PCA85063ATTA [NXP]

Automotive tiny Real-Time Clock/calendar with alarm function and I2C-bus;
PCA85063ATTA
型号: PCA85063ATTA
厂家: NXP    NXP
描述:

Automotive tiny Real-Time Clock/calendar with alarm function and I2C-bus

文件: 总59页 (文件大小:677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCA85063A  
Automotive tiny Real-Time Clock/calendar with alarm function  
and I2C-bus  
Rev. 4 — 30 March 2018  
Product data sheet  
1. General description  
The PCA85063A is a CMOS1 Real-Time Clock (RTC) and calendar optimized for low  
power consumption. An offset register allows fine-tuning of the clock. All addresses and  
data are transferred serially via the two-line bidirectional I2C-bus. Maximum data rate is  
400 kbit/s. The register address is incremented automatically after each written or read  
data byte.  
For a selection of NXP Real-Time Clocks, see Table 45 on page 50  
2. Features and benefits  
AEC-Q100 grade 2 compliant for  
High temperature operation range:  
40 C to +105 C  
automotive applications  
Provides year, month, day, weekday,  
hours, minutes, and seconds based on a  
32.768 kHz quartz crystal  
Clock operating voltage: 0.9 V to 5.5 V  
Low current; typical 0.25 A at  
VDD = 3.0 V and Tamb = 25 C  
400 kHz two-line I2C-bus interface  
(at VDD = 1.8 V to 5.5 V)  
Programmable clock output for  
peripheral devices (32.768 kHz,  
16.384 kHz, 8.192 kHz, 4.096 kHz,  
2.048 kHz, 1.024 kHz, and 1 Hz)  
Selectable integrated oscillator load  
capacitors for CL = 7 pF or CL = 12.5 pF  
Alarm function  
Countdown timer  
Minute and half minute interrupt  
Internal Power-On Reset (POR)  
Oscillator stop detection function  
Programmable offset register for  
frequency adjustment  
3. Applications  
Tracking time of the day  
Dashboard  
Accurate timing  
Infotainment unit  
Air condition  
Center stack  
Telematics  
Body control and battery management  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 22.  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PCA85063ATT  
TSSOP8  
plastic thin shrink small outline package; SOT505-1  
8 leads; body width 3 mm  
4.1 Ordering options  
Table 2.  
Ordering options  
Product type number Orderable part number Sales item  
(12NC)  
Delivery form  
IC  
revision  
PCA85063ATT/A  
PCA85063ATT/AJ  
935305541118 tape and reel, 13 inch  
1
5. Marking  
Table 3.  
Marking codes  
Product type number  
PCA85063ATT/A  
Marking code  
063Q  
6. Block diagram  
26&2  
26&,  
ꢀꢁꢂN+]  
26&,//$725  
&/.287  
',9,'(5  
&/2&.ꢂ287  
&/2&.  
&$/,%5$7,21  
2))6(7  
32:(5ꢃ21  
5(6(7  
9''  
966  
6<67(0  
&21752/  
,17(55837  
&21752/  
,17  
6'$  
6&/  
O &ꢃ%86  
5($/ꢃ7,0(  
&/2&.  
,17(5)$&(  
$/$50ꢂ$1'  
7,0(5  
&21752/  
3&$ꢀꢁꢂꢃꢄ$  
DDDꢀꢁꢂꢃꢄꢂꢅ  
Fig 1. Block diagram of PCA85063A  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
2 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
7. Pinning information  
7.1 Pinning  
26&,   
26&2   
,17   
 9''  
 &/.287  
 6&/  
3&$ꢀꢁꢂꢃꢄ$77  
966   
 6'$  
DDDꢀꢁꢂꢃꢄꢂꢆ  
For mechanical details, see Figure 30.  
Fig 2. Pin configuration for TSSOP8 (PCA85063ATT)  
7.2 Pin description  
Table 4.  
Pin description  
Input or input/output pins must always be at a defined level (VSS or VDD) unless otherwise specified.  
Symbol  
Type  
Description  
Pin  
PCA85063ATT  
OSCI  
1
2
3
4
5
6
7
8
input  
oscillator input  
OSCO  
INT[1]  
output  
output  
supply  
input/output  
input  
oscillator output  
interrupt output (open-drain)  
ground supply voltage  
serial data line  
VSS  
SDA[1]  
SCL[1]  
CLKOUT  
VDD  
serial clock input  
output  
supply  
clock output (push-pull)  
supply voltage  
[1] NXP recommends tying VDD of the device and VDD of all the external pull-up resistors to the same Power  
Supply.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
3 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8. Functional description  
The PCA85063A contains 18 8-bit registers with an auto-incrementing register address,  
an on-chip 32.768 kHz oscillator with integrated capacitors, a frequency divider which  
provides the source clock for the Real-Time Clock (RTC) and calender, and an I2C-bus  
interface with a maximum data rate of 400 kbit/s.  
The built-in address register will increment automatically after each read or write of a data  
byte up to the register 11h. After register 11h, the auto-incrementing will wrap around to  
address 00h (see Figure 3).  
DGGUHVVꢂUHJLVWHU  
ꢊꢊK  
ꢊꢄK  
DXWRꢃLQFUHPHQW  
ꢊꢁK  
ꢊꢀK  
ꢋꢋꢋ  
ꢊ)K  
ꢄꢊK  
ꢄꢄK  
ZUDSꢂDURXQG  
DDDꢀꢁꢁꢆꢆꢃꢂ  
Fig 3. Handling address registers  
All registers (see Table 5) are designed as addressable 8-bit parallel registers although  
not all bits are implemented. The first two registers (memory address 00h and 01h) are  
used as control and status register. The register at address 02h is an offset register  
allowing the fine-tuning of the clock; and at 03h is a free RAM byte. The addresses 04h  
through 0Ah are used as counters for the clock function (seconds up to years counters).  
Address locations 0Bh through 0Fh contain alarm registers which define the conditions for  
an alarm. The registers at 10h and 11h are for the timer function.  
The Seconds, Minutes, Hours, Days, Months, and Years as well as the corresponding  
alarm registers are all coded in Binary Coded Decimal (BCD) format. When one of the  
RTC registers is written or read, the contents of all time counters are frozen. Therefore,  
faulty writing or reading of the clock and calendar during a carry condition is prevented.  
For details on maximum access time, see Section 8.4 on page 23.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
4 of 59  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
8.1 Registers organization  
Table 5.  
Registers overview  
Bit positions labeled as - are not implemented. After reset, all registers are set according to Table 8 on page 10.  
Address Register name Bit  
Reference  
7
6
5
4
3
2
1
0
Control and status registers  
00h  
01h  
02h  
03h  
Control_1  
Control_2  
Offset  
EXT_TEST  
AIE  
-
STOP  
MI  
SR  
-
CIE  
12_24  
CAP_SEL  
Section 8.2.1  
Section 8.2.2  
Section 8.2.3  
Section 8.2.4  
AF  
HMI  
TF  
COF[2:0]  
MODE  
B[7:0]  
OFFSET[6:0]  
RAM_byte  
Time and date registers  
04h  
05h  
06h  
Seconds  
Minutes  
Hours  
OS  
SECONDS (0 to 59)  
MINUTES (0 to 59)  
Section 8.3.1  
Section 8.3.2  
Section 8.3.3  
-
-
-
AMPM  
HOURS (0 to 23) in 24-hour mode  
DAYS (1 to 31)  
HOURS (1 to 12) in 12-hour mode  
07h  
08h  
09h  
0Ah  
Days  
-
-
-
-
-
-
Section 8.3.4  
Section 8.3.5  
Section 8.3.6  
Section 8.3.7  
Weekdays  
Months  
Years  
-
-
-
-
WEEKDAYS (0 to 6)  
MONTHS (1 to 12)  
YEARS (0 to 99)  
Alarm registers  
0Bh  
0Ch  
0Dh  
Second_alarm  
AEN_S  
AEN_M  
AEN_H  
SECOND_ALARM (0 to 59)  
MINUTE_ALARM (0 to 59)  
Section 8.5.1  
Section 8.5.2  
Section 8.5.3  
Minute_alarm  
Hour_alarm  
-
AMPM  
HOUR_ALARM (1 to 12) in 12-hour mode  
HOUR_ALARM (0 to 23) in 24-hour mode  
DAY_ALARM (1 to 31)  
0Eh  
0Fh  
Day_alarm  
AEN_D  
-
-
Section 8.5.4  
Section 8.5.5  
Weekday_alarm AEN_W  
-
-
-
WEEKDAY_ALARM (0 to 6)  
Timer registers  
10h  
11h  
Timer_value  
Timer_mode  
T[7:0]  
-
Section 8.6.1  
Section 8.6.2  
-
-
TCF[1:0]  
TE  
TIE  
TI_TP  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.2 Control registers  
To ensure that all control registers will be set to their default values, the VDD level must be  
at zero volts at initial power-up. If this is not possible, a reset must be initiated with the  
software reset command when power is stable. Refer to Section 8.2.1.3 for details.  
8.2.1 Register Control_1  
Table 6.  
Control_1 - control and status register 1 (address 00h) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
7
EXT_TEST  
external clock test mode  
normal mode  
Section 8.2.1.1  
0[1]  
1
external clock test mode  
unused  
6
5
-
0
-
STOP  
STOP bit  
Section 8.2.1.2  
0[1]  
1
RTC clock runs  
RTC clock is stopped; all RTC divider chain  
flip-flops are asynchronously set logic 0  
4
SR  
software reset  
Section 8.2.1.3  
0[1]  
1
no software reset  
initiate software reset[2]; this bit always  
returns a 0 when read  
3
2
-
0
unused  
-
CIE  
correction interrupt enable  
no correction interrupt generated  
Section 8.2.3  
0[1]  
1
interrupt pulses are generated at every  
correction cycle  
1
0
12_24  
12 or 24-hour mode  
Section 8.3.3  
Section 8.5.3  
0[1]  
1
24-hour mode is selected  
12-hour mode is selected  
CAP_SEL  
internal oscillator capacitor selection for  
quartz crystals with a corresponding load  
capacitance  
-
0[1]  
1
7 pF  
12.5 pF  
[1] Default value.  
[2] For a software reset, 01011000 (58h) must be sent to register Control_1 (see Section 8.2.1.3).  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
6 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.2.1.1 EXT_TEST: external clock test mode  
A test mode is available which allows for on-board testing. In this mode, it is possible to  
set up test conditions and control the operation of the RTC.  
The test mode is entered by setting bit EXT_TEST in register Control_1. Then  
pin CLKOUT becomes an input. The test mode replaces the internal clock signal with the  
signal applied to pin CLKOUT.  
The signal applied to pin CLKOUT should have a minimum pulse width of 300 ns and a  
maximum period of 1000 ns. The internal clock, now sourced from CLKOUT, is divided  
down to 1 Hz by a 26 divide chain called a prescaler. The prescaler can be set into a  
known state by using bit STOP. When bit STOP is set, the prescaler is reset to 0. (STOP  
must be cleared before the prescaler can operate again.)  
