P89LPC9301FDH [NXP]

8-bit microcontroller with accelerated two-clock 80C51 core 4 kB/8 kB 3 V byte-erasable flash; 8位微控制器,带有加速双时钟80C51核心4 KB / 8 KB 3 V字节可擦除闪存
P89LPC9301FDH
型号: P89LPC9301FDH
厂家: NXP    NXP
描述:

8-bit microcontroller with accelerated two-clock 80C51 core 4 kB/8 kB 3 V byte-erasable flash
8位微控制器,带有加速双时钟80C51核心4 KB / 8 KB 3 V字节可擦除闪存

闪存 微控制器和处理器 外围集成电路 光电二极管 时钟
文件: 总65页 (文件大小:297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
P89LPC9301/931A1  
8-bit microcontroller with accelerated two-clock 80C51 core  
4 kB/8 kB 3 V byte-erasable flash  
Rev. 01 — 9 April 2009  
Preliminary data sheet  
1. General description  
The P89LPC9301/931A1 is a single-chip microcontroller, available in low cost packages,  
based on a high performance processor architecture that executes instructions in two to  
four clocks, six times the rate of standard 80C51 devices. Many system-level functions  
have been incorporated into the P89LPC9301/931A1 in order to reduce component count,  
board space, and system cost.  
2. Features  
2.1 Principal features  
I 4 kB/8 kB byte-erasable flash code memory organized into 1 kB sectors and 64-byte  
pages. Single-byte erasing allows any byte(s) to be used as non-volatile data storage.  
I 256-byte RAM data memory.  
I Two analog comparators with selectable inputs and reference source.  
I Two 16-bit counter/timers (each may be configured to toggle a port output upon timer  
overflow or to become a PWM output).  
I A 23-bit system timer that can also be used as real-time clock consisting of a 7-bit  
prescaler and a programmable and readable 16-bit timer.  
I Enhanced UART with a fractional baud rate generator, break detect, framing error  
detection, and automatic address detection; 400 kHz byte-wide I2C-bus  
communication port and SPI communication port.  
I 2.4 V to 3.6 V VDD operating range. I/O pins are 5 V tolerant (may be pulled up or  
driven to 5.5 V).  
I Enhanced low voltage (brownout) detect allows a graceful system shutdown when  
power fails.  
I 28-pin TSSOP and PLCC packages with 23 I/O pins minimum and up to 26 I/O pins  
while using on-chip oscillator and reset options.  
2.2 Additional features  
I A high performance 80C51 CPU provides instruction cycle times of 111 ns to 222 ns  
for all instructions except multiply and divide when executing at 18 MHz. This is six  
times the performance of the standard 80C51 running at the same clock frequency. A  
lower clock frequency for the same performance results in power savings and reduced  
EMI.  
I Serial flash In-Circuit Programming (ICP) allows simple production coding with  
commercial EPROM programmers. Flash security bits prevent reading of sensitive  
application programs.  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
I Serial flash In-System Programming (ISP) allows coding while the device is mounted  
in the end application.  
I In-Application Programming (IAP) of the flash code memory. This allows changing the  
code in a running application.  
I Watchdog timer with separate on-chip oscillator, nominal 400 kHz, calibrated to ±5 %,  
requiring no external components. The watchdog prescaler is selectable from  
eight values.  
I High-accuracy internal RC oscillator option, with clock doubler option, allows operation  
without external oscillator components. The RC oscillator option is selectable and fine  
tunable.  
I Switching on the fly among internal RC oscillator, watchdog oscillator, external clock  
source provides optimal support of minimal power active mode with fast switching to  
maximum performance.  
I Idle and two different power-down reduced power modes. Improved wake-up from  
Power-down mode (a LOW interrupt input starts execution). Typical power-down  
current is 1 µA (total power-down with voltage comparators disabled).  
I Active-LOW reset. On-chip power-on reset allows operation without external reset  
components. A software reset function is also available.  
I Configurable on-chip oscillator with frequency range options selected by user  
programmed flash configuration bits. Oscillator options support frequencies from  
20 kHz to the maximum operating frequency of 18 MHz.  
I Oscillator fail detect. The watchdog timer has a separate fully on-chip oscillator  
allowing it to perform an oscillator fail detect function.  
I Programmable port output configuration options: quasi-bidirectional, open drain,  
push-pull, input-only.  
I High current sourcing/sinking (20 mA) on eight I/O pins (P0.3 to P0.7, P1.4, P1.6,  
P1.7). All other port pins have high sinking capability (20 mA). A maximum limit is  
specified for the entire chip.  
I Port ‘input pattern match’ detect. Port 0 may generate an interrupt when the value of  
the pins match or do not match a programmable pattern.  
I Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns  
minimum ramp times.  
I Only power and ground connections are required to operate the P89LPC9301/931A1  
when internal reset option is selected.  
I Four interrupt priority levels.  
I Eight keypad interrupt inputs, plus two additional external interrupt inputs.  
I Schmitt trigger port inputs.  
I Second data pointer.  
I Emulation support.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
2 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
P89LPC9301FDH  
TSSOP28 plastic thin shrink small outline package; 28  
leads; body width 4.4 mm  
SOT361-1  
P89LPC931A1FDH TSSOP28 plastic thin shrink small outline package; 28  
leads; body width 4.4 mm  
SOT361-1  
3.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Flash memory  
4 kB  
Temperature range  
40 °C to +85 °C  
40 °C to +85 °C  
Frequency  
P89LPC9301FDH  
P89LPC931A1FDH  
0 MHz to 18 MHz  
0 MHz to 18 MHz  
8 kB  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
3 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
4. Block diagram  
P89LPC9301/931A1  
HIGH PERFORMANCE  
ACCELERATED 2-CLOCK 80C51 CPU  
4 kB/8 kB  
CODE FLASH  
TXD  
UART  
RXD  
internal  
bus  
256-BYTE  
DATA RAM  
REAL-TIME CLOCK/  
SYSTEM TIMER  
PORT 3  
CONFIGURABLE I/Os  
SCL  
SDA  
2
P3[1:0]  
I C-BUS  
PORT 2  
CONFIGURABLE I/Os  
WATCHDOG TIMER  
AND OSCILLATOR  
P2[7:0]  
P1[7:0]  
T0  
T1  
PORT 1  
CONFIGURABLE I/Os  
TIMER 0  
TIMER 1  
CMP2  
CIN2A  
CIN1A  
CIN2B  
CMP1  
CIN1B  
PORT 0  
CONFIGURABLE I/Os  
ANALOG  
COMPARATORS  
P0[7:0]  
KEYPAD  
INTERRUPT  
SPICLK  
MOSI  
MISO  
SS  
SPI  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU  
clock  
XTAL1  
CRYSTAL  
OR  
RESONATOR  
ON-CHIP RC  
OSCILLATOR WITH  
CLOCK DOUBLER  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
CONFIGURABLE  
OSCILLATOR  
XTAL2  
002aae447  
Fig 1. Block diagram  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
4 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
5. Functional diagram  
V
V
SS  
DD  
TXD  
RXD  
T0  
INT0  
INT1  
KBI0  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
KBI6  
KBI7  
CMP2  
CIN2B  
CIN2A  
CIN1B  
CIN1A  
CMPREF  
CMP1  
T1  
SCL  
SDA  
PORT 0  
PORT 3  
PORT 1  
RST  
P89LPC9301/  
931A1  
CLKOUT  
XTAL2  
XTAL1  
MOSI  
MISO  
SS  
PORT 2  
SPICLK  
002aae448  
Fig 2. Functional diagram  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
5 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
6. Pinning information  
6.1 Pinning  
1
2
28  
27  
26  
25  
24  
23  
22  
P2.0  
P2.1  
P2.7  
P2.6  
3
P0.0/CMP2/KBI0  
P1.7  
P0.1/CIN2B/KBI1  
P0.2/CIN2A/KBI2  
P0.3/CIN1B/KBI3  
P0.4/CIN1A/KBI4  
P0.5/CMPREF/KBI5  
4
5
P1.6  
6
P1.5/RST  
7
V
SS  
P89LPC9301FDH  
8
P89LPC931A1FDH 21  
P3.1/XTAL1  
P3.0/XTAL2/CLKOUT  
P1.4/INT1  
V
DD  
9
20  
19  
18  
17  
16  
15  
P0.6/CMP1/KBI6  
P0.7/T1/KBI7  
P1.0/TXD  
10  
11  
12  
13  
14  
P1.3/INT0/SDA  
P1.2/T0/SCL  
P1.1/RXD  
P2.2/MOSI  
P2.5/SPICLK  
P2.4/SS  
P2.3/MISO  
002aae451  
Fig 3. P89LPC9301/931A1 TSSOP28 pin configuration  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
6 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
6.2 Pin description  
Table 3.  
Pin description  
Symbol  
Pin  
Type Description  
P0.0 to P0.7  
I/O  
Port 0: Port 0 is an 8-bit I/O port with a user-configurable output type. During reset  
Port 0 latches are configured in the input only mode with the internal pull-up  
disabled. The operation of Port 0 pins as inputs and outputs depends upon the  
port configuration selected. Each port pin is configured independently. Refer to  
Section 7.16.1 “Port configurations” and Table 10 “Static characteristics” for  
details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt trigger inputs.  
Port 0 also provides various special functions as described below:  
P0.0 — Port 0 bit 0.  
P0.0/CMP2/  
KBI0  
3
I/O  
O
CMP2 — Comparator 2 output  
I
KBI0 — Keyboard input 0.  
P0.1/CIN2B/  
KBI1  
26  
25  
24  
23  
22  
I/O  
P0.1 — Port 0 bit 1.  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
P0.2/CIN2A/  
KBI2  
I/O  
P0.2 — Port 0 bit 2.  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
P0.3/CIN1B/  
KBI3  
I/O  
P0.3 — Port 0 bit 3. High current source.  
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
I
I
P0.4/CIN1A/  
KBI4  
I/O  
P0.4 — Port 0 bit 4. High current source.  
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
I
I
P0.5/CMPREF/  
KBI5  
I/O  
P0.5 — Port 0 bit 5. High current source.  
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
I
I
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
7 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
Table 3.  
Pin description …continued  
Symbol  
Pin  
Type Description  
P0.6/CMP1/KBI6  
20  
I/O  
O
P0.6 — Port 0 bit 6. High current source.  
CMP1 — Comparator 1 output.  
I
KBI6 — Keyboard input 6.  
P0.7/T1/KBI7  
P1.0 to P1.7  
19  
I/O  
I/O  
I
P0.7 — Port 0 bit 7. High current source.  
T1 — Timer/counter 1 external count input or overflow output.  
KBI7 — Keyboard input 7.  
I/O, I Port 1: Port 1 is an 8-bit I/O port with a user-configurable output type, except for  
[1]  
three pins as noted below. During reset Port 1 latches are configured in the input  
only mode with the internal pull-up disabled. The operation of the configurable  
Port 1 pins as inputs and outputs depends upon the port configuration selected.  
Each of the configurable port pins are programmed independently. Refer to  
Section 7.16.1 “Port configurations” and Table 10 “Static characteristics” for  
details. P1.2 to P1.3 are open drain when used as outputs. P1.5 is input only.  
All pins have Schmitt trigger inputs.  
Port 1 also provides various special functions as described below:  
P1.0/TXD  
18  
17  
12  
I/O  
O
P1.0 — Port 1 bit 0.  
TXD — Transmitter output for serial port.  
P1.1 — Port 1 bit 1.  
P1.1/RXD  
P1.2/T0/SCL  
I/O  
I
RXD — Receiver input for serial port.  
P1.2 — Port 1 bit 2 (open-drain when used as output).  
I/O  
I/O  
T0 — Timer/counter 0 external count input or overflow output (open-drain when  
used as output).  
I/O  
SCL — I2C-bus serial clock input/output.  
P1.3 — Port 1 bit 3 (open-drain when used as output).  
INT0 — External interrupt 0 input.  
P1.3/INT0/SDA  
11  
I/O  
I
I/O  
SDA — I2C-bus serial data input/output.  
P1.4 — Port 1 bit 4. High current source.  
INT1 — External interrupt 1 input.  
P1.4/INT1  
P1.5/RST  
10  
6
I/O  
I
I
I
P1.5 — Port 1 bit 5 (input only).  
RST — External Reset input during power-on or if selected via UCFG1. When  
functioning as a reset input, a LOW on this pin resets the microcontroller, causing  
I/O ports and peripherals to take on their default states, and the processor begins  
execution at address 0. Also used during a power-on sequence to force ISP mode.  
P1.6  
5
4
I/O  
I/O  
I/O  
P1.6 — Port 1 bit 6. High current source.  
P1.7 — Port 1 bit 7. High current source.  
P1.7  
P2.0 to P2.7  
Port 2: Port 2 is an 8-bit I/O port with a user-configurable output type. During reset  
Port 2 latches are configured in the input only mode with the internal pull-up  
disabled. The operation of Port 2 pins as inputs and outputs depends upon the  
port configuration selected. Each port pin is configured independently. Refer to  
Section 7.16.1 “Port configurations” and Table 10 “Static characteristics” for  
details.  
All pins have Schmitt trigger inputs.  
Port 2 also provides various special functions as described below:  
P2.0 — Port 2 bit 0.  
P2.0  
P2.1  
1
2
I/O  
I/O  
P2.1 — Port 2 bit 1.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
8 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
Table 3.  
Pin description …continued  
Symbol  
Pin  
Type Description  
P2.2/MOSI  
13  
I/O  
I/O  
P2.2 — Port 2 bit 2.  
MOSI — SPI master out slave in. When configured as master, this pin is output;  
when configured as slave, this pin is input.  
P2.3/MISO  
14  
I/O  
I/O  
P2.3 — Port 2 bit 3.  
MISO — When configured as master, this pin is input, when configured as slave,  
this pin is output.  
P2.4/SS  
15  
16  
I/O  
I
P2.4 — Port 2 bit 4.  
SS — SPI Slave select.  
P2.5 — Port 2 bit 5.  
P2.5/SPICLK  
I/O  
I/O  
SPICLK — SPI clock. When configured as master, this pin is output; when  
configured as slave, this pin is input.  
P2.6  
27  
28  
I/O  
I/O  
I/O  
P2.6 — Port 2 bit 6.  
P2.7 — Port 2 bit 7.  
P2.7  
P3.0 to P3.1  
Port 3: Port 3 is a 2-bit I/O port with a user-configurable output type. During reset  
Port 3 latches are configured in the input only mode with the internal pull-up  
disabled. The operation of Port 3 pins as inputs and outputs depends upon the  
port configuration selected. Each port pin is configured independently. Refer to  
Section 7.16.1 “Port configurations” and Table 10 “Static characteristics” for  
details.  
All pins have Schmitt trigger inputs.  
Port 3 also provides various special functions as described below:  
P3.0 — Port 3 bit 0.  
P3.0/XTAL2/  
CLKOUT  
9
8
I/O  
O
XTAL2 — Output from the oscillator amplifier (when a crystal oscillator option is  
selected via the flash configuration.  
O
CLKOUT — CPU clock divided by 2 when enabled via SFR bit (ENCLK -TRIM.6).  
It can be used if the CPU clock is the internal RC oscillator, watchdog oscillator or  
external clock input, except when XTAL1/XTAL2 are used to generate clock source  
for the RTC/system timer.  
P3.1/XTAL1  
I/O  
I
P3.1 — Port 3 bit 1.  
XTAL1 — Input to the oscillator circuit and internal clock generator circuits (when  
selected via the flash configuration). It can be a port pin if internal RC oscillator or  
watchdog oscillator is used as the CPU clock source, and if XTAL1/XTAL2 are not  
used to generate the clock for the RTC/system timer.  
VSS  
VDD  
7
I
I
Ground: 0 V reference.  
21  
Power supply: This is the power supply voltage for normal operation as well as  
Idle and Power-down modes.  
[1] Input/output for P1.0 to P1.4, P1.6, P1.7. Input for P1.5.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
9 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7. Functional description  
Remark: Please refer to the P89LPC9301/931A1 User manual for a more detailed  
functional description.  
7.1 Special function registers  
Remark: SFR accesses are restricted in the following ways:  
User must not attempt to access any SFR locations not defined.  
Accesses to any defined SFR locations must be strictly for the functions for the SFRs.  
SFR bits labeled ‘-’, ‘0’ or ‘1’ can only be written and read as follows:  
‘-’ Unless otherwise specified, must be written with ‘0’, but can return any value  
when read (even if it was written with ‘0’). It is a reserved bit and may be used in  
future derivatives.  
