PCD3755EH [NXP]

8-bit microcontrollers with DTMF generator, 8 kbytes OTP and 128 bytes EEPROM; 8位微控制器与双音多频发生器,8个字节的OTP和128字节的EEPROM
PCD3755EH
型号: PCD3755EH
厂家: NXP    NXP
描述:

8-bit microcontrollers with DTMF generator, 8 kbytes OTP and 128 bytes EEPROM
8位微控制器与双音多频发生器,8个字节的OTP和128字节的EEPROM

微控制器 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总32页 (文件大小:202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCD3755A; PCD3755E;  
PCD3755F  
8-bit microcontrollers with DTMF  
generator, 8 kbytes OTP and 128  
bytes EEPROM  
1997 Apr 16  
Product specification  
Supersedes data of 1996 Dec 18  
File under Integrated Circuits, IC03  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
CONTENTS  
1
2
3
4
5
FEATURES  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
PINNING INFORMATION  
5.1  
5.2  
Pinning  
Pin description  
6
FREQUENCY GENERATOR  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Frequency generator derivative registers  
Melody output (P1.7/MDY)  
Frequency registers  
DTMF frequencies  
Modem frequencies  
Musical scale frequencies  
7
EEPROM AND TIMER 2 ORGANIZATION  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
EEPROM registers  
EEPROM latches  
EEPROM flags  
EEPROM macros  
EEPROM access  
Timer 2  
8
DERIVATIVE INTERRUPTS  
TIMING  
9
10  
11  
12  
13  
14  
RESET  
IDLE MODE  
STOP MODE  
INSTRUCTION SET RESTRICTIONS  
OVERVIEW OF PORT AND  
POWER-ON-RESET CONFIGURATION  
15  
16  
17  
18  
19  
20  
21  
22  
OTP PROGRAMMING  
SUMMARY OF DERIVATIVE REGISTERS  
HANDLING  
LIMITING VALUES  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
PACKAGE OUTLINES  
SOLDERING  
22.1  
22.2  
22.3  
22.4  
Reflow soldering  
Wave soldering  
DIP  
Repairing soldered joints  
23  
24  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
1997 Apr 16  
2
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
1
FEATURES  
2
GENERAL DESCRIPTION  
8-bit CPU, ROM, RAM, EEPROM and I/O; in a single  
28-lead or 32-lead package  
This data sheet details the specific properties of the  
PCD3755A, PCD3755E and PCD3755F. The devices  
differ in their Port and Power-on-reset configurations.  
References to ‘PCD3755x’ apply to all three types.  
The devices are members of the PCD33xxA family of  
microcontrollers.  
8 kbytes user-programmable ROM (One-Time  
Programmable)  
128 bytes RAM  
128 bytes Electrically Erasable Programmable  
Read-Only Memory (EEPROM)  
The shared properties of the family are described in the  
“PCD33xxA family” data sheet, which should be read in  
conjunction with this publication.  
Over 100 instructions (based on MAB8048) all of 1 or 2  
cycles  
The PCD3755A, PCD3755E and PCD3755F are  
One-Time Programmable (OTP) microcontrollers  
designed primarily for telephony applications.They include  
an on-chip generator for dual tone multifrequency (DTMF),  
modem and musical tones. In addition to dialling,  
generated frequencies can be made available as square  
waves (P1.7/MDY) for melody generation, providing ringer  
operation.  
20 quasi-bidirectional I/O port lines  
8-bit programmable Timer/event counter 1  
8-bit reloadable Timer 2  
Three single-level vectored interrupts:  
– external  
– 8-bit programmable Timer/event counter 1  
– derivative; triggered by reloadable Timer 2  
The PCD3755A, PCD3755E and PCD3755F also  
incorporate 128 bytes of EEPROM. The EEPROM can be  
used for storing telephone numbers, particularly for  
implementing redial functions.  
Two test inputs, one of which also serves as the external  
interrupt input  
DTMF, modem, musical tone generator  
The Power-on-reset circuitry is extra accurate to  
accommodate parallel telephones and fax equipment.  
Reference for supply and temperature-independent  
tone output  
The instruction set is similar to that of the MAB8048 and is  
a sub-set of that listed in the “PCD33xxA family” data  
sheet.  
Filtering for low output distortion (CEPT compatible)  
Melody output for ringer application  
Power-on-reset  
Stop and Idle modes  
Supply voltage: 1.8 to 6 V (DTMF tone output and  
EEPROM erase/write from 2.5 V)  
Clock frequency: 1 to 16 MHz (3.58 MHz for DTMF  
suggested)  
Operating temperature: 25 to +70 °C  
Manufactured in silicon gate CMOS process.  
3
ORDERING INFORMATION (see note 1)  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
PCD3755xP  
PCD3755xT  
PCD3755xH  
DIP28  
SO28  
plastic dual in-line package; 28 leads (600 mil)  
SOT117-1  
SOT136-1  
SOT358-1  
plastic small outline package; 28 leads; body width 7.5 mm  
LQFP32 plastic low profile quad flat package; 32 leads; body 7 × 7 × 1.4 mm  
Note  
1. Please refer to the Order Entry Form (OEF) for this device for the full type number to use when ordering. This type  
number will also specify the required program and the ROM mask options.  
