PCA3352C [NXP]

8-bit microcontrollers with DTMF generator and 128 bytes EEPROM; 8位微控制器与双音多频发生器和128字节的EEPROM
PCA3352C
型号: PCA3352C
厂家: NXP    NXP
描述:

8-bit microcontrollers with DTMF generator and 128 bytes EEPROM
8位微控制器与双音多频发生器和128字节的EEPROM

微控制器 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总36页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
8-bit microcontrollers with DTMF  
generator and 128 bytes EEPROM  
Product specification  
1999 Oct 28  
Supersedes data of 1996 Dec 18  
File under Integrated Circuits, IC03  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
CONTENTS  
9
TIMING  
RESET  
10  
11  
12  
13  
14  
1
2
3
4
5
FEATURES  
IDLE MODE  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
STOP MODE  
INSTRUCTION SET RESTRICTIONS  
OVERVIEW OF PORT AND  
POWER-ON-RESET CONFIGURATIONS  
PINNING INFORMATION  
5.1  
5.2  
Pinning  
Pin description  
15  
16  
17  
18  
19  
20  
21  
SUMMARY OF DERIVATIVE REGISTERS  
HANDLING  
6
FREQUENCY GENERATOR  
LIMITING VALUES  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Frequency generator derivative registers  
Melody output (P1.7/MDY)  
Frequency registers  
DTMF frequencies  
Modem frequencies  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
PACKAGE OUTLINES  
SOLDERING  
Musical scale frequencies  
21.1  
21.2  
21.3  
21.4  
Reflow soldering  
Wave soldering  
DIP  
7
EEPROM AND TIMER 2 ORGANIZATION  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
EEPROM registers  
EEPROM latches  
EEPROM flags  
EEPROM macros  
EEPROM access  
Timer 2  
Repairing soldered joints  
22  
23  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
8
DERIVATIVE INTERRUPTS  
1999 Oct 28  
2
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
1
FEATURES  
2
GENERAL DESCRIPTION  
8-bit CPU, ROM, RAM, EEPROM and I/O; all in one  
(28-lead or 32-lead) package  
This data sheet details the specific properties of the  
devices referred to. The shared properties of the  
PCD33xxA family of microcontrollers are described in the  
“PCD33xxA family” data sheet, which should be read in  
conjunction with this publication.  
ROM:  
– 2 kbytes (PCA3351C and PCD3351A)  
– 4 kbytes (PCA3352C and PCD3352A)  
– 6 kbytes (PCA3353C and PCD3353A)  
RAM:  
‘PCA3351C; 52C; 53C’ denotes the types PCA3351C,  
PCA3352C and PCA3353C. Unless specified, these  
types will hereafter be referred to collectively as  
‘PCA335xC’.  
– 64 bytes (PCA3351C and PCD3351A)  
‘PCD3351A; 52A; 53A’ denotes the types PCD3351A,  
PCD3352A, PCD3353A. Unless specified, these types  
will hereafter be referred to collectively as ‘PCD335xA’.  
– 128 bytes (PCA3352C, PCD3352A, PCA3353C and  
PCD3353A)  
128 bytes Electrically Erasable Programmable  
The PCA335xC and PCD335xA are microcontrollers  
designed primarily for telephony applications. They  
include an on-chip generator for dual tone multifrequency  
(DTMF), modem and musical tones. In addition to dialling,  
generated frequencies can be made available as square  
waves for melody generation, providing ringer operation.  
Read-Only Memory (EEPROM)  
Over 100 instructions (based on MAB8048) all of  
1 or 2 cycles  
20 quasi-bidirectional I/O port lines  
8-bit programmable Timer/event counter 1  
8-bit reloadable Timer 2  
The PCA335xC and PCD335xA also incorporate  
128 bytes of EEPROM, permitting data storage without  
battery backup. The EEPROM can be used for storing  
telephone numbers, particularly for implementing redial  
functions.  
Three single-level vectored interrupts:  
– external  
– 8-bit programmable Timer/event counter 1  
– derivative; triggered by reloadable Timer 2  
The PCA335xC and PCD335xA can be emulated with the  
OTP microcontrollers PCD3755A and PCD3755E.  
See Chapter 14, Table 25.  
Two test inputs, one of which also serves as the external  
interrupt input  
DTMF, modem, musical tone generator  
The instruction set is similar to that of the MAB8048 and is  
a sub-set of that listed in the “PCD33xxA family” data  
sheet.  
Reference for supply and temperature-independent  
tone output  
Filtering for low output distortion (CEPT compatible)  
Melody output for ringer application  
Power-on-reset  
The differences between PCA335xC and PCD335xA are  
shown in Table 1.  
Table 1 Differences: PCA335xC and PCD335xA  
Stop and Idle modes  
AMBIENT  
TEMP. RANGE  
Supply voltage: 1.8 to 6 V (DTMF tone output and  
EEPROM erase/write from 2.5 V)  
TYPE  
VPOR  
PCA335xC  
PCD335xA  
fixed at 2.0 V ±0.3 V  
(1.2 to 3.6 V) ±0.5 V(1)  
0 to 50 °C  
Clock frequency: 1 to 16 MHz (3.58 MHz for DTMF  
suggested)  
25 to +70 °C  
Operating ambient temperature: 25 to +70 °C or  
0 to 50 °C  
Note  
1. See Chapter 14, Table 26.  
Manufactured in silicon gate CMOS process.  
1999 Oct 28  
3
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
3
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER(1)  
NAME  
DESCRIPTION  
VERSION  
PCA335xCP  
DIP28  
SO28  
plastic dual in-line package; 28 leads (600 mil)  
SOT117-1  
PCD335xAP  
PCA335xCT  
PCD335xAT  
PCA335xCH  
PCD335xAH  
plastic small outline package; 28 leads; body width 7.5 mm  
SOT136-1  
SOT358-1  
LQFP32  
plastic low profile quad flat package; 32 leads; body 7 × 7 × 1.4 mm  
Note  
1. The types:  
a) PCA335xC denotes: PCA3351C, PCA3352C or PCA3353C.  
b) PCD335xA denotes: PCD3351A, PCD3352A or PCD3353A.  
1999 Oct 28  
4
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
RESIDENT ROM  
P1.7/MDY P1.0 to P1.6  
7
P2.0 to P2.3  
4
TONE  
P0.0 to P0.7  
8
2 kbytes  
(PCD3351C; 51A)  
4 kbytes  
(PCD3352C; 52A)  
PORT 2  
6 kbytes  
PORT 0  
PORT 1  
BUFFER  
(PCD3353C; 53A)  
BUFFER  
BUFFER  
FILTER  
PORT 2  
PORT 0  
PORT 1  
FLIP-FLOP  
FLIP-FLOP  
FLIP-FLOP  
DECODE  
INTERNAL  
CLOCK  
FREQ.  
30  
MEMORY  
BANK  
FLIP-FLOPS  
SINE WAVE  
GENERATOR  
32  
T1  
MELODY  
CONTROL  
REGISTER  
TIMER/  
EVENT  
COUNTER  
HIGHER  
PROGRAM  
COUNTER  
LOWER  
PROGRAM  
COUNTER  
PROGRAM  
STATUS  
WORD  
PCA3351C PCD3351A  
PCA3352C PCD3352A  
PCA3353C PCD3353A  
HGF  
REGISTER  
LGF  
REGISTER  
4
8
8
5
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
EEPROM  
CONTROL  
REGISTER  
TIMER 2  
RELOAD  
REGISTER  
EEPROM  
ADDRESS  
REGISTER  
EEPROM  
DATA  
TRANSFER  
MULTIPLEXER  
TIMER 2  
REGISTER  
TEMPORARY  
REGISTER 1  
INTERRUPT  
LOGIC  
ACCUMULATOR  
REGISTER 0  
REGISTER 1  
REGISTER 2  
REGISTER 3  
REGISTER 4  
REGISTER 5  
REGISTER 6  
REGISTER 7  
RAM  
ADDRESS  
REGISTER  
derivative  
interrupt  
timer interrupt  
INSTRUCTION  
REGISTER  
AND  
ARITHMETIC  
LOGIC UNIT  
D
E
C
O
D
E
TEMPORARY  
REGISTER 2  
DECODER  
external interrupt  
8 LEVEL STACK  
(VARIABLE LENGTH)  
EEPROM  
OPTIONAL SECOND  
REGISTER BANK  
T1  
V