From a stop condition, the first 1 second increment will take place after 32 positive edges  
on pin CLKOUT. Thereafter, every 64 positive edges cause a 1 second increment.  
Remark: Entry into test mode is not synchronized to the internal 64 Hz clock. When  
entering the test mode, no assumption as to the state of the prescaler can be made.  
Operation example:  
1. Set EXT_TEST test mode (register Control_1, bit EXT_TEST = 1).  
2. Set STOP (register Control_1, bit STOP = 1).  
3. Clear STOP (register Control_1, bit STOP = 0).  
4. Set time registers to desired value.  
5. Apply 32 clock pulses to pin CLKOUT.  
6. Read time registers to see the first change.  
7. Apply 64 clock pulses to pin CLKOUT.  
8. Read time registers to see the second change.  
Repeat 7 and 8 for additional increments.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
7 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.2.1.2 STOP: STOP bit function  
The function of the STOP bit (see Figure 4) is to allow for accurate starting of the time  
circuits. The STOP bit function causes the upper part of the prescaler (F2 to F14) to be  
held in reset and thus no 1 Hz ticks are generated. It also stops the output of clock  
frequencies below 8 kHz on pin CLKOUT.  
26&,//$725ꢂ6723  
VHWWLQJꢂWKHꢂ26ꢂIODJ  
'(7(&725  
ꢀꢁꢆꢇꢅꢂ+]  
)
ꢄꢇꢀꢅꢈꢂ+]  
)
ꢅꢄꢌꢁꢂ+]  
)
ꢈꢊꢌꢇꢂ+]  
)
ꢁꢂ+]  
)
ꢄꢈ  
ꢄꢀ  
26&,//$725  
ꢄꢂ+]ꢂWLFN  
5(6(7  
5(6(7  
5(6(7  
6723  
DDDꢀꢁꢁꢆꢆꢂꢇ  
Fig 4. STOP bit functional diagram  
The time circuits can then be set and do not increment until the STOP bit is released (see  
Figure 5 and Table 7).  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
8 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
Table 7.  
Bit  
First increment of time circuits after STOP bit release  
[1]  
Prescaler bits  
F0F1-F2 to F14  
1 Hz tick  
Time  
Comment  
STOP  
hh:mm:ss  
Clock is running normally  
0
01-0 0001 1101 0100  
12:45:12  
prescaler counting normally  
STOP bit is activated by user. F0F1 are not reset and values cannot be predicted externally  
1
XX-0 0000 0000 0000  
12:45:12  
prescaler is reset; time circuits are frozen  
New time is set by user  
1
XX-0 0000 0000 0000  
08:00:00  
prescaler is reset; time circuits are frozen  
STOP bit is released by user  
0
XX-0 0000 0000 0000  
XX-1 0000 0000 0000  
XX-0 1000 0000 0000  
XX-1 1000 0000 0000  
:
08:00:00  
08:00:00  
08:00:00  
08:00:00  
:
prescaler is now running  
-
-
ꢊꢋꢉꢊꢆꢅꢄꢀ  
WR  
ꢊꢋꢉꢊꢆꢌꢀꢉꢂV  
-
:
11-1 1111 1111 1110  
00-0 0000 0000 0001  
10-0 0000 0000 0001  
:
08:00:00  
08:00:01  
08:00:01  
:
-
0 to 1 transition of F14 increments the time circuits  
-
:
11-1 1111 1111 1111  
00-0 0000 0000 0000  
10-0 0000 0000 0000  
:
08:00:01  
08:00:01  
08:00:01  
:
-
ꢄꢋꢊꢊꢊꢊꢊꢊꢂV  
-
-
:
11-1 1111 1111 1110  
00-0 0000 0000 0001  
08:00:01  
08:00:02  
-
0 to 1 transition of F14 increments the time circuits  
DDDꢀꢁꢁꢆꢆꢂꢈ  
[1] F0 is clocked at 32.768 kHz.  
The lower two stages of the prescaler (F0 and F1) are not reset. And because the I2C-bus  
is asynchronous to the crystal oscillator, the accuracy of restarting the time circuits is  
between zero and one 8.192 kHz cycle (see Figure 5).  
ꢅꢄꢌꢁꢂ+]  
VWRSꢂUHOHDVHG  
ꢊꢂ—VꢂWRꢂꢄꢁꢁꢂ—V  
DDDꢀꢁꢁꢆꢆꢂꢄ  
Fig 5. STOP bit release timing  
The first increment of the time circuits is between 0.507813 s and 0.507935 s after STOP  
bit is released. The uncertainty is caused by the prescaler bits F0 and F1 not being reset  
(see Table 7) and the unknown state of the 32 kHz clock.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
9 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.2.1.3 Software reset  
A reset is automatically generated at power-on. There is a low probability that some  
devices will have corruption of the registers after the automatic power-on reset if the  
device is powered up with a residual VDD level. It is required that the VDD starts at zero  
volts at power up or upon power cycling to ensure that there is no corruption of the  
registers. If this is not possible, a reset must be initiated after power-up (i.e. when power is  
stable) with the software reset command. Software reset command means setting bits 6,  
4, and 3 in register Control_1 (00h) logic 1 and all other bits logic 0 by sending the bit  
sequence 01011000 (58h), see Figure 6.  
VODYHꢂDGGUHVV  
DGGUHVVꢂꢊꢊK  
VRIWZDUHꢂUHVHWꢂꢉꢅK  
5ꢍ:  
V
$
$
$ 3ꢍ6  
6'$  
6&/  
LQWHUQDO  
UHVHWꢂVLJQDO  
DDDꢀꢁꢁꢆꢆꢂꢉ  
After sending the software reset command, it is recommended to re-initialize the interface by a STOP and START.  
Fig 6. Software reset command  
In reset state, all registers are set according to Table 8 and the address pointer returns to  
address 00h.  
Table 8.  
Registers reset values  
Address Register name  
Bit  
7
0
0
0
0
1
0
0
0
0
0
0
1
1
1
1
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
0
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
Control_1  
Control_2  
Offset  
RAM_byte  
Seconds  
Minutes  
Hours  
Days  
Weekdays  
Months  
Years  
Second_alarm  
Minute_alarm  
Hour_alarm  
Day_alarm  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
10 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
Table 8.  
Registers reset values …continued  
Address Register name  
Bit  
7
6
0
0
0
5
0
0
0
4
0
0
1
3
0
0
1
2
0
0
0
1
0
0
0
0
0
0
0
0Fh  
10h  
11h  
Weekday_alarm  
Timer_value  
1
0
Timer_mode  
0
The PCA85063A resets to:  
Time — 00:00:00  
Date — 20000101  
Weekday — Saturday  
8.2.2 Register Control_2  
Table 9.  
Control_2 - control and status register 2 (address 01h) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
7
AIE  
alarm interrupt  
disabled  
Section 8.2.2.1  
Section 8.5.6  
0[1]  
1
enabled  
6
AF  
alarm flag  
Section 8.2.2.1  
Section 8.5.6  
0[1]  
read: alarm flag inactive  
write: alarm flag is cleared  
read: alarm flag active  
write: alarm flag remains unchanged  
minute interrupt  
disabled  
1
5
4
3
MI  
Section 8.2.2.2  
Section 8.2.2.3  
0[1]  
1
enabled  
HMI  
TF  
half minute interrupt  
disabled  
Section 8.2.2.2  
Section 8.2.2.3  
0[1]  
1
enabled  
timer flag  
Section 8.2.2.1  
Section 8.2.2.3  
Section 8.6.3  
0[1]  
no timer interrupt generated  
flag set when timer interrupt generated  
CLKOUT control  
1
2 to 0 COF[2:0]  
[1] Default value.  
see Table 11  
Section 8.2.2.4  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
11 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.2.2.1 Alarm interrupt  
+0,  
6(&21'6ꢂ&2817(5  
0,187(6ꢂ&2817(5  
+0,ꢍ0,  
&/($5  
+0, 0,  
6(7  
38/6(  
*(1(5$725ꢂꢄ  
0,  
75,**(5  
&/($5  
IURPꢂLQWHUIDFHꢎ  
FOHDUꢂ7)  
7,B73  
WRꢂLQWHUIDFHꢎ  
UHDGꢂ7)  
7,0(5ꢂ)/$*  
7)  
7,(  
&2817'2:1ꢂ&2817(5  
7(  
6(7  
38/6(  
*(1(5$725ꢂꢁ  
&/($5  
,17ꢂꢂ  
75,**(5  
&/($5  
WRꢂLQWHUIDFHꢎ  
UHDGꢂ$)  
$,(  
&,(  
$/$50ꢂ)/$*  
$)  
6(7  
H[DPSOH  
$,(  
VHWꢂDODUP  
IODJꢏꢂ$)  
&/($5  
IURPꢂLQWHUIDFHꢎ  
FOHDUꢂ$)  
38/6(  
*(1(5$725ꢂꢀ  
RIIVHWꢂFLUFXLWꢎ  
DGGꢍVXEVWUDFW  
SXOVH  
75,**(5  
&/($5  
IURPꢂLQWHUIDFHꢎ  
VHWꢂ&,(  
DDDꢀꢁꢁꢆꢆꢃꢅ  
Fig 7. Interrupt scheme  
AIE: This bit activates or deactivates the generation of an interrupt when AF is asserted,  
respectively.  
AF: When an alarm occurs, AF is set logic 1. This bit maintains its value until overwritten  
by command. To prevent one flag being overwritten while clearing another, a logic AND is  
performed during a write access.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
12 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.2.2.2 MI and HMI: minute and half minute interrupt  
The minute interrupt (bit MI) and half minute interrupt (bit HMI) are pre-defined timers for  
generating interrupt pulses on pin INT; see Figure 8. The timers are running in sync with  
the seconds counter (see Table 19 on page 19).  
The minute and half minute interrupts must only be used when the frequency offset is set  
to normal mode (MODE = 0), see Section 8.2.3. In normal mode, the interrupt pulses on  
pin INT are 164 s wide.  
When starting MI, the first interrupt will be generated after 1 second to 59 seconds. When  
starting HMI, the first interrupt will be generated after 1 second to 29 seconds.  
Subsequent periods do not have such a delay. The timers can be enabled independently  
from one another. However, a minute interrupt enabled on top of a half minute interrupt is  
not distinguishable.  
VHFRQGVꢂFRXQWHU  
PLQXWHVꢂFRXQWHU  
ꢉꢅ  
ꢉꢌ  
ꢉꢌ  
ꢄꢄ  
ꢊꢊ  
ꢄꢁ  
ꢊꢊ  
ꢊꢄ  
,17ꢂZKHQꢂ0,ꢂHQDEOHG  
7)ꢂZKHQꢂ0,ꢂHQDEOHG  
DDDꢀꢁꢁꢆꢆꢂꢊ  
In this example, the TF flag is not cleared after an interrupt.  
Fig 8. INT example for MI  
Table 10. Effect of bits MI and HMI on INT generation  
Minute interrupt (bit MI)  
Half minute interrupt (bit HMI)  
Result  
0
1
0
1
0
0
1
1
no interrupt generated  
an interrupt every minute  
an interrupt every 30 s  
an interrupt every 30 s  
The duration of the timer is affected by the register Offset (see Section 8.2.3). Only when  
OFFSET[6:0] has the value 00h the periods are consistent.  
8.2.2.3 TF: timer flag  
The timer flag (bit TF) is set logic 1 on the first trigger of MI, HMI, or the countdown timer.  
The purpose of the flag is to allow the controlling system to interrogate what caused the  
interrupt: timer or alarm. The flag can be read and cleared by command.  
The status of the timer flag TF can affect the INT pulse generation depending on the  
setting of TI_TP (see Section 8.6.2 “Register Timer_mode” on page 28):  
When TI_TP is set logic 1  
an INT pulse is generated independent of the status of the timer flag TF  
TF stays set until it is cleared  
TF does not affect INT  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
13 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
