P80C851FBB [NXP]

CMOS single-chip 8-bit microcontroller with on-chip EEPROM; CMOS单芯片8位微控制器的片上EEPROM
P80C851FBB
型号: P80C851FBB
厂家: NXP    NXP
描述:

CMOS single-chip 8-bit microcontroller with on-chip EEPROM
CMOS单芯片8位微控制器的片上EEPROM

微控制器 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总22页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
80C851/83C851  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
Product specification  
1998 Jul 03  
Supersedes data of 1992 Nov 25  
IC20 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
DESCRIPTION  
FEATURES  
80C51 based architecture  
4k × 8 ROM  
The Philips 80C851/83C851 is a  
high-performance microcontroller fabricated  
with Philips high-density CMOS technology.  
The 80C851/83C851 has the same  
instruction set as the 80C51. The Philips  
CMOS technology combines the high speed  
and density characteristics of HMOS with the  
low power attributes of CMOS. The Philips  
epitaxial substrate minimizes latch-up  
sensitivity.  
128 × 8 RAM  
Two 16-bit counter/timers  
Full duplex serial channel  
Boolean processor  
Non-volatile 256 × 8-bit EEPROM  
(electrically erasable programmable read  
only memory)  
The 80C851/83C851 contains a 4k × 8 ROM  
with mask-programmable ROM code  
On-chip voltage multiplier for erase/write  
10,000 erase/write cycles per byte  
10 years non-volatile data retention  
Infinite number of read cycles  
User selectable security mode  
Block erase capability  
protection, a 128 × 8 RAM, 256 × 8  
EEPROM, 32 I/O lines, two 16-bit  
counter/timers, a seven-source, five vector,  
two-priority level nested interrupt structure,  
a serial I/O port for either multi-processor  
communications, I/O expansion or full duplex  
UART, and on-chip oscillator and clock  
circuits.  
Mask-programmable ROM code protection  
Memory addressing capability  
64k ROM and 64k RAM  
In addition, the 80C851/83C851 has two  
software selectable modes of power  
reduction — idle mode and power-down  
mode. The idle mode freezes the CPU while  
allowing the RAM, timers, serial port, and  
interrupt system to continue functioning. The  
power-down mode saves the RAM and  
EEPROM contents but freezes the oscillator,  
causing all other chip functions to be  
inoperative.  
Power control modes:  
Idle mode  
Power-down mode  
CMOS and TTL compatible  
1.2 to 16MHz or 3.5 to 24MHz  
Three package styles  
Three temperature ranges  
ROM code protection  
ORDERING INFORMATION  
PHILIPS  
PART ORDER NUMBER  
PART MARKING  
NORTH AMERICA PHILIPS  
PART ORDER NUMBER  
°
TEMPERATURE RANGE C  
AND PACKAGE  
ROMless  
Version  
ROM Version  
ROMless  
Version  
ROM Version  
FREQ.  
(MHz)  
DRAWING  
NUMBER  
P80C851 FBP P83C851 FBP S80C851-4N40 S83C851-4N40  
P80C851 IBP P83C851 IBP  
P80C851 FBA P83C851 FBA S80C851-4A44 S83C851-4A44  
P80C851 IBA P83C851 IBA  
P80C851 FBB P83C851 FBB S80C851-4B44 S83C851-4B44  
0 to +70, Plastic Dual In-line Package  
0 to +70, Plastic Dual In-line Package  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Plastic Quad Flat Pack  
1.2 to 16  
3.5 to 24  
1.2 to 16  
3.5 to 24  
1.2 to 16  
3.5 to 24  
SOT129-1  
SOT129-1  
SOT187-1  
SOT187-1  
SOT307-2  
SOT307-2  
SOT129-1  
SOT187-1  
SOT307-2  
SOT129-1  
SOT187-1  
SOT307-2  
P80C851 IBB  
P80C851 FFP  
P80C851 FFA  
P80C851 FFB  
P83C851 IBB  
P83C851 FFP  
P83C851 FFA  
P83C851 FFB  
0 to +70, Plastic Quad Flat Pack  
S80C851-5N40 S83C851-5N40 –40 to +85, Plastic Dual In-line Package 1.2 to 16  
S80C851-5A44 S83C851-5A44  
S80C851-5B44 S83C851-5B44  
–40 to +85, Plastic Leaded Chip Carrier  
–40 to +85, Plastic Quad Flat Pack  
1.2 to 16  
1.2 to 16  
P80C851 FHP P83C851 FHP S80C851-6N40 S83C851-6N40 –40 to +125, Plastic Dual In-line Package 1.2 to 16  
P80C851 FHA P83C851 FHA S80C851-6A44 S83C851-6A44 –40 to +125, Plastic Leaded Chip Carrier 1.2 to 16  
P80C851 FHB P83C851 FHB S80C851-6B44 S83C851-6B44  
–40 to +125, Plastic Quad Flat Pack  
1.2 to 16  
2
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
BLOCK DIAGRAM  
FREQUENCY  
REFERENCE  
COUNTERS  
T0 T1  
XTAL2  
XTAL1  
OSCILLATOR  
PROGRAM  
MEMORY  
(4K x 8 ROM)  
DATA  
TWO 16-BIT  
TIMER/EVENT  
COUNTERS  
EEPROM  
(256 x 8)  
AND  
MEMORY  
TIMING  
(128 x 8 RAM)  
CPU  
INTERNAL  
INTERRUPTS  
64K BYTE BUS  
EXPANSION  
CONTRTOL  
PROG SERIAL PORT  
FULL DUPLEX UART  
SYNCHRONOUS SHIFT  
PROGRAMMABLE I/O  
SERIAL IN  
SERIAL OUT  
INT0  
INT1  
CONTROL  
PARALLEL PORTS,  
ADDRESS/DATA BUS  
AND I/O PINS  
SHARED WITH  
PORT 3  
EXTERNAL  
INTERRUPTS  
LOGIC SYMBOL  
V
V
SS  
DD  
XTAL1  
ADDRESS AND  
DATA BUS  
XTAL2  
RST  
EA  
PSEN  
ALE  
RxD  
TxD  
INT0  
INT1  
T0  
ADDRESS BUS  
T1  
WR  
RD  
3
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
PIN CONFIGURATIONS  
PLASTIC LEADED CHIP  