POWER-ON-RESET  
POR  
CE/T0  
DECIMAL  
ADJUST  
CONDITIONAL  
BRANCH  
TIMER  
FLAG  
DATA STORE  
RESET  
CARRY  
LOGIC  
STOP  
IDLE  
RESIDENT RAM ARRAY  
64 bytes  
(PCD3351C; 51A)  
ACC  
CONTROL AND TIMING  
RESET XTAL1  
ACC BIT  
TEST  
CE/T0  
XTAL2  
128 bytes  
(PCD3352C; 52A; 53C; 53A)  
INTERRUPT INITIALIZE  
OSCILLATOR  
MLA537  
Fig.1 Block diagram.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
5
PINNING INFORMATION  
Pinning  
5.1  
handbook, halfpage  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
T1  
P0.0  
1
2
3
4
5
6
7
8
9
28  
27 P2.3  
P2.2  
26  
P2.1  
25  
24  
V
DD  
23 TONE  
PCA335xC  
PCD335xA  
(1)  
V
SS  
22  
21  
20  
P2.0  
XTAL1  
P1.7/MDY  
XTAL2 10  
RESET 11  
CE/T0 12  
P1.0 13  
19 P1.6  
18 P1.5  
P1.4  
17  
(1) PCA335xC denotes:  
PCA3351C, PCA3352C or  
PCA3353C.  
16 P1.3  
15 P1.2  
PCD335xA denotes:  
PCD3351A, PCD3352A or  
PCD3353A.  
P1.1 14  
MLA538  
Fig.2 Pin configuration for DIP28 (SOT117-1) and SO28 (SOT136-1).  
n.c.  
P0.5  
P2.1  
1
2
3
4
5
6
7
8
24  
23  
V
DD  
P0.6  
22 TONE  
V
PCA335xCH  
PCD335xAH  
(1)  
21  
20  
P0.7  
SS  
T1  
P2.0  
XTAL1  
XTAL2  
RESET  
19 P1.7/MDY  
18 P1.6  
17  
n.c.  
(1) PCA335xCH denotes:  
PCA3351CH, PCA3352CH or  
PCA3353CH.  
MGB795  
PCD335xAH denotes:  
PCD3351AH, PCD3352AH or  
PCD3353AH.  
Fig.3 Pin configuration for LQFP32 (SOT358-1).  
6
1999 Oct 28  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
5.2  
Pin description  
Table 2 SOT117-1 and SOT136-1 packages (for information on parallel I/O ports, see Chapter 14)  
SYMBOL  
P0.1 to P0.7  
PIN  
TYPE  
DESCRIPTION  
1 to 7  
I/O  
I
7 bits of Port 0: 8-bit quasi-bidirectional I/O port  
Test 1 or count input of 8-bit Timer/event counter 1  
crystal oscillator or external clock input  
crystal oscillator output  
T1  
8
9
XTAL1  
XTAL2  
RESET  
CE/T0  
P1.0 to P1.6  
P1.7/MDY  
P2.0  
I
10  
O
11  
I
reset input  
12  
I
Chip Enable or Test 0  
13 to 19  
20  
I/O  
I/O  
I/O  
P
7 bits of Port 1: 8-bit quasi-bidirectional I/O port  
1 bit of Port 1: 8-bit quasi-bidirectional I/O port; or melody output  
1 bit of Port 2: 4-bit quasi-bidirectional I/O port  
ground  
21  
VSS  
22  
TONE  
VDD  
23  
O
DTMF output  
24  
P
positive supply voltage  
P2.1 to P2.3  
P0.0  
25 to 27  
28  
I/O  
I/O  
3 bits of Port 2: 4-bit quasi-bidirectional I/O port  
1 bit of Port 0: 8-bit quasi-bidirectional I/O port  
Table 3 SOT358-1 package (for information on parallel I/O ports, see Chapter 14)  
SYMBOL  
PIN  
TYPE  
DESCRIPTION  
n.c.  
1
I/O  
I
not connected  
P0.5 to P0.7  
T1  
2 to 4  
3 bits of Port 0: 8-bit quasi-bidirectional I/O port  
Test 1 or count input of 8-bit Timer/event counter 1  
crystal oscillator or external clock input  
crystal oscillator output  
5
XTAL1  
XTAL2  
RESET  
CE/T0  
P1.0 to P1.2  
n.c.  
6
I
7
O
8
9
I
reset input  
I
Chip Enable or Test 0  
10 to 12  
13  
I/O  
3 bits of Port 1: 8-bit quasi-bidirectional I/O port  
not connected  
P1.3 to P1.5  
n.c.  
14 to 16  
17  
I/O  
3 bits of Port 1: 8-bit quasi-bidirectional I/O port  
not connected  
P1.6  
18  
I/O  
I/O  
I/O  
P
1 bit of Port 1: 8-bit quasi-bidirectional I/O port  
1 bit of Port 1: 8-bit quasi-bidirectional I/O port; or melody output  
1 bit of Port 2: 4-bit quasi-bidirectional I/O port  
ground  
P1.7/MDY  
P2.0  
19  
20  
VSS  
21  
TONE  
22  
O
DTMF output  
VDD  
23  
P
positive supply voltage  
P2.1 to P2.3  
P0.0  
24 to 26  
27  
I/O  
I/O  
3 bits of Port 2: 4-bit quasi-bidirectional I/O port  
1 bit of Port 0: 8-bit quasi-bidirectional I/O port  
not connected  
n.c.  
28  
P0.1 to P0.4  
29 to 32  
I/O  
4 bits of Port 0: 8-bit quasi-bidirectional I/O port  
1999 Oct 28  
7
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
6
FREQUENCY GENERATOR  
The TONE output can alternatively issue twelve modem  
frequencies for data rates between 300 and 1200 bits/s.  
A versatile frequency generator section is provided (see  
Fig.4). For normal operation, use a 3.58 MHz quartz  
crystal or PXE resonator. The frequency generator  
includes precision circuitry for dual tone multifrequency  
(DTMF) signals, which is typically used for tone dialling  
telephone sets.  
In addition to DTMF and modem frequencies, two octaves  
of musical scale in steps of semitones are available.  
When no tones are generated the TONE output is in  
3-state mode.  
Their frequencies are provided in purely sinusoidal form on  
the TONE output or as square waves on the port line  
P1.7/MDY.  
6.1  
Frequency generator derivative registers  
6.1.1  
HIGH AND LOW GROUP FREQUENCY REGISTERS  
Table 4 gives the addresses, symbols and access types of the High Group Frequency (HGF) and Low Group Frequency  
(LGF) registers.  
Table 4 Hexadecimal addresses, symbols, access types and bit symbols of the frequency registers  
BIT SYMBOLS  
REGISTER REGISTER  
ACCESS  
TYPE  
ADDRESS  
SYMBOL  
7
H7  
L7  
6
H6  
L6  
5
H5  
L5  
4
H4  
L4  
3
H3  
L3  
2
H2  
L2  
1
H1  
L1  
0
H0  
L0  
11H  
12H  
HGF  
LGF  
W
W
6.1.2  
MELODY CONTROL REGISTER (MDYCON)  
Table 5 Melody Control Register, MDYCON (address 13H; access type R/W)  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
EMO  
Table 6 Description of MDYCON bits  
BIT  
SYMBOL  
DESCRIPTION  
7 to 1  
0
These bits are set to a logic 0.  
EMO  
Enable Melody Output. If bit EMO = 0, then P1.7/MDY is a standard port line.  
If bit EMO = 1, then P1.7/MDY is the melody output. EMO = 1 does not inhibit the port  
instructions for P1.7/MDY. Therefore the state of both port line and flip-flop may be read  
in and the port flip-flop may be written by port instructions. However, the port flip-flop of  
P1.7/MDY must remain set to avoid conflicts between melody and port outputs.  
When the HGF contents are zero while EMO = 1, P1.7/MDY is in the HIGH state.  
1999 Oct 28  
8
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
8
MELODY CONTROL  
PORT/MELODY  
OUTPUT LOGIC  
P1.7/  
MDY  
REGISTER  
square wave  
DIGITAL  
8
HGF REGISTER  
SINE WAVE  
SYNTHESIZER  
DAC  
DAC  
SWITCHED  
CAPACITOR  
BANDGAP  
VOLTAGE  
REFERENCE  
SWITCHED  
CAPACITOR  
LOW-PASS  
FILTER  
RC LOW-PASS  
FILTER  
TONE  
8
INTERNAL BUS  
MLC416  
DIGITAL  
8
LGF REGISTER  
SINE WAVE  
SYNTHESIZER  
Fig.4 Block diagram of the frequency generator and melody output (P1.7/MDY) section.  
1999 Oct 28  
9
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
6.2  
Melody output (P1.7/MDY)  
6.4  
DTMF frequencies  
The melody output (P1.7/MDY) is very useful for  
generating musical notes when a purely sinusoidal signal  
is not required, such as for ringer applications.  
Assuming an oscillator frequency fxtal = 3.58 MHz, the  