1997 Apr 16  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
P1.0 to P1.6  
P2.0 to P2.3  
4
P0.0 to P0.7  
8
TONE  
P1.7/MDY  
7
RESIDENT  
OTP-ROM  
8 kbytes  
PORT 2  
BUFFER  
PORT 1  
BUFFER  
PORT 0  
BUFFER  
FILTER  
PORT 2  
PORT 1  
PORT 0  
FLIP-FLOP  
FLIP-FLOP  
FLIP-FLOP  
DECODE  
SINE WAVE  
GENERATOR  
INTERNAL  
CLOCK  
FREQ.  
30  
MEMORY  
BANK  
FLIP-FLOPS  
32  
T1  
TIMER/  
EVENT  
COUNTER  
HIGHER  
PROGRAM  
COUNTER  
LOWER  
PROGRAM  
COUNTER  
PROGRAM  
STATUS  
WORD  
MELODY  
CONTROL  
REGISTER  
HGF  
REGISTER  
LGF  
REGISTER  
4
8
8
PCD3755x  
8
5
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
TIMER 2  
RELOAD  
REGISTER  
EEPROM  
CONTROL  
REGISTER  
EEPROM  
ADDRESS  
REGISTER  
EEPROM  
DATA  
TRANSFER  
MULTIPLEXER  
TIMER 2  
REGISTER  
INTERRUPT  
LOGIC  
TEMPORARY  
REGISTER 2  
TEMPORARY  
REGISTER 1  
ACCUMULATOR  
REGISTER 0  
REGISTER 1  
REGISTER 2  
REGISTER 3  
REGISTER 4  
REGISTER 5  
REGISTER 6  
REGISTER 7  
RAM  
ADDRESS  
REGISTER  
timer interrupt  
derivative  
interrupt  
INSTRUCTION  
REGISTER  
AND  
ARITHMETIC  
D
E
C
O
D
E
DECODER  
EEPROM  
128 bytes  
8 LEVEL STACK  
(VARIABLE LENGTH)  
T 1  
V
POWER-ON-RESET  
LOGIC UNIT  
POR  
OPTIONAL SECOND  
REGISTER BANK  
CE/T0  
CONDITIONAL  
BRANCH  
external interrupt  
TIMER  
FLAG  
DECIMAL  
ADJUST  
RESET  
DATA STORE  
CARRY  
LOGIC  
STOP  
IDLE  
ACC  
CONTROL AND TIMING  
RESET XTAL1  
ACC BIT  
TEST  
RESIDENT RAM ARRAY  
128 bytes  
CE/T0  
XTAL2  
MBG639  
INTERRUPT INITIALIZE  
OSCILLATOR  
Fig.1 Block diagram.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
5
PINNING INFORMATION  
Pinning  
5.1  
handbook, halfpage  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
T1  
1
2
3
4
5
6
7
8
9
P0.0  
28  
27 P2.3  
P2.2  
26  
25 P2.1  
V
24  
DD  
23 TONE  
V
22  
SS  
PCD3755xP  
PCD3755xT  
21 P2.0  
20 P1.7/MDY  
19 P1.6  
18 P1.5  
17 P1.4  
16 P1.3  
15 P1.2  
XTAL1  
XTAL2 10  
RESET 11  
CE/T0 12  
P1.0 13  
P1.1 14  
MBG640  
Fig.2 Pin configuration (SOT117-1 and SOT136-1).  
n.c.  
P0.5  
P2.1  
1
2
3
4
5
6
7
8
24  
23  
V
DD  
P0.6  
22 TONE  
V
P0.7  
21  
20  
SS  
PCD3755xH  
T1  
P2.0  
XTAL1  
XTAL2  
RESET  
19 P1.7/MDY  
18 P1.6  
17  
n.c.  
MBG641  
Fig.3 Pin configuration (SOT358-1).  
5
1997 Apr 16  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
5.2  
Pin description  
Table 1 SOT117-1 and SOT136-1 packages (for information on parallel I/O ports, see Chapter 14)  
SYMBOL  
P1.1 to P0.7  
T1  
PIN  
1 to 7  
8
TYPE  
I/O  
I
DESCRIPTION  
7 bits of Port 0: 8-bit quasi-bidirectional I/O port  
Test 1 or count input of 8-bit Timer/event counter 1  
crystal oscillator or external clock input  
crystal oscillator output  
XTAL1  
9
I
XTAL2  
10  
O
RESET  
CE/T0  
11  
I
reset input  
12  
I
Chip Enable or Test 0  
P1.0 to P1.6  
P1.7/MDY  
P2.0  
13 to 19  
20  
I/O  
I/O  
I/O  
P
7 bits of Port 1: 8-bit quasi-bidirectional I/O port  
1 bit of Port 1: 8-bit quasi-bidirectional I/O port; or melody output  
1 bit of Port 2: 4-bit quasi-bidirectional I/O port  
ground  
21  
VSS  
22  
TONE  
23  
O
DTMF output  
VDD  
24  
P
positive supply voltage  
P2.1 to P2.3  
P0.0  
25 to 27  
28  
I/O  
I/O  
3 bits of Port 2: 4-bit quasi-bidirectional I/O port  
1 bit of Port 0: 8-bit quasi-bidirectional I/O port  
Table 2 SOT358-1 package (for information on parallel I/O ports, see Chapter 14)  
SYMBOL  
n.c.  
