PCA9626B [NXP]

24-bit Fm I2C-bus 100 mA 40 V LED driver; 24位调频I2C总线100毫安40 V的LED驱动器
PCA9626B
型号: PCA9626B
厂家: NXP    NXP
描述:

24-bit Fm I2C-bus 100 mA 40 V LED driver
24位调频I2C总线100毫安40 V的LED驱动器

驱动器 PC
文件: 总47页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCA9626  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
Rev. 02 — 31 August 2009  
Product data sheet  
1. General description  
The PCA9626 is an I2C-bus controlled 24-bit LED driver optimized for voltage switch  
dimming and blinking 100 mA Red/Green/Blue/Amber (RGBA) LEDs. Each LED output  
has its own 8-bit resolution (256 steps) fixed frequency individual PWM controller that  
operates at 97 kHz with a duty cycle that is adjustable from 0 % to 99.6 % to allow the  
LED to be set to a specific brightness value. An additional 8-bit resolution (256 steps)  
group PWM controller has both a fixed frequency of 190 Hz and an adjustable frequency  
between 24 Hz to once every 10.73 seconds with a duty cycle that is adjustable from 0 %  
to 99.6 % that is used to either dim or blink all LEDs with the same value.  
Each LED output can be off, on (no PWM control), set at its individual PWM controller  
value or at both individual and group PWM controller values. The PCA9626 operates with  
a supply voltage range of 2.3 V to 5.5 V and the 100 mA open-drain outputs allow  
voltages up to 40 V.  
The PCA9626 is one of the first LED controller devices in a new Fast-mode Plus (Fm+)  
family. Fm+ devices offer higher frequency (up to 1 MHz) and more densely populated bus  
operation (up to 4000 pF).  
The active LOW Output Enable input pin (OE) blinks all the LED outputs and can be used  
to externally PWM the outputs, which is useful when multiple devices need to be dimmed  
or blinked together without using software control.  
Software programmable LED Group and three Sub Call I2C-bus addresses allow all or  
defined groups of PCA9626 devices to respond to a common I2C-bus address, allowing  
for example, all red LEDs to be turned on or off at the same time or marquee chasing  
effect, thus minimizing I2C-bus commands. Seven hardware address pins allow up to  
126 devices on the same bus.  
The Software Reset (SWRST) Call allows the master to perform a reset of the PCA9626  
through the I2C-bus, identical to the Power-On Reset (POR) that initializes the registers to  
their default state causing the output NAND FETs to be OFF (LED off). This allows an  
easy and quick way to reconfigure all device registers to the same condition.  
In addition to these features found in PCA9633, PCA9634, PCA9635, PCA9622 and  
PCA9624, a new feature to control LED output pattern is incorporated in the PCA9626. A  
new control byte called ‘Chase Byte’ allows enabling or disabling of selective LED outputs  
depending on the value of the Chase Byte. This feature greatly reduces the number of  
bytes to be sent to the PCA9626 when repetitive patterns need to be displayed as in  
creating a marquee chasing effect.  
If the PCA9626 on-chip 100 mA NAND FETs do not provide enough current or voltage to  
drive the LEDs, then the PCA9635 and the PCA9635 with larger current or higher voltage  
external drivers can be used.  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
2. Features  
I 24 LED drivers. Each output programmable at:  
N Off  
N On  
N Programmable LED brightness  
N Programmable group dimming/blinking mixed with individual LED brightness  
I 1 MHz Fast-mode Plus compatible I2C-bus interface with 30 mA high drive capability  
on SDA output for driving high capacitive buses  
I 256-step (8-bit) linear programmable brightness per LED output varying from fully off  
(default) to maximum brightness using a 97 kHz PWM signal  
I 256-step group brightness control allows general dimming (using a 190 Hz PWM  
signal) from fully off to maximum brightness (default)  
I 256-step group blinking with frequency programmable from 24 Hz to 10.73 s and  
duty cycle from 0 % to 99.6 %  
I 24 open-drain outputs can sink between 0 mA to 100 mA and are tolerant to a  
maximum off state voltage of 40 V. No input function.  
I Output state change programmable on the Acknowledge or the STOP Command to  
update outputs byte-by-byte or all at the same time (default to ‘Change on STOP’).  
I Active LOW Output Enable (OE) input pin allows for hardware blinking and dimming of  
the LEDs  
I 7 hardware address pins allow 126 PCA9626 devices to be connected to the same  
I2C-bus and to be individually programmed  
I 4 software programmable I2C-bus addresses (one LED Group Call address and three  
LED Sub Call addresses) allow groups of devices to be addressed at the same time in  
any combination (for example, one register used for ‘All Call’ so that all the PCA9626s  
on the I2C-bus can be addressed at the same time and the second register used for  
three different addresses so that 13 of all devices on the bus can be addressed at the  
same time in a group). Software enable and disable for I2C-bus address.  
I A Chase Byte allows execution of predefined ON/OFF pattern for the 24 LED outputs  
I Software Reset feature (SWRST Call) allows the device to be reset through the  
I2C-bus  
I 25 MHz internal oscillator requires no external components  
I Internal power-on reset  
I Noise filter on SDA/SCL inputs  
I No glitch on power-up  
I Supports hot insertion  
I Low standby current  
I Operating power supply voltage (VDD) range of 2.3 V to 5.5 V  
I 5.5 V tolerant inputs on non-LED pins  
I 40 °C to +85 °C operation  
I ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per  
JESD22-A115 and 1000 V CDM per JESD22-C101  
I Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA  
I Packages offered: LQFP48, HVQFN48  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
2 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
3. Applications  
I RGB or RGBA LED drivers  
I LED status information  
I LED displays  
I LCD backlights  
I Keypad backlights for cellular phones or handheld devices  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Topside mark Package  
Name  
LQFP48  
Description  
Version  
PCA9626B  
PCA9626  
PCA9626  
plastic low profile quad flat package; 48 leads;  
body 7 × 7 × 1.4 mm  
SOT313-2  
PCA9626BS  
HVQFN48 plastic thermal enhanced very thin quad flat package;  
SOT778-4  
no leads; 48 terminals; body 6 × 6 × 0.85 mm  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
3 of 47  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
A0 A1 A2 A3 A4 A5 A6  
PCA9626  
SCL  
INPUT FILTER  
SDA  
2
I C-BUS  
CONTROL  
POWER-ON  
RESET  
V
DD  
V
SS  
LED  
STATE  
SELECT  
REGISTER  
PWM  
REGISTER X  
BRIGHTNESS  
CONTROL  
LEDn  
MUX/  
CONTROL  
FET  
DRIVER  
24.3 kHz  
97 kHz  
GRPFREQ  
REGISTER  
GRPPWM  
25 MHz  
OSCILLATOR  
REGISTER  
190 Hz  
'0' – permanently OFF  
'1' – permanently ON  
OE  
002aad608  
Remark: Only one LED output shown for clarity.  
Fig 1. Block diagram of PCA9626  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
6. Pinning information  
6.1 Pinning  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
V
V
SS  
SS  
LED0  
LED1  
LED2  
LED3  
LED19  
LED18  
LED17  
LED16  
3
4
5
6
V
SS  
V
SS  
V
V
SS  
SS  
PCA9626B  
7
8
LED4  
LED5  
LED6  
LED7  
LED15  
LED14  
LED13  
LED12  
9
10  
11  
12  
V
SS  
V
SS  
002aad662  
Fig 2. Pin configuration for LQFP48  
terminal 1  
index area  
1
2
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
V
V
SS  
SS  
LED0  
LED1  
LED2  
LED3  
LED19  
LED18  
LED17  
LED16  
3
4
5
6
V
V
V
SS  
SS  
SS  
SS  
PCA9626BS  
7
V
8
LED4  
LED5  
LED6  
LED7  
LED15  
LED14  
LED13  
LED12  
9
10  
11  
12  
V
SS  
V
SS  
002aad609  
Transparent top view  
Fig 3. Pin configuration for HVQFN48  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
5 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
6.2 Pin description  
Table 2.  
Symbol  
LED22  
LED23  
VSS  
Pin description  
Pin  
43  
Type  
O
Description  
LED driver 22  
LED driver 23  
44  
O
1, 6, 7, 12, 16, 21, 25,  
30, 31, 36, 37, 45, 48[1]  
power supply  
supply ground  
A0  
46  
47  
2
I
address input 0  
address input 1  
LED driver 0  
A1  
I
LED0  
LED1  
LED2  
LED3  
LED4  
LED5  
LED6  
LED7  
A2  
O
3
O
LED driver 1  
4
O
LED driver 2  
5
O
LED driver 3  
8
O
LED driver 4  
9
O
LED driver 5  
10  
11  
13  
14  
15  
17  
18  
19  
20  
22  
23  
24  
26  
27  
28  
29  
32  
33  
34  
35  
38  
39  
40  
41  
42  
O
LED driver 6  
O
LED driver 7  
I
address input 2  
address input 3  
address input 4  
LED driver 8  
A3  
I
A4  
I
LED8  
LED9  
LED10  
LED11  
A5  
O
O
LED driver 9  
O
LED driver 10  
LED driver 11  
address input 5  
address input 6  
active LOW output enable  
