the measurement variation of the  
crossing points (VTX-DIFFp-p = 0 V) in relation to a  
recovered TX UI. A recovered TX UI is calculated over  
3500 consecutive unit intervals of sample data. Jitter is  
measured using all edges of the 250 consecutive UI in the  
center of the 3500 UI used for calculating the TX UI. See  
Notes 2 and 3.  
between the  
jitter median  
and maximum  
deviation from  
the median.  
-MAX-JITTER  
CTX  
AC Coupling  
Capacitor  
75  
nF All Transmitters shall be AC coupled. The AC coupling is  
required either within the media or within the transmitting  
component itself. See Note 4.  
Note:  
1. No test load is necessarily associated with this value.  
2. Specified at the measurement point into a timing and voltage compliance test load, as shown in Figure 43, and measured  
over any 250 consecutive TX UIs.  
3. A TTX-EYE = 0.70 UI provides for a total sum of deterministic and random jitter budget of TTX-JITTER-MAX = 0.30 UI for the  
Transmitter collected over any 250 consecutive TX UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the  
total TX jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the  
mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal  
as opposed to the averaged time value.  
4. P1014 SerDes transmitter does not have CTX built-in. An external AC Coupling capacitor is required.  
2.21.3.2 PCI Express AC physical layer receiver specifications  
This section discusses the PCI Express AC physical layer receiver specifications for 2.5 Gb/s.  
This table defines the AC specifications for the PCI Express (2.5 Gb/s) differential input at all receivers (RXs). The parameters  
are specified at the component pins. The AC timing specifications do not include RefClk jitter.  
Table 66. PCI Express (2.5 Gb/s) Differential Receiver (rx) input AC specifications  
Symbol  
Parameter  
Min Typical Max  
Unit  
Comments  
UI  
Unit Interval  
399.88 400.00 400.12  
ps  
Each UI is 400 ps 300 ppm. UI does not account for  
Spread Spectrum Clock dictated variations. See Note 1.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
78  
Freescale Semiconductor  
Electrical characteristics  
Table 66. PCI Express (2.5 Gb/s) Differential Receiver (rx) input AC specifications (continued)  
Symbol  
TRX-EYE  
Parameter  
Min Typical Max  
Unit  
Comments  
Minimum  
Receiver Eye  
Width  
0.4  
UI  
The maximum interconnect media and Transmitter jitter  
that can be tolerated by the Receiver can be derived as  
TRX-MAX-JITTER = 1 - TRX-EYE= 0.6 UI.  
See Notes 2 and 3.  
TRX-EYE-MEDIAN- Maximum time  
0.3  
UI  
Jitter is defined as the measurement variation of the  
crossing points (VRX-DIFFp-p = 0 V) in relation to a  
recovered TX UI. A recovered TX UI is calculated over  
3500 consecutive unit intervals of sample data. Jitter is  
measured using all edges of the 250 consecutive UI in  
the center of the 3500 UI used for calculating the TX UI.  
See Notes 2, 3 and 4.  
between the  
jitter median  
and maximum  
deviation from  
the median.  
to-MAX-JITTER  
Note:  
1. No test load is necessarily associated with this value.  
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 43 should be used  
as the RX device when taking measurements. If the clocks to the RX and TX are not derived from the same reference clock,  
the TX UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.  
3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and  
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter  
distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget  
collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median  
describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged  
time value. If the clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500  
consecutive UI must be used as the reference for the eye diagram.  
4. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit  
algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental  
and simulated data.  
2.21.3.3 Compliance test and measurement load  
The AC timing and voltage parameters must be verified at the measurement point, as specified within 0.2 inches of the package  
pins, into a test/measurement load shown in this figure.  
NOTE  
The allowance of the measurement point to be within 0.2 inches of the package pins is  
meant to acknowledge that package/board routing may benefit from D+ and D– not being  
exactly matched in length at the package pin boundary. If the vendor does not explicitly  
state where the measurement point is located, the measurement point is assumed to be the  
D+ and D– package pins.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
79  
Electrical characteristics  
Figure 43. Compliance Test/Measurement Load  
2.22 Serial ATA (SATA)  
This section describes the DC and AC electrical specifications for the serial ATA (SATA) interface.  
2.22.1 SATA DC Electrical characteristics  
This section describes the DC electrical characteristics for SATA.  
2.22.1.1 SATA DC transmitter output characteristics  
This table provides the DC differential transmitter output DC characteristics for the SATA interface at Gen1i or 1.5 Gbits/s  
transmission.  
Table 67. Gen1i/1.5G transmitter (Tx) DC specifications  
At recommended operating conditions with SDx_AVDD = 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Tx differential output voltage  
Tx differential pair impedance  
Note:  
VSATA_TXDIFF  
400  
85  
475  
100  
600  
115  
mV p-p  
1
2
ZSATA_TXDIFFIM  
1. Terminated by 50 load.  
2. DC impedance  
This table provides the differential transmitter output DC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s  
transmission.  
Table 68. Gen 2i/3G transmitter (Tx) DC specifications  
At recommended operating conditions with SDx_AVDD = 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Tx diff output voltage  
VSATA_TXDIFF  
400  
85  
522.5  
100  
700  
115  
mV p-p  
1
Tx differential pair impedance  
ZSATA_TXDIFFIM  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
80  
Freescale Semiconductor  
Electrical characteristics  
Table 68. Gen 2i/3G transmitter (Tx) DC specifications (continued)  
At recommended operating conditions with SDx_AVDD = 1.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