PIN  
TYPE  
DESCRIPTION  
1, 13, 17, 28  
I/O  
I
not connected  
P0.5 to P0.7  
T1  
2 to 4  
3 bits of Port 0: 8-bit quasi-bidirectional I/O port  
Test 1 or count input of 8-bit Timer/event counter 1  
crystal oscillator or external clock input  
crystal oscillator output  
5
6
7
8
9
XTAL1  
I
XTAL2  
O
I
RESET  
CE/T0  
reset input  
I
Chip Enable or Test 0  
P1.0 to P1.6  
10 to 12,  
I/O  
7 bits of Port 1: 8-bit quasi-bidirectional I/O port  
14 to 16, 18  
P1.7/MDY  
P2.0  
19  
I/O  
I/O  
P
1 bit of Port 1: 8-bit quasi-bidirectional I/O port; or melody output  
1 bit of Port 2: 4-bit quasi-bidirectional I/O port  
ground  
20  
21  
VSS  
TONE  
22  
O
DTMF output  
VDD  
23  
P
positive supply voltage  
P2.1 to P2.3  
P0.0 to P0.4  
24 to 26  
27, 29 to 32  
I/O  
I/O  
3 bits of Port 2: 4-bit quasi-bidirectional I/O port  
5 bits of Port 0: 8-bit quasi-bidirectional I/O port  
1997 Apr 16  
6
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
The TONE output can alternatively issue twelve modem  
frequencies for data rates between 300 and 1200 bits/s.  
6
FREQUENCY GENERATOR  
A versatile frequency generator section is provided (see  
Fig.4). For normal operation, use a 3.58 MHz quartz  
crystal or PXE resonator. The frequency generator  
includes precision circuitry for dual tone multifrequency  
(DTMF) signals, which is typically used for tone dialling  
telephone sets.  
In addition to DTMF and modem frequencies, two octaves  
of musical scale in steps of semitones are available.  
In case no tones are generated the TONE output is in  
3-state mode.  
Their frequencies are provided in purely sinusoidal form on  
the TONE output or as square waves on the P1.7/MDY  
output.  
6.1  
Frequency generator derivative registers  
6.1.1  
HIGH AND LOW GROUP FREQUENCY REGISTERS  
Table 3 gives the addresses, mnemonics and access types of the High Group Frequency (HGF) and Low Group  
Frequency (LGF) registers.  
Table 3 Hexadecimal addresses, mnemonics, access types and bit mnemonics of the frequency registers  
BIT MNEMONICS  
REGISTER REGISTER  
ADDRESS MNEMONIC  
ACCESS  
TYPE  
7
6
5
4
3
2
1
0
11H  
12H  
HGF  
LGF  
W
W
H7  
L7  
H6  
L6  
H5  
L5  
H4  
L4  
H3  
L3  
H2  
L2  
H1  
L1  
H0  
L0  
6.1.2  
MELODY CONTROL REGISTER (MDYCON)  
MDYCON is a R/W register.  
Table 4 Melody Control Register (address 13H)  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
EMO  
Table 5 Description of MDYCON bits  
BIT  
MNEMONIC  
DESCRIPTION  
7 to 1  
0
These bits are set to a logic 0.  
Enable Melody Output. If bit EMO = 0, then P1.7/MDY is a standard port line.  
EMO  
If bit EMO = 1, then P1.7/MDY is the melody output. EMO = 1 does not inhibit the port  
instructions for P1.7/MDY. Therefore the state of both port line and flip-flop may be read  
in and the port flip-flop may be written by port instructions. However, the port flip-flop of  
P1.7/MDY must remain set to avoid conflicts between melody and port outputs.  
When the HGF contents are zero while EMO = 1, P1.7/MDY is in the logic HIGH state.  
1997 Apr 16  
7
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
8
MELODY CONTROL  
PORT/MELODY  
OUTPUT LOGIC  
P1.7/  
MDY  
REGISTER  
square wave  
DIGITAL  
8
HGF REGISTER  
SINE WAVE  
SYNTHESIZER  
DAC  
DAC  
SWITCHED  
CAPACITOR  
BANDGAP  
VOLTAGE  
REFERENCE  
SWITCHED  
CAPACITOR  
LOW-PASS  
FILTER  
RC LOW-PASS  
FILTER  
TONE  
8
INTERNAL BUS  
MLC416  
DIGITAL  
8
LGF REGISTER  
SINE WAVE  
SYNTHESIZER  
Fig.4 Block diagram of the frequency generator and melody output (P1.7/MDY) section.  
1997 Apr 16  
8
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
The amplitude of the Low group frequency sine wave is  
attenuated by 2 dB compared to the amplitude of the High  
group frequency sine wave. The two sine waves are  
summed and then filtered by an on-chip switched  
capacitor and RC low-pass filters. These guarantee that all  
DTMF tones generated fulfil the CEPT recommendations  
with respect to amplitude, frequency deviation, total  
harmonic distortion and suppression of unwanted  
frequency components.  
