P83C654IFA/XXX [NXP]

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PQCC44, PLASTIC, LCC-44, Microcontroller;
P83C654IFA/XXX
型号: P83C654IFA/XXX
厂家: NXP    NXP
描述:

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PQCC44, PLASTIC, LCC-44, Microcontroller

微控制器
文件: 总24页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
83C654  
CMOS single-chip 8-bit microcontroller  
Product specification  
1998 Jan 06  
Supersedes data of 1996 Aug 15  
IC20 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
8XC654 can be expanded using standard  
TTL compatible memories and logic.  
DESCRIPTION  
FEATURES  
80C51 central processing unit  
The P83C654 Single-Chip 8-Bit  
Microcontroller is manufactured in an  
advanced CMOS process and is a derivative  
of the 80C51 microcontroller family. The  
83C654 has the same instruction set as the  
80C51. Two versions of the derivative exist:  
The device also functions as an arithmetic  
processor having facilities for both binary and  
BCD arithmetic plus bit-handling capabilities.  
The instruction set consists of over 100  
instructions: 49 one-byte, 45 two-byte and 17  
three-byte. With a 16(24)MHz crystal, 58% of  
the instructions are executed in 0.75(0.5)µs  
and 40% in 1.5(1)µs. Multiply and divide  
instructions require 3(2)µs.  
16k × 8 ROM expandable externally to  
64k bytes  
256 × 8 RAM, expandable externally to  
64k bytes  
83C654 — 16k bytes mask programmable  
ROM  
Two standard 16-bit timer/counters  
Four 8-bit I/O ports  
87C654 — EPROM version (described in a  
separate data sheet)  
2
I C-bus serial I/O port with byte oriented  
master and slave functions  
This device provides architectural  
Full-duplex UART facilities  
Power control modes  
Idle mode  
enhancements that make it applicable in a  
variety of applications for general control  
systems. The 83C654 contains a non-volatile  
16k × 8 read-only program memory, a volatile  
256 × 8 read/write data memory, four 8-bit I/O  
ports, two 16-bit timer/event counters  
(identical to the timers of the 80C51), a  
multi-source, two-priority-level, nested  
Power-down mode  
ROM code protection  
Extended frequency range: 3.5 to 24 MHz  
Three operating ambient temperature  
ranges:  
2
interrupt structure, an I C interface, UART  
and on-chip oscillator and timing circuits. For  
systems that require extra capability, the  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
BLOCK DIAGRAM  
FREQUENCY  
REFERENCE  
COUNTERS  
XTAL2  
XTAL1  
T0  
T1  
OSCILLATOR  
AND  
TIMING  
PROGRAM  
MEMORY  
(16K x 8 ROM)  
DATA  
TWO 16-BIT  
TIMER/EVENT  
COUNTERS  
MEMORY  
(256 x 8 RAM)  
SDA  
SHARED  
2
I C SERIAL I/O  
CPU  
WITH  
PORT 1  
SCL  
INTERNAL  
INTERRUPTS  
64K BYTE BUS  
EXPANSION  
CONTRTOL  
PROG SERIAL PORT  
FULL DUPLEX UART  
SYNCHRONOUS SHIFT  
PROGRAMMABLE I/O  
INT0  
INT1  
SERIAL IN  
SERIAL OUT  
CONTROL  
PARALLEL PORTS,  
ADDRESS/DATA BUS  
AND I/O PINS  
SHARED WITH  
PORT 3  
EXTERNAL  
INTERRUPTS  
2
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
LOGIC SYMBOL  
V
V
DD SS  
RST  
XTAL1  
XTAL2  
EA  
PSEN  
ALE  
SCL  
SDA  
RxD  
TxD  
INT0  
INT1  
T0  
T1  
WR  
RD  
PIN CONFIGURATIONS  
Plastic dual in-line package  
Plastic shrink dual in-line package  
42  
41  
V
DD  
1
2
3
P1.0  
P1.1  
40  
V
DD  
P1.0  
P1.1  
P1.2  
1
2
3
P0.0/AD0  
39 P0.0/AD0  
38 P0.1/AD1  
P1.2  
40 P0.1/AD1  
39  
P1.3  
P1.4  
4
5
P0.2/AD2  
38 P0.3/AD3  
37  
P0.4/AD4  
37  
P1.3  
P1.4  
4
5
P0.2/AD2  
36 P0.3/AD3  
35  
P0.4/AD4  
P1.5  
SCL/P1.6  
SDA/P1.7  
RST  
6
7
8
9
P1.5  
SCL/P1.6  
SDA/P1.7  
RST  
6
7
8
9
36 P0.5/AD5  
35 P0.6/AD6  
34 P0.5/AD5  
33 P0.6/AD6  
32 P0.7/AD7  
31 EA  
34  
33  
P0.7/AD7  
EA  
SHRINK  
DUAL  
IN-LINE  
PLASTIC  
DUAL  
IN-LINE  
RxD/P3.0 10  
RxD/P3.0 10  
TxD/P3.1 11  
INT0/P3.2 12  
32  
31  
30  
29  
28  
11  
12  
13  
NC*  
TxD/P3.1  
INT0/P3.2  
NC*  
ALE  
30 ALE  
PACKAGE  
PACKAGE  
29 PSEN  
PSEN  
13  
28  
INT1/P3.3  
P2.7/A15  
INT1/P3.3 14  
T0/P3.4 15  
P2.7/A15  
P2.6/A14  
27 P2.6/A14  
26 P2.5/A13  
25 P2.4/A12  
T0/P3.4 14  
T1/P3.5 15  
WR/P3.6 16  
RD/P3.7 17  
XTAL2 18  
XTAL1 19  
T1/P3.5  
WR/P3.6  
RD/P3.7  
16  
17  
18  
27 P2.5/A13  
26  
P2.4/A12  
24  
P2.3/A11  
23 P2.2/A10  
22  
25  
P2.3/A11  
24  
P2.1/A9  
21 P2.0/A8  
XTAL2 19  
P2.2/A10  
23 P2.1/A9  
V
20  
XTAL1  
20  
21  
SS  
22  
V
P2.0/A8  
SS  
SU00933  
SU00934  
*
Do not connect.  
3
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
Plastic leaded chip carrier  
6
5
4
3
2
1
44 43 42 41 40  
P1.5  
7
8
39 P0.4/AD4  
38 P0.5/AD5  
P1.6/SCL  
P1.7/SDA  
9
37 P0.6/AD6  
36 P0.7/AD7  
35 EA  
RST 10  
P3.0/RxD 11  
NC* 12  
PLASTIC LEADED CHIP CARRIER  
34 NC*  
P3.1/TxD 13  
33 ALE  
P3.2/INT0 14  
P3.3/INT1 15  
32 PSEN  
31 P2.7/A15  
P3.4/T0 16  
P3.5/T1 17  
30 P2.6/A14  
29 P2.5/A13  
18 19 20 21 22 23 24 25 26 27 28  
SU00929  
* Do not connect.  
Plastic quad flat pack  
44 43 42 41 40 39 38 37 36 35 34  
P1.5  
1
2
33 P0.4/AD4  
32 P0.5/AD5  
P1.6/SCL  
P1.7/SDA  
RST  
3
4
5
6
7
31 P0.6/AD6  
30 P0.7/AD7  
P3.0/RxD  
29 EA/V  
PP  
QUAD FLAT PACK  
V
28  
V
SS2  
SS4  
P3.1/TxD  
27 ALE  