DTMF standard frequencies can be implemented as  
shown in Table 7.  
The square wave (duty cycle = 12  
23 or 52%) will include  
The relationships between telephone keyboard symbols,  
DTMF frequency pairs and the frequency register contents  
are given in Table 8.  
the attenuated harmonics of the base frequency, which is  
defined by the contents of the HGF register (Table 4).  
However, even higher frequency notes may be produced  
since the low-pass filtering on the TONE output is not  
applied to the P1.7/MDY output. This results in the  
minimum decimal value x in the HGF register (see  
equation in Section 6.3) being 2 for the P1.7/MDY output,  
rather than 60 for the TONE output. A sinusoidal TONE  
output is produced at the same time as the melody square  
wave, but due to the filtering, the higher frequency sine  
waves with x < 60 will not appear at the TONE output.  
Table 7 DTMF standard frequencies and their  
implementation; value = LGF, HGF contents  
FREQUENCY (Hz)  
DEVIATION  
VALUE  
(HEX)  
STANDARD GENERATED  
(%)  
(Hz)  
0.90  
0.46  
DD  
C8  
B5  
A3  
7F  
72  
697  
770  
697.90  
770.46  
0.13  
0.06  
852  
850.45  
0.18 1.55  
0.24 2.23  
0.21 2.55  
Since the melody output is shared with P1.7, the port  
flip-flop of P1.7 has to be set HIGH before using the  
melody output. This to avoid conflicts between melody and  
port outputs. The melody output drive depends on the  
configuration of port P1.7/MDY, see Chapter 14, Table 26.  
941  
943.23  
1209  
1336  
1477  
1633  
1206.45  
1341.66  
1482.21  
1638.24  
0.42  
0.35  
0.32  
5.66  
5.21  
5.24  
67  
5D  
6.3  
Frequency registers  
The two frequency registers HGF and LGF define two  
frequencies. From these, the digital sine synthesizers  
together with the Digital-to-Analog Converters (DACs)  
construct two sine waves. Their amplitudes are precisely  
scaled according to the bandgap voltage reference. This  
ensures tone output levels independent of supply voltage  
and temperature.  
Table 8 Dialling symbols, corresponding DTMF  
frequency pairs and frequency register contents  
TELEPHONE DTMF FREQ.  
LGF  
VALUE  
(HEX)  
HGF  
VALUE  
(HEX)  
KEYBOARD  
SYMBOLS  
PAIRS  
(Hz)  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
(941, 1336)  
(697, 1209)  
(697, 1336)  
(697, 1477)  
(770, 1209)  
(770, 1336)  
(770, 1477)  
(852, 1209)  
(852, 1336)  
(852, 1477)  
(697, 1633)  
(770, 1633)  
(852, 1633)  
(941, 1633)  
(941, 1209)  
(941, 1477)  
A3  
DD  
DD  
DD  
C8  
C8  
C8  
B5  
B5  
B5  
DD  
C8  
B5  
A3  
A3  
A3  
72  
7F  
72  
67  
7F  
72  
67  
7F  
72  
67  
5D  
5D  
5D  
5D  
7F  
67  
The amplitude of the Low Group Frequency sine wave is  
attenuated by 2 dB compared to the amplitude of the High  
Group Frequency sine wave.  
The two sine waves are summed and then filtered by an  
on-chip switched capacitor and RC low-pass filters. These  
guarantee that all DTMF tones generated fulfil the CEPT  
recommendations with respect to amplitude, frequency  
deviation, total harmonic distortion and suppression of  
unwanted frequency components.  
The value 00H in a frequency register stops the  
corresponding digital sine synthesizer. If both frequency  
registers contain 00H, the whole frequency generator is  
shut off, resulting in lower power consumption.  
The frequency of the sine wave generated from either HGF  
or LGF is a function of the decimal value ‘x’ held in the  
register. The variables are related by the equation:  
#
fxtal  
f =  
; where 60 x 255 for TONE output.  
----------------------------  
[23(x + 2)]  
1999 Oct 28  
10  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
6.5  
Modem frequencies  
Table 10 Musical scale frequencies and their  
implementation  
Again assuming an oscillator frequency fxtal = 3.58 MHz,  
the standard modem frequencies can be implemented as  
in Table 9. It is suggested to define the frequency by the  
HGF register while the LGF register contains 00H,  
disabling Low Group Frequency generation.  
HGF  
VALUE  
(HEX)  
FREQUENCY (Hz)  
STANDARD(1)  
NOTE  
GENERATED  
D#5  
E5  
F8  
EA  
DD  
D0  
C5  
B9  
AF  
A5  
9C  
93  
8A  
82  
7B  
74  
6D  
67  
61  
5C  
56  
51  
4D  
48  
44  
40  
3D  
622.3  
659.3  
622.5  
659.5  
Table 9 Standard modem frequencies and their  
F5  
698.5  
697.9  
implementation  
F#5  
G5  
740.0  
741.1  
HGF  
VALUE  
(HEX)  
FREQUENCY (Hz)  
MODEM GENERATED  
DEVIATION  
(%) (Hz)  
784.0  
782.1  
G#5  
A5  
830.6  
832.3  
9D  
82  
8F  
79  
80  
45  
76  
48  
5C  
52  
4B  
44  
980(1)  
1180(1)  
1070(2)  
1270(2)  
1200(3)  
2200(3)  
1300(4)  
2100(4)  
1650(1)  
1850(1)  
2025(2)  
2225(2)  
978.82  
1179.03  
1073.33  
1265.30  
1197.17  
2192.01  
1296.94  
2103.14  
1655.66  
1852.77  
2021.20  
2223.32  
0.12 1.18  
0.08 0.97  
880.0  
879.3  
A#5  
B5  
923.3  
931.9  
0.31  
3.33  
987.8  
985.0  
0.37 4.70  
0.24 2.83  
0.36 7.99  
0.24 3.06  
C6  
1046.5  
1108.7  
1174.7  
1244.5  
1318.5  
1396.9  
1480.0  
1568.0  
1661.2  
1760.0  
1864.7  
1975.5  
2093.0  
2217.5  
2349.3  
2489.0  
1044.5  
1111.7  
1179.0  
1245.1  
1318.9  
1402.1  
1482.2  
1572.0  
1655.7  
1768.5  
1875.1  
1970.0  
2103.3  
2223.3  
2358.1  
2470.4  
C#6  
D6  
D#6  
E6  
0.15  
0.34  
0.15  
3.14  
5.66  
2.77  
F6  
F#6  
G6  
0.19 3.80  
0.08 1.68  
G#6  
A6  
Notes  
A#6  
B6  
1. Standard is V.21.  
2. Standard is Bell 103.  
3. Standard is Bell 202.  
4. Standard is V.23.  
C7  
C#7  
D7  
D#7  
6.6  
Musical scale frequencies  
Finally, two octaves of musical scale in steps of semitones  
can be realized, again assuming an oscillator frequency  
Note  
1. Standard scale based on A4 @ 440 Hz.  
fxtal = 3.58 MHz (Table 10). It is suggested to define the  
frequency by the HGF register while the LGF contains  
00H, disabling Low Group Frequency generation  
1999 Oct 28  
11  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
7
EEPROM AND TIMER 2 ORGANIZATION  
Whereas read access times to an EEPROM are  
comparable to RAM access times, write and erase access  
times are much slower at 5 ms each. To make these  
operations more efficient, several provisions are available  
in the PCD335xA and PCA335xC.  
The PCD335xA and PCA335xC have 128 bytes of  
Electrically Erasable Programmable Read-Only Memory  
(EEPROM). Such non-volatile storage provides data  
retention without the need for battery backup. In telecom  
applications, the EEPROM is used for storing redial  
numbers and for short dialling of frequently used numbers.  
More generally, EEPROM may be used for customizing  
microcontrollers, such as to include a PIN code or a  
country code, to define trimming parameters, to select  
application features from the range stored in ROM.  