6.2  
Melody output (P1.7/MDY)  
The melody output (P1.7/MDY) is very useful for  
generating musical tones when a purely sinusoidal signal  
is not required, such as for ringer applications.  
The square wave (duty cycle = 12  
23 or 52%) will include  
the attenuated harmonics of the base frequency, which is  
defined by the contents of the HGF register (Table 3).  
However, even higher frequency tones may be produced  
since the low-pass filtering on the TONE output is not  
applied to the P1.7/MDY output. This results in the  
minimum decimal value x in the HGF register being 2 for  
the P1.7/MDY output, rather than 60 for the TONE output  
- the value shown in equation (1). A sinusoidal TONE  
output is produced at the same time as the melody square  
wave, but due to the filtering, the higher frequency sine  
waves with x < 60 will not appear at the TONE output.  
The value 00H in a frequency register stops the  
corresponding digital sine synthesizer. If both frequency  
registers contain 00H, the whole frequency generator is  
shut off, resulting in lower power consumption.  
The frequency of the sine wave generated ‘f’ is dependent  
on the clock frequency ‘fxtal’ and the decimal value ‘x’ held  
in the frequency registers (HGF and LGF). The variables  
are related by the equation:  
Since the melody output is shared with P1.7, the port  
flip-flop of P1.7 has to be set HIGH before using the  
melody output. This is to avoid conflicts between melody  
and port outputs. The melody output drive depends on the  
configuration of port P1.7/MDY; see Chapter 14, Table 24.  
fxtal  
f =  
where  
60 x 255  
(1)  
--------------------------------  
[23 (x + 2) ]  
The frequency limitation given by x 60 is due to the  
low-pass filters which would attenuate higher frequency  
sine waves.  
6.3  
Frequency registers  
The two frequency registers HGF and LGF define two  
frequencies. From these, the digital sine synthesizers  
together with the Digital-to-Analog Converters (DACs)  
construct two sine waves. Their amplitudes are precisely  
scaled according to the bandgap voltage reference. This  
ensures tone output levels independent of supply voltage  
and temperature.  
1997 Apr 16  
9
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
6.4  
DTMF frequencies  
6.5  
Modem frequencies  
Assuming an oscillator frequency fxtal = 3.58 MHz, the  
DTMF standard frequencies can be implemented as  
shown in Table 6.  
Again assuming an oscillator frequency fxtal = 3.58 MHz,  
the standard modem frequencies can be implemented as  
in Table 8. It is suggested to define the frequency by the  
HGF register while the LGF register contains 00H,  
disabling Low Group Frequency generation.  
The relationships between telephone keyboard symbols,  
DTMF frequency pairs and the frequency register contents  
are given in Table 7.  
Table 8 Standard modem frequencies and their  
implementation  
Table 6 DTMF standard frequencies and their  
implementation; value = LGF, HGF contents  
HGF  
VALUE  
(HEX)  
FREQUENCY (Hz)  
MODEM GENERATED  
DEVIATION  
(%) (Hz)  
FREQUENCY (Hz)  
DEVIATION  
VALUE  
(HEX)  
STANDARD GENERATED  
(%)  
(Hz)  
9D  
82  
8F  
79  
80  
45  
76  
48  
5C  
52  
4B  
44  
980(1)  
1180(1)  
1070(2)  
1270(2)  
1200(3)  
2200(3)  
1300(4)  
2100(4)  
1650(1)  
1850(1)  
2025(2)  
2225(2)  
978.82  
1179.03  
1073.33  
1265.30  
1197.17  
2192.01  
1296.94  
2103.14  
1655.66  
1852.77  
2021.20  
2223.32  
0.12 1.18  
0.08 0.97  
DD  
C8  
B5  
A3  
7F  
72  
697  
770  
697.90  
770.46  
0.13  
0.06  
0.90  
0.46  
0.31  
3.33  
852  
850.45  
0.18 1.55  
0.24 2.23  
0.21 2.55  
0.37 4.70  
0.24 2.83  
0.36 7.99  
0.24 3.06  
941  
943.23  
1209  
1336  
1477  
1633  
1206.45  
1341.66  
1482.21  
1638.24  
0.42  
0.35  
0.32  
5.66  
5.21  
5.24  
67  
0.15  
0.34  
0.15  
3.14  
5.66  
2.77  
5D  
Table 7 Dialling symbols, corresponding DTMF  
frequency pairs and frequency register contents  
0.19 3.80  
0.08 1.68  
TELEPHONE DTMF FREQ.  