P3.2/INT0  
P3.3/INT1  
8
9
26 PSEN  
25 P2.7/A15  
P3.4/T0 10  
P3.5/T1 11  
24 P2.6/A14  
23 P2.5/A13  
12 13 14 15 16 17 18 19 20 21 22  
SU00935  
* Do not connect.  
(QFP only): Due to EMC improvements, all V pins (6, 16, 28, 39) must be connected to V on the 80C652/83C654.  
SS  
SS  
4
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
ORDERING INFORMATION  
PHILIPS PART ORDER NUMBER  
PART MARKING  
PHILIPS NORTH AMERICA  
PART ORDER NUMBER  
DRAWING  
NUMBER  
TEMPERATURE RANGE (°C)  
FREQ  
MHz  
2,3  
AND PACKAGE  
1
1
3
ROMless  
ROM  
ROMless  
ROM  
EPROM  
P80C652EBP P83C654EBP/xxx P80C652EBPN P83C654EBPN S87C654-4N40 SOT129-1  
P80C652EBA P83C654EBA/xxx P80C652EBAA P83C654EBAA S87C654-4A44 SOT187-2  
P80C652EBB P83C654EBB/xxx P80C652EBBB P83C654EBBB S87C654-4B44 SOT307-2  
0 to +70,  
Plastic Dual In-line Package  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
20  
20  
20  
20  
24  
24  
24  
24  
24  
24  
0 to +70,  
Plastic Leaded Chip Carrier  
0 to +70,  
Plastic Quad Flat Pack  
P83C654EBR/xxx  
SOT270-1  
0 to +70,  
Plastic Shrink Dual In-Line Package  
P80C652EFP P83C654EFP/xxx P80C652EFPN P83C654EFPN S87C654-5N40 SOT129-1  
P80C652EFA P83C654EFA/xxx P80C652EFAA P83C654EFAA S87C654-5A44 SOT187-2  
P80C652EFB P83C654EFB/xxx P80C652EFBB P83C654EFBB S87C654-5B44 SOT307-2  
–40 to +85,  
Plastic Dual In-line Package  
–40 to +85,  
Plastic Leaded Chip Carrier  
–40 to +85,  
Plastic Quad Flat Pack  
P80C652EHP P83C654EHP/xxx P80C652EHPN P83C654EHPN  
P80C652EHA P83C654EHA/xxx P80C652EHAA P83C654EHAA  
P80C652EHB P83C654EHB/xxx P80C652EHBB P83C654EHBB  
SOT129-1  
SOT187-2  
–40 to +125,  
Plastic Dual In-line Package  
–40 to +125,  
Plastic Leaded Chip Carrier  
SOT307-2  
–40 to +125,  
Plastic Quad Flat Pack  
S87C654-7N40 SOT129-1  
S87C654-7A44 SOT187-2  
S87C654-8N40 SOT129-1  
S87C654-8A44 SOT187-2  
SOT129-1  
0 to +70,  
Plastic Dual In-line Package  
0 to +70,  
Plastic Leaded Chip Carrier  
–40 to +85,  
Plastic Dual In-line Package  
–40 to +85,  
Plastic Leaded Chip Carrier  
P80C652IBP  
P80C652IBA  
P80C652IBB  
P80C652IFP  
P83C654IBP/xxx  
P83C654IBA/xxx  
P83C654IBB/xxx  
P83C654IFP/xxx  
P83C654IFA/xxx  
P83C654IFB/xxx  
P80C652IBPN  
P80C652IBAA  
P80C652IBBB  
P80C652IFPN  
P80C652IFAA  
P80C652IFBB  
P83C654IBPN  
P83C654IBAA  
P83C654IBBB  
P83C654IFPN  
P83C654IFAA  
P83C654IFBB  
0 to +70,  
Plastic Dual In-line Package  
SOT187-2  
0 to +70,  
Plastic Leaded Chip Carrier  
SOT307-2  
0 to +70,  
Plastic Quad Flat Pack  
SOT129-1  
–40 to +85,  
Plastic Dual In-line Package  
P80C652IFA  
P80C652IFB  
NOTES:  
SOT187-2  
–40 to +85,  
Plastic Leaded Chip Carrier  
SOT307-2  
–40 to +85,  
Plastic Quad Flat Pack  
1. For full specification, see the 80C652/83C652 data sheet.  
2. 83C654 frequency range is 3.5MHz–16MHz or 3.5MHz–24MHz.  
3. For specification of the EPROM version, see the 87C654 data sheet.  
4. xxx denotes the ROM code number.  
5
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
PIN DESCRIPTIONS  
PIN NUMBER  
MNEMONIC DIP  
PLCC  
QFP  
TYPE NAME AND FUNCTION  
V
SS  
20  
22  
6, 16,  
28, 39  
I
Ground: 0V reference. With the QFP package all V pins (V  
connected.  
to V  
) must be  
SS4  
SS  
SS1  
V
DD  
40  
44  
38  
I
Power Supply: This is the power supply voltage for normal, idle, and power-down  
operation.  
P0.0–0.7  
39–32 43–36 37–30  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to them  
float and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order  
address and data bus during accesses to external program and data memory. In this  
application, it uses strong internal pull-ups when emitting 1s.  
P1.0–P1.7  
1–8  
2–9  
40–44,  
1–3  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups, except P1.6 and P1.7  
which are open drain. Port 1 pins that have 1s written to them are pulled high by the internal  
pull-ups and can be used as inputs. As inputs, port 1 pins that are externally pulled low will  
source current because of the internal pull-ups. (See DC Electrical Characteristics: I ).  
IL  
Alternate functions include:  
2
P1.6  
P1.7  
7
8
8
9
2
3
I/O  
I/O  
SCL: I C-bus serial port clock line.  
2
SDA: I C-bus serial port data line.  
P2.0–P2.7  
21–28 24–31 18–25  
I/O  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,  
port 2 pins that are externally being pulled low will source current because of the internal  
pull-ups. (See DC Electrical Characteristics: I ). Port 2 emits the high-order address byte  
IL  
during fetches from external program memory and during accesses to external data memory  
that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal  
pull-ups when emitting 1s. During accesses to external data memory that use 8-bit  
addresses (MOV @Ri), port 2 emits the contents of the P2 special function register.  
P3.0–P3.7  
10–17  
11,  
5,  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,  
port 3 pins that are externally being pulled low will source current because of the pull-ups.  
13–19 7–13  
(See DC Electrical Characteristics: I ). Port 3 also serves the special features of the 80C51  
IL  
family, as listed below:  
