P89LPC917FDH,129 [NXP]

P89LPC915/916/917 - 8-bit microcontrollers with accelerated two-clock 80C51 core 2 kB 3 V flash with 8-bit A/D converter TSSOP 16-Pin;
P89LPC917FDH,129
型号: P89LPC917FDH,129
厂家: NXP    NXP
描述:

P89LPC915/916/917 - 8-bit microcontrollers with accelerated two-clock 80C51 core 2 kB 3 V flash with 8-bit A/D converter TSSOP 16-Pin

时钟 PC 微控制器 光电二极管 外围集成电路
文件: 总75页 (文件大小:336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
2 kB 3 V flash with 8-bit A/D converter  
Rev. 05 — 15 December 2009  
Product data sheet  
1. General description  
The P89LPC915/916/917 are single-chip microcontrollers, available in low-cost packages,  
based on a high performance processor architecture that executes instructions in two to  
four clocks, six times the rate of standard 80C51 devices. Many system-level functions  
have been incorporated into the P89LPC915/916/917 in order to reduce component  
count, board space, and system cost.  
2. Features  
2.1 Principal features  
I 2 kB byte-erasable flash code memory organized into 256-byte sectors and 16-byte  
pages. Single-byte erasing allows any byte(s) to be used as non-volatile data storage.  
I 256-byte RAM data memory.  
I Two 16-bit counter/timers. Timer 0 (and Timer 1 - P89LPC917) may be configured to  
toggle a port output upon timer overflow or to become a PWM output.  
I 23-bit system timer that can also be used as a Real-Time clock.  
I 4-input multiplexed 8-bit A/D converter/single DAC output. Two analog comparators  
with selectable reference.  
I Enhanced UART with fractional baud rate generator, break detect, framing error  
detection, automatic address detection and versatile interrupt capabilities.  
I SPI communication port (P89LPC916).  
I Internal RC oscillator option allows operation without external oscillator components.  
The RC oscillator (factory calibrated to ±1 %) option is selectable and fine tunable.  
I 2.4 V to 3.6 V VDD operating range. I/O pins are 5 V tolerant (may be pulled up or  
driven to 5.5 V).  
I Up to 14 I/O pins when using internal oscillator and reset options (P89LPC916,  
P89LPC917).  
2.2 Additional features  
I 14-pin (P89LPC915) and 16-pin (P89LPC916, P89LPC917) TSSOP packages.  
I A high performance 80C51 CPU provides instruction cycle times of 111 ns to 222 ns  
for all instructions except multiply and divide when executing at 18 MHz. This is six  
times the performance of the standard 80C51 running at the same clock frequency. A  
lower clock frequency for the same performance results in power savings and reduced  
EMI.  
I In-Application Programming (IAP-Lite) and byte erase allows code memory to be used  
for non-volatile data storage.  
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
I Serial Flash In-Circuit Programming (ICP) allows simple production coding with  
commercial EPROM programmers. Flash security bits prevent reading of sensitive  
application programs.  
I Watchdog timer with separate on-chip oscillator, requiring no external components.  
The Watchdog prescaler is selectable from 8 values.  
I Low voltage brownout detect allows a graceful system shutdown when power fails.  
May optionally be configured as an interrupt.  
I Idle and two different power-down reduced power modes. Improved wake-up from  
Power-down mode (a LOW interrupt input starts execution). Typical power-down  
current is 1 µA (total power-down with voltage comparators disabled).  
I Active-LOW reset. On-chip power-on reset allows operation without external reset  
components. A reset counter and reset glitch suppression circuitry prevent spurious  
and incomplete resets. A software reset function is also available.  
I Programmable port output configuration options: quasi-bidirectional, open drain,  
push-pull, input-only.  
I Port ‘input pattern match’ detect. Port 0 may generate an interrupt when the value of  
the pins match or do not match a programmable pattern.  
I LED drive capability (20 mA) on all port pins. A maximum limit is specified for the  
entire chip.  
I Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns  
minimum ramp times.  
I Only power and ground connections are required to operate the P89LPC915/916/917  
when internal reset option is selected.  
I Four interrupt priority levels.  
I Five (P89LPC916), six (P89LPC915), or seven (P89LPC917) keypad interrupt inputs.  
I Second data pointer.  
I Schmitt trigger port inputs.  
I Emulation support.  
3. Product comparison overview  
Table 1 highlights the differences between these three devices. For a complete list of  
device features, please see Section 2 “Features”.  
Table 1.  
Product comparison overview  
Type number Comparator 2 SPI  
output  
T1 toggle/PWM CLKOUT INT1  
KBI  
P89LPC915  
P89LPC916  
P89LPC917  
X
-
-
X
-
-
-
-
-
X
-
6
5
7
X
X
X
X
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
2 of 75  
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
4. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
P89LPC915FDH  
TSSOP14 plastic thin shrink small outline package;  
14 leads; body width 4.4 mm  
SOT402-1  
P89LPC915FN  
DIP14  
plastic dual in-line package; 14 leads (300 mil)  
SOT27-1  
P89LPC915HDH  
TSSOP14 plastic thin shrink small outline package;  
14 leads; body width 4.4 mm  
SOT402-1  
P89LPC916FDH  
P89LPC917FDH  
TSSOP16 plastic thin shrink small outline package;  
16 leads; body width 4.4 mm  
SOT403-1  
SOT403-1  
TSSOP16 plastic thin shrink small outline package;  
16 leads; body width 4.4 mm  
4.1 Ordering options  
Table 3.  
Ordering options[1]  
Type number  
P89LPC915FDH  
P89LPC915FN  
P89LPC916FDH  
P89LPC917FDH  
P89LPC915HDH  
Temperature range  
Frequency  
40 °C to +85 °C  
0 MHz to 18 MHz  
40 °C to +125 °C  
[1] Please contact your local NXP sales office for availability of extended temperature (40 °C to +125 °C)  
versions of the P89LPC916 and P89LPC917 devices.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
3 of 75  
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
5. Block diagram  
HIGH PERFORMANCE  
ACCELERATED 2-CLOCK 80C51 CPU  
P89LPC915  
TXD  
2 kB CODE FLASH  
UART  
RXD  
internal bus  
SCL  
2
256 BYTE DATA RAM  
I C  
SDA  
AD10  
AD11  
AD12  
AD13  
DAC1  
PORT 1  
CONFIGURABLE I/O  
P1[5:0]  
P0[5:0]  
ADC1/DAC1  
PORT 0  
CONFIGURABLE I/O  
REAL TIME CLOCK/  
SYSTEM TIMER  
TIMER 0  
TIMER 1  
T0  
KEYPAD INTERRUPT  
CMP2  
CIN2B  
CIN2A  
CIN1A  
CIN1B  
CMPREF  
ANALOG  
COMPARATORS  
WATCHDOG TIMER  
AND OSCILLATOR  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU clock  
external clock  
input  
ON-CHIP RC  
OSCILLATOR  
002aaa822  
Fig 1. P89LPC915 block diagram  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
4 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
HIGH PERFORMANCE  
ACCELERATED 2-CLOCK 80C51 CPU  
P89LPC916  
TXD  
2 kB CODE FLASH  
UART  
RXD  
internal bus  
SCL  
2
256 BYTE DATA RAM  
I C  
SDA  
AD10  
AD11  
AD12  
AD13  
DAC1  
PORT 2  
CONFIGURABLE I/O  
ADC1/DAC1  
SPI  
P2[5:2]  
P1.5, P1[3:0]  
P0[5:1]  
SPICLK  
MOSI  
MISO  
SS  
PORT 1  
CONFIGURABLE I/O  
REAL TIME CLOCK/  
SYSTEM TIMER  
PORT 0  
CONFIGURABLE I/O  
TIMER 0  
TIMER 1  
T0  
KEYPAD INTERRUPT  
CIN2B  
CIN2A  
CIN1A  
CIN1B  
CMPREF  
ANALOG  
COMPARATORS  
WATCHDOG TIMER  
AND OSCILLATOR  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU clock  
external clock  
input  
ON-CHIP RC  
OSCILLATOR  
002aaa823  
Fig 2. P89LPC916 block diagram  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
5 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
HIGH PERFORMANCE  
ACCELERATED 2-CLOCK 80C51 CPU  
P89LPC917  
TXD  
2 kB CODE FLASH  
UART  
RXD  
internal bus  
SCL  
2
256 BYTE DATA RAM  
I C  
SDA  
AD10  
AD11  
AD12  
AD13  
DAC1  
PORT 2  
CONFIGURABLE I/O  
P2.2  
P1[5:0]  
ADC1/DAC1  
PORT 1  
CONFIGURABLE I/O  
REAL TIME CLOCK/  
SYSTEM TIMER  
T0  
T1  
PORT 0  
CONFIGURABLE I/O  
TIMER 0  
TIMER 1  
P0.7, P[5:0]  
CMP2  
CIN2B  
CIN2A  
CIN1A  
CIN1B  
CMPREF  
ANALOG  
COMPARATORS  
KEYPAD INTERRUPT  
WATCHDOG TIMER  
AND OSCILLATOR  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU clock  
external clock  
input  
ON-CHIP RC  
OSCILLATOR  
clkout  
002aaa824  
Fig 3. P89LPC917 block diagram  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
6 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
6. Functional diagram  
V
V
SS  
DD  
KBI0  
CMP2  
CIN2B  
TXD  
RXD  
T0  
AD10  
AD11  
AD12  
AD13  
CLKIN  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
CIN2A  
SCL  
SDA  
PORT 0  
PORT 1  
CIN1B  
INT0  
INT1  
RST  
P89LPC915  
DAC1  
CIN1A  
CMPREF  
002aaa828  
Fig 4. P89LPC915 functional diagram  
V
V
SS  
DD  
TXD  
RXD  
T0  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
CIN2B  
CIN2A  
AD10  
AD11  
AD12  
AD13  
CLKIN  
SCL  
SDA  
PORT 1  
CIN1B  
INT0  
PORT 0  
DAC1  
CIN1A  
P89LPC916  
CMPREF  
RST  
MOSI  
MIS0  
SS  
PORT 2  
SPICLK  
002aaa829  
Fig 5. P89LPC916 functional diagram  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
7 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
V
V
SS  
DD  
KBI0  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
KBI7  
CMP2  
CIN2B  
CIN2A  
CIN1B  
CIN1A  
CMPREF  
T1  
TXD  
RXD  
T0  
AD10  
AD11  
AD12  
SCL  
SDA  
PORT 1  
PORT 2  
INT0  
INT1  
RST  
PORT 0  
P89LPC917  
AD13  
DAC1  
CLKIN  
CLKOUT  
002aaa830  
Fig 6. P89LPC917 functional diagram  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
8 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
7. Pinning information  
7.1 Pinning  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
P0.1/CIN2B/KBI1/AD10  
P0.0/CMP2/KBI0  
P1.5/RST  
P0.2/CIN2A/KBI2/AD11  
P0.3/CIN1B/KBI3/AD12  
P0.4/CIN1A/KBI4/AD13/DAC1  
P0.5/CMPREF/KBI5/CLKIN  
V
SS  
P89LPC915  
P1.4/INT1  
P1.3/INT0/SDA  
P1.2/T0/SCL  
V
DD  
P1.0/TXD  
P1.1/RXD  
8
002aaa825  
Fig 7. P89LPC915 TSSOP14 pin configuration  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
P0.1/CIN2B/KBI1/AD10  
P0.0/CMP2/KBI0  
P1.5/RST  
P0.2/CIN2A/KBI2/AD11  
P0.3/CIN1B/KBI3/AD12  
P0.4/CIN1A/KBI4/AD13/DAC1  
P0.5/CMPREF/KBI5/CLKIN  
V
P89LPC915  
SS  
P1.4/INT1  
P1.3/INT0/SDA  
P1.2/T0/SCL  
V
DD  
P1.0/TXD  
P1.1/RXD  
8
002aaf085  
Fig 8. P89LPC915 DIP14 pin configuration  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P0.1/CIN2B/KBI1/AD10  
P2.4/SS  
P0.2/CIN2A/KBI2/AD11  
P0.3/CIN1B/KBI3/AD12  
P1.5/RST  
P0.4/CIN1A/KBI4/AD13/DAC1  
P0.5/CMPREF/KBI5/CLKIN  
V
SS  
P89LPC916  
P2.3/MISO  
P2.2/MOSI  
V
DD  
P2.5/SPICLK  
P1.0/TXD  
P1.3/INT0/SDA  
P1.2/T0/SCL  
P1.1/RXD  
002aaa826  
Fig 9. P89LPC916 TSSOP16 pin configuration  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
9 of 75  
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P0.1/CIN2B/KBI1/AD10  
P0.0/CMP2/KBI0  
P1.5/RST  
P0.2/CIN2A/KBI2/AD11  
P0.3/CIN1B/KBI3/AD12  
P0.4/CIN1A/KBI4/AD13/DAC1  
P0.5/CMPREF/KBI5/CLKIN  
V
SS  
P89LPC917  
P2.2  
P1.4/INT1  
V
DD  
P0.7/T1/KBI7/CLKOUT  
P1.0/TXD  
P1.3/INT0/SDA  
P1.2/T0/SCL  
P1.1/RXD  
002aaa827  
Fig 10. P89LPC917 TSSOP16 pin configuration  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
10 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
7.2 Pin description  
Table 4.  
Symbol  
P89LPC915 pin description  
Pin  
Type Description  
P0.0 to P0.5  
I/O  
Port 0: Port 0 is a 6-bit I/O port with a user-configurable output type.  
During reset Port 0 latches are configured in the input only mode with the  
internal pull-up disabled. The operation of Port 0 pins as inputs and  
outputs depends upon the port configuration selected. Each port pin is  
configured independently. Refer to Section 8.13.1 “Port configurations”  
and Table 15 “Static characteristics” for details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt triggered inputs.  
Port 0 also provides various special functions as described below:  
P0.0 — Port 0 bit 0.  
P0.0/CMP2/KBI0  
2
1
I/O  
O
CMP2 — Comparator 2 output.  
KBI0 — Keyboard input 0.  
I
P0.1/CIN2B/KBI1/AD10  
I/O  
P0.1 — Port 0 bit 1.  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
I
AD10 — ADC1 channel 0 analog input.  
P0.2 — Port 0 bit 2.  
P0.2/CIN2A/KBI2/AD11  
P0.3/CIN1B/KBI3/AD12  
14  
13  
12  
I/O  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
I
AD11 — ADC1 channel 1 analog input.  
P0.3 — Port 0 bit 3.  
I/O  
I
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
I
I
AD12 — ADC1 channel 2 analog input.  
P0.4 — Port 0 bit 4.  
P0.4/CIN1A/KBI4/AD13/  
DAC1  
I/O  
I
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
I
I
AD13 — ADC1 channel 3 analog input.  
DAC1 — DAC1 analog output.  
P0.5 — Port 0 bit 5.  
I
P0.5/CMPREF/KBI5/CLKIN 11  
I/O  
I
I
I
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
CLKIN — External clock input.  
P1.0 to P1.5  
I/O, I Port 1: Port 1 is a 6-bit I/O port with a user-configurable output type,  
[1]  
except for three pins as noted below. During reset Port 1 latches are  
configured in the input only mode with the internal pull-up disabled. The  
operation of the configurable Port 1 pins as inputs and outputs depends  
upon the port configuration selected. Each of the configurable port pins  
are programmed independently. Refer to Section 8.13.1 “Port  
configurations” and Table 15 “Static characteristics” for details. P1.2 to  
P1.3 are open drain when used as outputs. P1.5 is input only.  
All pins have Schmitt triggered inputs.  
Port 1 also provides various special functions as described below:  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
11 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Table 4.  
Symbol  
P1.0/TXD  
P89LPC915 pin description …continued  
Pin  
Type Description  
9
I/O  
O
P1.0 — Port 1 bit 0.  
TXD — Transmitter output for serial port.  
P1.1 — Port 1 bit 1.  
P1.1/RXD  
8
7
I/O  
I
RXD — Receiver input for serial port.  
P1.2 — Port 1 bit 2 (open-drain when used as output).  
P1.2/T0/SCL  
I/O  
I/O  
T0 — Timer/counter 0 external count input or overflow output (open-drain  
when used as output).  
I/O  
SCL — I2C serial clock input/output.  
P1.3 — Port 1 bit 3 (open-drain when used as output).  
INT0 — External interrupt 0 input.  
SDA — I2C serial data input/output.  
P1.4 — Port 1 bit 4.  
P1.3/INT0/SDA  
6
I/O  
I
I/O  
P1.4/INT1  
P1.5/RST  
5
3
I
I
I
I
INT1 — External interrupt 1 input.  
P1.5 — Port 1 bit 5 (input only).  
RST — External Reset input during power-on or if selected via UCFG1.  
When functioning as a reset input, a LOW on this pin resets the  
microcontroller, causing I/O ports and peripherals to take on their default  
states, and the processor begins execution at address 0. Also used  
during a power-on sequence to force ISP mode. When using an  
oscillator frequency above 12 MHz, the reset input function of P1.5  
must be enabled. An external circuit is required to hold the device in  
reset at power-up until VDD has reached its specified level. When  
system power is removed VDD will fall below the minimum specified  
operating voltage. When using an oscillator frequency above  
12 MHz, in some applications, an external brownout detect circuit  
may be required to hold the device in reset when VDD falls below the  
minimum specified operating voltage.  
VSS  
VDD  
4
I
I
Ground: 0 V reference.  
10  
Power supply: This is the power supply voltage for normal operation as  
well as Idle and Power-down modes.  
[1] Input/output for P1.0 to P1.4. Input for P1.5.  
Table 5.  
Symbol  
P89LPC916 pin description  
Pin  
Type Description  
I/O  
P0.0 to P0.5  
Port 0: Port 0 is an 6-bit I/O port with a user-configurable output type.  
During reset Port 0 latches are configured in the input only mode with  
the internal pull-up disabled. The operation of Port 0 pins as inputs and  
outputs depends upon the port configuration selected. Each port pin is  
configured independently. Refer to Section 8.13.1 “Port configurations”  
and Table 15 “Static characteristics” for details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt triggered inputs.  
Port 0 also provides various special functions as described below:  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
12 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Table 5.  
P89LPC916 pin description …continued  
Symbol  
Pin  
Type Description  
P0.1/CIN2B/KBI1/AD10  
1
I/O  
P0.1 — Port 0 bit 1.  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
I
AD10 — ADC1 channel 0 analog input.  
P0.2 — Port 0 bit 2.  
P0.2/CIN2A/KBI2/AD11  
P0.3/CIN1B/KBI3/AD12  
16  
15  
I/O  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
I
AD11 — ADC1 channel 1 analog input.  
P0.3 — Port 0 bit 3.  
I/O  
I
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
I
I
AD12 — ADC1 channel 2 analog input.  
P0.4 — Port 0 bit 4.  
P0.4/CIN1A/KBI4/AD13/DAC1 14  
I/O  
I
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
I
I
AD13 — ADC1 channel 3 analog input.  
DAC1 — DAC1 analog output.  
P0.5 — Port 0 bit 5.  
O
P0.5/CMPREF/KBI5/CLKIN  
P1.0 to P1.5  
13  
I/O  
I
I
I
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
CLKIN — External clock input.  
I/O, I Port 1: Port 1 is an 6-bit I/O port with a user-configurable output type,  
[1]  
except for three pins as noted below. During reset Port 1 latches are  
configured in the input only mode with the internal pull-up disabled. The  
operation of the configurable Port 1 pins as inputs and outputs depends  
upon the port configuration selected. Each of the configurable port pins  
are programmed independently. Refer to Section 8.13.1 “Port  
configurations” and Table 15 “Static characteristics” for details. P1.2 to  
P1.3 are open drain when used as outputs. P1.5 is input only.  
All pins have Schmitt triggered inputs.  
Port 1 also provides various special functions as described below:  
P1.0/TXD  
10  
9
I/O  
O
P1.0 — Port 1 bit 0.  
TXD — Transmitter output for serial port.  
P1.1 — Port 1 bit 1.  
P1.1/RXD  
P1.2/T0/SCL  
I/O  
I
RXD — Receiver input for serial port.  
P1.2 — Port 1 bit 2 (open-drain when used as output).  
8
I/O  
I/O  
T0 — Timer/counter 0 external count input or overflow output  
(open-drain when used as output).  
I/O  
I/O  
I
SCL — I2C serial clock input/output.  
P1.3 — Port 1 bit 3 (open-drain when used as output).  
INT0 — External interrupt 0 input.  
P1.3/INT0/SDA  
P1.5/RST  
7
3
I/O  
I
SDA — I2C serial data input/output.  
P1.5 — Port 1 bit 5 (input only).  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
13 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Table 5.  
Symbol  
P89LPC916 pin description …continued  
Pin  
Type Description  
I
RST — External Reset input during power-on or if selected via UCFG1.  
When functioning as a reset input, a LOW on this pin resets the  
microcontroller, causing I/O ports and peripherals to take on their  
default states, and the processor begins execution at address 0. Also  
used during a power-on sequence to force ISP mode. When using an  
oscillator frequency above 12 MHz, the reset input function of P1.5  
must be enabled. An external circuit is required to hold the device  
in reset at power-up until VDD has reached its specified level. When  
system power is removed VDD will fall below the minimum  
specified operating voltage. When using an oscillator frequency  
above 12 MHz, in some applications, an external brownout detect  
circuit may be required to hold the device in reset when VDD falls  
below the minimum specified operating voltage.  
P2.2 to P2.5  
Port 2: Port 2 is a 4-bit I/O port with a user-configurable output type.  
During reset Port 2 latches are configured in the input only mode with  
the internal pull-up disabled. The operation of Port 2 pins as inputs and  
outputs depends upon the port configuration selected. Each port pin is  
configured independently. Refer to Section 8.13.1 “Port configurations”  
and Table 15 “Static characteristics” for details.  
All pins have Schmitt triggered inputs.  
Port 2 also provides various special functions as described below:  
P2.2 — Port 2 bit 2.  
P2.2/MOSI  
P2.3/MISO  
6
5
I/O  
I/O  
MOSI — SPI master out slave in. When configured as master, this pin is  
output; when configured as slave, this pin is input.  
I/O  
I/O  
P2.3 — Port 2 bit 3.  
MISO — When configured as master, this pin is input, when configured  
as slave, this pin is output.  
P2.4/SS  
2
I/O  
I/O  
I/O  
I/O  
P2.4 — Port 2 bit 4.  
SS — SPI Slave select.  
P2.5 — Port 2 bit 5.  
P2.5/SPICLK  
11  
SPICLK — SPI clock. When configured as master, this pin is output;  
when configured as slave, this pin is input.  
VSS  
VDD  
4
I
I
Ground: 0 V reference.  
12  
Power supply: This is the power supply voltage for normal operation as  
well as Idle and Power-down modes.  
[1] Input/output for P1.0 to P1.3. Input for P1.5.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
14 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Table 6.  
P89LPC917 pin description  
Symbol  
Pin  
Type Description  
P0.0 to P0.5, P0.7  
I/O  
Port 0: Port 0 is a 7-bit I/O port with a user-configurable output type.  
During reset Port 0 latches are configured in the input only mode with the  
internal pull-up disabled. The operation of Port 0 pins as inputs and  
outputs depends upon the port configuration selected. Each port pin is  
configured independently. Refer to Section 8.13.1 “Port configurations”  
and Table 15 “Static characteristics” for details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt triggered inputs.  
Port 0 also provides various special functions as described below:  
P0.0 — Port 0 bit 0.  
P0.0/CMP2/KBI0  
2
1
I/O  
O
CMP2 — Comparator 2 output.  
KBI0 — Keyboard input 0.  
I
P0.1/CIN2B/KBI1/AD10  
I/O  
P0.1 — Port 0 bit 1.  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
I
AD10 — ADC1 channel 0 analog input.  
P0.2 — Port 0 bit 2.  
P0.2/CIN2A/KBI2/AD11  
P0.3/CIN1B/KBI3/AD12  
16  
15  
14  
I/O  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
I
AD11 — ADC1 channel 1 analog input.  
P0.3 — Port 0 bit 3.  
I/O  
I
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
I
I
AD12 — ADC1 channel 2 analog input.  
P0.4 — Port 0 bit 4.  
P0.4/CIN1A/KBI4/AD13/  
DAC1  
I/O  
I
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
I
I
AD13 — ADC1 channel 3 analog input.  
DAC1 — DAC1 analog output.  
P0.5 — Port 0 bit 5.  
O
P0.5/CMPREF/KBI5  
13  
I/O  
I
I
I
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
CLKIN — External clock input.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
15 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Table 6.  
P89LPC917 pin description …continued  
Symbol  
Pin  
Type Description  
P0.7/T1/KBI7/CLKOUT  
11  
I/O  
I/O  
I
P0.7 — Port 0 bit 7.  
T1 — Timer/counter 1 external count input or overflow output.  
KBI7 — Keyboard input 7.  
O
CLKOUT — Clock output.  
P1.0 to P1.5  
I/O, I Port 1: Port 1 is a 6-bit I/O port with a user-configurable output type,  
[1]  
except for three pins as noted below. During reset Port 1 latches are  
configured in the input only mode with the internal pull-up disabled. The  
operation of the configurable Port 1 pins as inputs and outputs depends  
upon the port configuration selected. Each of the configurable port pins  
are programmed independently. Refer to Section 8.13.1 “Port  
configurations” and Table 15 “Static characteristics” for details. P1.2 to  
P1.3 are open drain when used as outputs. P1.5 is input only.  
All pins have Schmitt triggered inputs.  
Port 1 also provides various special functions as described below:  
P1.0/TXD  
10  
9
I/O  
O
P1.0 — Port 1 bit 0.  
TXD — Transmitter output for serial port.  
P1.1 — Port 1 bit 1.  
P1.1/RXD  
P1.2/T0/SCL  
I/O  
I
RXD — Receiver input for serial port.  
P1.2 — Port 1 bit 2 (open-drain when used as output).  
8
I/O  
I/O  
T0 — Timer/counter 0 external count input or overflow output (open-drain  
when used as output).  
I/O  
SCL — I2C serial clock input/output.  
P1.3 — Port 1 bit 3 (open-drain when used as output).  
INT0 — External interrupt 0 input.  
SDA — I2C serial data input/output.  
P1.4 — Port 1 bit 4.  
P1.3/INT0/SDA  
7
I/O  
I
I/O  
P1.4/INT1  
P1.5/RST  
6
3
I
I
I
I
INT1 — External interrupt 1 input.  
P1.5 — Port 1 bit 5 (input only).  
RST — External Reset input during power-on or if selected via UCFG1.  
When functioning as a reset input, a LOW on this pin resets the  
microcontroller, causing I/O ports and peripherals to take on their default  
states, and the processor begins execution at address 0. Also used  
during a power-on sequence to force ISP mode. When using an  
oscillator frequency above 12 MHz, the reset input function of P1.5  
must be enabled. An external circuit is required to hold the device in  
reset at power-up until VDD has reached its specified level. When  
system power is removed VDD will fall below the minimum specified  
operating voltage. When using an oscillator frequency above  
12 MHz, in some applications, an external brownout detect circuit  
may be required to hold the device in reset when VDD falls below the  
minimum specified operating voltage.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
16 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Table 6.  
Symbol  
P2.2  
P89LPC917 pin description …continued  
Pin  
Type Description  
5
Port 2: Port 2 is a single bit I/O port with a user-configurable output type.  
During reset Port 2 latches are configured in the input only mode with the  
internal pull-up disabled. The operation of this Port 2 pin as an input and  
output depends upon the port configuration selected. Refer to Section  
8.13.1 “Port configurations” and Table 15 “Static characteristics” for  
details.  
This pin has a Schmitt triggered input.  
VSS  
VDD  
4
I
I
Ground: 0 V reference.  
12  
Power supply: This is the power supply voltage for normal operation as  
well as Idle and Power-down modes.  
[1] Input/output for P1.0 to P1.4. Input for P1.5.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
17 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8. Functional description  
8.1 Special function registers  
Remark: SFR accesses are restricted in the following ways:  
User must not attempt to access any SFR locations not defined.  
Accesses to any defined SFR locations must be strictly for the functions for the SFRs.  
SFR bits labeled ‘-’, ‘0’ or ‘1’ can only be written and read as follows:  
‘-’ Unless otherwise specified, must be written with ‘0’, but can return any value  
when read (even if it was written with ‘0’). It is a reserved bit and may be used in  