the countdown timer runs in a repetitive loop and keeps generating timed periods  
When TI_TP is set logic 0  
the INT generation follows the TF flag  
TF stays set until it is cleared  
If TF is not cleared before the next coming interrupt, no INT is generated  
the countdown timer stops after the first countdown  
8.2.2.4 COF[2:0]: Clock output frequency  
A programmable square wave is available at pin CLKOUT. Operation is controlled by the  
COF[2:0] bits in the register Control_2. Frequencies of 32.768 kHz (default) down to 1 Hz  
can be generated for use as a system clock, microcontroller clock, input to a charge  
pump, or for calibration of the oscillator.  
Pin CLKOUT is a push-pull output and enabled at power-on. CLKOUT can be disabled by  
setting COF[2:0] to 111. When disabled, the CLKOUT is LOW.  
The duty cycle of the selected clock is not controlled. However, due to the nature of the  
clock generation, all clock frequencies except 32.768 kHz have a duty cycle of 50 : 50.  
The STOP bit function can also affect the CLKOUT signal, depending on the selected  
frequency. When the STOP bit is set logic 1, the CLKOUT pin generates a continuous  
LOW for those frequencies that can be stopped. For more details of the STOP bit function,  
see Section 8.2.1.2.  
Table 11. CLKOUT frequency selection  
COF[2:0]  
000[2]  
001  
CLKOUT frequency (Hz) Typical duty cycle[1]  
Effect of STOP bit  
no effect  
32768  
16384  
8192  
60 : 40 to 40 : 60  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
-
no effect  
010  
no effect  
011  
4096  
CLKOUT = LOW  
CLKOUT = LOW  
CLKOUT = LOW  
CLKOUT = LOW  
-
100  
2048  
101  
1024  
1[3]  
110  
111  
CLKOUT = LOW  
[1] Duty cycle definition: % HIGH-level time : % LOW-level time.  
[2] Default value.  
[3] 1 Hz clock pulses are affected by offset correction pulses.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
14 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.2.3 Register Offset  
The PCA85063A incorporates an offset register (address 02h) which can be used to  
implement several functions, such as:  
Accuracy tuning  
Aging adjustment  
Temperature compensation  
Table 12. Offset - offset register (address 02h) bit description  
Bit  
Symbol  
Value  
Description  
offset mode  
7
MODE  
0[1]  
normal mode: offset is made once every two  
hours  
1
course mode: offset is made every 4 minutes  
6 to 0 OFFSET[6:0]  
[1] Default value.  
see Table 13  
offset value  
For MODE = 0, each LSB introduces an offset of 4.34 ppm. For MODE = 1, each LSB  
introduces an offset of 4.069 ppm. The offset value is coded in two’s complement giving a  
range of +63 LSB to 64 LSB.  
Table 13. Offset values  
OFFSET[6:0]  
Offset value in  
decimal  
Offset value in ppm  
Normal mode  
MODE = 0  
Fast mode  
MODE = 1  
0111111  
0111110  
:
+63  
+62  
:
+273.420  
+269.080  
:
+256.347  
+252.278  
:
0000010  
0000001  
0000000[1]  
1111111  
1111110  
:
+2  
+1  
0
+8.680  
+4.340  
0[1]  
+8.138  
+4.069  
0[1]  
1  
2  
:
4.340  
8.680  
:
4.069  
8.138  
:
1000001  
1000000  
63  
64  
273.420  
277.760  
256.347  
260.416  
[1] Default value.  
The correction is made by adding or subtracting clock correction pulses, thereby changing  
the period of a single second but not by changing the oscillator frequency.  
It is possible to monitor when correction pulses are applied. To enable correction interrupt  
generation, bit CIE (register Control_1) has to be set logic 1. At every correction cycle, a  
pulse is generated on pin INT. The pulse width depends on the correction mode. If  
multiple correction pulses are applied, an interrupt pulse is generated for each correction  
pulse applied.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
15 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.2.3.1 Correction when MODE = 0  
The correction is triggered once every two hours and then correction pulses are applied  
once per minute until the programmed correction values have been implemented.  
Table 14. Correction pulses for MODE = 0  
Correction value  
Update every nth hour Minute  
Correction pulses on  
INT per minute[1]  
+1 or 1  
+2 or 2  
+3 or 3  
:
2
00  
1
1
1
:
2
00 and 01  
00, 01, and 02  
:
2
:
+59 or 59  
+60 or 60  
+61 or 61  
2
00 to 58  
00 to 59  
00 to 59  
00  
1
1
1
1
1
1
1
1
1
1
2
2
2nd and next hour  
+62 or 62  
+63 or 63  
64  
2
00 to 59  
00 and 01  
00 to 59  
00, 01, and 02  
00 to 59  
00, 01, 02, and 03  
2nd and next hour  
02  
2nd and next hour  
02  
2nd and next hour  
[1] The correction pulses on pin INT are 1  
64 s wide.  
In MODE = 0, any timer or clock output using a frequency below 64 Hz is affected by the  
clock correction (see Table 15).  
Table 15. Effect of correction pulses on frequencies for MODE = 0  
Frequency (Hz)  
Effect of correction  
CLKOUT  
32768  
no effect  
no effect  
no effect  
no effect  
no effect  
no effect  
affected  
16384  
8192  
4096  
2048  
1024  
1
Timer source clock  
4096  
64  
no effect  
no effect  
affected  
affected  
1
1
60  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
16 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.2.3.2 Correction when MODE = 1  
The correction is triggered once every four minutes and then correction pulses are applied  
once per second up to a maximum of 60 pulses. When correction values greater than 60  
pulses are used, additional correction pulses are made in the 59th second.  
Clock correction is made more frequently in MODE = 1; however, this can result in higher  
power consumption.  
Table 16. Correction pulses for MODE = 1  
Correction value  
Update every nth  
minute  
Second  
Correction pulses on  
INT per second[1]  
+1 or 1  
+2 or 2  
+3 or 3  
:
2
2
2
:
00  
1
1
1
:
00 and 01  
00, 01, and 02  
:
+59 or 59  
+60 or 60  
+61 or 61  
2
2
2
2
2
2
2
2
2
2
00 to 58  
00 to 59  
00 to 58  
59  
1
1
1
2
1
3
1
4
1
5
+62 or 62  
+63 or 63  
64  
00 to 58  
59  
00 to 58  
59  
00 to 58  
59  
[1] The correction pulses on pin INT are 1  
1024 s wide. For multiple pulses, they are repeated at an interval of  
1
512 s.  
In MODE = 1, any timer source clock using a frequency below 1.024 kHz is also affected  
by the clock correction (see Table 17).  
Table 17. Effect of correction pulses on frequencies for MODE = 1  
Frequency (Hz)  
Effect of correction  
CLKOUT  
32768  
no effect  
no effect  
no effect  
no effect  
no effect  
no effect  
affected  
16384  
8192  
4096  
2048  
1024  
1
Timer source clock  
4096  
64  
no effect  
affected  
affected  
affected  
1
1
60  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
17 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.2.3.3 Offset calibration workflow  
The calibration offset has to be calculated based on the time. Figure 9 shows the workflow  
how the offset register values can be calculated:  
VDPSOHꢂFDOFXODWLRQꢎ  
0HDVXUHꢂWKHꢂIUHTXHQF\ꢂRQꢂSLQꢂ&/.287  
I
PHDV  
ꢀꢁꢆꢇꢅꢋꢈꢅꢂ+]  
ꢀꢊꢋꢉꢄꢆꢄꢀꢄꢂ—V  
&RQYHUWꢂWRꢂWLPHꢎ  
ꢂ ꢂꢄꢂꢍꢂI  
W
PHDV  
PHDV  
&DOFXODWHꢂWKHꢂGLIIHUHQFHꢂWRꢂWKHꢂLGHDO  
SHULRGꢂRIꢂꢄꢂꢍꢂꢀꢁꢆꢇꢅꢋꢊꢊꢎꢂ  
ꢊꢋꢊꢊꢊꢈꢈꢆꢂ—V  
ꢄꢈꢋꢇꢈꢅꢂSSP  
'
ꢂ ꢂꢄꢂꢍꢂꢀꢁꢆꢇꢅꢂꢃꢂW  
PHDV  
PHDV  
&DOFXODWHꢂWKHꢂSSPꢂGHYLDWLRQꢂFRPSDUHG  
WRꢂWKHꢂPHDVXUHGꢂYDOXHꢎꢂ  
(
ꢂ ꢂꢄꢊꢊꢊꢊꢊꢊꢂîꢂ'  
ꢂꢂꢍꢂW  
SSP  
PHDV PHDV  
&DOFXODWHꢂWKHꢂRIIVHWꢂUHJLVWHUꢂYDOXHꢎ  
0RGHꢂ ꢂꢊꢂꢐORZꢂSRZHUꢑꢎ  
2IIVHWꢂYDOXHꢂ ꢂ(  
ꢂꢍꢂꢈꢋꢀꢈ  
ꢀꢋꢀꢆꢉꢂ  
ꢀꢋꢇꢊꢊꢂ  
ꢀꢂFRUUHFWLRQꢂSXOVHV  
SSP  
DUHꢂQHHGHG  
0RGHꢂ ꢂꢄꢂꢐIDVWꢂFRUUHFWLRQꢑ  
2IIVHWꢂYDOXHꢂ ꢂ( ꢂꢍꢂꢈꢋꢊꢇꢌ  
ꢈꢂFRUUHFWLRQꢂSXOVHV  
DUHꢂQHHGHG  
SSP  
DDDꢀꢁꢁꢆꢃꢄꢇ  
Fig 9. Offset calibration calculation workflow  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
18 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
ꢐꢁꢑ  
ꢐꢄꢑ  
ꢐꢀꢑ  
ꢃꢇ  
ꢃꢈ  
ꢃꢁ  
ꢄꢊ  
ꢄꢁ  
ꢄꢈ  
ꢄꢇ  
GHYLDWLRQꢂDIWHU  
ꢂFRUUHFWLRQꢂLQꢂ  
02'(ꢂ ꢂꢄ  
GHYLDWLRQꢂDIWHU  
ꢂFRUUHFWLRQꢂLQꢂ  
02'(ꢂ ꢂꢊ  
PHDVXUHGꢍFDOFXODWHG  
GHYLDWLRQꢂꢂꢂꢄꢈꢋꢇꢈꢅꢂSSP  
ꢂꢂꢃꢄꢋꢇꢁꢅꢂSSP  
ꢂꢂꢂꢒꢄꢋꢇꢁꢅꢂSSP  
DDDꢀꢁꢁꢆꢃꢄꢂ  
With the offset calibration an accuracy of 2 ppm (0.5 offset per LSB) can be reached (see  
Table 13).  
1 ppm corresponds to a time deviation of 0.0864 seconds per day.  
(1) 3 correction pulses in MODE = 0 correspond to 13.02 ppm.  
(2) 4 correction pulses in MODE = 1 correspond to 16.276 ppm.  
(3) Reachable accuracy zone.  
Fig 10. Result of offset calibration  
8.2.4 Register RAM_byte  
The PCA85063A provides a free RAM byte, which can be used for any purpose, for  
example, status byte of the system.  
Table 18. RAM_byte - 8-bit RAM register (address 03h) bit description  
Bit  
Symbol  
Value  
Description  
7 to 0 B[7:0]  
00000000[1] to RAM content  
11111111  
[1] Default value.  
8.3 Time and date registers  
Most of the registers are coded in the BCD format to simplify application use.  
8.3.1 Register Seconds  
Table 19. Seconds - seconds register (address 04h) bit description  
Bit  
Symbol  
Value  
Place value Description  
oscillator stop  
7
OS  
0
1[1]  
-
-
clock integrity is guaranteed  
clock integrity is not  
guaranteed; oscillator has  
stopped or has been  
interrupted  
6 to 4 SECONDS  
3 to 0  
0
[1] to 5  
0[1] to 9  
ten’s place actual seconds coded in BCD  
format, see Table 20  
unit place  
[1] Default value.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
19 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
Table 20. Seconds coded in BCD format  
Seconds value in Upper-digit (ten’s place)  
Digit (unit place)  
decimal  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00[1]  
01  
02  
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
09  
10  
:
0
0
:
0
0
:
0
1
:
1
0
:
0
0
:
0
0
:
1
0
:
58  
59  
1
1
0
0
1
1
1
1
0
0
0
0
0
1
[1] Default value.  
8.3.1.1 OS: Oscillator stop  
When the oscillator of the PCA85063A is stopped, the OS flag is set. The oscillator can be  
stopped, for example, by connecting one of the oscillator pins OSCI or OSCO to ground.  
The oscillator is considered to be stopped during the time between power-on and stable  
crystal resonance. This time can be in the range of 200 ms to 2 s depending on crystal  
type, temperature, and supply voltage.  
The flag remains set until cleared by command (see Figure 11). If the flag cannot be  
cleared, then the oscillator is not running. This method can be used to monitor the  
oscillator and to determine if the supply voltage has reduced to the point where oscillation  
fails.  
26ꢂ ꢂꢄꢂDQGꢂIODJꢂFDQꢂQRWꢂEHꢂFOHDUHG  
26ꢂ ꢂꢄꢂDQGꢂIODJꢂFDQꢂEHꢂFOHDUHG  
9
''  
RVFLOODWLRQ  
26ꢂIODJ  
26ꢂIODJꢂVHWꢂZKHQ  
RVFLOODWLRQꢂVWRSV  
26ꢂIODJꢂFOHDUHG  
E\ꢂVRIWZDUH  
W
RVFLOODWLRQꢂQRZꢂVWDEOH  
DDDꢀꢁꢁꢆꢆꢅꢁ  
Fig 11. OS flag  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
20 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.3.2 Register Minutes  
Table 21. Minutes - minutes register (address 05h) bit description  
Bit  
Symbol  
Value  
Place value Description  
- unused  
7
-
0
6 to 4 MINUTES  
3 to 0  
0[1] to 5  
ten’s place actual minutes coded in BCD  
format  
0
[1] to 9  
unit place  
[1] Default value.  
8.3.3 Register Hours  
Table 22. Hours - hours register (address 06h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7 to 6  
-
00  
-
unused  
12-hour mode[1]  
5
AMPM  
AM/PM indicator  
0[2]  
1
-
-
AM  
PM  
4
HOURS  
0
0
[2] to 1  
[2] to 9  
ten’s place actual hours in 12-hour mode  
coded in BCD format  
3 to 0  
unit place  
24-hour mode[1]  
5 to 4 HOURS  
3 to 0  
0[2] to 2  
[2] to 9  
ten’s place actual hours in 24-hour mode  
coded in BCD format  
0
unit place  
[1] Hour mode is set by the 12_24 bit in register Control_1.  
[2] Default value.  
8.3.4 Register Days  
Table 23. Days - days register (address 07h) bit description  
Bit  
Symbol  
Value  
Place value Description  
- unused  
7 to 6  
-
00  
5 to 4 DAYS[1]  
0[2] to 3  
ten’s place actual day coded in BCD format  
3 to 0  
0
[3] to 9  
unit place  
[1] If the year counter contains a value, which is exactly divisible by 4 (including the year 00), the PCA85063A  
compensates for leap years by adding a 29th day to February.  
[2] Default value.  
[3] Default value is 1.  
8.3.5 Register Weekdays  
Table 24. Weekdays - weekdays register (address 08h) bit description  
Bit  
Symbol  
Value  
00000  
0 to 6  
Description  
7 to 3  
-
unused  
2 to 0 WEEKDAYS  
actual weekday values, see Table 25  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
21 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
Table 25. Weekday assignments  
Day[1]  
Bit  
2
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
Sunday  
Monday  
Tuesday  
0
0
0
Wednesday  
0
Thursday  
1
Friday  
Saturday[2]  
1
1
[1] Definition may be reassigned by the user.  
[2] Default value.  
8.3.6 Register Months  
Table 26. Months - months register (address 09h) bit description  
Bit  
Symbol  
-
Value  
000  
Place value Description  
- unused  
7 to 5  
4
MONTHS  
0 to 1  
0 to 9  
ten’s place actual month coded in BCD  
format, see Table 27  
3 to 0  
unit place  
Table 27. Month assignments in BCD format  
Month  
Upper-digit  
(ten’s place)  
Digit (unit place)  
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
1
January[1]  
February  
March  
0
0
0
1
0
0
0
0
1
1
April  
0
0
1
0
0
May  
0
0
1
0
1
June  
0
0
1
1
0
July  
0
0
1
1
1
August  
September  
October  
November  
December  
0
1
0
0
0
0
1
0
0
1
1
0
0
0
0
1
0
0
0
1
1
0
0
1
0
[1] Default value.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
22 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.3.7 Register Years  
Table 28. Years - years register (0Ah) bit description  
Bit  
Symbol  
Value  
Place value Description  
ten’s place actual year coded in BCD format  
unit place  
7 to 4 YEARS  
3 to 0  
0[1] to 9  
0
[1] to 9  
[1] Default value.  
8.4 Setting and reading the time  
Figure 12 shows the data flow and data dependencies starting from the 1 Hz clock tick.  
ꢄꢂ+]ꢂWLFN  
6(&21'6  
0,187(6  
ꢄꢁBꢁꢈꢂKRXUꢂPRGH  
+2856  
'$<6  
/($3ꢂ<($5  
&$/&8/$7,21  
:((.'$<  
0217+6  
<($56  
DDDꢀꢁꢁꢆꢆꢅꢂ  
Fig 12. Data flow for the time function  
During read/write operations, the time counting circuits (memory locations 04h through  
0Ah) are blocked.  
The blocking prevents  
Faulty reading of the clock and calendar during a carry condition  
Incrementing the time registers during the read cycle  
After this read/write access is completed, the time circuit is released again and any  
pending request to increment the time counters that occurred during the read/write access  
is serviced. A maximum of 1 request can be stored; therefore, all accesses must be  
completed within 1 second (see Figure 13).  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
23 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
WꢂꢓꢂꢄꢂV  
67$57  
6/$9(ꢂ$''5(66  
'$7$  
'$7$  
6723  
DDDꢀꢁꢁꢆꢆꢅꢅ  
Fig 13. Access time for read/write operations  
Because of this method, it is very important to make a read or write access in one go, that  
is, setting or reading seconds through to years should be made in one single access.  
Failing to comply with this method could result in the time becoming corrupted.  
As an example, if the time (seconds through to hours) is set in one access and then in a  
second access the date is set, it is possible that the time will increment between the two  
accesses. A similar problem exists when reading. A roll-over may occur between reads  
thus giving the minutes from one moment and the hours from the next.  
Recommended method for reading the time:  
1. Send a START condition and the slave address (see Table 39 on page 33) for write  
(A2h)  
2. Set the address pointer to 4 (Seconds) by sending 04h  
3. Send a RESTART condition or STOP followed by START  
4. Send the slave address for read (A3h)  
5. Read Seconds  
6. Read Minutes  
7. Read Hours  
8. Read Days  
9. Read Weekdays  
10. Read Months  
11. Read Years  
12. Send a STOP condition  
8.5 Alarm registers  
8.5.1 Register Second_alarm  
Table 29. Second_alarm - second alarm register (address 0Bh) bit description  
Bit  
Symbol  
Value  
Place value Description  
second alarm  
7
AEN_S  
0
1[1]  
-
-
enabled  
disabled  
6 to 4 SECOND_ALARM  
3 to 0  
0
0
[1] to 5  
[1] to 9  
ten’s place second alarm information  
coded in BCD format  
unit place  
[1] Default value.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
24 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.5.2 Register Minute_alarm  
Table 30. Minute_alarm - minute alarm register (address 0Ch) bit description  
Bit  
Symbol  
Value  
Place value Description  
minute alarm  
7
AEN_M  
0
1[1]  
-
-
enabled  
disabled  
6 to 4 MINUTE_ALARM  
3 to 0  
0
0
[1] to 5  
[1] to 9  
ten’s place minute alarm information coded  
in BCD format  
unit place  
[1] Default value.  
8.5.3 Register Hour_alarm  
Table 31. Hour_alarm - hour alarm register (address 0Dh) bit description  
Bit  
Symbol  
Value  
Place value Description  
hour alarm  
7
AEN_H  
0
1[1]  
-
-
-
enabled  
disabled  
6
-
0
unused  
12-hour mode[2]  
5
AMPM  
AM/PM indicator  
0[1]  
1
-
-
AM  
PM  
4
HOUR_ALARM  
0
0
[1] to 1  
[1] to 9  
ten’s place hour alarm information in  
12-hour mode coded in BCD  
3 to 0  
unit place  
format  
24-hour mode[2]  
5 to 4 HOUR_ALARM  
3 to 0  
0[1] to 2  
[1] to 9  
ten’s place hour alarm information in  
24-hour mode coded in BCD  
0
unit place  
format  
[1] Default value.  
[2] Hour mode is set by the 12_24 bit in register Control_1.  
8.5.4 Register Day_alarm  
Table 32. Day_alarm - day alarm register (address 0Eh) bit description  
Bit  
Symbol  
Value  
Place value Description  
day alarm  
7
AEN_D  
0
1[1]  
-
-
-
enabled  
disabled  
6
-
0
unused  
5 to 4 DAY_ALARM  
3 to 0  
0
0
[1] to 3  
[1] to 9  
ten’s place day alarm information coded in  
BCD format  
unit place  
[1] Default value.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
25 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.5.5 Register Weekday_alarm  
Table 33. Weekday_alarm - weekday alarm register (address 0Fh) bit description  
Bit  
Symbol  
Value  
Description  
weekday alarm  
enabled  
7
AEN_W  
0
1[1]  
disabled  
6 to 3  
-
0
unused  
2 to 0 WEEKDAY_ALARM  
0
[1] to 6  
weekday alarm information coded in BCD  
format  
[1] Default value.  
8.5.6 Alarm function  
By clearing the alarm enable bit (AEN_x) of one or more of the alarm registers, the  
corresponding alarm condition(s) are active. When an alarm occurs, AF is set logic 1. The  
asserted AF can be used to generate an interrupt (INT). The AF is cleared by command.  
The registers at addresses 0Bh through 0Fh contain alarm information. When one or  
more of these registers is loaded with second, minute, hour, day or weekday, and its  
corresponding AEN_x is logic 0, then that information is compared with the current  
second, minute, hour, day, and weekday. When all enabled comparisons first match, the  
alarm flag (AF in register Control_2) is set logic 1.  
The generation of interrupts from the alarm function is controlled via bit AIE. If bit AIE is  
enabled, the INT pin follows the condition of bit AF. AF remains set until cleared by  
command. Once AF has been cleared, it will only be set again when the time increments  
to match the alarm condition once more. Alarm registers which have their AEN_x bit at  
logic 1 are ignored.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
26 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
H[DPSOH  
FKHFNꢂQRZꢂVLJQDO  
$(1B6  
$(1B6ꢂ ꢂꢄ  
6(&21'ꢂ$/$50  
 
6(&21'ꢂ7,0(  
$(1B0  
0,187(ꢂ$/$50  
 
0,187(ꢂ7,0(  
$(1B+  
+285ꢂ$/$50  
ꢐꢄꢑ  
VHWꢂDODUPꢂIODJꢂ$)ꢂ  
 
 
 
+285ꢂ7,0(  
$(1B'  
$(1B:  
'$<ꢂ$/$50  
'$<ꢂ7,0(  
:((.'$<ꢂ$/$50  
:((.'$<ꢂ7,0(  
DDDꢀꢁꢁꢆꢆꢃꢃ  
(1) Only when all enabled alarm settings are matching.  
It is only on increment to a matched case that the alarm flag is set.  
Fig 14. Alarm function block diagram  
8.6 Timer registers  
The 8-bit countdown timer at address 10h is controlled by the register Timer_mode at  
address 11h.  
8.6.1 Register Timer_value  
Table 34. Timer_value - timer value register (address 10h) bit description  
Bit  
Symbol  
Value  
Description  
countdown timer value[2]  
7 to 0 T[7:0]  
0h[1] to  
FFh  
[1] Default value.  
T
[2] Countdown period in seconds: CountdownPeriod =  
where T is the  
--------------------------------------------------------------  
SourceClockFrequency  
countdown value.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
27 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
8.6.2 Register Timer_mode  
Table 35. Timer_mode - timer control register (address 11h) bit description  
Bit  
Symbol  
Value  
Description  
7 to 5  
-
000  
unused  
4 to 3 TCF[1:0]  
timer clock frequency  
4.096 kHz timer source clock  
64 Hz timer source clock  
00  
01  
10  
1 Hz timer source clock  
1
11[1]  
60 Hz timer source clock  
2
1
0
TE  
timer enable  
0[1]  
1
timer is disabled  
timer is enabled  
TIE  
timer interrupt enable  
no interrupt generated from timer  
interrupt generated from timer  
timer interrupt mode  
interrupt follows timer flag  
interrupt generates a pulse  
0[1]  
1
TI_TP[2]  
0[1]  
1
[1] Default value.  
[2] How the setting of TI_TP and the timer flag TF can affect the INT pulse generation is explained in  
Section 8.2.2.3 on page 13.  
8.6.3 Timer functions  
The timer has four selectable source clocks allowing for countdown periods in the range  
from 244 s to 4 hours 15 min. For periods longer than 4 hours, the alarm function can be  
used.  
Table 36. Timer clock frequency and timer durations  
TCF[1:0] Timer source clock Delay  
frequency[1]  
Minimum timer duration  
T = 1  
Maximum timer duration  
T = 255  
00  
01  
10  
11  
4.096 kHz  
64 Hz  
1 Hz[2]  
244 s  
15.625 ms  
1 s  
62.256 ms  
3.984 s  
255 s  
1
60 Hz[2]  
60 s  
4 hours 15 min  
[1] When not in use, TCF[1:0] must be set to 1  
60 Hz for power saving.  
[2] Time periods can be affected by correction pulses.  
Remark: Note that all timings which are generated from the 32.768 kHz oscillator are  
based on the assumption that there is 0 ppm deviation. Deviation in oscillator frequency  
results in deviation in timings. This is not applicable to interface timing.  
The timer counts down from a software-loaded 8-bit binary value, T[7:0], in register  
Timer_value. Loading the counter with 0 stops the timer. Values from 1 to 255 are valid.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
28 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
When the counter decrements from 1, the timer flag (bit TF in register Control_2) is set  
and the counter automatically re-loads and starts the next timer period.  
FRXQWGRZQꢂYDOXHꢏꢂ7  
[[  
ꢊꢀ  
WLPHUꢂVRXUFHꢂFORFN  
FRXQWGRZQꢂFRXQWHU  
[[  
ꢊꢀ  
ꢊꢁ  
ꢊꢄ  
ꢊꢀ  
ꢊꢁ  
ꢊꢄ  
ꢊꢀ  
ꢊꢁ  
ꢊꢄ  
ꢊꢀ  
7(  
7)  
,17  
7
7
GXUDWLRQꢂRIꢂILUVWꢂWLPHUꢂSHULRGꢂDIWHU  
HQDEOHꢂPD\ꢂUDQJHꢂIURPꢂ7ꢂꢃꢂꢄꢂWRꢂ7ꢂꢒꢂꢄ  
DDDꢀꢁꢁꢆꢆꢃꢆ  
In this example, it is assumed that the timer flag is cleared before the next countdown period  
expires and that the pin INT is set to pulsed mode.  
Fig 15. General countdown timer behavior  
If a new value of T is written before the end of the current timer period, then this value  
takes immediate effect. NXP does not recommend changing T without first disabling the  
counter by setting bit TE logic 0. The update of T is asynchronous to the timer clock.  
Therefore changing it without setting bit TE logic 0 may result in a corrupted value loaded  
into the countdown counter. This results in an undetermined countdown period for the first  
period. The countdown value T will, however, be correctly stored and correctly loaded on  
subsequent timer periods.  
When the TIE flag is set, an interrupt signal on INT is generated if this mode is enabled.  
See Section 8.2.2 for details on how the interrupt can be controlled.  
When starting the timer for the first time, the first period has an uncertainty. The  
uncertainty is a result of the enable instruction being generated from the interface clock  
which is asynchronous from the timer source clock. Subsequent timer periods do not have  
such delay. The amount of delay for the first timer period depends on the chosen source  
clock, see Table 37.  
Table 37. First period delay for timer counter value T  
Timer source clock  
4.096 kHz  
64 Hz  
Minimum timer period  
Maximum timer period  
T
T
T + 1  
T + 1  
1 Hz  
1
1
T 1+  
T 1+  
T +  
T +  
--------------  
--------------  
64 Hz  
64 Hz  
1
60 Hz  
1
1
--------------  
--------------  
64 Hz  
64 Hz  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
29 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
At the end of every countdown, the timer sets the countdown timer flag (bit TF in register  
Control_2). Bit TF can only be cleared by command. The asserted bit TF can be used to  
generate an interrupt at pin INT. The interrupt may be generated as a pulsed signal every  
countdown period or as a permanently active signal which follows the condition of bit TF.  
Bit TI_TP is used to control this mode selection and the interrupt output may be disabled  
with bit TIE, see Table 35 and Figure 15.  
When reading the timer, the current countdown value is returned and not the initial  
value T. Since it is not possible to freeze the countdown timer counter during read back, it  
is recommended to read the register twice and check for consistent results.  
Timer source clock frequency selection of 1 Hz and 160 Hz is affected by the Offset  
register. The duration of a program period varies according to when the offset is initiated.  
For example, if a 100 s timer is set using the 1 Hz clock as source, then some 100 s  
periods will contain correction pulses and therefore be longer or shorter depending on the  
setting of the Offset register. See Section 8.2.3 to understand the operation of the Offset  
register.  
8.6.3.1 Countdown timer interrupts  
The pulse generator for the countdown timer interrupt uses an internal clock and is  
dependent on the selected source clock for the countdown timer and on the countdown  
value T. As a consequence, the width of the interrupt pulse varies (see Table 38).  
Table 38. INT operation  
TF and INT become active simultaneously.  
Source clock (Hz)  
INT period (s)  
T = 1[1]  
T > 1[1]  
1
1
4096  
64  
8192  
4096  
1
1
128  
64  
1
1
1
64  
64  
1
1
1
60  
64  
64  
[1] T = loaded countdown value. Timer stops when T = 0.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
30 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
9. Characteristics of the I2C-bus interface  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only  
when the bus is not busy.  
9.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse, as changes in the data line at this time  
are interpreted as a control signal (see Figure 16).  
6'$  
6&/  
GDWDꢂOLQHꢂ  
VWDEOHꢔꢂ  
FKDQJHꢂ  
RIꢂGDWDꢂ  
DOORZHG  
GDWDꢂYDOLG  
PEFꢈꢅꢂ  
Fig 16. Bit transfer  
9.2 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy.  
A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START  
condition - S.  
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition - P (see Figure 17).  
6'$  
6&/  
6'$  
6&/  
6
3
67$57ꢂFRQGLWLRQ  
6723ꢂFRQGLWLRQ  
PEFꢅꢅ  
Fig 17. Definition of START and STOP conditions  
9.3 System configuration  
A device generating a message is a transmitter; a device receiving a message is a  
receiver. The device that controls the message is the master; and the devices which are  
controlled by the master are the slaves (see Figure 18).  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
31 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
0$67(5ꢂ  
75$160,77(5ꢍꢂ  
5(&(,9(5  
0$67(5ꢂ  
75$160,77(5ꢍꢂ  
5(&(,9(5  
6/$9(ꢂ  
75$160,77(5ꢍꢂ  
5(&(,9(5  
6/$9(ꢂ  
5(&(,9(5  
0$67(5ꢂ  
75$160,77(5  
6'$  
6&/  
PJDꢉꢁꢄ  
Fig 18. System configuration  
9.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of 8 bits is followed by an acknowledge  
cycle.  
A slave receiver, which is addressed, must generate an acknowledge after the  
reception of each byte  
Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be considered)  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition  
Acknowledgement on the I2C-bus is shown in Figure 19.  
GDWDꢂRXWSXWꢂ  
E\ꢂWUDQVPLWWHU  
QRWꢂDFNQRZOHGJH  
GDWDꢂRXWSXWꢂ  
E\ꢂUHFHLYHU  
DFNQRZOHGJH  
6&/ꢂIURPꢂ  
PDVWHU  
6
FORFNꢂSXOVHꢂIRUꢂ  
67$57ꢂ  
FRQGLWLRQ  
DFNQRZOHGJHPHQW  
PEFꢈꢁꢅ  
Fig 19. Acknowledgement on the I2C-bus  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
32 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
9.5 I2C-bus protocol  
9.5.1 Addressing  
One I2C-bus slave address (1010001) is reserved for the PCA85063A. The entire I2C-bus  
slave address byte is shown in Table 39.  
Table 39. I2C slave address byte  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
1
0
1
0
0
0
1
After a START condition, the I2C slave address has to be sent to the PCA85063A device.  
The R/W bit defines the direction of the following single or multiple byte data transfer  
(R/W = 0 for writing, R/W = 1 for reading). For the format and the timing of the START  
condition (S), the STOP condition (P) and the acknowledge bit (A) refer to the I2C-bus  
characteristics (see Ref. 12 “UM10204”). In the write mode, a data transfer is terminated  
by sending either the STOP condition or the START condition of the next data transfer.  
9.5.2 Clock and calendar READ or WRITE cycles  
The I2C-bus configuration for the different PCA85063A READ and WRITE cycles is  
shown in Figure 20 and Figure 21. The register address is a 5-bit value that defines which  
register is to be accessed next. The upper 3 bits of the register address are not used.  
DFNQRZOHGJH  
IURPꢂ3&$ꢅꢉꢊꢇꢀ$  
DFNQRZOHGJH  
IURPꢂ3&$ꢅꢉꢊꢇꢀ$  
DFNQRZOHGJH  
IURPꢂ3&$ꢅꢉꢊꢇꢀ$  
6
$
$
$
3ꢍ6  
VODYHꢂDGGUHVV  
ZULWHꢂELW  
UHJLVWHUꢂDGGUHVV  
ꢊꢊKꢂWRꢂꢄꢄK  
ꢊꢂWRꢂQ  
GDWDꢂE\WHV  
67$57ꢍ  
6723  
DDDꢀꢁꢂꢃꢄꢂꢈ  
Fig 20. Master transmits to slave receiver (WRITE mode)  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
33 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
DFNQRZOHGJH  
IURPꢂ3&$ꢅꢉꢊꢇꢀ$  
DFNQRZOHGJH  
IURPꢂ3&$ꢅꢉꢊꢇꢀ$  
VHWꢂUHJLVWHU  
DGGUHVV  
6
$
$
3
VODYHꢂDGGUHVV  
ZULWHꢂELW  
UHJLVWHUꢂDGGUHVV  
ꢊꢊKꢂWRꢂꢄꢄK  
6723  
DFNQRZOHGJH  
IURPꢂ3&$ꢅꢉꢊꢇꢀ$  
DFNQRZOHGJH  
IURPꢂPDVWHU  
QRꢂDFNQRZOHGJH  
/$67ꢂ'$7$ꢂ%<7(  
UHDGꢂUHJLVWHU  
GDWD  
6
$
'$7$ꢂ%<7(  
$
$
3
VODYHꢂDGGUHVV  
UHDGꢂELW  
ꢊꢂWRꢂQꢂGDWDꢂE\WHV  
DXWRꢂLQFUHPHQW  
PHPRU\ꢂUHJLVWHUꢂDGGUHVV  
DXWRꢂLQFUHPHQW  
PHPRU\ꢂUHJLVWHUꢂDGGUHVV  
DDDꢀꢁꢂꢃꢄꢂꢄ  
For multimaster configurations and to fasten the communication, the STOP-START sequence can be replaced by a repeated  
START (Sr).  
Fig 21. Master reads after setting register address (write register address; READ data)  
9.5.3 I2C-bus error recovery technique  
Slave devices like the PCA85063A use a state machine to implement the I2C protocol and  
expect a certain sequence of events to occur to function properly. Unexpected events at  
the I2C master can wreak havoc with the slaves connected on the bus. However, it is  
usually possible to recover deterministically to a known bus state with careful protocol  
manipulation.  
A deterministic method to clear this situation if SDA is stuck LOW (it effectively blocks any  
other I2C-bus transaction, once the master recognizes a ‘stuck bus’ state), is for the  
master to blindly transmit nine clocks on SCL. If the slave was transmitting data or  
acknowledging, nine or more clocks ensures the slave state machine returns to a known,  
idle state since the protocol calls for eight data bits and one ACK bit. It does not matter  
when the slave state machine finishes its transmission; extra clocks are recognized as  
STOP conditions.  
With careful design of the bus master error recovery firmware, many I2C-bus protocol  
problems can be avoided.  
S/W considerations: NXP recommends customers allow for S/W reset capability to enable  
the bus error recovery technique. The 9-clock pulse method as described above involves  
a bus-master capable of providing such a signal.  
Further comments/additional information are available in Ref. 13 “UM10301” and Ref. 12  
“UM10204”.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
34 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
10. Internal circuitry  
3&$ꢀꢁꢂꢃꢄ$  
9''  
26&,  
&/.287  
26&2  
6&/  
6'$  
,17  
966  
DDDꢀꢁꢂꢃꢄꢂꢉ  
Fig 22. Device diode protection diagram of PCA85063A  
11. Safety notes  
CAUTION  
This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling  
electrostatic sensitive devices.  
Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or  
equivalent standards.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
35 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
12. Limiting values  
Table 40. Limiting values[1]  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
IDD  
Parameter  
Conditions  
Min  
0.5  
50  
0.5  
0.5  
10  
10  
-
Max  
+6.5  
+50  
Unit  
V
supply voltage  
supply current  
input voltage  
mA  
V
VI  
on pins SCL, SDA, OSCI  
+6.5  
+6.5  
+10  
VO  
output voltage  
input current  
V
II  
at any input  
mA  
mA  
mW  
V
IO  
output current  
total power dissipation  
at any output  
+10  
Ptot  
VESD  
300  
[2]  
[3]  
[4]  
[5]  
electrostatic  
discharge voltage  
HBM  
CDM  
-
5000  
2000  
200  
-
V
Ilu  
latch-up current  
-
mA  
C  
C  
Tstg  
Tamb  
storage temperature  
65  
40  
+150  
+105  
ambient temperature operating device  
[1] Remark: The PCA85063A part is not guaranteed (nor characterized) above the operating range as denoted in the datasheet. NXP  
recommends not to bias the PCA85063A device during reflow (e.g. if utilizing a 'coin' type battery in the assembly). If customer so  
chooses to continue to use this assembly method, there must be the allowance for a full `0 V' level Power supply `reset' to re-enable the  
device. Without a proper POR, the device may remain in an indeterminate state.  
[2] Pass level; Human Body Model (HBM) according to Ref. 7 “JESD22-A114”.  
[3] Pass level; Charged-Device Model (CDM), according to Ref. 8 “JESD22-C101”.  
[4] Pass level; latch-up testing, according to Ref. 9 “JESD78” at maximum ambient temperature (Tamb(max)).  
[5] According to the store and transport requirements (see Ref. 14 “UM10569”) the devices have to be stored at a temperature of +8 C to  
+45 C and a humidity of 25 % to 75 %.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
36 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
13. Characteristics  
Table 41. Static characteristics  
VDD = 0.9 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +105 C; fosc = 32.768 kHz; quartz Rs = 60 k; CL = 7 pF; unless otherwise  
specified.  
Symbol  
Supplies  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[1]  
[2]  
supply voltage  
supply current  
interface inactive; fSCL = 0 Hz  
interface active; fSCL = 400 kHz  
0.9  
1.8  
-
-
5.5  
5.5  
V
V
IDD  
CLKOUT disabled;  
VDD = 5 V  
interface inactive; fSCL = 0 Hz  
Tamb = 25 C  
-
-
-
-
250  
550  
900  
35  
450  
750  
1800  
50  
nA  
nA  
nA  
A  
Tamb = 85 C  
Tamb = 105 C  
interface active;  
fSCL = 400 kHz  
Inputs[3]  
VI  
input voltage  
VSS  
VSS  
-
-
5.5  
V
V
VIL  
LOW-level input  
voltage  
0.3VDD  
VIH  
ILI  
HIGH-level input  
voltage  
0.7VDD  
-
VDD  
V
input leakage current VI = VSS or VDD  
post ESD event  
-
0
-
-
A  
A  
pF  
0.15  
+0.15  
7
[4]  
Ci  
input capacitance  
-
-
Outputs  
VOH  
HIGH-level output  
voltage  
on pin CLKOUT  
0.8VDD  
VSS  
1
-
VDD  
V
VOL  
IOH  
LOW-level output  
voltage  
on pins SDA, INT, CLKOUT  
-
0.2VDD  
-
V
HIGH-level output  
current  
output source current;  
VOH = 4.6 V;  
3
mA  
VDD = 5 V;  
on pin CLKOUT  
IOL  
LOW-level output  
current  
output sink current; VOL = 0.4 V;  
VDD = 5 V  
on pin SDA  
3
2
1
8.5  
6
-
-
-
mA  
mA  
mA  
on pin INT  
on pin CLKOUT  
3
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
37 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
Table 41. Static characteristics …continued  
VDD = 0.9 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +105 C; fosc = 32.768 kHz; quartz Rs = 60 k; CL = 7 pF; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Oscillator  
fosc/fosc  
relative oscillator  
frequency variation  
VDD = 200 mV; Tamb = 25 C  
-
0.075  
-
ppm  
[5]  
CL(itg)  
integrated load  
capacitance  
on pins OSCO, OSCI  
CL = 7 pF  
4.2  
7.5  
-
7
9.8  
pF  
pF  
k  
CL = 12.5 pF  
12.5  
-
17.5  
100  
Rs  
series resistance  
[1] For reliable oscillator start-up at power-on use VDD greater than 1.2 V. If powered up at 0.9 V the oscillator will start but it might be a bit  
slow, especially if at high temperature. Normally the power supply is not 0.9 V at start-up and only comes at the end of battery  
discharge. VDD min of 0.9 V is specified so that the customer can calculate how large a battery or capacitor they need for their  
application. VDD min of 1.2 V or greater is needed to ensure speedy oscillator start-up time. For a restart condition, NXP recommends a  
full '0 V' VDD value upon re-biasing.  
[2] Timer source clock = 1  
60 Hz, level of pins SCL and SDA is VDD or VSS.  
[3] The I2C-bus interface of PCA85063A is 5 V tolerant.  
[4] Implicit by design.  
COSCI COSCO  
[5] Integrated load capacitance, CL(itg), is a calculation of COSCI and COSCO in series: CLitg  
=
.
-------------------------------------------  
COSCI + COSCO  
DDDꢀꢁꢁꢇꢄꢆꢁ  
ꢉꢊ  
,
''  
ꢐ—$ꢑ  
ꢈꢊ  
ꢀꢊ  
ꢁꢊ  
ꢄꢊ  
ꢐꢄꢑ  
ꢐꢁꢑ  
ꢄꢊꢊ  
ꢁꢊꢊ  
ꢀꢊꢊ  
ꢈꢊꢊ  
ꢉꢊꢊ  
I
ꢂꢐN+]ꢑ  
6&/  
Tamb = 25 C; CLKOUT disabled.  
(1) VDD = 5.0 V.  
(2) DD = 3.3 V.  
V
Fig 23. Typical IDD with respect to fSCL  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
38 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
DDDꢀꢁꢂꢄꢃꢄꢈ  
ꢄꢁꢊꢊ  
,
''  
ꢐQ$ꢑ  
ꢄꢊꢊꢊ  
ꢅꢊꢊ  
ꢇꢊꢊ  
ꢈꢊꢊ  
ꢁꢊꢊ  
ꢐꢄꢑ  
ꢐꢁꢑ  
ꢃꢉꢊ  
ꢃꢄꢊ  
ꢀꢊ  
ꢆꢊ  
ꢄꢄꢊ  
7
DPE  
ꢂꢐž&ꢑ  
CL(itg) = 7 pF; CLKOUT disabled.  
(1) VDD = 5.5 V.  
(2) VDD = 3.3 V.  
DDDꢀꢁꢂꢄꢃꢉꢂ  
ꢄꢁꢊꢊ  
,
''  
ꢐQ$ꢑ  
ꢄꢊꢊꢊ  
ꢅꢊꢊ  
ꢇꢊꢊ  
ꢈꢊꢊ  
ꢁꢊꢊ  
ꢐꢄꢑ  
ꢐꢁꢑ  
ꢃꢉꢊ  
ꢃꢄꢊ  
ꢀꢊ  
ꢆꢊ  
ꢄꢄꢊ  
7
DPE  
ꢂꢐž&ꢑ  
CL(itg) = 12.5 pF; CLKOUT disabled.  
(1) VDD = 5.5 V.  
(2) DD = 3.3 V.  
V
Fig 24. Typical IDD as a function of temperature  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
39 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
DDDꢀꢁꢁꢇꢄꢃꢊ  
ꢄꢁ  
ꢄꢊ  
,
''  
ꢐ—$ꢑ  
ꢐꢄꢑ  
ꢐꢁꢑ  
ꢐꢄꢑ  
ꢐꢁꢑ  
9
ꢂꢐ9ꢑ  
''  
Tamb = 25 C; fCLKOUT = 32768 Hz.  
(1) 47 pF CLKOUT load.  
(2) 22 pF CLKOUT load.  
DDDꢀꢁꢁꢇꢄꢆꢂ  
ꢉꢊꢊ  
,
''  
ꢐQ$ꢑ  
ꢈꢊꢊ  
ꢀꢊꢊ  
ꢁꢊꢊ  
ꢄꢊꢊ  
ꢐꢄꢑ  
ꢐꢁꢑ  
9
ꢂꢐ9ꢑ  
''  
Tamb = 25 C; CLKOUT disabled.  
(1) CL(itg) = 12.5 pF.  
(2)  
CL(itg) = 7 pF.  
Fig 25. Typical IDD with respect to VDD  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
40 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
DDDꢀꢁꢁꢇꢉꢆꢂ  
ꢅꢊꢊ  
,
''  
ꢐQ$ꢑ  
ꢐꢄꢑ  
ꢐꢄꢑ  
ꢇꢊꢊ  
ꢐꢁꢑ  
ꢈꢊꢊ  
ꢁꢊꢊ  
ꢐꢀꢑ  
ꢐꢈꢑ  
ꢁꢊ  
ꢀꢊ  
ꢈꢊ  
ꢉꢊ  
ꢇꢊ  
ꢆꢊ  
ꢅꢊ  
ꢌꢊ  
5 ꢂꢐNŸꢑ  
ꢄꢊꢊ  
6
VDD = 5 V; CLKOUT disabled.  
(1) CL(itg) = 12.5 pF; 50 C; maximum value.  
(2) CL(itg) = 7 pF; 50 C; maximum value.  
(3)  
CL(itg) = 12.5 pF; 25 C; typical value.  
(4) CL(itg) = 7 pF; 25 C; typical value.  
Fig 26. IDD with respect to quartz RS  
DDDꢀꢁꢁꢇꢄꢆꢃ  
ǻI  
RVF  
ꢐSSPꢑ  
ꢄꢋꢉ  
ꢃꢄꢋꢉ  
ꢃꢀ  
ꢐꢄꢑ  
ꢐꢁꢑ  
9
ꢂꢐ9ꢑ  
''  
Tamb = 40 C to +105 C.  
L(itg) = 7 pF.  
(2) CL(itg) = 12.5 pF.  
(1)  
C
Fig 27. Oscillator frequency variation with respect to VDD  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
41 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
Table 42. I2C-bus characteristics  
V
DD = 1.8 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +105 C; fosc = 32.768 kHz; quartz Rs = 60 k; CL = 7 pF; unless otherwise  
specified. All timing values are valid within the operating supply voltage and temperature range and referenced to VIL and VIH  
[1]  
with an input voltage swing of VSS to VDD  
.
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Cb  
capacitive load for  
each bus line  
-
400  
pF  
[2]  
fSCL  
SCL clock frequency  
0
400  
-
kHz  
tHD;STA  
hold time (repeated)  
START condition  
0.6  
s  
tSU;STA  
set-up time for a  
repeated START  
condition  
0.6  
-
s  
tLOW  
tHIGH  
tr  
LOW period of the  
SCL clock  
1.3  
0.6  
20  
-
s  
s  
ns  
ns  
s  
HIGH period of the  
SCL clock  
-
rise time of both SDA  
and SCL signals  
300  
[3][4]  
tf  
fall time of both SDA  
and SCL signals  
20 (VDD / 5.5 V) 300  
tBUF  
bus free time between  
a STOP and START  
condition  
1.3  
-
tSU;DAT  
tHD;DAT  
tSU;STO  
data set-up time  
data hold time  
100  
0
-
-
-
ns  
ns  
s  
set-up time for STOP  
condition  
0.6  
tVD;DAT  
tVD;ACK  
data valid time  
0
0
0.9  
0.9  
s  
s  
data valid  
acknowledge time  
tSP  
pulse width of spikes  
that must be  
0
50  
ns  
suppressed by the  
input filter  
[1] A detailed description of the I2C-bus specification is given in Ref. 12 “UM10204”.  
[2] I2C-bus access time between two STARTs or between a START and a STOP condition to this device must be less than one second.  
[3] A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge  
the undefined region of the falling edge of SCL.  
[4] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at  
250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines  
without exceeding the maximum specified tf.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
42 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
67$57ꢂ  
FRQGLWLRQꢂ  
ꢐ6ꢑ  
ELWꢂꢆꢂ  
06%ꢂ  
ꢐ$ꢆꢑ  
6723ꢂ  
FRQGLWLRQꢂ  
ꢐ3ꢑ  
ELWꢂꢇꢂ  
ꢐ$ꢇꢑ  
ELWꢂꢊꢂ DFNQRZOHGJHꢂ  
ꢐ5ꢍ:ꢑ ꢐ$ꢑ  
SURWRFRO  
W
W
W
+,*+  
68ꢔ67$  
/2:  
ꢍI  
6&/  
6&/  
6'$  
W
W
%8)  
I
W
U
W
W
W
W
W
W
+'ꢔ'$7  
9'ꢔ$&.  
9'ꢔ'$7  
68ꢔ672  
ꢋꢁꢂꢃDDDꢆꢂꢄ  
68ꢔ'$7  
+'ꢔ67$  
Fig 28. I2C-bus timing diagram; rise and fall times refer to 30 % and 70 %  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
43 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
14. Application information  
(2)  
DD  
V
(3)  
TP  
SDA  
SCL  
(1)  
R1  
MASTER  
TRANSMITTER/  
RECEIVER  
1 F  
100 nF  
VDD  
CLKOUT  
INT  
SCL  
OSCI  
(2)  
V
DD  
PCA85063A  