10  
11  
12  
13  
14  
15  
16  
17  
11  
13  
14  
15  
16  
17  
18  
19  
5
7
8
I
O
I
I
I
I
O
O
RxD (P3.0): Serial input port  
TxD (P3.1): Serial output port  
INT0 (P3.2): External interrupt  
INT1 (P3.3): External interrupt  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
9
10  
11  
12  
13  
RST  
ALE  
9
10  
4
I
Reset: A high on this pin for two machine cycles while the oscillator is running, resets the  
device. An internal diffused resistor to V permits a power-on reset using only an external  
SS  
capacitor to V  
.
DD  
30  
33  
27  
I/O  
Address Latch Enable: Output pulse for latching the low byte of the address during an  
access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the  
oscillator frequency. Note that one ALE pulse is skipped during each access to external data  
memory.  
PSEN  
29  
31  
32  
35  
26  
29  
O
Program Store Enable: Read strobe to external program memory via Port 0 and Port 2. It is  
activated twice each machine cycle during fetches from the external program memory. When  
executing out of external program memory two activations of PSEN are skipped during each  
access to external data memory. PSEN is not activated (remains HIGH) during no fetches  
from external program memory. PSEN can sink/source 8 LSTTL inputs and can drive CMOS  
inputs without external pull–ups.  
EA  
I
External Access: If during a RESET, EA is held at TTL, level HIGH, the CPU executes out  
of the internal program memory ROM provided the Program Counter is less than 16384. If  
during a RESET, EA is held a TTL LOW level, the CPU executes out of external program  
memory. EA is not allowed to float.  
XTAL1  
19  
18  
21  
20  
15  
14  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator  
circuits.  
XTAL2  
O
Crystal 2: Output from the inverting oscillator amplifier.  
NOTE:  
To avoid “latch-up” effect at power-on, the voltage on any pin at any time must not be higher than V + 0.5V or V – 0.5V, respectively.  
DD  
SS  
6
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
Table 1.  
8XC652/654 Special Function Registers  
DIRECT  
ADDRESS MSB  
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION  
RESET  
VALUE  
SYMBOL  
DESCRIPTION  
LSB  
E0  
ACC*  
B*  
Accumulator  
B register  
E0H  
F0H  
E7  
F7  
E6  
F6  
E5  
F5  
E4  
F4  
E3  
F3  
E2  
F2  
E1  
F1  
00H  
F0  
00H  
DPTR:  
Data pointer  
(2 bytes)  
DPH  
DPL  
Data pointer high  
Data pointer low  
83H  
82H  
00H  
00H  
AF  
EA  
AE  
BE  
AD  
ES1  
BD  
AC  
ES0  
BC  
AB  
ET1  
BB  
AA  
EX1  
BA  
A9  
ET0  
B9  
A8  
EX0  
B8  
IE*#  
IP*#  
P0*  
Interrupt enable  
Interrupt priority  
Port 0  
A8H  
B8H  
80H  
90H  
A0H  
0x000000B  
xx000000B  
FFH  
BF  
PS1  
85  
PS0  
84  
PT1  
83  
PX1  
82  
PT0  
81  
PX0  
80  
87  
86  
AD6  
96  
AD7  
97  
AD5  
95  
AD4  
94  
AD3  
93  
AD2  
92  
AD1  
91  
AD0  
90  
P1*#  
P2*  
Port 1  
SDA  
A7  
SCL  
A6  
FFH  
A5  
A13  
B5  
A4  
A12  
B4  
A3  
A11  
B3  
A2  
A10  
B2  
A1  
A9  
A0  
A8  
Port 2  
A15  
B7  
A14  
B6  
FFH  
B1  
B0  
P3*  
Port 3  
B0H  
87H  
RD  
SMOD  
9F  
WR  
T1  
T0  
INT1  
GF1  
9B  
INT0  
GF0  
9A  
TXD  
PD  
99  
RXD  
IDL  
98  
FFH  
PCON#  
Power control  
0xxx0000B  
9E  
9D  
SM2  
9C  
REN  
S0CON*# Serial 0 port control  
98H  
99H  
SM0  
SM1  
TB8  
RB8  
TI  
RI  
00H  
S0BUF#  
Serial 0 data buffer  
xxxxxxxxB  
D7  
CY  
D6  
AC  
D5  
F0  
D4  
D3  
D2  
D1  
F1  
D0  
P
PSW*  
S1DAT#  
SP  
Program status word  
Serial 1 data  
D0H  
DAH  
81H  
RS1  
RS0  
OV  
00H  
00H  
07H  
00H  
Stack pointer  
S1ADR#  
Serial 1 address  
DBH  
GC  
SLAVE ADDRESS  
S1STA#  
Serial 1 status  
D9H  
D8H  
SC4  
DF  
SC3  
DE  
SC2  
DD  
SC1  
DC  
SC0  
0
0
0
F8H  
DB  
SI  
DA  
AA  
8A  
IT1  
D9  
D8  
S1CON*# Serial 1 control  
CR2  
8F  
ENS1  
8E  
STA  
8D  
STO  
8C  
CR1  
89  
CR0  
88  
00000000B  
8B  
IE1  
TCON*  
TH1  
Timer control  
Timer high 1  
Timer high 0  
Timer low 1  
Timer low 0  
Timer mode  
88H  
8DH  
8CH  
8BH  
8AH  
89H  
TF1  
TR1  
TF0  
TR0  
IE0  
IT0  
00H  
00H  
00H  
00H  
00H  
00H  
TH0  
TL1  
TL0  
TMOD  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
*
#
SFRs are bit addressable.  
SFRs are modified from or added to the 80C51 SFRs.  
7
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
To drive the device from an external clock  
source, XTAL1 should be driven while XTAL2  
is left unconnected. There are no  
requirements on the duty cycle of the  
external clock signal, because the input to  
the internal clock circuitry is through a  
divide-by-two flip-flop. However, minimum  
and maximum high and low times specified in  
the data sheet must be observed.  
enabled interrupt (at which time the process  
is picked up at the interrupt service routine  
and continued), or by a hardware reset which  
starts the processor in the same manner as a  
power-on reset.  
ROM CODE PROTECTION  
(83C654)  
The 83C654 has an additional security  
feature. ROM code protection may be  
selected by setting a mask–programmable  
security bit (i.e., user dependent). This  
feature may be requested during ROM code  