Note:  
1. Terminated by 50 load.  
2.22.1.2 SATA DC receiver (Rx) input characteristics  
This table provides the Gen1i or 1.5 Gbits/s differential receiver input DC characteristics for the SATA interface.  
Table 69. Gen1i/1.5 G receiver (Rx) input DC specifications  
At recommended operating conditions with SDx_AVDD = 1.  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
Differential input voltage  
Differential Rx input impedance  
OOB signal detection threshold  
Note:  
VSATA_RXDIFF  
ZSATA_RXSEIM  
VSATA_OOB  
240  
85  
475  
100  
120  
600  
115  
240  
mV p-p  
1
5
50  
mV p-p  
1. Voltage relative to common of either signal comprising a differential pair  
This table provides the Gen2i or 3 Gbits/s differential receiver input DC characteristics for the SATA interface.  
Table 70. Gen2i/3 G receiver (Rx) input DC specifications  
At recommended operating conditions with SDx_AVDD = 1.  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
Differential input voltage  
Differential Rx input impedance  
OOB signal detection threshold  
Note:  
VSATA_RXDIFF  
ZSATA_RXSEIM  
VSATA_OOB  
275  
85  
475  
100  
120  
750  
115  
275  
mV p-p  
1
2
2
75  
mV p-p  
1. Voltage relative to common of either signal comprising a differential pair  
2. DC impedance  
2.22.2 SATA AC timing specifications  
This section discusses the SATA AC timing specifications.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
81  
Electrical characteristics  
2.22.2.1 AC requirements for SATA REF_CLK  
The AC requirements for the SATA reference clock are listed in this table to be guaranteed by the customer’s application design.  
Table 71. SATA Reference clock input requirements  
At recommended operating conditions with SDx_AVDD = 1  
Uni  
t
Parameter  
Symbol Min  
tCLK_REF  
Typ  
Max  
Note  
SD_REF_CLK/SD_REF_CLK frequency range  
100/125  
/150  
MH  
z
1
SD_REF_CLK/SD_REF_CLK clock frequency tolerance  
tCLK_TOL –350  
+35 pp  
2
0
m
SD_REF_CLK/SD_REF_CLK reference clock duty cycle (measured at 1.6 V) tCLK_DUT 40  
50  
60  
Y
SD_REF_CLK/SD_REF_CLK cycle-to-cycle clock jitter (period jitter)  
tCLK_CJ  
tCLK_PJ  
100 ps  
SD_REF_CLK/SD_REF_CLK total reference clock jitter, phase jitter  
(peak-peak)  
–50  
+50 ps 2, 3,  
4
Note:  
1. Caution: Only 100, 125, and 150 MHz have been tested. In-between values do not work correctly with the rest of the  
system.  
2. At RefClk input  
3. In a frequency band from 150 kHz to 15 MHz at BER of 10-12  
4. Total peak-to-peak deterministic jitter should be less than or equal to 50 ps.  
This figure shows the reference clock timing waveform.  
TH  
Ref_CLK  
TL  
Figure 44. Reference clock timing waveform  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
82  
Freescale Semiconductor  
Electrical characteristics  
2.22.3 AC transmitter output characteristics  
This table provides the differential transmitter output AC characteristics for the SATA interface at Gen1i or 1.5 Gbits/s  
transmission. The AC timing specifications do not include RefClk jitter.  
Table 72. Gen1i/1.5 G transmitter (Tx) AC specifications  
At recommended operating conditions with SDx_AVDD = 1  
Parameter  
Channel speed  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
tCH_SPEED  
TUI  
1.5  
670.2333  
0.355  
0.47  
Gbps  
ps  
1
Unit Interval  
666.4333  
666.6667  
Total jitter data-data 5 UI  
Total jitter, data-data 250 UI  
Deterministic jitter, data-data 5 UI  
Deterministic jitter, data-data 250 UI  
Note:  
USATA_TXTJ5UI  
USATA_TXTJ250UI  
USATA_TXDJ5UI  
USATA_TXDJ250UI  
UI p-p  
UI p-p  
UI p-p  
UI p-p  
1
0.175  
0.22  
1
1
1. Measured at Tx output pins peak to peak phase variation, random data pattern.  
This table provides the differential transmitter output AC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s  
transmission. The AC timing specifications do not include RefClk jitter.  
Table 73. Gen 2i/3 G transmitter (Tx) AC specifications  
At recommended operating conditions with SDx_AVDD = 1  
Parameter  
Channel speed  
Symbol  
Min  
Typ  
Max  
Unit  
Note  
tCH_SPEED  
TUI  
3.0  
335.1167  
0.3  
Gbps  
ps  
1
Unit Interval  
333.2167  
333.3333  
Total jitter fC3dB = fBAUD 10  
Total jitter fC3dB = fBAUD 500  
Total jitter fC3dB = fBAUD 1667  
USATA_TXTJfB/10  
USATA_TXTJfB/500  
USATA_TXTJfB/1667  
USATA_TXDJfB/10  
UI p-p  
UI p-p  
UI p-p  
UI p-p  
0.37  
1
0.55  
1
Deterministic jitter,  
0.17  
1
fC3dB = fBAUD 10  
Deterministic jitter,  
USATA_TXDJfB/500  
0.19  
0.35  
UI p-p  
UI p-p  
1
1
f
C3dB = fBAUD 500  
Deterministic jitter,  
USATA_TXDJfB/1667  
f
C3dB = fBAUD 1667  
Note:  
1. Measured at Tx output pins peak-to-peak phase variation, random data pattern  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
83  
Hardware design considerations  
2.22.4 AC differential receiver input characteristics  
This table provides the Gen1i or 1.5 Gbits/s differential receiver input AC characteristics for the SATA interface. The AC timing  
specifications do not include RefClk jitter.  
Table 74. Gen 1i/1.5G receiver (Rx) AC specifications  
At recommended operating conditions with SDx_AVDD = 1  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
Unit Interval  
TUI  
666.4333  
666.6667  
670.2333  
0.43  
ps  
1
Total jitter data-data 5 UI  
USATA_TXTJ5UI  
USATA_TXTJ250UI  
USATA_TXDJ5UI  
USATA_TXDJ250UI  
UI p-p  
UI p-p  
UI p-p  
UI p-p  
Total jitter, data-data 250 UI  
0.60  
1
Deterministic jitter, data-data 5 UI  
Deterministic jitter, data-data 250 UI  
0.25  
1
0.35  
1
Note:  
1. Measured at receiver  
This table provides the differential receiver input AC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s transmission.  
The AC timing specifications do not include RefClk jitter.  
Table 75. Gen 2i/3G receiver (Rx) AC specifications  
Parameter  
Symbol  
Min  
Typical  
Max  
Unit  
Note  
Unit Interval  
TUI  
333.2167  
333.3333  
335.1167  
0.46  
ps  
1
Total jitter fC3dB = fBAUD 10  
USATA_TXTJfB/10  
USATA_TXTJfB/500  
USATA_TXTJfB/1667  
USATA_TXDJfB/10  
USATA_TXDJfB/500  
USATA_TXDJfB/1667  
UI p-p  
UI p-p  
UI p-p  
UI p-p  
UI p-p  
UI p-p  
Total jitter fC3dB = fBAUD 500  
0.60  
1
Total jitter fC3dB = fBAUD 1667  