First, the EEPROM array is structured into 32 four-byte  
pages (see Fig.5) permitting access to 4 bytes in parallel  
(write page, erase/write page and erase page). It is also  
possible to erase and write individual bytes. Finally, the  
EEPROM address register provides auto-incrementing,  
allowing very efficient read and write accesses to  
sequential bytes.  
The most significant difference between a RAM and an  
EEPROM is that a bit in EEPROM, once written to a  
logic 1, cannot be cleared by a subsequent write  
operation. Successive write accesses actually perform a  
logical OR with the previously stored information.  
Therefore, to clear a bit, the whole byte must be erased  
and re-written with the particular bit cleared. Thus, an  
erase-and-write operation is the EEPROM equivalent of a  
RAM write operation  
To simplify the erase and write timing, the derivative 8-bit  
down-counter (Timer 2) with reload register is provided.  
In addition to EEPROM timing, Timer 2 can be used for  
general real-time tasks, such as for measuring signal  
duration and for defining pulse widths.  
1999 Oct 28  
12  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
5
8
EEPROM ADDRESS REGISTER  
2
2 : 4 DECODER  
5 : 32 DECODER  
EEPROM LATCH 0  
EEPROM LATCH 1  
EEPROM LATCH 2  
EEPROM LATCH 3  
F0  
F1  
F2  
F3  
8
128-byte EEPROM ARRAY  
(32 4-byte PAGES)  
8
8
8
8
8
EEPROM TEST REGISTER  
EEPROM CONTROL REGISTER  
T2F set on  
underflow  
TIMER 2 RELOAD REGISTER  
8
TIMER 2 REGISTER (T2)  
8
MGB824  
1
f
xtal  
480  
INTERNAL  
BUS  
Fig.5 Block diagram of the EEPROM and Timer 2.  
1999 Oct 28  
13  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
7.1  
EEPROM registers  
7.1.1  
EEPROM CONTROL REGISTER (EPCR)  
The behaviour of the EEPROM and Timer 2 section is defined by the EEPROM Control Register. See Tables 11, 12 and  
13.  
Table 11 EEPROM Control Register, EPCR (address 04H, access type R/W)  
7
6
5
4
3
2
1
0
STT2  
ET2I  
T2F  
EWP  
MC3  
MC2  
MC1  
0
Table 12 Description of the EPCR bits  
BIT  
SYMBOL  
DESCRIPTION  
7
STT2  
Start T2. If STT2 = 0, then Timer 2 is stopped; T2 value held. If STT2 = 1, then T2  
decrements from reload value.  
6
ET2I  
Enable T2 interrupt. If ET2I = 0, then T2F event cannot request interrupt. If ET2I = 1,  
then T2F event can request interrupt.  
5
4
T2F  
Timer 2 flag. Set when T2 underflows (or by program); reset by program.  
EWP  
Erase or write in progress (EWP). Set by program (EWP starts EEPROM erase and/or  
write and Timer 2). Reset at the end of EEPROM erase and/or write.  
3
2
1
0
MC3  
MC2  
MC1  
Mode control 3 to 1. These three bits in conjunction with bit EWP select the mode as  
shown in Table 13.  
This bit is set to a logic 0.  
Table 13 Mode selection; X = don’t care  
EWP  
MC3  
MC2  
MC1  
DESCRIPTION  
0
0
1
1
1
X
X
X
0
0
0
1
1
0
1
1
0
1
1
0
1
0
0
1
0
0
X
0
1
1
1
0
read byte  
increment mode  
write page  
erase/write page  
erase page  
not allowed  
1999 Oct 28  
14  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
7.1.2  
EEPROM ADDRESS REGISTER (ADDR)  
The EEPROM Address Register determines the EEPROM location to which an EEPROM access is directed.  
As a whole, ADDR auto-increments after read and write cycles to EEPROM, but remains fixed after erase cycles. This  
behaviour generates the correct ADDR contents for sequential read accesses and for sequential write or erase/write  
accesses with intermediate page setup. Overflow of the 8-bit counter wraps around to zero.  
Table 14 EEPROM Address Register, ADDR (address 01H, access type R/W)  
7
6
5
4
3
2
1
0
0
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
Table 15 Description of ADDR bits  
BIT  
SYMBOL  
DESCRIPTION  
7
This bit is set to a logic 0.  
6 to 2  
1 to 0  
AD6 to AD2 AD2 to AD6 select one of 32 pages.  
AD1 to AD0 AD1 and AD0 are irrelevant during erase and write cycles. For read accesses, AD0 and  
AD1 indicate the byte location within an EEPROM page. During page setup, finally, AD0  
and AD1 select EEPROM Latch 0 to 3 whereas AD2 to AD6 are irrelevant. If increment  
mode (Table 13) is active during page setup, the subcounter consisting of AD0 and AD1  
increments after every write to an EEPROM latch, thus enhancing access to sequential  
EEPROM latches. Incrementing stops when EEPROM Latch 3 is reached, i.e. when  
AD0 and AD1 are both a logic 1.  
7.1.3  
EEPROM DATA REGISTER (DATR)  
Table 16 EEPROM Data Register, DATR (address 03H; access type R/W)  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 17 Description of DATR bits  
BIT  
SYMBOL  
DESCRIPTION  
7 to 0  
D7 to D0  
The EEPROM Data Register (DATR) is only a conceptual entity. A read operation from  
DATR, reads out the EEPROM byte addressed by ADDR. On the other hand, a write  
operation to DATR, loads data into the EEPROM latch (see Fig.5) defined by bits AD0  
and AD1 of ADDR.  
7.1.4  
EEPROM TEST REGISTER (TST)  
The EEPROM Test register is used for testing purposes during device manufacture. It must not be accessed by the  
device user.  
1999 Oct 28  
15  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
7.2  
EEPROM latches  
However, write and erase cycles need not affect all bytes  
of the page. The EEPROM flags F0 to F3 (see Fig.5)  
determine which bytes within the EEPROM page are  
affected by the erase and/or write cycles. A byte whose  
corresponding EEPROM flag is zero remains unchanged.  
The four EEPROM latches (EEPROM Latch 0 to 3; Fig.5)  
cannot be read by user software. Due to their construction,  
the latches can only be preset, but not cleared. Successive  
write operations through DATR to the EEPROM latches  
actually perform a logical OR with the previously stored  
data in EEPROM. The EEPROM latches are reset at the  
conclusion of any EEPROM cycle.  
With erase page, a byte is erased if its corresponding  
EEPROM flag is set. With write page, data in EEPROM  
Latch 0 to 3 (Fig.5) are ORed to the individual page bytes  
if and only if the corresponding EEPROM flags are set.  
7.3  
EEPROM flags  
In an erase/write cycle, F0 to F3 select which page bytes  
are erased and ORed with the corresponding EEPROM  
latches.  
The four EEPROM flags (F0 to F3; Fig.5) cannot be  
directly accessed by user software. An EEPROM flag is  
set as a side-effect when the corresponding EEPROM  
latch is written through DATR. The EEPROM flags are  
reset at the conclusion of any EEPROM cycle.  
ORing, in this event, means that the EEPROM latches are  
copied to the selected page bytes.  
The described page-wise organization of erase and write  
cycles allows up to four bytes to be individually erased or  
written within 5 ms. This advantage necessitates a  