future derivatives.  
‘0’ must be written with ‘0’, and will return a ‘0’ when read.  
‘1’ must be written with ‘1’, and will return a ‘1’ when read.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
18 of 75  
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 7.  
P89LPC915 special function registers  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex Binary  
Bit address  
E0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
00  
ADCI1 ENADC1 ADCS11 ADCS10 00  
0000 0000  
ADCON1  
ADC control register 1  
97H  
ENBI1  
ENADCI  
1
TMM1  
EDGE1  
0000 0000  
ADINS  
ADC input select  
A3H  
C0H  
A1H  
ADI13  
BNDI1  
CLK2  
ADI12  
BURST1  
CLK1  
ADI11  
SCC1  
CLK0  
ADI10  
SCAN1  
-
-
-
-
-
-
-
-
-
-
00  
00  
00  
FF  
00  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
000x 0000  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 00x0  
ADMODA  
ADMODB  
AD1BH  
ADC mode register A  
ADC mode register B  
-
ENDAC1  
BSA1  
A/D_1 boundary high register C4H  
A/D_1 boundary low register BCH  
AD1BL  
AD1DAT0  
AD1DAT1  
AD1DAT2  
AD1DAT3  
AUXR1  
A/D_1 data register 0  
A/D_1 data register 1  
A/D_1 data register 2  
A/D_1 data register 3  
Auxiliary function register  
D5H  
D6H  
D7H  
F5H  
A2H CLKLP  
EBRR  
-
ENT0  
SRST  
0
-
DPS  
Bit address  
F0H  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
B*  
B register  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
BRGR0  
BRGR1  
BRGCON  
CMP1  
CMP2  
DIVM  
Baud rate generator rate low BEH  
Baud rate generator rate high BFH  
Baud rate generator control  
BDH  
-
-
-
-
-
-
-
-
-
-
-
SBRGS BRGEN 00[2] xxxx xx00  
Comparator 1 control register ACH  
Comparator 2 control register ADH  
CPU clock divide-by-M control 95H  
Data pointer (2 bytes)  
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
CO1  
CO2  
CMF1 00[1] xx00 0000  
CMF2 00[1] xx00 0000  
OE2  
00  
0000 0000  
DPTR  
DPH  
Data pointer high  
83H  
82H  
E7H  
E6H  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
DPL  
Data pointer low  
FMADRH  
FMADRL  
Program flash address high  
Program flash address low  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC915 special function registers …continued  
Table 7.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex Binary  
FMCON  
Program flash control (Read) E4H  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
70  
0111 0000  
Program flash control (Write) E4H FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD.  
7
6
5
4
3
2
1
0
FMDATA  
I2ADR  
Program flash data  
I2C slave address register  
E5H  
DBH I2ADR.6 I2ADR.5 I2ADR.4 I2ADR.3 I2ADR.2 I2ADR.1 I2ADR.0  
00  
00  
0000 0000  
0000 0000  
GC  
Bit address  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
D8  
I2CON*  
I2DAT  
I2C control register  
I2C data register  
D8H  
DAH  
DDH  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x000 00x0  
I2SCLH  
Serial clock generator/SCL  
duty cycle register high  
00  
00  
0000 0000  
0000 0000  
1111 1000  
I2SCLL  
I2STAT  
Serial clock generator/SCL  
duty cycle register low  
I2C status register  
DCH  
D9H  
STA.4  
AF  
EA  
EF  
EAD  
BF  
-
STA.3  
AE  
STA.2  
AD  
STA.1  
AC  
STA.0  
AB  
0
AA  
0
0
F8  
00  
Bit address  
A8H  
A9  
A8  
IEN0*  
IEN1*  
Interrupt enable 0  
Interrupt enable 1  
EWDRT  
EE  
EBO  
ED  
ES/ESR  
EC  
ET1  
EB  
EX1  
EA  
ET0  
E9  
EX0  
E8  
0000 0000  
Bit address  
E8H  
EST  
-
-
-
EC  
EKBI  
B9  
EI2C  
B8  
00[1] 00x0 0000  
Bit address  
B8H  
BE  
BD  
BC  
BB  
BA  
IP0*  
Interrupt priority 0  
PWDRT  
PBO  
PBOH  
PS/PSR  
PT1  
PT1H  
PX1  
PX1H  
PT0  
PT0H  
PX0  
PX0H  
00[1] x000 0000  
00[1] x000 0000  
IP0H  
Interrupt priority 0 high  
B7H  
-
PWDRT  
H
PSH/  
PSRH  
Bit address  
F8H  
FF  
PAD  
PADH  
-
FE  
PST  
PSTH  
-
FD  
FC  
FB  
FA  
PC  
PCH  
-
F9  
F8  
IP1*  
Interrupt priority 1  
-
-
-
-
-
-
-
-
-
PKBI  
PKBIH  
PI2C  
00[1] 00x0 0000  
IP1H  
Interrupt priority 1 high  
Keypad control register  
F7H  
PI2CH 00[1] 00x0 0000  
KBIF  
00[1] xxxx xx00  
KBCON  
94H  
PATN  
_SEL  
KBMASK  
KBPATN  
Keypad interrupt mask  
register  
86H  
00  
FF  
0000 0000  
1111 1111  
Keypad pattern register  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC915 special function registers …continued  
Table 7.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
80  
Hex Binary  
Bit address  
87  
86  
85  
84  
83  
82  
81  
[1]  
[1]  
P0*  
P1*  
Port 0  
Port 1  
80H  
-
-
CMPREF CIN1A  
CIN1B  
/KB3  
CIN2A  
/KB2  
CIN2B  
/KB1  
CMP2  
/KB0  
/KB5  
95  
/KB4  
94  
Bit address  
97  
96  
93  
92  
91  
90  
90H  
-
-
RST  
INT1  
INT0/  
SDA  
T0/SCL  
RXD  
TXD  
Bit address  
84H  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
P0M1  
P0M2  
P1M1  
P1M2  
PCON  
PCONA  
Port 0 output mode 1  
Port 0 output mode 2  
Port 1 output mode 1  
Port 1 output mode 2  
Power control register  
Power control register A  
-
-
-
-
-
-
-
-
(P0M1.5) (P0M1.4) (P0M1.3) (P0M1.2) (P0M1.1) (P0M1.0) FF[1] 1111 1111  
(P0M2.5) (P0M2.4) (P0M2.3) (P0M2.2) (P0M2.1) (P0M2.0) 00[1] 0000 0000  
85H  
91H  
-
-
(P1M1.4) (P1M1.3) (P1M1.2) (P1M1.1) (P1M1.0) D3[1] 11x1 xx11  
(P1M2.4) (P1M2.3) (P1M2.2) (P1M2.1) (P1M2.0) 00[1] 00x0 xx00  
92H  
87H SMOD1 SMOD0  
BOPD  
VCPD  
D5  
BOI  
ADPD  
D4  
GF1  
I2PD  
D3  
GF0  
-
PMOD1 PMOD0 00  
0000 0000  
00[1] 0000 0000  
B5H RTCPD  
-
SPD  
D1  
-
D0  
P
Bit address  
D7  
D6  
D2  
OV  
PSW*  
Program status word  
Port 0 digital input disable  
Reset source register  
RTC control  
D0H  
F6H  
DFH  
D1H  
CY  
AC  
F0  
RS1  
RS0  
F1  
00  
0000 0000  
xx00 000x  
PT0AD  
-
-
-
PT0AD.5 PT0AD.4 PT0AD.3 PT0AD.2 PT0AD.1  
-
00  
[3]  
RSTSRC  
RTCCON  
-
BOF  
POF  
-
R_BK  
-
R_WD  
-
R_SF  
ERTC  
R_EX  
RTCF  
RTCS1  
RTCS0  
RTCEN 60[1][ 011x xx00  
6]  
RTCH  
RTCL  
RTC register high  
D2H  
D3H  
A9H  
B9H  
00[6] 0000 0000  
00[6] 0000 0000  
RTC register low  
SADDR  
SADEN  
SBUF  
Serial port address register  
Serial port address enable  
00  
00  
xx  
0000 0000  
0000 0000  
xxxx xxxx  
Serial Port data buffer register 99H  
Bit address  
9F  
9E  
9D  
9C  
9B  
TB8  
FE  
9A  
RB8  
BR  
99  
TI  
98  
SCON*  
SSTAT  
Serial port control  
98H SM0/FE  
BAH DBMOD  
SM1  
SM2  
CIDIS  
REN  
RI  
00  
0000 0000  
0000 0000  
Serial port extended status  
register  
INTLO  
DBISEL  
OE  
STINT 00  
SP  
Stack pointer  
81H  
07  
0000 0111  
xxx0 xxx0  
TAMOD  
Timer 0 and 1 auxiliary mode 8FH  
-
-
-
-
-
-
-
T0M2  
00  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC915 special function registers …continued  
Table 7.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
88  
Hex Binary  
Bit address  
88H  
8F  
8E  
8D  
8C  
8B  
8A  
89  
TCON*  
TH0  
Timer 0 and 1 control  
Timer 0 high  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00  
00  
00  
00  
00  
0000 0000  
8CH  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
TH1  
Timer 1 high  
8DH  
TL0  
Timer 0 low  
8AH  
TL1  
Timer 1 low  
8BH  
TMOD  
TRIM  
Timer 0 and 1 mode  
89H T1GATE  
T1C/T  
-
T1M1  
TRIM.5  
PRE0  
T1M0  
TRIM.4  
-
T0GATE  
TRIM.3  
-
T0C/T  
T0M1  
T0M0  
00  
[5] [6]  
Internal oscillator trim register 96H RCCLK  
TRIM.2  
TRIM.1  
TRIM.0  
[4] [6]  
WDCON  
WDL  
Watchdog control register  
Watchdog load  
A7H  
C1H  
C2H  
C3H  
PRE2  
PRE1  
WDRUN WDTOF WDCLK  
FF  
1111 1111  
WFEED1  
WFEED2  
Watchdog feed 1  
Watchdog feed 2  
[1] All ports are in input only (high-impedance) state after power-up.  
[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC915/916/917 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset  
value is xx11 0000.  
[4] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset.  
Other resets will not affect WDTOF.  
[5] On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset source that affects these SFRs is power-on reset.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 8.  
P89LPC916 special function registers  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex Binary  
Bit address  
E0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
00  
ADCI1 ENADC1 ADCS11 ADCS10 00  
0000 0000  
ADCON1  
ADC control register 1  
97H  
ENBI1  
ENADCI  
1
TMM1  
EDGE1  
0000 0000  
ADINS  
ADC input select  
A3H  
C0H  
A1H  
ADI13  
BNDI1  
CLK2  
ADI12  
BURST1  
CLK1  
ADI11  
SCC1  
CLK0  
ADI10  
SCAN1  
-
-
-
-
-
-
-
-
-
-
00  
00  
00  
FF  
00  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
000x 0000  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 00x0  
ADMODA  
ADMODB  
AD1BH  
ADC mode register A  
ADC mode register B  
-
ENDAC1  
BSA1  
A/D_1 boundary high register C4H  
A/D_1 boundary low register BCH  
AD1BL  
AD1DAT0  
AD1DAT1  
AD1DAT2  
AD1DAT3  
AUXR1  
A/D_1 data register 0  
A/D_1 data register 1  
A/D_1 data register 2  
A/D_1 data register 3  
Auxiliary function register  
D5H  
D6H  
D7H  
F5H  
A2H CLKLP  
EBRR  
-
ENT0  
SRST  
0
-
DPS  
Bit address  
F0H  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
B*  
B register  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
BRGR0  
BRGR1  
BRGCON  
CMP1  
CMP2  
DIVM  
Baud rate generator rate low BEH  
Baud rate generator rate high BFH  
Baud rate generator control  
BDH  
-
-
-
-
-
-
-
-
-
-
-
SBRGS BRGEN 00[2] xxxx xx00  
Comparator 1 control register ACH  
Comparator 2 control register ADH  
CPU clock divide-by-M control 95H  
Data pointer (2 bytes)  
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
CO1  
CO2  
CMF1 00[1] xx00 0000  
CMF2 00[1] xx00 0000  
OE2  
00  
0000 0000  
DPTR  
DPH  
Data pointer high  
83H  
82H  
E7H  
E6H  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
DPL  
Data pointer low  
FMADRH  
FMADRL  
Program flash address high  
Program flash address low  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC916 special function registers …continued  
Table 8.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex Binary  
FMCON  
Program flash control (Read) E4H  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
70  
0111 0000  
Program flash control (Write) E4H FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD.  
7
6
5
4
3
2
1
0
FMDATA  
I2ADR  
Program flash data  
I2C slave address register  
E5H  
DBH I2ADR.6 I2ADR.5 I2ADR.4 I2ADR.3 I2ADR.2 I2ADR.1 I2ADR.0  
00  
00  
0000 0000  
0000 0000  
GC  
Bit address  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
D8  
I2CON*  
I2DAT  
I2C control register  
I2C data register  
D8H  
DAH  
DDH  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x000 00x0  
I2SCLH  
Serial clock generator/SCL  
duty cycle register high  
00  
00  
0000 0000  
0000 0000  
1111 1000  
I2SCLL  
I2STAT  
Serial clock generator/SCL  
duty cycle register low  
I2C status register  
DCH  
D9H  
STA.4  
AF  
EA  
EF  
EAD  
BF  
-
STA.3  
AE  
STA.2  
AD  
STA.1  
AC  
STA.0  
AB  
0
AA  
-
0
0
F8  
00  
Bit address  
A8H  
A9  
A8  
IEN0*  
IEN1*  
Interrupt enable 0  
Interrupt enable 1  
EWDRT  
EE  
EBO  
ED  
ES/ESR  
EC  
ET1  
EB  
ET0  
E9  
EX0  
E8  
0000 0000  
Bit address  
E8H  
EA  
EC  
BA  
-
EST  
-
-
ESPI  
BB  
EKBI  
B9  
EI2C  
B8  
00[1] 00x0 0000  
Bit address  
B8H  
BE  
BD  
BC  
IP0*  
Interrupt priority 0  
PWDRT  
PBO  
PBOH  
PS/PSR  
PT1  
PT1H  
PT0  
PT0H  
PX0  
PX0H  
00[1] x000 0000  
00[1] x000 0000  
IP0H  
Interrupt priority 0 high  
B7H  
-
PWDRT  
H
PSH/  
PSRH  
-
Bit address  
F8H  
FF  
PAD  
PADH  
-
FE  
PST  
PSTH  
-
FD  
FC  
FB  
PSPI  
PSPIH  
-
FA  
PC  
PCH  
-
F9  
F8  
IP1*  
Interrupt priority 1  
-
-
-
-
-
-
PKBI  
PKBIH  
PI2C  
00[1] 00x0 0000  
IP1H  
Interrupt priority 1 high  
Keypad control register  
F7H  
PI2CH 00[1] 00x0 0000  
KBIF  
00[1] xxxx xx00  
KBCON  
94H  
PATN  
_SEL  
KBMASK  
KBPATN  
Keypad interrupt mask  
register  
86H  
00  
FF  
0000 0000  
1111 1111  
Keypad pattern register  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC916 special function registers …continued  
Table 8.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
80  
-
Hex Binary  
Bit address  
87  
86  
85  
84  
83  
82  
81  
[1]  
[1]  
[1]  
P0*  
P1*  
Port 0  
Port 1  
80H  
-
-
CMPREF CIN1A  
/KB5  
95  
CIN1B  
/KB3  
CIN2A  
/KB2  
CIN2B  
/KB1  
/KB4  
94  
-
Bit address  
97  
96  
93  
92  
91  
90  
90H  
-
-
RST  
INT0/  
SDA  
T0/SCL  
RXD  
TXD  
Bit address  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
P2*  
Port 2  
A0H  
-
-
SPICLK  
SS  
MISO  
MOSI  
-
-
P0M1  
P0M2  
P1M1  
P1M2  
P2M1  
P2M2  
PCON  
PCONA  
Port 0 output mode 1  
Port 0 output mode 2  
Port 1 output mode 1  
Port 1 output mode 2  
Port 2 output mode 1  
Port 2 output mode 2  
Power control register  
Power control register A  
84H (P0M1.7) (P0M1.6) (P0M1.5) (P0M1.4) (P0M1.3) (P0M1.2) (P0M1.1) (P0M1.0) FF[1] 1111 1111  
85H (P0M2.7) (P0M2.6) (P0M2.5) (P0M2.4) (P0M2.3) (P0M2.2) (P0M2.1) (P0M2.0) 00[1] 0000 0000  
91H (P1M1.7) (P1M1.6)  
92H (P1M2.7) (P1M2.6)  
-
-
(P1M1.4) (P1M1.3) (P1M1.2) (P1M1.1) (P1M1.0) D3[1] 11x1 xx11  
(P1M2.4) (P1M2.3) (P1M2.2) (P1M2.1) (P1M2.0) 00[1] 00x0 xx00  
A4H  
A5H  
-
-
-
-
(P2M1.5) (P2M1.4) (P2M1.3) (P2M1.2)  
(P2M2.5) (P2M2.4) (P2M2.3) (P2M2.2)  
-
-
-
-
FF[1] 11x1 xx11  
00[1] 00x0 xx00  
87H SMOD1 SMOD0  
BOPD  
VCPD  
D5  
BOI  
ADPD  
D4  
GF1  
I2PD  
D3  
GF0  
SPPD  
D2  
PMOD1 PMOD0 00  
0000 0000  
B5H RTCPD  
-
SPD  
D1  
-
D0  
P
00[1] 0000 0000  
Bit address  
D7  
D6  
PSW*  
Program status word  
Port 0 digital input disable  
Reset source register  
RTC control  
D0H  
F6H  
DFH  
D1H  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
00  
0000 0000  
xx00 000x  
PT0AD  
-
-
-
PT0AD.5 PT0AD.4 PT0AD.3 PT0AD.2 PT0AD.1  
-
00  
[3]  
RSTSRC  
RTCCON  
-
BOF  
POF  
-
R_BK  
-
R_WD  
-
R_SF  
ERTC  
R_EX  
RTCF  
RTCS1  
RTCS0  
RTCEN 60[1][ 011x xx00  
6]  
RTCH  
RTCL  
RTC register high  
D2H  
D3H  
A9H  
B9H  
00[6] 0000 0000  
00[6] 0000 0000  
RTC register low  
SADDR  
SADEN  
SBUF  
Serial port address register  
Serial port address enable  
00  
00  
xx  
0000 0000  
0000 0000  
xxxx xxxx  
Serial Port data buffer register 99H  
Bit address  
9F  
9E  
9D  
9C  
9B  
9A  
99  
98  
SCON*  
Serial port control  
98H SM0/FE  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
00  
0000 0000  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC916 special function registers …continued  
Table 8.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex Binary  
SSTAT  
Serial port extended status  
register  
BAH DBMOD  
81H  
INTLO  
CIDIS  
DBISEL  
FE  
BR  
OE  
STINT 00  
0000 0000  
SP  
Stack pointer  
07  
0000 0111  
0000 0100  
00xx xxxx  
0000 0000  
xxx0 xxx0  
SPCTL  
SPSTAT  
SPDAT  
TAMOD  
SPI control register  
SPI status register  
SPI data register  
E2H  
E1H  
E3H  
SSIG  
SPIF  
SPEN  
DORD  
-
MSTR  
-
CPOL  
-
CPHA  
-
SPR1  
-
SPR0  
-
04  
00  
00  
00  
WCOL  
Timer 0 and 1 auxiliary mode 8FH  
-
-
-
-
-
8B  
-
-
8A  
-
-
T0M2  
88  
Bit address  
8F  
8E  
8D  
TF0  
8C  
89  
IE0  
TCON*  
TH0  
Timer 0 and 1 control  
Timer 0 high  
88H  
8CH  
8DH  
8AH  
8BH  
TF1  
TR1  
TR0  
IT0  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
TH1  
Timer 1 high  
TL0  
Timer 0 low  
TL1  
Timer 1 low  
TMOD  
TRIM  
Timer 0 and 1 mode  
89H T1GATE  
T1C/T  
-
T1M1  
TRIM.5  
PRE0  
T1M0  
TRIM.4  
-
T0GATE  
TRIM.3  
-
T0C/T  
T0M1  
T0M0  
00  
[5] [6]  
Internal oscillator trim register 96H RCCLK  
TRIM.2  
TRIM.1  
TRIM.0  
[4] [6]  
WDCON  
WDL  
Watchdog control register  
Watchdog load  
A7H  
C1H  
C2H  
C3H  
PRE2  
PRE1  
WDRUN WDTOF WDCLK  
FF  
1111 1111  
WFEED1  
WFEED2  
Watchdog feed 1  
Watchdog feed 2  
[1] All ports are in input only (high-impedance) state after power-up.  
[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC915/916/917 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset  
value is xx11 0000.  
[4] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset.  
Other resets will not affect WDTOF.  
[5] On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset source that affects these SFRs is power-on reset.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 9.  
P89LPC917 special function registers  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex Binary  
Bit address  
E0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
00  
ADCI1 ENADC1 ADCS11 ADCS10 00  
0000 0000  
ADCON1  
ADC control register 1  
97H  
ENBI1  
ENADCI  
1
TMM1  
EDGE1  
0000 0000  
ADINS  
ADC input select  
A3H  
C0H  
A1H  
ADI13  
BNDI1  
CLK2  
ADI12  
BURST1  
CLK1  
ADI11  
SCC1  
CLK0  
ADI10  
SCAN1  
-
-
-
-
-
-
-
-
-
-
00  
00  
00  
FF  
00  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
000x 0000  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 00x0  
ADMODA  
ADMODB  
AD1BH  
ADC mode register A  
ADC mode register B  
-
ENDAC1  
BSA1  
A/D_1 boundary high register C4H  
A/D_1 boundary low register BCH  
AD1BL  
AD1DAT0  
AD1DAT1  
AD1DAT2  
AD1DAT3  
AUXR1  
A/D_1 data register 0  
A/D_1 data register 1  
A/D_1 data register 2  
A/D_1 data register 3  
Auxiliary function register  
D5H  
D6H  
D7H  
F5H  
A2H CLKLP  
EBRR  
ENT1  
ENT0  
SRST  
0
-
DPS  
Bit address  
F0H  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
B*  
B register  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
BRGR0  
BRGR1  
BRGCON  
CMP1  
CMP2  
DIVM  
Baud rate generator rate low BEH  
Baud rate generator rate high BFH  
Baud rate generator control  
BDH  
-
-
-
-
-
-
-
-
-
-
-
SBRGS BRGEN 00[2] xxxx xx00  
Comparator 1 control register ACH  
Comparator 2 control register ADH  
CPU clock divide-by-M control 95H  
Data pointer (2 bytes)  
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
CO1  
CO2  
CMF1 00[1] xx00 0000  
CMF2 00[1] xx00 0000  
OE2  
00  
0000 0000  
DPTR  
DPH  
Data pointer high  
83H  
82H  
E7H  
E6H  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
DPL  
Data pointer low  
FMADRH  
FMADRL  
Program flash address high  
Program flash address low  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC917 special function registers …continued  
Table 9.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex Binary  
FMCON  
Program flash control (Read) E4H  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
70  
0111 0000  
Program flash control (Write) E4H FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD.  
7
6
5
4
3
2
1
0
FMDATA  
I2ADR  
Program flash data  
I2C slave address register  
E5H  
DBH I2ADR.6 I2ADR.5 I2ADR.4 I2ADR.3 I2ADR.2 I2ADR.1 I2ADR.0  
00  
00  
0000 0000  
0000 0000  
GC  
Bit address  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
D8  
I2CON*  
I2DAT  
I2C control register  
I2C data register  
D8H  
DAH  
DDH  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x000 00x0  
I2SCLH  
Serial clock generator/SCL  
duty cycle register high  
00  
00  
0000 0000  
0000 0000  
1111 1000  
I2SCLL  
I2STAT  
Serial clock generator/SCL  
duty cycle register low  
I2C status register  
DCH  
D9H  
STA.4  
AF  
EA  
EF  
EAD  
BF  
-
STA.3  
AE  
STA.2  
AD  
STA.1  
AC  
STA.0  
AB  
0
AA  
0
0
F8  
00  
Bit address  
A8H  
A9  
A8  
IEN0*  
IEN1*  
Interrupt enable 0  
Interrupt enable 1  
EWDRT  
EE  
EBO  
ED  
ES/ESR  
EC  
ET1  
EB  
EX1  
EA  
ET0  
E9  
EX0  
E8  
0000 0000  
Bit address  
E8H  
EST  
-
-
-
EC  
EKBI  
B9  
EI2C  
B8  
00[1] 00x0 0000  
Bit address  
B8H  
BE  
BD  
BC  
BB  
BA  
IP0*  
Interrupt priority 0  
PWDRT  
PBO  
PBOH  
PS/PSR  
PT1  
PT1H  
PX1  
PX1H  
PT0  
PT0H  
PX0  
PX0H  
00[1] x000 0000  
00[1] x000 0000  
IP0H  
Interrupt priority 0 high  
B7H  
-
PWDRT  
H
PSH/  
PSRH  
Bit address  
F8H  
FF  
PAD  
PADH  
-
FE  
PST  
PSTH  
-
FD  
FC  
FB  
FA  
PC  
PCH  
-
F9  
F8  
IP1*  
Interrupt priority 1  
-
-
-
-
-
-
-
-
-
PKBI  
PKBIH  
PI2C  
00[1] 00x0 0000  
IP1H  
Interrupt priority 1 high  
Keypad control register  
F7H  
PI2CH 00[1] 00x0 0000  
KBIF  
00[1] xxxx xx00  
KBCON  
94H  
PATN  
_SEL  
KBMASK  
KBPATN  
Keypad interrupt mask  
register  
86H  
00  
FF  
0000 0000  
1111 1111  
Keypad pattern register  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC917 special function registers …continued  
Table 9.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
80  
Hex Binary  
Bit address  
87  
86  
85  
84  
83  
82  
81  
[1]  
[1]  
P0*  
P1*  
Port 0  
Port 1  
80H T1/KB7/  
CLKOUT  
-
CMPREF CIN1A  
CIN1B  
/KB3  
CIN2A  
/KB2  
CIN2B  
/KB1  
CMP2  
/KB0  
/KB5  
95  
/KB4  
94  
Bit address  
97  
96  
93  
92  
91  
90  
90H  
-
-
RST  
INT1  
INT0/  
SDA  
T0/SCL  
RXD  
TXD  
Bit address  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
P0M1  
P0M2  
P1M1  
P1M2  
PCON  
PCONA  
Port 0 output mode 1  
Port 0 output mode 2  
Port 1 output mode 1  
Port 1 output mode 2  
Power control register  
Power control register A  
84H (P0M1.7)  
85H (P0M2.7)  
-
-
-
-
(P0M1.5) (P0M1.4) (P0M1.3) (P0M1.2) (P0M1.1) (P0M1.0) FF[1] 1111 1111  
(P0M2.5) (P0M2.4) (P0M2.3) (P0M2.2) (P0M2.1) (P0M2.0) 00[1] 0000 0000  
91H  
92H  
-
-
-
-
(P1M1.4) (P1M1.3) (P1M1.2) (P1M1.1) (P1M1.0) D3[1] 11x1 xx11  
(P1M2.4) (P1M2.3) (P1M2.2) (P1M2.1) (P1M2.0) 00[1] 00x0 xx00  
87H SMOD1 SMOD0  
BOPD  
VCPD  
D5  
BOI  
ADPD  
D4  
GF1  
I2PD  
D3  
GF0  
-
PMOD1 PMOD0 00  
0000 0000  
B5H RTCPD  
-
SPD  
D1  
-
D0  
P
00[1] 0000 0000  
Bit address  
D7  
D6  
D2  
OV  
PSW*  
Program status word  
Port 0 digital input disable  
Reset source register  
RTC control  
D0H  
F6H  
DFH  
D1H  
CY  
AC  
F0  
RS1  
RS0  
F1  
00  
0000 0000  
xx00 000x  
PT0AD  
-
-
-
PT0AD.5 PT0AD.4 PT0AD.3 PT0AD.2 PT0AD.1  
-
00  
[3]  
RSTSRC  
RTCCON  
-
BOF  
POF  
-
R_BK  
-
R_WD  
-
R_SF  
ERTC  
R_EX  
RTCF  
RTCS1  
RTCS0  
RTCEN 60[1][ 011x xx00  
6]  
RTCH  
RTCL  
RTC register high  
D2H  
D3H  
A9H  
B9H  
00[6] 0000 0000  
00[6] 0000 0000  
RTC register low  
SADDR  
SADEN  
SBUF  
Serial port address register  
Serial port address enable  
00  
00  
xx  
0000 0000  
0000 0000  
xxxx xxxx  
Serial Port data buffer register 99H  
Bit address  
9F  
9E  
9D  
9C  
9B  
TB8  
FE  
9A  
RB8  
BR  
99  
TI  
98  
SCON*  
SSTAT  
Serial port control  
98H SM0/FE  
BAH DBMOD  
SM1  
SM2  
CIDIS  
REN  
RI  
00  
0000 0000  
0000 0000  
Serial port extended status  
register  
INTLO  
DBISEL  
OE  
STINT 00  
SP  
Stack pointer  
81H  
07  
0000 0111  
xxx0 xxx0  
TAMOD  
Timer 0 and 1 auxiliary mode 8FH  
-
-
-
T1M2  
-
-
-
T0M2  
00  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC917 special function registers …continued  
Table 9.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
88  
Hex Binary  
Bit address  
88H  
8F  
8E  
8D  
8C  
8B  
8A  
89  
TCON*  
TH0  
Timer 0 and 1 control  
Timer 0 high  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00  
00  
00  
00  
00  
0000 0000  
8CH  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
TH1  
Timer 1 high  
8DH  
TL0  
Timer 0 low  
8AH  
TL1  
Timer 1 low  
8BH  
TMOD  
TRIM  
Timer 0 and 1 mode  
89H T1GATE  
T1C/T  
ENCLK  
PRE1  
T1M1  
TRIM.5  
PRE0  
T1M0  
TRIM.4  
-
T0GATE  
TRIM.3  
-
T0C/T  
T0M1  
T0M0  
00  
[5] [6]  
Internal oscillator trim register 96H RCCLK  
TRIM.2  
TRIM.1  
TRIM.0  
[4] [6]  
WDCON  
WDL  
Watchdog control register  
Watchdog load  
A7H  
C1H  
C2H  
C3H  
PRE2  
WDRUN WDTOF WDCLK  
FF  
1111 1111  
WFEED1  
WFEED2  
Watchdog feed 1  
Watchdog feed 2  
[1] All ports are in input only (high-impedance) state after power-up.  
[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC915/916/917 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset  
value is xx11 0000.  
[4] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset.  
Other resets will not affect WDTOF.  
[5] On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset source that affects these SFRs is power-on reset.  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.2 Enhanced CPU  
The P89LPC915/916/917 uses an enhanced 80C51 CPU which runs at six times the  
speed of standard 80C51 devices. A machine cycle consists of two CPU clock cycles, and  
most instructions execute in one or two machine cycles.  
8.3 Clocks  
8.3.1 Clock definitions  
The P89LPC915/916/917 device has several internal clocks as defined below:  
OSCCLK — Input to the DIVM clock divider. OSCCLK is selected from one of four clock  
sources (see Figure 11) and can also be optionally divided to a slower frequency (see  
Section 8.8 “CCLK modification: DIVM register”).  
Note: fosc is defined as the OSCCLK frequency.  
CCLK — CPU clock; output of the clock divider. There are two CCLK cycles per machine  
cycle, and most instructions are executed in one to two machine cycles (two or four CCLK  
cycles).  
RCCLK — The internal 7.373 MHz RC oscillator output.  
PCLK — Clock for the various peripheral devices and is CCLK2.  
8.3.2 CPU clock (OSCCLK)  
The P89LPC915/916/917 provides several user-selectable oscillator options in generating  
the CPU clock. This allows optimization for a range of needs from high precision to lowest  
possible cost. These options are configured when the flash is programmed and include an  
on-chip watchdog oscillator, an on-chip RC oscillator, and an external clock source.  
8.3.3 Clock output (P89LPC917)  
The P89LPC917 supports a user-selectable clock output function on the CLKOUT pin.  
This allows external devices to synchronize to the P89LPC917. This output is enabled by  
the ENCLK bit in the TRIM register.  
The frequency of this clock output is 12 that of the CCLK. If the clock output is not needed  
in Idle mode, it may be turned off prior to entering Idle, saving additional power.  
8.4 On-chip RC oscillator option  
The P89LPC915/916/917 has a 6-bit TRIM register that can be used to tune the  
frequency of the RC oscillator. During reset, the TRIM value is initialized to a factory  
pre-programmed value to adjust the oscillator frequency to 7.373 MHz ± 1 % at room  
temperature. End-user applications can write to the TRIM register to adjust the on-chip  
RC oscillator to other frequencies. If CCLK is 8 MHz or slower, the CLKLP SFR bit  
(AUXR1.7) can be set to logic 1 to reduce power consumption. On reset, CLKLP is logic 0  
allowing highest performance access. This bit can then be set in software if CCLK is  
running at 8 MHz or slower.  
8.5 Watchdog oscillator option  
The watchdog has a separate oscillator which has a frequency of 400 kHz. This oscillator  
can be used to save power when a high clock frequency is not needed.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
31 of 75  
 