KEYBOARD  
SYMBOLS  
LGF  
VALUE  
(HEX)  
HGF  
VALUE  
(HEX)  
Notes  
PAIRS  
(Hz)  
1. Standard is V.21.  
2. Standard is Bell 103.  
3. Standard is Bell 202.  
4. Standard is V.23.  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
(941, 1336)  
(697, 1209)  
(697, 1336)  
(697, 1477)  
(770, 1209)  
(770, 1336)  
(770, 1477)  
(852, 1209)  
(852, 1336)  
(852, 1477)  
(697, 1633)  
(770, 1633)  
(852, 1633)  
(941, 1633)  
(941, 1209)  
(941, 1477)  
A3  
DD  
DD  
DD  
C8  
C8  
C8  
B5  
B5  
B5  
DD  
C8  
B5  
A3  
A3  
A3  
72  
7F  
72  
67  
7F  
72  
67  
7F  
72  
67  
5D  
5D  
5D  
5D  
7F  
67  
#
1997 Apr 16  
10  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
6.6  
Musical scale frequencies  
7
EEPROM AND TIMER 2 ORGANIZATION  
Finally, two octaves of musical scale in steps of semitones  
can be realized, again assuming an oscillator frequency  
The PCD3755A, PCD3755E and PCD3755F have  
128 bytes of Electrically Erasable Programmable  
f
xtal = 3.58 MHz (Table 9). It is suggested to define the  
Read-Only Memory (EEPROM). Such non-volatile storage  
provides data retention without the need for battery  
backup. In telecom applications, the EEPROM is used for  
storing redial numbers and for short dialling of frequently  
used numbers. More generally, EEPROM may be used for  
customizing microcontrollers, such as to include a PIN  
code or a country code, to define trimming parameters, to  
select application features from the range stored in ROM.  
frequency by the HGF register while the LGF contains  
00H, disabling Low Group Frequency generation.  
Table 9 Musical scale frequencies and their  
implementation  
HGF  
VALUE  
(HEX)  
FREQUENCY (Hz)  
STANDARD(1)  
NOTE  
GENERATED  
The most significant difference between a RAM and an  
EEPROM is that a bit in EEPROM, once written to a  
logic 1, cannot be cleared by a subsequent write  
operation. Successive write accesses actually perform a  
logical OR with the previously stored information.  
Therefore, to clear a bit, the whole byte must be erased  
and re-written with the particular bit cleared. Thus, an  
erase-and-write operation is the EEPROM equivalent of a  
RAM write operation.  
D#5  
E5  
F8  
EA  
DD  
D0  
C5  
B9  
AF  
A5  
9C  
93  
8A  
82  
7B  
74  
6D  
67  
61  
5C  
56  
51  
4D  
48  
44  
40  
3D  
622.3  
659.3  
622.5  
659.5  
F5  
698.5  
697.9  
F#5  
G5  
740.0  
741.1  
784.0  
782.1  
G#5  
A5  
830.6  
832.3  
880.0  
879.3  
Whereas read access times to an EEPROM are  
comparable to RAM access times, write and erase  
accesses are much slower at 5 ms each. To make these  
operations more efficient, several provisions are available  
in the PCD3755A, PCD3755E and PCD3755F.  
A#5  
B5  
923.3  
931.9  
987.8  
985.0  
C6  
1046.5  
1108.7  
1174.7  
1244.5  
1318.5  
1396.9  
1480.0  
1568.0  
1661.2  
1760.0  
1864.7  
1975.5  
2093.0  
2217.5  
2349.3  
2489.0  
1044.5  
1111.7  
1179.0  
1245.1  
1318.9  
1402.1  
1482.2  
1572.0  
1655.7  
1768.5  
1875.1  
1970.0  
2103.3  
2223.3  
2358.1  
2470.4  
C#6  
D6  
First, the EEPROM array is structured into 32 four-byte  
pages (see Fig.5) permitting access to 4 bytes in parallel  
(write page, erase/write page and erase page). It is also  
possible to erase and write individual bytes. Finally, the  
EEPROM address register provides auto-incrementing,  
allowing very efficient read and write accesses to  
sequential bytes.  
D#6  
E6  
F6  
F#6  
G6  
To simplify the erase and write timing, the derivative 8-bit  
down-counter (Timer 2) with reload register is provided.  
In addition to EEPROM timing, Timer 2 can be used for  
general real-time tasks, such as for measuring signal  
duration and for defining pulse widths.  
G#6  
A6  
A#6  
B6  
C7  
C#7  
D7  
D#7  
Note  
1. Standard scale based on A4 @ 440 Hz.  
1997 Apr 16  
11  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
5
8
EEPROM ADDRESS REGISTER  
2
2 : 4 DECODER  
5 : 32 DECODER  
EEPROM LATCH 0  
EEPROM LATCH 1  
EEPROM LATCH 2  
EEPROM LATCH 3  
F0  
F1  
F2  
F3  
8
128-byte EEPROM ARRAY  
(32 4-byte PAGES)  
8
8
8
8
8
EEPROM TEST REGISTER  
EEPROM CONTROL REGISTER  
T2F set on  
underflow  
TIMER 2 RELOAD REGISTER  
8
TIMER 2 REGISTER (T2)  
8
MGB824  
1
f
xtal  
480  
INTERNAL  
BUS  
Fig.5 Block diagram of the EEPROM and Timer 2.  
1997 Apr 16  
12  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
7.1  
EEPROM registers  
7.1.1  
EEPROM CONTROL REGISTER (EPCR)  
The behaviour of the EEPROM and Timer 2 section is defined by the EEPROM Control Register.  
Table 10 EEPROM Control Register (address 04H, access type R/W)  
7
6
5
4
3
2
1
0
STT2  
ET2I  
T2F  
EWP  
MC3  
MC2  
MC1  
0
Table 11 Description of EPCR bits  
BIT  
MNEMONIC  
DESCRIPTION  
7
STT2  
Start T2. If STT2 = 0, then Timer 2 is stopped; T2 value held. If STT2 = 1, then T2  
decrements from reload value.  