LED driver 12  
LED driver 13  
LED driver 14  
LED driver 15  
LED driver 16  
LED driver 17  
LED driver 18  
LED driver 19  
serial clock line  
serial data line  
supply voltage  
LED driver 20  
LED driver 21  
O
I
A6  
I
OE  
I
LED12  
LED13  
LED14  
LED15  
LED16  
LED17  
LED18  
LED19  
SCL  
O
O
O
O
O
O
O
O
I
SDA  
I/O  
VDD  
power supply  
LED20  
LED21  
O
O
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
6 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
[1] HVQFN48 package supply ground is connected to both VSS pins and exposed center pad. VSS pins must  
be connected to supply ground for proper device operation. For enhanced thermal, electrical, and board  
level performance, the exposed pad needs to be soldered to the board using a corresponding thermal pad  
on the board and for proper heat conduction through the board, thermal vias need to be incorporated in the  
PCB in the thermal pad region.  
7. Functional description  
Refer to Figure 1 “Block diagram of PCA9626”.  
7.1 Device addresses  
Following a START condition, the bus master must output the address of the slave it is  
accessing.  
There are a maximum of 128 possible programmable addresses using the 7 hardware  
address pins. Two of these addresses, Software Reset and LED All Call, cannot be used  
because their default power-up state is ON, leaving a maximum of 126 addresses. Using  
other reserved addresses, as well as any other Sub Call address, will reduce the total  
number of possible addresses even further.  
7.1.1 Regular I2C-bus slave address  
The I2C-bus slave address of the PCA9626 is shown in Figure 4. To conserve power, no  
internal pull-up resistors are incorporated on the hardware selectable address pins and  
they must be pulled HIGH or LOW externally.  
Remark: Using reserved I2C-bus addresses will interfere with other devices, but only if the  
devices are on the bus and/or the bus will be open to other I2C-bus systems at some later  
date. In a closed system where the designer controls the address assignment these  
addresses can be used since the PCA9626 treats them like any other address. The  
LED All Call, Software Rest and PCA9564 or PCA9665 slave address (if on the bus) can  
never be used for individual device addresses.  
PCA9626 LED All Call address (1110 000) and Software Reset (0000 0110) which  
are active on start-up  
PCA9564 (0000 000) or PCA9665 (1110 000) slave address which is active on  
start-up  
‘reserved for future use’ I2C-bus addresses (0000 011, 1111 1XX)  
slave devices that use the 10-bit addressing scheme (1111 0XX)  
slave devices that are designed to respond to the General Call address (0000 000)  
High-speed mode (Hs-mode) master code (0000 1XX)  
slave address  
A6 A5 A4 A3 A2 A1 A0 R/W  
hardware selectable  
002aab319  
Fig 4. Slave address  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
7 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
The last bit of the address byte defines the operation to be performed. When set to logic 1  
a read is selected, while a logic 0 selects a write operation.  
7.1.2 LED All Call I2C-bus address  
Default power-up value (ALLCALLADR register): E0h or 1110 000  
Programmable through I2C-bus (volatile programming)  
At power-up, LED All Call I2C-bus address is enabled. PCA9626 sends an ACK when  
E0h (R/W = 0) or E1h (R/W = 1) is sent by the master.  
See Section 7.3.9 “ALLCALLADR, LED All Call I2C-bus address” for more detail.  
Remark: The default LED All Call I2C-bus address (E0h or 1110 000) must not be used  
as a regular I2C-bus slave address since this address is enabled at power-up. All of the  
PCA9626s on the I2C-bus will acknowledge the address if sent by the I2C-bus master.  
7.1.3 LED Sub Call I2C-bus addresses  
3 different I2C-bus addresses can be used  
Default power-up values:  
SUBADR1 register: E2h or 1110 001  
SUBADR2 register: E4h or 1110 010  
SUBADR3 register: E8h or 1110 100  
Programmable through I2C-bus (volatile programming)  
At power-up, Sub Call I2C-bus addresses are disabled. PCA9626 does not send an  
ACK when E2h (R/W = 0) or E3h (R/W = 1), E4h (R/W = 0) or E5h (R/W = 1), or  
E8h (R/W = 0) or E9h (R/W = 1) is sent by the master.  
See Section 7.3.8 “SUBADR1 to SUBADR3, I2C-bus subaddress 1 to 3” for more detail.  
Remark: The default LED Sub Call I2C-bus addresses may be used as regular I2C-bus  
slave addresses as long as they are disabled.  
7.1.4 Software Reset I2C-bus address  
The address shown in Figure 5 is used when a reset of the PCA9626 needs to be  
performed by the master. The Software Reset address (SWRST Call) must be used with  
R/W = logic 0. If R/W = logic 1, the PCA9626 does not acknowledge the SWRST. See  
Section 7.6 “Software reset” for more detail.  
R/W  
0
0
0
0
0
1
1
0
002aab416  
Fig 5. Software Reset address  
Remark: The Software Reset I2C-bus address is a reserved address and cannot be used  
as a regular I2C-bus slave address or as an LED All Call or LED Sub Call address.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
8 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
7.2 Control register  
Following the successful acknowledgement of the slave address, LED All Call address or  
LED Sub Call address, the bus master will send a byte to the PCA9626, which will be  
stored in the Control register.  
The lowest 6 bits are used as a pointer to determine which register will be accessed  
(D[5:0]). The highest bit is used as Auto-Increment Flag (AIF).  
This bit along with the MODE1 register bit 5 and bit 6 provide the Auto-Increment feature.  
Bit 6 of the Control register is not used.  
register address  
AIF  
X
D5 D4 D3 D2 D1 D0  
Don't care  
Auto-Increment Flag  
002aad610  
reset state = 80h  
Remark: The Control register does not apply to the Software Reset I2C-bus address.  
Fig 6. Control register  
When the Auto-Increment Flag is set (AIF = logic 1), the six low order bits of the Control  
register are automatically incremented after a read or write. This allows the user to  
program the registers sequentially. Four different types of Auto-Increment are possible,  
depending on AI1 and AI0 values of MODE1 register.  
Table 3.  
Auto-Increment options  
AI1[1] AI0[1] Function  
AIF  
0
0
0
0
0
no Auto-Increment  
1
Auto-Increment for all registers. D[5:0] roll over to 0h after the last register  
26h is accessed.  
1
1
1
0
1
1
1
0
1
Auto-Increment for individual brightness registers only. D[5:0] roll over to  
2h after the last register (19h) is accessed.  
Auto-Increment for global control registers and CHASE register. D[5:0] roll  
over to 1Ah after the last register (1Ch) is accessed.  
Auto-Increment for individual brightness registers; global control registers  
and CHASE register. D[5:0] roll over to 2h after the last register (1Ch) is  
accessed.  
[1] AI1 and AI0 come from MODE1 register.  
Remark: Other combinations not shown in Table 3 (AIF + AI[1:0] = 001b, 010b, 011b and  
111b) are reserved and must not be used for proper device operation.  
AIF + AI[1:0] = 000b is used when the same register must be accessed several times  
during a single I2C-bus communication, for example, changes the brightness of a single  
LED. Data is overwritten each time the register is accessed during a write operation.  
AIF + AI[1:0] = 100b is used when all the registers must be sequentially accessed, for  
example, power-up programming.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
9 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
AIF + AI[1:0] = 101b is used when the 16 LED drivers must be individually programmed  
with different values during the same I2C-bus communication, for example, changing color  
setting to another color setting.  
AIF + AI[1:0] = 110b is used when the LED drivers must be globally programmed with  
different settings during the same I2C-bus communication, for example, global brightness  
or blinking change.  
AIF + AI[1:0] = 111b is used when the 16 LED drivers must be individually programmed  
with different values in addition to global programming.  
Only the 6 least significant bits D[5:0] are affected by the AIF, AI1 and AI0 bits.  
When the Control register is written, the register entry point determined by D[5:0] is the  
first register that will be addressed (read or write operation), and can be anywhere  
between 0h and 26h (as defined in Table 4). When AIF = 1, the Auto-Increment Flag is set  
and the rollover value at which the register increment stops and goes to the next one is  
determined by AIF, AI1 and AI2. See Table 3 for rollover values. For example, if MODE1  
register bit AI1 = 0 and AI0 = 1 and if the Control register = 1001 0010, then the register  