 
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.6 External clock input option  
In this configuration, the processor clock is derived from an external source driving the  
CLKIN pin. The rate may be from 0 Hz up to 18 MHz.  
When using an external clock input frequency above 12 MHz, the reset input  
function of P1.5 must be enabled. An external circuit is required to hold the device  
in reset at power-up until VDD has reached its specified level. When system power is  
removed VDD will fall below the minimum specified operating voltage. When using  
an external clock input frequency above 12 MHz, in some applications, an external  
brownout detect circuit may be required to hold the device in reset when VDD falls  
below the minimum specified operating voltage.  
RTCS1:0  
XCLK  
RTC  
CLKOUT  
RCCLK  
OSCCLK  
CLKIN  
RC  
CCLK  
DIVM  
CPU  
RCCLK  
OSCILLATOR  
ADC1/DAC1  
(7.3728 MHz)  
÷2  
PCLK  
WDT  
WATCHDOG  
OSCILLATOR  
(400 kHz)  
peripheral clock  
BAUD RATE  
GENERATOR  
SPI  
(P89LPC916)  
2
TIMERS 1 AND 0  
I C  
UART  
002aaa831  
Fig 11. Block diagram of oscillator control  
8.7 CCLK wake-up delay  
The P89LPC915/916/917 has an internal wake-up timer that delays the clock until it  
stabilizes. The delay is 224 OSCCLK cycles plus 60 µs to 100 µs.  
8.8 CCLK modification: DIVM register  
The OSCCLK frequency can be divided down up to 510 times by configuring a dividing  
register, DIVM, to generate CCLK. This feature makes it possible to temporarily run the  
CPU at a lower rate, reducing power consumption. By dividing the clock, the CPU can  
retain the ability to respond to events that would not exit Idle mode by executing its normal  
program at a lower rate. This can also allow bypassing the oscillator start-up time in cases  
where Power-down mode would otherwise be used. The value of DIVM may be changed  
by the program at any time without interrupting code execution.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
32 of 75  
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.9 Low power select  
The P89LPC915/916/917 is designed to run at 18 MHz (CCLK) maximum. However, if  
CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to ‘1’ to lower the  
power consumption further. On any reset, CLKLP is ‘0’ allowing highest performance  
access. This bit can then be set in software if CCLK is running at 8 MHz or slower.  
8.10 Memory organization  
The various P89LPC915/916/917 memory spaces are as follows:  
DATA  
128 bytes of internal data memory space (00H:7FH) accessed via direct or indirect  
addressing, using instructions other than MOVX and MOVC. All or part of the Stack  
may be in this area.  
IDATA  
Indirect Data. 256 bytes of internal data memory space (00H:FFH) accessed via  
indirect addressing using instructions other than MOVX and MOVC. All or part of the  
Stack may be in this area. This area includes the DATA area and the 128 bytes  
immediately above it.  
SFR  
Special Function Registers. Selected CPU registers and peripheral control and status  
registers, accessible only via direct addressing.  
CODE  
64 kB of Code memory space, accessed as part of program execution and via the  
MOVC instruction. The P89LPC915/916/917 devices have 2 kB of on-chip Code  
memory.  
8.11 Data RAM arrangement  
The 256 bytes of on-chip RAM are organized as shown in Table 10.  
Table 10. On-chip data memory usages  
Type  
DATA  
IDATA  
Data RAM  
Size (bytes)  
128  
Memory that can be addressed directly and indirectly  
Memory that can be addressed indirectly  
256  
8.12 Interrupts  
The P89LPC915/916/917 uses a four priority level interrupt structure. This allows great  
flexibility in controlling the handling of the many interrupt sources.  
The P89LPC915 and P89LPC917 support 13 interrupt sources: external interrupts 0 and  
1, timers 0 and 1, serial port TX, serial port RX, combined serial port RX/TX, brownout  
detect, watchdog/RTC, I2C-bus, keyboard, comparators 1 and 2, and ADC completion.  
The P89LPC916 supports 14 interrupt sources: external interrupts 0 and 1, timers 0 and  
1, serial port TX, serial port RX, combined serial port RX/TX, brownout detect,  
watchdog/RTC, I2C-bus, keyboard, comparators 1 and 2, SPI, and ADC completion.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
33 of 75  
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Each interrupt source can be individually enabled or disabled by setting or clearing a bit in  
the interrupt enable registers IEN0 or IEN1. The IEN0 register also contains a global  
disable bit, EA, which disables all interrupts.  
Each interrupt source can be individually programmed to one of four priority levels by  
setting or clearing bits in the interrupt priority registers IP0, IP0H, IP1, and IP1H. An  
interrupt service routine in progress can be interrupted by a higher priority interrupt, but  
not by another interrupt of the same or lower priority. The highest priority interrupt service  
cannot be interrupted by any other interrupt source. If two requests of different priority  
levels are pending at the start of an instruction, the request of higher priority level is  
serviced.  
If requests of the same priority level are pending at the start of an instruction, an internal  
polling sequence determines which request is serviced. This is called the arbitration  
ranking. Note that the arbitration ranking is only used to resolve pending requests of the  
same priority level.  
8.12.1 External interrupt inputs  
The P89LPC915 and P89LPC917 have two external interrupt inputs. The P89LPC916 has  
one external interrupt input. These external interrupt inputs are identical to those present  
on the standard 80C51 microcontrollers. All three devices also have the Keypad Interrupt  
function.  
These external interrupts can be programmed to be level-triggered or edge-triggered by  
setting or clearing bit IT1 or IT0 in Register TCON.  
In edge-triggered mode, if successive samples of the INTn pin show a HIGH in one cycle  
and a LOW in the next cycle, the interrupt request flag IEn in TCON is set, causing an  
interrupt request.  
If an external interrupt is enabled when the P89LPC915/916/917 is put into Power-down  
or Idle mode, the interrupt will cause the processor to wake-up and resume operation.  
Refer to Section 8.15 “Power reduction modes” for details.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
34 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
IE0  
EX0  
IE1  
EX1  
BOF  
EBO  
wake-up  
(if in power-down)  
RTCF  
KBIF  
EKBI  
ERTC  
(RTCCON.1)  
WDOVF  
EWDRT  
CMF2  
CMF1  
EC  
EA (IE0.7)  
TF0  
ET0  
TF1  
ET1  
TI_0 and RI_0/RI_0  
ES/ESR  
TI_0  
EST  
interrupt  
to CPU  
SI  
EI2C  
SPIF  
ESPI  
TI_1 and RI_1/RI_1  
ES1/ESR1  
TI_1  
EST1  
ENADCI0  
ADCI0  
ENBI0  
BNDI0  
EADC  
002aab408  
Fig 12. Interrupt sources, interrupt enables, and power-down wake-up sources  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
35 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.13 I/O ports  
The P89LPC916 and P89LPC917 devices have three I/O ports: Port 0, Port 1, and Port 2.  
The exact number of I/O pins available depends upon the clock and reset options chosen,  
as shown in Table 11.  
Table 11. Number of I/O pins available (P89LPC916 and P89LPC917)  
Clock source  
Reset option  
Number of I/O  
pins (16-pin  
package)  
RC oscillator or watchdog  
oscillator  
No external reset (except during  
power-up)  
14  
External RST pin supported  
13  
13  
External clock input  
No external reset (except during  
power-up)  
External RST pin supported[1]  
12  
[1] Required for operation above 12 MHz.  
The P89LPC915 has two I/O ports: Port 0 and Port 1. The exact number of I/O pins  
available depends upon the clock and reset options chosen, as shown in Table 12.  
Table 12. Number of I/O pins available (P89LPC915)  
Clock source  
Reset option  
Number of I/O  
pins (14-pin  
package)  
RC oscillator or watchdog  
oscillator  
No external reset (except during  
power-up)  
12  
External RST pin supported  
11  
11  
External clock input  
No external reset (except during  
power-up)  
External RST pin supported[1]  
10  
[1] Required for operation above 12 MHz.  
8.13.1 Port configurations  
All but three I/O port pins on the P89LPC915/916/917 may be configured by software to  
one of four types on a bit-by-bit basis. These are: quasi-bidirectional (standard 80C51 port  
outputs), push-pull, open drain, and input-only. Two configuration registers for each port  
select the output type for each port pin.  
1. P1.5 (RST) can only be an input and cannot be configured.  
2. P1.2 (SCL/T0) and P1.3 (SDA/INT0) may only be configured to be either input-only or  
open-drain.  
8.13.1.1 Quasi-bidirectional output configuration  
Quasi-bidirectional output type can be used as both an input and output without the need  
to reconfigure the port. This is possible because when the port outputs a logic HIGH, it is  
weakly driven, allowing an external device to pull the pin LOW. When the pin is driven  
LOW, it is driven strongly and able to sink a fairly large current. These features are  
somewhat similar to an open-drain output except that there are three pull-up transistors in  
the quasi-bidirectional output that serve different purposes.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
36 of 75  
 