6
ET2I  
Enable T2 interrupt. If ET2I = 0, then T2F event cannot request interrupt. If ET2I = 1,  
then T2F event can request interrupt.  
5
4
T2F  
Timer 2 flag. Set when T2 underflows (or by program); reset by program.  
EWP  
Erase or write in progress (EWP). Set by program (EWP starts EEPROM erase and/or  
write and Timer 2). Reset at the end of EEPROM erase and/or write.  
3
2
1
0
MC3  
MC2  
MC1  
Mode control 3 to 1. These three bits in conjunction with bit EWP select the mode as  
shown in Table 12.  
This bit is set to a logic 0.  
Table 12 Mode selection; X = don’t care  
EWP  
MC3  
MC2  
MC1  
DESCRIPTION  
0
0
1
1
1
X
X
X
0
0
0
1
1
0
1
1
0
1
1
0
1
0
0
1
0
0
X
0
1
1
1
0
read byte  
increment mode  
write page  
erase/write page  
erase page  
not allowed  
1997 Apr 16  
13  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
7.1.2  
EEPROM ADDRESS REGISTER (ADDR)  
The EEPROM Address Register determines the EEPROM location to which an EEPROM access is directed.  
As a whole, ADDR auto-increments after read and write cycles to EEPROM, but remains fixed after erase cycles. This  
behaviour generates the correct ADDR contents for sequential read accesses and for sequential write or erase/write  
accesses with intermediate page setup. Overflow of the 8-bit counter wraps around to zero.  
Table 13 EEPROM Address Register (address 01H, access type R/W)  
7
6
5
4
3
2
1
0
0
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
Table 14 Description of ADDR bits  
BIT  
MNEMONIC  
DESCRIPTION  
7
This bit is set to a logic 0.  
6 to 2  
1 to 0  
AD6 to AD2 AD2 to AD6 select one of 32 pages.  
AD1 to AD0 AD1 and AD0 are irrelevant during erase and write cycles. For read accesses, AD0 and  
AD1 indicate the byte location within an EEPROM page. During page setup, finally, AD0  
and AD1 select EEPROM Latch 0 to 3 whereas AD2 to AD6 are irrelevant. If increment  
mode (Table 12) is active during page setup, the subcounter consisting of AD0 and AD1  
increments after every write to an EEPROM latch, thus enhancing access to sequential  
EEPROM latches. Incrementing stops when EEPROM Latch 3 is reached, i.e. when  
AD0 and AD1 are both a logic 1.  
7.1.3  
EEPROM DATA REGISTER (DATR)  
Table 15 EEPROM Data Register (address 03H; access type R/W)  
7
6
5
4
3
2
1
0
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 16 Description of DATR bits  
BIT  
MNEMONIC  
DESCRIPTION  
7 to 0  
D7 to D0  
The EEPROM Data Register (DATR) is only a conceptual entity. A read operation from  
DATR, reads out the EEPROM byte addressed by ADDR. On the other hand, a write  
operation to DATR, loads data into the EEPROM latch (see Fig.5) defined by bits AD0  
and AD1 of ADDR.  
7.1.4  
EEPROM TEST REGISTER (TST)  
The EEPROM Test register is used for testing purposes during device manufacture. It must not be accessed by the  
device user.  
1997 Apr 16  
14  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
page, are irrelevant during write and erase cycles.  
However, write and erase cycles need not affect all bytes  
of the page. The EEPROM flags F0 to F3 (see Fig.5)  
determine which bytes within the EEPROM page are  
affected by the erase and/or write cycles. A byte whose  
corresponding EEPROM flag is zero remains unchanged.  
7.2  
EEPROM latches  
The four EEPROM latches (EEPROM Latch 0 to 3; Fig.5)  
cannot be read by user software. Due to their construction,  
the latches can only be preset, but not cleared. Successive  
write operations through DATR to the EEPROM latches  
actually perform a logical OR with the previously stored  
data in EEPROM. The EEPROM latches are reset at the  
conclusion of any EEPROM cycle.  
With erase page, a byte is erased if its corresponding  
EEPROM flag is set. With write page, data in EEPROM  
Latch 0 to 3 (Fig.5) are ORed to the individual page bytes  
if and only if the corresponding EEPROM flags are set.  
7.3  
EEPROM flags  
In an erase/write cycle, F0 to F3 select which page bytes  
are erased and ORed with the corresponding EEPROM  
latches.  
The four EEPROM flags (F0 to F3; Fig.5) cannot be  
directly accessed by user software. An EEPROM flag is  
set as a side-effect when the corresponding EEPROM  
latch is written through DATR. The EEPROM flags are  
reset at the conclusion of any EEPROM cycle.  
ORing, in this event, means that the EEPROM latches are  
copied to the selected page bytes.  
The described page-wise organization of erase and write  
cycles allows up to four bytes to be individually erased or  
written within 5 ms. This advantage necessitates a  
preparation step, called page setup, before the actual  
erase and/or write cycle can be executed.  
7.4  
EEPROM macros  
The instruction sequence used in an EEPROM access  
should be treated as an indivisible entity. Erroneous  
programs result if ADDR, DATR, RELR or EPCR are  
inadvertently changed during an EEPROM cycle or its  
setup. Special care should be taken if the program may  
asynchronously divert due to an interrupt. Particularly,  
a new access to the EEPROM may only be initiated when  
no write, erase or erase/write cycles are in progress.  
This can be verified by reading bit EWP (register EPCR).  
Page setup controls EEPROM latches and EEPROM  
flags. This will be described in the Sections 7.5.1 to 7.5.5.  
7.5.1  
PAGE SETUP  
Page setup is a preparation step required before write  
page, erase page and erase/write page cycles.  
As previously described, these page operations include  
single-byte write, erase and erase/write as a special event.  
EEPROM flags F0 to F3 determine which page bytes will  
be affected by the mentioned page operations. EEPROM  
Latch 0 to 3 must be preset through DATR to specify the  
write cycle data to EEPROM and to set the EEPROM flags  
as a side-effect. Obviously, the actual preset value of the  
EEPROM latches is irrelevant for erase page. Preset of  
one, two, three or all four EEPROM latches and the  
corresponding EEPROM flags can be performed by  
repeatedly defining ADDR and writing to DATR (see  
Table 17).  
For write, erase and erase/write cycles, it is assumed that  
the Timer 2 Reload Register (RELR) has been loaded with  
the appropriate value for a 5 ms delay, which depends on  
fxtal (see Table 23). The end of a write, erase or erase/write  
cycle will be signalled by a cleared EWP and by a Timer 2  
interrupt provided that ET2I = 1 and that the derivative  
interrupt is enabled.  
7.5  
EEPROM access  
One read, one write, one erase/write and one erase  
access are defined by bits EWP and MC1 to MC3 in the  
EPCR register; see Table 10.  
Read byte retrieves the EEPROM byte addressed by  
ADDR when DATR is read. Read cycles are  
instantaneous.  
If more than one EEPROM latch must be preset, the  
subcounter consisting of AD0 and AD1 can be induced to  
auto-increment after every write to DATR, thus stepping  
through all EEPROM latches. For this purpose, increment  
mode (Table 12) must be selected. Auto-incrementing  
stops at EEPROM Latch 3. It is not mandatory to start at  
EEPROM Latch 0 as in shown in Table 18.  
Write and erase cycles take 5 ms, however. Erase/write is  
a combination of an erase and a subsequent write cycle,  
consequently taking 10 ms.  
As their names imply, write page, erase page and  
erase/write page are applied to a whole EEPROM page.  
Therefore, bits AD0 and AD1 of register ADDR (see  
Table 13), defining the byte location within an EEPROM  
Note that AD2 to AD6 are irrelevant during page setup.  
They will usually specify the intended EEPROM page,  
anticipating the subsequent page cycle.  
1997 Apr 16  
15  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
From now on, it will be assumed that AD2 to AD6 will  
contain the intended EEPROM page address after page  
setup.  
To actually copy the data from the EEPROM latches,  
the corresponding bytes in the page should previously  
have been erased.  
The EEPROM latches are preset as described in  
Section 7.5.1. The actual transfer to the EEPROM is then  
performed as shown in Table 20.  
Table 17 Page setup; preset  
INSTRUCTION  
RESULT  
The last instruction also starts Timer 2. The data in the  
EEPROM latches are ORed with that in the corresponding  
page bytes within 5 ms. A single-byte write is simply a  
special case of ‘write page’.  
MOV A, #addr  
MOV ADDR, A  
MOV A, #data  
MOV DATR, A  
address of EEPROM latch  
send address to ADDR  
load write, erase/write or erase data  
send data to addressed EEPROM  
latch  
ADDR auto-increments after the write cycle. If AD0 and  
AD1 addressed EEPROM Latch 3 prior to the write cycle,  
ADDR will point to the next EEPROM page (by bits AD2  
to AD6) and to EEPROM Latch 0 (by bits AD0 and AD1).  
This allows efficient coding of multi-page write operations.  
Table 18 Page setup; auto-incrementing  
INSTRUCTION  
RESULT  
MOV A, #MC2  
MOV EPCR, A  
increment mode control word  
select increment mode  
Table 20 Write page  
INSTRUCTION  
MOV A, #EWP + MC2 ‘write page’ control word  
MOV EPCR, A start ‘write page’ cycle  
RESULT  
MOV A, #baddr EEPROM Latch 0 address  
(AD0 = AD1 = 0)  
MOV ADDR, A  
send EEPROM Latch 0 address to  
ADDR  
MOV A, R0  
load 1st byte from Register 0  
7.5.4  
ERASE/WRITE PAGE  
MOV DATR, A  
MOV A, R1  
send 1st byte to EEPROM Latch 0  
load 2nd byte from Register 1  
send 2nd byte to EEPROM Latch 1  
load 3rd byte from Register 2  
send 3rd byte to EEPROM Latch 2  
load 4th byte from Register 3  
The EEPROM latches are preset as described in  
Section 7.5.1. The page byte corresponding to the  
asserted flags (among F0 to F3) are erased and re-written  
with the contents of the respective EEPROM latches.  