Deterministic jitter, fC3dB = fBAUD 10  
Deterministic jitter, fC3dB = fBAUD 500  
0.65  
1
0.35  
1
0.42  
1
Deterministic jitter,  
0.35  
1
fC3dB = fBAUD 1667  
Note:  
1. Measured at receiver  
3
Hardware design considerations  
3.1  
System clocking  
This section describes the PLL configuration of the P1014. Note that the platform clock is identical to the internal Core Complex  
Bus (CCB) clock.  
This device includes 6 PLLs, as follows:  
The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio  
between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in  
Section 3.1.2, “Platform to SYSCLK PLL ratio.”  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
84  
Freescale Semiconductor  
Hardware design considerations  
The e500 core PLL generates the core clock from the platform clock. The frequency ratio between the e500 core clock  
and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 3.1.3, “e500 core  
to platform clock PLL ratio.”  
The DDR PLL generates the clocking for the DDR SDRAM controller. The frequency ratio between DDR clock and  
platform clock is selected using the DDR PLL ratio configuration bits as described in section Section 3.1.4,  
“DDR/SYSCLK PLL ratio.”  
Each of the two SerDes blocks has a PLL.  
USB PHY PLL generates the clocking for internal USB PHY.  
3.1.1  
Clock ranges  
This table provides the clocking specifications for the processor core, platform, memory.  
Table 76. Processor clocking specifications  
Maximum Frequency  
Characteristic  
Unit  
Note  
Min  
Max  
e500 core processor frequency  
Platform CCB bus clock frequency  
Note:  
400  
267  
800  
400  
MHz  
MHz  
1, 2, 3  
1, 4, 5  
1. Caution: The platform clock to SYSCLK ratio and e500 core to platform clock ratio settings must be chosen such that  
the resulting SYSCLK frequency, e500 (core) frequency, and platform clock frequency do not exceed their respective  
maximum or minimum operating frequencies. See Section 3.1.2, “Platform to SYSCLK PLL ratio,and Section 3.1.3,  
“e500 core to platform clock PLL ratio,and Section 3.1.4, “DDR/SYSCLK PLL ratio,” for ratio settings.  
2. The minimum e500 core frequency is based on the minimum platform clock frequency of 267 MHz.  
3. The reset config signal cfg_core_speed must be pulled low if the core frequency is 500MHz or below.  
4. These values are preliminary and subject to change.  
5. The reset config signal cfg_plat_speed must be pulled low if the CCB bus frequency is lower than 300 MHz.  
3.1.1.1  
DDR clock ranges  
The DDR memory controller can run only in asynchronous mode.  
This table provides the clocking specifications for the memory bus.  
Table 77. Memory Bus Clocking specifications  
Characteristic  
Min  
Max  
Unit  
Note  
Memory bus clock frequency  
Note:  
333  
400  
MHz  
1, 2, 3  
1. Caution: The platform clock to SYSCLK ratio and e500 core to platform clock ratio settings must be chosen such that the  
resulting SYSCLK frequency, e500 (core) frequency, and platform frequency do not exceed their respective maximum or  
minimum operating frequencies. See Section 3.1.2, “Platform to SYSCLK PLL ratio,and Section 3.1.3, “e500 core to  
platform clock PLL ratio,and Section 3.1.4, “DDR/SYSCLK PLL ratio,” for ratio settings.  
2. The memory bus clock refers to the P1014 memory controllers’ Dn_MCK[0:5] and Dn_MCK[0:5] output clocks, running at  
half of the DDR data rate.  
3. In asynchronous mode, if the DDR data rate to the CCB clock rate is greater than 3:1 (i.e. DDR=3:CCB=1), than the DDR  
performance monitor statistic accuracy cannot be guaranteed.  
As a general guideline, the following procedures can be used for selecting the DDR data rate or platform frequency:  
1. Start with the processor core frequency selection.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
85  
Hardware design considerations  
2. Once the processor core frequency is determined, select the platform frequency from the options listed in Table 79.  
3. Check the platform to SYSCLK ratio to verify a valid ratio can be choose from Table 81.  
4. DDR data rate must be greater than the platform frequency. In other words, running DDR data rate lower than the  
platform frequency in asynchronous mode is not supported by the P1014.  
5. Verify all clock ratios to ensure that there is no violation to any clock and/or ratio specification.  
3.1.2  
Platform to SYSCLK PLL ratio  
The clock that drives the internal CCB bus is called the platform clock. The frequency of the platform clock is set using the  
following reset signals, as shown in Table 78:  
SYSCLK input signal  
Binary value on IFC_AD[0:2] at power up  
These signals must be pulled to the desired values.  
Table 78. Platform/SYSCLK clock ratios  
Binary Value of  
IFC_AD[0:2]Signals  
Platform: SYSCLK  
Ratio  
000  
001  
4:1  
5:1  
010  
6:1  
All Others  
Reserved  
3.1.3  
e500 core to platform clock PLL ratio  
The clock ratio between the e500 core and the platform clock is determined by the binary value of IFC_AD[3:5] signals at power  
up. Table 79 describes the supported ratios. Note that IFC_AD[6] must be pulled low if the core frequency is 450 MHz or below.  
Table 79. e500 core to platform clock ratios  
Binary Value of  
e500 Core: Platform Ratio  
IFC_AD[3:5]Signals  
010  
011  
1:1  
1.5:1  
2:1  
100  
101  
2.5:1  
3:1  
110  
All Others  
Reserved  
3.1.4  
DDR/SYSCLK PLL ratio  
This table describes the clock ratio between the DDR memory controller complex and the DDR PLL reference clock, SYSCLK,  
which is not the memory bus clock. The DDR memory controller complex clock frequency is equal to the DDR data rate.P1014  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
86  
Freescale Semiconductor  
Hardware design considerations  
Table 80. DDR Clock ratio  
Binary Value of  
IFC_AD[7:8]Signals  
DDR:SYSCLK Ratio  
00  
01  
10  
11  
8:1  
10:1  
12:1  
Reserved  
3.1.5  
Frequency options  
This section discusses interface frequency options.  
3.1.5.1  
SYSCLK and platform frequency options  
This table shows the expected frequency options for SYSCLK and platform frequencies.  
Table 81. SYSCLK and platform frequency options  
SYSCLK (MHz)  
83.33  
Platform:  
SYSCLK Ratio  
66.66  