 
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
The P89LPC915/916/917 is a 3 V device, but the pins are 5 V tolerant. In  
quasi-bidirectional mode, if a user applies 5 V on the pin, there will be a current flowing  
from the pin to VDD, causing extra power consumption. Therefore, applying 5 V in  
quasi-bidirectional mode is discouraged.  
A quasi-bidirectional port pin has a Schmitt triggered input that also has a glitch  
suppression circuit.  
8.13.1.2 Open-drain output configuration  
The open-drain output configuration turns off all pull-ups and only drives the pull-down  
transistor of the port driver when the port latch contains a logic 0. To be used as a logic  
output, a port configured in this manner must have an external pull-up, typically a resistor  
tied to VDD  
.
An open-drain port pin has a Schmitt triggered input that also has a glitch suppression  
circuit.  
8.13.1.3 Input-only configuration  
The input-only port configuration has no output drivers. It is a Schmitt triggered input that  
also has a glitch suppression circuit.  
8.13.1.4 Push-pull output configuration  
The push-pull output configuration has the same pull-down structure as both the  
open-drain and the quasi-bidirectional output modes, but provides a continuous strong  
pull-up when the port latch contains a logic 1. The push-pull mode may be used when  
more source current is needed from a port output. A push-pull port pin has a  
Schmitt triggered input that also has a glitch suppression circuit.  
8.13.2 Port 0 analog functions  
The P89LPC915/916/917 incorporates two Analog Comparators. In order to give the best  
analog function performance and to minimize power consumption, pins that are being  
used for analog functions must have the digital outputs and digital inputs disabled.  
Digital outputs are disabled by putting the port output into the Input-Only  
(high-impedance) mode.  
Digital inputs on Port 0 may be disabled through the use of the PT0AD register. On any  
reset, PT0AD bits default to ‘0’s to enable digital functions.  
8.13.3 Additional port features  
After power-up, all pins are in Input-Only mode. After power-up, all I/O pins except P1.5,  
may be configured by software.  
Pin P1.5 is input only.  
Pins P1.2 and P1.3 are configurable for either input-only or open-drain.  
Every output on the P89LPC915/916/917 has been designed to sink typical LED drive  
current. However, there is a maximum total output current for all ports which must not be  
exceeded. Please refer to Table 15 “Static characteristics” for detailed specifications.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
37 of 75  
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
All ports pins that can function as an output have slew rate controlled outputs to limit noise  
generated by quickly switching output signals. The slew rate is factory-set to  
approximately 10 ns rise and fall times.  
8.14 Power monitoring functions  
The P89LPC915/916/917 incorporates power monitoring functions designed to prevent  
incorrect operation during initial power-up and power loss or reduction during operation.  
This is accomplished with two hardware functions: Power-on detect and brownout detect.  
8.14.1 Brownout detection  
The brownout detect function determines if the power supply voltage drops below a  
certain level. The default operation is for a brownout detection to cause a processor reset,  
however it may alternatively be configured to generate an interrupt.  
Brownout detection may be enabled or disabled in software.  
If brownout detection is enabled the brownout condition occurs when VDD falls below the  
brownout trip voltage, Vbo (see Table 15 “Static characteristics”), and is negated when VDD  
rises above Vbo. If the P89LPC915/916/917 device is to operate with a power supply that  
can be below 2.7 V, BOE should be left in the unprogrammed state so that the device can  
operate at 2.4 V, otherwise continuous brownout reset may prevent the device from  
operating.  
For correct activation of brownout detect, the VDD rise and fall times must be observed.  
Please see Table 15 “Static characteristics” for specifications.  
8.14.2 Power-on detection  
The Power-on detect has a function similar to the brownout detect, but is designed to work  
as power comes up initially, before the power supply voltage reaches a level where  
brownout detect can work. The POF flag in the RSTSRC register is set to indicate an  
initial power-up condition. The POF flag will remain set until cleared by software.  
8.15 Power reduction modes  
The P89LPC915/916/917 supports three different power reduction modes: Idle mode,  
Power-down mode, and total Power-down mode.  
8.15.1 Idle mode  
Idle mode leaves peripherals running in order to allow them to activate the processor  
when an interrupt is generated. Any enabled interrupt source or reset may terminate Idle  
mode.  
8.15.2 Power-down mode  
The Power-down mode stops the oscillator in order to minimize power consumption. The  
P89LPC915/916/917 exits Power-down mode via any reset, or certain interrupts. In  
Power-down mode, the power supply voltage may be reduced to the data retention  
voltage VDDR. This retains the RAM contents at the point where Power-down mode was  
entered. SFR contents are not guaranteed after VDD has been lowered to VDDR, therefore  
it is highly recommended to wake-up the processor via reset in this case. VDD must be  
raised to within the operating range before the Power-down mode is exited.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
38 of 75  
 