CARRIER PIN FUNCTIONS  
PLASTIC QUAD FLAT PACK  
PIN FUNCTIONS  
44  
34  
P1.0  
P1.1  
40  
39  
V
DD  
6
1
40  
1
2
3
P0.0/AD0  
7
39  
29  
1
33  
23  
P1.2  
P1.3  
P1.4  
38 P0.1/AD1  
37  
4
5
P0.2/AD2  
36 P0.3/AD3  
35  
PLCC  
PQFP  
P1.5  
P1.6  
P1.7  
RST  
6
7
8
9
P0.4/AD4  
34 P0.5/AD5  
33  
11  
17  
18  
28  
P0.6/AD6  
12  
22  
32 P0.7/AD7  
EA  
Pin  
1
Function  
NC*  
Pin  
Function  
NC*  
Pin  
1
Function  
P1.5  
Pin  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Function  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN  
31  
DUAL  
IN-LINE  
PACKAGE  
RxD/P3.0 10  
TxD/P3.1 11  
INT0/P3.2 12  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
2
P1.0  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN  
2
P1.6  
30 ALE  
29  
3
P1.1  
3
P1.7  
PSEN  
28 P2.7/A15  
27  
4
P1.2  
4
RST  
5
P1.3  
5
P3.0/RxD  
NC*  
ALE  
13  
INT1/P3.3  
6
P1.4  
6
NC*  
P2.6/A14  
T0/P3.4 14  
T1/P3.5 15  
WR/P3.6 16  
RD/P3.7 17  
XTAL2 18  
XTAL1 19  
7
P1.5  
7
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7RD  
XTAL2  
XTAL1  
EA  
8
P1.6  
8
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
26 P2.5/A13  
25 P2.4/A12  
9
P1.7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
RST  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
P3.0/RxD  
NC*  
ALE  
24  
P2.3/A11  
23 P2.2/A10  
22  
NC*  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
XTAL2  
XTAL1  
EA  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
P2.1/A9  
21 P2.0/A8  
V
20  
SS  
V
V
V
SS  
DD  
SS  
NC*  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
6
1
40  
7
39  
V
V
DD  
SS  
* NO INTERNAL CONNECTION  
* NO INTERNAL CONNECTION  
PLASTIC  
LEADED  
CHIP  
CARRIER  
17  
29  
18  
28  
44  
34  
1
33  
PLASTIC  
QUAD  
FLAT  
PACK  
11  
23  
12  
22  
4
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
PIN DESCRIPTION  
PIN NO.  
MNEMONIC  
DIP  
20  
LCC  
22  
QFP  
16, 39  
38  
TYPE  
NAME AND FUNCTION  
V
SS  
V
DD  
I
I
Ground: 0V reference.  
40  
44  
Power Supply: This is the power supply voltage for normal, idle, and power-down  
operation.  
P0.0–0.7  
39–32 43–36 37–30  
I/O  
I/O  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to  
them float and can be used as high-impedance inputs. Port 0 is also the multiplexed  
low-order address and data bus during accesses to external program and data memory.  
In this application, it uses strong internal pull-ups when emitting 1s.  
P1.0–P1.7  
P2.0–P2.7  
1–8  
2–9  
40–44,  
1–3  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have  
1s written to them are pulled high by the internal pull-ups and can be used as inputs. As  
inputs, port 1 pins that are externally pulled low will source current because of the  
internal pull-ups. (See DC Electrical Characteristics: I ).  
IL  
21–28 24–31 18–25  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have  
1s written to them are pulled high by the internal pull-ups and can be used as inputs. As  
inputs, port 2 pins that are externally being pulled low will source current because of the  
internal pull-ups. (See DC Electrical Characteristics: I ). Port 2 emits the high-order  
IL  
address byte during fetches from external program memory and during accesses to  
external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it  
uses strong internal pull-ups when emitting 1s. During accesses to external data memory  
that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function  
register.  
P3.0–P3.7  
10–17  
11,  
13–19  
5,  
7–13  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have  
1s written to them are pulled high by the internal pull-ups and can be used as inputs. As  
inputs, port 3 pins that are externally being pulled low will source current because of the  
pull-ups. (See DC Electrical Characteristics: I ). Port 3 also serves the special features  
IL  
of the SC80C51 family, as listed below:  
10  
11  
12  
13  
14  
15  
16  
17  
11  
13  
14  
15  
16  
17  
18  
19  
5
7
8
I
O
I
I
I
I
O
O
RxD (P3.0): Serial input port  
TxD (P3.1): Serial output port  
INT0 (P3.2): External interrupt  
INT1 (P3.3): External interrupt  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
9
10  
11  
12  
13  
RST  
ALE  
9
10  
4
I
Reset: A high on this pin for two machine cycles while the oscillator is running, resets the  
device. An internal diffused resistor to V permits a power-on reset using only an  
SS  
external capacitor to V  
.
DD  
30  
33  
27  
I/O  
Address Latch Enable: Output pulse for latching the low byte of the address during an  
access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6  
the oscillator frequency, and can be used for external timing or clocking. Note that one  
ALE pulse is skipped during each access to external data memory.  