addressing sequence will be (in hex):  
20 21 26 0 1 2 19 02 03 19 02 … as long  
as the master keeps sending or reading data.  
7.3 Register definitions  
Table 4.  
Register summary[1][2]  
Register number D5  
(hex)  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Function  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
MODE1  
MODE2  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM8  
PWM9  
PWM10  
PWM11  
PWM12  
PWM13  
PWM14  
PWM15  
PWM16  
PWM17  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
Mode register 1  
Mode register 2  
brightness control LED0  
brightness control LED1  
brightness control LED2  
brightness control LED3  
brightness control LED4  
brightness control LED5  
brightness control LED6  
brightness control LED7  
brightness control LED8  
brightness control LED9  
brightness control LED10  
brightness control LED11  
brightness control LED12  
brightness control LED13  
brightness control LED14  
brightness control LED15  
brightness control LED16  
brightness control LED17  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
10 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
Table 4.  
Register summary[1][2] …continued  
Register number D5  
(hex)  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Function  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
PWM18  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
read/write  
brightness control LED18  
brightness control LED19  
brightness control LED20  
brightness control LED21  
brightness control LED22  
brightness control LED23  
group duty cycle control  
group frequency  
PWM19  
PWM20  
PWM21  
PWM22  
PWM23  
GRPPWM  
GRPFREQ  
CHASE  
chase control  
LEDOUT0  
LEDOUT1  
LEDOUT2  
LEDOUT3  
LEDOUT4  
LEDOUT5  
SUBADR1  
SUBADR2  
SUBADR3  
LED output state 0  
LED output state 1  
LED output state 2  
LED output state 3  
LED output state 4  
LED output state 5  
I2C-bus subaddress 1  
I2C-bus subaddress 2  
I2C-bus subaddress 3  
LED All Call I2C-bus address  
ALLCALLADR read/write  
[1] Only D[5:0] = 00 0000 to 10 0110 are allowed and will be acknowledged. D[5:0] = 10 0111 to 11 1111 are reserved and may not be  
acknowledged.  
[2] When writing to the Control register, bit 6 should be programmed with logic 0 for proper device operation.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
11 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
7.3.1 Mode register 1, MODE1  
Table 5.  
MODE1 - Mode register 1 (address 00h) bit description  
Legend: * default value.  
Bit  
Symbol  
Access  
Value  
0
Description  
7
AI2  
read only  
Register Auto-Increment disabled.  
1*  
0*  
1
Register Auto-Increment enabled.  
6
5
4
3
2
1
0
AI1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Auto-Increment bit 1 = 0. Auto-increment range as defined in Table 3.  
Auto-Increment bit 1 = 1. Auto-increment range as defined in Table 3.  
Auto-Increment bit 0 = 0. Auto-increment range as defined in Table 3.  
Auto-Increment bit 0 = 1. Auto-increment range as defined in Table 3.  
Normal mode[1].  
Low power mode. Oscillator off[2].  
PCA9626 does not respond to I2C-bus subaddress 1.  
PCA9626 responds to I2C-bus subaddress 1.  
PCA9626 does not respond to I2C-bus subaddress 2.  
PCA9626 responds to I2C-bus subaddress 2.  
PCA9626 does not respond to I2C-bus subaddress 3.  
PCA9626 responds to I2C-bus subaddress 3.  
PCA9626 does not respond to LED All Call I2C-bus address.  
PCA9626 responds to LED All Call I2C-bus address.  
AI0  
0*  
1
SLEEP  
SUB1  
SUB2  
SUB3  
ALLCALL  
0
1*  
0*  
1
0*  
1
0*  
1
0
1*  
[1] It takes 500 µs max. for the oscillator to be up and running once SLEEP bit has been set to logic 1. Timings on LEDn outputs are not  
guaranteed if PWMx, GRPPWM or GRPFREQ registers are accessed within the 500 µs window.  
[2] No blinking or dimming is possible when the oscillator is off.  
7.3.2 Mode register 2, MODE2  
Table 6.  
MODE2 - Mode register 2 (address 01h) bit description  
Legend: * default value.  
Bit  
7
Symbol  
Access  
read only  
read only  
R/W  
Value Description  
-
0*  
0*  
0*  
1
reserved  
6
-
reserved  
5
DMBLNK  
group control = dimming.  
group control = blinking.  
reserved  
outputs change on STOP command[1]  
outputs change on ACK  
reserved  
4
3
INVRT  
OCH  
read only  
R/W  
0*  
0*  
1
2
1
0
-
-
-
read only  
read only  
read only  
1*  
0*  
1*  
reserved  
reserved  
[1] Change of the outputs at the STOP command allows synchronizing outputs of more than one PCA9626. Applicable to registers from  
02h (PWM0) to 08h (LEDOUT) only.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
12 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
7.3.3 PWM0 to PWM23, individual brightness control  
Table 7.  
PWM0 to PWM23 - PWM registers 0 to 23 (address 02h to 19h) bit description  
Legend: * default value.  
Address Register Bit  
Symbol  
Access Value  
Description  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM8  
PWM9  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
IDC0[7:0]  
IDC1[7:0]  
IDC2[7:0]  
IDC3[7:0]  
IDC4[7:0]  
IDC5[7:0]  
IDC6[7:0]  
IDC7[7:0]  
IDC8[7:0]  
IDC9[7:0]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0000 0000* PWM0 Individual Duty Cycle  
0000 0000* PWM1 Individual Duty Cycle  
0000 0000* PWM2 Individual Duty Cycle  
0000 0000* PWM3 Individual Duty Cycle  
0000 0000* PWM4 Individual Duty Cycle  
0000 0000* PWM5 Individual Duty Cycle  
0000 0000* PWM6 Individual Duty Cycle  
0000 0000* PWM7 Individual Duty Cycle  
0000 0000* PWM8 Individual Duty Cycle  
0000 0000* PWM9 Individual Duty Cycle  
0000 0000* PWM10 Individual Duty Cycle  
0000 0000* PWM11 Individual Duty Cycle  
0000 0000* PWM12 Individual Duty Cycle  
0000 0000* PWM13 Individual Duty Cycle  
0000 0000* PWM14 Individual Duty Cycle  
0000 0000* PWM15 Individual Duty Cycle  
0000 0000* PWM16 Individual Duty Cycle  
0000 0000* PWM17 Individual Duty Cycle  
0000 0000* PWM18 Individual Duty Cycle  
0000 0000* PWM19 Individual Duty Cycle  
0000 0000* PWM20 Individual Duty Cycle  
0000 0000* PWM21 Individual Duty Cycle  
0000 0000* PWM22 Individual Duty Cycle  
0000 0000* PWM23 Individual Duty Cycle  
PWM10 7:0  
PWM11 7:0  
PWM12 7:0  
PWM13 7:0  
PWM14 7:0  
PWM15 7:0  
PWM16 7:0  
PWM17 7:0  
PWM18 7:0  
PWM19 7:0  
PWM20 7:0  
PWM21 7:0  
PWM22 7:0  
PWM23 7:0  
IDC10[7:0] R/W  
IDC11[7:0] R/W  
IDC12[7:0] R/W  
IDC13[7:0] R/W  
IDC14[7:0] R/W  
IDC15[7:0] R/W  
IDC16[7:0] R/W  
IDC17[7:0] R/W  
IDC18[7:0] R/W  
IDC19[7:0] R/W  
IDC20[7:0] R/W  
IDC21[7:0] R/W  
IDC22[7:0] R/W  
IDC23[7:0] R/W  
A 97 kHz fixed frequency signal is used for each output. Duty cycle is controlled through  
256 linear steps from 00h (0 % duty cycle = LED output off) to FFh  
(99.6 % duty cycle = LED output at maximum brightness). Applicable to LED outputs  
programmed with LDRx = 10 or 11 (LEDOUT0 to LEDOUT5 registers).  
IDCx[7:0]  
duty cycle =  
(1)  
---------------------------  
256  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
13 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
7.3.4 GRPPWM, group duty cycle control  
Table 8.  
GRPPWM - Group brightness control register (address 1Ah) bit description  
Legend: * default value  
Address Register  
Bit Symbol  
Access Value  
Description  
1Ah  
GRPPWM  
7:0 GDC[7:0]  
R/W 1111 1111 GRPPWM register  
When DMBLNK bit (MODE2 register) is programmed with logic 0, a 190 Hz fixed  
frequency signal is superimposed with the 97 kHz individual brightness control signal.  
GRPPWM is then used as a global brightness control allowing the LED outputs to be  
dimmed with the same value. The value in GRPFREQ is then a ‘Don’t care’.  
General brightness for the 16 outputs is controlled through 256 linear steps from 00h  
(0 % duty cycle = LED output off) to FFh (99.6 % duty cycle = maximum brightness).  
Applicable to LED outputs programmed with LDRx = 11 (LEDOUT0 to LEDOUT5  
registers).  
When DMBLNK bit is programmed with logic 1, GRPPWM and GRPFREQ registers  
define a global blinking pattern, where GRPFREQ contains the blinking period (from  
24 Hz to 10.73 s) and GRPPWM the duty cycle (ON/OFF ratio in %).  
GDC[7:0]  
duty cycle =  
(2)  
--------------------------  
256  
7.3.5 GRPFREQ, group frequency  
Table 9.  
GRPFREQ - Group Frequency register (address 1Bh) bit description  
Legend: * default value.  
Address Register  
Bit Symbol  
Access Value  
Description  
1Bh  
GRPFREQ 7:0 GFRQ[7:0] R/W  
0000 0000* GRPFREQ register  
GRPFREQ is used to program the global blinking period when DMBLNK bit (MODE2  
register) is equal to 1. Value in this register is a ‘Don’t care’ when DMBLNK = 0.  
Applicable to LED outputs programmed with LDRx = 11 (LEDOUT0 to LEDOUT5  
registers).  
Blinking period is controlled through 256 linear steps from 00h (41 ms, frequency 24 Hz)  
to FFh (10.73 s).  
GFRQ[7:0] + 1  
global blinking period =  
(s)  
(3)  
---------------------------------------  
24  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
14 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
7.3.6 CHASE control  
Table 10. CHASE - Chase pattern control register (address 1Ch) bit description  
Legend: * default value.  
Address Register  
Bit Symbol  
Access Value  
Description  
1Ch  
CHASE  
7:0 CHC[7:0]  
R/W 0000 0000* CHASE register  
CHASE is used to program the LED output ON/OFF pattern. The contents of the CHASE  
register is used to enable one of the LED output patterns, as indicated in Table 11.  
By repeated, sequential access to this table via the CHASE register, a chase pattern, e.g.,  
marquee effect, can be easily programmed with minimal number of commands. Once the  
CHASE register is accessed, the data bytes that follow will be used as an index value to  
pick the LED output patterns defined by Table 11 “CHASE sequence”.  
This register always updates on ACK. It is used to gate the OE signal at each of the LEDn  
pins such that:  
OE = 1: all LEDs are off  
OE = 0: those LEDs corresponding to the ‘X’s in Table 11 are on  
Any write to this register takes effect at the ACK.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
15 of 47  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 11. CHASE sequence  
X = enabled; empty cell = disabled.  
Command Hex LED channel  
Description  
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
00  
01  
02  
03  
04  
05  
06  
07  
00  
01  
02  
03  
04  
05  
06  
07  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
all LEDs ON  
all LEDs OFF  
12 chase B  
12 chase A  
13 chase C  
13 chase B  
13 chase A  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
LTR_0_ON  
(1× Left to Right_START)  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
LTR_1_ON  
LTR_2_ON  
LTR_3_ON  
LTR_4_ON  
LTR_5_ON  
LTR_6_ON  
LTR_7_ON  
LTR_8_ON  
LTR_9_ON  
LTR_10_ON  
LTR_11_ON  
LTR_12_ON  
LTR_13_ON  
LTR_14_ON  
LTR_15_ON  
LTR_16_ON  
LTR_17_ON  
LTR_18_ON  
LTR_19_ON  
LTR_20_ON  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 11. CHASE sequence …continued  
X = enabled; empty cell = disabled.  
Command Hex LED channel  
Description  
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
28  
29  
30  
1C  
1D  
1E  
X
LTR_21_ON  
LTR_22_ON  
X
X
LTR_23_ON  
(1× Left to Right_END)  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36  
37  
X
X
2× Left to Right_START  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2× Left to Right_END  
X
X
X
3× Left to Right_START  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
3× Left to Right_END  
X
X
X
X
4× Left to Right_START  
X
X
X
X
X
X
X
X
X
X
X
X
X
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 11. CHASE sequence …continued  
X = enabled; empty cell = disabled.  
Command Hex LED channel  
Description  
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
X
X
X
X
4× Left to Right_END  
X
X
X
X
X
X
X
X
X
X
5× Left to Right_START  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
5× Left to Right_END  
X
X
6× Left to Right_START  
X
X
X
X
X
X
6× Left to Right_END  
1× Implode_START  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
1× Implode_END  
X
X
X
X
2× Implode_START  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
2× Implode_END  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 11. CHASE sequence …continued  
X = enabled; empty cell = disabled.  
Command Hex LED channel  
Description  
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
85  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
X
X
X
X
X
X
3× Implode_START  
86  
X
X
X
X
X
X
X
X
X
X
X
87  
X
X
X
X
X
X
X
X
X
X
88  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
89  
90  
3× Implode_END  
91  
X
X
X
X
X
X
X
4× Implode_START  
92  
93  
X
X
X
X
X
X
X
X
X
X
X
X
94  
95  
4× Implode_END  
96  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Left to Right_WIPE_START  
97  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
98  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
99  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 11. CHASE sequence …continued  
X = enabled; empty cell = disabled.  
Command Hex LED channel  
Description  
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
72  
73  
74  
75  
76  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Left to Right_WIPE_END  
Right to Left_WIPE_START  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 11. CHASE sequence …continued  
X = enabled; empty cell = disabled.  
Command Hex LED channel  
Description  
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23  
142  
143  
144  
8E  
8F  
90  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Right to Left_WIPE_END  
All LED outputs disabled for  
CHASE byte = 90h to FFh.  
Reserved for future use.  
CHASE byte = FFh is used  
to exit the CHASE mode.[1]  
[1] When the PCA9626 exits from the CHASE mode, the previous states of the LED outputs will be retained.  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
7.3.7 LEDOUT0 to LEDOUT5, LED driver output state  
Table 12. LEDOUT0 to LEDOUT5 - LED driver output state register (address 1Dh to 22h)  
bit description  
Legend: * default value.  
Address Register  
Bit Symbol  
7:6 LDR3  
5:4 LDR2  
3:2 LDR1  
1:0 LDR0  
7:6 LDR7  
5:4 LDR6  
3:2 LDR5  
1:0 LDR4  
7:6 LDR11  
5:4 LDR10  
3:2 LDR9  
1:0 LDR8  
7:6 LDR15  
5:4 LDR14  
3:2 LDR13  
1:0 LDR12  
7:6 LDR19  
5:4 LDR18  
3:2 LDR17  
1:0 LDR16  
7:6 LDR23  
5:4 LDR22  
3:2 LDR21  
1:0 LDR20  
Access Value  
Description  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
LEDOUT0  
LEDOUT1  
LEDOUT2  
LEDOUT3  
LEDOUT4  
LEDOUT5  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
00*  
LED3 output state control  
LED2 output state control  
LED1 output state control  
LED0 output state control  
LED7 output state control  
LED6 output state control  
LED5 output state control  
LED4 output state control  
LED11 output state control  
LED10 output state control  
LED9 output state control  
LED8 output state control  
LED15 output state control  
LED14 output state control  
LED13 output state control  
LED12 output state control  
LED19 output state control  
LED18 output state control  
LED17 output state control  
LED16 output state control  
LED23 output state control  
LED22 output state control  
LED21 output state control  
LED20 output state control  
LDRx = 00 — LED driver x is off (default power-up state).  
LDRx = 01 — LED driver x is fully on (individual brightness and group dimming/blinking  
not controlled).  
LDRx = 10 — LED driver x individual brightness can be controlled through its PWMx  
register.  
LDRx = 11 — LED driver x individual brightness and group dimming/blinking can be  
controlled through its PWMx register and the GRPPWM registers.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
22 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
7.3.8 SUBADR1 to SUBADR3, I2C-bus subaddress 1 to 3  
Table 13. SUBADR1 to SUBADR3 - I2C-bus subaddress registers 0 to 3 (address 23h to 25h)  
bit description  
Legend: * default value.  
Address Register  
Bit  
7:1  
0
Symbol  
A1[7:1]  
A1[0]  
Access Value  
Description  
1110 001* I2C-bus subaddress 1  
0* reserved  
1110 010* I2C-bus subaddress 2  
0* reserved  
1110 100* I2C-bus subaddress 3  
0* reserved  
23h  
24h  
25h  
SUBADR1  
SUBADR2  
SUBADR3  
R/W  
R only  
R/W  
7:1  
0
A2[7:1]  
A2[0]  
R only  
R/W  
7:1  
0
A3[7:1]  
A3[0]  
R only  
Subaddresses are programmable through the I2C-bus. Default power-up values are E2h,  
E4h, E8h, and the device(s) will not acknowledge these addresses right after power-up  
(the corresponding SUBx bit in MODE1 register is equal to 0).  
Once subaddresses have been programmed to their right values, SUBx bits need to be  
set to logic 1 in order to have the device acknowledging these addresses (MODE1  
register).  
Only the 7 MSBs representing the I2C-bus subaddress are valid. The LSB in SUBADRx  
register is a read-only bit (0).  
When SUBx is set to logic 1, the corresponding I2C-bus subaddress can be used during  
either an I2C-bus read or write sequence.  
7.3.9 ALLCALLADR, LED All Call I2C-bus address  
Table 14. ALLCALLADR - LED All Call I2C-bus address register (address 26h) bit  
description  
Legend: * default value.  
Address Register  
Bit  
Symbol Access Value  
Description  
26h  
ALLCALLADR 7:1  
AC[7:1]  
R/W  
1110 000* ALLCALL I2C-bus  
address register  
0
AC[0]  
R only  
0*  
reserved  
The LED All Call I2C-bus address allows all the PCA9626s on the bus to be programmed  
at the same time (ALLCALL bit in register MODE1 must be equal to logic 1 (power-up  
default state)). This address is programmable through the I2C-bus and can be used during  
either an I2C-bus read or write sequence. The register address can also be programmed  
as a Sub Call.  
Only the 7 MSBs representing the All Call I2C-bus address are valid. The LSB in  
ALLCALLADR register is a read-only bit (0).  
If ALLCALL bit = 0, the device does not acknowledge the address programmed in register  
ALLCALLADR.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
23 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
7.4 Active LOW output enable input  
The active LOW output enable (OE) pin, allows to enable or disable all the LED outputs at  
the same time.  
When a LOW level is applied to OE pin, all the LED outputs are enabled as defined by  
the CHASE register.  
When a HIGH level is applied to OE pin, all the LED outputs are high-impedance.  
The OE pin can be used as a synchronization signal to switch on/off several PCA9626  
devices at the same time. This requires an external clock reference that provides blinking  
period and the duty cycle.  
The OE pin can also be used as an external dimming control signal. The frequency of the  
external clock must be high enough not to be seen by the human eye, and the duty cycle  
value determines the brightness of the LEDs.  
Remark: Do not use OE as an external blinking control signal when internal global  
blinking is selected (DMBLNK = 1, MODE2 register) since it will result in an undefined  
blinking pattern. Do not use OE as an external dimming control signal when internal global  
dimming is selected (DMBLNK = 0, MODE2 register) since it will result in an undefined  
dimming pattern.  
Remark: During power-down, slow decay of voltage supplies may keep LEDs illuminated.  
Consider disabling LED outputs using HIGH level applied to OE pin.  
7.5 Power-on reset  
When power is applied to VDD, an internal power-on reset holds the PCA9626 in a reset  
condition until VDD has reached VPOR. At this point, the reset condition is released and the  
PCA9626 registers and I2C-bus state machine are initialized to their default states (all  
zeroes) causing all the channels to be deselected. Thereafter, VDD must be lowered below  
0.2 V to reset the device.  
7.6 Software reset  
The Software Reset Call (SWRST Call) allows all the devices in the I2C-bus to be reset to  
the power-up state value through a specific formatted I2C-bus command. To be performed  
correctly, it implies that the I2C-bus is functional and that there is no device hanging the  
bus.  
The SWRST Call function is defined as the following:  
1. A START command is sent by the I2C-bus master.  
2. The reserved SWRST I2C-bus address ‘0000 011’ with the R/W bit set to ‘0’ (write) is  
sent by the I2C-bus master.  
3. The PCA9626 device(s) acknowledge(s) after seeing the SWRST Call address  
‘0000 0110’ (06h) only. If the R/W bit is set to ‘1’ (read), no acknowledge is returned to  
the I2C-bus master.  
4. Once the SWRST Call address has been sent and acknowledged, the master sends  
2 bytes with 2 specific values (SWRST data byte 1 and byte 2):  
a. Byte 1 = A5h: the PCA9626 acknowledges this value only. If byte 1 is not equal to  
A5h, the PCA9626 does not acknowledge it.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
24 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
b. Byte 2 = 5Ah: the PCA9626 acknowledges this value only. If byte 2 is not equal to  
5Ah, then the PCA9626 does not acknowledge it.  
If more than 2 bytes of data are sent, the PCA9626 does not acknowledge any more.  
5. Once the right 2 bytes (SWRST data byte 1 and byte 2 only) have been sent and  
correctly acknowledged, the master sends a STOP command to end the SWRST Call:  
the PCA9626 then resets to the default value (power-up value) and is ready to be  
addressed again within the specified bus free time (tBUF).  
The I2C-bus master must interpret a non-acknowledge from the PCA9626 (at any time) as  
a ‘SWRST Call Abort’. The PCA9626 does not initiate a reset of its registers. This  
happens only when the format of the SWRST Call sequence is not correct.  
7.7 Individual brightness control with group dimming/blinking  
A 97 kHz fixed frequency signal with programmable duty cycle (8 bits, 256 steps) is used  
to control individually the brightness for each LED.  
On top of this signal, one of the following signals can be superimposed (this signal can be  
applied to the 4 LED outputs):  
A lower 190 Hz fixed frequency signal with programmable duty cycle (8 bits,  
256 steps) is used to provide a global brightness control.  
A programmable frequency signal from 24 Hz to 110.73 Hz (8 bits, 256 steps) with  
programmable duty cycle (8 bits, 256 steps) is used to provide a global blinking  
control.  
508  
510  
512  
1
2
3
4
5
6
7
8
9
10 11 12  
507  
509  
511  
1
2
3
4
5
6
7
8
9
10 11  
Brightness Control signal (LEDn)  
N × 40 ns  
with N = (0 to 255)  
(PWMx Register)  
M × 256 × 2 × 40 ns  
with M = (0 to 255)  
(GRPPWM Register)  
256 × 40 ns = 10.24 µs  
(97.6 kHz)  
Group Dimming signal  
256 × 2 × 256 × 40 ns = 5.24 ms (190.7 Hz)  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
002aab417  
resulting Brightness + Group Dimming signal  
Minimum pulse width for LEDn Brightness Control is 40 ns.  
Minimum pulse width for Group Dimming is 20.48 µs.  
When M = 1 (GRPPWM register value), the resulting LEDn Brightness Control + Group Dimming signal will have 2 pulses of  
the LED Brightness Control signal (pulse width = N × 40 ns, with ‘N’ defined in PWMx register).  
This resulting Brightness + Group Dimming signal above shows a resulting Control signal with M = 4 (8 pulses).  
Fig 7. Brightness + Group Dimming signals  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
25 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
8. Characteristics of the I2C-bus  
The I2C-bus is for 2-way, 2-line communication between different ICs or modules. The two  
lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be  
connected to a positive supply via a pull-up resistor when connected to the output stages  
of a device. Data transfer may be initiated only when the bus is not busy.  
8.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as control signals (see Figure 8).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 8. Bit transfer  
8.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line while the clock is HIGH is defined as the START condition (S). A  
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition (P) (see Figure 9).  
SDA  
SCL  
S
P
STOP condition  
START condition  
mba608  
Fig 9. Definition of START and STOP conditions  
8.2 System configuration  
A device generating a message is a ‘transmitter’; a device receiving is the ‘receiver’. The  
device that controls the message is the ‘master’ and the devices which are controlled by  
the master are the ‘slaves’ (see Figure 10).  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
26 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
SDA  
SCL  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
2
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
I C-BUS  
TRANSMITTER/  
RECEIVER  
MULTIPLEXER  
SLAVE  
002aaa966  
Fig 10. System configuration  
8.3 Acknowledge  
The number of data bytes transferred between the START and the STOP conditions from  
transmitter to receiver is not limited. Each byte of eight bits is followed by one  
acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter,  
whereas the master generates an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the reception of  
each byte. Also a master must generate an acknowledge after the reception of each byte  
that has been clocked out of the slave transmitter. The device that acknowledges has to  
pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable  
LOW during the HIGH period of the acknowledge related clock pulse; set-up time and hold  
time must be taken into account.  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from master  
1
2
8
9
S
clock pulse for  
START  
condition  
acknowledgement  
002aaa987  
Fig 11. Acknowledgement on the I2C-bus  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
27 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
9. Bus transactions  
(1)  
slave address  
control register  
data for register D[5:0]  
S
A6 A5 A4 A3 A2 A1 A0  
0
A
X
X
D5 D4 D3 D2 D1 D0  
A
A
P
START condition  
R/W  
Auto-Increment flag  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
STOP  
condition  
002aad612  
(1) See Table 4 for register definition.  
Fig 12. Write to a specific register  
slave address  
control register  
MODE1 register  
MODE2 register  
(cont.)  
S
A6 A5 A4 A3 A2 A1 A0  
0
A
1
X
0
0
0
0
0
0
A
A
A
MODE1  
register selection  
START condition  
R/W  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge Auto-Increment on  
from slave  
SUBADR3 register  
ALLCALLADR register  
(cont.)  
A
A
P
acknowledge  
from slave  
acknowledge  
from slave  
STOP  
condition  
002aad613  
Fig 13. Write to all registers using the Auto-Increment feature  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
28 of 47  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
slave address  
control register  
PWM0 register data  
PWM1 register data  
(cont.)  
S
A6 A5 A4 A3 A2 A1 A0  
0
A
1
X
0
0
0
0
1
0
A
A
A
PWM0  
register selection  
START condition  
R/W  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave Auto-Increment on  
register rollover  
A
PWM22 register data  
PWM23 register data  
PWM0 register data  
PWM22 register data  
PWM23 register data  
(cont.)  
A
A
A
A
P
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
STOP  
condition  
002aad614  
This example assumes that AIF + AI[1:0] = 101b.  
Fig 14. Multiple writes to Individual Brightness registers only using the Auto-Increment feature  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
ReSTART  
condition  
slave address  
control register  
slave address  
data from MODE1 register  
(cont.)  
A
S
A6 A5 A4 A3 A2 A1 A0  
0
A
1
X
0
0
0
0
0
0
A
Sr A6 A5 A4 A3 A2 A1 A0  
1
A
MODE1  
register selection  
START condition  
R/W  
acknowledge  
from slave  
R/W  
acknowledge  
from master  
acknowledge  
from slave  
acknowledge  
from slave  
Auto-Increment on  
data from  
ALLCALLADR register  
data from  
MODE1 register  
data from MODE2 register  
data from PWM0  
(cont.)  
A
(cont.)  
(cont.)  
A
A
A
acknowledge  
from master  
acknowledge  
from master  
acknowledge  
from master  
acknowledge  
from master  
data from last read byte  
A
P
not acknowledge STOP  
from master condition  
002aad615  
This example assumes that the MODE1[5] = 0 and MODE1[6] = 0.  
Fig 15. Read all registers using the Auto-Increment feature  
(1)  
2
(2)  
slave address  
control register  
new LED All Call I C address  
sequence (A)  
S
A6 A5 A4 A3 A2 A1 A0  
0
A
1
X
1
0
0
1
1
0
A
1
0
1
0
1
0
1
X
A
P
ALLCALLADR  
START condition  
R/W  
acknowledge  
from slave  
acknowledge  
from slave  
register selection  
acknowledge  
from slave  
Auto-Increment on  
STOP  
condition  
(3)  
the 16 LEDs are on at the acknowledge  
LEDOUT register (LED fully ON)  
2
LED All Call I C address  
control register  
sequence (B)  
S
1
0
1
0
1
0
1
0
A
X
X
X
0
1
0
0
0
A
0
1
0
1
0
1
0
1
A
P
LEDOUT  
register selection  
START condition  
R/W  
acknowledge  
from the  
4 devices  
acknowledge  
from the  
acknowledge  
from the  
4 devices  
STOP  
condition  
4 devices  
002aad616  
(1) In this example, several PCA9626s are used and the same sequence (A) (above) is sent to each of them.  
(2) ALLCALL bit in MODE1 register is previously set to 1 for this example.  
(3) OCH bit in MODE2 register is previously set to 1 for this example.  
Fig 16. LED All Call I2C-bus address programming and LED All Call sequence example  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
30 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
10. Application design-in information  
up to 40 V  
V
= 2.5 V, 3.3 V or 5.0 V  
DD  
(1)  
10 kΩ  
10 kΩ  
10 kΩ  
2
I C-BUS/SMBus  
MASTER  
SDA  
V
DD  
SDA  
LED0  
LED1  
LED2  
LED3  
SCL  
SCL  
OE  
OE  
PCA9626  
LED light bar  
up to 40 V  
LED4  
LED5  
LED6  
LED7  
LED light bar  
up to 40 V  
LED8  
LED9  
LED10  
LED11  
LED light bar  
LED light bar  
LED light bar  
up to 40 V  
up to 40 V  
up to 40 V  
LED12  
LED13  
LED14  
LED15  
LED16  
LED17  
LED18  
LED19  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
LED20  
LED21  
LED22  
LED23  
V
SS  
V
SS  
002aad607  
(1) OE requires pull-up resistor if control signal from the master is open-drain.  
I2C-bus address = 0010 101x.  
Remark: During power-down, slow decay of voltage supplies may keep LEDs illuminated. Consider disabling LED outputs  
using HIGH level applied to OE pin.  
Fig 17. Typical application  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
31 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
10.1 Junction temperature calculation  
A device junction temperature can be calculated when the ambient temperature or the  
case temperature is known.  
When the ambient temperature is known, the junction temperature is calculated using  
Equation 4 and the ambient temperature, junction to ambient thermal resistance and  
power dissipation.  
T j = Tamb + Rth( j-a) × Ptot  
(4)  
where:  
Tj = junction temperature  
Tamb = ambient temperature  
Rth(j-a) = junction to ambient thermal resistance  
Ptot = (device) total power dissipation  
When the case temperature is known, the junction temperature is calculated using  
Equation 5 and the case temperature, junction to case thermal resistance and power  
dissipation.  
T j = Tcase + Rth( j-c) × Ptot  
(5)  
where:  
Tj = junction temperature  
Tcase = case temperature  
Rth(j-c) = junction to case thermal resistance  
Ptot = (device) total power dissipation  
Here are two examples regarding how to calculate the junction temperature using junction  
to case and junction to ambient thermal resistance. In the first example (Section 10.1.1),  
given the operating condition and the junction to ambient thermal resistance, the junction  
temperature of PCA9626B, in the LQFP48 package, is calculated for a system operating  
condition in 50 °C1 ambient temperature. In the second example (Section 10.1.2), based  
on a specific customer application requirement where only the case temperature is  
known, applying the junction to case thermal resistance equation, the junction  
temperature of the PCA9626B, in the LQFP48 package, is calculated.  
1. 50 °C is a typical temperature inside an enclosed system. The designers should feel free, as needed, to perform their own  
calculation using the examples.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
32 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
10.1.1 Example 1: Tj calculation when Tamb is known (PCA9626B, LQFP48)  
Rth(j-a) = 63 °C/W  
Tamb = 50 °C  
LED output low voltage (LED VOL) = 0.5 V  
LED output current per channel = 80 mA  
Number of outputs = 24  
IDD(max) = 18 mA  
VDD(max) = 5.5 V  
I2C-bus clock (SCL) maximum sink current = 25 mA  
I2C-bus data (SDA) maximum sink current = 25 mA  
1. Find Ptot (device total power dissipation):  
output total power = 30 mA × 24 × 0.5 V = 960 mW  
chip core power consumption = 18 mA × 5.5 V = 99 mW  
SCL power dissipation = 25 mA 0.4 V = 10 mW  
SDA power dissipation = 25 mA 0.4 V = 10 mW  
P
tot = (960 + 99 + 10 + 10) mW = 1079 mW  
2. Find Tj (junction temperature):  
Tj = (Tamb + Rth(j-a) × Ptot) = (50 °C + 63 °C/W × 1079 mW) = 118 °C  
10.1.2 Example 2: Tj calculation where only Tcase is known  
This example uses a customer’s specific application of the PCA9626B, 24-channel LED  
controller in the LQFP48 package, where only the case temperature (Tcase) is known.  
Tj = Tcase + Rth(j-c) × Ptot, where:  
Rth(j-c) = 18 °C/W  
Tcase (measured) = 94.6 °C  
VOL of LED ~ 0.5 V  
IDD(max) = 18 mA  
VDD(max) = 5.5 V  
LED output voltage LOW = 0.5 V  
LED output current:  
60 mA on 1 port = (60 mA × 1)  
50 mA on 6 ports = (50 mA × 6)  
40 mA on 2 ports = (40 mA × 2)  
20 mA on 12 ports = (20 mA × 12)  
1 mA on 3 ports = (1 mA × 3)  
I2C-bus maximum sink current on clock line = 25 mA  
I2C-bus maximum sink current on data line = 25 mA  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
33 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
1. Find Ptot (device total power dissipation)  
output current (60 mA × 1 port); output power (60 mA × 1 × 0.5 V) = 30 mW  
output current (50 mA × 6 ports); output power (50 mA × 6 × 0.5 V) = 150 mW  
output current (40 mA × 2 ports); output power (40 mA × 2 × 0.5 V) = 40 mW  
output current (20 mA × 12 ports); output power (20 mA × 12 × 0.5 V) = 120 mW  
output current (1 mA × 3 ports); output power (1 mA × 3 × 0.5 V) = 1.5 mW  
Output total power = 341.5 mW  
chip core power consumption = 18 mA × 5.5 V = 99 mW  
SCL power dissipation = 25 mA × 0.4 V = 10 mW  
SDA power dissipation = 25 mA × 0.4 V = 10 mW  
Ptot (device total power dissipation) = 460.5 mW  
2. Find Tj (junction temperature):  
Tj = Tcase + Rth(j-a) × Ptot = 94.6 °C + 18 °C/W × 460.5 mW = 102.9 °C  
11. Limiting values  
Table 15. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
V
VDD  
VI/O  
supply voltage  
0.5  
+6.0  
voltage on an input/output pin  
VSS 0.5 5.5  
V
Vdrv(LED) LED driver voltage  
IO(LEDn) output current on pin LEDn  
IOL(tot)  
V
SS 0.5 40  
V
-
100  
-
mA  
mA  
[1]  
total LOW-level output current LED driver outputs;  
2400  
VOL = 0.5 V  
ISS  
ground supply current  
total power dissipation  
per VSS pin  
Tamb = 25 °C  
Tamb = 85 °C  
-
800  
1.8  
mA  
W
Ptot  
-
-
0.72  
100  
45  
W
P/ch  
power dissipation per channel Tamb = 25 °C  
Tamb = 85 °C  
-
mW  
mW  
°C  
-
[2]  
Tj  
junction temperature  
-
+125  
+150  
+85  
Tstg  
Tamb  
storage temperature  
65  
40  
°C  
ambient temperature  
operating  
°C  
[1] Each bit must be limited to a maximum of 100 mA and the total package limited to 2400 mA due to internal  
busing limits.  
[2] Refer to Section 10.1 for calculation.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
34 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
Table 16. LQFP48 versus HVQFN48 power dissipation and output current capability  
Measurement  
LQFP48  
HVQFN48  
Tamb = 25 °C  
maximum power  
dissipation (chip + output  
drivers)  
1590 mW  
2780 mW  
maximum power  
dissipation (output drivers  
only)  
1460 mW  
2650 mW  
maximum drive current  
per channel  
1460 mW  
-----------------------------------  
24-bit × 0.5 V  
2650 mW  
-----------------------------------  
24-bit × 0.5 V  
<
= 121.7 mA [1]  
<
= 220.8 mA [1]  
Tamb = 60 °C  
maximum power  
dissipation (chip + output  
drivers)  
1030 mW  
1810 mW  
maximum power  
dissipation (output drivers  
only)  
901 mW  
1680 mW  
maximum drive current  
per channel  
901 mW  
24-bit × 0.5 V  
1680 mW  
-----------------------------------  
24-bit × 0.5 V  
<
= 75.1 mA  
<
= 140 mA [1]  
-----------------------------------  
Tamb = 80 °C  
maximum power  
dissipation (chip + output  
drivers)  
714 mW  
585 mW  
1250 mW  
maximum power  
dissipation (output drivers  
only)  
1120 mW  
maximum drive current  
per channel  
585 mW  
24-bit × 0.5 V  
1120 mW  
-----------------------------------  
24-bit × 0.5 V  
<
= 48.8 mA  
<
= 93.3 mA  
-----------------------------------  
[1] This value signifies package’s ability to handle more than 100 mA per output driver. The device’s maximum  
current rating per output is 100 mA.  
12. Thermal characteristics  
Table 17. Thermal characteristics  
Symbol  
Parameter  
Conditions  
LQFP48  
Typ  
63  
Unit  
[1]  
[1]  
[1]  
[1]  
Rth(j-a)  
thermal resistance from junction to ambient  
°C/W  
°C/W  
°C/W  
°C/W  
HVQFN48  
LQFP48  
36  
Rth(j-c)  
thermal resistance from junction to case  
18  
HVQFN48  
14  
[1] Calculated in accordance with JESD 51-7.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
35 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
13. Static characteristics  
Table 18. Static characteristics  
VDD = 2.3 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Supply  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
supply current  
2.3  
-
5.5  
V
IDD  
on pin VDD; operating mode;  
no load; fSCL = 1 MHz  
VDD = 2.7 V  
VDD = 3.6 V  
VDD = 5.5 V  
-
-
-
0.5  
1.5  
13  
4
mA  
mA  
mA  
6
18  
Istb  
standby current  
on pin VDD;  
no load; fSCL = 0 Hz;  
I/O = inputs; VI = VDD  
VDD = 2.7 V  
-
-
-
-
0.5  
1.0  
6
5
µA  
µA  
µA  
V
VDD = 3.6 V  
10  
15  
2.0  
VDD = 5.5 V  
[1]  
VPOR  
power-on reset voltage  
no load; VI = VDD or VSS  
1.70  
Input SCL; input/output SDA  
VIL  
VIH  
IOL  
LOW-level input voltage  
0.5  
0.7VDD  
20  
-
+0.3VDD  
V
HIGH-level input voltage  
LOW-level output current  
-
5.5  
-
V
VOL = 0.4 V; VDD = 2.3 V  
VOL = 0.4 V; VDD = 5.0 V  
VI = VDD or VSS  
-
mA  
mA  
µA  
pF  
30  
-
-
IL  
leakage current  
1  
-
+1  
10  
Ci  
input capacitance  
VI = VSS  
-
6
LED driver outputs  
Vdrv(LED) LED driver voltage  
IOL  
0
-
40  
-
V
[2]  
LOW-level output current  
VOL = 0.5 V; VDD 4.5 V  
Vdrv(LED) = 5 V  
100  
-
mA  
µA  
µA  
ILOH  
HIGH-level output leakage  
current  
-
-
-
-
-
±1  
15  
5
Vdrv(LED) = 40 V  
±1  
2
Ron  
ON-state resistance  
output capacitance  
Vdrv(LED) = 40 V; VDD = 2.3 V  
Co  
15  
40  
pF  
OE input  
VIL  
VIH  
ILI  
LOW-level input voltage  
HIGH-level input voltage  
input leakage current  
input capacitance  
0.5  
0.7VDD  
1  
-
+0.8  
5.5  
+1  
V
-
V
-
µA  
pF  
Ci  
-
3.7  
5
Address inputs  
VIL  
VIH  
ILI  
LOW-level input voltage  
0.5  
0.7VDD  
1  
-
+0.3VDD  
V
HIGH-level input voltage  
input leakage current  
input capacitance  
-
5.5  
+1  
5
V
-
µA  
pF  
Ci  
-
3.7  
[1] VDD must be lowered to 0.2 V in order to reset part.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
36 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
[2] Each bit must be limited to a maximum of 100 mA and the total package limited to 2400 mA due to internal busing limits.  
14. Dynamic characteristics  
Table 19. Dynamic characteristics  
Symbol Parameter  
Conditions  
Standard-mod  
e I2C-bus  
Fast-mode  
I2C-bus  
Fast-mode  
Plus I2C-bus  
Unit  
Min  
0
Max  
100  
-
Min  
0
Max  
Min  
0
Max  
1000 kHz  
fSCL  
tBUF  
SCL clock frequency  
400  
-
bus free time  
4.7  
1.3  
0.5  
-
µs  
between a STOP and  
START condition  
tHD;STA  
tSU;STA  
hold time (repeated)  
START condition  
4.0  
4.7  
-
-
0.6  
0.6  
-
-
0.26  
0.26  
-
-
µs  
µs  
set-up time for a  
repeated START  
condition  
tSU;STO  
set-up time for STOP  
condition  
4.0  
-
0.6  
-
0.26  
-
-
µs  
tHD;DAT  
tVD;ACK  
data hold time  
0
-
0
-
0
ns  
[1]  
[2]  
data valid  
acknowledge time  
0.3  
3.45  
0.1  
0.9  
0.05  
0.45 µs  
tVD;DAT  
tSU;DAT  
tLOW  
data valid time  
0.3  
250  
4.7  
3.45  
0.1  
100  
1.3  
0.9  
0.05  
50  
0.45 µs  
data set-up time  
-
-
-
-
-
-
ns  
LOW period of the  
SCL clock  
0.5  
µs  
tHIGH  
tf  
HIGH period of the  
SCL clock  
4.0  
-
0.6  
-
0.26  
-
µs  
[3][4]  
[5]  
[5]  
fall time of both SDA  
and SCL signals  
-
-
-
300 20 + 0.1Cb  
300  
300  
50  
-
-
-
120 ns  
120 ns  
tr  
rise time of both SDA  
and SCL signals  
1000 20 + 0.1Cb  
[6]  
tSP  
pulse width of spikes  
that must be  
50  
-
50  
ns  
suppressed by the  
input filter  
Output propagation delay  
tPLH  
LOW to HIGH  
propagation delay  
OE to LEDn;  
MODE2[1:0] = 01  
-
-
-
-
-
-
-
-
-
-
150 ns  
150 ns  
tPHL  
HIGH to LOW  
OE to LEDn;  
propagation delay  
MODE2[1:0] = 01  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
37 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
Table 19. Dynamic characteristics …continued  
Symbol Parameter  
Conditions  
Standard-mod  
e I2C-bus  
Fast-mode  
I2C-bus  
Fast-mode  
Plus I2C-bus  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Output port timing  
td(SCL-Q) delay time from SCL SCL to LEDn;  
-
-
-
-
-
-
450 ns  
450 ns  
to data output  
MODE2[3] = 1;  
outputs change on  
ACK  
td(SDA-Q) delay time from SDA SDA to LEDn;  
-
-
-
-
to data output  
MODE2[3] = 0;  
outputs change on  
STOP condition  
[1] tVD;ACK = time for Acknowledgement signal from SCL LOW to SDA (out) LOW.  
[2] tVD;DAT = minimum time for SDA data out to be valid following SCL LOW.  
[3] A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the VIL of the SCL signal) in order to  
bridge the undefined region of SCLs falling edge.  
[4] The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time (tf) for the SDA output stage is specified at  
250 ns. This allows series protection resistors to be connected between the SDA and the SCL pins and the SDA/SCL bus lines without  
exceeding the maximum specified tf.  
[5] Cb = total capacitance of one bus line in pF.  
[6] Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns.  
SDA  
t
t
t
t
SP  
t
r
f
HD;STA  
BUF  
t
LOW  
SCL  
t
t
t
SU;STO  
HD;STA  
SU;STA  
t
t
t
SU;DAT  
HD;DAT  
HIGH  
P
S
Sr  
P
002aaa986  
Fig 18. Definition of timing  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
38 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
START  
condition  
(S)  
bit 7  
MSB  
(A7)  
STOP  
condition  
(P)  
bit 6  
(A6)  
bit 1  
(D1)  
bit 0  
(D0)  
acknowledge  
(A)  
protocol  
t
t
t
HIGH  
SU;STA  
LOW  
1 / f  
SCL  
SCL  
SDA  
t
t
BUF  
f
t
r
t
t
t
t
t
t
HD;DAT  
VD;DAT  
VD;ACK  
SU;STO  
002aab285  
HD;STA  
SU;DAT  
Rise and fall times refer to VIL and VIH.  
Fig 19. I2C-bus timing diagram  
15. Test information  
V
DD  
open  
GND  
V
R
500 Ω  
DD  
L
V
V
O
I
PULSE  
GENERATOR  
DUT  
C
50 pF  
L
R
T
002aab284  
RL = Load resistor for LEDn. RL for SDA and SCL > 1 k(3 mA or less current).  
CL = Load capacitance includes jig and probe capacitance.  
RT = Termination resistance should be equal to the output impedance Zo of the pulse generators.  
Fig 20. Test circuitry for switching times  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
39 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
16. Package outline  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
Fig 21. Package outline SOT313-2 (LQFP48)  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
40 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
HVQFN48: plastic thermal enhanced very thin quad flat package; no leads;  
48 terminals; body 6 x 6 x 0.85 mm  
SOT778-4  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
C
e
1
y
C
1
y
M
M
v
C
C
A
B
b
e
1/2 e  
w
13  
24  
L
25  
12  
e
e
2
E
h
1/2 e  
1
36  
terminal 1  
index area  
48  
37  
X
D
h
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
b
c
D
D
h
E
E
e
e
1
e
2
L
v
w
y
y
1
1
h
max  
0.05 0.25  
0.00 0.15  
6.1  
5.9  
4.75  
4.45  
6.1  
5.9  
4.75  
4.45  
0.5  
0.3  
1
mm  
0.2  
0.4  
4.4  
4.4  
0.1  
0.05 0.05  
0.1  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
- - -  
04-07-30  
04-10-07  
SOT778-4  
- - -  
- - -  
Fig 22. Package outline SOT778-4 (HVQFN48)  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
41 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
17. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling ensure that the appropriate precautions are taken as  
described in JESD625-A or equivalent standards.  
18. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
18.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
18.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
18.3 Wave soldering  
Key characteristics in wave soldering are:  
© NXP B.V. 2009. All rights reserved.  
PCA9626_2  
Product data sheet  
Rev. 02 — 31 August 2009  
42 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
18.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 23) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 20 and 21  
Table 20. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 21. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 23.  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
43 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 23. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
19. Abbreviations  
Table 22. Abbreviations  
Acronym  
ACK  
Description  
Acknowledge  
CDM  
DUT  
Charged Device Model  
Device Under Test  
ESD  
ElectroStatic Discharge  
Field-Effect Transistor  
Human Body Model  
Inter-Integrated Circuit bus  
Light Emitting Diode  
Least Significant Bit  
Machine Model  
FET  
HBM  
I2C-bus  
LED  
LSB  
MM  
MSB  
Most Significant Bit  
Printed-Circuit Board  
Pulse Width Modulation  
Red/Green/Blue  
PCB  
PWM  
RGB  
RGBA  
SMBus  
Red/Green/Blue/Amber  
System Management Bus  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
44 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
20. Revision history  
Table 23. Revision history  
Document ID  
PCA9626_2  
Modifications:  
Release date  
Data sheet status  
Change notice  
Supersedes  
20090831  
Product data sheet  
-
PCA9626_1  
Table 11 “CHASE sequence” modified (corrected commands 02, 03, 04, 06; added additional  
commands)  
Section 7.4 “Active LOW output enable input”: added 2nd “Remark”  
Figure 17 “Typical application”: added “Remark”  
Added (new) Section 10.1 “Junction temperature calculation”  
Section 11 “Limiting values”:  
Table 15 “Limiting values”: added “Tj, junction temperature” specification  
Added (new) Table 16 “LQFP48 versus HVQFN48 power dissipation and output current  
capability”  
Added (new) Table 17 “Thermal characteristics”  
Table 18 “Static characteristics”, sub-section “LED driver outputs”: added ILOH specification  
PCA9626_1  
20090602  
Product data sheet  
-
-
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
45 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
21. Legal information  
21.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
21.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
21.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
21.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
22. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCA9626_2  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 02 — 31 August 2009  
46 of 47  
PCA9626  
NXP Semiconductors  
24-bit Fm+ I2C-bus 100 mA 40 V LED driver  
23. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
12  
13  
14  
15  
16  
17  
Thermal characteristics . . . . . . . . . . . . . . . . . 35  
Static characteristics . . . . . . . . . . . . . . . . . . . 36  
Dynamic characteristics. . . . . . . . . . . . . . . . . 37  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 39  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 40  
Handling information . . . . . . . . . . . . . . . . . . . 42  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
18  
Soldering of SMD packages . . . . . . . . . . . . . . 42  
Introduction to soldering. . . . . . . . . . . . . . . . . 42  
Wave and reflow soldering . . . . . . . . . . . . . . . 42  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 42  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 43  
18.1  
18.2  
18.3  
18.4  
7
7.1  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.2  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Device addresses . . . . . . . . . . . . . . . . . . . . . . . 7  
Regular I2C-bus slave address. . . . . . . . . . . . . 7  
LED All Call I2C-bus address . . . . . . . . . . . . . . 8  
LED Sub Call I2C-bus addresses . . . . . . . . . . . 8  
Software Reset I2C-bus address . . . . . . . . . . . 8  
Control register . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Register definitions . . . . . . . . . . . . . . . . . . . . . 10  
Mode register 1, MODE1 . . . . . . . . . . . . . . . . 12  
Mode register 2, MODE2 . . . . . . . . . . . . . . . . 12  
PWM0 to PWM23, individual  
brightness control . . . . . . . . . . . . . . . . . . . . . . 13  
GRPPWM, group duty cycle control . . . . . . . . 14  
GRPFREQ, group frequency . . . . . . . . . . . . . 14  
CHASE control . . . . . . . . . . . . . . . . . . . . . . . . 15  
LEDOUT0 to LEDOUT5, LED driver  
19  
20  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 45  
21  
Legal information . . . . . . . . . . . . . . . . . . . . . . 46  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 46  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
21.1  
21.2  
21.3  
21.4  
7.3  
7.3.1  
7.3.2  
7.3.3  
22  
23  
Contact information . . . . . . . . . . . . . . . . . . . . 46  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
7.3.4  
7.3.5  
7.3.6  
7.3.7  
output state. . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SUBADR1 to SUBADR3, I2C-bus  
7.3.8  
subaddress 1 to 3 . . . . . . . . . . . . . . . . . . . . . . 23  
ALLCALLADR, LED All Call I2C-bus address. 23  
Active LOW output enable input . . . . . . . . . . . 24  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . 24  
Software reset. . . . . . . . . . . . . . . . . . . . . . . . . 24  
Individual brightness control with group  
7.3.9  
7.4  
7.5  
7.6  
7.7  
dimming/blinking. . . . . . . . . . . . . . . . . . . . . . . 25  
8
Characteristics of the I2C-bus. . . . . . . . . . . . . 26  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
START and STOP conditions . . . . . . . . . . . . . 26  
System configuration . . . . . . . . . . . . . . . . . . . 26  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.1  
8.1.1  
8.2  
8.3  
9
Bus transactions . . . . . . . . . . . . . . . . . . . . . . . 28  
10  
10.1  
10.1.1  
Application design-in information . . . . . . . . . 31  
Junction temperature calculation . . . . . . . . . . 32  
Example 1: Tj calculation when Tamb is known  
(PCA9626B, LQFP48) . . . . . . . . . . . . . . . . . . 33  
Example 2: Tj calculation where only Tcase is  
known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
10.1.2  
11  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 34  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 31 August 2009  
Document identifier: PCA9626_2  

相关型号:

PCA9626B/S911,118

IC,LASER DIODE/LED DRIVER,QFP,48PIN,PLASTIC
NXP

PCA9626BS

24-bit Fm I2C-bus 100 mA 40 V LED driver
NXP

PCA9629

Smart, simple solutions for the 12 most common design concerns
NXP

PCA9629PW,118

PCA9629 - Fm+ I2C-bus stepper motor controller TSSOP 16-Pin
NXP

PCA9632

4-bit Fm+ I2C-bus low power LED driver
NXP

PCA9632DP1

4-bit Fm+ I2C-bus low power LED driver
NXP

PCA9632DP1-T

IC,LASER DIODE/LED DRIVER,TSSOP,8PIN,PLASTIC
NXP

PCA9632DP2

4-bit Fm+ I2C-bus low power LED driver
NXP

PCA9632DP2,118

PCA9632 - 4-bit Fm+ I2C-bus low power LED driver TSSOP 10-Pin
NXP

PCA9632DP2-T

IC,LASER DIODE/LED DRIVER,TSSOP,10PIN,PLASTIC
NXP

PCA9632TK

4-bit Fm+ I2C-bus low power LED driver
NXP

PCA9632TK2

4-bit Fm+ I2C-bus low power LED driver
NXP