‘0’ must be written with ‘0’, and will return a ‘0’ when read.  
‘1’ must be written with ‘1’, and will return a ‘1’ when read.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
10 of 65  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 4.  
Special function registers  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex  
Binary  
Bit address  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
E0H  
A2H  
00  
00  
0000 0000  
0000 00x0  
AUXR1  
Auxiliary  
function  
register  
CLKLP  
EBRR  
ENT1  
ENT0  
SRST  
0
-
DPS  
Bit address  
F0H  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
B*  
B register  
Baud rate  
00  
00  
0000 0000  
0000 0000  
BRGR0[2]  
BEH  
generator 0  
rate low  
BRGR1[2]  
BRGCON  
Baud rate  
generator 0  
rate high  
BFH  
BDH  
00  
0000 0000  
xxxx xx00  
Baud rate  
generator 0  
control  
-
-
-
-
-
-
SBRGS  
BRGEN 00[2]  
CMP1  
CMP2  
DIVM  
Comparator 1  
control register  
ACH  
ADH  
95H  
-
-
-
-
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
OE1  
OE2  
CO1  
CO2  
CMF1  
CMF2  
00[1]  
00[1]  
00  
xx00 0000  
xx00 0000  
0000 0000  
Comparator 2  
control register  
CPU clock  
divide-by-M  
control  
DPTR  
Data pointer  
(2 bytes)  
DPH  
Data pointer  
high  
83H  
82H  
E7H  
E6H  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
DPL  
Data pointer  
low  
FMADRH  
FMADRL  
Program flash  
address high  
Program flash  
address low  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers …continued  
Table 4.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
FMCON  
Program flash  
control (Read)  
E4H  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
70  
0111 0000  
Program flash  
control (Write)  
E4H FMCMD.7 FMCMD.6 FMCMD.5 FMCMD.4 FMCMD.3 FMCMD.2 FMCMD.1 FMCMD.0  
E5H  
FMDATA  
I2ADR  
Program flash  
data  
00  
00  
0000 0000  
0000 0000  
I2C-bus slave  
address  
DBH  
I2ADR.6  
I2ADR.5  
I2ADR.4  
I2ADR.3  
I2ADR.2  
I2ADR.1  
I2ADR.0  
GC  
register  
Bit address  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
D8  
I2CON*  
I2DAT  
I2C-bus control D8H  
register  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x000 00x0  
I2C-bus data  
register  
DAH  
I2SCLH  
Serial clock  
generator/SCL  
duty cycle  
DDH  
00  
00  
0000 0000  
0000 0000  
register high  
I2SCLL  
Serial clock  
generator/SCL  
duty cycle  
register low  
I2C-bus status  
register  
DCH  
D9H  
I2STAT  
IEN0*  
IEN1*  
IP0*  
STA.4  
STA.3  
STA.2  
STA.1  
STA.0  
0
0
0
F8  
1111 1000  
0000 0000  
00x0 0000  
x000 0000  
Bit address  
AF  
AE  
AD  
AC  
AB  
AA  
A9  
A8  
Interrupt  
enable 0  
A8H  
EA  
EWDRT  
EBO  
ES/ESR  
ET1  
EX1  
ET0  
EX0  
00  
Bit address  
EF  
EE  
ED  
EC  
EB  
EA  
E9  
E8  
Interrupt  
enable 1  
E8H  
-
EST  
-
-
ESPI  
EC  
EKBI  
EI2C  
00[1]  
00[1]  
Bit address  
BF  
BE  
BD  
BC  
BB  
BA  
B9  
B8  
Interrupt  
priority 0  
B8H  
-
PWDRT  
PBO  
PS/PSR  
PT1  
PX1  
PT0  
PX0  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers …continued  
Table 4.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
IP0H  
Interrupt  
B7H  
-
PWDRTH  
PBOH  
PSH/  
PT1H  
PX1H  
PT0H  
PX0H  
00[1]  
x000 0000  
priority 0 high  
PSRH  
Bit address  
FF  
FE  
FD  
FC  
FB  
FA  
F9  
F8  
IP1*  
Interrupt  
priority 1  
F8H  
-
PST  
-
-
PSPI  
PC  
PKBI  
PI2C  
00[1]  
00[1]  
00[1]  
00  
00x0 0000  
00x0 0000  
xxxx xx00  
0000 0000  
IP1H  
Interrupt  
priority 1 high  
F7H  
-
-
PSTH  
-
-
-
-
-
PSPIH  
-
PCH  
-
PKBIH  
PI2CH  
KBIF  
KBCON  
KBMASK  
Keypad control 94H  
register  
PATN  
_SEL  
Keypad  
86H  
interrupt mask  
register  
KBPATN  
P0*  
Keypad pattern 93H  
register  
FF  
1111 1111  
Bit address  
87  
86  
85  
84  
83  
82  
81  
80  
[1]  
Port 0  
80H  
T1/KB7  
CMP1  
/KB6  
CMPREF  
/KB5  
CIN1A  
/KB4  
CIN1B  
/KB3  
CIN2A  
/KB2  
CIN2B  
/KB1  
CMP2  
/KB0  
Bit address  
90H  
97  
96  
95  
RST  
A5  
94  
INT1  
A4  
93  
INT0/SDA  
A3  
92  
T0/SCL  
A2  
91  
RXD  
A1  
90  
TXD  
A0  
[1]  
[1]  
[1]  
P1*  
P2*  
Port 1  
Port 2  
Port 3  
-
-
Bit address  
A0H  
A7  
A6  
-
-
SPICLK  
B5  
SS  
MISO  
B3  
MOSI  
B2  
-
-
Bit address  
B0H  
B7  
B6  
B4  
B1  
B0  
P3*  
-
-
-
-
-
-
XTAL1  
(P0M1.1)  
XTAL2  
P0M1  
Port 0 output  
mode 1  
84H  
85H  
91H  
92H  
(P0M1.7)  
(P0M1.6)  
(P0M1.5)  
(P0M1.4)  
(P0M1.3)  
(P0M1.2)  
(P0M1.0) FF[1]  
(P0M2.0) 00[1]  
(P1M1.0) D3[1]  
(P1M2.0) 00[1]  
1111 1111  
0000 0000  
11x1 xx11  
00x0 xx00  
P0M2  
P1M1  
P1M2  
Port 0 output  
mode 2  
(P0M2.7)  
(P1M1.7)  
(P1M2.7)  
(P0M2.6)  
(P1M1.6)  
(P1M2.6)  
(P0M2.5)  
(P0M2.4)  
(P1M1.4)  
(P1M2.4)  
(P0M2.3)  
(P1M1.3)  
(P1M2.3)  
(P0M2.2)  
(P1M1.2)  
(P1M2.2)  
(P0M2.1)  
(P1M1.1)  
(P1M2.1)  
Port 1 output  
mode 1  
-
-
Port 1 output  
mode 2  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers …continued  
Table 4.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
Hex Binary  
addr.  
MSB  
LSB  
P2M1  
P2M2  
P3M1  
P3M2  
PCON  
PCONA  
Port 2 output  
mode 1  
A4H (P2M1.7)  
A5H (P2M2.7)  
(P2M1.6)  
(P2M1.5)  
(P2M1.4)  
(P2M1.3)  
(P2M1.2)  
(P2M1.1)  
(P2M2.1)  
(P3M1.1)  
(P3M2.1)  
PMOD1  
SPD  
(P2M1.0) FF[1]  
(P2M2.0) 00[1]  
(P3M1.0) 03[1]  
(P3M2.0) 00[1]  
PMOD0 00  
1111 1111  
0000 0000  
xxxx xx11  
xxxx xx00  
0000 0000  
0000 0000  
Port 2 output  
mode 2  
(P2M2.6)  
(P2M2.5)  
(P2M2.4)  
(P2M2.3)  
(P2M2.2)  
Port 3 output  
mode 1  
B1H  
B2H  
87H  
B5H  
-
-
-
-
-
-
-
Port 3 output  
mode 2  
-
-
-
-
-
BOI  
-
-
Power control  
register  
SMOD1  
RTCPD  
SMOD0  
-
GF1  
I2PD  
GF0  
SPPD  
Power control  
register A  
VCPD  
-
00[1]  
Bit address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PSW*  
Program status D0H  
word  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00  
0000 0000  
xx00 000x  
PT0AD  
RSTSRC  
Port 0 digital  
input disable  
F6H  
-
-
-
PT0AD.5  
BOF  
PT0AD.4  
PT0AD.3  
PT0AD.2  
R_WD  
-
PT0AD.1  
R_SF  
-
00  
[3]  
Reset source  
register  
DFH  
BOIF  
RTCS1  
POF  
-
R_BK  
-
R_EX  
RTCCON  
RTCH  
RTC control  
D1H  
D2H  
RTCF  
RTCS0  
ERTC  
RTCEN 60[1][6] 011x xx00  
RTC register  
high  
00[6]  
00[6]  
00  
0000 0000  
0000 0000  
0000 0000  
RTCL  
RTC register  
low  
D3H  
A9H  
SADDR  
Serial port  
address  
register  
SADEN  
SBUF  
Serial port  
address enable  
B9H  
99H  
00  
xx  
0000 0000  
xxxx xxxx  
Serial Port  
data buffer  
register  
Bit address  
9F  
9E  
9D  
9C  
9B  
9A  
99  
98  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers …continued  
Table 4.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
SCON*  
SSTAT  
Serial port  
control  
98H  
SM0/FE  
DBMOD  
SM1  
SM2  
REN  
TB8  
FE  
RB8  
BR  
TI  
RI  
00  
0000 0000  
Serial port  
extended  
BAH  
INTLO  
CIDIS  
DBISEL  
OE  
STINT  
00  
0000 0000  
status register  
SP  
Stack pointer  
81H  
E2H  
07  
04  
0000 0111  
0000 0100  
SPCTL  
SPI control  
register  
SSIG  
SPIF  
SPEN  
DORD  
-
MSTR  
-
CPOL  
-
CPHA  
-
SPR1  
-
SPR0  
-
SPSTAT  
SPDAT  
TAMOD  
SPI status  
register  
E1H  
E3H  
8FH  
WCOL  
00  
00  
00  
00xx xxxx  
0000 0000  
xxx0 xxx0  
SPI data  
register  
Timer 0 and 1  
auxiliary mode  
-
-
-
T1M2  
-
-
-
T0M2  
Bit address  
8F  
8E  
8D  
8C  
8B  
8A  
89  
88  
TCON*  
Timer 0 and 1  
88H  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00  
0000 0000  
control  
TH0  
TH1  
TL0  
Timer 0 high  
Timer 1 high  
Timer 0 low  
Timer 1 low  
8CH  
8DH  
8AH  
8BH  
89H  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
TL1  
TMOD  
Timer 0 and 1  
mode  
T1GATE  
RCCLK  
T1C/T  
T1M1  
T1M0  
T0GATE  
TRIM.3  
T0C/T  
T0M1  
T0M0  
[5][6]  
TRIM  
Internal  
oscillator trim  
register  
96H  
A7H  
ENCLK  
TRIM.5  
TRIM.4  
TRIM.2  
TRIM.1  
TRIM.0  
[4][6]  
WDCON  
Watchdog  
PRE2  
PRE1  
PRE0  
-
-
WDRUN  
WDTOF  
WDCLK  
control register  
WDL  
Watchdog load C1H  
FF  
1111 1111  
WFEED1  
Watchdog  
feed 1  
C2H  
WFEED2  
Watchdog  
feed 2  
C3H  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
[1] All ports are in input only (high-impedance) state after power-up.  
[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC9301/931A1 reset except BOIF bit. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the  
power-on reset value is x011 0000.  
[4] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset.  
Other resets will not affect WDTOF.  
[5] On power-on reset and watchdog reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset sources that affect these SFRs are power-on reset and watchdog reset.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 5.  
Name  
Extended special function registers[1]  
Description  
SFR  
Bit functions and addresses  
MSB  
Reset value  
addr.  
LSB  
Hex Binary  
[2]  
BODCFG  
BOD  
FFC8H  
-
-
-
-
-
-
BOICFG1 BOICFG0  
configuration  
register  
[3]  
CLKCON  
CLOCK Control FFDEH CLKOK  
register  
-
-
XTALWD CLKDBL FOSC2  
FOSC1  
FOSC0  
RTCDATH  
Real-time clock FFBFH  
data register  
high  
00  
00  
0000 0000  
RTCDATL  
Real-time clock FFBEH  
data register low  
0000 0000  
[1] Extended SFRs are physically located on-chip but logically located in external data memory address space (XDATA). The MOVX A,@DPTR and MOVX @DPTR,A instructions are  
used to access these extended SFRs.  
[2] The BOICFG1/0 will be copied from UCFG1.5 and UCFG1.3 when power-on reset.  
[3] CLKCON register reset value comes from UCFG1 and UCFG2. The reset value of CLKCON.2 to CLKCON.0 come from UCFG1.2 to UCFG1.0 and reset value of CLKDBL bit  
comes from UCFG2.7.  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7.2 Enhanced CPU  
The P89LPC9301/931A1 uses an enhanced 80C51 CPU which runs at six times the  
speed of standard 80C51 devices. A machine cycle consists of two CPU clock cycles, and  
most instructions execute in one or two machine cycles.  
7.3 Clocks  
7.3.1 Clock definitions  
The P89LPC9301/931A1 device has several internal clocks as defined below:  
OSCCLK — Input to the DIVM clock divider. OSCCLK is selected from one of four clock  
sources (see Figure 4) and can also be optionally divided to a slower frequency (see  
Section 7.11 “CCLK modification: DIVM register”).  
Remark: fosc is defined as the OSCCLK frequency.  
CCLK — CPU clock; output of the clock divider. There are two CCLK cycles per machine  
cycle, and most instructions are executed in one to two machine cycles (two or four CCLK  
cycles).  
RCCLK — The internal 7.373 MHz RC oscillator output. The clock doubler option, when  
enabled, provides an output frequency of 14.746 MHz.  
PCLK — Clock for the various peripheral devices and is CCLK2.  
7.3.2 CPU clock (OSCCLK)  
The P89LPC9301/931A1 provides several user-selectable oscillator options in generating  
the CPU clock. This allows optimization for a range of needs from high precision to lowest  
possible cost. These options are configured when the flash is programmed and include an  
on-chip watchdog oscillator, an on-chip RC oscillator, an oscillator using an external  
crystal, or an external clock source.  
7.4 Crystal oscillator option  
The crystal oscillator can be optimized for low, medium, or high frequency crystals  
covering a range from 20 kHz to 18 MHz. It can be the clock source of OSCCLK, RTC and  
WDT.  
7.4.1 Low speed oscillator option  
This option supports an external crystal in the range of 20 kHz to 100 kHz. Ceramic  
resonators are also supported in this configuration.  
7.4.2 Medium speed oscillator option  
This option supports an external crystal in the range of 100 kHz to 4 MHz. Ceramic  
resonators are also supported in this configuration.  
7.4.3 High speed oscillator option  
This option supports an external crystal in the range of 4 MHz to 18 MHz. Ceramic  
resonators are also supported in this configuration.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
18 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7.5 Clock output  
The P89LPC9301/931A1 supports a user-selectable clock output function on the  
P3.0/XTAL2/CLKOUT pin when crystal oscillator is not being used. This condition occurs if  
another clock source has been selected (on-chip RC oscillator, watchdog oscillator,  
external clock input on XTAL1) and if the RTC and WDT are not using the crystal oscillator  
as their clock source. This allows external devices to synchronize to the  
P89LPC9301/931A1. This output is enabled by the ENCLK bit in the TRIM register.  
The frequency of this clock output is 12 that of the CCLK. If the clock output is not needed  
in Idle mode, it may be turned off prior to entering Idle, saving additional power.  
7.6 On-chip RC oscillator option  
The P89LPC9301/931A1 has a 6-bit TRIM register that can be used to tune the frequency  
of the RC oscillator. During reset, the TRIM value is initialized to a factory preprogrammed  
value to adjust the oscillator frequency to 7.373 MHz ± 1 % at room temperature.  
End-user applications can write to the TRIM register to adjust the on-chip RC oscillator to  
other frequencies. When the clock doubler option is enabled (UCFG2.7 = 1), the output  
frequency is 14.746 MHz. If CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can  
be set to logic 1 to reduce power consumption. On reset, CLKLP is logic 0 allowing  
highest performance access. This bit can then be set in software if CCLK is running at  
8 MHz or slower. When clock doubler option is enabled, BOE1 bit (UCFG1.5) and BOE0  
bit (UCFG1.3) are required to hold the device in reset at power-up until VDD has reached  
its specified level.  
7.7 Watchdog oscillator option  
The watchdog has a separate oscillator which has a frequency of 400 kHz, calibrated to  
± 5 % at room temperature. This oscillator can be used to save power when a high clock  
frequency is not needed.  
7.8 External clock input option  
In this configuration, the processor clock is derived from an external source driving the  
P3.1/XTAL1 pin. The rate may be from 0 Hz up to 18 MHz. The P3.0/XTAL2/CLKOUT pin  
may be used as a standard port pin or a clock output. When using an oscillator frequency  
above 12 MHz, BOE1 bit (UCFG1.5) and BOE0 bit (UCFG1.3) are required to hold the  
device in reset at power-up until VDD has reached its specified level.  
7.9 Clock sources switch on the fly  
P89LPC9301/931A1 can implement clock source switch in any sources of watchdog  
oscillator, 7 MHz/14 MHz internal RC oscillator, external clock source (external crystal or  
external clock input) during code is running. CLKOK bit in CLKCON register is used to  
indicate the clock switch status. CLKOK is cleared when starting clock source switch and  
set when completed. Notice that when CLKOK is ‘0’, writing to CLKCON register is not  
allowed.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
19 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
HIGH FREQUENCY  
MEDIUM FREQUENCY  
LOW FREQUENCY  
XTAL1  
XTAL2  
RTC  
OSCCLK  
CCLK  
DIVM  
CPU  
WDT  
RC OSCILLATOR  
RCCLK  
WITH CLOCK DOUBLER  
÷2  
PCLK  
PCLK  
(7.3728 MHz/14.7456 MHz ± 1 %)  
WATCHDOG  
OSCILLATOR  
(400 kHz ± 5 %)  
TIMER 0 AND  
TIMER 1  
2
I C-BUS  
SPI  
UART  
002aae452  
Fig 4. Block diagram of oscillator control  
7.10 CCLK wake-up delay  
The P89LPC9301/931A1 has an internal wake-up timer that delays the clock until it  
stabilizes depending on the clock source used. If the clock source is any of the three  
crystal selections (low, medium and high frequencies) the delay is 1024 OSCCLK cycles  
plus 60 µs to 100 µs. If the clock source is the internal RC oscillator, the delay is 200 µs to  