100.00  
Platform Frequency (MHz)1  
4:1  
5:1  
267  
333  
400  
333  
400  
6:1  
Note:  
1
Platform frequency values are shown rounded down to the  
nearest whole number (decimal place accuracy removed)  
3.2  
Supply power default setting  
P1014 is capable of supporting multiple power supply levels on its I/O supply. Table 82 show the encoding used to select the  
voltage level for each I/O supply.  
Table 82. Default voltage level for BV  
DD  
BVDD_VSEL [0:1]  
I/O Voltage Level  
00  
01  
10  
11  
3.3 V  
2.5 V  
1.8 v  
3.3 v  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
87  
Hardware design considerations  
3.3  
Power supply design and sequencing  
3.3.1  
PLL power supply filtering  
Each of the PLLs is provided with power through independent power supply pins. The AV level should always be equivalent  
DD  
to V , and these voltages must be derived directly from V through a low frequency filter scheme.  
DD  
DD  
The recommended solution for PLL filtering is to provide independent filter circuits per PLL power supply, as illustrated in  
Figure 45, one for each of the AV pins. By providing independent filters to each PLL, the opportunity to cause noise injection  
DD  
from one PLL to the other is reduced.  
This circuit is intended to filter noise in the PLL’s resonant frequency range from a 500-kHz to 10-MHz range. It should be built  
with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr.  
Howard Johnson in High Speed Digital Design: A Handbook of Black Magic (Prentice Hall, 1993), multiple small capacitors  
of equal value are recommended over a single large value capacitor.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize noise coupled from  
DD  
nearby circuits. It should be possible to route directly from the capacitors to the AV pin, which is on the periphery of device  
DD  
footprint, without the inductance of vias.  
This figure shows the PLL power supply filter circuit for AVDD_CORE, AVDD_DDR, AVDD_PLAT  
.
NOTE  
R = 55%  
C1 = 10µF 10%, 603, X5R with ESL 0.5nH  
C2 = 1µF 10%, 402 X5R with ESL 0.5 nH  
R
VDD  
AVDD  
C1  
C2  
Low ESL Surface Mount Capacitors  
GND  
Figure 45. P1014 PLL power supply filter circuit  
The SD1_AV , SD2_AV and USBVDD1_0 signals provides power for the analog portions of the SerDes PLL and USB  
DD  
DD  
PHY PLL. To ensure stability of the internal clock, the power supplied to the PLL is filtered using a circuit similar to the one  
shown in following Figure 46. For maximum effectiveness, the filter circuit should be placed as closely as possible to the device  
balls to ensure it filters out as much noise as possible. The ground connection should be near the SD1_AV , SD2_AV and  
DD  
DD  
USBVDD1_0 balls. The 0.003-µF capacitor is closest to the balls, followed by two 2.2-µF capacitor, and finally the 1-resistor  
to the board supply plane. The capacitors are connected from SD1_AV , SD2_AV and USBVDD1_0 to the ground plane.  
DD  
DD  
Use ceramic chip capacitors with the highest possible self-resonant frequency. All traces should be kept short, wide and direct.  
This figure shows the PLL power supply filter circuit for SD1_AV , SD2_AV and USBVDD1_0.  
DD  
DD  
1.0  
AVDD-SRDS  
2.2 µF 1  
2.2 µF 1  
0.003 µF  
GND  
1. An 0805 sized capacitor is recommended for system initial bring-up  
Figure 46. SerDes PLL power supply filter circuit  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
88  
Freescale Semiconductor  
Hardware design considerations  
3.4  
Decoupling recommendations  
Due to large address and data buses, and high operating frequencies, the device can generate transient power surges and high  
frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching  
other components in the P1014 system. The device itself requires a clean, tightly regulated source of power. Therefore, it is  
recommended that the system designer place at least one decoupling capacitor at each V , BV , OV , GV , and LV  
DD  
DD  
DD  
DD  
DD  
pin of the device. These decoupling capacitors should receive their power from separate V  
BV , OV , GV , and LV  
,
DD  
DD,  
DD  
DD  
DD  
and GND power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly under the  
device using a standard escape pattern. Others may surround the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology) capacitors should be  
used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, feeding the V , BV  
,
DD  
DD  
OV , GV , and LV planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have  
DD  
DD  
DD  
a low ESR (equivalent series resistance) rating to ensure the quick response time necessary. They should also be connected to  
the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS  
tantalum or Sanyo OSCON).  
3.5  
SerDes block power supply decoupling  
recommendations  
The SerDes block requires a clean, tightly regulated source of power (SV and XV ) to ensure low jitter on transmit and  
DD  
DD  
reliable recovery of data in the receiver. An appropriate decoupling scheme is outlined below.  
Only surface mount technology (SMT) capacitors should be used to minimize inductance. Connections from all capacitors to  
power and ground should be done with multiple vias to further reduce inductance.  
1. The board should have at least 10 x 10-nF SMT ceramic chip capacitors as close as possible to the supply balls of the  
device. Where the board has blind vias, these capacitors should be placed directly below the chip supply and ground  
connections. Where the board does not have blind vias, these capacitors should be placed in a ring around the device  
as close to the supply and ground connections as possible.  
2. There should be a 1-µF ceramic chip capacitor on each side of the device. This should be done for all SerDes supplies.  
3. Between the device and any SerDes voltage regulator there should be a 10-µF, low equivalent series resistance (ESR)  
SMT tantalum chip capacitor and a 100-µF, low ESR SMT tantalum chip capacitor. This should be done for all SerDes  
supplies.  
3.6  
Connection recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal level. All unused active  
low inputs should be tied to V , BV , OV , GV , and LV as required. All unused active high inputs should be  