submission. When selected, the ROM code  
is protected and cannot be read out at any  
time by any test mode or by any instruction in  
the external program memory space.  
Power-Down Mode  
In the power-down mode, the oscillator is  
stopped and the instruction to invoke  
power-down is the last instruction executed.  
Only the contents of the on-chip RAM are  
preserved. A hardware reset is the only way  
to terminate the power-down mode. The  
control bits for the reduced power modes are  
in the special function register PCON. Table 2  
shows the state of the I/O ports during low  
current operating modes.  
Reset  
A reset is accomplished by holding the RST  
pin high for at least two machine cycles (24  
oscillator periods), while the oscillator is  
running. To insure a good power-on reset, the  
RST pin must be high long enough to allow  
the oscillator time to start up (normally a few  
milliseconds) plus two machine cycles. At  
The MOVC instructions are the only  
instructions that have access to program  
code in the internal or external program  
memory. The EA input is latched during  
RESET and is “don’t care” after RESET  
(also if the security bit is not set). This  
implementation prevents reading internal  
program code by switching from external  
program memory to internal program memory  
during a MOVC instruction or any other  
instruction that uses immediate data.  
power-on, the voltage on V and RST must  
DD  
2
I C SERIAL COMMUNICATION —  
come up at the same time for a proper  
start-up.  
SIO1  
2
2
The I C serial port is identical to the I C  
serial port on the 8XC552. The operation of  
this subsystem is described in detail in the  
8XC552 section of this manual.  
Idle Mode  
In the idle mode, the CPU puts itself to sleep  
while all of the on-chip peripherals stay  
active. The instruction to invoke the idle  
mode is the last instruction executed in the  
normal operating mode before the idle mode  
is activated. The CPU contents, the on-chip  
RAM, and all of the special function registers  
remain intact during this mode. The idle  
mode can be terminated either by any  
OSCILLATOR  
CHARACTERISTICS  
XTAL1 and XTAL2 are the input and output,  
respectively, of an inverting amplifier. The  
pins can be configured for use as an on-chip  
oscillator, as shown in the Logic Symbol,  
page 3.  
Note that in both the 8XC652/4 and the  
2
8XC552 the I C pins are alternate functions  
to port pins P1.6 and P1.7. Because of this,  
P1.6 and P1.7 on these parts do not have a  
pull-up structure as found on the 80C51.  
Therefore P1.6 and P1.7 have open drain  
outputs on the 8XC652/4.  
Table 2.  
External Pin Status During Idle and Power-Down Mode  
PROGRAM  
MEMORY  
MODE  
ALE  
PSEN  
PORT 0  
PORT 1  
PORT 2  
PORT 3  
Idle  
Internal  
1
1
0
0
1
1
0
0
Data  
Float  
Data  
Float  
Data  
Data  
Data  
Data  
Data  
Address  
Data  
Data  
Data  
Data  
Data  
Idle  
External  
Internal  
Power-down  
Power-down  
External  
Data  
Serial Control Register (S1CON) – See Table 3  
CR2 ENS1 STA STO  
SI  
AA  
CR1 CR0  
S1CON (D8H)  
Bits CR0, CR1 and CR2 determine the serial clock frequency that is generated in the master mode of operation.  
Table 3.  
Serial Clock Rates  
BIT FREQUENCY (kHz) AT fOSC  
6MHz  
12MHz  
16MHz  
24MHz  
f
DIVIDED BY  
CR2  
CR1  
CR0  
OSC  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
23  
27  
31.25  
37  
6.25  
50  
100  
47  
54  
62.5  
75  
12.5  
100  
200  
62.5  
71  
83.3  
100  
17  
94  
107  
125  
150  
25  
200  
400  
256  
224  
192  
160  
960  
120  
60  
1
1
1
1
1
133  
1
1
1
267  
0.24 < 62.5  
0 to 255  
0.49 < 62.5  
0 to 254  
0.65 < 55.6  
0 to 253  
0.98 < 50.0  
0 to 251  
96 × (256 – (reload value Timer 1))  
reload value range Timer 1 (in mode 2)  
NOTES:  
2
2
1. These frequencies exceed the upper limit of 100kHz of the I C-bus specification and cannot be used in an I C-bus application.  
8
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
RATING  
–65 to +150  
–0.5 to + 6.0  
±5  
UNIT  
°C  
Storage temperature range  
Voltage on any other pin to V  
V
SS  
Input, output current on any single pin  
mA  
W
Power dissipation  
1
(based on package heat transfer limitations, not device power consumption)  
NOTES:  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise  
SS  
noted.  
DEVICE SPECIFICATIONS  
SUPPLY VOLTAGE (V)  
FREQUENCY (MHz)  
TYPE  
TEMPERATURE RANGE (°C)  
MIN.  
4.5  
4.5  
4.5  
4.5  
4.5  
MAX.  
5.5  
MIN.  
3.5  
3.5  
3.5  
3.5  
3.5  
MAX.  
P83C654EBx  
P83C654EFx  
P83C654FHx  
P83C654IBx  
P83C654IFx  
16  
16  
16  
24  
24  
0 to +70  
–40 to +85  
–40 to +125  
0 to +70  
5.5  
5.5  
5.5  
5.5  
–40 to +85  
9
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
DC ELECTRICAL CHARACTERISTICS  
V
SS  
= 0V, V = 5V ± 10%  
DD  
TEST  
LIMITS  
SYMBOL  
PARAMETER  
Input low voltage,  
except EA, P1.6/SCL, P1.7/SDA  
PART TYPE  
CONDITIONS  
MIN.  
MAX.  
0.2V –0.1  
UNIT  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
–0.5  
–0.5  
–0.5  
V
V
V
V
IL  
DD  
0.2V –0.15  
DD  
0.2V –0.25  
DD  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
–0.5  
–0.5  
–0.5  
0.2V –0.3  
V
V
V
V
IL1  
Input low voltage to EA  
DD  
0.2V –0.35  
DD  
0.2V –0.45  
DD  
6
V
V
Input low voltage to P1.6/SCL, P1.7/SDA  
–0.5  
0.3V  
V
IL2  
DD  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
0.2V +0.9  
V
DD  
V
DD  
V
DD  
+0.5  
+0.5  
+0.5  
V
V
V
Input high voltage, except XTAL1, RST,  
P1.6/SCL, P1.7/SDA  
DD  
IH  
0.2V +1.0  
DD  
0.2V +1.0  
DD  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
0.7V  
V
DD  
V
DD  
V
DD  
+0.5  
+0.5  
+0.5  
V
V
V
V
IH1  
Input high voltage, XTAL1, RST  
DD  
0.7V +0.1  
DD  
0.7V +0.1  
DD  
6
V
V
Input high voltage, P1.6/SCL, P1.7/SDA  
0.7V  
6.0  
V
V
IH2  
DD  
8, 9  
Output low voltage, ports 1, 2, 3,  
except P1.6/SCL, P1.7/SDA  
I
I
= 1.6mA  
0.45  
OL  
OL  
8, 9  
V
OL1  
V
OL2  
V
OH  
Output low voltage, port 0, ALE, PSEN  
Output low voltage, P1.6/SCL, P1.7/SDA  
= 3.2mA  
0.45  
0.4  
V
V
OL  
I
= 3.0mA  
OL  
10  
I
I
I
= –60µA  
= –25µA  
= –10µA  
2.4  
V
V
V
Output high voltage, ports 1, 2, 3, ALE, PSEN  
OH  
OH  
OH  
0.75V  
DD  
DD  
0.9V  
I
I
I
= –800µA  
= –300µA  
= –80µA  
2.4  
V
V
V
V
OH1  
Output high voltage; port 0 in external bus mode  
OH  
0.75V  
OH  
DD  
DD  
0.9V  
OH  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
V
IN  
= 0.45V  
–50  
–75  
–75  
µA  
µA  
µA  
I
IL  
Logical 0 input current, ports 1, 2, 3,  
except P1.6/SCL, P1.7/SDA  
0 to +70°C  
–40 to +85°C  
–40 to +125°C  
See note 7  
–650  
–750  
–750  
µA  
µA  
µA  
I
TL  
Logical 1-to-0 transition current, ports 1, 2, 3,  
except P1.6/SCL, P1.7/SDA  
I
I
Input leakage current, port 0, EA  
0.45V < V < V  
DD  
±10  
±10  
µA  
L1  
I
0V < V < 6.0V  
µA  
µA  
Input leakage current, P1.6/SCL, P1.7/SDA  
I
L2  
0V < V < 6.0V  
DD  
I
Power supply current:  
See note 1  
DD  
2, 11  
Active mode @ 16MHz  
Active mode @ 24MHz  
Idle mode @ 16MHz  
Idle mode @ 24MHz  
Power down mode  
Power down mode  
V
DD  
V
DD  
=5.5V  
=5.5V  
28.0  
35.0  
6
7
50  
mA  
mA  
mA  
mA  
µA  
2, 11  
3, 11  
3, 11  
4, 5  
4, 5  
–40 to +125°C  
100  
µA  
R
C
Internal reset pull-down resistor  
Pin capacitance  
50  
150  
10  
kΩ  
RST  
IO  
Freq.=1MHz  
pF  
NOTES:  
1. See Figures 9 through 11 for I test conditions.  
DD  
2. The operating supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 5ns;  
r
f
V
IL  
= V + 0.5V; V = V –0.5V; XTAL2 not connected; EA = RST = Port 0 = P1.6 = P1.7 = V . See Figure 9.  
SS IH DD DD  
3. The idle mode supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 5ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V –0.5V; XTAL2 not connected; Port 0 = P1.6 = P1.7 = V ; EA = RST = V . See Figure 10.  
DD DD SS  
4. The power-down current is measured with all output pins disconnected; XTAL2 not connected; Port 0 = P1.6 = P1.7 = V  
;
DD  
EA = RST = V . See Figure 11.  
SS  
5. 2V V V max.  
PD  
DD  
2
6. The input threshold voltage of P1.6 and P1.7 (SIO1) meets the I C specification, so an input voltage below 0.3V will be recognized as a  
DD  
logic 0 while an input voltage above 0.7V will be recognized as a logic 1.  
DD  
10  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
7. Pins of ports 1 , 2, and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when V is approximately 2V.  
IN  
8. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input.  
9. Under steady state (non-transient) conditions, I must be externally limited as follows: Maximum I = 10mA per port pin; Maximum  
OL  
OL  
I
OL  
= 26mA total for Port 0; Maximum I = 15mA total for Ports 1, 2, and 3; Maximum I = 71mA total for all output pins. If I exceeds the  
OL OL OL  
test conditions, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.  
OL  
10.Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the 0.9V specification when the  
OH  
DD  
address bits are stabilizing.  
11. I  
for other frequencies can be derived from Figure 1, where FREQ is the external oscillator frequency in MHz. I  
is given in mA.  
DDMAX  
DDMAX  
50  
40  
I
I
DD  
(mA)  
DD  
(mA)  
40  
30  
(1)  
30  
20  
10  
0
(1)  
20  
10  
(2)  
(2)  
0
0
4
8
12  
16  
0
8
12  
16  
4
24  
f
(MHz)  
XTAL1  
f
(MHz)  
XTAL1  
(1) MAXIMUM OPERATING MODE: V  
DD  
= V  
DDmax  
(1) MAXIMUM OPERATING MODE: V  
= V  
DD  
DDmax  
(2) MAXIMUM IDLE MODE: V  
= V  
DD  
DDmax  
(2) MAXIMUM IDLE MODE: V  
= V  
DD  
DDmax  
These values are valid within the specified  
frequency range.  
These values are valid within the specified  
frequency range.  
Figure 1.  
I
vs. Frequency  
DD  
11  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
1, 2  
AC ELECTRICAL CHARACTERISTICS  
(16 MHz type)  
16MHz CLOCK  
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
MHz  
ns  
2
2
2
2
2
2
2
2
2
2
2
2
3.5  
16  
CLCL  
t
t
t
t
t
t
t
t
t
t
t
ALE pulse width  
85  
8
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
t
t
–55  
ns  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
28  
–35  
ns  
150  
83  
4t  
3t  
–100  
ns  
CLCL  
23  
t
–40  
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
143  
3t  
–45  
ns  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–105  
ns  
CLCL  
0
0
ns  
38  
208  
10  
t
–25  
ns  
CLCL  
5t  
–105  
ns  
CLCL  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
RD pulse width  
275  
275  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
AVDV  
LLWL  
AVWL  
QVWX  
DW  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
148  
5t  
–165  
CLCL  
0
0
Data float after RD  
55  
2t  
–70  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data setup time before WR  
Data hold after WR  
350  
398  
238  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
138  
120  
3
3t  
–50  
3t  
+50  
CLCL  
CLCL  
4t  
t
–130  
–60  
CLCL  
CLCL  
CLCL  
CLCL  
288  
13  
7t  
t
–150  
–50  
WHQX  
RLAZ  
WHLH  
RD low to address float  
RD or WR high to ALE high  
0
0
23  
103  
t
–40  
t
+40  
CLCL  
CLCL  
Shift Register  
3
t
t
t
t
t
5
5
5
5
5
Serial port clock cycle time  
0.75  
492  
80  
12t  
µs  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
3
Output data setup to clock rising edge  
10t  
–133  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
3
Output data hold after clock rising edge  
2t  
CLCL  
–117  
3
Input data hold after clock rising edge  
0
0
3
Clock rising edge to input data valid  
492  
10t  
–133  
CLCL  
External Clock  
3
t
t
t
t
6
6
6
6
High time  
20  
20  
20  
20  
t
t
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL – CLCX  
3
Low time  
t
t
CLCL – CHCX  
3
Rise time  
20  
20  
20  
3
Fall time  
20  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. These values are characterized but not 100% production tested.  
12  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
1, 2  
AC ELECTRICAL CHARACTERISTICS  
(24 MHz type)  
24MHz CLOCK  
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
MHz  
ns  
2
2
2
2
2
2
2
2
2
2
2
2
3.5  
24  
CLCL  
t
t
t
t
t
t
t
t
t
t
t
ALE pulse width  
43  
17  
17  
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
t
t
–25  
ns  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
–25  
ns  
102  
65  
4t  
3t  
–65  
ns  
CLCL  
17  
80  
t
–25  
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
3t  
–45  
ns  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–60  
ns  
CLCL  
0
0
ns  
17  
128  
10  
t
–25  
ns  
CLCL  
5t  
–80  
ns  
CLCL  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
3, 4  
RD pulse width  
150  
150  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
AVDV  
LLWL  
AVWL  
QVWX  
DW  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
118  
5t  
2t  
–90  
–28  
CLCL  
0
0
Data float after RD  
55  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data setup time before WR  
Data hold after WR  
180  
210  
175  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
75  
92  
3t  
–50  
–75  
3t  
CLCL  
+50  
CLCL  
4t  
CLCL  
12  
t
CLCL  
7t  
CLCL  
t
CLCL  
–30  
162  
17  
–130  
–25  
WHQX  
RLAZ  
WHLH  
RD low to address float  
RD or WR high to ALE high  
0
0
17  
67  
t
–25  
t
+25  
CLCL  
CLCL  
Shift Register  
3
t
t
t
t
t
5
5
5
5
5
Serial port clock cycle time  
0.5  
283  
23  
0
12t  
µs  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
3
Output data setup to clock rising edge  
10t  
2t  
–133  
–60  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
3
Output data hold after clock rising edge  
CLCL  
3
Input data hold after clock rising edge  
0
3
Clock rising edge to input data valid  
283  
10t  
–133  
CLCL  
External Clock  
3
t
t
t
t
6
6
6
6
High time  
17  
17  
17  
17  
t
t
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL – CLCX  
3
Low time  
t
t
CLCL – CHCX  
3
Rise time  
5
5
5
3
Fall time  
5
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. These values are characterized but not 100% production tested.  
13  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
2
AC ELECTRICAL CHARACTERISTICS – I C INTERFACE  
SYMBOL  
PARAMETER  
INPUT  
OUTPUT  
SCL TIMING CHARACTERISTICS  
1
t
t
t
t
t
START condition hold time  
SCL LOW time  
14 t  
> 4.0µs  
HD;STA  
LOW  
HIGH  
RC  
CLCL  
CLCL  
CLCL  
1
16 t  
14 t  
> 4.7µs  
1
SCL HIGH time  
SCL rise time  
> 4.0µs  
2
1µs  
3
SCL fall time  
0.3µs  
< 0.3µs  
FC  
SDA TIMING CHARACTERISTICS  
t
t
t
t
t
t
t
t
t
Data set-up time  
250ns  
250ns  
250ns  
0ns  
> 20 t  
– t  
SU;DAT1  
SU;DAT2  
SU;DAT3  
HD;DAT  
SU;STA  
SU;STO  
BUF  
CLCL  
RD  
FC  
1
SDA set-up time (before rep. START cond.)  
SDA set-up time (before STOP cond.)  
Data hold time  
> 1µs  
> 8 t  
CLCL  
> 8 t  
– t  
CLCL  
1
Repeated START set-up time  
STOP condition set-up time  
Bus free time  
14 t  
14 t  
14 t  
> 4.7µs  
> 4.0µs  
> 4.7µs  
CLCL  
CLCL  
CLCL  
1
1
2
SDA rise time  
1µs  
0.3µs  
RD  
3
SDA fall time  
< 0.3µs  
FD  
NOTES:  
1. At 100 kbit/s. At other bit rates this value is inversely proportional to the bit-rate of 100 kbit/s.  
2. Determined by the external bus-line capacitance and the external bus-line pull-resistor, this must be < 1µs.  
3. Spikes on the SDA and SCL lines with a duration of less than 3 t  
will be filtered out. Maximum capacitance on bus-lines SDA and  
CLCL  
SCL = 400pF.  
4. t  
= 1/f  
= one oscillator clock period at pin XTAL1. For 63ns (42ns) < t  