PSEN  
EA  
29  
31  
32  
35  
26  
29  
O
I
Program Store Enable: The read strobe to external program memory. When the device  
is executing code from the external program memory, PSEN is activated twice each  
machine cycle, except that two PSEN activations are skipped during each access to  
external data memory. PSEN is not activated during fetches from internal program  
memory.  
External Access Enable: If during a RESET, EA is held at TTL, level HIGH, the CPU  
executes out of the internal program memory ROM provided the Program Counter is less  
than 4096. If during a RESET, EA is held a TTL LOW level, the CPU executes out of  
external program memory. EA is not allowed to float.  
XTAL1  
XTAL2  
19  
18  
21  
20  
15  
14  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock  
generator circuits.  
O
Crystal 2: Output from the inverting oscillator amplifier.  
5
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
Table 1.  
8XC851 Special Function Registers  
DIRECT  
DESCRIPTION  
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION  
ADDRESS MSB  
RESET  
VALUE  
SYMBOL  
LSB  
E0  
ACC*  
B*  
Accumulator  
B register  
E0H  
F0H  
E7  
F7  
EF  
E6  
F6  
EE  
E5  
F5  
E4  
F4  
E3  
F3  
EB  
E2  
F2  
EA  
E1  
F1  
E9  
00H  
F0  
00H  
ED  
EC  
E8  
DPTR:  
Data pointer  
(2 bytes):  
High byte  
Low byte  
DPH  
DPL  
83H  
82H  
00H  
00H  
EADRH#  
EEPROM addr  
reg-high  
F3H  
F2H  
F6H  
F4H  
F5H  
80H  
EADRL#  
EEPROM addr  
reg-low  
00H  
ECNTRL# EEPROM control reg  
IFE  
EEINT  
EWP  
ECNTR ECNTR ECNTR ECNTR 00H  
L3  
L2  
L1  
L0  
EDAT#  
ETIM#  
EEPROM data  
register  
xxH  
08H  
EEPROM timer  
register  
BF  
BE  
BD  
BC  
PS  
BB  
BA  
B9  
B8  
IP*  
Interrupt priority  
B8H  
PT1  
PX1  
PT0  
PX0  
xxx00000B  
AF  
EA  
AE  
AD  
AC  
ES  
84  
94  
A4  
B4  
AB  
ET1  
83  
AA  
EX1  
82  
A9  
ET0  
81  
A8  
EX0  
80  
IE*  
Interrupt enable  
Port 0  
A8H  
80H  
90H  
A0H  
B0H  
87H  
0xx00000B  
FFH  
P0*  
87  
86  
96  
A6  
B6  
85  
95  
A5  
B5  
P1*  
Port 1  
97  
93  
92  
91  
90  
FFH  
P2*  
Port 2  
A7  
A3  
A2  
A1  
A0  
FFH  
P3*  
Port 3  
B7  
B3  
B2  
B1  
B0  
FFH  
PCON  
Power control  
SMOD  
GF1  
GF0  
PD  
IDL  
0xxx0000B  
D7  
CY  
D6  
AC  
D5  
F0  
D4  
D3  
D2  
D1  
D0  
P
PSW*  
SBUF  
Program status word  
Serial data buffer  
D0H  
99H  
RS1  
RS0  
OV  
00H  
xxxxxxxxB  
9F  
9E  
9D  
9C  
9B  
9A  
99  
TI  
98  
RI  
SCON*  
SP  
Serial port control  
Stack pointer  
98H  
81H  
SM0  
SM1  
SM2  
REN  
TB8  
RB8  
00H  
07H  
00H  
00H  
8F  
8E  
8D  
8C  
8B  
8A  
89  
88  
TCON*  
Timer/counter con-  
trol  
88H  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
TMOD  
TH0  
TH1  
TL0  
Timer/counter mode  
Timer 0 high byte  
Timer 1 high byte  
Timer 0 low byte  
Timer 1 low byte  
89H  
8CH  
8DH  
8AH  
8BH  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
00H  
00H  
00H  
00H  
00H  
TL1  
*
#
SFRs are bit addressable.  
SFRs are modified from or added to the 80C51 SFRs.  
6
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
EADRH register address is F3H. The EADRL  
register address is F2H.  
The ETIM register address is F5H. Table 2  
contains the values which must be written to  
the ETIM register by software for various  
oscillator frequencies (the default value is  
08H after RESET).  
EEPROM  
Communications between the CPU and the  
EEPROM is accomplished via 5 special  
function registers; 2 address registers (high  
and low byte), 1 data register for read and  
write operations, 1 control register, and 1  
timer register to adapt the erase/write time to  
the clock frequency. All registers can be read  
and written. Figure 1 shows a block diagram  
of the CPU, the EEPROM and the interface.  
Data Register (EDAT)  
This register is required for read and write  
operations and also for row/block erase. In  
write mode, its contents are written to the  
addressed byte (for “row erase” and “block  
erase” the contents are don’t care). The write  
pulse starts all operations, except read. In  
read mode, EDAT contains the data of the  
addressed byte. The EDAT register address  
is F4H.  
The general formula is:  
2ms Write time:  
fXTAL1 [kHz]  
Value (decimal,  
to be rounded up)  
+
* 2  
512  
Register and Functional  
Description  
Address Register (EADRH, EADRL)  
10ms Write time:  
fXTAL1 [kHz]  
96  
Value (decimal)  
+
* 2  
Timer Register (ETIM)  
The timer register is required to adapt the  
erase/write time to the oscillator frequency.  
The user has to ensure that the erase or  
write (program) time is neither too short or  
too long.  
The lower byte contains the address of one  
of the 256 bytes. The higher byte (EADRH) is  
for future extensions and for addressing the  
security bits (see Security Facilities). The  
Control Register (ECNTRL)  
See Figure 2 for a description of this register.  