300 µs. If the clock source is watchdog oscillator or external clock, the delay is  
32 OSCCLK cycles.  
7.11 CCLK modification: DIVM register  
The OSCCLK frequency can be divided down up to 510 times by configuring a dividing  
register, DIVM, to generate CCLK. This feature makes it possible to temporarily run the  
CPU at a lower rate, reducing power consumption. By dividing the clock, the CPU can  
retain the ability to respond to events that would not exit Idle mode by executing its normal  
program at a lower rate. This can also allow bypassing the oscillator start-up time in cases  
where Power-down mode would otherwise be used. The value of DIVM may be changed  
by the program at any time without interrupting code execution.  
7.12 Low power select  
The P89LPC9301/931A1 is designed to run at 18 MHz (CCLK) maximum. However, if  
CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to logic 1 to lower the  
power consumption further. On any reset, CLKLP is logic 0 allowing highest performance  
access. This bit can then be set in software if CCLK is running at 8 MHz or slower.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
20 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7.13 Memory organization  
The various P89LPC9301/931A1 memory spaces are as follows:  
DATA  
128 bytes of internal data memory space (00H:7FH) accessed via direct or indirect  
addressing, using instructions other than MOVX and MOVC. All or part of the Stack  
may be in this area.  
IDATA  
Indirect Data. 256 bytes of internal data memory space (00H:FFH) accessed via  
indirect addressing using instructions other than MOVX and MOVC. All or part of the  
Stack may be in this area. This area includes the DATA area and the 128 bytes  
immediately above it.  
SFR  
Special Function Registers. Selected CPU registers and peripheral control and status  
registers, accessible only via direct addressing.  
CODE  
64 kB of Code memory space, accessed as part of program execution and via the  
MOVC instruction. The P89LPC9301/931A1 has 4 kB/8 kB of on-chip Code memory.  
7.14 Data RAM arrangement  
The 256 bytes of on-chip RAM are organized as shown in Table 6.  
Table 6.  
Type  
On-chip data memory usages  
Data RAM  
Size (bytes)  
128  
DATA  
Memory that can be addressed directly and indirectly  
Memory that can be addressed indirectly  
IDATA  
256  
7.15 Interrupts  
The P89LPC9301/931A1 uses a four priority level interrupt structure. This allows great  
flexibility in controlling the handling of the many interrupt sources. The  
P89LPC9301/931A1 supports 13 interrupt sources: external interrupts 0 and 1, timers 0  
and 1, serial port TX, serial port RX, combined serial port RX/TX, brownout detect,  
watchdog/RTC, I2C-bus, keyboard, comparators 1 and 2, SPI.  
Each interrupt source can be individually enabled or disabled by setting or clearing a bit in  
the interrupt enable registers IEN0 or IEN1. The IEN0 register also contains a global  
disable bit, EA, which disables all interrupts.  
Each interrupt source can be individually programmed to one of four priority levels by  
setting or clearing bits in the interrupt priority registers IP0, IP0H, IP1 and IP1H. An  
interrupt service routine in progress can be interrupted by a higher priority interrupt, but  
not by another interrupt of the same or lower priority. The highest priority interrupt service  
cannot be interrupted by any other interrupt source. If two requests of different priority  
levels are pending at the start of an instruction, the request of higher priority level is  
serviced.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
21 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
If requests of the same priority level are pending at the start of an instruction, an internal  
polling sequence determines which request is serviced. This is called the arbitration  
ranking. Note that the arbitration ranking is only used to resolve pending requests of the  
same priority level.  
7.15.1 External interrupt inputs  
The P89LPC9301/931A1 has two external interrupt inputs as well as the Keypad Interrupt  
function. The two interrupt inputs are identical to those present on the standard 80C51  
microcontrollers.  
These external interrupts can be programmed to be level-triggered or edge-triggered by  
setting or clearing bit IT1 or IT0 in Register TCON.  
In edge-triggered mode, if successive samples of the INTn pin show a HIGH in one cycle  
and a LOW in the next cycle, the interrupt request flag IEn in TCON is set, causing an  
interrupt request.  
If an external interrupt is enabled when the P89LPC9301/931A1 is put into Power-down or  
Idle mode, the interrupt will cause the processor to wake-up and resume operation. Refer  
to Section 7.18 “Power reduction modes” for details.  
IE0  
EX0  
IE1  
EX1  
BOIF  
EBO  
wake-up  
(if in power-down)  
RTCF  
KBIF  
EKBI  
ERTC  
(RTCCON.1)  
WDOVF  
EWDRT  
CMF2  
CMF1  
EC  
EA (IE0.7)  
TF0  
ET0  
TF1  
ET1  
TI and RI/RI  
ES/ESR  
interrupt  
to CPU  
TI  
EST  
SI  
EI2C  
SPIF  
ESPI  
002aae453  
Fig 5. Interrupt sources, interrupt enables, and power-down wake-up sources  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
22 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7.16 I/O ports  
The P89LPC9301/931A1 has four I/O ports: Port 0, Port 1, Port 2 and Port 3. Ports 0, 1,  
and 2 are 8-bit ports, and Port 3 is a 2-bit port. The exact number of I/O pins available  
depends upon the clock and reset options chosen, as shown in Table 7.  
Table 7.  
Number of I/O pins available  
Clock source  
Reset option  
Number of I/O  
pins (28-pin  
package)  
On-chip oscillator or watchdog  
oscillator  
No external reset (except during  
power-up)  
26  
External RST pin supported  
25  
25  
External clock input  
No external reset (except during  
power-up)  
External RST pin supported  
24  
24  
Low/medium/high speed  
oscillator (external crystal or  
resonator)  
No external reset (except during  
power-up)  
External RST pin supported  
23  
7.16.1 Port configurations  
All but three I/O port pins on the P89LPC9301/931A1 may be configured by software to  
one of four types on a bit-by-bit basis. These are: quasi-bidirectional (standard 80C51 port  
outputs), push-pull, open drain, and input-only. Two configuration registers for each port  
select the output type for each port pin.  
1. P1.5 (RST) can only be an input and cannot be configured.  
2. P1.2 (SCL/T0) and P1.3 (SDA/INT0) may only be configured to be either input-only or  
open-drain.  
7.16.1.1 Quasi-bidirectional output configuration  
Quasi-bidirectional output type can be used as both an input and output without the need  
to reconfigure the port. This is possible because when the port outputs a logic HIGH, it is  
weakly driven, allowing an external device to pull the pin LOW. When the pin is driven  
LOW, it is driven strongly and able to sink a fairly large current. These features are  
somewhat similar to an open-drain output except that there are three pull-up transistors in  
the quasi-bidirectional output that serve different purposes.  
The P89LPC9301/931A1 is a 3 V device, but the pins are 5 V-tolerant. In  
quasi-bidirectional mode, if a user applies 5 V on the pin, there will be a current flowing  
from the pin to VDD, causing extra power consumption. Therefore, applying 5 V in  
quasi-bidirectional mode is discouraged.  
A quasi-bidirectional port pin has a Schmitt trigger input that also has a glitch suppression  
circuit.  
7.16.1.2 Open-drain output configuration  
The open-drain output configuration turns off all pull-ups and only drives the pull-down  
transistor of the port driver when the port latch contains a logic 0. To be used as a logic  
output, a port configured in this manner must have an external pull-up, typically a resistor  
tied to VDD  
.
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
23 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
An open-drain port pin has a Schmitt trigger input that also has a glitch suppression  
circuit.  
7.16.1.3 Input-only configuration  
The input-only port configuration has no output drivers. It is a Schmitt trigger input that  
also has a glitch suppression circuit.  
7.16.1.4 Push-pull output configuration  
The push-pull output configuration has the same pull-down structure as both the  
open-drain and the quasi-bidirectional output modes, but provides a continuous strong  
pull-up when the port latch contains a logic 1. The push-pull mode may be used when  
more source current is needed from a port output. A push-pull port pin has a  
Schmitt triggered input that also has a glitch suppression circuit. The P89LPC9301/931A1  
device has high current source on eight pins in push-pull mode. See Table 9 “Limiting  
values”.  
7.16.2 Port 0 analog functions  
The P89LPC9301/931A1 incorporates two Analog Comparators. In order to give the best  
analog function performance and to minimize power consumption, pins that are being  
used for analog functions must have the digital outputs and digital inputs disabled.  
Digital outputs are disabled by putting the port output into the Input-Only  
(high-impedance) mode.  
Digital inputs on Port 0 may be disabled through the use of the PT0AD register, bits 1:5.  
On any reset, PT0AD[1:5] defaults to logic 0s to enable digital functions.  
7.16.3 Additional port features  
After power-up, all pins are in Input-Only mode. Please note that this is different from  
the LPC76x series of devices.  
After power-up, all I/O pins except P1.5, may be configured by software.  
Pin P1.5 is input only. Pins P1.2 and P1.3 are configurable for either input-only or  
open-drain.  
Every output on the P89LPC9301/931A1 has been designed to sink typical LED drive  
current. However, there is a maximum total output current for all ports which must not be  
exceeded. Please refer to Table 10 “Static characteristics” for detailed specifications.  
All ports pins that can function as an output have slew rate controlled outputs to limit noise  
generated by quickly switching output signals. The slew rate is factory-set to  
approximately 10 ns rise and fall times.  
7.17 Power monitoring functions  
The P89LPC9301/931A1 incorporates power monitoring functions designed to prevent  
incorrect operation during initial power-up and power loss or reduction during operation.  
This is accomplished with two hardware functions: Power-on detect and brownout detect.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
24 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7.17.1 Brownout detection  
The brownout detect function determines if the power supply voltage drops below a  
certain level. Enhanced brownout detection has 3 independent functions: BOD reset,  
BOD interrupt and BOD FLASH.  
BOD reset is always on except in total Power-down mode. It could not be disabled in  
software. BOD interrupt may be enabled or disabled in software. BOD FLASH is always  
on, except in Power-down modes and could not be disabled in software.  
BOD reset and BOD interrupt, each has four trip voltage levels. BOE1 bit (UCFG1.5) and  
BOE0 bit (UCFG1.3) are used as trip point configuration bits of BOD reset. BOICFG1 bit  
and BOICFG0 bit in register BODCFG are used as trip point configuration bits of BOD  
interrupt. BOD reset voltage should be lower than BOD interrupt trip point. BOD FLASH is  
used for flash programming/erase protection and has only 1 trip voltage of 2.4 V. Please  
refer to P89LPC9301/931A1 User manual for detail configurations.  
If brownout detection is enabled the brownout condition occurs when VDD falls below the  
brownout trip voltage and is negated when VDD rises above the brownout trip voltage.  
For correct activation of brownout detect, the VDD rise and fall times must be observed.  
Please see Table 10 “Static characteristics” for specifications.  
7.17.2 Power-on detection  
The Power-on detect has a function similar to the brownout detect, but is designed to work  
as power comes up initially, before the power supply voltage reaches a level where  
brownout detect can work. The POF flag in the RSTSRC register is set to indicate an  
initial power-up condition. The POF flag will remain set until cleared by software.  
7.18 Power reduction modes  
The P89LPC9301/931A1 supports three different power reduction modes. These modes  
are Idle mode, Power-down mode, and total Power-down mode.  
7.18.1 Idle mode  
Idle mode leaves peripherals running in order to allow them to activate the processor  
when an interrupt is generated. Any enabled interrupt source or reset may terminate Idle  
mode.  
7.18.2 Power-down mode  
The Power-down mode stops the oscillator in order to minimize power consumption. The  
P89LPC9301/931A1 exits Power-down mode via any reset, or certain interrupts. In  
Power-down mode, the power supply voltage may be reduced to the data retention supply  
voltage VDDR. This retains the RAM contents at the point where Power-down mode was  
entered. SFR contents are not guaranteed after VDD has been lowered to VDDR, therefore  
it is highly recommended to wake-up the processor via reset in this case. VDD must be  
raised to within the operating range before the Power-down mode is exited.  
Some chip functions continue to operate and draw power during Power-down mode,  
increasing the total power used during power-down. These include: Brownout detect,  
watchdog timer, comparators (note that comparators can be powered down separately),  
and RTC/system timer. The internal RC oscillator is disabled unless both the RC oscillator  
has been selected as the system clock and the RTC is enabled.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
25 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7.18.3 Total Power-down mode  
This is the same as Power-down mode except that the brownout detection circuitry and  
the voltage comparators are also disabled to conserve additional power. The internal RC  
oscillator is disabled unless both the RC oscillator has been selected as the system clock  
and the RTC is enabled. If the internal RC oscillator is used to clock the RTC during  
power-down, there will be high power consumption. Please use an external low frequency  
clock to achieve low power with the RTC running during power-down.  
7.19 Reset  
The P1.5/RST pin can function as either a LOW-active reset input or as a digital input,  
P1.5. The Reset Pin Enable (RPE) bit in UCFG1, when set to logic 1, enables the external  
reset input function on P1.5. When cleared, P1.5 may be used as an input pin.  
Remark: During a power-up sequence, the RPE selection is overridden and this pin  
always functions as a reset input. An external circuit connected to this pin should not  
hold this pin LOW during a power-on sequence as this will keep the device in reset.  
After power-up this pin will function as defined by the RPE bit. Only a power-up reset will  
temporarily override the selection defined by RPE bit. Other sources of reset will not  
override the RPE bit.  
Note: During a power cycle, VDD must fall below VPOR before power is reapplied, in order  
to ensure a power-on reset (see Table 10 “Static characteristics”).  
Reset can be triggered from the following sources:  
External reset pin (during power-up or if user configured via UCFG1)  
Power-on detect  
Brownout detect  
Watchdog timer  
Software reset  
UART break character detect reset  
For every reset source, there is a flag in the Reset Register, RSTSRC. The user can read  