< 285ns (16MHz (24MHz) > f > 3.5MHz) the SIO1  
OSC  
CLCL  
OSC  
CLCL  
2
interface meets the I C-bus specification for bit-rates up to 100 kbit/s.  
2
TIMING SIO1 (I C) INTERFACE  
repeated START condition  
START or repeated START condition  
START condition  
t
SU;STA  
STOP condition  
t
RD  
0.7 V  
DD  
SDA  
(INPUT/OUTPUT)  
0.3 V  
DD  
t
BUF  
t
t
t
FC  
FD  
RC  
t
SU; STO  
0.7 V  
DD  
SCL  
(INPUT/OUTPUT)  
0.3 V  
DD  
t
SU;DAT3  
t
t
t
t
SU;DAT1  
t
t
SU;DAT2  
HD;STA  
LOW  
HIGH  
HD;DAT  
14  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
EXPLANATION OF THE AC SYMBOLS  
Each timing symbol has five characters. The  
first character is always ‘t’ (= time). The other  
characters, depending on their positions,  
indicate the name of a signal or the logical  
status of that signal. The designations are:  
A – Address  
Q – Output data  
R – RD signal  
t
– Time  
V – Valid  
W – WR signal  
X – No longer a valid logic level  
Z – Float  
C – Clock  
D – Input data  
H – Logic level high  
Examples: t  
= Time for address valid  
to ALE low.  
AVLL  
I
– Instruction (program memory contents)  
t
= Time for ALE low  
to PSEN low.  
LLPL  
L – Logic level low, or ALE  
P – PSEN  
t
LHLL  
ALE  
t
PLPH  
t
AVLL  
t
LLPL  
LLIV  
t
PSEN  
t
PLIV  
t
PLAZ  
t
PXIZ  
t
LLAX  
t
PXIX  
A0–A7  
INSTR IN  
A0–A7  
PORT 0  
PORT 2  
t
AVIV  
A8–A15  
A8–A15  
Figure 2. External Program Memory Read Cycle  
ALE  
PSEN  
RD  
t
WHLH  
t
LLDV  
t
t
LLWL  
RLRH  
t
RHDZ  
t
t
t
LLAX  
RLDV  
AVLL  
t
RHDX  
t
RLAZ  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA IN  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
t
AVDV  
P2.0–P2.7 OR A8–A15 FROM DPH  
A8–A15 FROM PCH  
Figure 3. External Data Memory Read Cycle  
15  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
ALE  
t
WHLH  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
LLAX  
t
t
WHQX  
t
AVLL  
QVWX  
t
DW  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA OUT  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
P2.0–P2.7 OR A8–A15 FROM DPH  
A8–A15 FROM PCH  
Figure 4. External Data Memory Write Cycle  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
t
XLXL  
CLOCK  
t
XHQX  
t
QVXH  
OUTPUT DATA  
WRITE TO SBUF  
t
t
XHDX  
XHDV  
SET TI  
INPUT DATA  
CLEAR RI  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
Figure 5. Shift Register Mode Timing  
16  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
V
IH1  
0.8V  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
CLCL  
Figure 6. External Clock Drive at XTAL1  
V
–0.5  
DD  
V
V
+0.1V  
LOAD  
V
V
–0.1V  
TIMING  
REFERENCE  
POINTS  
OH  
0.2V  
0.2V  
+0.9  
–0.1  
DD  
V
LOAD  
DD  
–0.1V  
LOAD  
+0.1V  
OL  
0.45V  
NOTE:  
NOTE:  
AC INPUTS DURING TESTING ARE DRIVEN AT V  
FOR TIMING PURPOSES, A PORT IS NO LONGER FLOATING WHEN A 100MV  
CHANGE FROM LOAD VOLTAGE OCCURS, AND BEGINS TO FLOAT WHEN A  
100mV CHANGE FROM THE LOADED V  
20mA.  
–0.5 FOR A LOGIC ‘1’ AND  
DD  
0.45V FOR A LOGIC ‘0’. TIMING MEASUREMENTS ARE MADE AT V MIN FOR A  
IH  
/V  
OH OL  
LEVEL OCCURS. I /I > +  
OH OL  
LOGIC ‘1’ AND V MAX FOR A LOGIC ‘0’.  
IL  
Figure 7. AC Testing Input/Output  
Figure 8. Float Waveform  
17  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
V
V
DD  
DD  
I
I
DD  
DD  
V
V
DD  
DD  
V
V
DD  
V
RST  
EA  
DD  
DD  
P0  
P0  
RST  
EA  
P1.6  
P1.7  
P1.6  
P1.7  
*
*
*
*
(NC)  
XTAL2  
XTAL1  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
CLOCK SIGNAL  
V
V
SS  
SS  
Figure 9.  
I
Test Condition, Active Mode  
Figure 10.  
I
Test Condition, Idle Mode  
DD  
DD  
All other pins are disconnected  
All other pins are disconnected  
V
DD  
I
DD  
V
DD  
P0  
V
RST  
EA  
DD  
P1.6  
P1.7  
(NC)  
XTAL2  
XTAL1  
*
*
V
SS  
Figure 11.  
I
Test Condition, Power Down Mode  
DD  
All other pins are disconnected. V = 2V to 5.5V  
DD  
NOTE:  
Ports 1.6 and 1.7 should be connected to V through resistors of sufficiently high value such that the sink current into these pins does not  
*
CC  
exceed the I  
specification.  
OL1  
2
2
Purchase of Philips I C components conveys a license under the Philips’ I C patent  
2
to use the components in the I C system provided the system conforms to the  
I C specifications defined by Philips. This specification can be ordered using the  
2
code 9398 393 40011.  
18  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
DIP40: plastic dual in-line package; 40 leads (600 mil)  
SOT129-1  
19  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
PLCC44: plastic leaded chip carrier; 44 leads  
SOT187-2  
20  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
21  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
SDIP42: plastic shrink dual in-line package; 42 leads (600 mil)  
SOT270-1  
22  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
NOTES  
23  
1998 Jan 06  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontroller  
83C654  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1998  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 06-98  
Document order number:  
9397 750 04048  
Philips  
Semiconductors  