The ECNTRL register address is F6H.  
Table 2.  
Values for the Timer Register (ETIM)  
VALUES FOR ETIM  
10ms WRITE TIME  
f
2ms WRITE TIME  
HEX DEC  
XTAL1  
HEX  
DEC  
1.0MHz  
02  
04  
06  
08  
0A  
0C  
0E  
10  
12  
14  
16  
18  
1A  
1C  
1E  
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
08  
13  
1D  
28  
32  
3C  
47  
51  
5C  
66  
71  
7B  
8
19  
29  
40  
50  
60  
71  
81  
92  
2.0MHz  
3.0MHz  
4.0MHz  
5.0MHz  
6.0MHz  
7.0MHz  
8.0MHz  
9.0MHz  
10.0MHz  
11.0MHz  
12.0MHz  
13.0MHz  
14.0MHz  
15.0MHz  
102  
113  
123  
16.0MHz  
.
.
24.0MHz  
2C  
4745  
INTERRUPT  
CONTROL  
LOGIC  
8
SEQUENCER  
MATRIX  
POWER-DOWN IDLE  
EEPROM  
CLOCK  
GENERATOR  
RESET  
CLK  
3
5
COLUMN  
ROW  
ECNTRL  
ETIM  
DECODER  
DECODER  
CPU  
8
3
8
EDATA  
EADRH  
EADRL  
INTERNAL BUS  
Figure 1. EEPROM Interface Block Diagram  
7
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
7
6
5
4
3
2
1
0
EWP  
– –  
IFE  
EEINT  
ECNTRL3 ECNTRL2 ECNTRL1 ECNTRL0  
Bit  
ECNTRL.7  
Symbol  
IFE  
Function  
Active high EEPROM interrupt flag: set by the sequencer or by software;  
reset by software.  
When set and enabled, this flag forces an interrupt to the same vector as the  
serial port interrupt (see Interrupt section).  
EEPROM interrupt enable: set and reset by software (active high).  
Erase/write in progress flag: set and reset by the sequencer (active high).  
When EWP is set, access to the EEPROM is not possible. EWP cannot be set or  
reset by software.  
ECNTRL.6  
ECNTRL.5  
EEINT  
EWP  
ECNTRL.4  
ECCTRL.3–  
ECNTRL.0  
Reserved.  
See table below.  
Operation  
ECNTRL.3 ECNTRL.2 ECNTRL.1 ECNTRL.0  
Byte mode  
Row erase  
Page write*  
Page erase/write*  
block erase  
0
1
1
0
1
0
0
0
1
0
0
0
*Future products.  
Byte mode:  
Read mode:  
Write mode:  
Normal EEPROM mode, default mode after reset. In this mode, data can be read and  
written to one byte at a time.  
This is the default mode when byte mode is selected. This means that the contents of the  
addressed byte are available in the data register.  
This mode is activated by writing to the data register. The address register must be loaded  
first. Since the old contents are read first (by default), this allows the sequencer to decide  
whether an erase/write or write cycle only (data = 00H) is required.  
Row erase:  
In this mode, the addressed row is cleared. The three LSBs of EADRL are not significant,  
i.e. the 8 bytes addressed by EADRL are cleared in the same time normally needed to clear  
one byte (t  
= t = t ). For the following write modes, only the write and not the  
E W  
ROWERASE  
erase/write cycle is required. For example, using the row erase mode, programming 8 bytes  
takes t = t + 8 × t compared to t = 8 × t + 8 × t (t = t = t ).  
t
TOTOAL  
E
W
TOTAL  
E
W
E
ERASE  
W
WRITE  
Page write:  
For future products.  
Page erase/write: For future products.  
Block erase: In this mode all 256 bytes are cleared. The byte containing the security bits is also cleared.  
= t . The contents of EADRH, EADRL and EDAT are insignificant.  
t
BLOCKERASE  
E
Program Sequences and Register Contents after Reset  
The contents of the EEPROM registers after a Reset are the default values:  
EADRH  
EADRL  
ETIM  
ECNTRL  
EDAT  
= 1xxxxxxxB  
= 00H  
= 08H  
= 00H  
= xxH  
(security bit address)  
(security bit address)  
(minimum erase time with the lowest permissible oscillator frequency)  
(Byte mode, read)  
(security bit)  
Initialize:  
MOV ETIM, ..  
MOV EADRH, ..  
Read:  
MOV EADRL, ..  
MOV .., EDAT  
Write:  
MOV EADRL, ..  
MOV EDAT, ..  
Erase row: MOV EADRL, ..  
MOV ECNTRL, #0CH  
Row address. 3LSBs don’t care  
Erase row mode  
MOV EDAT, .. (EDAT) don’t care  
Erase block: MOV ECNTRL, 0AH  
Erase block mode  
MOV EDAT, .. (EDAT) don’t care  
If the security bit is to be altered, the program generally starts as follows:  
MOV EADRH, #80H  
MOV EADRL, #00H  
Figure 2. Control Register (ECNTRL)  
8
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
the EA pin low or by passing the 4K  
mode to internal access within the MOVC  
cycle.  
Security Facilities  
boundary). For SB = 1 and “external access”  
only, the “block erase” mode is enabled. The  
program sequence has to be as follows:  
EEPROM Protection  
Additionally, a mask-programmable ROM  
code protection facility is available. When the  
program memory passes the 4K boundary  
using both the internal and external ROMs, it  
is not possible to access the internal ROM  
from the external program memory if the  
mask-programmable ROM security bit is set.  
An access to the lower 4K bytes of program  
memory using the MOVC instruction is only  
possible while executing internal program  
memory.  