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Some chip functions continue to operate and draw power during Power-down mode,  
increasing the total power used during power-down. These include: Brownout detect,  
watchdog timer, comparators (note that comparators can be powered down separately),  
and RTC/system timer. The internal RC oscillator is disabled unless both the RC oscillator  
has been selected as the system clock and the RTC is enabled.  
8.15.3 Total Power-down mode  
This is the same as Power-down mode except that the brownout detection circuitry and  
the voltage comparators are also disabled to conserve additional power. The internal RC  
oscillator is disabled unless both the RC oscillator has been selected as the system clock  
and the RTC is enabled. If the internal RC oscillator is used to clock the RTC during  
power-down, there will be high power consumption. Please use an external low frequency  
clock to achieve low power with the RTC running during power-down.  
8.16 Reset  
The P1.5/RST pin can function as either an active-LOW reset input or as a digital input,  
P1.5. The RPE (Reset Pin Enable) bit in UCFG1, when set to ‘1’, enables the external  
reset input function on P1.5. When cleared, P1.5 may be used as an input pin.  
Remark: During a power-up sequence, the RPE selection is overridden and this pin  
always functions as a reset input. An external circuit connected to this pin should not  
hold this pin LOW during a power-on sequence as this will keep the device in reset.  
After power-up this input will function either as an external reset input or as a digital input  
as defined by the RPE bit. Only a power-up reset will temporarily override the selection  
defined by RPE bit. Other sources of reset will not override the RPE bit.  
Reset can be triggered from the following sources:  
External reset pin (during power-up or if user configured via UCFG1);  
Power-on detect;  
Brownout detect;  
Watchdog timer;  
Software reset;  
UART break character detect reset.  
For every reset source, there is a flag in the Reset Register, RSTSRC. The user can read  
this register to determine the most recent reset source. These flag bits can be cleared in  
software by writing a ‘0’ to the corresponding bit. More than one flag bit may be set:  
During a power-on reset, both POF and BOF are set but the other flag bits are  
cleared.  
For any other reset, previously set flag bits that have not been cleared will remain set.  
8.17 Timers/counters 0 and 1  
The P89LPC915/916/917 have two general purpose counter/timers which are upward  
compatible with the standard 80C51 Timer 0 and Timer 1. Both can be configured to  
operate either as timers or event counters. An option to automatically toggle the T0 and/or  
T1 pins upon timer overflow has been added.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
39 of 75  
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
In the ‘Timer’ function, the register is incremented every machine cycle.  
In the ‘Counter’ function, the register is incremented in response to a 1-to-0 transition at its  
corresponding external input pin, T0 or T1. In this function, the external input is sampled  
once during every machine cycle.  
Timer 0 has five operating modes (Modes 0, 1, 2, 3 and 6).  
Timer 1 has four operating modes (Modes 0, 1, 2, and 3), except on the P89LPC917  
where Timer 1 also has Mode 6. Modes 0, 1, 2 and 6 are the same for both  
Timers/Counters. Mode 3 is different.  
8.17.1 Mode 0  
Putting either Timer into Mode 0 makes it look like an 8048 Timer, which is an 8-bit  
Counter with a divide-by-32 prescaler. In this mode, the Timer register is configured as a  
13-bit register. Mode 0 operation is the same for Timer 0 and Timer 1.  
8.17.2 Mode 1  
Mode 1 is the same as Mode 0, except that all 16 bits of the timer register are used.  
8.17.3 Mode 2  
Mode 2 configures the Timer register as an 8-bit Counter with automatic reload. Mode 2  
operation is the same for Timer 0 and Timer 1.  
8.17.4 Mode 3  
When Timer 1 is in Mode 3 it is stopped. Timer 0 in Mode 3 forms two separate 8-bit  
counters and is provided for applications that require an extra 8-bit timer. When Timer 1 is  
in Mode 3 it can still be used by the serial port as a baud rate generator.  
8.17.5 Mode 6  
In this mode, the corresponding timer can be changed to a PWM with a full period of  
256 timer clocks.  
8.17.6 Timer overflow toggle output  
Timer 0 (and Timer 1 on the P89LPC917) can be configured to automatically toggle a port  
output whenever a timer overflow occurs. The same device pins that are used for the T0  
and T1 count inputs are also used for the timer toggle outputs. The port outputs will be a  
logic 1 prior to the first timer overflow when this mode is turned on.  
8.18 RTC/system timer  
The P89LPC915/916/917 have a simple RTC that allows a user to continue running an  
accurate timer while the rest of the device is powered down. The RTC can be a wake-up  
or an interrupt source. The RTC is a 23-bit down-counter comprised of a 7-bit prescaler  
and a 16-bit loadable down-counter. When it reaches all ‘0’s, the counter will be reloaded  
again and the RTCF flag will be set.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
40 of 75  
 
 
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
The clock source for this counter can be either the CPU clock (CCLK) or the external clock  
input, provided that the external clock input is not being used as the CPU clock. If the  
external clock input is used as the CPU clock, then the RTC will use CCLK as its clock  
source. Only power-on reset will reset the RTC and its associated SFRs to the default  
state.  
8.19 UART  
The P89LPC915/916/917 has an enhanced UART that is compatible with the conventional  
80C51 UART except that Timer 2 overflow cannot be used as a baud rate source. The  
P89LPC915/916/917 does include an independent Baud Rate Generator. The baud rate  
can be selected from the oscillator (divided by a constant), Timer 1 overflow, or the  
independent Baud Rate Generator. In addition to the baud rate generation, enhancements  
over the standard 80C51 UART include Framing Error detection, automatic address  
recognition, selectable double buffering and several interrupt options. The UART can be  
operated in 4 modes: shift register, 8-bit UART, 9-bit UART, and CPU clock/32 or CPU  
clock/16.  
8.19.1 Mode 0  
Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are  
transmitted or received, LSB first. The baud rate is fixed at 116 of the CPU clock  
frequency.  
8.19.2 Mode 1  
10 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0),  
8 data bits (LSB first), and a stop bit (logic 1). When data is received, the stop bit is stored  
in RB8_n in Special Function Register SnCON. The baud rate is variable and is  
determined by the Timer 1 overflow rate or the Baud Rate Generator (described in Section  
8.19.5 “Baud rate generator and selection”).  
8.19.3 Mode 2  
11 bits are transmitted (through TXD) or received (through RXD): start bit (logic 0), 8 data  
bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). When data is  
transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of ‘0’ or ‘1’. Or, for  
example, the parity bit (P, in the PSW) could be moved into TB8. When data is received,  
the 9th data bit goes into RB8 in Special Function Register SCON, while the stop bit is not  
saved. The baud rate is programmable to either 116 or 132 of the CPU clock frequency, as  
determined by the SMOD1 bit in PCON. The SMOD1 bit controls the Timer 1 output rate  
available to the UART.  
8.19.4 Mode 3  
11 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0), 8  
data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). In fact, Mode 3 is  
the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable  
and is determined by the Timer 1 overflow rate or the Baud Rate Generator (described in  
Section 8.19.5 “Baud rate generator and selection”).  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
41 of 75  
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.19.5 Baud rate generator and selection  
Each enhanced UART has an independent Baud Rate Generator. The baud rate is  
determined by a baud-rate preprogrammed into the BRGR1 and BRGR0 SFRs which  
together form a 16-bit baud rate divisor value that works in a similar manner as Timer 1  
but is much more accurate. If the baud rate generator is used, Timer 1 can be used for  
other timing functions.  
The UART can use either Timer 1 or its baud rate generator output (see Figure 13). Note  
that Timer T1 is further divided by 2 if the SMOD1 bit (PCON.7) is cleared. The  
independent Baud Rate Generator uses OSCCLK.  
timer 1 overflow  
SMOD1 = 1  
(PCLK-based)  
SBRGS = 0  
SBRGS = 1  
÷2  
baud rate modes 1 and 3  
002aaa897  
SMOD1 = 0  
baud rate generator  
(CCLK-based)  
Fig 13. Baud rate sources for UART (Modes 1, 3)  
8.19.6 Framing error  
Framing error is reported in the status register (SSTAT). In addition, if SMOD0 (PCON.6)  
is ‘1’, framing errors can be made available in SCON.7 respectively. If SMOD0 is ‘0’,  
SCON.7 is SM0. It is recommended that SM0 and SM1 (SCON [7:6]) are set up when  
SMOD0 is ‘0’.  
8.19.7 Break detect  
Break detect is reported in the status register (SSTAT). A break is detected when  
11 consecutive bits are sensed LOW. The break detect can be used to reset the device  
and force the device into ISP mode.  
8.19.8 Double buffering  
The UART has a transmit double buffer that allows buffering of the next character to be  
written to SnBUF while the first character is being transmitted. Double buffering allows  
transmission of a string of characters with only one stop bit between any two characters,  
as long as the next character is written between the start bit and the stop bit of the  
previous character.  
Double buffering can be disabled. If disabled (DBMOD, i.e., SSTAT.7 = 0), the UART is  
compatible with the conventional 80C51 UART. If enabled, the UART allows writing to  
SBUF while the previous data is being shifted out. Double buffering is only allowed in  
Modes 1, 2 and 3. When operated in Mode 0, double buffering must be disabled  
(DBMOD = 0).  
8.19.9 Transmit interrupts with double buffering enabled (Modes 1, 2 and 3)  
Unlike the conventional UART, in double buffering mode, the TI interrupt is generated  
when the double buffer is ready to receive new data.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
42 of 75  
 