OSCO  
SDA  
R
R
R: pull-up resistor  
VSS  
t
r
R =  
C
b
SDA SCL  
2
(I C-bus)  
aaa-013719  
A 1 farad super capacitor combined with a low VF diode can be used as a standby or back-up  
supply. With the RTC in its minimum power configuration that is, timer off and CLKOUT off, the  
RTC may operate for weeks.  
(1) R1 limits the inrush current to the super capacitor at power-on.  
(2) NXP recommends tying VDD of the device and VDD of all the external pull-up resistors to the same  
Power Supply.  
(3) NXP also recommends the customer place accessible 'Pads/TP-test point' on the layout so as to  
enable a 'hard'' grounding of the power supply VDD in the event a full discharge cannot be attained.  
Fig 29. Application diagram for PCA85063A  
15. Test information  
15.1 Quality information  
This product has been qualified in accordance with the Automotive Electronics Council  
(AEC) standard Q100 - Failure mechanism based stress test qualification for integrated  
circuits, and is suitable for use in automotive applications.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
44 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
16. Package outline  
76623ꢀꢋꢅSODVWLFꢅWKLQꢅVKULQNꢅVPDOOꢅRXWOLQHꢅSDFNDJHꢌꢅꢀꢅOHDGVꢌꢅERG\ꢅZLGWKꢅꢄꢅPPꢅ  
627ꢁꢂꢁꢍꢆꢅ  
'ꢂ  
(ꢂ  
$ꢂ  
;ꢂ  
Fꢂ  
\ꢂ  
+
Yꢂ 0ꢂ  
$ꢂ  
(ꢂ  
=ꢂ  
ꢉꢂ  
ꢅꢂ  
$
ꢐ$ ꢑꢂ  
ꢁꢂ  
$ꢂ  
$
ꢄꢂ  
SLQꢂꢄꢂLQGH[ꢂ  
șꢂ  
/
Sꢂ  
/ꢂ  
GHWDLOꢂ;ꢂ  
ꢄꢂ  
ꢈꢂ  
Hꢂ  
Zꢂ 0ꢂ  
E
Sꢂ  
ꢊꢂ  
ꢁꢋꢉꢂ  
ꢉꢂPPꢂ  
VFDOHꢂ  
',0(16,216ꢅꢉPPꢅDUHꢅWKHꢅRULJLQDOꢅGLPHQVLRQVꢊꢅ  
$ꢅ  
ꢉꢆꢊꢅ  
ꢉꢈꢊꢅ  
ꢉꢆꢊꢅ  
$
$
$
E
Fꢅ  
'
(
Hꢅ  
+
/ꢅ  
/
81,7ꢅ  
PPꢂ  
Yꢅ  
Zꢅ  
\ꢅ  
=
șꢂ  
ꢆꢅ  
ꢈꢅ  
ꢄꢅ  
Sꢅ  
(ꢅ  
Sꢅ  
PD[ꢇꢅ  
ꢊꢋꢄꢉꢂ ꢊꢋꢌꢉꢂ  
ꢊꢋꢊꢉꢂ ꢊꢋꢅꢊꢂ  
ꢊꢋꢈꢉꢂ ꢊꢋꢁꢅꢂ  
ꢊꢋꢁꢉꢂ ꢊꢋꢄꢉꢂ  
ꢀꢋꢄꢂ  
ꢁꢋꢌꢂ  
ꢀꢋꢄꢂ  
ꢁꢋꢌꢂ  
ꢉꢋꢄꢂ  
ꢈꢋꢆꢂ  
ꢊꢋꢆꢂ  
ꢊꢋꢈꢂ  
ꢊꢋꢆꢊꢂ  
ꢊꢋꢀꢉꢂ  
ꢇƒꢂ  
ꢊƒꢂ  
ꢄꢋꢄꢂ  
ꢊꢋꢇꢉꢂ  
ꢊꢋꢌꢈꢂ  
ꢊꢋꢄꢂ  
ꢊꢋꢄꢂ  
ꢊꢋꢄꢂ  
ꢊꢋꢁꢉꢂ  
1RWHVꢅ  
ꢄꢋꢂ3ODVWLFꢂRUꢂPHWDOꢂSURWUXVLRQVꢂRIꢂꢊꢋꢄꢉꢂPPꢂPD[LPXPꢂSHUꢂVLGHꢂDUHꢂQRWꢂLQFOXGHGꢋꢂ  
ꢁꢋꢂ3ODVWLFꢂRUꢂPHWDOꢂSURWUXVLRQVꢂRIꢂꢊꢋꢁꢉꢂPPꢂPD[LPXPꢂSHUꢂVLGHꢂDUHꢂQRWꢂLQFOXGHGꢋꢂ  
ꢅ5()(5(1&(6ꢅ  
ꢅ-('(&ꢅ ꢅ-(,7$ꢅ  
287/,1(ꢅ  
9(56,21ꢅ  
(8523($1ꢅ  
352-(&7,21ꢅ  
,668(ꢅ'$7(ꢅ  
ꢅ,(&ꢅ  
ꢌꢌꢃꢊꢈꢃꢊꢌꢂ  
ꢊꢀꢃꢊꢁꢃꢄꢅꢂ  
ꢂ627ꢉꢊꢉꢃꢄꢂ  
Fig 30. Package outline SOT505-1 (TSSOP8) of PCA85063ATT  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
45 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
17. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC 61340-5 or equivalent  
standards.  
18. Packing information  
18.1 Tape and reel information  
For tape and reel packing information, please see Ref. 11 “SOT505-1_118”.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
46 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
19. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
19.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
19.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
19.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
47 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
19.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 31) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 43 and 44  
Table 43. SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 44. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 31.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
48 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 31. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
20. Footprint information  
ꢀꢋꢇꢊꢊ  
ꢁꢋꢌꢉꢊ  
ꢊꢋꢆꢁꢉ  
ꢊꢋꢄꢁꢉ  
ꢊꢋꢄꢁꢉ  
ꢉꢋꢆꢉꢊ ꢀꢋꢇꢊꢊ  
ꢀꢋꢁꢊꢊ ꢉꢋꢉꢊꢊ  
ꢄꢋꢄꢉꢊ  
ꢊꢋꢇꢊꢊ  
ꢊꢋꢈꢉꢊ  
ꢊꢋꢇꢉꢊ  
VRWꢇꢁꢇꢀꢂBIU  
VROGHUꢂODQGV  
RFFXSLHGꢂDUHD  
'LPHQVLRQVꢂLQꢂPP  
Fig 32. Footprint information for reflow soldering of SOT505-1 (TSSOP8) of  
PCA85063ATT  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
49 of 59  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
21. Appendix  
21.1 Real-Time Clock selection  
Table 45. Selection of Real-Time Clocks  
Type name  
PCF85063TP  
PCF85063A  
Alarm, Timer, Interrupt Interface IDD  
,
Battery Timestamp,  
AEC-Q100 Special features  
Packages  
Watchdog  
output  
typical (nA) backup tamper input compliant  
-
1
I2C  
I2C  
220  
220  
-
-
-
-
-
-
basic functions only, no  
alarm  
HXSON8  
X
1
tiny package  
SO8, DFN2626-10,  
TSSOP8  
PCF85063B  
PCF85263A  
X
X
1
2
SPI  
I2C  
220  
230  
-
-
-
-
tiny package  
DFN2626-10  
X
X
time stamp, battery  
backup, stopwatch 1100  
SO8, TSSOP10,  
TSSOP8,  
s
DFN2626-10  
PCF85263B  
PCF85363A  
X
X
2
2
SPI  
I2C  
230  
230  
X
X
X
X
-
-
time stamp, battery  
TSSOP10,  
DFN2626-10  
backup, stopwatch 1100  
s
time stamp, battery  
backup, stopwatch 1100s, DFN2626-10  
TSSOP10, TSSOP8,  
64 Byte RAM  
PCF85363B  
X
2
SPI  
230  
X
X
-
time stamp, battery  
TSSOP10,  
backup, stopwatch 1100s, DFN2626-10  
64 Byte RAM  
PCF2123  
PCF8523  
PCF8563  
PCA8565  
PCA8565A  
PCF8564A  
X
X
X
X
X
X
1
2
1
1
1
1
SPI  
I2C  
I2C  
I2C  
I2C  
I2C  
100  
150  
250  
600  
600  
250  
-
-
-
-
-
-
-
-
lowest power 100 nA in  
operation  
TSSOP14, HVQFN16  
X
-
-
lowest power 150 nA in  
operation, FM+ 1 MHz  
SO8, HVSON8,  
TSSOP14, WLCSP  
-
-
SO8, TSSOP8,  
HVSON10  
-
grade 1  
high robustness,  
Tamb40 C to 125 C  
TSSOP8, HVSON10  
-
-
-
integrated oscillator caps, WLCSP  
Tamb40 C to 125 C  
-
integrated oscillator caps WLCSP  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 45. Selection of Real-Time Clocks …continued  
Type name  
Alarm, Timer, Interrupt Interface IDD  
,
Battery Timestamp,  
AEC-Q100 Special features  
Packages  
Watchdog  
output  
typical (nA) backup tamper input compliant  
PCF2127  
X
1
I2C and  
SPI  
500  
500  
X
X
X
X
-
temperature  
SO16  
compensated, quartz built  
in, calibrated, 512 Byte  
RAM  
PCF2127A  
X
1
I2C and  
SPI  
-
temperature  
SO20  
compensated, quartz built  
in, calibrated, 512 Byte  
RAM  
PCF2129  
PCF2129A  
PCA2129  
PCA21125  
X
X
X
X
1
1
1
1
I2C and  
SPI  
500  
500  
500  
820  
X
X
X
-
X
X
X
-
-
temperature  
compensated, quartz built  
in, calibrated  
SO16  
I2C and  
SPI  
-
temperature  
compensated, quartz built  
in, calibrated  
SO20  
I2C and  
SPI  
grade 3  
grade 1  
temperature  
compensated, quartz built  
in, calibrated  
SO16  
SPI  
high robustness,  
TSSOP14  
Tamb40 C to 125 C  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
22. Abbreviations  
Table 46. Abbreviations  
Acronym  
Description  
BCD  
CMOS  
ESD  
HBM  
I2C  
Binary Coded Decimal  
Complementary Metal Oxide Semiconductor  
ElectroStatic Discharge  
Human Body Model  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
LSB  
MSB  
MSL  
PCB  
POR  
RTC  
SCL  
SDA  
SMD  
Least Significant Bit  
Most Significant Bit  
Moisture Sensitivity Level  
Printed-Circuit Board  
Power-On Reset  
Real-Time Clock  
Serial CLock line  
Serial DAta line  
Surface Mount Device  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
52 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
23. References  
[1] AN10365 Surface mount reflow soldering description  
[2] AN10366 HVQFN application information  
[3] AN11247 Improved timekeeping accuracy with PCF85063, PCF8523 and  
PCF2123 using an external temperature sensor  
[4] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[5] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[6] IPC/JEDEC J-STD-020 — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[7] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[8] JESD22-C101 Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
[9] JESD78 IC Latch-Up Test  
[10] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[11] SOT505-1_118 TSSOP8; Reel pack; SMD, 13", packing information  
[12] UM10204 I2C-bus specification and user manual  
[13] UM10301 User Manual for NXP Real Time Clocks PCF85x3, PCA8565 and  
PCF2123, PCA2125  
[14] UM10569 Store and transport requirements  
[15] UM10788 User manual for I2C-bus RTC demo board OM13515  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
53 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
24. Revision history  
Table 47. Revision history  
Document ID  
PCA85063A v.4  
Modifications:  
Release date  
20180330  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
201801008I  
PCA85063A v.3  
Table 4 “Pin description”: Added Table note 1 to INT, SDA, and SCL  
Added Section 9.5.3 “I2C-bus error recovery technique”  
Table 41 “Static characteristics”: Updated Table note 1  
Updated Figure 29 “Application diagram for PCA85063A”; added Figure note 2 and Figure  
note 3  
Table 40 “Limiting values[1]: Added Table note 1  
PCA85063A v.3  
Modifications:  
20160420  
Product data sheet  
-
PCA85063A v.2  
Clarified reset information in Section 8.2 and Section 8.2.1.3.  
PCA85063A v.2  
PCA85063A v.1  
20150601  
20150407  
Product data sheet  
Objective data sheet  
-
-
PCA85063A v.1  
-
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
54 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
25. Legal information  
25.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use in automotive applications — This NXP  
25.2 Definitions  
Semiconductors product has been qualified for use in automotive  
applications. Unless otherwise agreed in writing, the product is not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer's own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
25.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
55 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
25.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
26. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
56 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
27. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering options. . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 3. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 4. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Table 5. Registers overview . . . . . . . . . . . . . . . . . . . . . .5  
Table 6. Control_1 - control and status register 1  
(address 00h) bit description . . . . . . . . . . . . . . .6  
Table 7. First increment of time circuits after STOP bit  
release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Table 8. Registers reset values . . . . . . . . . . . . . . . . . . .10  
Table 9. Control_2 - control and status register 2  
(address 01h) bit description . . . . . . . . . . . . . .11  
Table 10. Effect of bits MI and HMI on INT generation . .13  
Table 11. CLKOUT frequency selection . . . . . . . . . . . . .14  
Table 12. Offset - offset register (address 02h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Table 13. Offset values . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Table 14. Correction pulses for MODE = 0 . . . . . . . . . . .16  
Table 15. Effect of correction pulses on frequencies for  
MODE = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Table 16. Correction pulses for MODE = 1 . . . . . . . . . . .17  
Table 17. Effect of correction pulses on frequencies for  
MODE = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Table 18. RAM_byte - 8-bit RAM register (address 03h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Table 19. Seconds - seconds register (address 04h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Table 20. Seconds coded in BCD format . . . . . . . . . . . .20  
Table 21. Minutes - minutes register (address 05h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 22. Hours - hours register (address 06h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 23. Days - days register (address 07h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 24. Weekdays - weekdays register (address 08h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 25. Weekday assignments . . . . . . . . . . . . . . . . . . .22  
Table 26. Months - months register (address 09h) bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Table 27. Month assignments in BCD format. . . . . . . . . .22  
Table 28. Years - years register (0Ah) bit description. . . .23  
Table 29. Second_alarm - second alarm register  
(address 0Bh) bit description . . . . . . . . . . . . . .24  
Table 30. Minute_alarm - minute alarm register  
Table 37. First period delay for timer counter value T . . 29  
Table 38. INT operation . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Table 39. I2C slave address byte. . . . . . . . . . . . . . . . . . . 33  
Table 40. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 41. Static characteristics . . . . . . . . . . . . . . . . . . . . 37  
Table 42. I2C-bus characteristics. . . . . . . . . . . . . . . . . . . 42  
Table 43. SnPb eutectic process (from J-STD-020D) . . . 48  
Table 44. Lead-free process (from J-STD-020D) . . . . . . 48  
Table 45. Selection of Real-Time Clocks . . . . . . . . . . . . 50  
Table 46. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 47. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 54  
(address 0Ch) bit description . . . . . . . . . . . . . .25  
Table 31. Hour_alarm - hour alarm register  
(address 0Dh) bit description . . . . . . . . . . . . . .25  
Table 32. Day_alarm - day alarm register (address 0Eh)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Table 33. Weekday_alarm - weekday alarm register  
(address 0Fh) bit description . . . . . . . . . . . . . .26  
Table 34. Timer_value - timer value register  
(address 10h) bit description . . . . . . . . . . . . . .27  
Table 35. Timer_mode - timer control register  
(address 11h) bit description . . . . . . . . . . . . . .28  
Table 36. Timer clock frequency and timer durations. . . .28  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
57 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
28. Figures  
Fig 1. Block diagram of PCA85063A . . . . . . . . . . . . . . . .2  
Fig 2. Pin configuration for TSSOP8 (PCA85063ATT) . .3  
Fig 3. Handling address registers . . . . . . . . . . . . . . . . . .4  
Fig 4. STOP bit functional diagram . . . . . . . . . . . . . . . . .8  
Fig 5. STOP bit release timing. . . . . . . . . . . . . . . . . . . . .9  
Fig 6. Software reset command. . . . . . . . . . . . . . . . . . .10  
Fig 7. Interrupt scheme . . . . . . . . . . . . . . . . . . . . . . . . .12  
Fig 8. INT example for MI . . . . . . . . . . . . . . . . . . . . . . .13  
Fig 9. Offset calibration calculation workflow. . . . . . . . .18  
Fig 10. Result of offset calibration . . . . . . . . . . . . . . . . . .19  
Fig 11. OS flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Fig 12. Data flow for the time function . . . . . . . . . . . . . . .23  
Fig 13. Access time for read/write operations . . . . . . . . .24  
Fig 14. Alarm function block diagram. . . . . . . . . . . . . . . .27  
Fig 15. General countdown timer behavior . . . . . . . . . . .29  
Fig 16. Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Fig 17. Definition of START and STOP conditions. . . . . .31  
Fig 18. System configuration . . . . . . . . . . . . . . . . . . . . . .32  
Fig 19. Acknowledgement on the I2C-bus . . . . . . . . . . . .32  
Fig 20. Master transmits to slave receiver  
(WRITE mode). . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Fig 21. Master reads after setting register address  
(write register address; READ data) . . . . . . . . . .34  
Fig 22. Device diode protection diagram of PCA85063A.35  
Fig 23. Typical IDD with respect to fSCL . . . . . . . . . . . . . .38  
Fig 24. Typical IDD as a function of temperature . . . . . . .39  
Fig 25. Typical IDD with respect to VDD . . . . . . . . . . . . . .40  
Fig 26. IDD with respect to quartz RS . . . . . . . . . . . . . . . .41  
Fig 27. Oscillator frequency variation with respect  
to VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Fig 28. I2C-bus timing diagram; rise and fall times refer  
to 30 % and 70 % . . . . . . . . . . . . . . . . . . . . . . . .43  
Fig 29. Application diagram for PCA85063A . . . . . . . . . .44  
Fig 30. Package outline SOT505-1 (TSSOP8) of  
PCA85063ATT. . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Fig 31. Temperature profiles for large and small  
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Fig 32. Footprint information for reflow soldering of  
SOT505-1 (TSSOP8) of PCA85063ATT . . . . . . .49  
PCA85063A  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2018. All rights reserved.  
Product data sheet  
Rev. 4 — 30 March 2018  
58 of 59  
PCA85063A  
NXP Semiconductors  
Automotive Real-Time Clock/calendar with alarm function and I2C-bus  
29. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.6.2  
8.6.3  
8.6.3.1  
Register Timer_mode. . . . . . . . . . . . . . . . . . . 28  
Timer functions. . . . . . . . . . . . . . . . . . . . . . . . 28  
Countdown timer interrupts . . . . . . . . . . . . . . 30  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3
9
Characteristics of the I2C-bus interface . . . . 31  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
START and STOP conditions. . . . . . . . . . . . . 31  
System configuration . . . . . . . . . . . . . . . . . . . 31  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 32  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 33  
Addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Clock and calendar READ or WRITE cycles . 33  
4
4.1  
5
9.1  
9.2  
9.3  
9.4  
9.5  
9.5.1  
9.5.2  
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
8
8.1  
8.2  
Functional description . . . . . . . . . . . . . . . . . . . 4  
Registers organization . . . . . . . . . . . . . . . . . . . 5  
Control registers . . . . . . . . . . . . . . . . . . . . . . . . 6  
Register Control_1 . . . . . . . . . . . . . . . . . . . . . . 6  
EXT_TEST: external clock test mode. . . . . . . . 7  
STOP: STOP bit function . . . . . . . . . . . . . . . . . 8  
Software reset. . . . . . . . . . . . . . . . . . . . . . . . . 10  
Register Control_2 . . . . . . . . . . . . . . . . . . . . . 11  
Alarm interrupt . . . . . . . . . . . . . . . . . . . . . . . . 12  
MI and HMI: minute and half minute interrupt. 13  
TF: timer flag . . . . . . . . . . . . . . . . . . . . . . . . . 13  
COF[2:0]: Clock output frequency . . . . . . . . . 14  
Register Offset . . . . . . . . . . . . . . . . . . . . . . . . 15  
Correction when MODE = 0 . . . . . . . . . . . . . . 16  
Correction when MODE = 1 . . . . . . . . . . . . . . 17  
Offset calibration workflow . . . . . . . . . . . . . . . 18  
Register RAM_byte . . . . . . . . . . . . . . . . . . . . 19  
Time and date registers . . . . . . . . . . . . . . . . . 19  
Register Seconds . . . . . . . . . . . . . . . . . . . . . . 19  
OS: Oscillator stop . . . . . . . . . . . . . . . . . . . . . 20  
Register Minutes. . . . . . . . . . . . . . . . . . . . . . . 21  
Register Hours . . . . . . . . . . . . . . . . . . . . . . . . 21  
Register Days. . . . . . . . . . . . . . . . . . . . . . . . . 21  
Register Weekdays. . . . . . . . . . . . . . . . . . . . . 21  
Register Months . . . . . . . . . . . . . . . . . . . . . . . 22  
Register Years . . . . . . . . . . . . . . . . . . . . . . . . 23  
Setting and reading the time. . . . . . . . . . . . . . 23  
Alarm registers . . . . . . . . . . . . . . . . . . . . . . . . 24  
Register Second_alarm . . . . . . . . . . . . . . . . . 24  
Register Minute_alarm . . . . . . . . . . . . . . . . . . 25  
Register Hour_alarm . . . . . . . . . . . . . . . . . . . 25  
Register Day_alarm . . . . . . . . . . . . . . . . . . . . 25  
Register Weekday_alarm . . . . . . . . . . . . . . . . 26  
Alarm function. . . . . . . . . . . . . . . . . . . . . . . . . 26  
Timer registers . . . . . . . . . . . . . . . . . . . . . . . . 27  
Register Timer_value . . . . . . . . . . . . . . . . . . . 27  
10  
Internal circuitry . . . . . . . . . . . . . . . . . . . . . . . 35  
Safety notes. . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 36  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 37  
Application information . . . . . . . . . . . . . . . . . 44  
Test information . . . . . . . . . . . . . . . . . . . . . . . 44  
Quality information. . . . . . . . . . . . . . . . . . . . . 44  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 45  
Handling information . . . . . . . . . . . . . . . . . . . 46  
Packing information . . . . . . . . . . . . . . . . . . . . 46  
Tape and reel information . . . . . . . . . . . . . . . 46  
11  
12  
8.2.1  
8.2.1.1  
8.2.1.2  
8.2.1.3  
8.2.2  
8.2.2.1  
8.2.2.2  
8.2.2.3  
8.2.2.4  
8.2.3  
8.2.3.1  
8.2.3.2  
8.2.3.3  
8.2.4  
8.3  
8.3.1  
8.3.1.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.3.6  
8.3.7  
8.4  
13  
14  
15  
15.1  
16  
17  
18  
18.1  
19  
Soldering of SMD packages. . . . . . . . . . . . . . 47  
Introduction to soldering. . . . . . . . . . . . . . . . . 47  
Wave and reflow soldering. . . . . . . . . . . . . . . 47  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 47  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 48  
19.1  
19.2  
19.3  
19.4  
20  
Footprint information . . . . . . . . . . . . . . . . . . . 49  
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Real-Time Clock selection . . . . . . . . . . . . . . . 50  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 52  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 54  
21  
21.1  
22  
23  
24  
25  
Legal information . . . . . . . . . . . . . . . . . . . . . . 55  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 55  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
25.1  
25.2  
25.3  
25.4  
8.5  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.5.6  
8.6  
26  
27  
28  
29  
Contact information . . . . . . . . . . . . . . . . . . . . 56  
Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
8.6.1  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2018.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 30 March 2018  
Document identifier: PCA85063A  

相关型号:

PCA85063ATTAJ

Automotive tiny Real-Time Clock/calendar with alarm function and I2C-bus
NXP

PCA85073A

Nano-power highly accurate RTC with integrated quartz crystal for automotive applications
NXP

PCA85073ADP/Q900Z

Real Time Clock, 1 Timer(s), CMOS, PDSO8
NXP

PCA8510

On-Screen Display Circuit
ETC

PCA8510P

Graphics Processor, CMOS, PDIP24
PHILIPS

PCA85132

Smart, simple solutions for the 12 most common design concerns
NXP

PCA85132U

Automotive 36 × 4 LCD segment driver
NXP

PCA85132U/2DA/Q1

LIQUID CRYSTAL DISPLAY DRIVER, UUC197, DIE-197
NXP

PCA85132U/2DA/Q1,0

PCA85132 - LCD driver for low multiplex rates DIE 197-Pin
NXP

PCA85132U/2DB/Q1,0

PCA85132 - LCD driver for low multiplex rates DIE 197-Pin
NXP

PCA85133

Universal LCD driver for low multiplex rates
NXP

PCA85133U

Automotive 18 × 4 LCD segment driver
NXP