The EEPROM is protected using four security  
bits which are contained in an extra  
EEPROM byte at address 8000H  
(EADRH/EADRL). They can be set or cleared  
by software. To activate the EEPROM  
protection, the program sequence in byte  
mode must be as follows:  
MOV EADRH, #80H (security byte address)  
MOV EADRL, #00H (security byte address)  
MOV ECNTRL, #0AH (block erase mode)  
MOV EDAT, #xxH  
(start block erase)  
All 256 data bytes, the security bits, and SB  
will be cleared after completing this mode  
(EWP = 0). SB will also be affected in byte  
mode when writing to the security byte (not  
for SB = 1 and “external access”). Figure 3  
illustrates the access to SB.  
MOV EADRH, #80H  
MOV EADRL, #00H  
MOV EDAT, #FFH  
If two or more of these bits are reset, SB = 0,  
the security mode is disabled and the  
EEPROM is not protected. If three or four bits  
are set, SB = 1 and the EA mode differs from  
the internal access mode.  
Also the verification mode (test-mode which  
writes the ROM contents to a port for  
comparison with a reference code) is not  
implemented for security reasons. A different  
test-mode is implemented for test purposes.  
This mode allows every bit to be tested.  
However, the internal code cannot be  
accessed via a port.  
ROM Code Protection  
Since the external access mode can only be  
selected by pulling the EA pin low during  
reset, it is not possible to read the internal  
program memory using the MOVC instruction  
while executing external program memory.  
Furthermore, it is not possible to change this  
In this case, access to the EEPROM is only  
possible in one mode regardless of how the  
external access mode is reached (by pulling  
EADRH  
EADRL  
EA  
RESET  
RESET  
8
REGISTERS EADRH AND  
EADRL CONTAIN THE  
ADDRESS OF THE  
EEPROM  
SECURITY BYTE  
RESET  
EDATA  
n
RESET  
SECURITY BYTE ADDRESS  
AND BLOCK ERASE FINISHED  
EAQ  
SECURITY BYTE ADDRESS  
AND BYTE MODE FINISHED  
L
SB  
NO  
SB = 1  
YES  
NO  
EXTERNAL  
ACCESS  
YES  
INHIBIT ‘READ DATA REGISTER’  
INHIBIT ‘WRITE DATA REGISTER’  
EXCEPT (ECNTRL) = BLOCK ERASE  
Figure 3. EEPROM Protection (Functional and Flowchart)  
9
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
(i.e., the EWP bit has to be reset before  
OSCILLATOR  
CHARACTERISTICS  
XTAL1 and XTAL2 are the input and output,  
respectively, of an inverting amplifier. The  
pins can be configured for use as an on-chip  
oscillator, as shown in the logic symbol,  
page 3.  
INTERRUPT SYSTEM  
activating the idle or power-down modes;  
otherwise EEPROM accesses will be  
aborted).  
External events and the real-time-driven  
on-chip peripherals require service by the  
CPU asynchronous to the execution of any  
particular section of code. To tie the  
IDLE MODE  
asynchronous activities of these functions to  
normal program execution, a multiple-source,  
two-priority-level, nested interrupt system is  
provided. Interrupt response latency is from  
In idle mode, the CPU puts itself to sleep  
while all of the on-chip peripherals stay  
active. The instruction to invoke the idle  
mode is the last instruction executed in the  
normal operating mode before the idle mode  
is activated. The CPU contents, the on-chip  
RAM, and all of the special function registers  
remain intact during this mode. The idle  
mode can be terminated either by any  
enabled interrupt (at which time the process  
is picked up at the interrupt service routine  
and continued), or by a hardware reset which  
starts the processor in the same manner as a  
power-on reset.  
To drive the device from an external clock  
source, XTAL1 should be driven while XTAL2  
is left unconnected. There are no  
requirements on the duty cycle of the  
external clock signal, because the input to  
the internal clock circuitry is through a  
divide-by-two flip-flop. However, minimum  
and maximum high and low times specified in  
the data sheet must be observed.  
3µs to 7µs when using a 12MHz crystal. The  
S83C851 acknowledges interrupt requests  
from 7 sources as follows:  
– INT0 and INT1: externally via pins 12 and  
13, respectively,  
– Timer 0 and timer 1: from the two internal  
counters,  
– Serial port: from the internal serial I/O port  
or EEPROM (1 vector).  
RESET  
A reset is accomplished by holding the RST  
pin high for at least two machine cycles (24  
oscillator periods), while the oscillator is  
running. To insure a good power-up reset, the  
RST pin must be high long enough to allow  
the oscillator time to start up (normally a few  
milliseconds) plus two machine cycles. At  
Each interrupt vectors to a separate location  
in program memory for its service program.  
Each source can be individually enabled (the  
EEPROM interrupt can only be enabled when  
the serial port interrupt is enabled) or  
disabled and can be programmed to a high or  
low priority level. All enabled sources can  
also be globally disabled or enabled. Both  
external interrupts can be programmed to be  
level-activated and are active low to allow  
“wire-ORing” of several interrupt sources to  
one input pin.  
POWER-DOWN MODE  
In the power-down mode, the oscillator is  
stopped and the instruction to invoke  
power-down is the last instruction executed.  
Only the contents of the on-chip RAM and  
EEPROM are preserved. A hardware reset is  
the only way to terminate the power-down  
mode. The control bits for the reduced power  
modes are in the special function register  
PCON. Table 3 shows the state of the I/O  
ports during low current operating modes.  
power-up, the voltage on V and RST must  
come up at the same time for a proper  
start-up.  
DD  
Note: Before entering the idle or power-down  
modes, the user has to ensure that there is  
no EEPROM erase/write cycle in progress  
Note: The serial port and EEPROM interrupt  
flags must be cleared by software; all other  
flags are cleared by hardware.  
Table 3.  