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.19.10 The 9th bit (bit 8) in double buffering (Modes 1, 2 and 3)  
If double buffering is disabled TB8 can be written before or after SBUF is written, as long  
as TB8 is updated some time before that bit is shifted out. TB8 must not be changed until  
the bit is shifted out, as indicated by the TI interrupt.  
If double buffering is enabled, TB must be updated before SBUF is written, as TB8 will be  
double-buffered together with SBUF data.  
8.20 I2C-bus serial interface  
I2C-bus uses two wires (SDA and SCL) to transfer information between devices connected  
to the bus, and it has the following features:  
Bidirectional data transfer between masters and slaves  
Multi master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
The I2C-bus may be used for test and diagnostic purposes.  
A typical I2C-bus configuration is shown in Figure 14. The P89LPC915/916/917 device  
provides a byte-oriented I2C-bus interface that supports data transfers up to 400 kHz.  
R
PU  
R
PU  
SDA  
SCL  
2
I C-bus  
OTHER DEVICE  
WITH I C-BUS  
INTERFACE  
OTHER DEVICE  
WITH I C-BUS  
INTERFACE  
P1.3/SDA  
P1.2/SCL  
2
2
2
I C MCU  
002aab410  
Fig 14. I2C-bus configuration  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
43 of 75  
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8
I2ADR  
ADDRESS REGISTER  
COMPARATOR  
P1.3  
INPUT  
FILTER  
P1.3/SDA  
SHIFT REGISTER  
8
ACK  
I2DAT  
OUTPUT  
STAGE  
BIT COUNTER /  
ARBITRATION  
AND SYNC LOGIC  
CCLK  
INPUT  
FILTER  
TIMING  
AND  
CONTROL  
LOGIC  
P1.2/SCL  
SERIAL CLOCK  
GENERATOR  
OUTPUT  
STAGE  
interrupt  
timer 1  
overflow  
P1.2  
I2CON  
I2SCLH  
I2SCLL  
CONTROL REGISTERS AND  
SCL DUTY CYCLE REGISTERS  
8
STATUS  
DECODER  
status bus  
I2STAT  
STATUS REGISTER  
8
002aaa899  
Fig 15. I2C-bus serial interface block diagram  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
44 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8.21 SPI  
8-bit microcontrollers with accelerated two-clock 80C51 core  
The P89LPC916 provides another high-speed serial communication interface—the SPI  
interface. SPI is a full-duplex, high-speed, synchronous communication bus with two  
operation modes: Master mode and Slave mode. Up to 4.5 Mbit/s can be supported in  
Master mode or up to 3 Mbit/s in Slave mode. It has a Transfer Completion Flag and Write  
Collision Flag Protection.  
S
M
MISO  
P2.3  
M
S
CPU clock  
8-BIT SHIFT REGISTER  
READ DATA BUFFER  
MOSI  
P2.2  
PIN  
CONTROL  
LOGIC  
DIVIDER  
BY 4, 16, 64, 128  
SPICLK  
P2.5  
clock  
SPI clock (master)  
S
M
SELECT  
SS  
P2.4  
CLOCK LOGIC  
MSTR  
SPEN  
SPI CONTROL  
SPI CONTROL REGISTER  
SPI STATUS REGISTER  
SPI  
interrupt  
request  
internal  
data  
bus  
002aaa900  
Fig 16. SPI block diagram  
The SPI interface has four pins: SPICLK, MOSI, MISO and SS:  
SPICLK, MOSI and MISO are typically tied together between two or more SPI  
devices. Data flows from master to slave on MOSI (Master Out Slave In) pin and flows  
from slave to master on MISO (Master In Slave Out) pin. The SPICLK signal is output  
in the master mode and is input in the slave mode. If the SPI system is disabled, i.e.,  
SPEN (SPCTL.6) = 0 (reset value), these pins are configured for port functions.  
SS is the optional slave select pin. In a typical configuration, an SPI master asserts  
one of its port pins to select one SPI device as the current slave. An SPI slave device  
uses its SS pin to determine whether it is selected.  
Typical connections are shown in Figure 17 through Figure 19.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
45 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.21.1 Typical SPI configurations  
master  
slave  
MISO  
MOSI  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
SPICLK  
PORT  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
002aaa901  
Fig 17. SPI single master single slave configuration  
master  
slave  
MISO  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
MOSI  
SPICLK  
SS  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
SPI CLOCK  
GENERATOR  
002aaa902  
Fig 18. SPI dual device configuration, where either can be a master or a slave  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
46 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
master  
slave  
MISO  
MOSI  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
SPICLK  
port  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
slave  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
SPICLK  
SS  
port  
002aaa903  
Fig 19. SPI single master multiple slaves configuration  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
47 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.22 Analog comparators  
Two analog comparators are provided on the P89LPC915/916/917. Input and output  
options allow use of the comparators in a number of different configurations. Comparator  
operation is such that the output is a logical one when the positive input is greater than the  
negative input (selectable from a pin or an internal reference voltage). Otherwise the  
output is a zero. Each comparator may be configured to cause an interrupt when the  
output value changes. Comparator 1 may be output to a port pin.  
The overall connections to both comparators are shown in Figure 20. The comparators  
function to VDD = 2.4 V.  
When each comparator is first enabled, the comparator output and interrupt flag are not  
guaranteed to be stable for 10 microseconds. The corresponding comparator interrupt  
should not be enabled during that time, and the comparator interrupt flag must be cleared  
before the interrupt is enabled in order to prevent an immediate interrupt service.  
CP1  
OE1  
comparator 1  
CO1  
(P0.4) CIN1A  
(P0.3) CIN1B  
CMP1 (P0.6)  
(P0.5) CMPREF  
change detect  
V
ref(bg)  
CMF1  
CMF2  
CN1  
CP2  
interrupt  
change detect  
EC  
comparator 2  
(P0.2) CIN2A  
(P0.1) CIN2B  
CMP2 (P0.0)  
CO2  
OE2  
002aaa904  
CN2  
Fig 20. Comparator input and output connections  
8.22.1 Internal reference voltage  
An internal reference voltage generator may supply a default reference when a single  
comparator input pin is used. The value of the internal reference voltage, referred to as  
Vref(bg), is 1.23 V ± 10 %.  
8.22.2 Comparator interrupt  
Each comparator has an interrupt flag contained in its configuration register. This flag is  
set whenever the comparator output changes state. The flag may be polled by software or  
may be used to generate an interrupt. The two comparators use one common interrupt  
vector. If both comparators enable interrupts, after entering the interrupt service routine,  
the user needs to read the flags to determine which comparator caused the interrupt.  
8.22.3 Comparators and power reduction modes  
Either or both comparators may remain enabled when Power-down or Idle mode is  
activated, but both comparators are disabled automatically in Total Power-down mode.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
48 of 75  
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
If a comparator interrupt is enabled (except in Total Power-down mode), a change of the  
comparator output state will generate an interrupt and wake-up the processor. If the  
comparator output to a pin is enabled, the pin should be configured in the push-pull mode  
in order to obtain fast switching times while in Power-down mode. The reason is that with  
the oscillator stopped, the temporary strong pull-up that normally occurs during switching  
on a quasi-bidirectional port pin does not take place.  
Comparators consume power in Power-down and Idle modes, as well as in the normal  
operating mode. This fact should be taken into account when system power consumption  
is an issue. To minimize power consumption, the user can disable the comparators via  
PCONA.5, or put the device in Total Power-down mode.  
8.23 KBI  
The Keypad Interrupt function is intended primarily to allow a single interrupt to be  
generated when Port 0 is equal to or not equal to a certain pattern. This function can be  
used for bus address recognition or keypad recognition. The user can configure the port  
via SFRs for different tasks.  
The Keypad Interrupt Mask Register (KBMASK) is used to define which input pins  
connected to Port 0 can trigger the interrupt. The Keypad Pattern Register (KBPATN) is  
used to define a pattern that is compared to the value of Port 0. The Keypad Interrupt Flag  
(KBIF) in the Keypad Interrupt Control Register (KBCON) is set when the condition is  
matched while the Keypad Interrupt function is active. An interrupt will be generated if  
enabled. The PATN_SEL bit in the Keypad Interrupt Control Register (KBCON) is used to  
define equal or not-equal for the comparison.  
In order to use the Keypad Interrupt as an original KBI function like in 87LPC76x series,  
the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then any key  
connected to Port 0 which is enabled by the KBMASK register will cause the hardware to  
set KBIF and generate an interrupt if it has been enabled. The interrupt may be used to  
wake-up the CPU from Idle or Power-down modes. This feature is particularly useful in  
handheld, battery-powered systems that need to carefully manage power consumption  
yet also need to be convenient to use.  
In order to set the flag and cause an interrupt, the pattern on Port 0 must be held longer  
than six CCLKs.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
49 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.24 Watchdog timer  
The watchdog timer causes a system reset when it underflows as a result of a failure to  
feed the timer prior to the timer reaching its terminal count. It consists of a programmable  
12-bit prescaler, and an 8-bit down-counter. The down-counter is decremented by a tap  
taken from the prescaler. The clock source for the prescaler is either the PCLK or the  
nominal 400 kHz watchdog oscillator. The watchdog timer can only be reset by a  
power-on reset. When the watchdog feature is disabled, it can be used as an interval timer  
and may generate an interrupt. Figure 21 shows the watchdog timer in Watchdog mode.  
Feeding the watchdog requires a two-byte sequence. If PCLK is selected as the watchdog  
clock and the CPU is powered down, the watchdog is disabled. The watchdog timer has a  
time-out period that ranges from a few µs to a few seconds. Please refer to the  
P89LPC915/916/917 User’s Manual for more details.  
WDL (C1H)  
MOV WFEED1, #0A5H  
MOV WFEED2, #05AH  
watchdog  
oscillator  
8-BIT DOWN  
COUNTER  
(1)  
PRESCALER  
reset  
÷32  
PCLK  
SHADOW REGISTER  
PRE2  
PRE1  
PRE0  
-
-
WDRUN WDTOF WDCLK  
WDCON (A7H)  
002aaa905  
(1) Watchdog reset can also be caused by an invalid feed sequence, or by writing to WDCON not immediately followed by a feed  
sequence.  
Fig 21. Watchdog timer in Watchdog mode (WDTE = 1)  
8.25 Additional features  
8.25.1 Software reset  
The SRST bit in AUXR1 gives software the opportunity to reset the processor completely,  
as if an external reset or watchdog reset had occurred. Care should be taken when writing  
to AUXR1 to avoid accidental software resets.  
8.25.2 Dual data pointers  
The dual Data Pointers (DPTR) provides two different Data Pointers to specify the address  
used with certain instructions. The DPS bit in the AUXR1 register selects one of the two  
Data Pointers. Bit 2 of AUXR1 is permanently wired as a logic 0 so that the DPS bit may  
be toggled (thereby switching Data Pointers) simply by incrementing the AUXR1 register,  
without the possibility of inadvertently altering other bits in the register.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
50 of 75  
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.26 Flash program memory  
8.26.1 General description  
The P89LPC915/916/917 flash memory provides in-circuit electrical erasure and  
programming. The flash can be erased, read, and written as bytes. The Sector and Page  
Erase functions can erase any flash sector (256 bytes) or page (16 bytes). The Chip  
Erase operation will erase the entire program memory. ICP using standard commercial  
programmers is available. In addition, IAP and byte-erase allows code memory to be used  
for non-volatile data storage. On-chip erase and write timing generation contribute to a  
user-friendly programming interface. The P89LPC915/916/917 flash reliably stores  
memory contents even after 100,000 erase and program cycles. The cell is designed to  
optimize the erase and programming mechanisms. The P89LPC915/916/917 uses VDD as  
the supply voltage to perform the Program/Erase algorithms.  
8.26.2 Features  
Programming and erase over the full operating voltage range.  
Byte erase allows code memory to be used for data storage.  
Read/Programming/Erase using ICP.  
Boot vector allows user-provided flash loader code to reside anywhere in the flash  
memory space, providing flexibility to the user.  
Any flash program/erase operation in 2 ms.  
Programming with industry-standard commercial programmers.  
Programmable security for the code in the flash for each sector.  
100,000 typical erase/program cycles for each byte.  
10 year minimum data retention.  
8.26.3 Flash organization  
The program memory consists of eight 256-byte sectors on the P89LPC915/916/917  
devices. Each sector can be further divided into 16-byte pages. In addition to sector  
erase, page erase, and byte erase, a 16-byte page register is included which allows from  
1 to 16 bytes of a given page to be programmed at the same time, substantially reducing  
overall programming time.  
8.26.4 Using flash as data storage  
The flash code memory array of this device supports individual byte erasing and  
programming. Any byte in the code memory array may be read using the MOVC  
instruction, provided that the sector containing the byte has not been secured (a MOVC  
instruction is not allowed to read code memory contents of a secured sector). Thus any  
byte in a non-secured sector may be used for non-volatile data storage.  
8.26.5 Flash programming and erasing  
Two different methods of erasing or programming of the flash are available. The flash may  
be programmed or erased in the end-user application (IAP-Lite) under control of the  
application’s firmware. Another option is to use the ICP mechanism. This ICP system  
provides for programming through a serial clock/serial data interface. This device does not  
provide for direct verification of code memory contents. Instead, this device provides a  
32-bit CRC result on either a sector or the entire user code space.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
51 of 75  
 
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8.26.6 ICP  
8-bit microcontrollers with accelerated two-clock 80C51 core  
ICP is performed without removing the microcontroller from the system. The ICP facility  
consists of internal hardware resources to facilitate remote programming of the  
P89LPC915/916/917 through a two-wire serial interface. The NXP ICP facility has made  
in-circuit programming in an embedded application—using commercially available  
programmers—possible with a minimum of additional expense in components and circuit  
board area. The ICP function uses five pins. Only a small connector needs to be available  
to interface your application to a commercial programmer in order to use this feature.  
Additional details may be found in the P89LPC915/916/917 User’s Manual.  
8.26.7 IAP-Lite  
IAP-Lite is performed in the application under the control of the microcontroller’s firmware.  
The IAP facility consists of internal hardware resources to facilitate programming and  
erasing. The IAP-Lite operations are accomplished through the use of four SFRs  
consisting of a control/status register, a data register, and two address registers.  
Additional details may be found in the P89LPC915/916/917 User’s Manual.  
8.26.8 Power-on reset code execution  
The P89LPC915/916/917 contains two special flash elements: the Boot Vector and the  
Boot Status bit. Following reset, the P89LPC915/916/917 examines the contents of the  
Boot Status bit. If the Boot Status bit is set to zero, power-up execution starts at location  
0000H, which is the normal start address of the user’s application code. When the Boot  
Status bit is set to a value other than zero, the contents of the Boot Vector are used as the  
high byte of the execution address and the low byte is set to 00H.  
Table 13 shows the factory default Boot Vector setting for this device. While these devices  
do not contain a factory bootloader, the Boot Vector and Status bit do provide a  
mechanism for an alternate code execution at reset.  
Table 13. Default boot vector and Status bit values  
Device  
Default boot vector  
Default Status bit  
P89LPC915  
P89LPC916  
P89LPC917  
00H  
00H  
00H  
0
0
0
8.26.9 Hardware activation of the alternate code  
The alternate code execution address can be forced during a power-on sequence (see the  
P89LPC915/916/917 User’s Manual for specific information). This has the same effect as  
having a non-zero status byte. This allows an application to be built that will normally  
execute user code starting at address 0000H but can be manually forced into executing  
from an alternated address using the Boot Vector. After programming the flash, the status  
byte should be programmed to zero in order to allow execution of the user’s application  
code beginning at address 0000H.  
8.27 User configuration bytes  
Some user-configurable features of the P89LPC915/916/917 must be defined at power-up  
and therefore cannot be set by the program after start of execution. These features are  
configured through the use of the flash byte UCFG1. Please see the P89LPC915/916/917  
User’s Manual for additional details.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
52 of 75  
 
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
8.28 User sector security bytes  
There are eight User Sector Security Bytes on the P89LPC915/916/917. Each byte  
corresponds to one sector. Please see the P89LPC915/916/917 User’s Manual for  
additional details.  
9. A/D converter  
9.1 General description  
The P89LPC915/916/917 devices have a single 8-bit, 4-channel multiplexed  
analog-to-digital converter with a DAC module. A block diagram of the A/D converter is  
shown in Figure 22. The A/D consists of a 4-input multiplexer which feeds a  
sample-and-hold circuit providing an input signal to one of two comparator inputs. The  
control logic in combination with the SAR drives a digital-to-analog converter which  
provides the other input to the comparator. The output of the comparator is fed to the  
SAR.  
9.2 Features  
I Single 8-bit, 4-channel multiplexed input, successive approximation A/D converter.  
I Four A/D result registers.  
I Six operating modes:  
N Fixed channel, single conversion mode.  
N Fixed channel, continuous conversion mode.  
N Auto scan, single conversion mode.  
N Auto scan, continuous conversion mode.  
N Dual channel, continuous conversion mode.  
N Single step mode.  
I Three conversion start modes:  
N Timer triggered start.  
N Start immediately.  
N Edge triggered.  
I 8-bit conversion time of 3.9 µs at an A/D clock of 3.3 MHz.  
I Interrupt or polled operation.  
I Boundary limits interrupt.  
I DAC output to a port pin with high output impedance.  
I Clock divider.  
I Power-down mode.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
53 of 75  
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
9.3 Block diagram  
comp  
+
INPUT  
SAR  
MUX  
8
DAC1  
CONTROL  
LOGIC  
comp  
+
INPUT  
MUX  
SAR  
8
DAC0  
CCLK  
002aab080  
Fig 22. ADC block diagram  
9.4 A/D operating modes  
9.4.1 Fixed channel, single conversion mode  
A single input channel can be selected for conversion. A single conversion will be  
performed and the result placed in the result register which corresponds to the selected  
input channel. An interrupt, if enabled, will be generated after the conversion completes.  
9.4.2 Fixed channel, continuous conversion mode  
A single input channel can be selected for continuous conversion. The results of the  
conversions will be sequentially placed in the four result registers. An interrupt, if enabled,  
will be generated after every four conversions. Additional conversion results will again  
cycle through the four result registers, overwriting the previous results. Continuous  
conversions continue until terminated by the user.  
9.4.3 Auto scan, single conversion mode  
Any combination of the four input channels can be selected for conversion. A single  
conversion of each selected input will be performed and the result placed in the result  
register which corresponds to the selected input channel. An interrupt, if enabled, will be  
generated after all selected channels have been converted. If only a single channel is  
selected this is equivalent to single channel, single conversion mode.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
54 of 75  
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
9.4.4 Auto scan, continuous conversion mode  
Any combination of the four input channels can be selected for conversion. A conversion  
of each selected input will be performed and the result placed in the result register which  
corresponds to the selected input channel. An interrupt, if enabled, will be generated after  
all selected channels have been converted. The process will repeat starting with the first  
selected channel. Additional conversion results will again cycle through the four result  
registers, overwriting the previous results.Continous conversions continue until terminated  
by the user.  
9.4.5 Dual channel, continuous conversion mode  
This is a variation of the auto scan continuous conversion mode where conversion occurs  
on two user-selectable inputs. The result of the conversion of the first channel is placed in  
result register, AD1DAT0. The result of the conversion of the second channel is placed in  
result register, AD1DAT1. The first channel is again converted and its result stored in  
AD1DAT2. The second channel is again converted and its result placed in AD1DAT3. An  
interrupt is generated, if enabled, after every set of four conversions (two conversions per  
channel).  
9.4.6 Single step mode  
This special mode allows ‘single-stepping’ in an auto scan conversion mode. Any  
combination of the four input channels can be selected for conversion. After each channel  
is converted, an interrupt is generated, if enabled, and the A/D waits for the next start  
condition. May be used with any of the start modes.  
9.5 Conversion start modes  
9.5.1 Timer triggered start  
An A/D conversion is started by the overflow of Timer 0. Once a conversion has started,  
additional Timer 0 triggers are ignored until the conversion has completed. The Timer  
triggered start mode is available in all A/D operating modes.  
9.5.2 Start immediately  
Programming this mode immediately starts a conversion.This start mode is available in all  
A/D operating modes.  
9.5.3 Edge triggered  
An A/D conversion is started by rising or falling edge of P1.4. Once a conversion has  
started, additional edge triggers are ignored until the conversion has completed. The edge  
triggered start mode is available in all A/D operating modes.  
9.6 Boundary limits interrupt  
The A/D converter has both a high and low boundary limit register. After the four MSBs  
have been converted, these four bits are compared with the four MSBs of the boundary  
high and low registers. If the four MSBs of the conversion are outside the limit an interrupt  
will be generated, if enabled. If the conversion result is within the limits, the boundary  
limits will again be compared after all 8 bits have been converted. An interrupt will be  
generated, if enabled, if the result is outside the boundary limits. The boundary limit may  
be disabled by clearing the boundary limit interrupt enable.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
55 of 75  
 