DD  
DD  
DD  
DD  
DD  
connected to GND. All NC (no-connect) signals must remain unconnected. Power and ground connections must be made to all  
external V  
BV , OV , GV , and LV and GND pins of the device.  
DD,  
DD DD DD DD  
3.7 Pull-up and pull-down resistor requirements  
2
The P1014 requires weak pull-up resistors on open drain type pins including I C pins (1 kis recommended) and MPIC  
interrupt pins (2–10 kis recommended).  
Correct operation of the JTAG interface requires configuration of a group of system control pins as demonstrated in Figure 49.  
NOTE  
Care must be taken to ensure that these pins are maintained at a valid deasserted state under  
normal operating conditions, because most have asynchronous behavior, and spurious  
assertion gives unpredictable results.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
89  
Hardware design considerations  
3.8  
Output buffer DC impedance  
The P1014 drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended  
2
driver type (open drain for I C).  
To measure Z (output impedance) for the single-ended drivers, an external resistor is connected from the chip pad to OV or  
0
DD  
GND. Then, the value of each resistor is varied until the pad voltage is OV /2 (see Figure 61). The output impedance is the  
DD  
average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2  
is open) and R is trimmed until the voltage at the pad equals OV /2. R then becomes the resistance of the pull-up devices.  
P
DD  
P
R and R are designed to be close to each other in value. Then, Z = (R + R )/2. Here OV refers to the power supply  
P
N
0
P
N
DD  
associated with that particular pin, to know about the supply associated with any pin see Table 47.  
OVDD  
RN  
SW2  
Pad  
Data  
SW1  
RP  
GND  
Figure 47. Driver Impedance measurement  
This table summarizes the signal impedance targets. The driver impedances are targeted at minimum V , nominal OV  
,
DD  
DD  
90C.  
Table 83. Impedance characteristics  
IFC, Ethernet, DUART, Control,  
Configuration, Power Management  
Impedance  
DDR DRAM Symbol  
Unit  
R
43  
43  
20  
20  
Z0  
Z0  
N
R
P
Note: Nominal supply voltages. See Table 3.  
3.9  
Configuration pin muxing  
The P1014 provides the user with power-on configuration options which can be set through the use of external pull-up or  
pull-down resistors of 4.7 kon certain output pins (see customer visible configuration pins). These pins are generally used as  
output only pins in normal operation.  
While HRESET is asserted however, these pins are treated as inputs. The value presented on these pins while HRESET is  
asserted, is latched when HRESET deasserts, at which time the input receiver is disabled and the I/O circuit takes on its normal  
function. Most of these sampled configuration pins are equipped with an on-chip gated resistor of approximately 20 k. This  
value should permit the 4.7-kresistor to pull the configuration pin to a valid logic low level. The pull-up resistor is enabled  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
90  
Freescale Semiconductor  
Hardware design considerations  
only during HRESET (and for platform /system clocks after HRESET deassertion to ensure capture of the reset value). When  
the input receiver is disabled the pull-up is also, thus allowing functional operation of the pin as an output with minimal signal  
quality or delay disruption. The default value for all configuration bits treated this way has been encoded such that a high voltage  
level puts the device into the default state and external resistors are needed only when non-default settings are required by the  
user.  
Careful board layout, including stubless connections to these pull-down resistors, coupled with the large value of the pull-down  
resistor should minimize the disruption of signal quality or speed for output pins thus configured.  
The platform PLL ratio and e500 PLL ratio configuration pins are not equipped with these default pull-up devices.  
3.10 JTAG configuration signals  
Boundary-scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1  
specification, but is provided on all processors that implement the PowerPC architecture. The device requires TRST to be  
asserted during reset conditions to ensure the JTAG boundary logic does not interfere with normal chip operation. While it is  
possible to force the TAP controller to the reset state using only the TCK and TMS signals, generally systems assert TRST  
during the power-on reset flow. Simply tying TRST to HRESET is not practical because the JTAG interface is also used for  
accessing the common on-chip processor (COP) function.  
The COP function of these processors allow a remote computer system (typically, a PC with dedicated hardware and debugging  
software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG  
port of the processor, with some additional status monitoring signals. The COP port requires the ability to independently assert  
HRESET or TRST in order to fully control the processor. If the target system has independent reset sources, such as voltage  
monitors, watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be merged into  
these signals with logic.  
The arrangement shown in Figure 49 allows the COP port to independently assert HRESET or TRST, while ensuring that the  
target can drive HRESET as well.  
The COP interface has a standard header, shown in Figure 49 for connection to the target system, and is based on the 0.025"  
square-post, 0.100" centered header assembly (often called a Berg header). The connector typically has pin 14 removed as a  
connector key.  
The COP header adds many benefits such as breakpoints, watchpoints, register and memory examination/modification, and  
other standard debugger features. An inexpensive option can be to leave the COP header unpopulated until needed.  
There is no standardized way to number the COP header; consequently, many different pin numbers have been observed from  
emulator vendors. Some are numbered top-to-bottom then left-to-right, while others use left-to-right then top-to-bottom, while  
still others number the pins counter clockwise from pin 1 (as with an IC).  
Regardless of the numbering, the signal placement recommended in Figure 49 is common to all known emulators.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
91  
Hardware design considerations  
OVDD  
10 k  
10 k  
SRESET 6  
SRESET  
HRESET  
From Target  
Board Sources  
(if any)  
HRESET1  
COP_HRESET  
13  
11  
10 k  
10 k  
10 k  
10 k  
COP_SRESET  
5
TRST1  
COP_TRST  
4
2
1
3
COP_VDD_SENSE2  
NC  
10   
4
6
5
7
6
8
5 3  
COP_CHKSTP_OUT  
CKSTP_OUT  
15  
10 k  
9
10  
12  
14 3  
11  
10 k  
KEY  
13  
15  
COP_CHKSTP_IN  
COP_TMS  
No pin  
CKSTP_IN  
TMS  
8
9
1
3
16  
COP_TDO  
COP_TDI  
COP_TCK  
COP Connector  
Physical Pinout  
TDO  
TDI  
7
2
TCK  
10 k  
NC  
NC  
10  
4
12  
16  
Notes:  
1. The COP port and target board should be able to independently assert HRESET and TRST to the processor  
in order to fully control the processor as shown here.  
2. Populate this with a 10 resistor for short-circuit/current-limiting protection.  
3. The KEY location (pin 14) is not physically present on the COP header.  
4. Although pin 12 is defined as a No-Connect, some debug tools may use pin 12 as an additional GND pin for  
improved signal integrity.  
5. This switch is included as a precaution for BSDL testing. The switch should be open during BSDL testing to avoid  
accidentally asserting the TRST line. If BSDL testing is not being performed, this switch should be closed or removed.  
6. Asserting SRESET causes a machine check interrupt to the e500 core.  
Figure 48. JTAG interface connection  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
92  
Freescale Semiconductor  
Hardware design considerations  
2
4
1
3
COP_TDO  
COP_TDI  
NC  
NC  
COP_TRST  
COP_VDD_SENSE  
COP_CHKSTP_IN  
5
7
6
8
COP_TCK  
COP_TMS  
COP_SRESET  
9
10  
12  
NC  
NC  
11  
KEY  
13  
15  
COP_HRESET  
No pin  
GND  
COP_CHKSTP_OUT  
16  
Figure 49. COP connector physical pinout  
3.10.1 Termination of unused signals  
If the JTAG interface and COP header is not used, Freescale recommends the following connections:  
TRST should be tied to HRESET through a 0 kisolation resistor so that it is asserted when the system reset signal  
(HRESET) is asserted, ensuring that the JTAG scan chain is initialized during the power-on reset flow. Freescale  
recommends that the COP header be designed into the system as shown in Figure 49. If this is not possible, the isolation  
resistor allows future access to TRST in case a JTAG interface may need to be wired onto the system in future debug  
situations.  
Tie TCK to OV through a 10 kresistor. This prevents TCK from changing state and reading incorrect data into  
the device.  
DD  
No connection is required for TDI, TMS, or TDO.  
3.11 Guidelines for high-speed interface termination  
If the high-speed SerDes interface is not used at all, the unused pin should be terminated as described in this section. However,  
the SerDes must always have power applied to its supply pins.  
The following pins must be left unconnected (float):  
SD_TX[3:0]  
SD_TX[3:0]  
The following pins must be connected to GND:  
SD_RX[3:0]  
SD_RX[3:0]  
SD_REF_CLK  
SD_REF_CLK  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
93  
Hardware design considerations  
3.12 Thermal  
This section describes the thermal specifications of the P1014.  
3.12.1 Thermal characteristics  
This table provides the package thermal characteristics.  
Table 84. Package thermal characteristics  
Characteristic  
JEDEC Board  
Symbol  
Value  
Unit  
Note  
Junction-to-ambient Natural Convection  
Junction-to-ambient Natural Convection  
Junction-to-ambient (at 200 ft/min)  
Junction-to-ambient (at 200 ft/min)  
Junction-to-board thermal  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
RJA  
RJA  
RJMA  
RJMA  
RJB  
RJC  
JT  
34  
22  
27  
18  
11  
7
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
1, 2  
1, 2, 3  
1, 3  
1, 3  
4
Junction-to-case thermal  
5
Junction-to-package top thermal  
Note:  
Natural Convection  
2
6
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 and JESD51-6 with the board (JESD51-9) horizontal.  
3. Per JEDEC JESD51-6 with board horizontal.  
4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JT.  
This table provides the thermal resistance with heat sink in open flow.  
Table 85. Thermal resistance with heat sink in open flow  
Heat Sink with Thermal Grease  
Air Flow  
Thermal Resistance (C/W)  
23x23x10 mm Pin Fin  
Natural Convection  
0.5 m/s  
16.9  
13.4  
11.6  
10.0  
13.8  
10.7  
9.3  
1 m/s  
2 m/s  
35x35x18 mm Pin Fin  
Natural Convection  
0.5 m/s  
1 m/s  
2 m/s  
8.6  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
94  
Freescale Semiconductor  
Hardware design considerations  
Table 85. Thermal resistance with heat sink in open flow (continued)  
Heat Sink with Thermal Grease  
Air Flow  
Thermal Resistance (C/W)  
53x54x25 mm Pin Fin  
Natural Convection  
0.5 m/s  
11.5  
9.1  
8.3  
7.9  
1 m/s  
2 m/s  
Simulations with heat sinks were done with the package mounted on the 2s2p thermal test board. A power value of TBD was  
used for the heat sink simulations.The thermal interface material was a typical thermal grease such as Dow Corning 340 or  
Wakefield 120 grease.  
3.12.2 Recommended thermal model  
Information about Flotherm models of the package or thermal data not available in this document can be obtained from your  
local Freescale sales office.  
3.12.3 Thermal management information  
This section provides thermal management information for the plastic ball grid array (WB-TePBGA) package for air-cooled  
applications. Proper thermal control design is primarily dependent on the system-level design—the heat sink, airflow, and  
thermal interface material. The recommended attachment method to the heat sink is shown in Figure 50. The heat sink should  
be attached to the printed-circuit board with the spring force centered over the die. This spring force should not exceed 10  
pounds force (45 Newton).  
WB-TePBGA Package  
Heat Sink  
Heat Sink  
Clip  
Thermal Interface Material  
Wire  
Die  
Printed-Circuit Board  
Figure 50. Package exploded cross-sectional view with several heat sink options  
The system board designer can choose between several types of heat sinks to place on the device. Ultimately, the final selection  
of an appropriate heat sink depends on factors such as thermal performance at a given air velocity, spatial volume, mass,  
attachment method, assembly, and cost.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
95  
Package information  
4
Package information  
The following section describes the detailed content and mechanical description of the package.  
4.1  
Package parameters for P1014  
The package type is 19mm 19mm, 425 plastic ball grid array (WB-TePBGA-1). The package parameters are as follows:  
Package outline  
Interconnects  
19 mm 19mm  
425  
Pitch  
0.8 mm  
Module height (typical)  
Solder Balls  
1.50 mm to 1.90 mm (Maximum)  
3.5% Ag, 96.5% Sn  
0.45 mm  
Ball diameter (typical)  
4.2  
Mechanical dimensions of P1014 WB-TePBGA  
This figure shows mechanical dimensions and bottom surface nomenclature of the P1014 WB-TePBGA.  
NOTE  
All dimensions are in millimeters.  
Dimensioning and tolerancing per ASME Y14. 5M-1994.  
Maximum solder ball diameter measured parallel to Datum A.  
Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
Parallelism measurement shall exclude any effect of mark on top surface of package.  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
96  
Freescale Semiconductor  
Package information  
Figure 51. Mechanical Dimensions of P1014 WB-TePBGA package  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
97  
Ordering information  
5
Ordering information  
This table provides the Freescale part numbering nomenclature for the P1010. Note that the individual part numbers correspond  
to a maximum processor core frequency. For available frequencies, contact your local Freescale sales office. Each part number  
also contains a revision code which refers to the die mask revision number.  
Table 86. Part numbering nomenclature  
p
1
01  
a
x
t
e
n
c
d
r
P = 45 nm  
1
01 =  
Single  
core  
4
P = Prototype  
C = Qual’d to  
Commercial Tier X = Ext. N = SEC  
N = Qual’d to  
Industrial Tier  
S = Std E = SEC  
Temp  
5 =  
H = 800 MHz H = 800  
A =  
Rev 1.0  
B =  
Present TEPBGA-1 F = 667 MHz  
Pb free D = 533 MHz  
MHZ  
F= 667  
MHz  
Temp  
Not  
Rev 2.01  
Present  
5.1  
Part marking  
Parts are marked as the example shown in Figure 52.  
NOTE  
ATWLYYWW is the traceability code.  
CCCCC is the country code.  
MMMMM is the mask number.  
YWWLAZ is the assembly traceability code.  
P101axtencdr is the orderable part number. See Table 86 for details.  
P101axtencdr  
CPU/DDR MHZ  
ATWLYYWW  
CCCCC  
*MMMMM  
YWWLAZ  
TePBGA II  
Figure 52. Part marking for WB-TePBGA device  
6
Product documentation  
The following documents are required for a complete description of the device and are needed to design properly with the part:  
P1014 QorIQ Integrated Processor Reference Manual (P1014RM)  
e500 PowerPC Core Reference Manual (E500CORERM)  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
98  
Freescale Semiconductor  
Revision history  
7
Revision history  
This table summarizes a revision history for this document.  
Table 87. Revision history  
Rev.  
Number  
Date  
Substantive Change(s)  
4
3
05/2014  
04/2014  
• In Table 86 added part numbering information for die revision 2.01.  
• In Table 1, modified IO type of SD2_RX_1 from output to input.  
• In note above Figure 2, added serdes reference clock.  
• In Table 2, modified characteristics column for symbol ‘LVDD’, ‘LVIN’, ‘OVDD’, and ‘OVIN’.  
• In Table 3, modified characteristics column for symbol ‘LVDD’, ‘LVIN’, ‘OVDD’, and ‘OVIN’.  
• In Table 44, added min frequency for USB_CLK_IN.  
• In Table 57, replaced BVIN with OVIN.  
• In Table 58, replaced BVIN with LVIN.  
• Removed the table, “GPIO DC electrical characteristics (1.8 V)”.  
• Added a note in Section 2.18.1, “GPIO DC electrical characteristics.  
2
1
03/2013  
06/2012  
• In Table 3, modified names of temperature ranges.  
• In Table 9, added power numbers for 1000 MHz CPU frequency.  
• In Table 9, added power numbers for SVDD power for typical and maximum.  
• In Table 76, modified max core clock frequency to 1000 MHz.  
• In Table 86, added option for parts with CPU frequency of 1000 MHz.  
• Everywhere replaced signal name ALE with AVD.  
• In Table 1, replaced note references from 5 to 25 for following signals, cfg_sys_pll_0, cfg_sys_pll_1,  
cfg_sys_pll_2, cfg_ddr_pll_0, cfg_ddr_pll_1, cfg_core_pll_0, cfg_core_pll_1, cfg_core_pll_2,  
cfg_rom_loc[0], cfg_rom_loc[1], cfg_rom_loc[2], cfg_rom_loc[3] because these signals doesn’t have  
internal pull-ups during POR sequence.  
• In Table 1, modified note associated with IBIAS_REXT signal. Modified IBIAS_REXT termination  
circuit and added an programming sequence.  
• In Table 3 removed note 3.  
• In Table 9, modified typical and max I/O power numbers for USB PHY.  
• In Table 5, modified “Maximum valid-to-high impedance time for actively driven POR configurations  
with respect to negation of HRESET (max)” from 8 to 5.  
• In Table 22, modified tDDKHDX, tDDKLDX (min) for 800MHz from 275 to 225 ns.  
• In Table 32, modified note 4 to represent correct register fields.  
• In note 4 of Table 48, replaced tLBOTOT with tIBOTOT.  
• In Table 54, modified specifications for tJTDVKH and tJTKLDV.  
• From Figure 31, removed tI2CR and tI2CF because those are not needed. These parameters are  
not mentioned in table either.  
• In Table 44, under conditions colum for total input jitter spec for USBPHY_CLK, changed “peak to  
peak“ to “RMS“.  
0
11/2011 Initial public release  
P1014 QorIQ Integrated Processor Hardware Specifications, Rev. 4  
Freescale Semiconductor  
99  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale and the Freescale logo are trademarks of Freescale  
Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QorIQ is a trademark of  
Freescale Semiconductor, Inc. All other product or service names are the  
property of their respective owners. The Power Architecture and Power.org  
word marks and the Power and Power.org logos and related marks are  
trademarks and service marks licensed by Power.org.  
© 2011-2014 Freescale Semiconductor, Inc.  
Document Number: P1014EC  
Rev. 4  
05/2014  