External Pin Status During Idle and Power-Down Modes  
MODE  
PROGRAM MEMORY  
Internal  
ALE  
PSEN  
PORT 0  
Data  
PORT 1  
Data  
PORT 2  
Data  
PORT 3  
Data  
Idle  
Idle  
1
1
0
0
1
1
0
0
External  
Float  
Data  
Address  
Data  
Data  
Power-down  
Power-down  
Internal  
Data  
Data  
Data  
External  
Float  
Data  
Data  
Data  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
RATING  
UNIT  
°C  
V
Storage temperature range  
–65 to +150  
Voltage on any other pin to V  
–0.5 to +6.5  
SS  
Input or output DC current on any single I/O pin  
mA  
W
±5  
Power dissipation (based on package heat transfer limitations, not device power consumption)  
1.0  
NOTES:  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise  
SS  
noted.  
10  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= 0°C to +70°C (V = 5V ±10%), –40°C to +85°C (V = 5V ±10%), or –40°C to +125°C (V = 5V ±10%), V = 0V  
DD DD DD SS  
PART  
TYPE  
TEST  
LIMITS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNIT  
V
IL  
Input low voltage, except EA  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
–0.5  
–0.5  
–0.5  
0.2V –0.1  
V
V
V
DD  
0.2V –0.15  
DD  
0.2V –0.25  
DD  
V
V
V
Input low voltage to EA  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
–0.5  
–0.5  
–0.5  
0.2V –0.3  
V
V
V
IL1  
IH  
DD  
0.2V –0.35  
DD  
0.2V –0.45  
DD  
Input high voltage, except XTAL1, RST  
Input high voltage, XTAL1, RST  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
0.2V +0.9  
V
DD  
V
DD  
V
DD  
+0.5  
+0.5  
+0.5  
V
V
V
DD  
0.2V +1.0  
DD  
0.2V +1.0  
DD  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
0.7V  
V
DD  
V
DD  
V
DD  
+0.5  
+0.5  
+0.5  
IH1  
DD  
0.7V +0.1  
DD  
0.7V +0.1  
D
6
4
V
V
V
Output low voltage, ports 1, 2, 3  
I
I
= 1.6mA  
= 3.2mA  
0.45  
0.45  
V
V
OL  
OL  
6
4
Output low voltage, port 0, ALE, PSEN  
OL1  
OH  
OL  
Output high voltage, ports 1, 2, 3, ALE, PSEN  
I
I
I
= –60µA,  
= –25µA,  
= –10µA  
2.4  
V
V
V
OH  
OH  
0.75V  
DD  
DD  
0.9V  
OH  
V
OH1  
Output high voltage, port 0 in external bus  
mode  
I
I
= –800µA,  
= –300µA,  
2.4  
V
V
V
OH  
OH  
I
5
0.75V  
DD  
DD  
= –80µA  
0.9V  
OH  
I
I
Logical 0 input current, ports 1, 2, 3  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
V
= 0.45V  
–50  
–75  
–75  
µA  
µA  
µA  
IL  
IN  
Logical 1-to-0 transition current, ports 1, 2, 3  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
V
= 2.0V  
–650  
–750  
–750  
µA  
µA  
µA  
TL  
IN  
I
I
Input leakage current, port 0, EA  
Power supply current:  
0.45V<V<V  
DD  
µA  
±10  
L1  
i
See note 7  
DD  
1
Active mode @ 16MHz  
19  
29  
3.7  
5.6  
50  
mA  
mA  
mA  
mA  
µA  
1
Active mode @ 24MHz  
2
2
Idle mode @ 16MHz  
Idle mode @ 24MHz  
3
Power down mode  
R
C
Internal reset pull-down resistor  
Pin capacitance  
50  
150  
10  
kΩ  
RST  
IO  
f = 1MHz  
pF  
NOTES:  
1. The operating supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 5ns; V = V +0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; EA = RST = Port 0 = V  
.
DD  
DD  
2. The idle mode supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 5ns; V = V +0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; EA = Port 0 = V ; RST = V  
.
DD  
DD  
SS  
3. The power-down current is measured with all output pins disconnected; XTAL2 not connected; EA = Port 0 = V ; RST = XTAL1 = V  
.
DD  
SS  
4. Capacitive loading on Port 0 and Port 2 may cause spurious noise pulses to be superimposed on the LOW level output voltage of ALE, Port  
1 and Port 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make a 1-to-0  
transition during bus operations. In the worst cases (capacitive loading > 100pF), the noise pulse on the ALE line may exceed 0.8V. In such  
cases it may be desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.  
5. Capacitive loading on Port 0 and Port 2 may cause the HIGH level output voltage on ALE and PSEN to momentarily fall below the 0.9V  
specification when the address bits are stabilizing.  
DD  
6. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
10mA  
Maximum I per Port pin:  
OL  
Maximum I per 8-bit port –  
OL  
Port 0: 26mA  
Ports 1, 2, and 3:  
Maximum total I for all output pins:  