 
 
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
9.7 DAC output to a port pin with high output impedance  
The A/D converter’s DAC block can be output to a port pin. In this mode, the AD1DAT3  
register is used to hold the value fed to the DAC. After a value has been written to the DAC  
(written to AD1DAT3), the DAC output will appear on the channel 3 pin.  
9.8 Clock divider  
The A/D converter requires that its internal clock source be in the range of 500 kHz to  
3.3 MHz to maintain accuracy. A programmable clock divider that divides the clock  
from 1 to 8 is provided for this purpose.  
9.9 Power-down and Idle mode  
In Idle mode the A/C converter, if enabled, will continue to function and can cause the  
device to exit Idle mode when the conversion is completed if the A/D interrupt is enabled.  
In Power-down mode or Total Power-down mode, the A/D does not function. If the A/D is  
enabled, it will consume power. Power can be reduced by disabling the A/D.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
56 of 75  
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
10. Limiting values  
Table 14. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Tamb(bias)  
Tstg  
Parameter  
Conditions  
Min  
Max  
+125  
+150  
8
Unit  
°C  
operating bias ambient temperature  
storage temperature range  
HIGH-level output current per I/O pin  
LOW-level output current per I/O pin  
55  
65  
°C  
IOH(I/O)  
IOL(I/O)  
-
-
-
-
-
mA  
mA  
mA  
V
20  
II/O(tot)(max) maximum total I/O current  
120  
3.5  
Vn  
voltage on any pin (except VSS  
)
with respect to VDD  
Ptot(pack)  
total power dissipation per package  
based on package heat  
transfer, not device power  
consumption  
1.5  
W
[1] The following applies to Table 14:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
b) Parameters are valid over ambient temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
57 of 75  
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
11. Static characteristics  
Table 15. Static characteristics  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C, or 40 °C to +125 °C (see Table 3 on page 3), unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
13  
Unit  
mA  
mA  
mA  
mA  
µA  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
IDD(oper)  
IDD(idle)  
IDD(pd)  
operating supply current  
VDD = 3.6 V; fosc = 12 MHz  
VDD = 3.6 V; fosc = 18 MHz  
VDD = 3.6 V; fosc = 12 MHz  
VDD = 3.6 V; fosc = 18 MHz  
VDD = 3.6 V, industrial  
VDD = 3.6 V, extended  
-
-
-
-
-
7
11  
3.6  
4
16  
Idle mode supply current  
4.8  
6
power supply current,  
power-down mode, voltage  
comparators powered-down  
45  
-
70  
150  
µA  
[3]  
[3]  
IDD(tpd)  
total Power-down mode  
supply current  
VDD = 3.6 V, industrial  
VDD = 3.6 V, extended  
of VDD  
-
<0.1  
5
µA  
-
-
50  
2
µA  
(dV/dt)r  
(dV/dt)f  
VPOR  
rise rate  
-
-
mV/µs  
mV/µs  
V
fall rate  
of VDD  
-
-
50  
0.2  
-
power-on reset voltage  
data retention voltage  
-
-
VDDR  
1.5  
-
V
Vth(HL)  
HIGH-LOW threshold  
voltage  
except SCL, SDA  
0.22VDD  
0.4VDD  
-
V
VIL  
LOW-level input voltage  
SCL, SDA only  
0.5  
-
0.3VDD  
0.7VDD  
V
V
Vth(LH)  
LOW-HIGH threshold  
voltage  
except SCL, SDA  
-
0.6VDD  
VIH  
HIGH-level input voltage  
hysteresis voltage  
SCL, SDA only  
port 1  
0.7VDD  
-
5.5  
-
V
V
V
Vhys  
VOL  
-
-
0.2VDD  
0.6  
[4]  
LOW-level output voltage  
IOL = 20 mA; all ports  
except SCL, SDA  
1.0  
IOL = 10 mA; all ports  
except SCL, SDA  
-
-
0.2  
0.2  
-
0.3  
0.3  
-
V
V
V
IOL = 3.2 mA; all ports  
except SCL, SDA  
VOH  
HIGH-level output voltage  
IOH = 8 mA;  
push-pull mode; all ports  
except SCL, SDA  
V
V
V
DD 1  
IOH = 3.2 mA;  
DD 0.7  
DD 0.3  
V
DD 0.4  
DD 0.2  
-
-
V
V
push-pull mode; all ports  
except SCL, SDA  
IOH = 20 µA;  
V
quasi-bidirectional mode;  
all ports except SCL, SDA  
Vxtal  
Vn  
crystal voltage  
voltage on XTAL1, XTAL2  
pins with respect to VSS  
0.5  
0.5  
-
-
+4.0  
+5.5  
V
V
[5]  
voltage on any pin (except  
with respect to VSS  
XTAL1, XTAL2, VDD  
)
[6]  
[7]  
Ciss  
IIL  
input capacitance  
-
-
-
-
15  
pF  
logical 0 input current  
VI = 0.4 V  
80  
µA  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
58 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Table 15. Static characteristics …continued  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C, or 40 °C to +125 °C (see Table 3 on page 3), unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
-
Typ[1]  
Max  
±10  
Unit  
µA  
[8]  
[9]  
ILI  
input leakage current  
VI = VIL, VIH or Vth(HL)  
VI = 1.5 V at VDD = 3.6 V  
-
-
ITL  
logical 1-to-0 transition  
current, all ports  
30  
450  
µA  
RRST(int)  
Vbo  
internal pull-up resistance  
on pin RST  
10  
-
-
30  
kΩ  
brownout trip voltage  
2.4 V < VDD < 3.6 V; with  
BOV = 1, BOPD = 0  
2.40  
2.70  
V
Vref(bg)  
TCbg  
band gap reference voltage  
1.11  
-
1.23  
10  
1.34  
20  
V
band gap temperature  
coefficient  
ppm/°C  
[1] Typical ratings are not guaranteed. The values listed are at room temperature, 3 V.  
[2] The IDD(oper), IDD(idle), and IDD(pd) specifications are measured using an external clock with the following functions disabled: comparators,  
real-time clock, and watchdog timer.  
[3] The IDD(tpd) specification is measured using an external clock with the following functions disabled: comparators, real-time clock,  
brownout detect, and watchdog timer.  
[4] See Section 10 “Limiting values” for steady state (non-transient) limits on IOL or IOH. If IOL/IOH exceeds the test condition, VOL/VOH may  
exceed the related specification.  
[5] This specification can be applied to pins which have A/D input or analog comparator input functions when the pin is not being used for  
those analog functions. When the pin is being used as an analog input pin, the maximum voltage on the pin must be limited to 4.0 V with  
respect to VSS  
.
[6] Pin capacitance is characterized but not tested.  
[7] Measured with port in quasi-bidirectional mode.  
[8] Measured with port in high-impedance mode.  
[9] Port pins source a transition current when used in quasi-bidirectional mode and externally driven from logic 1 to logic 0. This current is  
highest when VI is approximately 2 V.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
59 of 75  
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
12. Dynamic characteristics  
Table 16. Dynamic characteristics (12 MHz)  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C, or 40 °C to +125 °C (see Table 3 on page 3), unless otherwise specified.[1][2]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz Unit  
Min Max  
Min  
Max  
7.557  
7.741  
520  
fosc(RC)  
internal RC oscillator frequency industrial  
extended  
7.189  
7.004  
320  
7.189 7.557 MHz  
7.004 7.741 MHz  
fosc(WD)  
fCLKLP  
internal watchdog oscillator  
frequency  
320  
520 kHz  
low power select clock  
frequency  
0
8
-
-
MHz  
Glitch filter  
tgr  
glitch rejection time  
P1.5/RST pin  
-
-
50  
15  
-
-
50  
15  
ns  
ns  
any pin except  
P1.5/RST  
tsa  
signal acceptance time  
P1.5/RST pin  
125  
50  
-
-
125  
50  
-
-
ns  
ns  
any pin except  
P1.5/RST  
External clock  
fosc  
oscillator frequency  
0
83  
33  
33  
-
12  
-
-
-
-
MHz  
ns  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
see Figure 28  
see Figure 28  
see Figure 28  
see Figure 28  
see Figure 28  
-
T
cy(CLK) tCLCX  
33  
33  
-
-
ns  
T
cy(CLK) tCHCX  
-
ns  
8
8
8
8
ns  
-
-
ns  
Shift register (UART mode 0)  
TXLXL serial port clock cycle time  
tQVXH  
see Figure 27  
16Tcy(CLK)  
13Tcy(CLK)  
-
-
1333  
1083  
-
-
ns  
ns  
output data set-up to clock rising see Figure 27  
edge time  
tXHQX  
tXHDX  
tXHDV  
output data hold after clock  
rising edge time  
see Figure 27  
-
-
Tcy(CLK) + 20  
-
-
103 ns  
input data hold after clock rising see Figure 27  
edge time  
0
-
0
-
ns  
ns  
input data valid to clock rising  
edge time  
see Figure 27  
150  
150  
SPI interface  
fSPI  
SPI operating frequency  
CCLK  
slave  
master  
0
-
0
-
2.0 MHz  
3.0 MHz  
6
CCLK  
4
TSPICYC  
SPI cycle time  
slave  
see Figure 23, 24,  
25, 26  
6
-
-
500  
333  
-
-
ns  
ns  
CCLK  
4
master  
CCLK  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
60 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Table 16. Dynamic characteristics (12 MHz) …continued  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C, or 40 °C to +125 °C (see Table 3 on page 3), unless otherwise specified.[1][2]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz Unit  
Min  
Max  
Min  
250  
250  
Max  
tSPILEAD  
SPI enable lead time  
slave  
see Figure 25, 26  
see Figure 25, 26  
250  
250  
-
-
-
-
ns  
ns  
tSPILAG  
SPI enable lag time  
slave  
tSPICLKH  
SPICLK HIGH time  
master  
see Figure 23, 24,  
25, 26  
2
3
-
-
165  
250  
-
-
ns  
ns  
CCLK  
slave  
CCLK  
tSPICLKL  
SPICLK LOW time  
master  
see Figure 23, 24,  
25, 26  
2
3
-
-
165  
250  
-
-
ns  
ns  
CCLK  
slave  
CCLK  
tSPIDSU  
tSPIDH  
tSPIA  
SPI data set-up time  
master or slave  
SPI data hold time  
master or slave  
SPI access time  
slave  
see Figure 23, 24,  
25, 26  
100  
100  
0
-
100  
100  
0
-
-
ns  
ns  
see Figure 23, 24,  
25, 26  
-
see Figure 25, 26  
120  
240  
120 ns  
240 ns  
tSPIDIS  
SPI disable time  
slave  
see Figure 25, 26  
0
-
tSPIDV  
SPI enable to output data valid see Figure 23, 24,  
time  
25, 26  
slave  
-
-
240  
167  
-
-
-
240 ns  
167 ns  
master  
tSPIOH  
tSPIR  
SPI output data hold time  
see Figure 23, 24,  
25, 26  
0
0
-
ns  
SPI rise time  
see Figure 23, 24,  
25, 26  
SPI outputs  
-
-
100  
-
-
100 ns  
2000 ns  
(SPICLK, MOSI, MISO)  
SPI inputs  
2000  
(SPICLK, MOSI, MISO, SS)  
tSPIF  
SPI fall time  
see Figure 23, 24,  
25, 26  
SPI outputs  
-
-
100  
-
-
100 ns  
2000 ns  
(SPICLK, MOSI, MISO)  
SPI inputs  
2000  
(SPICLK, MOSI, MISO, SS)  
[1] Parameters are valid over ambient temperature range unless otherwise specified.  
[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
61 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Table 17. Dynamic characteristics (18 MHz)  
VDD = 3.0 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C, or 40 °C to +125 °C (see Table 3 on page 3), unless otherwise specified.[1][2]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 18 MHz Unit  
Min Max  
Min  
Max  
7.557  
7.741  
520  
fosc(RC)  
internal RC oscillator frequency industrial  
extended  
7.189  
7.004  
320  
7.189 7.557 MHz  
7.004 7.741 MHz  
fosc(WD)  
fCLKLP  
internal watchdog oscillator  
frequency  
320  
520 kHz  
low power select clock  
frequency  
0
8
-
-
MHz  
Glitch filter  
tgr  
glitch rejection time  
P1.5/RST pin  
-
-
50  
15  
-
-
50  
15  
ns  
ns  
any pin except  
P1.5/RST  
tsa  
signal acceptance time  
P1.5/RST pin  
125  
50  
-
-
125  
50  
-
-
ns  
ns  
any pin except  
P1.5/RST  
External clock  
fosc  
oscillator frequency  
0
55  
22  
22  
-
18  
-
-
-
-
MHz  
ns  
Tcy(clk)  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock cycle time  
clock HIGH time  
clock LOW time  
clock rise time  
clock fall time  
see Figure 28  
see Figure 28  
see Figure 28  
see Figure 28  
see Figure 28  
-
T
cy(CLK) tCLCX  
22  
22  
-
-
ns  
T
cy(CLK) tCHCX  
-
ns  
5
5
5
5
ns  
-
-
ns  
Shift register (UART mode 0)  
TXLXL serial port clock cycle time  
tQVXH  
see Figure 27  
see Figure 27  
16Tcy(CLK)  
13Tcy(CLK)  
-
-
888  
722  
-
-
ns  
ns  
output data set-up to clock  
rising edge time  
tXHQX  
tXHDX  
tXHDV  
output data hold after clock  
rising edge time  
see Figure 27  
-
-
Tcy(CLK) + 20  
-
-
75  
0
ns  
ns  
ns  
input data hold after clock rising see Figure 27  
edge time  
0
-
input data valid to clock rising  
edge time  
see Figure 27  
150  
150  
-
SPI interface  
fSPI  
SPI operating frequency  
CCLK  
slave  
0
-
0
-
3.0 MHz  
4.5 MHz  
6
CCLK  
master  
4
TSPICYC  
SPI cycle time  
slave  
see Figure 23, 24,  
25, 26  
6
-
-
333  
222  
-
-
ns  
ns  
CCLK  
4
master  
CCLK  
tSPILEAD  
SPI enable lead time  
slave  
see Figure 25, 26  
see Figure 25, 26  
250  
250  
-
-
250  
250  
-
-
ns  
ns  
tSPILAG  
SPI enable lag time  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
62 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Table 17. Dynamic characteristics (18 MHz) …continued  
VDD = 3.0 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C, or 40 °C to +125 °C (see Table 3 on page 3), unless otherwise specified.[1][2]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 18 MHz Unit  
Min  
Max  
Min  
Max  
tSPICLKH  
SPICLK HIGH time  
master  
see Figure 23, 24,  
25, 26  
2
3
-
-
111  
167  
-
-
ns  
ns  
CCLK  
CCLK  
slave  
tSPICLKL  
SPICLK LOW time  
master  
see Figure 23, 24,  
25, 26  
2
3
-
-
111  
167  
-
-
ns  
ns  
CCLK  
CCLK  
slave  
tSPIDSU  
tSPIDH  
tSPIA  
SPI data set-up time  
master or slave  
SPI data hold time  
master or slave  
SPI access time  
slave  
see Figure 23, 24,  
25, 26  
100  
100  
0
-
-
100  
100  
0
-
-
ns  
ns  
ns  
see Figure 23, 24,  
25, 26  
see Figure 25, 26  
80  
160  
80  
tSPIDIS  
SPI disable time  
slave  
see Figure 25, 26  
0
-
160 ns  
tSPIDV  
SPI enable to output data valid see Figure 23, 24,  
time  
25, 26  
slave  
-
-
160  
111  
-
-
-
160 ns  
111 ns  
master  
tSPIOH  
tSPIR  
SPI output data hold time  
see Figure 23, 24,  
25, 26  
0
0
-
ns  
SPI rise time  
see Figure 23, 24,  
25, 26  
SPI outputs  
-
-
100  
-
-
100 ns  
2000 ns  
(SPICLK, MOSI, MISO)  
SPI inputs  
2000  
(SPICLK, MOSI, MISO, SS)  
tSPIF  
SPI fall time  
see Figure 23, 24,  
25, 26  
SPI outputs  
-
-
100  
-
-
100 ns  
2000 ns  
(SPICLK, MOSI, MISO)  
SPI inputs  
2000  
(SPICLK, MOSI, MISO, SS)  
[1] Parameters are valid over ambient temperature range unless otherwise specified.  
[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
63 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
12.1 Waveforms  
SS  
T
SPICYC  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIF  
SPIR  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(output)  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
t
t
t
SPIDV  
SPIDV  
SPIOH  
t
t
SPIR  
MOSI  
SPIF  
(output)  
master MSB/LSB out  
master LSB/MSB out  
002aaa908  
Fig 23. SPI master timing (CPHA = 0)  
SS  
T
SPICYC  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLK  
(CPOL = 1)  
(output)  
SPICLKH  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
t
t
t
SPIDV  
SPIDV  
SPIOH  
t
t
SPIR  
SPIF  
MOSI  
(output)  
master MSB/LSB out  
master LSB/MSB out  
002aaa909  
Fig 24. SPI master timing (CPHA = 1)  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
64 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
SS  
t
t
SPIR  
SPIF  
T
SPICYC  
t
t
SPIR  
t
SPIF  
t
SPILEAD  
SPILAG  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLK  
(CPOL = 1)  
(input)  
SPICLKH  
t
t
SPIOH  
t
t
SPIDIS  
t
SPIOH  
SPIOH  
SPIA  
t
t
SPIDV  
SPIDV  
MISO  
(output)  
slave MSB/LSB out  
slave LSB/MSB out  
not defined  
t
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa910  
Fig 25. SPI slave timing (CPHA = 0)  
SS  
t
t
SPIF  
SPIR  
T
SPICYC  
t
t
t
SPIR  
SPIF  
t
t
SPILAG  
SPILEAD  
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
SPICLK  
(CPOL = 1)  
(input)  
t
SPICLKH  
t
t
t
SPIOH  
SPIOH  
SPIOH  
t
t
t
t
SPIDIS  
SPIDV  
SPIDV  
SPIDV  
t
SPIA  
MISO  
(output)  
slave LSB/MSB out  
slave MSB/LSB out  
not defined  
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa911  
Fig 26. SPI slave timing (CPHA = 1)  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
65 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
T
XLXL  
clock  
t
XHQX  
1
t
QVXH  
output data  
write to SBUF  
input data  
0
2
3
4
5
6
7
t
XHDX  
set TI  
valid  
t
XHDV  
valid  
valid  
valid  
valid  
valid  
valid  
valid  
clear RI  
set RI  
002aaa906  
Fig 27. Shift register mode timing  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 28. External clock timing  
12.2 ISP entry mode  
Table 18. Dynamic characteristics, ISP entry mode  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
T
amb = 40 °C to +85 °C, or 40 °C to +125 °C (see Table 3 on page 3), unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
50  
1
Typ  
Max  
Unit  
µs  
tVR  
tRH  
tRL  
VDD active to RST active delay time  
RST HIGH time  
-
-
-
-
32  
-
µs  
RST LOW time  
1
µs  
V
DD  
t
VR  
t
RH  
RST  
t
RL  
002aaa912  
Fig 29. ISP entry timing  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
66 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
13. Other characteristics  
13.1 Comparator electrical characteristics  
Table 19. Comparator electrical characteristics  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
T
amb = 40 °C to +85 °C, or 40 °C to +125 °C (see Table 3 on page 3), unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
mV  
V
VIO  
input offset voltage  
-
-
±20  
VIC  
common mode input voltage  
common mode rejection ratio  
total response time  
0
-
-
VDD 0.3  
[1]  
CMRR  
tres(tot)  
t(CE-OV)  
ILI  
-
50  
500  
10  
dB  
ns  
-
250  
chip enable to output valid time  
input leakage current  
-
-
-
µs  
0 < VI < VDD  
-
±10  
µA  
[1] This parameter is characterized, but not tested in production.  
13.2 ADC electrical characteristics  
Table 20. ADC electrical characteristics  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
T
amb = 40 °C to +85 °C, or 40 °C to +125 °C (see Table 3 on page 3), unless otherwise specified.  
All limits valid for an external source impedance of less than 10 k.  
Symbol  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
VSS + 0.2  
15  
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
VSS 0.2  
-
-
-
-
-
-
-
-
-
-
-
-
Cia  
-
pF  
ED  
-
±1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
-
±1  
-
±2  
EG  
gain error  
-
±1  
Eu(tot)  
MCTC  
αct(port)  
SRin  
Tcy(ADC)  
tADC  
total unadjusted error  
channel-to-channel matching  
crosstalk between port inputs  
input slew rate  
-
±2  
LSB  
LSB  
dB  
-
±1  
0 kHz to 100 kHz  
A/D enabled  
-
60  
100  
2000  
-
V/ms  
ns  
ADC clock cycle  
111  
-
conversion time  
13Tcy(ADC) ns  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
67 of 75  
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
14. Package outline  
DIP14: plastic dual in-line package; 14 leads (300 mil)  
SOT27-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
M
H
14  
8
pin 1 index  
E
1
7
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
w
1
1
E
max.  
min.  
max.  
max.  
1.73  
1.13  
0.53  
0.38  
0.36  
0.23  
19.50  
18.55  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.1  
7.62  
0.3  
0.254  
0.01  
2.2  
0.068  
0.044  
0.021  
0.015  
0.014  
0.009  
0.77  
0.73  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.02  
0.13  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-13  
SOT27-1  
050G04  
MO-001  
SC-501-14  
Fig 30. Package outline SOT27-1 (DIP14)  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
68 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm  
SOT402-1  
D
E
A
X
c
y
H
v
M
A
E
Z
8
14  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
7
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.72  
0.38  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT402-1  
MO-153  
Fig 31. Package outline SOT402-1 (TSSOP14)  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
69 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm  
SOT403-1  
D
E
A
X
c
y
H
v
M
A
E
Z
9
16  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.40  
0.06  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT403-1  
MO-153  
Fig 32. Package outline SOT403-1 (TSSOP16)  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
70 of 75  
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
15. Abbreviations  
Table 21. Acronym list  
Acronym  
ADC  
Description  
Analog to Digital Converter  
Central Processing Unit  
CPU  
CCU  
Capture/Compare Unit  
DAC  
Digital to Analog Converter  
Erasable Programmable Read-Only Memory  
Electrically Erasable Programmable Read-Only Memory  
ElectroMagnetic Interference  
Phase-Locked Loop  
EPROM  
EEPROM  
EMI  
PLL  
PWM  
RAM  
RC  
Pulse Width Modulator  
Random Access Memory  
Resistance-Capacitance  
RTC  
Real-Time Clock  
SAR  
Successive Approximation Register  
Special Function Register  
SFR  
SPI  
Serial Peripheral Interface  
UART  
Universal Asynchronous Receiver/Transmitter  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
71 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
16. Revision history  
Table 22. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
P89LPC915_916_917_5 20091215  
Product data sheet  
-
P89LPC915_916_917-04  
Modifications:  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Added ADC electrical characteristics, Table 20.  
Added P89LPC915FN.  
P89LPC915_916_917-04 20041217  
P89LPC915_916_917-03 20040701  
P89LPC915_916_917-02 20040512  
P89LPC915_916_917-01 20040408  
Product data  
-
-
-
-
P89LPC915_916_917-03  
P89LPC915_916_917-02  
P89LPC915_916_917-01  
-
Preliminary data  
Preliminary data  
Preliminary data  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
72 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
17.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
17.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
73 of 75  
 