this register to determine the most recent reset source. These flag bits can be cleared in  
software by writing a logic 0 to the corresponding bit. More than one flag bit may be set:  
During a power-on reset, both POF and BOF are set but the other flag bits are  
cleared.  
A Watchdog reset is similar to a power-on reset, both POF and BOF are set but the  
other flag bits are cleared.  
For any other reset, previously set flag bits that have not been cleared will remain set.  
7.19.1 Reset vector  
Following reset, the P89LPC9301/931A1 will fetch instructions from either address 0000H  
or the Boot address. The Boot address is formed by using the boot vector as the high byte  
of the address and the low byte of the address = 00H.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
26 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
The boot address will be used if a UART break reset occurs, or the non-volatile boot  
status bit (BOOTSTAT.0) = 1, or the device is forced into ISP mode during power-on (see  
P89LPC9301/931A1 User manual). Otherwise, instructions will be fetched from address  
0000H.  
7.20 Timers/counters 0 and 1  
The P89LPC9301/931A1 has two general purpose counter/timers which are upward  
compatible with the standard 80C51 Timer 0 and Timer 1. Both can be configured to  
operate either as timers or event counters. An option to automatically toggle the T0 and/or  
T1 pins upon timer overflow has been added.  
In the ‘Timer’ function, the register is incremented every machine cycle.  
In the ‘Counter’ function, the register is incremented in response to a 1-to-0 transition at its  
corresponding external input pin, T0 or T1. In this function, the external input is sampled  
once during every machine cycle.  
Timer 0 and Timer 1 have five operating modes (Modes 0, 1, 2, 3 and 6). Modes 0, 1, 2  
and 6 are the same for both Timers/Counters. Mode 3 is different.  
7.20.1 Mode 0  
Putting either Timer into Mode 0 makes it look like an 8048 Timer, which is an 8-bit  
Counter with a divide-by-32 prescaler. In this mode, the Timer register is configured as a  
13-bit register. Mode 0 operation is the same for Timer 0 and Timer 1.  
7.20.2 Mode 1  
Mode 1 is the same as Mode 0, except that all 16 bits of the timer register are used.  
7.20.3 Mode 2  
Mode 2 configures the Timer register as an 8-bit Counter with automatic reload. Mode 2  
operation is the same for Timer 0 and Timer 1.  
7.20.4 Mode 3  
When Timer 1 is in Mode 3 it is stopped. Timer 0 in Mode 3 forms two separate 8-bit  
counters and is provided for applications that require an extra 8-bit timer. When Timer 1 is  
in Mode 3 it can still be used by the serial port as a baud rate generator.  
7.20.5 Mode 6  
In this mode, the corresponding timer can be changed to a PWM with a full period of  
256 timer clocks.  
7.20.6 Timer overflow toggle output  
Timers 0 and 1 can be configured to automatically toggle a port output whenever a timer  
overflow occurs. The same device pins that are used for the T0 and T1 count inputs are  
also used for the timer toggle outputs. The port outputs will be a logic 1 prior to the first  
timer overflow when this mode is turned on.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
27 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7.21 RTC/system timer  
The P89LPC9301/931A1 has a simple RTC that allows a user to continue running an  
accurate timer while the rest of the device is powered down. The RTC can be a wake-up  
or an interrupt source. The RTC is a 23-bit down counter comprised of a 7-bit prescaler  
and a 16-bit loadable down counter. When it reaches all logic 0s, the counter will be  
reloaded again and the RTCF flag will be set. The clock source for this counter can be  
either the CPU clock (CCLK) or the XTAL oscillator. Only power-on reset and watchdog  
reset will reset the RTC and its associated SFRs to the default state.  
The 16-bit loadable counter portion of the RTC is readable by reading the RTCDATL and  
RTCDATH registers.  
7.22 UART  
The P89LPC9301/931A1 has an enhanced UART that is compatible with the conventional  
80C51 UART except that Timer 2 overflow cannot be used as a baud rate source. The  
P89LPC9301/931A1 does include an independent baud rate generator. The baud rate  
can be selected from the oscillator (divided by a constant), Timer 1 overflow, or the  
independent baud rate generator. In addition to the baud rate generation, enhancements  
over the standard 80C51 UART include Framing Error detection, automatic address  
recognition, selectable double buffering and several interrupt options. The UART can be  
operated in four modes: shift register, 8-bit UART, 9-bit UART, and CPU clock/32 or CPU  
clock/16.  
7.22.1 Mode 0  
Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are  
transmitted or received, LSB first. The baud rate is fixed at 116 of the CPU clock  
frequency.  
7.22.2 Mode 1  
10 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0),  
8 data bits (LSB first), and a stop bit (logic 1). When data is received, the stop bit is stored  
in RB8 in special function register SCON. The baud rate is variable and is determined by  
the Timer 1 overflow rate or the baud rate generator (described in Section 7.22.5 “Baud  
rate generator and selection”).  
7.22.3 Mode 2  
11 bits are transmitted (through TXD) or received (through RXD): start bit (logic 0), 8 data  
bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). When data is  
transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of logic 0 or logic 1.  
Or, for example, the parity bit (P, in the PSW) could be moved into TB8. When data is  
received, the 9th data bit goes into RB8 in special function register SCON, while the stop  
bit is not saved. The baud rate is programmable to either 116 or 132 of the CPU clock  
frequency, as determined by the SMOD1 bit in PCON.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
28 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
7.22.4 Mode 3  
8-bit microcontroller with accelerated two-clock 80C51 core  
11 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0), 8  
data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). In fact, Mode 3 is  
the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable  
and is determined by the Timer 1 overflow rate or the baud rate generator (described in  
Section 7.22.5 “Baud rate generator and selection”).  
7.22.5 Baud rate generator and selection  
The P89LPC9301/931A1 enhanced UART has an independent baud rate generator. The  
baud rate is determined by a baud-rate preprogrammed into the BRGR1 and BRGR0  
SFRs which together form a 16-bit baud rate divisor value that works in a similar manner  
as Timer 1 but is much more accurate. If the baud rate generator is used, Timer 1 can be  
used for other timing functions.  
The UART can use either Timer 1 or the baud rate generator output (see Figure 6). Note  
that Timer T1 is further divided by 2 if the SMOD1 bit (PCON.7) is cleared. The  
independent baud rate generators use OSCCLK.  
timer 1 overflow  
SMOD1 = 1  
(PCLK-based)  
SBRGS = 0  
SBRGS = 1  
÷2  
baud rate modes 1 and 3  
002aaa897  
SMOD1 = 0  
baud rate generator  
(CCLK-based)  
Fig 6. Baud rate sources for UART (Modes 1, 3)  
7.22.6 Framing error  
Framing error is reported in the status register (SSTAT). In addition, if SMOD0 (PCON.6)  
is logic 1, framing errors can be made available in SCON.7 respectively. If SMOD0 is  
logic 0, SCON.7 is SM0. It is recommended that SM0 and SM1 (SCON.7:6) are set up  
when SMOD0 is logic 0.  
7.22.7 Break detect  
Break detect is reported in the status register (SSTAT). A break is detected when  
11 consecutive bits are sensed LOW. The break detect can be used to reset the device  
and force the device into ISP mode.  
7.22.8 Double buffering  
The UART has a transmit double buffer that allows buffering of the next character to be  
written to SnBUF while the first character is being transmitted. Double buffering allows  
transmission of a string of characters with only one stop bit between any two characters,  
as long as the next character is written between the start bit and the stop bit of the  
previous character.  
Double buffering can be disabled. If disabled (DBMOD, i.e., SSTAT.7 = 0), the UART is  
compatible with the conventional 80C51 UART. If enabled, the UART allows writing to  
SBUF while the previous data is being shifted out. Double buffering is only allowed in  
Modes 1, 2 and 3. When operated in Mode 0, double buffering must be disabled  
(DBMOD = 0).  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
29 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7.22.9 Transmit interrupts with double buffering enabled (modes 1, 2 and 3)  
Unlike the conventional UART, in double buffering mode, the TI interrupt is generated  
when the double buffer is ready to receive new data.  
7.22.10 The 9th bit (bit 8) in double buffering (modes 1, 2 and 3)  
If double buffering is disabled TB8 can be written before or after SBUF is written, as long  
as TB8 is updated some time before that bit is shifted out. TB8 must not be changed until  
the bit is shifted out, as indicated by the TI interrupt.  
If double buffering is enabled, TB8 must be updated before SBUF is written, as TB8 will  
be double-buffered together with SBUF data.  
7.23 I2C-bus serial interface  
The I2C-bus uses two wires (SDA and SCL) to transfer information between devices  
connected to the bus, and it has the following features:  
Bidirectional data transfer between masters and slaves  
Multi master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
The I2C-bus may be used for test and diagnostic purposes.  
A typical I2C-bus configuration is shown in Figure 7. The P89LPC9301/931A1 device  
provides a byte-oriented I2C-bus interface that supports data transfers up to 400 kHz.  
R
P
R
P
SDA  
SCL  
2
I C-bus  
OTHER DEVICE  
WITH I C-BUS  
INTERFACE  
OTHER DEVICE  
WITH I C-BUS  
INTERFACE  
P1.3/SDA  
P1.2/SCL  
2
2
P89LPC9301/931A1  
002aae455  
Fig 7. I2C-bus configuration  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
30 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
8
I2ADR  
ADDRESS REGISTER  
COMPARATOR  
P1.3  
INPUT  
FILTER  
P1.3/SDA  
SHIFT REGISTER  
8
ACK  
I2DAT  
OUTPUT  
STAGE  
BIT COUNTER /  
ARBITRATION  
AND SYNC LOGIC  
CCLK  
INPUT  
FILTER  
TIMING  
AND  
CONTROL  
LOGIC  
P1.2/SCL  
SERIAL CLOCK  
GENERATOR  
OUTPUT  
STAGE  
interrupt  
timer 1  
overflow  
P1.2  
I2CON  
I2SCLH  
I2SCLL  
CONTROL REGISTERS AND  
SCL DUTY CYCLE REGISTERS  
8
STATUS  
DECODER  
status bus  
I2STAT  
STATUS REGISTER  
8
002aaa899  
Fig 8. I2C-bus serial interface block diagram  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
31 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
7.24 SPI  
8-bit microcontroller with accelerated two-clock 80C51 core  
The P89LPC9301/931A1 provides another high-speed serial communication interface:  
the SPI interface. SPI is a full-duplex, high-speed, synchronous communication bus with  
two operation modes: Master mode and Slave mode. Up to 3 Mbit/s can be supported in  
either Master mode or Slave mode. It has a Transfer Completion Flag and Write Collision  
Flag Protection.  
S
M
MISO  
P2.3  
M
S
CPU clock  
8-BIT SHIFT REGISTER  
READ DATA BUFFER  
MOSI  
P2.2  
PIN  
CONTROL  
LOGIC  
DIVIDER  
BY 4, 16, 64, 128  
SPICLK  
P2.5  
clock  
SPI clock (master)  
S
M
SELECT  
SS  
P2.4  
CLOCK LOGIC  
MSTR  
SPEN  
SPI CONTROL  
SPI CONTROL REGISTER  
SPI STATUS REGISTER  
SPI  
interrupt  
request  
internal  
data  
bus  
002aaa900  
Fig 9. SPI block diagram  
The SPI interface has four pins: SPICLK, MOSI, MISO and SS:  
SPICLK, MOSI and MISO are typically tied together between two or more SPI  
devices. Data flows from master to slave on MOSI (Master Out Slave In) pin and flows  
from slave to master on MISO (Master In Slave Out) pin. The SPICLK signal is output  
in the Master mode and is input in the Slave mode. If the SPI system is disabled, i.e.,  
SPEN (SPCTL.6) = 0 (reset value), these pins are configured for port functions.  
SS is the optional slave select pin. In a typical configuration, an SPI master asserts  
one of its port pins to select one SPI device as the current slave. An SPI slave device  
uses its SS pin to determine whether it is selected.  
Typical connections are shown in Figure 10 through Figure 12.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
32 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7.24.1 Typical SPI configurations  
master  
slave  
MISO  
MOSI  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
SPICLK  
PORT  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
002aaa901  
Fig 10. SPI single master single slave configuration  
master  
slave  
MISO  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
MOSI  
SPICLK  
SS  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
SPI CLOCK  
GENERATOR  
002aaa902  
Fig 11. SPI dual device configuration, where either can be a master or a slave  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
33 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
master  
slave  
MISO  
MOSI  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
SPICLK  
port  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
slave  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
SPICLK  
SS  
port  
002aaa903  
Fig 12. SPI single master multiple slaves configuration  
7.25 Analog comparators  
Two analog comparators are provided on the P89LPC9301/931A1. Input and output  
options allow use of the comparators in a number of different configurations. Comparator  
operation is such that the output is a logical one (which may be read in a register and/or  
routed to a pin) when the positive input (one of two selectable inputs) is greater than the  
negative input (selectable from a pin or an internal reference voltage). Otherwise the  
output is a zero. Each comparator may be configured to cause an interrupt when the  
output value changes.  
The overall connections to both comparators are shown in Figure 13. The comparators  
function to VDD = 2.4 V.  
When each comparator is first enabled, the comparator output and interrupt flag are not  
guaranteed to be stable for 10 µs. The corresponding comparator interrupt should not be  
enabled during that time, and the comparator interrupt flag must be cleared before the  
interrupt is enabled in order to prevent an immediate interrupt service.  
When a comparator is disabled the comparator’s output, COn, goes HIGH. If the  
comparator output was LOW and then is disabled, the resulting transition of the  
comparator output from a LOW to HIGH state will set the comparator flag, CMFn. This will  
cause an interrupt if the comparator interrupt is enabled. The user should therefore  
disable the comparator interrupt prior to disabling the comparator. Additionally, the user  
should clear the comparator flag, CMFn, after disabling the comparator.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
34 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
CP1  
OE1  
comparator 1  
CO1  
(P0.4) CIN1A  
(P0.3) CIN1B  
CMP1 (P0.6)  
(P0.5) CMPREF  
change detect  
V
ref(bg)  
CMF1  
CMF2  
CN1  
CP2  
interrupt  
change detect  
EC  
comparator 2  
(P0.2) CIN2A  
(P0.1) CIN2B  
CMP2 (P0.0)  
CO2  
OE2  
002aae456  
CN2  
Fig 13. Comparator input and output connections  
7.25.1 Internal reference voltage  
An internal reference voltage generator may supply a default reference when a single  