15mA  
71mA.  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
7. See Figures 11 through 14 for I test conditions.  
DD  
11  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
1, 2  
AC ELECTRICAL CHARACTERISTICS  
16 MHz Version  
16MHz CLOCK  
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
MHz  
ns  
4
4
4
4
4
4
4
4
4
4
4
4
1.2  
16  
CLCL  
t
t
t
t
t
t
t
t
t
t
t
ALE pulse width  
85  
8
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
t
–55  
ns  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
28  
–35  
ns  
150  
83  
4t  
3t  
–100  
ns  
CLCL  
23  
t
–40  
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
143  
3t  
–45  
ns  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–105  
ns  
CLCL  
0
0
ns  
38  
208  
10  
t
–25  
ns  
CLCL  
5t  
–105  
ns  
CLCL  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
5
5
RD pulse width  
275  
275  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
5
RD low to valid data in  
Data hold after RD  
148  
5t  
–165  
CLCL  
5
0
0
5
Data float after RD  
55  
2t  
–70  
CLCL  
5
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to RD or WR low  
Data setup time before WR  
Data valid to WR transition  
Data hold after WR  
350  
398  
238  
8t  
CLCL  
9t  
CLCL  
–150  
–165  
5
AVDV  
LLWL  
5, 6  
5, 6  
6
138  
120  
288  
3
3t  
–50  
3t  
+50  
CLCL  
CLCL  
4t  
7t  
t
–130  
–150  
–60  
AVWL  
QVWH  
QVWX  
WHQX  
RLAZ  
WHLH  
CLCL  
CLCL  
CLCL  
CLCL  
6
6
13  
t
–50  
5
RD low to address float  
RD or WR high to ALE high  
0
0
5, 6  
23  
103  
t
–40  
t
+40  
CLCL  
CLCL  
External Clock  
t
t
t
t
8
8
8
8
High time  
Low time  
Rise time  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
20  
20  
20  
20  
Fall time  
3
Erase/write timer constant  
t
t
t
t
Erase/write cycle time  
Erase time  
4
20  
10  
10  
4
20  
10  
10  
ms  
ms  
E/W  
E
2
2
2
2
Write time  
ms  
W
4
Data retention time  
10  
10  
years  
cycles  
S
5
NE/W  
Erase/write cycles  
10,000  
10,000  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. The power-off fall-time of V must be less than 1ms to prevent an overwrite pulse from being generated in the EEPROM which can cause  
DD  
spurious parasitic writing to EEPROM cells. If the V power-off full-time is greater than 1ms, a power-off reset signal should be generated  
DD  
to prevent this condition from occurring.  
4. Test condition: T  
= +55°C.  
amb  
5. Number of erase/write cycles for each EEPROM byte.  
12  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
1, 2  
AC ELECTRICAL CHARACTERISTICS  
24 MHz Version  
24MHz CLOCK  
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
MHz  
ns  
4
4
4
4
4
4
4
4
4
4
4
4
3.5  
24  
CLCL  
t
t
t
t
t
t
t
t
t
t
t
ALE pulse width  
43  
17  
17  
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
t
–25  
ns  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
–25  
ns  
102  
65  
4t  
3t  
–65  
ns  
CLCL  
17  
80  
t
–25  
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
3t  
–45  
ns  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–60  
–25  
ns  
CLCL  
0
0
ns  
17  
128  
10  
t
ns  
CLCL  
5t  
–80  
ns  
CLCL  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
5
5
RD pulse width  
150  
150  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
5
RD low to valid data in  
Data hold after RD  
118  
5t  
2t  
–90  
–28  
CLCL  
5
0
0
5
Data float after RD  
55  
CLCL  
5
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to RD or WR low  
Data setup time before WR  
Data valid to WR transition  
Data hold after WR  
183  
210  
175  
8t  
–150  
–165  
CLCL  
CLCL  
5
9t  
AVDV  
LLWL  
5, 6  
5, 6  
6
75  
92  
3t  
–50  
–75  
3t  
CLCL  
+50  
CLCL  
4t  
AVWL  
QVWH  
QVWX  
WHQX  
RLAZ  
WHLH  
CLCL  
162  
12  
7t  
t
–130  
–30  
CLCL  
CLCL  
CLCL  
6
6
17  
t
–25  
5
RD low to address float  
RD or WR high to ALE high  
0
0
5, 6  
17  
67  
t
–25  
t
+25  
CLCL  
CLCL  
External Clock  
t
t
t
t
8
8
8
8
High time  
Low time  
Rise time  
17  
17  
17  
17  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
5
5
20  
20  
Fall time  
3
Erase/write timer constant  
t
t
t
t
Erase/write cycle time  
Erase time  
4
20  
10  
10  
4
20  
10  
10  
ms  
ms  
E/W  
E
2
2
2
2
Write time  
ms  
W
4
Data retention time  
10  
10  
years  
cycles  
S
5
NE/W  
Erase/write cycles  
10,000  
10,000  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. The power-off fall-time of V must be less than 1ms to prevent an overwrite pulse from being generated in the EEPROM which can cause  
DD  
spurious parasitic writing to EEPROM cells. If the V power-off full-time is greater than 1ms, a power-off reset signal should be generated  
DD  
to prevent this condition from occurring.  
4. Test condition: T  
= +55°C.  
amb  
5. Number of erase/write cycles for each EEPROM byte.  
13  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
L – Logic level low, or ALE  
P – PSEN  
Q – Output data  
R – RD signal  
t – Time  
V – Valid  
W– WR signal  
EXPLANATION OF THE  
AC SYMBOLS  
Each timing symbol has five characters. The  
first character is always ‘t’ (= time). The other  
characters, depending on their positions,  
indicate the name of a signal or the logical  
status of that signal. The designations are:  
X – No longer a valid logic level  
A – Address  
Z – Float  
C – Clock  
D – Input data  
H – Logic level high  
I – Instruction (program memory contents)  
Examples: t  
= Time for address valid to  
ALE low.  
AVLL  
t
= Time for ALE low to  
PSEN low.  