相关型号:

P1014NSE5FFA

QorIQ, 32-Bit Power Arch, SoC, 667 MHz, USB, SATA, SEC, GbE, PCIe, DDR3, 0-105C
NXP

P1014NSE5FFB

QorIQ, 32-Bit Power Arch, SoC, 667 MHz, USB, SATA, SEC, GbE, PCIe, DDR3, 0-105C, Rev2.01
NXP

P1014NSE5HFA

Communications Processors
FREESCALE

P1014NSE5HHB

QorIQ, 32-Bit Power Arch, SoC, 800 MHz, USB, SATA, SEC, GbE, PCIe, DDR3, 0-105C, Rev2.01
NXP

P1014NSN5DFA

Wireless LAN access points, SOHO/SMB routers
FREESCALE

P1014NSN5DFB

QorIQ, 32-Bit Power Arch, SoC, 533 MHz, USB, SATA, GbE, PCIe, DDR3, 0-105C, Rev2.01
NXP

P1014NSN5FFB

QorIQ, 32-Bit Power Arch, SoC, 667 MHz, USB, SATA, GbE, PCIe, DDR3, 0-105C, Rev2.01
NXP

P1014NSN5HFB

QorIQ, 32-Bit Power Arch, SoC, 800 MHz, USB, SATA, GbE, PCIe, DDR3, 0-105C, Rev2.01
NXP

P1014NSN5HHB

QorIQ, 32-Bit Power Arch, SoC, 800 MHz, USB, SATA, GbE, PCIe, DDR3, 0-105C, Rev2.01
NXP

P1014NXE5DFB

QorIQ, 32-Bit Power Arch, SoC, 533 MHz, USB, SATA, SEC, GbE, PCIe, DDR3, -40C to 105C, Rev2.01
NXP

P1014NXE5FFB

QorIQ, 32-Bit Power Arch, SoC, 667 MHz, USB, SATA, SEC, GbE, PCIe, DDR3, -40C to 105C, Rev2.01
NXP

P1014NXE5HFB

32-BIT, 800 MHz, RISC PROCESSOR, PBGA425, 19 X 19 MM, 1.90 MM HEIGHT, 0.80 MM PITCH, LEAD FREE, PLASTIC, TEPBGA-425
NXP