comparator input pin is used. The value of the internal reference voltage, referred to as  
Vref(bg), is 1.23 V ± 10 %.  
7.25.2 Comparator interrupt  
Each comparator has an interrupt flag contained in its configuration register. This flag is  
set whenever the comparator output changes state. The flag may be polled by software or  
may be used to generate an interrupt. The two comparators use one common interrupt  
vector. If both comparators enable interrupts, after entering the interrupt service routine,  
the user needs to read the flags to determine which comparator caused the interrupt.  
7.25.3 Comparators and power reduction modes  
Either or both comparators may remain enabled when Power-down or Idle mode is  
activated, but both comparators are disabled automatically in Total Power-down mode.  
If a comparator interrupt is enabled (except in Total Power-down mode), a change of the  
comparator output state will generate an interrupt and wake-up the processor. If the  
comparator output to a pin is enabled, the pin should be configured in the push-pull mode  
in order to obtain fast switching times while in Power-down mode. The reason is that with  
the oscillator stopped, the temporary strong pull-up that normally occurs during switching  
on a quasi-bidirectional port pin does not take place.  
Comparators consume power in Power-down and Idle modes, as well as in the normal  
operating mode. This fact should be taken into account when system power consumption  
is an issue. To minimize power consumption, the user can disable the comparators via  
PCONA.5, or put the device in Total Power-down mode.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
35 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
7.26 KBI  
8-bit microcontroller with accelerated two-clock 80C51 core  
The Keypad Interrupt function (KBI) is intended primarily to allow a single interrupt to be  
generated when Port 0 is equal to or not equal to a certain pattern. This function can be  
used for bus address recognition or keypad recognition. The user can configure the port  
via SFRs for different tasks.  
The Keypad Interrupt Mask Register (KBMASK) is used to define which input pins  
connected to Port 0 can trigger the interrupt. The Keypad Pattern Register (KBPATN) is  
used to define a pattern that is compared to the value of Port 0. The Keypad Interrupt Flag  
(KBIF) in the Keypad Interrupt Control Register (KBCON) is set when the condition is  
matched while the Keypad Interrupt function is active. An interrupt will be generated if  
enabled. The PATN_SEL bit in the Keypad Interrupt Control Register (KBCON) is used to  
define equal or not-equal for the comparison.  
In order to use the Keypad Interrupt as an original KBI function like in P87LPC76x series,  
the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then any key  
connected to Port 0 which is enabled by the KBMASK register will cause the hardware to  
set KBIF and generate an interrupt if it has been enabled. The interrupt may be used to  
wake-up the CPU from Idle or Power-down modes. This feature is particularly useful in  
handheld, battery-powered systems that need to carefully manage power consumption  
yet also need to be convenient to use.  
In order to set the flag and cause an interrupt, the pattern on Port 0 must be held longer  
than six CCLKs.  
7.27 Watchdog timer  
The watchdog timer causes a system reset when it underflows as a result of a failure to  
feed the timer prior to the timer reaching its terminal count. It consists of a programmable  
12-bit prescaler, and an 8-bit down counter. The down counter is decremented by a tap  
taken from the prescaler. The clock source for the prescaler can be the PCLK, the nominal  
400 kHz watchdog oscillator or crystal oscillator. The watchdog timer can only be reset by  
a power-on reset. When the watchdog feature is disabled, it can be used as an interval  
timer and may generate an interrupt. Figure 14 shows the watchdog timer in Watchdog  
mode. Feeding the watchdog requires a two-byte sequence. If PCLK is selected as the  
watchdog clock and the CPU is powered down, the watchdog is disabled. The watchdog  
timer has a time-out period that ranges from a few µs to a few seconds. Please refer to the  
P89LPC9301/931A1 User manual for more details.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
36 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
WDL (C1H)  
MOV WFEED1, #0A5H  
MOV WFEED2, #05AH  
PCLK  
0
1
0
8-BIT DOWN  
COUNTER  
watchdog  
oscillator  
(1)  
PRESCALER  
reset  
÷32  
crystal  
1
oscillator  
XTALWD  
SHADOW REGISTER  
PRE2  
PRE1  
PRE0  
-
-
WDRUN WDTOF WDCLK  
WDCON (A7H)  
002aae015  
(1) Watchdog reset can also be caused by an invalid feed sequence, or by writing to WDCON not immediately followed by a feed  
sequence.  
Fig 14. Watchdog timer in Watchdog mode (WDTE = 1)  
7.28 Additional features  
7.28.1 Software reset  
The SRST bit in AUXR1 gives software the opportunity to reset the processor completely,  
as if an external reset or watchdog reset had occurred. Care should be taken when writing  
to AUXR1 to avoid accidental software resets.  
7.28.2 Dual data pointers  
The dual Data Pointers (DPTR) provides two different Data Pointers to specify the address  
used with certain instructions. The DPS bit in the AUXR1 register selects one of the two  
Data Pointers. Bit 2 of AUXR1 is permanently wired as a logic 0 so that the DPS bit may  
be toggled (thereby switching Data Pointers) simply by incrementing the AUXR1 register,  
without the possibility of inadvertently altering other bits in the register.  
7.29 Flash program memory  
7.29.1 General description  
The P89LPC9301/931A1 flash memory provides in-circuit electrical erasure and  
programming. The flash can be erased, read, and written as bytes. The Sector and Page  
Erase functions can erase any flash sector (1 kB) or page (64 bytes). The Chip Erase  
operation will erase the entire program memory. ICP using standard commercial  
programmers is available. In addition, IAP and byte-erase allows code memory to be used  
for non-volatile data storage. On-chip erase and write timing generation contribute to a  
user-friendly programming interface. The P89LPC9301/931A1 flash reliably stores  
memory contents even after 100,000 erase and program cycles. The cell is designed to  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
37 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
optimize the erase and programming mechanisms. The P89LPC9301/931A1 uses VDD as  
the supply voltage to perform the Program/Erase algorithms. When voltage supply is  
lower than 2.4 V, the BOD FLASH is tripped and flash erase/program is blocked.  
7.29.2 Features  
Programming and erase over the full operating voltage range.  
Byte erase allows code memory to be used for data storage.  
Read/Programming/Erase using ISP/IAP/ICP.  
Internal fixed boot ROM, containing low-level IAP routines available to user code.  
Default loader providing ISP via the serial port, located in upper end of user program  
memory.  
Boot vector allows user-provided flash loader code to reside anywhere in the flash  
memory space, providing flexibility to the user.  
Any flash program/erase operation in 2 ms.  
Programming with industry-standard commercial programmers.  
Programmable security for the code in the flash for each sector.  
100,000 typical erase/program cycles for each byte.  
10 year minimum data retention.  
7.29.3 Flash organization  
The program memory consists of four/eight 1 kB sectors on the P89LPC9301/931A1  
devices. Each sector can be further divided into 64-byte pages. In addition to sector  
erase, page erase, and byte erase, a 64-byte page register is included which allows from  
1 byte to 64 bytes of a given page to be programmed at the same time, substantially  
reducing overall programming time.  
7.29.4 Using flash as data storage  
The flash code memory array of this device supports individual byte erasing and  
programming. Any byte in the code memory array may be read using the MOVC  
instruction, provided that the sector containing the byte has not been secured (a MOVC  
instruction is not allowed to read code memory contents of a secured sector). Thus any  
byte in a non-secured sector may be used for non-volatile data storage.  
7.29.5 Flash programming and erasing  
Four different methods of erasing or programming of the flash are available. The flash may  
be programmed or erased in the end-user application (IAP) under control of the  
application’s firmware. Another option is to use the ICP mechanism. This ICP system  
provides for programming through a serial clock/serial data interface. As shipped from the  
factory, the upper 512 bytes of user code space contains a serial ISP routine allowing for  
the device to be programmed in circuit through the serial port. The flash may also be  
programmed or erased using a commercially available EPROM programmer which  
supports this device. This device does not provide for direct verification of code memory  
contents. Instead, this device provides a 32-bit CRC result on either a sector or the entire  
user code space.  
Remark: When voltage supply is lower than 2.4 V, the BOD FLASH is tripped and flash  
erase/program is blocked.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
38 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
7.29.6 ICP  
8-bit microcontroller with accelerated two-clock 80C51 core  
ICP is performed without removing the microcontroller from the system. The ICP facility  
consists of internal hardware resources to facilitate remote programming of the  
P89LPC9301/931A1 through a two-wire serial interface. The NXP ICP facility has made  
in-circuit programming in an embedded application - using commercially available  
programmers - possible with a minimum of additional expense in components and circuit  
board area. The ICP function uses five pins. Only a small connector needs to be available  
to interface your application to a commercial programmer in order to use this feature.  
Additional details may be found in the P89LPC9301/931A1 User manual.  
7.29.7 IAP  
IAP is performed in the application under the control of the microcontroller’s firmware. The  
IAP facility consists of internal hardware resources to facilitate programming and erasing.  
The NXP IAP has made in-application programming in an embedded application possible  
without additional components. Two methods are available to accomplish IAP. A set of  
predefined IAP functions are provided in a Boot ROM and can be called through a  
common interface, PGM_MTP. Several IAP calls are available for use by an application  
program to permit selective erasing and programming of flash sectors, pages, security  
bits, configuration bytes, and device ID. These functions are selected by setting up the  
microcontroller’s registers before making a call to PGM_MTP at FF03H. The Boot ROM  
occupies the program memory space at the top of the address space from FF00H to  
FEFFH, thereby not conflicting with the user program memory space.  
In addition, IAP operations can be accomplished through the use of four SFRs consisting  
of a control/status register, a data register, and two address registers. Additional details  
may be found in the P89LPC9301/931A1 User manual.  
7.29.8 ISP  
ISP is performed without removing the microcontroller from the system. The ISP facility  
consists of a series of internal hardware resources coupled with internal firmware to  
facilitate remote programming of the P89LPC9301/931A1 through the serial port. This  
firmware is provided by NXP and embedded within each P89LPC9301/931A1 device. The  
NXP ISP facility has made in-system programming in an embedded application possible  
with a minimum of additional expense in components and circuit board area. The ISP  
function uses five pins (VDD, VSS, TXD, RXD, and RST). Only a small connector needs to  
be available to interface your application to an external circuit in order to use this feature.  
7.29.9 Power-on reset code execution  
The P89LPC9301/931A1 contains two special flash elements: the Boot Vector and the  
Boot Status bit. Following reset, the P89LPC9301/931A1 examines the contents of the  
Boot Status bit. If the Boot Status bit is set to zero, power-up execution starts at location  
0000H, which is the normal start address of the user’s application code. When the Boot  
Status bit is set to a value other than zero, the contents of the Boot Vector are used as the  
high byte of the execution address and the low byte is set to 00H.  
Table 8 shows the factory default Boot Vector setting for these devices. A factory-provided  
bootloader is pre-programmed into the address space indicated and uses the indicated  
bootloader entry point to perform ISP functions. This code can be erased by the user.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
39 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
Remark: Users who wish to use this loader should take precautions to avoid erasing the  
1 kB sector that contains this bootloader. Instead, the page erase function can be used to  
erase the first eight 64-byte pages located in this sector.  
A custom bootloader can be written with the Boot Vector set to the custom bootloader, if  
desired.  
Table 8.  
Device  
Default boot vector values and ISP entry points  
Default  
Default  
Default bootloader 1 kB sector  
boot vector  
bootloader  
entry point  
code range  
range  
P89LPC9301  
0FH  
1FH  
0F00H  
1F00H  
0E00H to 0FFFH  
1E00H to 1FFFH  
0C00H to 0FFFH  
1C00H to 1FFFH  
P89LPC931A1  
7.29.10 Hardware activation of the bootloader  
The bootloader can also be executed by forcing the device into ISP mode during a  
power-on sequence (see the P89LPC9301/931A1 User manual for specific information).  
This has the same effect as having a non-zero status byte. This allows an application to  
be built that will normally execute user code but can be manually forced into ISP  
operation. If the factory default setting for the boot vector is changed, it will no longer point  
to the factory pre-programmed ISP bootloader code. After programming the flash, the  
status byte should be programmed to zero in order to allow execution of the user’s  
application code beginning at address 0000H.  
7.30 User configuration bytes  
Some user-configurable features of the P89LPC9301/931A1 must be defined at power-up  
and therefore cannot be set by the program after start of execution. These features are  
configured through the use of the flash byte UCFG1 and UCFG2. Please see the  
P89LPC9301/931A1 User manual for additional details.  
7.31 User sector security bytes  
There are four/eight User Sector Security Bytes on the P89LPC9301/931A1. Each byte  
corresponds to one sector. Please see the P89LPC9301/931A1 User manual for  
additional details.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
40 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
8. Limiting values  
Table 9.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Tamb(bias)  
Tstg  
Parameter  
Conditions  
Min  
55  
65  
-
Max  
+125  
+150  
20  
Unit  
°C  
bias ambient temperature  
storage temperature  
°C  
IOH(I/O)  
HIGH-level output current per  
input/output pin  
mA  
IOL(I/O)  
LOW-level output current per  
input/output pin  
-
20  
mA  
II/Otot(max)  
Vn  
maximum total input/output current  
voltage on any other pin  
-
-
100  
3.5  
mA  
V
except VSS, with respect to  
VDD  
Ptot(pack)  
total power dissipation (per package) based on package heat  
transfer, not device power  
-
1.5  
W
consumption  
[2]  
Vesd  
electrostatic discharge voltage  
human body model; all pins  
2000  
500  
+2000  
+500  
V
V
charged device model; all  
pins  
[1] The following applies to Table 9:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
b) Parameters are valid over ambient temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
system frequency  
(MHz)  
18  
12  
2.4  
2.7  
3.0  
(V)  
3.3  
3.6  
V
002aae351  
DD  
Fig 15. Frequency vs. supply voltage  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
41 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
9. Static characteristics  
Table 10. Static characteristics  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol  
IDD(oper)  
Parameter  
Conditions  
Min  
Typ[1]  
10  
Max  
15  
23  
5
Unit  
mA  
mA  
mA  
mA  
µA  
[2]  
[2]  
[3]  
[3]  
[4]  
operating supply current  
VDD = 3.6 V; fosc = 12 MHz  
VDD = 3.6 V; fosc = 18 MHz  
VDD = 3.6 V; fosc = 12 MHz  
VDD = 3.6 V; fosc = 18 MHz  
-
-
-
-
-
14  
IDD(idle)  
Idle mode supply current  
3.25  
5
7
IDD(pd)  
IDD(tpd)  
(dV/dt)r  
VDDR  
Power-down mode supply  
current  
VDD = 3.6 V; voltage  
comparators powered down  
20  
40  
[5]  
total Power-down mode  
supply current  
VDD = 3.6 V  
-
1
5
µA  
V/s  
V
rise rate  
of VDD; to ensure power-on  
reset signal  
5
-
5000  
data retention supply  
voltage  
1.5  
-
-
-
Vth(HL)  
HIGH-LOW threshold  
voltage  
except SCL, SDA  
0.22VDD  
0.4VDD  
V
VIL  
LOW-level input voltage  
SCL, SDA only  
0.5  
-
0.3VDD  
0.7VDD  
V
V
Vth(LH)  
LOW-HIGH threshold  
voltage  
except SCL, SDA  
-
0.6VDD  
VIH  
HIGH-level input voltage  
hysteresis voltage  
SCL, SDA only  
port 1  
0.7VDD  
-
5.5  
-
V
V
V
Vhys  
VOL  
-
-
0.2VDD  
0.6  
[6]  
[6]  
LOW-level output voltage  
IOL = 20 mA; VDD = 2.4 V to  
3.6 V all ports, all modes  
except high-Z  
1.0  
IOL = 3.2 mA; VDD = 2.4 V to  
-
0.2  
0.3  
V
V
V
V
3.6 V all ports, all modes  
except high-Z  
VOH  
HIGH-level output voltage  
IOH = 20 µA;  
V
V
-
DD 0.3  
V
V
DD 0.2  
DD 0.4  
-
-
-
VDD = 2.4 V to 3.6 V;all ports,  
quasi-bidirectional mode  
I
OH = 3.2 mA;  
DD = 2.4 V to 3.6 V;all ports,  
push-pull mode  
DD 0.7  
V
IOH = 10 mA;  
3.2  
VDD = 2.4 V to 3.6 V; all ports,  
push-pull mode  
Vxtal  
Vn  
crystal voltage  
on XTAL1, XTAL2 pins; with  
respect to VSS  
0.5  
0.5  
-
-
+4.0  
+5.5  
V
V
[7]  
voltage on any other pin  
except XTAL1, XTAL2, VDD  
with respect to VSS  
;
[8]  
[9]  
Ciss  
IIL  
input capacitance  
-
-
-
-
-
-
15  
pF  
µA  
µA  
LOW-level input current  
input leakage current  
VI = 0.4 V  
80  
±1  
[10]  
ILI  
VI = VIL, VIH, or Vth(HL)  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
42 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
Table 10. Static characteristics …continued  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol  
ITHL  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
[11]  
HIGH-LOW transition  
current  
all ports; VI = 1.5 V at  
30  
-
450  
µA  
VDD = 3.6 V  
RRST_N(int) internal pull-up resistance  
on pin RST  
pin RST  
10  
-
30  
kΩ  
Vref(bg)  
TCbg  
band gap reference voltage  
1.11  
-
1.23  
10  
1.34  
20  
V
band gap temperature  
coefficient  
ppm/  
°C  
[1] Typical ratings are not guaranteed. The values listed are at room temperature, 3 V.  
[2] The IDD(oper) specification is measured using an external clock with code while(1) {} executed from on-chip flash.  
[3] The IDD(idle) specification is measured using an external clock with no active peripherals, with the following functions disabled: real-time  
clock and watchdog timer.  
[4] The IDD(pd) specification is measured using internal RC oscillator with the following functions disabled: comparators, real-time clock, and  
watchdog timer.  
[5] The IDD(tpd) specification is measured using an external clock with the following functions disabled: comparators, real-time clock,  
brownout detect, and watchdog timer.  
[6] See Section 8 “Limiting values” for steady state (non-transient) limits on IOL or IOH. If IOL/IOH exceeds the test condition, VOL/VOH may  
exceed the related specification.  
[7] This specification can be applied to pins which have A/D input or analog comparator input functions when the pin is not being used for  
those analog functions. When the pin is being used as an analog input pin, the maximum voltage on the pin must be limited to 4.0 V with  
respect to VSS  
.
[8] Pin capacitance is characterized but not tested.  
[9] Measured with port in quasi-bidirectional mode.  
[10] Measured with port in high-impedance mode.  
[11] Port pins source a transition current when used in quasi-bidirectional mode and externally driven from logic 1 to logic 0. This current is  
highest when VI is approximately 2 V.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
43 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
9.1 Current characteristics  
Note: The graphs provided are a statistical summary based on a limited number of  
samples and only for information purposes. The performance characteristics listed are not  
tested or guaranteed.  
002aae363  
16  
18 MHz  
I
DD  
(mA)  
12  
12 MHz  
8
4
0
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Test conditions: normal mode, code while(1) {} executed from on-chip flash; using an external  
clock.  
Fig 16. IDD(oper) vs. frequency at +25 °C  
002aae364  
16  
18 MHz  
I
DD  
(mA)  
12  
12 MHz  
8
4
0
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Test conditions: normal mode, code while(1) {} executed from on-chip flash; using an external  
clock.  
Fig 17. IDD(oper) vs. frequency at 40 °C  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
44 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
002aae365  
18 MHz  
16  
I
DD  
(mA)  
12  
12 MHz  
8
4
0
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Test conditions: normal mode, code while(1) {} executed from on-chip flash; using an external  
clock.  
Fig 18. IDD(oper) vs. frequency at +85 °C  
002aae366  
5.0  
18 MHz  
12 MHz  
I
DD  
(mA)  
4.0  
3.0  
2.0  
1.0  
0.0  
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Test conditions: Idle mode entered executing code from on-chip flash; using an external clock with  
no active peripherals, with the following functions disabled: real-time clock and watchdog timer.  
Fig 19. IDD(idle) vs. frequency at +25 °C  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
45 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
002aae367  
18 MHz  
5.0  
I
DD  
(mA)  
4.0  
12 MHz  
3.0  
2.0  
1.0  
0.0  
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Test conditions: Idle mode entered executing code from on-chip flash; using an external clock with  
no active peripherals, with the following functions disabled: real-time clock and watchdog timer.  
Fig 20. IDD(idle) vs. frequency at 40 °C  
002aae368  
5.0  
18 MHz  
12 MHz  
I
DD  
(mA)  
4.0  
3.0  
2.0  
1.0  
0.0  
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Test conditions: Idle mode entered executing code from on-chip flash; using an external clock with  
no active peripherals, with the following functions disabled: real-time clock and watchdog timer.  
Fig 21. IDD(idle) vs. frequency at +85 °C  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
46 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
002aae369  
(1)  
20.0  
DD  
I
(µA)  
18.0  
16.0  
14.0  
12.0  
10.0  
(2)  
(3)  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Test conditions: Power-down mode, using internal RC oscillator with the following functions  
disabled: comparators, real-time clock, and watchdog timer.  
(1) +85 °C  
(2) +25 °C  
(3) 40 °C  
Fig 22. IDD(pd) vs. VDD  
002aae370  
(1)  
1.2  
I
DD  
(µA)  
0.8  
0.4  
(2)  
(3)  
0.0  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Test conditions: Total Power-down mode, using internal RC oscillator with the following functions  
disabled: comparators, brownout detect, real-time clock, and watchdog timer.  
(1) +85 °C  
(2) 40 °C  
(3) +25 °C  
Fig 23. IDD(tpd) vs. VDD  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
47 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
9.2 Internal RC/watchdog oscillator characteristics  
Note: The graphs provided are a statistical summary based on a limited number of  
samples and only for information purposes. The performance characteristics listed are not  
tested or guaranteed.  
002aae344  
0.2  
frequency  
deviation  
(%)  
0.1  
0
0.1  
0.2  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Central frequency of internal RC oscillator = 7.3728 MHz  
Fig 24. Average internal RC oscillator frequency vs. VDD at +25 °C  
002aae346  
0.2  
frequency  
deviation  
(%)  
0.1  
0
0.1  
0.2  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Note: Central frequency of internal RC oscillator = 7.3728 MHz  
Fig 25. Average internal RC oscillator frequency vs. VDD at 40 °C  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
48 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
002aae347  
0.2  
frequency  
deviation  
(%)  
0
0.2  
0.4  
0.6  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Central frequency of internal RC oscillator = 7.3728 MHz  
Fig 26. Average internal RC oscillator frequency vs. VDD at +85 °C  
002aae348  
2.5  
frequency  
deviation  
(%)  
1.5  
0.5  
0.5  
1.5  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Central frequency of watchdog oscillator = 400 kHz  
Fig 27. Average watchdog oscillator frequency vs. VDD at +25 °C  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
49 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
002aae349  
0.5  
frequency  
deviation  
(%)  
0.5  
1.5  
2.5  
3.5  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Central frequency of watchdog oscillator = 400 kHz  
Fig 28. Average watchdog oscillator frequency vs. VDD at 40 °C  
002aae350  
1.5  
frequency  
deviation  
(%)  
0.5  
0.5  
1.5  
2.5  
2.4  
2.8  
3.2  
3.6  
V
(V)  
DD  
Central frequency of watchdog oscillator = 400 kHz  
Fig 29. Average watchdog oscillator frequency vs. VDD at +85 °C  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
50 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
9.3 BOD characteristics  
Table 11. BOD static characteristics  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol Parameter  
BOD interrupt  
Conditions  
Min  
Typ[1]  
Max  
Unit  
Vtrip  
trip voltage  
falling stage  
BOICFG1, BOICFG0 = 01  
BOICFG1, BOICFG0 = 10  
BOICFG1, BOICFG0 = 11  
rising stage  
2.25  
2.60  
3.10  
-
-
-
2.55  
2.80  
3.40  
V
V
V
BOICFG1, BOICFG0 = 01  
BOICFG1, BOICFG0 = 10  
BOICFG1, BOICFG0 = 11  
2.30  
2.70  
3.15  
-
-
-
2.60  
2.90  
3.45  
V
V
V
BOD reset  
Vtrip  
trip voltage  
falling stage  
BOE1, BOE0 = 01  
BOE1, BOE0 = 10  
BOE1, BOE0 = 11  
rising stage  
2.10  
2.25  
2.80  
-
-
-
2.30  
2.55  
3.20  
V
V
V
BOE1, BOE0 = 01  
BOE1, BOE0 = 10  
BOE1, BOE0 = 11  
2.20  
2.30  
2.90  
-
-
-
2.40  
2.60  
3.30  
V
V
V
BOD EEPROM/flash  
Vtrip trip voltage  
falling stage  
rising stage  
2.25  
2.30  
-
-
2.55  
2.60  
V
V
[1] Typical ratings are not guaranteed. The values listed are at room temperature, 3 V.  
V
V
DD  
trip  
(BOF/BOIF  
set by hardware)  
(BOF/BOIF can be  
cleared in software)  
BOF/BOIF  
002aae352  
Fig 30. BOD interrupt/reset characteristics  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
51 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
10. Dynamic characteristics  
Table 12. Dynamic characteristics (12 MHz)  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.[1][2]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz Unit  
Min Max  
Min  
Max  
fosc(RC)  
internal RC oscillator  
frequency  
nominal f = 7.3728 MHz  
trimmed to ± 1 % at  
7.189  
7.557  
7.189 7.557 MHz  
T
amb = 25 °C; clock  
doubler option = OFF  
(default)  
nominal f = 14.7456 MHz;  
clock doubler option = ON,  
14.378  
380  
15.114  
420  
14.378 15.114 MHz  
VDD = 2.7 V to 3.6 V  
fosc(WD)  
internal watchdog  
oscillator frequency  
Tamb = 25 °C  
380  
420 kHz  
fosc  
oscillator frequency  
clock cycle time  
0
83  
0
12  
-
-
-
-
-
-
-
MHz  
ns  
Tcy(clk)  
fCLKLP  
see Figure 32  
low-power select clock  
frequency  
8
MHz  
Glitch filter  
tgr  
glitch rejection time  
P1.5/RST pin  
-
-
50  
15  
-
-
-
50  
15  
-
ns  
ns  
ns  
ns  
any pin except P1.5/RST  
tsa  
signal acceptance time P1.5/RST pin  
125  
50  
125  
50  
any pin except P1.5/RST  
-
-
External clock  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock HIGH time  
see Figure 32  
see Figure 32  
see Figure 32  
see Figure 32  
33  
33  
-
T
cy(clk) tCLCX  
33  
33  
-
-
-
ns  
ns  
ns  
ns  
clock LOW time  
clock rise time  
clock fall time  
Tcy(clk) tCHCX  
8
8
8
8
-
-
Shift register (UART mode 0)  
TXLXL  
tQVXH  
tXHQX  
tXHDX  
tXHDV  
serial port clock cycle  
time  
see Figure 31  
see Figure 31  
see Figure 31  
see Figure 31  
16Tcy(clk)  
-
1333  
1083  
-
-
-
ns  
ns  
output data set-up to  
clock rising edge time  
13Tcy(clk)  
-
output data hold after  
clock rising edge time  
-
-
Tcy(clk) + 20  
103 ns  
input data hold after  
clock rising edge time  
0
-
-
0
-
ns  
ns  
input data valid to clock see Figure 31  
rising edge time  
150  
150  
SPI interface  
fSPI  
SPI operating frequency  
CCLK  
slave  
0
-
0
-
2.0  
3.0  
MHz  
MHz  
6
CCLK  
master  
4
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
52 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
Table 12. Dynamic characteristics (12 MHz) …continued  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.[1][2]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz Unit  
Min  
Max  
Min  
Max  
TSPICYC  
SPI cycle time  
slave  
see Figure 33, 34, 35, 36  
6
4
-
-
500  
333  
-
-
ns  
ns  
CCLK  
master  
CCLK  
tSPILEAD  
SPI enable lead time  
slave  
see Figure 35, 36  
250  
250  
-
-
250  
250  
-
-
ns  
ns  
tSPILAG  
SPI enable lag time  
slave  
see Figure 35, 36  
tSPICLKH  
SPICLK HIGH time  
master  
see Figure 33, 34, 35, 36  
2
3
-
-
165  
250  
-
-
ns  
ns  
CCLK  
slave  
CCLK  
tSPICLKL  
SPICLK LOW time  
master  
see Figure 33, 34, 35, 36  
2
3
-
-
-
165  
250  
100  
-
-
-
ns  
ns  
ns  
CCLK  
slave  
CCLK  
tSPIDSU  
tSPIDH  
tSPIA  
SPI data set-up time  
master or slave  
SPI data hold time  
master or slave  
SPI access time  
slave  
see Figure 33, 34, 35, 36  
see Figure 33, 34, 35, 36  
see Figure 35, 36  
100  
100  
-
100  
-
ns  
0
0
120  
240  
0
-
120 ns  
240 ns  
tSPIDIS  
SPI disable time  
slave  
see Figure 35, 36  
tSPIDV  
SPI enable to output  
data valid time  
see Figure 33, 34, 35, 36  
slave  
-
-
240  
167  
-
-
-
240 ns  
167 ns  
master  
tSPIOH  
tSPIR  
SPI output data hold  
time  
see Figure 33, 34, 35, 36  
see Figure 33, 34, 35, 36  
0
0
-
ns  
SPI rise time  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
tSPIF  
SPI fall time  
see Figure 33, 34, 35, 36  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
53 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
Table 13. Dynamic characteristics (18 MHz)  
VDD = 3.0 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.[1][2]  
Symbol Parameter  
Conditions  
Variable clock  
fosc = 18 MHz Unit  
Min Max  
Min  
Max  
fosc(RC)  
internal RC oscillator  
frequency  
nominal f = 7.3728 MHz  
trimmed to ± 1 % at  
7.189  
7.557  
7.189 7.557 MHz  
T
amb = 25 °C; clock  
doubler option = OFF  
(default)  
nominal f = 14.7456 MHz;  
clock doubler option = ON  
14.378  
380  
15.114  
420  
14.378 15.114 MHz  
fosc(WD) internal watchdog  
oscillator frequency  
Tamb = 25 °C  
380  
420 kHz  
fosc  
oscillator frequency  
clock cycle time  
0
55  
0
18  
-
-
-
-
-
-
-
MHz  
ns  
Tcy(clk)  
fCLKLP  
see Figure 32  
low-power select clock  
frequency  
8
MHz  
Glitch filter  
tgr  
glitch rejection time  
P1.5/RST pin  
-
-
50  
15  
-
-
-
50  
15  
-
ns  
ns  
ns  
ns  
any pin except P1.5/RST  
tsa  
signal acceptance time P1.5/RST pin  
125  
50  
125  
50  
any pin except P1.5/RST  
-
-
External clock  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock HIGH time  
see Figure 32  
see Figure 32  
see Figure 32  
see Figure 32  
22  
22  
-
T
cy(clk) tCLCX  
22  
22  
-
-
-
ns  
ns  
ns  
ns  
clock LOW time  
clock rise time  
clock fall time  
T
cy(clk) tCHCX  
5
5
5
5
-
-
Shift register (UART mode 0)  
TXLXL  
tQVXH  
tXHQX  
tXHDX  
tXHDV  
serial port clock cycle  
time  
see Figure 31  
see Figure 31  
see Figure 31  
see Figure 31  
16Tcy(clk)  
-
888  
722  
-
-
-
ns  
ns  
ns  
ns  
ns  
output data set-up to  
clock rising edge time  
13Tcy(clk)  
-
output data hold after  
clock rising edge time  
-
-
Tcy(clk) + 20  
75  
0
-
input data hold after  
clock rising edge time  
0
-
-
input data valid to clock see Figure 31  
rising edge time  
150  
150  
SPI interface  
fSPI SPI operating frequency  
CCLK  
slave  
0
-
0
-
3.0  
4.5  
MHz  
MHz  
6
CCLK  
master  
4
TSPICYC SPI cycle time  
see Figure 33, 34, 35, 36  
6
slave  
-
-
333  
222  
-
-
ns  
ns  
CCLK  
4
master  
CCLK  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
54 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
Table 13. Dynamic characteristics (18 MHz) …continued  
VDD = 3.0 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.[1][2]  
Symbol Parameter  
Conditions  
Variable clock  
Min Max  
fosc = 18 MHz Unit  
Min  
250  
250  
Max  
tSPILEAD SPI enable lead time  
slave  
see Figure 35, 36  
see Figure 35, 36  
see Figure 33, 34, 35, 36  
250  
250  
-
-
-
-
ns  
ns  
tSPILAG  
SPI enable lag time  
slave  
tSPICLKH SPICLK HIGH time  
3
2
slave  
-
-
167  
111  
-
-
ns  
ns  
CCLK  
master  
tSPICLKL SPICLK LOW time  
slave  
CCLK  
see Figure 33, 34, 35, 36  
3
2
-
-
167  
111  
-
-
ns  
ns  
CCLK  
master  
CCLK  
tSPIDSU  
tSPIDH  
tSPIA  
SPI data set-up time  
master or slave  
SPI data hold time  
master or slave  
SPI access time  
slave  
see Figure 33, 34, 35, 36  
see Figure 33, 34, 35, 36  
see Figure 35, 36  
100  
100  
0
-
-
100  
100  
0
-
-
ns  
ns  
ns  
80  
160  
80  
tSPIDIS  
SPI disable time  
slave  
see Figure 35, 36  
0
-
160 ns  
tSPIDV  
SPI enable to output  
data valid time  
see Figure 33, 34, 35, 36  
slave  
-
-
160  
111  
-
-
-
160 ns  
111 ns  
master  
tSPIOH  
tSPIR  
SPI output data hold  
time  
see Figure 33, 34, 35, 36  
see Figure 33, 34, 35, 36  
0
0
-
ns  
SPI rise time  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
tSPIF  
SPI fall time  
see Figure 33, 34, 35, 36  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
55 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
10.1 Waveforms  
T
XLXL  
clock  
t
XHQX  
1
t
QVXH  
output data  
write to SBUF  
input data  
0
2
3
4
5
6
7
t
XHDX  
set TI  
valid  
t
XHDV  
valid  
valid  
valid  
valid  
valid  
valid  
valid  
clear RI  
set RI  
002aaa906  
Fig 31. Shift register mode timing  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 32. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
SS  
T
SPICYC  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIF  
SPIR  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(output)  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
t
t
t
t
SPIR  
SPIDV  
SPIOH  
SPIDV  
t
MOSI  
SPIF  
(output)  
master MSB/LSB out  
master LSB/MSB out  
002aaa908  
Fig 33. SPI master timing (CPHA = 0)  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
56 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
SS  
T
SPICYC  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLK  
(CPOL = 1)  
(output)  
SPICLKH  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
t
t
t
t
SPIDV  
SPIOH  
SPIDV  
SPIDV  
t
t
SPIF  
SPIR  
MOSI  
(output)  
master MSB/LSB out  
master LSB/MSB out  
002aaa909  
Fig 34. SPI master timing (CPHA = 1)  
SS  
t
t
SPIR  
SPIR  
T
SPICYC  
t
t
SPIR  
t
SPIF  
t
SPILAG  
SPILEAD  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLK  
(CPOL = 1)  
(input)  
SPICLKH  
t
t
SPIOH  
t
t
SPIDIS  
t
SPIOH  
SPIOH  
SPIA  
t
t
SPIDV  
SPIDV  
MISO  
(output)  
slave MSB/LSB out  
slave LSB/MSB out  
not defined  
t
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa910  
Fig 35. SPI slave timing (CPHA = 0)  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
57 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
SS  
t
t
SPIR  
SPIR  
T
SPICYC  
t
t
t
SPIR  
SPIF  
t
t
SPILAG  
SPILEAD  
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
SPICLK  
(CPOL = 1)  
(input)  
t
SPICLKH  
t
t
t
SPIOH  
SPIOH  
SPIOH  
t
t
t
t
SPIDIS  
SPIDV  
SPIDV  
SPIDV  
t
SPIA  
MISO  
(output)  
slave LSB/MSB out  
slave MSB/LSB out  
not defined  
t
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa911  
Fig 36. SPI slave timing (CPHA = 1)  
10.2 ISP entry mode  
Table 14. Dynamic characteristics, ISP entry mode  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol Parameter Conditions  
VDD active to RST active delay time pin RST  
Min  
50  
1
Typ  
Max  
Unit  
µs  
tVR  
tRH  
tRL  
-
-
-
-
RST HIGH time  
RST LOW time  
pin RST  
pin RST  
32  
-
µs  
1
µs  
V
DD  
t
VR  
t
RH  
RST  
t
RL  
002aaa912  
Fig 37. ISP entry waveform  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
58 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
11. Other characteristics  
11.1 Comparator electrical characteristics  
Table 15. Comparator electrical characteristics  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
mV  
V
VIO  
input offset voltage  
-
-
±20  
VIC  
common-mode input voltage  
common-mode rejection ratio  
total response time  
0
-
-
VDD 0.3  
[1]  
CMRR  
tres(tot)  
t(CE-OV)  
ILI  
-
50  
500  
10  
dB  
ns  
-
250  
chip enable to output valid time  
input leakage current  
-
-
-
µs  
0 V < VI < VDD  
-
±10  
µA  
[1] This parameter is characterized, but not tested in production.  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
59 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
12. Package outline  
TSSOP28: plastic thin shrink small outline package; 28 leads; body width 4.4 mm  
SOT361-1  
D
E
A
X
c
H
v
M
y
A
E
Z
15  
28  
Q
A
2
(A )  
3
A
A
pin 1 index  
1
θ
L
p
L
1
14  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
9.8  
9.6  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.8  
0.5  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT361-1  
MO-153  
Fig 38. TSSOP package outline (SOT361-1)  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
60 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
13. Abbreviations  
Table 16. Abbreviations  
Acronym  
BOD  
CCU  
CPU  
Description  
Brownout Detection  
Capture/Compare Unit  
Central Processing Unit  
CRC  
DAC  
Cyclic Redundancy Check  
Digital to Analog Converter  
Erasable Programmable Read-Only Memory  
Electrically Erasable Programmable Read-Only Memory  
Electro-Magnetic Interference  
Programmable Gain Amplifier  
Phase-Locked Loop  
EPROM  
EEPROM  
EMI  
PGA  
PLL  
PWM  
RAM  
RC  
Pulse-Width Modulator  
Random Access Memory  
Resistance-Capacitance  
RTC  
Real-Time Clock  
SAR  
Successive Approximation Register  
Special Function Register  
Serial Peripheral Interface  
Universal Asynchronous Receiver/Transmitter  
WatchDog Timer  
SFR  
SPI  
UART  
WDT  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
61 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
14. Revision history  
Table 17. Revision history  
Document ID  
Release date  
20090409  
Data sheet status  
Change notice  
Supersedes  
P89LPC9301_931A1_1  
Preliminary data sheet  
-
-
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
62 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
15. Legal information  
15.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
15.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
15.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
15.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
16. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
63 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
17. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
7.18.3  
7.19  
7.19.1  
7.20  
7.20.1  
7.20.2  
7.20.3  
7.20.4  
7.20.5  
7.20.6  
7.21  
Total Power-down mode. . . . . . . . . . . . . . . . . 26  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Reset vector . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Timers/counters 0 and 1 . . . . . . . . . . . . . . . . 27  
Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Mode 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Timer overflow toggle output . . . . . . . . . . . . . 27  
RTC/system timer. . . . . . . . . . . . . . . . . . . . . . 28  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Baud rate generator and selection. . . . . . . . . 29  
Framing error . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Break detect. . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Double buffering. . . . . . . . . . . . . . . . . . . . . . . 29  
Transmit interrupts with double buffering  
2
2.1  
2.2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Principal features . . . . . . . . . . . . . . . . . . . . . . . 1  
Additional features . . . . . . . . . . . . . . . . . . . . . . 1  
3
3.1  
4
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 5  
5
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7  
7.22  
7.22.1  
7.22.2  
7.22.3  
7.22.4  
7.22.5  
7.22.6  
7.22.7  
7.22.8  
7.22.9  
7
7.1  
7.2  
7.3  
7.3.1  
7.3.2  
7.4  
7.4.1  
7.4.2  
7.4.3  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
7.15.1  
7.16  
7.16.1  
Functional description . . . . . . . . . . . . . . . . . . 10  
Special function registers . . . . . . . . . . . . . . . . 10  
Enhanced CPU. . . . . . . . . . . . . . . . . . . . . . . . 18  
Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Clock definitions . . . . . . . . . . . . . . . . . . . . . . . 18  
CPU clock (OSCCLK). . . . . . . . . . . . . . . . . . . 18  
Crystal oscillator option . . . . . . . . . . . . . . . . . 18  
Low speed oscillator option . . . . . . . . . . . . . . 18  
Medium speed oscillator option . . . . . . . . . . . 18  
High speed oscillator option . . . . . . . . . . . . . . 18  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
On-chip RC oscillator option. . . . . . . . . . . . . . 19  
Watchdog oscillator option . . . . . . . . . . . . . . . 19  
External clock input option . . . . . . . . . . . . . . . 19  
Clock sources switch on the fly. . . . . . . . . . . . 19  
CCLK wake-up delay . . . . . . . . . . . . . . . . . . . 20  
CCLK modification: DIVM register . . . . . . . . . 20  
Low power select . . . . . . . . . . . . . . . . . . . . . . 20  
Memory organization . . . . . . . . . . . . . . . . . . . 21  
Data RAM arrangement . . . . . . . . . . . . . . . . . 21  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
External interrupt inputs . . . . . . . . . . . . . . . . . 22  
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Port configurations . . . . . . . . . . . . . . . . . . . . . 23  
enabled (modes 1, 2 and 3) . . . . . . . . . . . . . . 30  
7.22.10 The 9th bit (bit 8) in double buffering  
(modes 1, 2 and 3). . . . . . . . . . . . . . . . . . . . . 30  
7.23  
7.24  
7.24.1  
7.25  
7.25.1  
7.25.2  
7.25.3  
7.26  
7.27  
7.28  
I2C-bus serial interface. . . . . . . . . . . . . . . . . . 30  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Typical SPI configurations . . . . . . . . . . . . . . . 33  
Analog comparators. . . . . . . . . . . . . . . . . . . . 34  
Internal reference voltage. . . . . . . . . . . . . . . . 35  
Comparator interrupt . . . . . . . . . . . . . . . . . . . 35  
Comparators and power reduction modes . . . 35  
KBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . 36  
Additional features . . . . . . . . . . . . . . . . . . . . . 37  
Software reset . . . . . . . . . . . . . . . . . . . . . . . . 37  
Dual data pointers . . . . . . . . . . . . . . . . . . . . . 37  
Flash program memory . . . . . . . . . . . . . . . . . 37  
General description . . . . . . . . . . . . . . . . . . . . 37  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Flash organization . . . . . . . . . . . . . . . . . . . . . 38  
Using flash as data storage . . . . . . . . . . . . . . 38  
Flash programming and erasing. . . . . . . . . . . 38  
ICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
IAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Power-on reset code execution . . . . . . . . . . . 39  
7.28.1  
7.28.2  
7.29  
7.16.1.1 Quasi-bidirectional output configuration . . . . . 23  
7.16.1.2 Open-drain output configuration . . . . . . . . . . . 23  
7.16.1.3 Input-only configuration . . . . . . . . . . . . . . . . . 24  
7.16.1.4 Push-pull output configuration . . . . . . . . . . . . 24  
7.16.2  
7.16.3  
7.17  
7.17.1  
7.17.2  
7.18  
7.18.1  
7.18.2  
7.29.1  
7.29.2  
7.29.3  
7.29.4  
7.29.5  
7.29.6  
7.29.7  
7.29.8  
7.29.9  
Port 0 analog functions. . . . . . . . . . . . . . . . . . 24  
Additional port features. . . . . . . . . . . . . . . . . . 24  
Power monitoring functions. . . . . . . . . . . . . . . 24  
Brownout detection. . . . . . . . . . . . . . . . . . . . . 25  
Power-on detection. . . . . . . . . . . . . . . . . . . . . 25  
Power reduction modes . . . . . . . . . . . . . . . . . 25  
Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Power-down mode . . . . . . . . . . . . . . . . . . . . . 25  
7.29.10 Hardware activation of the bootloader . . . . . . 40  
7.30  
User configuration bytes. . . . . . . . . . . . . . . . . 40  
continued >>  
P89LPC9301_931A1_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 9 April 2009  
64 of 65  
P89LPC9301/931A1  
NXP Semiconductors  
8-bit microcontroller with accelerated two-clock 80C51 core  
7.31  
User sector security bytes . . . . . . . . . . . . . . . 40  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 41  
8
9
9.1  
9.2  
Static characteristics. . . . . . . . . . . . . . . . . . . . 42  
Current characteristics . . . . . . . . . . . . . . . . . . 44  
Internal RC/watchdog oscillator  
characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 48  
BOD characteristics . . . . . . . . . . . . . . . . . . . . 51  
9.3  
10  
10.1  
10.2  
Dynamic characteristics . . . . . . . . . . . . . . . . . 52  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
ISP entry mode. . . . . . . . . . . . . . . . . . . . . . . . 58  
11  
11.1  
12  
Other characteristics. . . . . . . . . . . . . . . . . . . . 59  
Comparator electrical characteristics . . . . . . . 59  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 60  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 62  
13  
14  
15  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 63  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 63  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
15.1  
15.2  
15.3  
15.4  
16  
17  
Contact information. . . . . . . . . . . . . . . . . . . . . 63  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 9 April 2009  
Document identifier: P89LPC9301_931A1_1  

相关型号:

P89LPC9301FDH,512

P89LPC9301/931A1 - 8-bit microcontroller with accelerated two-clock 80C51 core 4 kB/8 kB 3 V byte-erasable flash TSSOP2 28-Pin
NXP

P89LPC930BDH

暂无描述
NXP

P89LPC930FDH

8-bit microcontrollers with two-clock 80C51 core 4 kB/8 kB 3 V Flash with 256-byte data RAM
NXP

P89LPC930FDH,129

P89LPC930/931 - 8-bit microcontrollers with two-clock 80C51 core 4 kB/8 kB 3 V Flash with 256-byte data RAM TSSOP2 28-Pin
NXP

P89LPC930FDH,512

P89LPC930/931 - 8-bit microcontrollers with two-clock 80C51 core 4 kB/8 kB 3 V Flash with 256-byte data RAM TSSOP2 28-Pin
NXP

P89LPC930FDH,529

P89LPC930/931 - 8-bit microcontrollers with two-clock 80C51 core 4 kB/8 kB 3 V Flash with 256-byte data RAM TSSOP2 28-Pin
NXP
NXP

P89LPC931

8-bit microcontrollers with two-clock 80C51 core 4 kB/8 kB 3 V Flash with 256-byte data RAM
ETC

P89LPC931A1

8-bit microcontroller with accelerated two-clock 80C51 core 4 kB/8 kB 3 V byte-erasable flash
NXP

P89LPC931A1FDH

8-bit microcontroller with accelerated two-clock 80C51 core 4 kB/8 kB 3 V byte-erasable flash
NXP

P89LPC931FDH

8-bit microcontrollers with two-clock 80C51 core 4 kB/8 kB 3 V Flash with 256-byte data RAM
NXP

P89LPC931FDH,112

P89LPC930/931 - 8-bit microcontrollers with two-clock 80C51 core 4 kB/8 kB 3 V Flash with 256-byte data RAM TSSOP2 28-Pin
NXP