preparation step, called page setup, before the actual  
erase and/or write cycle can be executed.  
7.4  
EEPROM macros  
The instruction sequence used in an EEPROM access  
should be treated as an indivisible entity. Erroneous  
programs result if ADDR, DATR, RELR or EPCR are  
inadvertently changed during an EEPROM cycle or its  
setup. Special care should be taken if the program may  
asynchronously divert due to an interrupt. A new access to  
the EEPROM may only be initiated when no write, erase or  
erase/write cycles are in progress. This can be verified by  
reading bit EWP (register EPCR).  
Page setup controls EEPROM latches and EEPROM  
flags. This will be described in the Sections 7.5.1 to 7.5.5.  
7.5.1  
PAGE SETUP  
Page setup is a preparation step required before write  
page, erase page and erase/write page cycles.  
As previously described, these page operations include  
single-byte write, erase and erase/write as a special event.  
EEPROM flags F0 to F3 determine which page bytes will  
be affected by the mentioned page operations. EEPROM  
Latch 0 to 3 must be preset through DATR to specify the  
write cycle data to EEPROM and to set the EEPROM flags  
as a side-effect. Obviously, the actual preset value of the  
EEPROM latches is irrelevant for erase page. Preset of  
one, two, three or all four EEPROM latches and the  
corresponding EEPROM flags can be performed by  
repeatedly defining ADDR and writing to DATR (see  
Table 18).  
For write, erase and erase/write cycles, it is assumed that  
the Timer 2 Reload Register (RELR) has been loaded with  
the appropriate value for a 5 ms delay, which depends on  
fxtal (see Table 24). The end of a write, erase or erase/write  
cycle will be signalled by a cleared EWP and by a Timer 2  
interrupt provided that ET2I = 1 and that the derivative  
interrupt is enabled.  
7.5  
EEPROM access  
One read, one write, one erase/write and one erase  
access are defined by bits EWP and MC1 to MC3 in the  
EPCR register; see Table 11.  
If more than one EEPROM latch must be preset, the  
subcounter consisting of AD0 and AD1 can be induced to  
auto-increment after every write to DATR, thus stepping  
through all EEPROM latches. For this purpose, increment  
mode (Table 13) must be selected. Auto-incrementing  
stops at EEPROM Latch 3. It is not mandatory to start at  
EEPROM Latch 0 as in shown in Table 19.  
Read byte retrieves the EEPROM byte addressed by  
ADDR when DATR is read. Read cycles are  
instantaneous.  
Write and erase cycles take 5 ms, however. Erase/write is  
a combination of an erase and a subsequent write cycle,  
consequently taking 10 ms.  
As their names imply, write page, erase page and  
erase/write page are applied to a whole EEPROM page.  
Therefore, bits AD0 and AD1 of register ADDR (see  
Table 14), defining the byte location within an EEPROM  
page, are irrelevant during write and erase cycles.  
Note that AD2 to AD6 are irrelevant during page setup.  
They will usually specify the intended EEPROM page,  
anticipating the subsequent page cycle.  
1999 Oct 28  
16  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
From now on, it will be assumed that AD2 to AD6 will  
contain the intended EEPROM page address after page  
setup.  
latches, the corresponding bytes in the page should  
previously have been erased.  
The EEPROM latches are preset as described in  
Section 7.5.1. The actual transfer to the EEPROM is then  
performed as shown in Table 21.  
Table 18 Page setup; preset  
INSTRUCTION  
RESULT  
The last instruction also starts Timer 2. The data in the  
EEPROM latches are ORed with that in the corresponding  
page bytes within 5 ms. A single-byte write is simply a  
special case of ‘write page’.  
MOV A, #addr  
MOV ADDR, A  
MOV A, #data  
MOV DATR, A  
address of EEPROM latch  
send address to ADDR  
load write, erase/write or erase data  
ADDR auto-increments after the write cycle. If AD0 and  
AD1 addressed EEPROM Latch 3 prior to the write cycle,  
ADDR will point to the next EEPROM page (by bits AD2  
to AD6) and to EEPROM Latch 0 (by bits AD0 and AD1).  
This allows efficient coding of multi-page write operations.  
send data to addressed EEPROM  
latch  
Table 19 Page setup; auto-incrementing  
INSTRUCTION  
RESULT  
Table 21 Write page  
MOV A, #MC2  
MOV EPCR, A  
MOV A, #baddr  
increment mode control word  
select increment mode  
INSTRUCTION  
RESULT  
EEPROM Latch 0 address  
(AD0 = AD1 = 0)  
MOV A, #EWP + MC2  
MOV EPCR, A  
‘write page’ control word  
start ‘write page’ cycle  
MOV ADDR, A  
send EEPROM Latch 0 address to  
ADDR  
load 1st byte from Register 0  
7.5.4  
ERASE/WRITE PAGE  
MOV A, R0  
The EEPROM latches are preset as described in  
Section 7.5.1. The page bytes corresponding to the  
asserted flags (among F0 to F3) are erased and re-written  
with the contents of the respective EEPROM latches.  
MOV DATR, A  
MOV A, R1  
send 1st byte to EEPROM Latch 0  
load 2nd byte from Register 1  
send 2nd byte to EEPROM Latch 1  
load 3rd byte from Register 2  
send 3rd byte to EEPROM Latch 2  
load 4th byte from Register 3  
MOV DATR, A  
MOV A, R2  
The last instruction also starts Timer 2. Erasure takes  
5 ms upon which Timer Register T2 reloads for another  
5 ms cycle for writing. The top cycles together take 10 ms.  
A single-byte erase/write is simply a special case of  
‘erase/write page’.  
MOV DATR, A  
MOV A, R3  
MOV DATR, A  
send 4th byte to EEPROM Latch 3  
ADDR auto-increments after the write cycle. If AD0 and  
AD1 addressed EEPROM Latch 3 prior to the write cycle,  
ADDR will point to the next EEPROM page (by AD2 to  
AD6) and to EEPROM Latch 0 (by AD0 and AD1). This  
allows efficient coding of multi-page erase/write  
operations.  
7.5.2  
READ BYTE  
Since ADDR auto-increments after a read cycle regardless  
of the page boundary, successive bytes can efficiently be  
read by repeating the last instruction.  
Table 20 Read byte  
Table 22 Erase/write page  
INSTRUCTION  
RESULT  
INSTRUCTION  
MOV A, #EWP + MC3  
MOV EPCR, A  
RESULT  
MOV A, #RDADDR  
MOV ADDR, A  
MOV A, DATR  
load read address  
‘erase/write page’ control word  
start ‘erase/write page’ cycle  
send address to ADDR  
read EEPROM data  
7.5.3  
WRITE PAGE  
The write cycle performs a logical OR between the data in  
the EEPROM latches and that in the addressed EEPROM  
page. To actually copy the data from the EEPROM  
1999 Oct 28  
17  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
7.5.5  
ERASE PAGE  
The second underflow of an erase/write cycle and the first  
underflow of write page and erase page conclude the  
corresponding EEPROM cycle. Timer 2 is stopped, T2F is  
set whereas EWP and MC1 to MC3 are cleared.  
The EEPROM flags are set as described in Section 7.5.1.  
The corresponding page bytes are erased.  
The last instruction also starts Timer 2. Erasure takes  
5 ms. A single-byte erase is simply a special case of ‘erase  
page’.  
Table 24 Reload values as a function of fxtal  
fxtal  
(MHz)  
RELOAD VALUE(1)  
(HEX)  
Note that ADDR does not auto-increment after an erase  
cycle.  
1
2
0A  
14  
25  
3E  
68  
A6  
Table 23 Erase page  
3.58  
6
INSTRUCTION  
RESULT  
MOV A, #EWP + MC3 + MC2 + MC1  
‘erase page’  
control word  
10  
16  
MOV EPCR, A  
start ‘erase  
page’ cycle  
Note  
1. The reload value is (5 × 103 × 1480 × fxtal) 1;  
7.6  
Timer 2  
fxtal in MHz.  
Timer 2 is a 8-bit down-counter decremented at a rate of  
1
7.6.2  
TIMER 2 AS A GENERAL PURPOSE TIMER  
480 × fxtal. It may be used either for EEPROM timing or as  
a general purpose timer. Conflicts between the two  
applications should be carefully avoided.  
When used for purposes other than EEPROM timing,  
Timer 2 is started by setting STT2. The Timer Register T2  
(see Table 27) is loaded with the reload value from RELR.  
T2 decrements to zero. On underflow, T2 is reloaded from  
RELR, T2F is set and T2 continues to decrement.  
7.6.1  
TIMER 2 FOR EEPROM TIMING  
When used for EEPROM timing, Timer 2 serves to  
generate the 5 ms intervals needed for erasing or writing  
the EEPROM. At the decrement rate of 1480 × fxtal, the  
Timer 2 can be stopped at any time by clearing STT2.  
The value of T2 is then held and can be read out. After  
setting STT2 again, Timer 2 decrements from the reload  
value. Alternatively, it is possible to read T2 ‘on the fly’ i.e.  
while Timer 2 is operating.  
reload value for a 5 ms interval is a function of fxtal  
.
Table 24 summarizes the required reload values for a  
number of oscillator frequencies.  
Timer 2 is started by setting bit EWP in the EPCR.  
The Timer Register T2 is loaded with the reload value from  
RELR. T2 decrements to zero.  
For an erase/write cycle, underflow of T2 indicates the end  
of the erase operation. Therefore, Timer Register T2 is  
reloaded from RELR for another 5 ms interval during  
which the flagged EEPROM latches are copied to the  
corresponding bytes in the page addressed by ADDR.  
1999 Oct 28  
18  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
8
DERIVATIVE INTERRUPTS  
After exit from Stop mode by a HIGH level on CE/T0,  
Timer 2 proceeds from the held state.  
One derivative interrupt event is defined. It is controlled by  
bits T2F and ET2I in the EPCR (see Tables 11 and 12).  
13 INSTRUCTION SET RESTRICTIONS  
The derivative interrupt event occurs when T2F is set. This  
request is honoured under the following circumstances:  
For PCD3351A and PCA3351C only:  
No interrupt routine proceeds  
No external interrupt request is pending  
The derivative interrupt is enabled  
ET2I is set.  
– ROM space being restricted to 2 kbytes, the  
‘SEL MB1/2/3’ instructions would define non-existing  
program memory banks and should therefore be  
avoided.  
– RAM space being restricted to 64 bytes, care should  
be taken to avoid accesses to non-existing RAM  
locations.  
The derivative interrupt routine must include instructions  
that will remove the cause of the derivative interrupt by  
explicitly clearing T2F. If the derivative interrupt is not  
used, T2F may directly be tested by the program.  
Obviously, T2F can also be asserted under program  
control, e.g. to generate a software interrupt.  
For PCD3352A and PCA3352C only:  
– ROM space being restricted to 4 kbytes, the  
‘SEL MB2/3’ instructions would define non-existing  
program memory banks and should therefore be  
avoided.  
9
TIMING  
For PCD3353A and PCA3353Conly:  
Although the PCD335xA and PCA335xC operate over a  
clock frequency range from 1 to 16 MHz, fxtal = 3.58 MHz  
will usually be chosen to take full advantage of the  
frequency generator section.  
– ROM space being restricted to 6 kbytes, the  
‘SEL MB3’ instructions would define non-existing  
program memory banks and should therefore be  
avoided.  
For the PCD3352A, PCD3353A, PCA3352C and  
PCA3353C, RAM space is restricted to 128 bytes, thus  
care should be taken to avoid accesses to non-existing  
RAM locations.  
10 RESET  
In addition to the conditions given in the “PCD33XXA  
Family” data sheet, all derivative registers are cleared in  
the reset state.  
11 IDLE MODE  
In Idle mode, the frequency generator, the EEPROM and  
the Timer 2 sections remain operative. Therefore, the  
IDLE instruction may be executed while an erase and/or  
write access to EEPROM is in progress.  
12 STOP MODE  
Since the oscillator is switched off, the frequency  
generator, the EEPROM and the Timer 2 sections receive  
no clock. It is suggested to clear both the HGF and the  
LGF registers before entering Stop mode. This will cut off  
the biasing of the internal amplifiers, considerably  
reducing current requirements.  
The Stop mode must not be entered while an erase  
and/or write access to EEPROM is in progress. The STOP  
instruction may only be executed when EWP in EPCR is  
zero. The Timer 2 section is frozen during Stop mode.  
1999 Oct 28  
19  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
14 OVERVIEW OF PORT AND POWER-ON-RESET  
CONFIGURATIONS  
Table 25 Available mask configurations  
CONFIGURATION  
TYPE  
The PCA335xC microcontrollers support one port and  
Power-on-reset configuration which is compatible with  
the OTP PCD3755E.  
PCD3755A  
PCD3755E  
PCA3351C  
PCA3352C  
PCA3353C  
PCD3351A  
PCD3352A  
PCD3353A  
X
X
X
X
X
X
The PCD335xA microcontrollers support two port and  
Power-on-reset configurations which can be chosen:  
one is compatible with the OTP PCD3755A, the other is  
compatible with the OTP PCD3755E.  
X
X
X
Table 26 Port and Power-on-Reset configurations  
See note 1 and 2.  
PORT 0  
PORT 1  
PORT 2  
COVERED  
BY OTP  
VPOR  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
PCD3755A 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1R 1R(3) 2S 2S 2S 2S 1.3 V  
PCD3755E 1S 1S 1S 1S 1S 1S 1S 1S 2S 2S 2S 2S 2S 2S 1S 1S(3) 2S 1R 1R 1R 2.0 V  
Notes  
1. Port output drive: 1 = standard I/O; 2 = open-drain I/O, see “PCD33xxA Family” data sheet.  
2. Port state after reset: S = Set (HIGH) and R = Reset (LOW).  
3. The melody output drive type is push-pull.  
1999 Oct 28  
20  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
15 SUMMARY OF DERIVATIVE REGISTERS  
Table 27 Register map  
ADDR.  
(HEX)  
REGISTER  
7
6
5
4
3
2
1
0
R/W  
00  
01  
not used  
EEPROM Address Register  
(ADDR)  
0
AD6  
D6  
AD5  
D5  
AD4  
D4  
AD3  
D3  
AD2  
D2  
AD1  
D1  
AD0  
R/W  
02  
03  
not used  
EEPROM Data Register  
(DATR)  
D7  
D0  
0
R/W  
R/W  
R/W  
R
04  
05  
06  
07  
EEPROM Control Register  
(EPCR)  
STT2 ET21 TF2 EWP MC3 MC2 MC1  
Timer 2 Reload Register  
(RELR)  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Timer 2 Register  
(T2)  
T2.7  
T2.6 T2.5 T2.4 T2.3 T2.2 T2.1 T2.0  
Test Register  
(TST)  
only for test purposes; not to be accessed by the device user  
08 to 10 not used  
11  
12  
13  
High Group Frequency Register  
(HGF)  
H7  
L7  
0
H6  
L6  
0
H5  
L5  
0
H4  
L4  
0
H3  
L3  
0
H2  
L2  
0
H1  
L1  
0
H0  
L0  
W
W
Low Group Frequency Register  
(LGF)  
Melody Control Register  
(MDYCON)  
EMO R/W  
14 to FF not used  
16 HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, it is good practice to take  
normal precautions appropriate to handling MOS devices (see “Data Handbook IC14, Section: Handling MOS devices”).  
17 LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
MIN.  
MAX.  
+7.0  
UNIT  
VDD  
VI  
supply voltage  
0.8  
0.5  
10  
10  
V
all input voltages  
DC input current  
DC output current  
VDD + 0.5  
+10  
V
II  
mA  
mA  
mW  
mW  
mA  
°C  
IO  
+10  
Ptot  
PO  
ISS  
Tstg  
Tj  
total power dissipation  
125  
power dissipation per output  
ground supply current  
30  
50  
65  
+50  
storage temperature  
+150  
90  
operating junction temperature  
°C  
1999 Oct 28  
21  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
18 DC CHARACTERISTICS  
VDD = 1.8 to 6 V; VSS = 0 V; Tamb = 0 to +50 °C (PCA335xC) or 25 to +70 °C (PCD335xA); all voltages with respect to  
VSS; fxtal = 3.58 MHz; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supply  
VDD  
supply voltage  
see Fig.6  
note 1  
operating  
1.8  
6
V
RAM data retention in Stop  
mode  
1.0  
6
V
IDD  
operating supply current  
supply current (Idle mode)  
supply current (Stop mode)  
see Figs 7 and 8; note 2  
V
V
V
V
DD = 3 V; value HGF or LGF 0  
DD = 3 V  
0.8  
0.35  
1.5  
1.6  
0.7  
4.0  
6.0  
mA  
mA  
mA  
mA  
DD = 5 V; fxtal = 10 MHz  
DD = 5 V; fxtal = 16 MHz  
2.4  
IDD(idle)  
see Figs 9 and 10; note 2  
V
V
V
V
DD = 3 V; value HGF or LGF 0  
DD = 3 V  
0.7  
0.25  
1.1  
1.4  
0.5  
3.4  
5.0  
mA  
mA  
mA  
mA  
DD = 5 V; fxtal = 10 MHz  
DD = 5 V; fxtal = 16 MHz  
1.7  
IDD(stp)  
see Fig.11; note 3  
DD = 1.8 V; Tamb = 25 °C;  
VDD = 1.8 V; Tamb = 70 °C;  
V
1.0  
5.5  
10  
µA  
µA  
Inputs  
VIL  
VIH  
ILI  
LOW level input voltage  
HIGH level input voltage  
input leakage current  
0
0.3VDD  
VDD  
1
V
0.7VDD  
V
VSS VI VDD  
1  
µA  
Port outputs  
IOL LOW level port sink current  
IOH  
VDD = 3 V; VO = 0.4 V; see Fig.12  
VDD = 3 V; VO = 2.7 V; see Fig.13  
0.7  
10  
3.5  
mA  
µA  
HIGH level pull-up output  
source current  
30  
140  
3.5  
V
DD = 3 V; VO = 0 V; see Fig.13  
300  
µA  
IOH1  
HIGH level push-pull output  
source current  
VDD = 3 V; VO = 2.6 V; see Fig.14  
0.7  
mA  
Tone output (see Fig.15)  
VHG(RMS) HGF voltage (RMS value)  
VLG(RMS) LGF voltage (RMS value)  
158  
125  
0.6  
181  
142  
205  
160  
0.6  
mV  
mV  
%
frequency deviation  
f f  
VDC  
Zo  
DC voltage level  
0.5VDD  
100  
2.0  
V
output impedance  
500  
2.5  
Gv  
pre-emphasis of group  
total harmonic distortion  
1.5  
dB  
dB  
THD  
Tamb = 25 °C; note 5  
25  
1999 Oct 28  
22  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
EEPROM (notes 1 and 6)  
CYt/w  
tret  
endurance (erase/write  
cycles)  
note 7  
105  
data retention time  
10  
years  
Power-on-reset (see Fig.16)  
VPOR  
Power-on-reset level  
PCD335xA  
configuration as PCD3755A  
configuration as PCD3755E  
configuration as PCD3755E  
0.8  
1.3  
2.0  
2.0  
1.8  
2.5  
2.3  
V
V
V
PCD335xA  
1.5  
1.7(8)  
PCA335xC  
Oscillator (see Fig.17)  
gm  
RF  
transconductance  
feedback resistor  
VDD = 5 V  
0.2  
0.3  
0.4  
1.0  
1.0  
3.0  
mS  
MΩ  
Notes  
1. TONE output, EEPROM erase and write require VDD 2.5 V.  
2. VIL = VSS; VIH = VDD; open-drain outputs connected to VSS; all other outputs open; value HGF = LGF = 0, unless  
otherwise specified.  
a) Maximum values: external clock at XTAL1 and XTAL2 open-circuit.  
b) Typical values: Tamb = 25 °C; crystal connected between XTAL1 and XTAL2.  
3. VIL = VSS; VIH = VDD; RESET, T1 and CE/T0 at VSS; crystal connected between XTAL1 and XTAL2; pins T1 and  
CE/T0 at VSS  
.
4. Values are specified for DTMF frequencies only (CEPT).  
5. Related to the Low Group Frequency (LGF) component (CEPT).  
6. After final testing the value of each EEPROM bit is a logic 1, but this cannot be guaranteed after board assembly.  
7. Verified on sampling basis.  
8. Each device is tested on the condition: VDD(min) < VPOR; to ensure a correct start-up, even for slow rising supply  
voltages.  
1999 Oct 28  
23  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
MGB827  
MLA493  
18  
6
handbook, halfpage  
handbook, halfpage  
f
xtal  
(MHz)  
I
DD  
15  
(mA)  
16 MHz  
4
12  
9
3.58 MHz  
HGF or LGF 0  
guaranteed  
operating range  
10 MHz  
2
6
3.58 MHz  
3
0
1
3
5
7
0
1
V
(V)  
DD  
3
5
7
V
(V)  
DD  
Measured with crystal between XTAL1 and XTAL2.  
Fig.6 Maximum clock frequency (fxtal) as a  
function of supply voltage (VDD).  
Fig.7 Typical operating supply current (IDD) as a  
function of supply voltage (VDD).  
MGB828  
MGB829  
6
6
handbook, halfpage  
handbook, halfpage  
I
I
DD(idle)  
(mA)  
DD  
(mA)  
4
4
16 MHz  
5 V  
3.58 MHz  
HGF or LGF 0  
2
2
10 MHz  
3 V  
3.58 MHz  
0
0
2
1
3
5
7
1
10  
10  
V
(V)  
f
(MHz)  
DD  
xtal  
Measured with function generator on XTAL1.  
Measured with crystal between XTAL1 and XTAL2.  
Fig.8 Typical operating supply current (IDD) as a  
function of clock frequency (fxtal).  
Fig.9 Typical supply current in Idle mode (IDD(idle)  
as a function of supply voltage (VDD).  
)
1999 Oct 28  
24  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
MGB830  
MGB826  
6
6
handbook, halfpage  
handbook, halfpage  
I
DD(stp)  
(µA)  
I
DD(idle)  
(mA)  
5
4
4
3
2
2
1
5 V  
3 V  
0
1
0
1
2
3
5
7
10  
10  
f
(MHz)  
V
(V)  
DD  
xtal  
Measured with function generator on XTAL1.  
Fig.10 Typical supply current in Idle mode  
Fig.11 Typical supply current in Stop mode  
(IDD(idle))as a function of clock frequency  
(fxtal).  
(IDD(stp)) as a function of supply voltage  
(VDD).  
MGB831  
MGB832  
12  
300  
handbook, halfpage  
handbook, halfpage  
I
I
OL  
OH  
(mA)  
(µA)  
V
= 0 V  
O
8
200  
4
100  
V
= 0.9V  
DD  
O
0
1
0
1
3
5
7
3
5
7
V
(V)  
V
(V)  
DD  
DD  
VO = 0.4 V.  
Fig.13 Typical HIGH level pull-up output source  
current (IOH) as a function of supply voltage  
(VDD).  
Fig.12 Typical LOW level output sink current (IOL  
)
as a function of supply voltage (VDD).  
1999 Oct 28  