 
 
 
 
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
19. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
8.17.1  
8.17.2  
8.17.3  
8.17.4  
8.17.5  
8.17.6  
8.18  
Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Mode 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Timer overflow toggle output . . . . . . . . . . . . . 40  
RTC/system timer. . . . . . . . . . . . . . . . . . . . . . 40  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Baud rate generator and selection. . . . . . . . . 42  
Framing error . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Break detect. . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Double buffering. . . . . . . . . . . . . . . . . . . . . . . 42  
Transmit interrupts with double buffering  
2
2.1  
2.2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Principal features . . . . . . . . . . . . . . . . . . . . . . . 1  
Additional features . . . . . . . . . . . . . . . . . . . . . . 1  
3
Product comparison overview . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 7  
4
4.1  
5
8.19  
8.19.1  
8.19.2  
8.19.3  
8.19.4  
8.19.5  
8.19.6  
8.19.7  
8.19.8  
8.19.9  
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 9  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 11  
8
8.1  
8.2  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
8.10  
8.11  
8.12  
8.12.1  
8.13  
8.13.1  
Functional description . . . . . . . . . . . . . . . . . . 18  
Special function registers . . . . . . . . . . . . . . . . 18  
Enhanced CPU. . . . . . . . . . . . . . . . . . . . . . . . 31  
Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Clock definitions . . . . . . . . . . . . . . . . . . . . . . . 31  
CPU clock (OSCCLK). . . . . . . . . . . . . . . . . . . 31  
Clock output (P89LPC917). . . . . . . . . . . . . . . 31  
On-chip RC oscillator option. . . . . . . . . . . . . . 31  
Watchdog oscillator option . . . . . . . . . . . . . . . 31  
External clock input option . . . . . . . . . . . . . . . 32  
CCLK wake-up delay . . . . . . . . . . . . . . . . . . . 32  
CCLK modification: DIVM register . . . . . . . . . 32  
Low power select . . . . . . . . . . . . . . . . . . . . . . 33  
Memory organization . . . . . . . . . . . . . . . . . . . 33  
Data RAM arrangement . . . . . . . . . . . . . . . . . 33  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
External interrupt inputs . . . . . . . . . . . . . . . . . 34  
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Port configurations . . . . . . . . . . . . . . . . . . . . . 36  
enabled (Modes 1, 2 and 3) . . . . . . . . . . . . . . 42  
8.19.10 The 9th bit (bit 8) in double buffering  
(Modes 1, 2 and 3). . . . . . . . . . . . . . . . . . . . . 43  
8.20  
8.21  
8.21.1  
8.22  
8.22.1  
8.22.2  
8.22.3  
8.23  
8.24  
8.25  
I2C-bus serial interface. . . . . . . . . . . . . . . . . . 43  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Typical SPI configurations . . . . . . . . . . . . . . . 46  
Analog comparators. . . . . . . . . . . . . . . . . . . . 48  
Internal reference voltage. . . . . . . . . . . . . . . . 48  
Comparator interrupt . . . . . . . . . . . . . . . . . . . 48  
Comparators and power reduction modes . . . 48  
KBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . 50  
Additional features . . . . . . . . . . . . . . . . . . . . . 50  
Software reset . . . . . . . . . . . . . . . . . . . . . . . . 50  
Dual data pointers . . . . . . . . . . . . . . . . . . . . . 50  
Flash program memory . . . . . . . . . . . . . . . . . 51  
General description . . . . . . . . . . . . . . . . . . . . 51  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Flash organization . . . . . . . . . . . . . . . . . . . . . 51  
Using flash as data storage . . . . . . . . . . . . . . 51  
Flash programming and erasing. . . . . . . . . . . 51  
ICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
IAP-Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Power-on reset code execution . . . . . . . . . . . 52  
Hardware activation of the alternate code . . . 52  
User configuration bytes. . . . . . . . . . . . . . . . . 52  
User sector security bytes . . . . . . . . . . . . . . . 53  
8.25.1  
8.25.2  
8.26  
8.13.1.1 Quasi-bidirectional output configuration . . . . . 36  
8.13.1.2 Open-drain output configuration . . . . . . . . . . . 37  
8.13.1.3 Input-only configuration . . . . . . . . . . . . . . . . . 37  
8.13.1.4 Push-pull output configuration . . . . . . . . . . . . 37  
8.13.2  
8.13.3  
8.14  
8.14.1  
8.14.2  
8.15  
8.15.1  
8.15.2  
8.15.3  
8.16  
8.26.1  
8.26.2  
8.26.3  
8.26.4  
8.26.5  
8.26.6  
8.26.7  
8.26.8  
8.26.9  
8.27  
Port 0 analog functions. . . . . . . . . . . . . . . . . . 37  
Additional port features. . . . . . . . . . . . . . . . . . 37  
Power monitoring functions. . . . . . . . . . . . . . . 38  
Brownout detection. . . . . . . . . . . . . . . . . . . . . 38  
Power-on detection. . . . . . . . . . . . . . . . . . . . . 38  
Power reduction modes . . . . . . . . . . . . . . . . . 38  
Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Power-down mode . . . . . . . . . . . . . . . . . . . . . 38  
Total Power-down mode . . . . . . . . . . . . . . . . . 39  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Timers/counters 0 and 1. . . . . . . . . . . . . . . . . 39  
8.28  
9
A/D converter. . . . . . . . . . . . . . . . . . . . . . . . . . 53  
General description . . . . . . . . . . . . . . . . . . . . 53  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . 54  
9.1  
9.2  
9.3  
8.17  
continued >>  
P89LPC915_916_917_5  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 05 — 15 December 2009  
74 of 75  
 
P89LPC915/916/917  
NXP Semiconductors  
8-bit microcontrollers with accelerated two-clock 80C51 core  
9.4  
A/D operating modes . . . . . . . . . . . . . . . . . . . 54  
Fixed channel, single conversion mode . . . . . 54  
9.4.1  
9.4.2  
9.4.3  
9.4.4  
9.4.5  
9.4.6  
9.5  
9.5.1  
9.5.2  
9.5.3  
9.6  
Fixed channel, continuous conversion mode . 54  
Auto scan, single conversion mode . . . . . . . . 54  
Auto scan, continuous conversion mode . . . . 55  
Dual channel, continuous conversion mode . . 55  
Single step mode . . . . . . . . . . . . . . . . . . . . . . 55  
Conversion start modes . . . . . . . . . . . . . . . . . 55  
Timer triggered start . . . . . . . . . . . . . . . . . . . . 55  
Start immediately . . . . . . . . . . . . . . . . . . . . . . 55  
Edge triggered . . . . . . . . . . . . . . . . . . . . . . . . 55  
Boundary limits interrupt. . . . . . . . . . . . . . . . . 55  
DAC output to a port pin with high output  
9.7  
impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Clock divider . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Power-down and Idle mode . . . . . . . . . . . . . . 56  
9.8  
9.9  
10  
11  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 57  
Static characteristics. . . . . . . . . . . . . . . . . . . . 58  
12  
12.1  
12.2  
Dynamic characteristics . . . . . . . . . . . . . . . . . 60  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
ISP entry mode. . . . . . . . . . . . . . . . . . . . . . . . 66  
13  
13.1  
13.2  
Other characteristics. . . . . . . . . . . . . . . . . . . . 67  
Comparator electrical characteristics . . . . . . . 67  
ADC electrical characteristics. . . . . . . . . . . . . 67  
14  
15  
16  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 68  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 72  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 73  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 73  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
17.1  
17.2  
17.3  
17.4  
18  
19  
Contact information. . . . . . . . . . . . . . . . . . . . . 73  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 15 December 2009  
Document identifier: P89LPC915_916_917_5  

相关型号:

P89LPC920

8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM
NXP

P89LPC9201

8-bit microcontroller with accelerated two-clock 80C51 core 2 kB/4 kB/8 kB 3 V byte-erasable flash with 8-bit ADC
NXP

P89LPC9201FDH

8-bit microcontroller with accelerated two-clock 80C51 core 2 kB/4 kB/8 kB 3 V byte-erasable flash with 8-bit ADC
NXP

P89LPC920FDH

8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM
NXP

P89LPC920FDH,129

P89LPC920/921/922/9221 - 8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM TSSOP2 20-Pin
NXP

P89LPC920FDH,529

P89LPC920/921/922/9221 - 8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM TSSOP2 20-Pin
NXP
NXP

P89LPC921

8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM
NXP

P89LPC9211

8-bit microcontroller with accelerated two-clock 80C51 core 2 kB/4 kB/8 kB 3 V byte-erasable flash with 8-bit ADC
NXP

P89LPC9211FDH

8-bit microcontroller with accelerated two-clock 80C51 core 2 kB/4 kB/8 kB 3 V byte-erasable flash with 8-bit ADC
NXP

P89LPC921BDH

暂无描述
NXP

P89LPC921FDH

8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM
NXP