相关型号:

P83C654IFA/XXX-T

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PQCC44, Microcontroller
NXP

P83C654IFA/YYY

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PQCC44, PLASTIC, SOT-187CG, LCC-44, Microcontroller
NXP

P83C654IFA/YYY-T

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PQCC44, PLASTIC, SOT-187CG, LCC-44, Microcontroller
NXP

P83C654IFAA

CMOS single-chip 8-bit microcontroller
NXP

P83C654IFAA-T

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PQCC44, Microcontroller
NXP

P83C654IFAB

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PQFP44, Microcontroller
NXP

P83C654IFAN

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PDIP40, Microcontroller
NXP

P83C654IFB

CMOS single-chip 8-bit microcontroller
NXP

P83C654IFB/XXX

Microcontroller, 8-Bit, MROM, 8051 CPU, 24MHz, CMOS, PQFP44,
PHILIPS

P83C654IFB/XXX

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PQFP44, 10 X 10 X 1.75 MM, PLASTIC, QFP-44, Microcontroller
NXP

P83C654IFB/XXX-T

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PQFP44, Microcontroller
NXP

P83C654IFB/YYY

IC 8-BIT, MROM, 24 MHz, MICROCONTROLLER, PQFP44, 10 X 10 MM, PLASTIC, SOT-311A, QFP-44, Microcontroller
NXP