25  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
MGB833  
12  
handbook, halfpage  
I
OH1  
V
handbook, halfpage  
DD  
(mA)  
8  
1 µF  
TONE  
DEVICE TYPE NUMBER  
(1)  
10 kΩ  
50 pF  
4  
V
MGB835  
SS  
0
1
3
5
7
V
(V)  
DD  
(1) Device type number:  
VO = VDD 0.4 V.  
PCA3351C, PCA3352C, PCA3353C,  
PCD3351A, PCD3352A or PCD3353A.  
Fig.14 Typical HIGH level push-pull output source  
current (IOH1) as a function of supply voltage  
(VDD).  
Fig.15 TONE output test circuit.  
MGD495  
MGB834  
10  
6
handbook, halfpage  
handbook, halfpage  
V
DD  
(V)  
g
m
(mS)  
4
1
V
V
= 2.0 V  
= 1.3 V  
POR  
POR  
2
0
1
10  
1
3
5
7
V
(V)  
DD  
25  
25  
75  
125  
T
(°C)  
amb  
70  
Fig.16 Typical Power-on-reset level (VPOR) as  
function of ambient temperature (Tamb).  
Fig.17 Typical transconductance (gm) as a function  
of supply voltage (VDD).  
1999 Oct 28  
26  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
19 AC CHARACTERISTICS  
VDD = 1.8 to 6 V; VSS = 0 V; Tamb = 0 to +50 °C (PCA335xC) or 25 to +70 °C (PCD335xA); all voltages with respect to  
VSS; unless otherwise specified.  
SYMBOL  
PARAMETER  
rise time all outputs  
fall time all outputs  
clock frequency  
CONDITIONS  
MIN.  
TYP.  
30  
MAX. UNIT  
tr  
tf  
VDD = 5 V; Tamb = 25 °C; CL = 50 pF  
ns  
30  
ns  
fxtal  
see Fig.6  
1
16  
MHz  
1999 Oct 28  
27  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
20 PACKAGE OUTLINES  
handbook, full pagewidth  
DIP28: plastic dual in-line package; 28 leads (600 mil)  
SOT117-1  
D
M
E
A
2
A
L
A
1
c
e
w M  
Z
b
1
(e )  
1
b
M
H
28  
15  
pin 1 index  
E
1
14  
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
max.  
A
A
Z
(1)  
(1)  
1
2
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
w
1
1
E
H
min.  
max.  
max.  
1.7  
1.3  
0.53  
0.38  
0.32  
0.23  
36.0  
35.0  
14.1  
13.7  
3.9  
3.4  
15.80  
15.24  
17.15  
15.90  
5.1  
0.51  
4.0  
2.54  
0.10  
15.24  
0.60  
0.25  
0.01  
1.7  
0.013  
0.009  
0.066  
0.051  
0.020  
0.014  
1.41  
1.34  
0.56  
0.54  
0.15  
0.13  
0.62  
0.60  
0.68  
0.63  
inches  
0.20  
0.020  
0.16  
0.067  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-14  
SOT117-1  
051G05  
MO-015AH  
1999 Oct 28  
28  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
SO28: plastic small outline package; 28 leads; body width 7.5 mm  
SOT136-1  
D
E
A
X
c
y
H
v
M
A
E
Z
28  
15  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
14  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
18.1  
17.7  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
1.27  
0.050  
1.4  
0.25  
0.01  
0.25  
0.1  
0.25  
0.01  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.71  
0.014 0.009 0.69  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT136-1  
075E06  
MS-013AE  
1999 Oct 28  
29  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
LQFP32: plastic low profile quad flat package; 32 leads; body 7 x 7 x 1.4 mm  
SOT358-1  
c
y
X
A
24  
17  
25  
16  
Z
E
e
H
E
A
E
(A )  
3
2
A
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
32  
9
detail X  
1
8
e
Z
D
v M  
A
w M  
b
p
D
B
H
v M  
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.4 0.18 7.1  
0.3 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.9  
0.5  
0.9  
0.5  
mm  
1.60  
0.25  
0.8  
1.0  
0.2 0.25 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-12-19  
97-08-04  
SOT358 -1  
1999 Oct 28  
30  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
21 SOLDERING  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
21.1 Introduction  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
21.3.2 WAVE SOLDERING  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mount components are mixed on  
one printed-circuit board. However, wave soldering is not  
always suitable for surface mount ICs, or for printed-circuit  
boards with high population densities. In these situations  
reflow soldering is often used.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
21.2 Through-hole mount packages  
21.2.1 SOLDERING BY DIPPING OR BY SOLDER WAVE  
For packages with leads on two sides and a pitch (e):  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
21.2.2 MANUAL SOLDERING  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
300 and 400 °C, contact may be up to 5 seconds.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
21.3 Surface mount packages  
21.3.1 REFLOW SOLDERING  
21.3.3 MANUAL SOLDERING  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 Oct 28  
31  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
21.4 Suitability of IC packages for wave, reflow and dipping soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(1) DIPPING  
MOUNTING  
PACKAGE  
Through-hole mount DBS, DIP, HDIP, SDIP, SIL  
suitable(2)  
suitable  
Surface mount  
BGA, LFBGA, SQFP, TFBGA  
not suitable  
not suitable(3)  
suitable  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, SMS  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
22 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
23 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1999 Oct 28  
32  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
NOTES  
1999 Oct 28  
33  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
NOTES  
1999 Oct 28  
34  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator  
and 128 bytes EEPROM  
PCA3351C; 52C; 53C;  
PCD3351A; 52A; 53A  
NOTES  
1999 Oct 28  
35  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
68  
SCA  
© Philips Electronics N.V. 1999  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
465002/07/pp36  
Date of release: 1999 Oct 28  
Document order number: 9397 750 06528  

相关型号:

PCA3352CH

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PQFP32, 7 X 7 X 1.40 MM, PLASTIC, LQFP-32, Microcontroller
NXP

PCA3352CH-T

暂无描述
NXP

PCA3352CP

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PDIP28, 0.600 INCH, PLASTIC, DIP-28, Microcontroller
NXP

PCA3352CT

8-bit microcontrollers with DTMF generator and 128 bytes EEPROM
NXP

PCA3352CT-T

IC 8-BIT, MROM, MICROCONTROLLER, PDSO28, Microcontroller
NXP

PCA3353C

8-bit microcontrollers with DTMF generator and 128 bytes EEPROM
NXP

PCA3353CH

8-bit microcontrollers with DTMF generator and 128 bytes EEPROM
NXP

PCA3353CH-T

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PQFP32, Microcontroller
NXP

PCA3353CP

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PDIP28, 0.600 INCH, PLASTIC, DIP-28, Microcontroller
NXP

PCA3353CT

MICROCONTROLLER|8-BIT|8048 CPU|CMOS|SOP|28PIN|PLASTIC
ETC

PCA3353CT-T

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PDSO28, Microcontroller
NXP

PCA3354AH

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PQFP44, Microcontroller
NXP