LLPL  
t
LHLL  
ALE  
t
PLPH  
t
t
LLPL  
AVLL  
t
LLIV  
t
PLIV  
PSEN  
t
LLAX  
t
PXIZ  
t
PLAZ  
t
PXIX  
A0–A7  
INSTR IN  
A0–A7  
PORT 0  
PORT 2  
t
AVIV  
A8–A15  
A8–A15  
Figure 4. External Program Memory Read Cycle  
ALE  
PSEN  
RD  
t
WHLH  
t
LLDV  
t
t
LLWL  
RLRH  
t
RHDZ  
t
t
t
RLDV  
AVLL  
LLAX  
t
t
RLAZ  
RHDX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA IN  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
t
AVDV  
P2.0–P2.7 OR A8–A15 FROM DPH  
A8–A15 FROM PCH  
Figure 5. External Data Memory Read Cycle  
14  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
ALE  
t
WHLH  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
AW  
t
t
t
WHQX  
t
LLAX  
AVLL  
QVWX  
t
QVWH  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA OUT  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
P2.0–P2.7 OR A8–A15 FROM DPH  
A8–A15 FROM PCH  
Figure 6. External Data Memory Write Cycle  
ONE MACHINE CYCLE  
S3 S4  
P2  
ONE MACHINE CYCLE  
S1  
P2  
S2  
P2  
S5  
P2  
S6  
P2  
S1  
P2  
S2  
P2  
S3  
P2  
S4  
S5  
P2  
S6  
P1  
P1  
P1  
P1  
P2  
P1  
P1  
P1  
P1  
P1  
P1  
P2  
P1  
P1  
P2  
XTAL1  
INPUT  
ALE  
PSEN  
RD  
WR  
BUS  
PORT 0  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
DATA  
DATA  
DATA  
DATA  
ADDRESS  
ADDRESS  
ADDRESS  
ADDRESS  
EXTERNAL  
PROGRAM  
MEMORY  
FETCH  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
PORT 2  
(EXTERNAL)  
ADDRESS TRANSITIONS  
PORT  
OUTPUT  
OLD DATA  
NEW DATA  
PORT  
INPUT  
SAMPLING TIME OF I/O PORT PINS DURING INPUT (INCLUDING INT0 AND INT1)  
SERIAL  
PORT  
(SHIFT CLOCK)  
Figure 7. Instruction Timing  
15  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
Table 4.  
External Clock Drive XTAL1  
VARIABLE CLOCK  
f = 1.2 – 16MHz  
VARIABLE CLOCK  
f = 3.5 – 24MHz  
SYMBOL  
PARAMETER  
Oscillator clock period  
HIGH time  
MIN  
MAX  
MIN  
MAX  
UNIT  
ns  
t
t
t
t
t
t
63  
20  
20  
833  
42  
17  
17  
286  
CLCL  
HIGH  
LOW  
r
t
– t  
t
– t  
ns  
CLCL  
LOW  
CLCL  
LOW  
LOW time  
t
– t  
t
– t  
5
ns  
CLCL  
HIGH  
CLCL  
HIGH  
Rise time  
20  
ns  
Fall time  
20  
10  
5
ns  
f
1
Cycle time  
0.75  
0.5  
3.43  
ms  
CY  
NOTE:  
1. t = 12 t  
.
CLCL  
CY  
2.4V  
V
–0.5  
DD  
2.0V  
0.8V  
0.7V  
DD  
–0.1  
0.45V  
0.2V  
DD  
t
CHCX  
0.45V  
NOTE:  
t
t
t
CHCL  
CLCX  
CLCH  
t
CLCL  
AC inputs during testing are driven at 2.4V for a logic ‘1’ and 0.45V for a logic ‘0’.  
Timing measurements are made at 2.0V min for a logic ‘1’ and 0.8V for a logic ‘0’.  
Figure 8. External Clock Drive  
Figure 9. AC Testing Input/Output  
V
V
+0.1V  
LOAD  
V
V
–0.1V  
TIMING  
REFERENCE  
POINTS  
OH  
V
LOAD  
–0.1V  
LOAD  
+0.1V  
OL  
NOTE:  
For timing purposes, a port is no longer floating when a 100mV change from load voltage occurs, and begins to float when a 100mV change  
from the loaded V /V  
level occurs. IOH/IOL ≥ ± 20mA.  
OH OL  
Figure 10. Float Waveform  
16  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
with on-chip EEPROM  
80C851/83C851  
V
V
DD  
DD  
I
I
DD  
DD  
V
V
DD  
DD  
V
V
V
RST  
DD  
DD  
DD  
P0  
P0  
RST  
EA  
EA  
(NC)  
XTAL2  
XTAL1  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
CLOCK SIGNAL  
V
V
SS  
SS  
Figure 11.  
I
Test Condition, Active Mode  
Figure 12.  
I
Test Condition, Idle Mode  
DD  
DD  
All other pins are disconnected  
All other pins are disconnected  
V
DD  
DD  
I
DD  
V
DD  
RST  
V
V
–0.5  
DD  
0.5V  
P0  
t
CHCX  
t
EA  
t
CHCL  
t
CLCX  
CLCH  
(NC)  
XTAL2  
XTAL1  
t
CLCL  
V
SS  
Figure 13. Clock Signal Waveform for I Tests  
Figure 14.  
All other pins are disconnected.  
= 2V to 5.5V  
I
Test Condition, Power Down Mode  
DD  
DD  
in Active and Idle Modes  
t
= t  
= 5ns  
V
DD  
CLCH  
CHCL  
17  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller with on-chip  
EEPROM  
80C851/83C851  
DIP40: plastic dual in-line package; 40 leads (600 mil)  
SOT129-1  
18  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller with on-chip  
EEPROM  
80C851/83C851  
PLCC44: plastic leaded chip carrier; 44 leads  
SOT187-2  
19  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller with on-chip  
EEPROM  
80C851/83C851  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
20  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller with on-chip  
EEPROM  
80C851/83C851  
NOTES  
21  
1998 Jul 03  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller with on-chip  
EEPROM  
80C851/83C851  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1998  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 09-98  
Document order number:  
9397 750 04368  
Philips  
Semiconductors  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY