PC56651GC [NXP]

16-BIT, 16.8MHz, MIXED DSP, PBGA196, 17 X 17 MM, PLASTIC, BGA-196;
PC56651GC
型号: PC56651GC
厂家: NXP    NXP
描述:

16-BIT, 16.8MHz, MIXED DSP, PBGA196, 17 X 17 MM, PLASTIC, BGA-196

时钟 外围集成电路
文件: 总76页 (文件大小:523K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document by:  
DSP56651/D  
Freescale Semiconductor, Inc.  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
Rev 0, 6/98  
DSP56651  
Advance Information  
INTEGRATED CELLULAR BASEBAND PROCESSOR  
DEVELOPMENT IC  
Motorola designed the RAM-based DSP56651 emulation device to support the rigorous  
demands of developing applications for the cellular subscriber market. The high level of on-chip  
integration in the DSP56651 and its volume production companion device DSP56652 minimizes  
application system design complexity and component count, resulting in very compact  
implementations. This integration also yields very low-power consumption and cost-effective  
system performance. The DSP56651 chip combines the power of Motorolas 32-bit M• CORE TM  
MicroRISC Engine (MCU) and the DSP56600 digital signal processor (DSP) core with on-chip  
memory, protocol timer, and custom peripherals to provide a single-chip cellular base-band  
processor. Figure 1 shows the basic block diagram of the DSP56651.  
Timer/  
PWM  
Program  
Interrupt Timer  
Watch  
Dog  
Edge  
I/O  
Smart  
Card  
I/F  
External  
Memory  
M•CORE  
MicroRISC  
Core  
RAM  
512 x 32  
Keypad  
I/F  
ROM  
4K x 32  
Queued  
SPI  
Clocks  
MCU - DSP INTERFACE  
UART  
MUX  
DSP PLL  
1K x 16  
MESSAGING  
RAM  
UNIT  
MCU  
OnCE  
DSP56651  
DSP  
OnCE  
X Data  
X Data  
ROM  
56600  
DSP  
Core  
RAM  
(7+1)K x 16  
9K x 16  
Protocol  
Timer  
Y Data  
ROM  
9K x 16  
Y Data  
RAM  
8K x 16  
Serial Audio  
CODEC I/F  
Program  
RAM  
24K x 24  
Program  
ROM  
24K x 24  
Baseband  
CODEC I/F  
AA1617  
Figure 1-1 DSP56651 System Block Diagram  
Development Part Only—Not intended for production.  
Requires a higher voltage than the production part  
This document contains information on a new product. Specifications and information herein are subject to change without notice.  
Preliminary  
©1998 MOTOROLA, INC.  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
DSP56652  
TABLE OF CONTENTS  
SECTION 1  
SECTION 2  
SECTION 3  
SECTION 4  
SECTION 5  
PIN AND SIGNAL DESCRIPTIONS. . . . . . . . . . . . . . . . . . . . . . . . . .1-1  
SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2-1  
PACKAGING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3-1  
DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-1  
ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5-1  
FOR TECHNICAL ASSISTANCE:  
Telephone:  
Email:  
1 (800) 521-6274  
dsphelp@dsp.sps.mot.com  
http:/ / www.motorola-dsp.com  
Internet:  
Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
“asserted”  
“deasserted”  
Examples:  
Used to indicate a signal that is active when pulled low; for example, the RESET  
pin is active when low  
Means that a high true (active high) signal is high or that a low true (active low)  
signal is low  
Means that a high true (active high) signal is low or that a low true (active low)  
signal is high  
1
Signal/Symbol  
Logic State  
Signal State  
Voltage  
PIN  
PIN  
PIN  
PIN  
True  
False  
True  
False  
Asserted  
Deasserted  
Asserted  
V / V  
IL  
OL  
OH  
OH  
OL  
V
V
/ V  
/ V  
IH  
IH  
Deasserted  
V / V  
IL  
Note:  
Values for V , V , V , and V are defined by individual product specifications.  
OH  
IL  
OL  
IH  
Preliminary  
ii  
DSP56652 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
DSP56651  
Features  
FEATURES  
RISC M•CORE MCU  
32-bit load/ store RISC architecture  
Fixed 16-bit instruction length  
16-entry 32-bit general-purpose register file  
32-bit internal address and data buses  
Efficient four-stage, fully interlocked execution pipeline  
Single-cycle execution for most instructions, two cycles for branches and memory  
accesses  
Special branch, byte, and bit manipulation instructions  
Support for byte, half-word, and word memory accesses  
Fast interrupt support via vectoring/ auto-vectoring and a 16-entry dedicated  
alternate register file  
High Performance DSP56600 Core  
1 × engine (e.g., 70 MHz = 70 MIPS)  
Fully pipelined 16 × 16-bit parallel multiplier-accumulator (MAC)  
Two 40-bit accumulators including extension bits  
40-bit parallel barrel shifter  
Highly parallel instruction set with unique DSP addressing modes  
Position-independent code support  
Nested hardware DO loops  
Fast auto-return interrupts  
On-chip support for software patching and enhancements  
Realtime trace capability via address bus visibility mode  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
iii  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
DSP56651  
Features  
On-chip Memories  
4K × 32-bit MCU ROM  
512 × 32-bit MCU RAM  
24K × 24-bit DSP program ROM  
24K × 24-bit DSP program RAM  
18K × 16-bit DSP data ROM, split into 9K × 16-bit X and 9K x 16 Y data ROM spaces  
16K × 16-bit DSP data RAM, split into (7+1)K × 16-bit X and 8K x 16-bit Y data RAM  
spaces  
On-chip Peripherals  
Fully programmable phase-locked loop (PLL) for DSP clock generation  
External interface module (EIM) for glueless system integration  
External 22-bit address and 16-bit data MCU buses  
Thirty-two source MCU interrupt controller  
Intelligent MCU/ DSP interface (MDI) dual 1K x 16-bit RAM (shares 1K DSP X data  
RAM) with messaging status and control  
Serial audio codec port  
Serial baseband codec port  
Protocol timer frees the MCU from radio channel timing events  
Queued serial peripheral interface (SPI)  
Keypad port capable of scanning up to an 8 × 8 matrix keypad  
General-purpose MCU and DSP timers  
Pulse width modulation output  
Universal asynchronous receiver/ transmitter (UART) with FIFO  
IEEE 1149.1-compliant boundary scan JTAG test access port (TAP)  
Integrated DSP/ M• CORE On-Chip Emulation (OnCE™) module  
DSP address bus visibility mode for system development  
ISO 7816-compatible Smart Card port  
Preliminary  
iv  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
DSP56651  
Target Applications  
Operating Features:  
Comprehensive static and dynamic power management  
M• CORE operating frequency: dc to 16.8 MHz at 2.4 V  
DSP operating frequency: dc to 58.8 MHz at 2.4 V  
Operating temperature: –40˚ to 85˚C ambient  
Package option: 17 × 17 mm, 196-lead PBGA  
TARGET APPLICATIONS  
The DSP56651 is intended for the development of cellular subscriber applications and other  
applications needing both DSP and control processing.  
PRODUCT DOCUMENTATION  
The four manuals listed in Table 1 are required for a complete description of the DSP56651 and  
are necessary to design with the part properly. Documentation is available from a local Motorola  
distributor, a Motorola semiconductor sales office, a Motorola Literature Distribution Center, or  
the World Wide Web.  
Table 1 DSP56651 Documentation  
Document Name  
DSP56600  
Description of Contents  
Order Number  
Detailed description of the DSP56600 family core processor DSP56600FM/ AD  
architecture and instruction set  
Family Manual  
M• CORE Reference  
Manual  
Detailed description of the M• CORE MCU and instruction MCORERM/ AD  
set  
DSP56652  
Users Manual  
Detailed description of DSP56652 memory, peripherals,  
and interfaces, much of which are common to the  
DSP56651  
DSP56652UM/ AD  
DSP56651  
Technical Data  
DSP56651 pin and package descriptions; electrical and  
timing specifications  
DSP56651/ D  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
v
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
DSP56651  
Product Documentation  
Preliminary  
vi  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
SECTION 1  
PIN AND SIGNAL DESCRIPTIONS  
INTRODUCTION  
The pins and signals of the DSP56651 are described in the following sections.  
Figure 1-1 and Figure 1-2 on page 1-3 are top and bottom views of the package,  
respectively, showing the pin-outs. Subsequent tables list the pins by number and  
signal name. Figure 1-3 on page 1-11 is a representational pin-out of the chip  
grouping the signals by their function. Subsequent tables identify the signals of each  
group.  
DSP56651 PIN DESCRIPTION  
The following section provides information about the available packages for this  
product, including diagrams of the package pinouts and tables describing how the  
signals of the DSP56651 are allocated for the 196-pin plastic ball grid array (PBGA)  
package. Top and bottom views of the PBGA package are shown in Figure 1-1 and  
Figure 1-2 on page 1-3 with their pin-outs.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-1  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Pin Description  
PBGA Package Description  
Top View  
1
2
3
4
5
6
7
8
9
10  
SRDB GND  
E
11  
12  
13  
14  
DSP_IRQ  
A
B
NC  
A20  
TOUT0 TOUT3 TOUT6 SPICS4 GND  
V
SRDA STDA  
NC  
H
CCHQ  
GND  
A18  
A17  
A15  
A12  
A7  
A21  
A19  
A16  
A11  
A9  
TOUT2 TOUT7 SPICS1  
V
MOSI  
SC2B SC0A SCKA PSTAT2 PSTAT1 GND  
K
A
CCQ  
VCCA  
A13  
TOUT1 TOUT5  
VCCH  
GNDQ SCKB STDB SC1A PSTAT3 VCCK PSTAT0 SIZ1  
C
D
E
F
MUX_CTL  
A14  
A10  
A6  
TOUT4 SPICS3  
SCK  
MISO  
NC  
SC1B SC2A  
VCCE  
RTS  
SIZ0  
RX  
CTS  
TX  
A8  
GND SPICS2 SPICS0  
SC0B  
GND  
GND  
TDO  
TEST  
TDI  
VCCA  
A5  
A2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
TCK  
DSP_DE  
TRST  
G
A0  
GNDA  
A4  
A3  
GND MCU_DE ROW7 VCCHQ ROW6 TMS  
CKIH  
GNDF  
CKO  
CS0  
EB1  
A1  
EB0  
CKIL  
GND  
GNDG  
VCCG  
VCCQ ROW4 ROW5  
H
J
DSP56651  
VCCQ  
VCCF  
CS1  
CS2  
CS5  
D2  
VCCHQ CKOH GNDQ  
GND  
D12  
D11  
D8  
GND  
GND  
GND  
VCCP  
GNDQ ROW2 INT7 ROW1 ROW3  
K
OE  
VCCC  
CS4  
D0  
R/W  
D5  
D1  
D4  
D6  
GND  
GNDD  
VCCD  
D7  
PWR_EN GNDB  
SIMCLK VCCB  
GND  
INT6  
INT5  
INT4 ROW0  
RESET_  
IN  
PCAP  
VCCG  
INT0  
GNDG  
INT3  
INT2  
INT1  
L
SIM  
DATA  
RESET_  
OUT  
M
GNDC  
CS3  
D13  
VCCQ  
COL1 COL5 COL7  
SIM  
RESET  
N
P
D10  
D15  
GNDQ  
GNDP1 COL0 COL3 COL6  
NC  
D3  
D9  
D14  
VCCHQ SENSE GNDP  
MOD  
STO  
COL2 COL4  
NC  
AA1694  
Figure 1-1 DSP56651 Plastic Ball Grid Array (PBGA), Top View  
Preliminary  
1-2  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Pin Description  
Bottom View  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
DSP_IRQ  
A
B
NC  
STDA SRDA GND  
SRDB  
V
GND  
H
SPICS4 TOUT6 TOUT3 TOUT0  
A20  
NC  
E
CCHQ  
GND  
PSTAT1 PSTAT2 SCKA SC0A SC2B  
MOSI  
V
SPICS1 TOUT7 TOUT2  
A21  
A19  
A16  
A11  
A9  
A18  
A17  
A15  
A12  
A7  
GND  
A
K
CCQ  
SIZ1  
CTS  
PSTAT0  
MUX_CTL  
TEST  
TDI  
VCCK  
SIZ0  
PSTAT3  
VCCE  
RTS  
SC1A STDB SCKB GNDQ  
VCCH  
TOUT5 TOUT1  
VCCA  
A13  
C
D
E
F
SC2A SC1B  
MISO  
NC  
SCK  
SPICS3 TOUT4  
A14  
A10  
A6  
TxD  
RxD  
GND  
TDO  
SC0B  
GND  
SPICS0 SPICS2 GND  
A8  
TRST  
DSP_DE  
TCK  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D12  
D11  
D8  
A5  
A2  
VCCA  
G
TMS ROW6 VCCHQ ROW7 MCU_DE GND  
A3  
A4  
GNDA  
EB1  
A0  
ROW5 ROW4 VCCQ  
VCCG  
GNDG  
GND  
GND  
VCCP  
CKIL  
EB0  
A1  
CKIH  
GNDF  
CKO  
CS0  
H
J
ROW3 ROW1 INT7 ROW2 GNDQ  
GNDQ CKOH VCCHQ  
VCCQ  
VCCF  
CS1  
CS2  
CS5  
D2  
K
ROW0 INT4  
INT5  
INT0  
INT6  
VCCG  
GND  
GNDB PWR_EN  
VCCB SIMCLK  
GND  
GNDD  
VCCD  
D7  
R/W  
D5  
D1  
D4  
D6  
OE  
VCCC  
CS4  
D0  
RESET_  
IN  
INT3  
INT2  
INT1  
NC  
GNDG  
PCAP  
L
SIM  
DATA  
RESET_  
OUT  
M
COL7 COL5 COL1  
VCCQ  
D13  
D15  
GNDC  
CS3  
SIM  
RESET  
N
P
COL6 COL3 COL0 GNDP1  
GNDQ  
D10  
D14  
COL4 COL2  
STO  
MOD  
GNDP SENSE VCCHQ  
D9  
D3  
NC  
AA1695  
Figure 1-2 DSP56651 Plastic Ball Grid Array (PBGA), Bottom View  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-3  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Pin Description  
Table 1-1 DSP56651 PBGA Signal Identification by Pin Number  
Pin  
Pin  
Pin  
Signal Name  
Signal Name  
Signal Name  
No.  
No.  
No.  
A1  
Not Connected (NC),  
reserved  
B12 PSTAT2  
D9  
SC1B  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A20  
B13 PSTAT1  
D10 SC2A  
D11  
D12 SIZ0  
TOUT0  
TOUT3  
TOUT6  
SPICS4  
B14 GND  
V
CCE  
K
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
V
CCA  
A17  
A19  
D13 MUX_CTL  
D14 CTS  
GND  
TOUT1  
TOUT5  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
A8  
H
V
A12  
CCHQ  
DSP_IRQ  
V
A11  
CCH  
A10 SRDB  
A11 GND  
GND  
A10  
Q
SCKB  
STDB  
GND  
SPICS2  
SPICS0  
NC  
E
A12 SRDA  
A13 STDA  
A14 NC  
C10 SC1A  
C11 PSTAT3  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
GND  
A18  
C12  
V
SC0B  
A
CCK  
C13 PSTAT0  
C14 SIZ1  
E10 GND  
E11 RTS  
E12 RxD  
E13 TEST  
E14 TxD  
A21  
TOUT2  
TOUT7  
SPICS1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
A13  
A15  
A16  
V
A14  
F1  
F2  
F3  
F4  
F5  
V
CCA  
CCQ  
MOSI  
SC2B  
TOUT4  
SPICS3  
SCK  
A7  
A9  
A6  
A5  
B10 SC0A  
B11 SCKA  
MISO  
Preliminary  
DSP56651 Technical Data Sheet  
1-4  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Pin Description  
Table 1-1 DSP56651 PBGA Signal Identification by Pin Number (Continued)  
Pin  
Pin  
Pin  
Signal Name  
Signal Name  
Signal Name  
No.  
No.  
No.  
F6  
GND  
GND  
GND  
GND  
H3  
A1  
J14  
ROW3  
CKO  
F7  
F8  
F9  
H4  
H5  
H6  
H7  
H8  
H9  
EB0  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
CKIL  
GND  
GND  
GND  
GND  
V
CCF  
OE  
F10 TDO  
F11 TCK  
R/ W  
GND  
D12  
F12 DSP_DE  
F13 TDI  
H10 GND  
PWR_EN  
GND  
G
F14 TRST  
H11  
H12  
V
V
CCG  
CCQ  
B
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
A0  
V
CCP  
GND  
A4  
H13 ROW4  
H14 ROW5  
K10 GND  
K11 INT6  
K12 INT5  
K13 INT4  
A
A3  
J1  
GND  
F
A2  
J2  
V
V
CCQ  
CCHQ  
GND  
GND  
GND  
GND  
J3  
K14 ROW0  
J4  
CKOH  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
CS0  
CS1  
J5  
GND  
GND  
GND  
GND  
GND  
GND  
Q
J6  
V
CCC  
G10 MCU_DE  
G11 ROW7  
J7  
D5  
J8  
GND  
D11  
D
G12  
V
J9  
CCHQ  
G13 ROW6  
G14 TMS  
J10  
J11  
J12  
J13  
SIMCLK  
Q
ROW2  
INT7  
V
CCB  
H1  
H2  
CKIH  
EB1  
PCAP  
ROW1  
L10 RESET_IN  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-5  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Pin Description  
Table 1-1 DSP56651 PBGA Signal Identification by Pin Number (Continued)  
Pin  
Pin  
Pin  
Signal Name  
Signal Name  
Signal Name  
No.  
No.  
No.  
L11  
V
M13 COL7  
M14 INT2  
P1  
NC  
D2  
D3  
D6  
D9  
D14  
CCG  
L12 INT0  
L13 GND  
L14 INT3  
P2  
P3  
P4  
P5  
P6  
P7  
P8  
P9  
N1  
N2  
N3  
N4  
N5  
N6  
N7  
N8  
N9  
CS3  
CS5  
D0  
G
C
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
GND  
CS2  
CS4  
D1  
D4  
D7  
V
CCHQ  
D10  
D15  
GND  
SENSE  
GND  
V
CCD  
P
D8  
P10 MOD  
P11 STO  
P12 COL2  
P13 COL4  
P14 NC  
Q
D13  
SIMRESET  
V
N10 GND  
P1  
CCQ  
SIMDATA  
N11 COL0  
N12 COL3  
N13 COL6  
N14 INT1  
M10 RESET_OUT  
M11 COL1  
M12 COL5  
Preliminary  
1-6  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Pin Description  
Table 1-2 DSP56651 PBGA Signal Identification by Name  
Pin  
Pin  
Pin  
Signal Name  
Signal Name  
Signal Name  
No.  
No.  
No.  
A0  
A1  
G1  
H3  
G5  
G4  
G3  
F5  
CKOH  
COL0  
COL1  
COL2  
COL3  
COL4  
COL5  
COL6  
COL7  
CS0  
CS1  
CS2  
CS3  
CS4  
CS5  
CTS  
D0  
J4  
N11  
M11  
P12  
N12  
P13  
M12  
N13  
M13  
L1  
D9  
D10  
P5  
N6  
L6  
A2  
D11  
A3  
D12  
K6  
M7  
P6  
A4  
D13  
A5  
D14  
A6  
F4  
D15  
N7  
F12  
A9  
H4  
H2  
E10  
E5  
A7  
F2  
DSP_DE  
DSP_IRQ  
EB0  
A8  
E1  
F3  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
A21  
CKIH  
CKIL  
CKO  
E4  
E3  
E2  
D1  
D4  
D2  
D3  
C2  
B2  
C3  
A2  
B3  
H1  
H5  
K1  
L2  
EB1  
M2  
N1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
M3  
N2  
F6  
F7  
D14  
N3  
F8  
F9  
D1  
M4  
P2  
G6  
G7  
G8  
G9  
H6  
H7  
H8  
H9  
D2  
D3  
P3  
D4  
N4  
D5  
L4  
D6  
P4  
D7  
N5  
D8  
M6  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-7  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Pin Description  
Table 1-2 DSP56651 PBGA Signal Identification by Name (Continued)  
Pin  
Pin  
Pin  
Signal Name  
Signal Name  
Signal Name  
No.  
No.  
No.  
GND  
GND  
GND  
GND  
GND  
GND  
J6  
J7  
INT2  
INT3  
M14  
L14  
K13  
K12  
K11  
J12  
RESET_OUT  
ROW0  
ROW1  
ROW2  
ROW3  
ROW4  
ROW5  
ROW6  
ROW7  
RTS  
M10  
K14  
J13  
J8  
INT4  
J9  
INT5  
J11  
K10  
K5  
B1  
INT6  
J14  
INT7  
H13  
H14  
G13  
G11  
E11  
E12  
B10  
E9  
GND  
GND  
GND  
GND  
GND  
GND  
MCU_DE  
MISO  
MOD  
G10  
D8  
A
A
B
C
D
E
G2  
K8  
M1  
L5  
P10  
B8  
MOSI  
MUX_CTL  
NC  
D13  
A1  
RxD  
A11  
J1  
SC0A  
GND  
NC  
A14  
E8  
SC0B  
F
G
G
H
K
GND  
GND  
GND  
GND  
H10  
L13  
A7  
B14  
P9  
NC  
SC1A  
C10  
D9  
NC  
P1  
SC1B  
NC  
P14  
K3  
SC2A  
D10  
B9  
OE  
SC2B  
GND  
PCAP  
PSTAT0  
PSTAT1  
PSTAT2  
PSTAT3  
PWR_EN  
R/ W  
L9  
SCK  
D7  
P
GND  
N10  
C7  
J10  
J5  
C13  
B13  
B12  
C11  
K7  
SCKA  
SCKB  
B11  
C8  
P1  
GND  
GND  
GND  
GND  
Q
Q
Q
Q
SENSE  
SIMCLK  
SIMDATA  
SIMRESET  
SIZ0  
P8  
L7  
N8  
L12  
N14  
M9  
N9  
INT0  
INT1  
K4  
RESET_IN  
L10  
D12  
Preliminary  
1-8  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Pin Description  
Table 1-2 DSP56651 PBGA Signal Identification by Name (Continued)  
Pin  
Pin  
Pin  
Signal Name  
Signal Name  
Signal Name  
No.  
No.  
No.  
SIZ1  
SPICS0  
SPICS1  
SPICS2  
SPICS3  
SPICS4  
SRDA  
SRDB  
STDA  
STDB  
STO  
C14  
E7  
TOUT0  
TOUT1  
TOUT2  
TOUT3  
TOUT4  
TOUT5  
TOUT6  
TOUT7  
TRST  
A3  
C4  
B4  
V
K2  
H11  
L11  
C6  
CCF  
CCG  
CCG  
CCH  
V
V
V
B6  
E6  
A4  
D5  
C5  
A5  
B5  
D6  
V
V
V
V
A8  
G12  
J3  
CCHQ  
CCHQ  
CCHQ  
CCHQ  
A6  
A12  
A10  
A13  
C9  
P7  
F14  
E14  
C1  
F1  
V
C12  
K9  
CCK  
TxD  
V
CCP  
CCQ  
CCQ  
CCQ  
CCQ  
P11  
F11  
F13  
F10  
E13  
G14  
V
V
V
B7  
CCA  
CCA  
TCK  
V
V
V
J2  
TDI  
V
L8  
H12  
M8  
CCB  
CCC  
CCD  
TDO  
V
V
L3  
TEST  
TMS  
M5  
D11  
V
CCE  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-9  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
DSP56651 SIGNAL DESCRIPTION  
DSP56651 signals are organized into nineteen functional groups as summarized in  
Table 1-3. Figure 1-3 is a diagram of DSP56651 signals by functional group.  
Table 1-3 Signal Functional Group Allocations  
Number  
Detailed  
Functional Group  
of  
Description  
Signals  
Power (V  
)
20  
17  
20  
5
Table 1-4  
Table 1-5  
CCX  
Ground (GND )  
X
Substrate ground (GND)  
PLL and clocks  
Address bus  
Table 1-6  
Table 1-7  
Table 1-8  
Table 1-9  
Table 1-10  
Table 1-11  
Table 1-12  
Table 1-13  
Table 1-14  
Table 1-15  
Table 1-16  
Table 1-17  
Table 1-18  
Table 1-19  
Table 1-20  
Table 1-21  
Table 1-22  
22  
16  
4
External  
Interface  
Module  
(EIM)  
Data bus  
Bus control  
Chip selects  
6
Reset, mode, and multiplexer control  
External interrupts  
5
9
Timers  
8
Keypad port  
16  
4
Serial data port (UART)  
Serial control port (QSPI)  
Smart Card port (SIM)  
Serial audio codec port (SAP)  
Baseband codec port  
Emulation port  
8
5
6
6
6
Develop-  
ment  
and Test  
Debug control port  
2
JTAG test access port (TAP)  
6
Preliminary  
DSP56651 Technical Data Sheet  
1-10  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
6
DSP56651  
Power Inputs:  
Address Bus  
Smart Card  
Bus Control  
Data Bus  
INT0–INT5  
Interrupts  
Timers  
INT6/STDA/DSR or TRST  
INT7/SRDA/DTR/SCK or TMS  
DSP_IRQ  
2
V
V
V
V
CCA  
CCB  
CCC  
CCD  
8
TOUT0–TOUT7  
V
CCE  
Audio Codec  
Clock Output  
6
5
V
CCF  
CCG  
COL0–COL5  
COL6/OC1  
COL7/PWM  
ROW0–ROW4  
ROW5/IC2B  
ROW6/SC2A/DCD or DSP_DE  
ROW7/SCKA/RI or TCK  
2
4
V
GPIO/Keypad/Int/JTAG/UART/STO  
Baseband Codec/Timers/QSPI  
Quiet Power High  
Emulation Port  
PLL  
V
CCH  
Keypad  
Port  
V
CCHQ  
V
V
V
CCK  
CCP  
CCQ  
4
2
Internal Logic (Quiet)  
TxD or TDO  
Grounds:  
Address Bus  
Smart Card  
Bus Control  
Data Bus  
Audio Codec  
Clock Output  
GPIO/Keypad/Int/JTAG  
Baseband Codec/Timers  
Emulation Port  
PLL  
Serial  
Data Port  
(UART)  
RxD/IC1 or TDI  
RTS/IC2 or RESET_IN  
CTS or MCU_DE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A
B
C
D
5
SPICS0–SPICS4  
SCK  
MISO  
Queued  
Serial  
Port  
E
F
2
G
MOSI  
H
SIMCLK  
SENSE  
SIMDATA  
SIMRESET  
PWR_EN  
GND  
GND  
GND  
K
P
Smart  
Card  
Port  
PLL  
P1  
4
GND  
Internal Logic (Quiet)  
Substrate Ground  
Q
20  
GND  
CKIH  
STDA  
SRDA  
SCKA  
SC0A–SC2A  
PLL and  
Clocks  
CKIL  
CKO  
CKOH  
PCAP  
Serial Audio  
Codec Port  
3
3
STDB  
SRDB  
SCKB  
SC0B–SC2B  
Baseband  
Codec  
Port  
22  
16  
A0-A21  
D0-D15  
External Address Bus  
External Data Bus  
R/W  
EB0  
EB1  
OE  
Chip  
External  
Bus  
Control  
2
4
SIZ0–SIZ1  
PSTAT0–PSTAT3  
Emulation  
Port  
CS0  
CS1–CS4  
CS5  
MCU_DE  
DSP_DE  
Debug Control  
Port  
4
Selects  
TCK  
TDI  
TDO  
TMS  
TRST  
TEST  
RESET_IN  
RESET_OUT  
MOD  
JTAG  
Port  
Reset,  
Mode, and  
Multiplexer  
Control  
MUX_CTL  
STO  
AA1690  
Figure 1-3 Signals Identified by Functional Group  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-11  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Power  
Table 1-4 Power  
Power Names  
Description  
V
V
Address Bus power—These lines supply power to the address bus.  
CCA  
Smart Card interface power—This line supplies isolated power for Smart Card  
CCB  
Interface I/ O drivers.  
V
V
V
V
Bus control power—This line supplies power to the bus control logic.  
Data bus power—These lines supply power to the data bus.  
CCC  
CCD  
CCE  
CCF  
Audio codec port power—This line supplies power to audio codec I/ O drivers.  
Clock output power—This line supplies a quiet power source for the CKOUT  
output. Ensure that the input voltage to this line is well-regulated and uses an  
extremely low impedance path to tie to the V power rail. Use a 0.1 µF bypass  
CC  
capacitor located as close as possible to the chip package to connect between the  
V
line and the GND line.  
CCF  
F
V
V
V
GPIO power—This line supplies power to the GPIO, keypad, data port, interrupts,  
STO, and JTAG I/ O drivers.  
CCG  
Baseband codec and timer power—This line supplies power to the baseband codec,  
timer and QSPI I/ O drivers.  
CCH  
Quiet power high—These lines supply a quiet power source to the pre-driver  
CCHQ  
voltage converters. This value should be greater than or equal to the maximum  
value of the power supplies of the chip I/ O drivers (i.e., the maximum of V  
,
CCA  
V
, V  
, V  
, V  
, V  
, V  
, V  
, and V  
).  
CCB CCC  
CCD  
CCE  
CCF  
CCG  
CCH  
CCK  
V
V
Emulation port power—This line supplies power to the emulation port I/ O drivers.  
CCK  
Analog PLL circuit power—This line is dedicated to the analog PLL circuits and  
must remain noise-free to ensure stable PLL frequency and performance. Ensure  
that the input voltage to this line is well-regulated and uses an extremely low  
CCP  
impedance path to tie to the V power rail. Use a 0.1 µF capacitor and a 0.01 µF  
CC  
capacitor located as close as possible to the chip package to connect between the  
V
line and the GND and GND lines.  
CCP  
P P1  
V
Quiet power—These lines supply a quiet power source to the internal logic circuits.  
CCQ  
Ensure that the input voltage to this line is well-regulated and uses an extremely low  
impedance path to tie to the V power rail. Use a 0.1 µF bypass capacitor located as  
CC  
close as possible to the chip package to connect between the V  
lines and the  
CCQ  
GND lines.  
Q
Preliminary  
1-12  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Ground  
Table 1-5 Ground  
Ground Names  
Description  
GND  
GND  
Address Bus ground—These lines connect system ground to the address bus.  
A
B
Smart Card interface ground—These lines connect system ground to the Smart  
Card bus.  
GND  
GND  
GND  
Bus control ground—This line connects ground to the bus control logic.  
Data bus ground—These lines connect system ground to the data bus.  
C
D
E
Audio codec port ground—These lines connect system ground to the audio codec  
port.  
GND  
Clock output ground—This line supplies a quiet ground connection for the clock  
output drivers. Ensure that this line connects through an extremely low impedance  
path to ground. Use a 0.1 µF bypass capacitor located as close as possible to the chip  
F
package to connect between the V  
line and the GND line.  
CCF  
F
GND  
GND  
GND  
GND  
GPIO ground—These lines connect system ground to GPIO, keypad, data port,  
interrupts, STO, and JTAG I/ O drivers.  
G
H
K
P
Baseband codec and timer ground—These lines connect system ground to the  
baseband codec, timer and QSPI I/ O drivers.  
Emulation port ground—These lines connect system ground to the emulation port  
I/ O drivers.  
Analog PLL circuit ground—This line supplies a dedicated quiet ground connection  
for the analog PLL circuits and must remain relatively noise-free to ensure stable  
PLL frequency and performance. Ensure that this line connects through an  
extremely low impedance path to ground. Use a 0.1 µF capacitor and a 0.01 µF  
capacitor located as close as possible to the chip package to connect between the  
V
line and the GND line.  
CCP  
P
GND  
Analog PLL circuit ground—This line supplies a dedicated quiet ground connection  
for the analog PLL circuits and must remain relatively noise-free to ensure stable  
PLL frequency and performance. Ensure that this line connects through an  
extremely low impedance path to ground. Use a 0.1 µF capacitor and a 0.01 µF  
capacitor located as close as possible to the chip package to connect between the  
P1  
V
line and the GND line.  
CCP  
P
GND  
GND  
Quiet ground—These lines supply a quiet ground connection for the internal logic  
circuits. Ensure that this line connects through an extremely low impedance path to  
ground. Use a 0.1 µF bypass capacitor located as close as possible to the chip  
Q
package to connect between the V  
line and the GND line.  
CCQ  
Q
Substrate ground—These lines must be tied to ground.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-13  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
PLL and Clock  
Table 1-6 PLL and Clock Signals  
State  
Signal  
Name  
Signal  
Type  
during  
Reset  
Signal Description  
CKIH  
Input  
Input  
Input  
High frequency clock input—This signal provides the high frequency  
input clock. This clock may be other a CMOS square wave or sinusoid  
input.  
CKIL  
CKO  
Input  
Low frequency clock input—This signal provides the low frequency  
input clock and should be less than or equal to the frequency of CKIH.  
This is the default input clock after reset.  
Output Driven  
low  
DSP/MCU output clock—This signal provides an output clock  
synchronized to the DSP or MCU core internal clock phases, according  
the selected programming option. The choices of clock source and  
enabling/ disabling the output signal are software selectable.  
CKOH  
PCAP  
Output Driven  
low  
High frequency clock output—This signal provides an output clock  
derived from the CKIH input. This signal can be enabled or disabled  
by software.  
Input/  
Indeter-  
PLL capacitor—This signal is used to connect the required external  
Output minate  
filter capacitor to the PLL filter. Connect one end of the capacitor to  
PCAP and the other to V  
. The value of the capacitor is specified in  
CCP  
Section 2 of this data sheet.  
Address Bus  
Table 1-7 Address Bus Signals  
State  
during  
Reset  
Signal  
Names  
Signal  
Signal Description  
Type  
A0–A21  
Output  
Driven  
low  
Address bus—These signals specify the address for external  
memory accesses. If there is no external bus activity, A0–A21  
remain at their previous values to reduce power consumption.  
Preliminary  
1-14  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Data Bus  
Table 1-8 Data Bus Signals  
State  
during  
Reset  
Signal  
Names  
Signal  
Type  
Signal Description  
D0–D15  
Input/  
Output  
Input  
Data bus—These signals provide the bidirectional data bus for  
external memory accesses. D0–D15 are held in the previous logic  
state when there is no external bus activity and during hardware  
reset. This is done with weak “keepers” inside the I/ O buffers.  
Bus Control  
Table 1-9 Bus Control Signals  
State  
Signal Signal  
during  
Reset  
Signal Description  
Name  
Type  
R/ W  
Output Driven  
high  
Read/write—This signal indicates the bus access type. A high signal  
indicates a bus read. A low signal indicates a write to the bus. When  
accessing memory it can also be used as write enable (WE) signal. When  
accessing a peripheral chip, the signal acts as a read/ write.  
EB0  
EB1  
OE  
Output Driven  
high  
Enable byte 0—When driven low, this signal indicates access to data  
byte 0 (D8–D15) during a read or write cycle. This pin may also act as a  
write byte enable, if so programmed. This output is used when accessing  
16-bit wide SRAM.  
Output Driven  
high  
Enable byte 1—When driven low, this signal indicates access to data  
byte 1 (D0–D7) during a read or write cycle. This pin may also act as a  
write byte enable, if so programmed. This output is used when accessing  
16-bit wide SRAM.  
Output Driven  
high  
Bus select—When driven low, this signal indicates that the current bus  
access is a read cycle and enables slave devices to drive the data bus with  
a read.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-15  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Chip Selects  
Table 1-10 Chip Select Signals  
State  
during  
Reset  
Signal  
Type  
Signal Name  
Signal Description  
CS0  
Output Chip-  
driven  
Chip select 0—This signal is asserted low based on the decode of the  
internal address bus bits A[31:24] and is typically used as the external  
flash memory chip select. After reset, accesses using this CS have a  
default of 15 wait states.  
CS1–CS4  
Output Driven  
high  
Chip select 1–chip select 4—These signals are asserted low based  
on the decode of the internal address bus bits A[31:24] of the access  
address.  
When not selected as chip select signals, these signals become  
general purpose outputs (GPOs). After reset, these signals are  
GPOs that are driven high.  
CS5  
Output Driven  
low  
Chip select 5—This signal is asserted high based on the decode of  
the internal address bus bits A[31:24] of the access address.  
When not selected as a chip select signal, this signal becomes a  
GPO. After reset, this signal is a GPO that is driven low.  
Preliminary  
1-16  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Reset, Mode, and Multiplexer Control  
Table 1-11 Reset, Mode, and Multiplexer Control Signals  
State  
during  
Reset  
Signal  
Type  
Signal Name  
Signal Description  
RESET_IN  
Input  
Input  
Reset input—This signal is an active low Schmitt trigger input  
that provides a reset signal to the internal circuitry. The input is  
valid if it is asserted for at least three CKIL clock cycles.  
This pin has a 47kpull-up resistor.  
Note: If MUX_CTL is held high, the RTS signal of the serial data  
port (UART) becomes the RESET_IN input line.  
(See Table 1-15 on page 1-26.)  
RESET_OUT  
Output Pulled  
low  
Reset output—This signal is asserted low for at least seven CKIL  
clock cycles under one of the following conditions:  
RESET_IN is pulled low for at least three CKIL clock  
cycles  
The alternate RESET_IN signal is enabled by MUX_CTL  
and is pulled low for at least three CKIL clock cycles  
The watchdog count expires  
This signal is asserted immediately after the qualifier detects a  
valid RESET_IN signal, remains asserted during RESET_IN  
assertion, and is stretched for at least seven more CKIL clock  
cycles after RESET_IN is deasserted. Three CKIL clock cycles  
before RESET_OUT is deasserted, the MCU boot mode is latched  
from the MOD signal.  
MOD  
Input  
Input  
Mode select—This signal selects the MCU boot mode during  
hardware reset. If MOD is driven low at least four CKIL clock  
cycles before RESET_OUT is deasserted, then the internal MCU  
ROM ignores the first access and the M• CORE fetches the first  
word from the first location the external flash memory. If MOD is  
driven high four CKIL clock cycles before RESET_OUT  
deassertion, then the internal MCU ROM is enabled and the  
M• CORE fetches the first word from the first location in the  
internal ROM.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-17  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-11 Reset, Mode, and Multiplexer Control Signals (Continued)  
State  
Signal  
Signal Name  
during  
Reset  
Signal Description  
Type  
MUX_CTL  
Input  
Input  
Multiplexer control—This input allows the designer to select an  
alternate set of pins to be used for RESET_IN, the debug control  
port signals, and the JTAG signals as defined below:  
Normal  
(MUX_CTL low)  
Alternate  
(MUX_CTL high)  
TRST  
INT6/ STDA/ DSR  
INT7/ SRDA/ DTR/ SCLK  
Interrupt signals  
(See Table 1-12)  
TMS  
Keypad signals ROW6/ SC2A/ DCD  
DSP_DE  
(See Table 1-14  
on page 1-22)  
ROW7/ SCKA/ RI  
TCK  
TxD  
TDO  
TDI  
RESET_IN  
MCU_DE  
Serial Data Port  
(UART) signals  
(See Table 1-15  
on page 1-26)  
RxD/ IC1  
RTS/ IC2A  
CTS  
If MUX_CTL is driven low, the normal functions are selected. If  
MUX_CTL is driven high, the alternate functions are selection.  
Note: The user is responsible to ensure that transition between  
normal and alternate functions are made smoothly. No  
provisions are made in the on-chip hardware to assure  
such a smooth switch. The external command converter  
uses to drive this signal must ensure that critical pins  
(such as the JTAG TMS and TRST signals and RESET_IN)  
are driven with inactive values during and after the  
switch.  
The MUX_CTL signal has an internal 100 kpull-down resistor.  
STO  
Output Chip  
driven  
Soft turn off—This is a general purpose output pin. Its logic state  
is not affected by reset.  
For Reset, mode, and MUX control signals equipped with resistors, all pull-ups and  
pull-downs are automatically disconnected when the pin is an output.  
Preliminary  
1-18  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Interrupts  
Table 1-12 Interrupt Signals  
State  
during  
Reset  
Signal  
Name  
Signal  
Type  
Signal Description  
INT0–INT3 Input or Input  
Output  
Interrupt 0–interrupt 3—These signals can be programmed as  
interrupt inputs or GPIO signals. The signals have on-chip 100 kΩ  
pull-up resistors.  
As Schmitt trigger interrupt inputs the signals can be programmed  
to be level sensitive, positive edge-triggered, or negative edge-  
triggered. When edge-triggered, triggering occurs at a voltage level  
and is not directly related to the fall time of the interrupt signal;  
however, as signal fall time of the interrupt signal increases, the  
probability of generating multiple interrupts due to this noise also  
increases.  
The signals are GPIOs when not programmed as interrupts. After  
reset, the default state for these signals is general purpose input  
(GPI).  
INT4–INT5 Input or Input  
Output  
Interrupt 4–interrupt 5—These signals can be programmed as  
interrupt inputs or GPIO signals, and have 10-27kpull-up  
resistors.  
As Schmitt trigger interrupt inputs, the signals can be programmed  
to be level sensitive, positive edge-triggered, or negative edge-  
triggered. When edge-triggered, triggering occurs at a voltage level  
and is not directly related to the fall time of the interrupt signal;  
however, as signal fall time of the interrupt signal increases, the  
probability of generating multiple interrupts due to this noise also  
increases.  
The signals are GPIOs when not programmed as interrupts. After  
reset, the default state for these signals is GPI.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-19  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-12 Interrupt Signals (Continued)  
State  
Signal  
Name  
Signal  
Type  
during  
Reset  
Signal Description  
Normal:  
MUX_CTL driven low  
INT6  
Input or Input  
Output  
Interrupt 6—When selected, this signal can be programmed as an  
interrupt input or a GPIO signal, and has a 47kpull-up resistor.  
As a Schmitt trigger interrupt input, the signal can be programmed  
to be level sensitive, positive edge-triggered, or negative edge-  
triggered. When edge-triggered, triggering occurs at a voltage level  
and is not directly related to the fall time of the interrupt signal;  
however, as signal fall time of the interrupt signal increases, the  
probability of generating multiple interrupts due to this noise also  
increases.  
STDA  
DSR  
Output  
Output  
Audio codec serial transmit data (alternate)—When programmed  
as STDA, this signal transmits data from the serial transmit shift  
register in the serial audio codec port.  
Note: When this signal is used as STDA, the primary STDA signal  
is disabled. (See Table 1-18 on page 1-31.)  
Data set ready—When programmed as GPIO output, this signal can  
be used as the DSR output for the serial data port. (See Table 1-15  
on page 1-26)  
The signal is a GPIO when not programmed as one of the above  
functions. After reset, the default state for this signal is GPI.  
Alternate:  
MUX_CTL driven high  
TRST  
Input  
Input  
Test Reset—When selected, this signal acts as the TRST input for the  
JTAG TAP controller. The signal is a Schmitt trigger input that  
asynchronously initializes the JTAG test controller when asserted.  
Note: When this signal is enabled, the primary TRST signal is  
disconnected from the TAP controller. (See Table 1-22.)  
Preliminary  
1-20  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-12 Interrupt Signals (Continued)  
State  
Signal  
Name  
Signal  
Type  
during  
Reset  
Signal Description  
Normal:  
MUX_CTL driven low  
INT7  
Input or Input  
Output  
Interrupt 7—When selected, this signal can be programmed as an  
interrupt input or a GPIO signal, and has a 47kpull-up resistor.  
As a Schmitt trigger interrupt input, the signal can be programmed  
to be level sensitive, positive edge-triggered, or negative edge-  
triggered. When edge-triggered, triggering occurs at a voltage level  
and is not directly related to the fall time of the interrupt signal;  
however, as signal fall time of the interrupt signal increases, the  
probability of generating multiple interrupts due to this noise also  
increases.  
SRDA  
Input  
Audio codec serial receive data (alternate)—When programmed as  
SRDA, this signal receives data into the serial receive shift register in  
the serial audio codec port.  
Note: When this signal is used as SRDA, the primary SRDA signal  
is disabled. (See Table 1-18 on page 1-31.)  
DTR  
Input  
Input  
Data terminal ready—When programmed as GPIO, this signal is  
used as the DTR positive and negative edge-triggered interrupt  
input for the serial data port. (See Table 1-15 on page 1-26.)  
SCLK  
Serial clock–When so programmed, this signal provides the input  
clock for the serial data port (UART). (See Table 1-15 on page 1-26.)  
The signal is a GPIO when not programmed as one of the above  
functions. After reset, the default state for this signal is GPI.  
Alternate:  
MUX_CTL driven high  
TMS  
Input  
Input  
Test mode select—When selected, this signal acts as the TMS input  
for the JTAG TAP controller. The signal is used to sequence that  
TAP controller state machine. The TMS is sampled on the rising  
edge of TCK.  
Note: When this signal is enabled, the primary TMS signal is  
disconnected from the TAP controller. (See Table 1-22  
on page 1-36.)  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-21  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-12 Interrupt Signals (Continued)  
State  
Signal  
Name  
Signal  
Type  
during  
Reset  
Signal Description  
DSP_IRQ  
Input  
Input  
DSP external interrupt request—This active low Schmitt trigger  
input can be programmed as a level-sensitive or negative edge-  
triggered maskable interrupt request input during normal  
instruction processing. If the DSP is in the stop state and DSP_IRQ is  
asserted, the DSP exits the stop state.  
This signal has an on-chip 47 kpull-up resistor.  
For Interrupt signals equipped with resistors, all pull-ups and pull-downs are  
automatically disconnected when the pin is an output.  
Timers  
Table 1-13 Timer Signals  
State  
Signal  
Signal Name  
during  
Reset  
Signal Description  
Type  
TOUT0–  
TOUT7  
Input or Input  
Output  
Timer output 0–7—These are timer output signals.  
After reset, the default state for these signals is GPI.  
Note: These signals are GPIOs when not used as timer outputs.  
Keypad Port  
Table 1-14 Keypad Port Signals  
State  
during  
Reset  
Signal  
Type  
Signal Name  
Signal Description  
COL0–COL5 Input or Input  
Output  
Column strobe 0–5—These signals function as keypad column  
strobes that can be programmed as regular or open-drain outputs.  
When not used as column strobe signals, these are GPIO signals.  
After reset, the default state is GPI.  
Preliminary  
1-22  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-14 Keypad Port Signals (Continued)  
State  
during  
Reset  
Signal  
Type  
Signal Name  
COL6  
Signal Description  
Input or Input  
Output  
Column strobe 6—This signal functions as a keypad column strobe  
that can be programmed as a regular or open-drain output.  
OC1  
Output  
MCU timer 1 output compare —When programmed as OC1, this is  
the MCU Timer 1 output compare signal.  
When not programmed as OC1 and not used as a column strobe  
signal, this is a GPIO signal. After reset, the default state is GPI  
COL7  
PWM  
Input or Input  
Output  
Column strobe 7—This signal functions as a keypad column strobe  
that can be programmed as a regular or open-drain output.  
Output  
Pulse width modulator output—When so programmed, this is the  
pulse width modulator output.  
When not programmed as PWM and not used as a column strobe  
signal, this is a GPIO signal. After reset, the default state is GPI  
ROW0–  
ROW4  
Input or Input  
Output  
Row sense 0–4—These signals function as keypad row senses.  
When not used as Row Sense signals, these are GPIO signals. After  
reset, the default state is GPI. These signals have on-chip 22 kpull-  
up resistors.  
ROW5  
IC2B  
Input or Input  
Output  
Row sense 5—This signal functions as a keypad row sense.  
Input  
MCU input compare 2 timer—When so programmed, this signal  
can be the input capture for the MCU input compare 2 timer.  
When not programmed as IC2B and not used as a row sense signal,  
this is a GPIO signal. After reset, the default state is GPI.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-23  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-14 Keypad Port Signals (Continued)  
State  
Signal  
Type  
Signal Name  
during  
Reset  
Signal Description  
Normal:  
MUX_CTL driven low  
ROW6  
Input or Input  
Output  
Row sense 6—This signal functions as a keypad row sense and is  
equipped with an on-chip 100kpull-up resistor.  
SC2A  
Input or  
Output  
Audio codec serial control 2 (alternate)—When programmed as  
SC2A, this signal provides I/ O frame synchronization for the serial  
audio codec port. In synchronous mode, the signal provides the  
frame sync for both the transmitter and receiver. In asynchronous  
mode, the signal provides the frame sync for the transmitter only.  
As SC2A, this pin has a 100kpull-down resistor.  
Note: When this signal is used as SC2A, the primary SC2A signal  
is disabled. (See Table 1-18 on page 1-31.)  
DCD  
Output  
Data Carrier Detect—When programmed as GPIO output, this  
signal can be used as the DSR output for the serial data port. (See  
Table 1-15 on page 1-26.) After reset, the default state is GPI.  
Alternate:  
MUX_CTL driven high  
DSP_DE  
Input  
Input  
Digital signal processor debug event—As an input signal, this  
signal provides a means to enter the debug mode of operation from  
an external command converter. An an output signal, it acknow-  
ledges that the DSP has entered the debug mode. When program-  
med as DSP_DE, this signal has an open-drain 100kpull-up.  
Output  
When the DSP enters the debug mode due to a debug request or as  
the result of meeting a breakpoint condition, it asserts DSP_DE as  
an output signal for three clock cycles.  
Note: When this signal is enabled, the primary DSP_DE signal is  
disabled. (See Table 1-21 on page 1-35.)  
Preliminary  
1-24  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-14 Keypad Port Signals (Continued)  
State  
during  
Reset  
Signal  
Type  
Signal Name  
Signal Description  
Normal:  
MUX_CTL driven low  
ROW7  
Input or Input  
Output  
Row sense 7—This signal functions as a keypad row sense.  
Audio codec serial clock (alternate)—When programmed as SCKA,  
this signal provides the serial bit rate clock for the serial audio codec  
port. In synchronous mode, the signal provides the clock input or  
output for both the transmitter and receiver. In asynchronous mode,  
the signal provides the clock for the transmitter only.  
SCKA  
Input  
Note: When this signal is used as SCKA, the primary SCKA signal  
is disabled. (See Table 1-18 on page 1-31.)  
Ring indicator—When programmed as GPIO output, this signal  
can be used as the RI output for the serial data port. (See  
Table 1-15.) After reset, the default state is GPI.  
RI  
Output  
Alternate:  
MUX_CTL driven high  
TCK  
Input  
Input  
Test clock—When selected, this signal provides the TCK input for  
the JTAG TAP controller. The signal is used to synchronize the  
JTAG test logic. This signal is equipped with a 47kpull-up  
resistor.  
Note: When this signal is enabled, the primary TCK signal is  
disconnected from the TAP controller. (See Table 1-22  
on page 1-36.)  
For keypad port signals equipped with resistors, all pull-ups and pull-downs are  
automatically disconnected when the pin is an output.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-25  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Serial Data Port (UART)  
Table 1-15 Serial Data Port (UART) Signals  
State  
during  
Reset  
Signal  
Type  
Signal Name  
Signal Description  
Normal:  
MUX_CTL driven low  
TxD  
Input or Input  
Output  
UART transmit—This signal transmits data from the UART.  
The signal is a GPIO when not programmed as the TxD signal. After  
reset, the default state for this signal is GPI.  
Alternate:  
MUX_CTL driven high  
TDO  
Output  
Test data output—When selected, this signal provides the TDO  
serial output for test instructions and data from the JTAG TAP  
controller. TDO is a tri-state signal that is actively driven in the  
shift-IR and shift-DR controller states.  
Note: When this signal is enabled, the primary TDO signal is  
disconnected from the TAP controller. (See Table 1-22  
on page 1-36.)  
Normal:  
MUX_CTL driven low  
RxD  
Input or Input  
Output  
UART receive—This signal receives data into the UART.  
IC1  
Input  
Input compare 1—When so programmed, the signal connects to an  
input capture/ output compare timer used for autobaud mode  
support.  
The signal is a GPIO when not programmed as one of the above  
functions. This signal has an on-chip 47 kpull-up resistor. After  
reset, the default state for this signal is GPI.  
Alternate:  
MUX_CTL driven high  
TDI  
Input  
Input  
Test data in—When selected, this signal provides the TDI serial  
input for test instructions and data for the JTAG TAP controller. TDI  
is sampled on the rising edge of TCK.  
Note: When this signal is enabled, the primary TDI signal is  
disconnected from the TAP controller. (See Table 1-22  
on page 1-36.)  
Preliminary  
1-26  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-15 Serial Data Port (UART) Signals (Continued)  
State  
during  
Reset  
Signal  
Type  
Signal Name  
Signal Description  
Normal:  
MUX_CTL driven low  
RTS  
Input or Input  
Output  
Request to send—This signal functions as the UART RTS signal.  
IC2A  
Input  
Input compare 2 A—When so programmed, this signal connects to  
an input capture timer channel.  
The signal is a GPIO when not programmed as one of the above  
functions. After reset, the default state for this signal is GPI.  
Alternate:  
MUX_CTL driven high  
RESET_IN  
Input  
Input  
Reset input—This signal is an active low Schmitt trigger input that  
provides a reset signal to the internal circuitry. The input is valid if  
it is asserted for at least three CKIL clock cycles.  
Note: When this signal is enabled, the primary RESET_IN signal  
is disabled. (See Table 1-11 on page 1-17.)  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-27  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-15 Serial Data Port (UART) Signals (Continued)  
State  
Signal  
Type  
Signal Name  
during  
Reset  
Signal Description  
Normal:  
MUX_CTL driven low  
CTS  
Input or Input  
Output  
Clear to send—This signal functions as the UART CTS signal, and is  
equipped with a 47kpull-up.  
After reset, the default state for this signal is GPI.  
Note: The signal is a GPIO when not used as CTS.  
Alternate:  
MUX_CTL driven high  
MCU_DE  
Input  
Input  
Microcontroller debug event—As an input signal, this signal  
provides a means to enter the debug mode of operation from an  
external command converter. An an output signal, it acknowledges  
that the MCU has entered the debug mode. The signal is equipped  
with an open-drain 47kpull-up resistor.  
Output  
When the MCU enters the debug mode due to a debug request or as  
the result of meeting a breakpoint condition, it asserts MCU_DE as  
an output signal for several clock cycles.  
Note: When this signal is enabled, the primary MCU_DE signal is  
disabled. (See Table 1-21.)  
Note: There are four additional signals that support UART operation, provided as follows:  
DSR—data set ready. This is an alternate function for the INT6 signal. (See Table 1-12  
on page 1-19.)  
DTRdata terminal ready. This is an alternate function for the INT7 signal. (See Table 1-12  
on page 1-19.)  
DCDdata carrier detect. This is an alternate function for the ROW6 signal. (See Table 1-14  
on page 1-22.)  
RI—ring indicator. This is an alternate function for the ROW7 signal. (See Table 1-14  
on page 1-22.)  
For serial data port (UART) signals equipped with resistors, all pull-ups and  
pull-downs are automatically disconnected when the pin is an output.  
Preliminary  
1-28  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Serial Control Port  
Table 1-16 Serial Control Port Signals  
State  
Signal  
Signal Name  
Type  
during  
Reset  
Signal Description  
SPICS0–  
SPICS3  
Output Input  
Synchronous peripheral chip select 0–3—The output signals  
provide chip select signals for the queued serial peripheral interface  
(QSPI). The signals are programmable as active high or active low.  
Each signal has an on-chip 100 kpull-up resistor.  
Input or  
Output  
These are GPIO signals when the chip select functions are not being  
used. After reset, the default state for each signal is GPI.  
SPICS4  
Output Input  
Synchronous peripheral chip select 4—This output signal provides  
a chip select signal for the QSPI. This signal is programmable as  
active high or active low. This signal has an on-chip 100 kpull-  
down resistor.  
Input or  
Output  
This is a GPIO signal when the chip select function is not being  
used. After reset, the default state is GPI.  
SCK  
Output Input  
Serial clock — This output signal provides the serial clock from the  
QSPI for the accessed peripherals. There is a programmable number  
of clock cycles delay between the assertion of the chip select signal  
and the first transmission of the serial clock. The polarity and phase  
of SCK are programmable.  
Input or  
Output  
This is a GPIO signal when the SCK function is not being used.  
After reset, the default state is GPI.  
MISO  
MOSI  
Input  
Input  
Synchronous master in slave out—This input signal provides serial  
data input to the QSPI. Input data can be sampled on the rising or  
falling edge of SCK and received in QSPI RAM MSB or LSB first.  
This is a GPIO signal when the function is not being used. After  
reset, the default state is GPI.  
Input or  
Output  
Output Input  
Synchronous master out slave in—This output signal provides  
serial data from the QSPI. Output data can be sampled on the rising  
or falling edge of SCK and transmitted MSB or LSB first.  
This is a GPIO signal when the function is not being used. After  
reset, the default state is GPI.  
Input or  
Output  
For serial control port signals equipped with resistors, all pull-ups and pull-downs  
are automatically disconnected when the pin is an output.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-29  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Smart Card Port  
After rest, the default state of all Smart Card port pins is GPI. For Smart Card port  
signals equipped with resistors, all pull-ups and pull-downs are automatically  
disconnected when the pin is an output.  
Table 1-17 Smart Card Port Signals  
State  
Signal  
Signal Name  
during  
Reset  
Signal Description  
Type  
SIMCLK  
Output Input  
SIM clock—This signal is an output clock from the Smart Card port  
to the Smart Card.  
Input or  
Output  
This signal is a GPIO signal when the Smart Card Port is not being  
used.  
SENSE  
Input  
Input  
Input  
SIM sense—This signal is a Schmitt trigger input that signals when  
a Smart Card is inserted or removed.  
Input or  
Output  
This signal is a GPIO signal when the Smart Card port is not being  
used. The signal has an on-chip 100 kpull-down resistor.  
SIMDATA  
Input/  
Output  
SIM data—This bidirectional signal is used to transmit data to and  
receive data from the Smart Card. In the output state, the signal is  
open-drain.  
Input or  
Output  
This signal is a GPIO signal when the Smart Card port is not being  
used. The signal has an on-chip 47 kpull-up resistor.  
SIMRESET  
PWR_EN  
Output Input  
SIM reset—This signal is an output reset signal from the Smart  
Card port to the Smart Card. The Smart Card port can activate the  
reset of an attached Smart Card by driving SIMRESET low.  
Input or  
Output  
This signal is a GPIO signal when the Smart Card port is not being  
used.  
Output Input  
SIM power enable—This active high output enables the external  
device that supplies V to the Smart Card. If this pin is driven  
CC  
high, the external device supplies power to the Smart Card. Driving  
the signal low cuts off power to card. This permits effective power  
management and power sequencing for Smart Card enable/ disable.  
Input or  
Output  
This signal is a GPIO signal when the Smart Card port is not being  
used. This signal has an on-chip 100 kpull-down resistor.  
Preliminary  
1-30  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Serial Audio Codec Port  
After reset, the default state of all serial audio codec pins is Hi-Z. For serial audio  
codec port signals equipped with resistors, all pull-ups and pull-downs are  
automatically disconnected when the pin is an output.  
Table 1-18 Serial Audio Codec Port Signals  
State  
Signal  
Signal Name  
during  
Reset  
Signal Description  
Type  
STDA  
Input or Input  
Output  
Audio codec transmit data— This output signal transmits serial  
data from the audio codec serial transmitter shift register. It is  
equipped with a 100kpull-up resistor.  
This is a GPIO signal when STDA is not being used.  
Note: This signal is disabled if the alternate STDA function on  
INT6 is selected. (See Table 1-12 on page 1-19.)  
SRDA  
SCKA  
Input or Input  
Output  
Audio codec receive data — This input signal receives serial data  
and transfers the data to the audio codec receive shift register. It is  
equipped with a 100kpull-down resistor.  
This is a GPIO signal when SRDA is not being used.  
Note: This signal is disabled if the alternate SRDA function on  
INT7 is selected. (See Table 1-12 on page 1-19.)  
Input or Input  
Output  
Audio codec serial clock — This bidirectional signal provides the  
serial bit rate clock when only one clock is being used or the TxD  
clock otherwise. It is equipped with a 100kpull-down resistor.  
This is a GPIO signal when the serial audio codec port is not being  
used.  
Note: This signal is disabled if the alternate SCKA function on  
ROW7 is selected. (See Table 1-14 on page 1-22.)  
SC0A  
SC1A  
Input or Input  
Output  
Audio codec serial clock 0—This signals function is determined by  
the SCLK mode.  
Synchronous mode—serial I/ O flag 0  
Asynchronous mode—receive clock I/ O  
This is a GPIO signal when SC0A is not being used.  
Input or Input  
Output  
Audio codec serial clock 1—This signals function is determined by  
the SCLK mode.  
Synchronous mode—serial I/ O flag 0  
Asynchronous mode—receiver frame sync I/ O  
This is a GPIO signal when SC1A is not being used.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-31  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-18 Serial Audio Codec Port Signals (Continued)  
State  
Signal  
Type  
Signal Name  
during  
Reset  
Signal Description  
SC2A  
Input or Input  
Output  
Audio codec serial clock 2—This signals function is determined by  
the SCLK mode.  
Synchronous mode—transmitter and receiver frame sync I/ O  
Asynchronous mode—transmitter frame sync I/ O  
It is equipped with a 100kpull-down resistor.  
This is a GPIO signal when SC2A is not being used.  
Note: This signal is disabled if the alternate SC2A function on  
ROW6 is selected. (See Table 1-14 on page 1-22.)  
Baseband Codec Port  
After reset, the default state of the baseband codec port pins is Hi-Z. For baseband  
codec port signals equipped with resistors, all pull-ups and pull-downs are  
automatically disconnected when the pin is an output.  
Table 1-19 Baseband Codec Port Signals  
State  
Signal  
Signal Name  
during  
Reset  
Signal Description  
Type  
STDB  
Output Input  
Baseband codec transmit data— This output signal transmits serial  
data from the baseband codec serial transmitter shift register. This  
signal is equipped with a 100 pull-up resistor.  
Input or  
Output  
This is a GPIO signal when STDB is not being used.  
SRDB  
SCKB  
Input  
Input  
Baseband codec receive data — This input signal receives serial  
data and transfers the data to the baseband codec receive shift  
register. This signal is equipped with a 100kpull-down resistor.  
Input or  
Output  
This is a GPIO signal when SRDB is not being used.  
Input or Input  
Output  
Baseband codec serial clock — This bidirectional signal provides  
the serial bit rate clock when only one clock is being used or the TxD  
clock otherwise. This signal is equipped with a 100kpull-down  
resistor. This is a GPIO signal when the serial baseband codec port  
is not being used.  
Preliminary  
1-32  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Table 1-19 Baseband Codec Port Signals (Continued)  
State  
during  
Reset  
Signal  
Type  
Signal Name  
Signal Description  
SC0B  
Input or Input  
Output  
Baseband codec serial clock 0—This signals function is determined  
by the SCLK mode.  
Synchronous mode—serial I/ O flag 0  
Asynchronous mode—receive clock I/ O  
This signal is equipped with a 100kpull-down resistor.  
This is a GPIO signal when SC0B is not being used.  
SC1B  
SC2B  
Input or Input  
Output  
Baseband codec serial clock 1—This signals function is determined  
by the SCLK mode.  
Synchronous mode—serial I/ O flag 0  
Asynchronous mode—receiver frame sync I/ O  
This signal is equipped with a 100Kkpull-down resistor.  
This is a GPIO signal when SC1B is not being used.  
Input or Input  
Output  
Baseband codec serial clock 2—This signals function is determined  
by the SCLK mode.  
Synchronous mode—transmitter and receiver frame sync I/ O  
Asynchronous mode—transmitter frame sync I/ O  
This signal is equipped with a 100kpull-down resistor.  
This is a GPIO signal when SC2B is not being used.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-33  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Emulation Port  
After reset, the default state for the emulation port pins is GPI.  
Table 1-20 Emulation Port Signals  
State  
Signal  
Signal Name  
during  
Reset  
Signal Description  
Type  
SIZ0–SIZ1  
Input or Input  
Output  
Data size 0–1—These signals encode the data size for the current  
MCU access.  
When not programmed as data size signals, these are GPIO signals.  
The signals have on-chip 100 kpull-up resistors.  
PSTAT0–  
PSTAT3  
Input or Input  
Output  
Pipeline state 0–3—These signals encode the internal MCU  
execution unit status.  
When not programmed as pipeline state signals, these are GPIO  
signals. The signals have on-chip 100 kpull-up resistors.  
Preliminary  
1-34  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
Debug Port Control  
If the MUX_CTL signal is driven high, the alternate MCU_DE and DSP_DE signal locations  
are selected, and this interface is disabled. For debug port control signals equipped with  
resistors, all pull-ups and pull-downs are automatically disconnected when the pin is  
an output  
Table 1-21 Debug Port Control Signals  
State  
Signal  
Signal Name  
during  
Reset  
Signal Description  
Type  
MCU_DE  
Input  
Input  
Microcontroller debug event—As an input signal, this signal  
provides a means to enter the debug mode of operation from an  
external command converter. An an output signal, it acknowledges  
that the MCU has entered the debug mode. This signal is equipped  
with an open-drain 47kpull-up resistor.  
Output  
Input  
When the MCU enters the debug mode due to a debug request or as  
the result of meeting a breakpoint condition, it asserts MCU_DE  
as an output signal for three clock cycles.  
DSP_DE  
Input  
Digital signal processor debug event—As an input signal, this  
signal provides a means to enter the debug mode of operation from  
an external command converter. An an output signal, it acknow-  
ledges that the DSP has entered the debug mode.This signal is  
equipped with an open-drain 4kK pull-up resistor.  
Output  
When the DSP enters the debug mode due to a debug request or as  
the result of meeting a breakpoint condition, it asserts DSP_DE as  
an output signal for three clock cycles.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
1-35  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Pin and Signal Descriptions  
DSP56651 Signal Description  
JTAG Port  
When the bottom connector pins are selected as a debug port by holding the  
MUX_CTL pin at a logic high, the dedicated JTAG pins become inactive. That is, they  
are disconnected from the JTAG TAP controller. For JTAG signals equipped with  
resistors, all pull-ups and pull-downs are automatically disconnected when the pin is  
an output.  
Table 1-22 JTAG Port Signals  
State  
Signal  
Signal Name  
during  
Reset  
Signal Description  
Type  
TMS  
Input  
Input  
Test mode select—TMS is an input signal used to sequence the test  
controllers state machine. TMS is sampled on the rising edge of  
TCK and has an internal 47 kpull-up resistor.  
MUX_CTL high: INT7 is connected to the JTAG TAP controller and  
functions as TMS, see Table 1-12 on page 1-19.)  
TDI  
Input  
Input  
Test data input—TDI is a serial test data input signal used for test  
instructions and data. TDI is sampled on the rising edge of TCK and  
has an internal 47 kpull-up resistor.  
MUX_CTL high: RxD is connected to the JTAG TAP controller and  
functions as TDI, see Table 1-15 on page 1-26.)  
TDO  
Output Tri-  
stated  
Test data output—TDO is a test data serial output signal used for  
test instructions and data. TDO is tri-statable and is actively driven  
in the shift-IR and shift-DR controller states. TDO changes on the  
falling edge of TCK.  
MUX_CTL high: TxD is connected to the JTAG TAP controller and  
functions as TDO, see Table 1-15 on page 1-26.)  
TCK  
Input  
Input  
Input  
Input  
Test clock—TCK is a test clock input signal used to synchronize the  
JTAG test logic. It has an internal 47 kpull-up resistor.  
MUX_CTL high: ROW7 is connected to the JTAG TAP controller  
and functions as TCK, see Table 1-14 on page 1-22.)  
TRST  
Test reset—TRST is an active-low Schmitt-trigger input signal used  
to asynchronously initialize the test controller. TRST has an internal  
47 kpull-up resistor.  
MUX_CTL high: INT6 is connected to the JTAG TAP controller and  
functions as TRST, see Table 1-12 on page 1-19.)  
TEST  
Input  
Input  
Factory test mode—Selects factory test mode. Reserved. This pin  
MUST be connected to ground.  
Preliminary  
1-36  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
SECTION 2  
SPECIFICATIONS  
GENERAL CHARACTERISTICS  
The DSP56651 is fabricated in high-density CMOS. The DSP56651 specifications are  
preliminary from design simulations and may not be fully tested or guaranteed at  
this early stage of the product life cycle. Finalized specifications will be published  
after full characterization and device qualifications are complete.  
MAXIMUM RATINGS  
CAUTION  
This device contains circuitry protecting  
against damage due to high static voltage or  
electrical fields; however, normal precautions  
should be taken to avoid exceeding maximum  
voltage ratings. Reliability is enhanced if  
unused inputs are tied to an appropriate logic  
voltage level (e.g., either GND or V ).  
CC  
Note: In the calculation of timing requirements, adding a maximum value of one  
specification to a minimum value of another specification does not yield a  
reasonable sum. A maximum specification is calculated using a worst case  
variation of process parameter values in one direction. The minimum  
specification is calculated using the worst case for the same parameters in the  
opposite direction. Therefore, a “maximum” value for a specification will  
never occur in the same device that has a “minimum” value for another  
specification; adding a maximum to a minimum represents a condition that  
can never exist.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
2-1  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Specifications  
Thermal characteristics  
Table 2-1 Absolute Maximum Ratings (GND = 0 V)  
Rating  
Symbol  
Value  
Unit  
Internal supply voltage  
External supply voltage  
V
–0.3 to +2.75  
–0.3 to +3.6  
–40 to +85  
V
V
CCI  
V
CCE  
Operating temperature range  
Storage temperature  
T
°C  
°C  
A
T
–55 to +125  
STG  
THERMAL CHARACTERISTICS  
Table 2-2 Thermal Characteristics  
3
Characteristic  
Symbol  
Unit  
BGA Value  
1
Junction-to-ambient thermal resistance  
R
or θ  
or θ  
TBD  
TBD  
TBD  
˚C/ W  
˚C/ W  
˚C/ W  
θJA  
JA  
JC  
2
Junction-to-case thermal resistance  
R
θJC  
Thermal characterization parameter  
Ψ
JT  
Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal-  
single-sided printed circuit board per SEMI G38-87 in natural convection.(SEMI is  
Semiconductor Equipment and Materials International, 805 East Middlefield Rd.,  
Mountain View, CA 94043, (415) 964-5111)  
2. Junction-to-case thermal resistance is based on measurements using a cold plate per  
SEMI G30-88, with the exception that the cold plate temperature is used for the case  
temperature.  
3. These are measured values; testing is not complete. Values were measured on a non-  
standard four-layer thermal test board (two internal planes) at one watt in a horizontal  
configuration.  
Preliminary  
2-2  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Specifications  
DC Electrical Characteristics  
DC ELECTRICAL CHARACTERISTICS  
Table 2-3 DC Electrical Characteristics  
Characteristics  
Internal supply voltage  
Symbol  
Min  
Typ  
Max  
Units  
V
2.3  
2.5  
3.4  
3.4  
V
V
CCI  
External supply voltage  
I/ O predriver supply voltage  
Input high voltage  
V
V
CCI  
CCE  
V
V
V
CCHQ  
CCE  
V
0.7 × V  
V + 0.2  
CCE  
V
IH  
CCE  
Input low voltage  
V
–0.3  
–10  
0.2 × V  
V
IL  
CCE  
Input leakage current  
I
10  
µA  
V
IN  
Output high voltage (I  
= –400 µA)  
V
0.75 × V  
0
V
CCE  
OH  
OH  
CCE  
Output low voltage (I = 800 µA)  
V
0.18 × V  
CCE  
V
OL  
OL  
Total stop mode (DSP and MCU stopped, PLL  
powered down, timers disabled)  
I
60  
µA  
CC_STOP  
DSP run current at 58.8 MHz (MCU stopped,  
timers disabled, DSP running algorithm from  
internal memory, BBP and SAP active)  
I
35  
mA  
CCDSP_RUN  
PLL supply current (16.8 MHz input,  
DSP freq = 58.8 MHz, MCU clock = 16.8 MHz)  
I
1.6  
4.5  
mA  
mA  
CC_PLL  
DSP wait current at 58.8 MHz (MCU stopped,  
timers disabled, BBP and SAP active)  
I
CC_DSP_WAIT  
CC_MCU_RUN  
MCU run current at 16.8 MHz (DSP and DSP PLL  
stopped, timers disabled, MCU peripherals  
active)  
I
9
3
mA  
mA  
MCU doze current at 16.8 MHz (DSP and DSP  
PLL stopped, timers disabled, MCU peripherals  
active)  
I
CC_MCU_DOZE  
MCU wait current at 16.8 MHz (DSP and DSP  
PLL stopped, timers disabled, MCU peripherals  
active)  
I
3
mA  
CC_MCU_WAIT  
Timer current (MCU and DSP stopped; 16.8 MHz  
to timer)  
I
500  
µA  
CC_TIMER  
Input capacitance per pin  
C
TBD  
pF  
IN  
1
Pull-up resistor value  
50%  
100%  
180%  
Note:  
1. Applies to 22 K and 47 K resistors.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
2-3  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
Clock Requirements  
CLOCK REQUIREMENTS  
Table 2-4 Clock Requirements  
Characteristics  
CKIH input frequency  
Symbol  
Min  
Typ  
Max  
Units  
f
f
0
0
32.768  
16.8  
MHz  
kHz  
1
CKIL input frequency  
MCU internal frequency  
DSP internal frequency  
CKIH input amplitude  
CKIL input low voltage  
CKIL input high voltage  
CKIH input impedance  
f
1
2
f
0
16.8  
58.8  
MHz  
MHz  
MCU-CLK  
f
500  
-0.3  
DSP-CLK  
V
mV  
V
I-CKIH  
IL-CKIL  
IH-CKIL  
PP  
V
0.2xV  
CCE  
V
V
2.77  
V
CCI  
R
High TBD  
MΩ  
I-CKIH  
EXTERNAL BUS INTERFACE REQUIREMENTS  
When the MCU is operating at 16.8 MHz, the bus interface can access 100 ns access  
time external memory with one wait state or 15 ns access time external memory with  
no wait states.  
AC ELECTRICAL CHARACTERISTICS  
The characteristics listed in this section are given for V  
with a capacitive load of 50 pF.  
= 2.4 V and V  
= 3.3 V  
DDE  
DDI  
Preliminary  
2-4  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
Internal Clocks  
INTERNAL CLOCKS  
For each occurrence of T , T , T , or I , substitute with the numbers in  
DCYC  
DH  
DL DC  
Table 2-6. DF, MF, and PDF are the DSP PLL division, multiplication, and pre-  
division factors set in registers.  
Table 2-5 DSP Clocks  
Characteristics  
DSP PLL input frequency  
Symbol  
Min  
Max  
Unit  
EfD  
0
16.8  
MHz  
DSP PLL input clock cycle time  
with PLL disabled  
with PLL enabled  
ET  
59.5  
59.5  
ns  
ns  
DC  
273100  
Table 2-6 Internal DSP Clocks  
Characteristics  
Symbol  
Expression  
Internal DSP operation frequency with PLL enabled  
fD  
fD  
(EfD × MF) / (PDF × DF)  
Internal DSP operation frequency with PLL  
disabled  
EfD/ 2  
Internal DSP clock high period  
with PLL disabled  
ET  
DC  
with PLL enabled and MF 4  
(Min) 0.49 × ET × PDF × DF/ MF  
(Max) 0.51 × ETDC × PDF × DF/ MF  
DC  
T
DH  
with PLL enabled and MF > 4  
(Min) 0.47 × ET × PDF × DF/ MF  
DC  
(Max) 0.53 × ETDC × PDF × DF/ MF  
Internal clock low period  
with PLL disabled  
ET  
DC  
with PLL enabled and MF 4  
(Min) 0.49 × ET × PDF × DF/ MF  
(Max) 0.51 × ETDC × PDF × DF/ MF  
DC  
T
DL  
with PLL enabled and MF > 4  
(Min) 0.47 × ET × PDF × DF/ MF  
DC  
(Max) 0.53 × ETDC × PDF × DF/ MF  
Internal clock cycle time with PLL enabled  
Internal clock cycle time with PLL disabled  
DSP instruction cycle time  
T
T
ET × PDF × DF/ MF  
DC  
DC  
2 × ET  
DC  
DC  
I
T
DC  
DCYC  
Table 2-7 MCU Clocks  
Characteristics  
Symbol  
Min  
Max  
Unit  
Frequency of the internal MCU-CLK clock  
Internal MCU-CLK clock cycle time  
fM  
0
16.8  
MHz  
ns  
T
59.5  
MC  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
2-5  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Specifications  
Phase-Locked Loop (PLL) Characteristics  
PHASE-LOCKED LOOP (PLL) CHARACTERISTICS  
Table 2-8 Phase-Locked Loop (PLL) Characteristics  
Characteristics  
Expression  
Min  
Max  
Unit  
1
VCO frequency when PLL enabled  
MF × EfD × 2 / PDF  
30  
120  
MHz  
PLL external capacitor (PCAP pin to V  
)
CCP  
(680 • MF-120) recommended  
(580 • MF-100) minimum  
(780 • MF-140) maximum  
MF 4  
2
C
PCAP  
pF  
(1100 • MF) recommended  
(830 • MF) minimum  
MF > 4  
(1470 • MF) maximum  
Notes: 1. The VCO output is further divided by 2 when PLL is enabled. If the division factor (DF) is 1, the  
VCO  
-------------  
2
operating frequency is  
.
2.  
C
is the value of the PLL capacitor (connected between PCAP pin and V  
).  
PCAP  
CCP  
(The recommended value for Cpcap is (680 × MF – 120) pF for MF 4 and (1100 × MF) pF for MF > 4.)  
RESET, MODE SELECT, AND INTERRUPT TIMING  
Table 2-9 Reset, Mode Select, and Interrupt Timing  
MCU @16.8  
MHz DSP  
@58.8 MHz  
Num  
Characteristics  
Expression  
Unit  
Min  
Max  
1
2
RESET_IN duration to guarantee reset  
3 × T  
+ 0.05  
91.6  
µs  
µs  
CKIL  
Delay from RESET_IN assertion to RESET_OUT  
assertion  
min: 4.5 × T  
max: 5.5 × T  
137.33  
CKIL  
CKIL  
167.85  
3
4
Duration of RESET_OUT assertion  
7 × T  
213.62  
137.33  
µs  
CKIL  
Delay from RESET_IN assertion to all pins at Reset  
Value (periodically sampled and not 100% tested)  
min: 4.5 × T  
max: 5.5 × T  
µs  
µs  
CKIL  
CKIL  
167.85  
5
6
7
MOD select setup time  
MOD select hold time  
3.5 × T  
+ 0.02  
107  
0
µs  
ns  
ns  
CKIL  
Minimum edge-triggered DSP_IRQ assertion  
width  
10  
8
Minimum edge-triggered DSP_IRQ deassertion  
width  
10  
ns  
Preliminary  
2-6  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
RESET, Mode Select, and Interrupt Timing  
Table 2-9 Reset, Mode Select, and Interrupt Timing (Continued)  
MCU @16.8  
MHz DSP  
@58.8 MHz  
Num  
Characteristics  
Expression  
Unit  
Min  
Max  
9
Minimum edge-triggered INTn width high  
Minimum edge-triggered INTn width low  
TBD  
TBD  
ns  
ns  
10  
RESET_IN  
1
RESET_OUT  
3
2
All Pins  
4
Reset Value  
AA1679  
Figure 2-1 Reset Timing  
RESET_OUT  
5
6
MOD  
AA1680  
Figure 2-2 Operating Mode Select Timing  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
2-7  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
RESET, Mode Select, and Interrupt Timing  
DSP_IRQ  
7
DSP_IRQ  
8
AA1681  
Figure 2-3 DSP External Interrupt Timing (Negative Edge-Triggered)  
INTn  
9
INTn  
10  
AA1682  
Figure 2-4 INT0-INT7 External Interrupt Timing  
Preliminary  
2-8  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
External Interface Module (EIM) Timing  
EXTERNAL INTERFACE MODULE (EIM) TIMING  
The EIM provides the bus interface between the DSP56651 and external memory and  
peripherals. It uses the external address bus, data bus, bus control signals, and the  
chip select signals.  
1
Table 2-10 EIM External Bus Output AC Timing Specifications  
MCU @16.8 MHz  
Num  
Characteristics  
Unit  
Min  
Max  
2
11  
12  
13  
14  
15  
MCU_CLK rise to address and R/ W valid  
0
4
4
ns  
ns  
ns  
ns  
ns  
MCU_CLK rise to address and R/ W invalid (output hold)  
MCU_CLK rise to CS asserted  
0
MCU_CLK rise to CS deasserted (output hold)  
4
MCU_CLK fall to OE, EB asserted (read, OEA = 0),  
3
EB asserted (write)  
3
16  
17  
MCU_CLK rise to OE, EB asserted (read, OEA = 1)  
0
4
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3
MCU_CLK rise to OE, EB deasserted (output hold) (read)  
MCU_CLK rise to EB deasserted (output hold) (write, WEN = 0)  
MCU_CLK fall to EB deasserted (output hold) (write, WEN = 1)  
0
18  
19  
0
3
MCU_CLK fall to OE, EB asserted (WSC = 0)  
0
3
20  
MCU_CLK rise to OE, EB deasserted (output hold) (WSC = 0)  
4
21  
Data-in valid to MCU_CLK rise (setup)  
15  
0
22  
MCU_CLK rise to data-in invalid (hold)  
23  
MCU_CLK rise to data-out valid  
0
24  
MCU_CLK rise to data-out invalid (output hold)  
MCU_CLK rise to data-out high impedance  
MCU_CLK fall to data-out valid (WSC = 0)  
MCU_CLK rise to data-out invalid (output hold) (WSC = 0)  
MCU_CLK rise to data-out high impedance (WSC = 0)  
1. The following notes apply to this table:  
4
25  
0
26  
6
27  
6
28  
Note:  
Output timing is measured at the pin. The specifications assume a capacitive load of 50 pF.  
R/ W, EB, and CS deassertion to address change is 0 ns minimum.  
MCU_CLK can be viewed on the CKO pin by programming the clock control register (CKCTL).  
2. Address setup to R/ W and CS assertion is 0 ns minimum.  
3. EB outputs are asserted for reads if the EBC bit in the corresponding CS control register is clear.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
2-9  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
External Interface Module (EIM) Timing  
MCU_CLK  
11  
ADDRESS  
R/W  
12  
14  
13  
CS  
15  
OE, EB (OEA=0)  
(READ)  
17  
16  
(OEA=1)  
OE, EB  
(READ)  
17  
17  
15  
15  
19  
EB (WEN=0)  
(WRITE)  
EB (WEN=1)  
(WRITE)  
18  
OE, EB (WSC=0)  
20  
22  
21  
DATA in  
(READ)  
23  
25  
DATA out  
(WRITE)  
24  
28  
26  
(WSC=0)  
DATA out  
(WRITE)  
27  
AA1683  
Figure 2-5 EIM Read/ Write Timing  
Preliminary  
2-10  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
Smart Card Timing  
SMART CARD TIMING  
Table 2-11 Smart Card Port to Smart Card AC Timing  
CKIH @16.8 MHz  
Num  
Characteristics  
Unit  
Min  
Max  
31 SIMRESET low to SIMCLK low  
32 SIMCLK deactivated to SIMDATA tri-state to low  
1.18  
1.18  
200/ f  
200/ f  
200/ f  
µs  
µs  
µs  
ns  
µs  
33 SIMDATA low to PWR_EN low  
34 SIMRESET low  
1.18  
40000/ f  
57  
35 SENSE high to SIMRESET low  
76  
Note: “f” is CKIH/ 4 (for 5 V sims) or CKIH/ 5 (for 3 V sims), as programmed in the Smart Card port.  
SENSE  
35  
34  
SIMRESET  
31  
SIMCLK  
32
SIMDATA  
33  
PWR_EN  
AA1684  
Figure 2-6 Smart Card Interface Power Down AC Timing  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
2-11  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
QSPI Timing  
QSPI TIMING  
The QSPI uses the signals in the serial control port to select individual serial  
peripherals (using the SPI chip select signals) and transfer data between peripherals  
and the DSP56651.  
Table 2-12 QSPI Timing  
MCU_CLK  
@ 16.8 MHz  
Num  
Characteristics  
Symbol  
Expression  
Unit  
Min  
Max  
301 Cycle time  
T
1
1
504  
252  
T
T
QCYC  
MC  
MC  
302 Clock (SCK) high or low time  
303 Chip-select lag time  
304 Inter-queue transfer delay  
305 Chip-select lead time  
306 Data setup time (inputs)  
307 Data hold time (inputs)  
308 Data valid (after SCK edge)  
309 Data hold time (outputs)  
310 Rise time  
T
SW  
T
T
LAG  
QCYC  
QCYC  
T
1
T
T
TD  
T
1
128  
6
LEAD  
QCYC  
T
0
nS  
SU  
T
0.5  
–2  
T
HI  
QCYC  
T
nS  
V
T
10  
10  
nS  
nS  
nS  
HO  
T
I
311 Fall time  
T
F
305  
303  
PCS [4:0]  
301  
304  
310  
302  
SCK (CSPOL = 0)  
304  
SCK (CSPOL = 1)  
307  
311  
306  
MISO  
MOSI  
MSB IN  
DATA  
LSB IN  
MSB IN  
309  
308  
LSB OUT  
MSB OUT  
DATA  
MSB OUT  
AA1685  
Figure 2-7 QSPI Timings for CPHA = 0  
Preliminary  
2-12  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
Audio Serial Codec and Baseband Serial Codec Timing  
303  
305  
PCS [4:0]  
310  
311  
304  
301  
SCK (CSPOL = 0)  
SCK (CSPOL = 1)  
302  
302  
307  
306  
MISO  
MOSI  
MSB IN  
DATA  
LSB IN  
MSB IN  
308  
309  
LSB OUT  
MSB OUT  
DATA  
MSB OUT  
AA1686  
Figure 2-8 QSPI Timings for CPHA = 1  
AUDIO SERIAL CODEC AND BASEBAND SERIAL CODEC TIMING  
The audio serial codec port (also called the serial audio port or SAP) and the  
baseband serial codec port (also called the baseband port or BBP) have the same  
timing specifications. The timing table uses the following acronyms to describe the  
signal parameters:  
tSSICC = BBP/ SAP clock cycle time  
TXC (SCKA/ SCKB Pin) = Transmit clock  
RXC (SC0A/ SC0B or SCKA/ SCKB Pin) = Receive clock  
FST (SC2A/ SC2B Pin) = Transmit frame sync  
FSR (SC1A/ SC1B or SC2A/ SC2B Pin) = Receive frame sync  
ick = Internal clock  
xck = External Clock  
i ck a = Internal clock, asynchronous mode (asynchronous  
implies that TXC and RXC are two different clocks)  
i ck s = Internal clock, synchronous mode (synchronous implies  
that TXC and RXC are the same clock)  
bl = Bit length  
wl = Word length  
wr = Word length relative  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
2-13  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
Audio Serial Codec and Baseband Serial Codec Timing  
Table 2-13 SAP and BBP Timing  
DSP @ 58.8  
MHz  
Num  
Characteristics  
Symbol  
Expression  
Case Unit  
Min Max  
1
430 Clock cycle  
t
4 × T  
3 × T  
68  
51  
i ck  
x ck  
ns  
ns  
DC  
DC  
SSICC  
431 Clock high period  
for internal clock  
2 × T  
1.5 × T  
– 12.2 21.8  
ick  
xck  
ns  
ns  
DC  
for external clock  
25.5  
DC  
432 Clock low period  
for internal clock  
2 × T  
– 12.2 21.8  
ick  
xck  
ns  
ns  
DC  
for external clock  
1.5 × T  
25.5  
DC  
433 RXC rising edge to FSR out (bl) high  
434 RXC rising edge to FSR out (bl) low  
435 RXC rising edge to FSR out (wr) high  
45.1 x ck  
26.8 i ck a  
ns  
ns  
45.1 x ck  
26.8 i ck a  
ns  
ns  
2
47.6 x ck  
29.3 i ck a  
ns  
ns  
2
436 RXC rising edge to FSR out (wr) low  
437 RXC rising edge to FSR out (wl) high  
438 RXC rising edge to FSR out (wl) low  
439 Data in setup time before RXC  
47.6 x ck  
29.3 i ck a  
ns  
ns  
45.9 x ck  
25.6 i ck a  
ns  
ns  
45.1 x ck  
26.8 i ck a  
ns  
ns  
0.0  
23.2  
x ck  
i ck  
ns  
ns  
(SCK in synchronous mode) falling edge  
440 Data in hold time after RXC  
falling edge  
6.1  
3.6  
x ck  
i ck  
ns  
ns  
441 FSR input (bl, wr) high before RXC  
1.2  
28.0  
x ck  
i ck a  
ns  
ns  
2
falling edge  
442 FSR input (wl) high before RXC  
falling edge  
1.2  
28.0  
x ck  
i ck a  
ns  
ns  
443 FSR input hold time after RXC falling  
edge  
3.6  
0.0  
x ck  
i ck a  
ns  
ns  
444 Flags input setup before RXC  
falling edge  
0.0  
23.2  
x ck  
i ck s  
ns  
ns  
445 Flags input hold time after RXC  
falling edge  
7.3  
0.0  
x ck  
i ck s  
ns  
ns  
Preliminary  
DSP56651 Technical Data Sheet  
2-14  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Specifications  
Audio Serial Codec and Baseband Serial Codec Timing  
Table 2-13 SAP and BBP Timing (Continued)  
DSP @ 58.8  
MHz  
Num  
Characteristics  
Symbol  
Expression  
Case Unit  
Min Max  
446 TXC rising edge to FST out (bl) high  
447 TXC rising edge to FST out (bl) low  
448 TXC rising edge to FST out (wr) high  
35.4 x ck  
18.3 i ck  
ns  
ns  
37.8 x ck  
20.7 i ck  
ns  
ns  
2
37.8 x ck  
20.7 i ck  
ns  
ns  
2
449 TXC rising edge to FST out (wr) low  
450 TXC rising edge to FST out (wl) high  
451 TXC rising edge to FST out (wl) low  
40.3 x ck  
23.2 i ck  
ns  
ns  
36.6 x ck  
19.5 i ck  
ns  
ns  
37.8 x ck  
20.7 i ck  
ns  
ns  
452 TXC rising edge to data out enable from  
high impedance  
37.8 x ck  
20.7 i ck  
ns  
ns  
454 TXC rising edge to data out valid  
35 + 0.5 × T  
43.5 x ck  
25.6 i ck  
ns  
ns  
DC  
455 TXC rising edge to data out high  
37.8 x ck  
19.5 i ck  
ns  
ns  
3
impedance  
457 FST input (bl, wr) setup time before TXC  
2.0  
21.0  
x ck  
i ck  
ns  
ns  
2
falling edge  
458 FST input (wl) to data out enable from  
32.9  
ns  
3
high impedance  
460 FST input (wl) setup time before TXC  
falling edge  
2.0  
21.0  
x ck  
i ck  
ns  
ns  
461 FST input hold time after TXC falling  
edge  
4.0  
0.0  
x ck  
i ck  
ns  
ns  
462 Flag output valid after TXC rising edge  
39.0 x ck  
22.0 i ck  
ns  
ns  
Note:  
1. For internal clock, external clock cycle is defined by I  
and BBP/ SAP control register.  
CYC  
2. Word relative frame sync signal wave form, relates to clock, as the bit length frame sync signal wave  
form, but spreads from one serial clock before first bit clock (same as bit length frame sync signal),  
until the one before last bit clock of the first word in frame.  
3. Periodically sampled and not 100% tested.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
2-15  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
Audio Serial Codec and Baseband Serial Codec Timing  
430  
431  
TXC  
432  
(Input/Output)  
447  
446  
FST (Bit)  
Out  
FST (Word)  
Out  
450  
451  
Data Out  
455  
452  
455  
457  
FST (Bit) In  
First Bit  
Last Bit  
460  
461  
FST (Word) In  
Flags Out  
458  
461  
460  
462  
AA1687  
Note: In the network mode, output flag transitions can occur at the start of each time slot  
within the frame. In the normal mode, the output flag state is asserted for the entire  
frame period.  
Figure 2-9 BBP and SAP Transmitter Timing  
Preliminary  
2-16  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
Audio Serial Codec and Baseband Serial Codec Timing  
430  
431  
432  
434  
RXC  
(Input/Output)  
433  
FSR (Bit)  
Out  
FSR (Word)  
Out  
437  
438  
Data In  
440  
439  
443  
FSR (Bit)  
In  
First Bit  
Last Bit  
441  
FSR (Word)  
In  
Flags In  
442  
443  
444  
445  
AA1688  
Figure 2-10 BBP And SAP Receiver Timing  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
2-17  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
JTAG Port Timing  
JTAG PORT TIMING  
Table 2-14 JTAG Timing  
DSP @ 58.8 MHz  
Num  
Characteristics  
Expression  
Unit  
Min  
Max  
500  
1/ (3 × T  
)
0.0  
45.0  
20.0  
0.0  
19.6  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK frequency of operation  
DC  
501 TCK cycle time in crystal mode  
502 TCK clock pulse width measured at 1.5 V  
503 TCK rise and fall times  
3.0  
504 Boundary scan input data setup time  
505 Boundary scan input data hold time  
506 TCK low to output data valid  
507 TCK low to output high impedance  
508 TMS, TDI data setup time  
5.0  
24.0  
0.0  
40.0  
40.0  
0.0  
5.0  
509 TMS, TDI data hold time  
25.0  
0.0  
510 TCK low to TDO data valid  
511 TCK low to TDO high impedance  
512 TRST assert time  
44.0  
44.0  
0.0  
100.0  
40.0  
513 TRST setup time to TCK low  
501  
502  
502  
V
M
V
M
V
TCK  
(Input)  
IH  
V
IL  
503  
503  
AA0496  
Figure 2-11 Test Clock Input Timing Diagram  
Preliminary  
2-18  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
JTAG Port Timing  
V
TCK  
(Input)  
IH  
V
IL  
504  
505  
Data  
Inputs  
Input Data Valid  
506  
507  
506  
Data  
Output Data Valid  
Outputs  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
AA0497  
Figure 2-12 Boundary Scan (JTAG) Timing Diagram  
TCK  
(Input)  
513  
TRST  
(Input)  
AA1689  
512  
Figure 2-13 TRST Timing Diagram  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
2-19  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Specifications  
JTAG Port Timing  
V
IH  
TCK  
(Input)  
V
IL  
509  
508  
TDI  
TMS  
Input Data Valid  
(Input)  
510  
TDO  
(Output)  
Output Data Valid  
511  
TDO  
(Output)  
510  
TDO  
(Output)  
Output Data Valid  
AA0498  
Figure 2-14 Test Access Port Timing Diagram  
Preliminary  
2-20  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
SECTION 3  
PACKAGING  
PACKAGE INFORMATION  
This section provides information about the available packages for this product. The  
DSP56651 is available in a 196-pin plastic ball grid array (PBGA) package.  
The DSP56651 part (RAM-based DSP program memory) is delivered in a 17-mm  
(outline) PBGA package having a solder-ball footprint identical to that of the  
15 mm PBGA. Compatibility between the footprints of the two packages is  
maintained to minimize impact to the customers application board routing, such  
that the same board can be used for both the DSP56651 and DSP56652.  
196 PBGA (GT), 17 x 17 mm, with Footprint of 15-mm PBGA  
The DSP56651 is offered in the non-JEDEC standard, 17-mm PBGA package. The  
package is “non-standard” in that the single outermost row of solder balls in the  
array is removed, leaving a 14 x 14 array (196) of solder balls. This package footprint  
is identical to that of the JEDEC standard 15 mm (outline) 196 PBGA. The pitch of the  
solder balls is 1 mm. Refer to the following table and figure for package drawing  
and dimensions.  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
3-1  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Packaging  
PBGA Package Dimensions  
PBGA PACKAGE DIMENSIONS  
Table 3-1 Dimensions for 196 PBGA (17-mm Outline)  
MILLIMETERS  
DIM  
MIN  
MAX  
A
A1  
A2  
A3  
b
1.32  
0.27  
0.30  
0.75  
0.35  
1.75  
0.47  
0.40  
0.88  
0.65  
D
17.00 BASIC  
13.00 BASIC  
D1  
D2  
E
TBD  
17.00  
17.00 BASIC  
13.00 BASIC  
E1  
E2  
e
TBD  
1.00  
17.00  
BASIC  
2.50  
R1  
Preliminary  
3-2  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Packaging  
PBGA Package Mechanical Drawing  
PBGA PACKAGE MECHANICAL DRAWING  
D
E
E2  
2x R R1  
D2  
4X R R1  
A2  
D1  
e/2  
13x, e  
A3  
A1  
P
N
M
L
A
K
J
H
E1  
G
F
e/2  
E
D
C
B
A
1 2 3 4 5 6 7 8 9 10 11 12 13 14  
196x, b  
AA1696  
Figure 3-1 DSP56651 Mechanical Drawing  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
3-3  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Packaging  
Ordering Drawings  
ORDERING DRAWINGS  
Complete mechanical information regarding DSP56651 packaging is available by  
facsimile through Motorola's Mfax system. Call the following number to obtain  
information by facsimile:  
(602) 244-6591  
The Mfax automated system requests the following information:  
The receiving facsimile telephone number including area code or country  
code  
The caller’s personal identification number (PIN)  
Note: For first time callers, the system provides instructions for setting up a PIN,  
which requires entry of a name and telephone number.  
The type of information requested:  
Instructions for using the system  
A literature order form  
Specific part technical information or data sheets  
Other information described by the system messages  
A total of three documents may be ordered per call.  
The DSP56651 196-pin PBGA package mechanical drawing is referenced as Case  
1128-01 Rev. D.  
Preliminary  
3-4  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
SECTION 4  
DESIGN CONSIDERATIONS  
HEAT DISSIPATION  
An estimation of the chip junction temperature, T , in °C can be obtained from the  
J
equation:  
Equation 1: TJ = TA + (PD × RθJA  
)
Where:  
T = ambient temperature ˚C  
A
R
= package junction-to-ambient thermal resistance ˚C/ W  
θJA  
P = power dissipation in package  
D
Historically, thermal resistance has been expressed as the sum of a junction-to-case  
thermal resistance and a case-to-ambient thermal resistance:  
Equation 2: RθJA = RθJC + RθCA  
Where:  
R
R
R
= package junction-to-ambient thermal resistance ˚C/ W  
= package junction-to-case thermal resistance ˚C/ W  
= package case-to-ambient thermal resistance ˚C/ W  
θJA  
θJC  
θCA  
R
is device-related and cannot be influenced by the user. The user controls the  
θJC  
thermal environment to change the case-to-ambient thermal resistance, R  
. For  
θCA  
example, the user can change the air flow around the device, add a heat sink, change  
the mounting arrangement on the printed circuit board, or otherwise change the  
thermal dissipation capability of the area surrounding the device on a printed circuit  
board. This model is most useful for ceramic packages with heat sinks; Ninety  
percent of the heat flow is dissipated through the case to the heat sink and out to the  
ambient environment. For ceramic packages, in situations where the heat flow is split  
between a path to the case and an alternate path through the printed circuit board,  
analysis of the device thermal performance may need the additional modeling  
capability of a system level thermal simulation tool.  
The thermal performance of plastic packages is more dependent on the temperature  
of the printed circuit board to which the package is mounted. Again, if the  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
4-1  
For More Information On This Product,  
Go to: www.freescale.com  
 
Freescale Semiconductor, Inc.  
Design Considerations  
Heat Dissipation  
estimations obtained from R  
do not satisfactorily answer whether the thermal  
θJA  
performance is adequate, a system level model may be appropriate.  
A complicating factor is the existence of three common ways for determining the  
junction-to-case thermal resistance in plastic packages:  
To minimize temperature variation across the surface, the thermal resistance  
is measured from the junction to the outside surface of the package (case)  
closest to the chip mounting area when that surface has a proper heat sink.  
To define a value approximately equal to a junction-to-board thermal  
resistance, the thermal resistance is measured from the junction to where the  
leads are attached to the case.  
If the temperature of the package case (T ) as determined by a thermocouple,  
T
the thermal resistance is computed using the value obtained by the equation  
(T - T )/ P .  
J
T
D
As noted above, the junction-to-case thermal resistances quoted in this data sheet are  
determined using the first definition. From a practical standpoint, this value is also  
suitable for determining the junction temperature from a case thermocouple reading  
in forced convection environments. In natural convection, using the junction-to-case  
thermal resistance to estimate junction temperature from a thermocouple reading on  
the case of the package will estimate a junction temperature slightly hotter than  
actual temperature. Hence, the new thermal metric, thermal characterization  
parameter or Ψ , has been defined to be (T - T )/ P . This value gives a better  
JT  
J
T
D
estimate of the junction temperature in natural convection when using the surface  
temperature of the package. Remember that surface temperature readings of  
packages are subject to significant errors caused by inadequate attachment of the  
sensor to the surface and to errors caused by heat loss to the sensor. The  
recommended technique is to attach a 40-gauge thermocouple wire and bead to the  
top center of the package with thermally conductive epoxy.  
Note: Table 2-2 on page 2-2 of this document contains the package thermal values  
for this chip.  
Preliminary  
4-2  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Design Considerations  
Electrical Design Considerations  
ELECTRICAL DESIGN CONSIDERATIONS  
CAUTION  
This device contains protective circuitry to  
guard against damage due to high static  
voltage or electrical fields. However, normal  
precautions are advised to avoid application  
of any voltages higher than maximum rated  
voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage  
level (e.g., either GND or V ).  
CC  
Use the following list of recommendations to assure correct DSP operation:  
Provide a low-impedance path from the board power supply to each V pin  
on the DSP and from the board ground to each GND pin.  
CC  
Use at least four 0.1 µF bypass capacitors positioned as close as possible to the  
four sides of the package to connect the V power source to GND.  
CC  
Ensure that capacitor leads and associated printed circuit traces that connect  
to the chip V and GND pins are less than 0.5 inch per capacitor lead.  
CC  
Use at least a four-layer printed circuit board (PCB) with two inner layers for  
V
and GND.  
CC  
Because the DSP output signals have fast rise and fall times, PCB trace lengths  
should be minimal. This recommendation particularly applies to the address  
and data buses as well as the R/ W, DSP_IRQ, and INT0–INT7 signals.  
Consider all device loads as well as parasitic capacitance due to PCB traces  
when calculating capacitance. This is especially critical in systems with higher  
capacitive loads that could create higher transient currents in the V and  
CC  
GND circuits.  
All inputs must be terminated (i.e., not allowed to float) using CMOS levels.  
Take special care to minimize noise levels on the PLL supply pins (both V  
and GND).  
CC  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
4-3  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
Design Considerations  
Electrical Design Considerations  
Preliminary  
4-4  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
SECTION 5  
ORDERING INFORMATION  
Table 5-1 lists the pertinent information needed to place an order. Consult a Motorola  
Semiconductor sales office or authorized distributor to determine availability and to  
order parts.  
Table 5-1 DSP56651 Ordering Information  
Pin  
Count  
Part  
Package Type  
Order Number  
DSP56651 Plastic ball grid array (PBGA)  
196  
PC56651GC  
Preliminary  
MOTOROLA  
DSP56651 Technical Data Sheet  
5-1  
For More Information On This Product,  
Go to: www.freescale.com  
 
 
Freescale Semiconductor, Inc.  
Ordering information  
Preliminary  
5-2  
DSP56651 Technical Data Sheet  
MOTOROLA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
M• CORE, Mfax, and OnCE are trademarks of Motorola, Inc.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no  
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does  
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may  
be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual  
performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights  
of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support life, or for any other application in which the  
failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and  
hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,  
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent  
regarding the design or manufacture of the part. Motorola and  
are registered trademarks of Motorola, Inc.  
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA/Europe/Locations Not  
Asia/Pacific:  
Japan:  
Listed:  
Motorola Semiconductors H.K. Ltd.  
8B Tai Ping Industrial Park  
51 Ting Kok Road  
Nippon Motorola Ltd.  
SPD, Strategic Planning Office, 141  
4-32-1, Nishi-Gotanda  
Motorola Literature Distribution  
P.O. Box 5405  
Denver, Colorado 80217  
1 (800) 441-2447 (within US)  
1 (303) 675-2140 (outside US)  
1 (303) 675-2150 (direct FAX)  
Tai Po, N.T., Hong Kong  
852-2662928  
Shinagawa-ku, Tokyo, Japan  
81-3-5487-8488  
Technical Resource Center:  
1 (800) 521-6274  
Internet:  
Mfax™:  
RMFAX0@email.sps.mot.com  
TOUCHTONE (602) 244-6609  
www.motorola-dsp.com  
DSP Helpline  
dsphelp@dsp.sps.mot.com  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

PC567

Ultraminiature Automotive PCB Twin Power Relay
PICKER

PC5671

PC5671
RENESAS

PC5672A-12

Ultraminiature Automotive PCB Twin Power Relay
PICKER

PC5672A-12F

Ultraminiature Automotive PCB Twin Power Relay
PICKER

PC5672A-12H

Ultraminiature Automotive PCB Twin Power Relay
PICKER

PC5672A-12HF

Ultraminiature Automotive PCB Twin Power Relay
PICKER

PC5672C-12

Ultraminiature Automotive PCB Twin Power Relay
PICKER

PC5672C-12F

Ultraminiature Automotive PCB Twin Power Relay
PICKER

PC5672C-12H

Ultraminiature Automotive PCB Twin Power Relay
PICKER

PC5672C-12HF

Ultraminiature Automotive PCB Twin Power Relay
PICKER

PC56F8006VWL

Digital Signal Controller
FREESCALE

PC56F8357MPY60

16-BIT, 240MHz, OTHER DSP, PQFP160, 24 X 24 MM, 0.50 MM PITCH, PLASTIC, LQFP-160
MOTOROLA