MOV DATR, A  
MOV A, R2  
The last instruction also starts Timer 2. Erasure takes  
5 ms upon which Timer Register T2 reloads for another  
5 ms cycle for writing. The top cycles together take 10 ms.  
A single-byte erase/write is simply a special event of  
‘erase/write page’.  
MOV DATR, A  
MOV A, R3  
MOV DATR, A  
send 4th byte to EEPROM Latch 3  
7.5.2  
READ BYTE  
ADDR auto-increments after the write cycle. If AD0 and  
AD1 addressed EEPROM Latch 3 prior to the write cycle,  
ADDR will point to the next EEPROM page (by AD2 to  
AD6) and to EEPROM Latch 0 (by AD0 and AD1).  
This allows efficient coding of multi-page erase/write  
operations.  
Since ADDR auto-increments after a read cycle regardless  
of the page boundary, successive bytes can efficiently be  
read by repeating the last instruction.  
Table 19 Read byte  
INSTRUCTION  
RESULT  
Table 21 Erase/write page  
MOV A, #RDADDR load read address  
INSTRUCTION  
MOV A, #EWP + MC3 ‘erase/write page’ control word  
MOV EPCR, A start ‘erase/write page’ cycle  
RESULT  
MOV ADDR, A  
MOV A, DATR  
send address to ADDR  
read EEPROM data  
7.5.3  
WRITE PAGE  
The write cycle performs a logical OR between the data in  
the EEPROM latches and that in the addressed EEPROM  
page.  
1997 Apr 16  
16  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
The second underflow of an erase/write cycle and the first  
underflow of write page and erase page conclude the  
corresponding EEPROM cycle. Timer 2 is stopped, T2F is  
set whereas EWP and MC1 to MC3 are cleared.  
7.5.5  
ERASE PAGE  
The EEPROM flags are set as described in Section 7.5.1.  
The corresponding page bytes are erased.  
The last instruction also starts Timer 2. Erasure takes  
5 ms. A single-byte erase is simply a special case of ‘erase  
page’.  
Table 23 Reload values as a function of fxtal  
fxtal  
(MHz)  
RELOAD VALUE(1)  
(HEX)  
Note that ADDR does not auto-increment after an erase  
cycle.  
1
2
0A  
14  
25  
3E  
68  
A6  
Table 22 Erase page  
3.58  
6
INSTRUCTION  
RESULT  
MOV A, #EWP + MC3 + MC2 + MC1 ‘erase page’  
control word  
10  
16  
MOV EPCR, A  
start ‘erase  
page’ cycle  
Note  
1. The reload value is (5 × 103 × 1480 × fxtal) 1;  
7.6  
Timer 2  
fxtal in MHz.  
Timer 2 is a 8-bit down-counter decremented at a rate of  
7.6.2  
TIMER 2 AS A GENERAL PURPOSE TIMER  
1
480 × fxtal. It may be used either for EEPROM timing or as  
a general purpose timer. Conflicts between the two  
applications should be carefully avoided.  
When used for purposes other than EEPROM timing,  
Timer 2 is started by setting STT2. The Timer Register T2  
(see Table 26) is loaded with the reload value from RELR.  
T2 decrements to zero. On underflow, T2 is reloaded from  
RELR, T2F is set and T2 continues to decrement.  
7.6.1  
TIMER 2 FOR EEPROM TIMING  
When used for EEPROM timing, Timer 2 serves to  
generate the 5 ms intervals needed for erasing or writing  
the EEPROM. At the decrement rate of 1480 × fxtal, the  
Timer 2 can be stopped at any time by clearing STT2.  
The value of T2 is then held and can be read out. After  
setting STT2 again, Timer 2 decrements from the reload  
value. Alternatively, it is possible to read T2 ‘on the fly’ i.e.  
while Timer 2 is operating.  
reload value for a 5 ms interval is a function of fxtal  
.
Table 23 summarizes the required reload values for a  
number of oscillator frequencies.  
Timer 2 is started by setting bit EWP in the EPCR.  
The Timer Register T2 is loaded with the reload value from  
RELR. T2 decrements to zero.  
For an erase/write cycle, underflow of T2 indicates the end  
of the erase operation. Therefore, Timer Register T2 is  
reloaded from RELR for another 5 ms interval during  
which the flagged EEPROM latches are copied to the  
corresponding bytes in the page addressed by ADDR.  
1997 Apr 16  
17  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
8
DERIVATIVE INTERRUPTS  
11 IDLE MODE  
One derivative interrupt event is defined. It is controlled by  
bits T2F and ET2I in the EPCR (see Tables 10 and 11).  
In Idle mode, the frequency generator, the EEPROM and  
the Timer 2 sections remain operative. Therefore, the  
IDLE instruction may be executed while an erase and/or  
write access to EEPROM is in progress.  
The derivative interrupt event occurs when T2F is set. This  
request is honoured under the following circumstances:  
No interrupt routine proceeds  
No external interrupt request is pending  
The derivative interrupt is enabled  
ET2I is set.  
12 STOP MODE  
Since the oscillator is switched off, the frequency  
generator, the EEPROM and the Timer 2 sections receive  
no clock. It is suggested to clear both the HGF and the  
LGF registers before entering Stop mode. This will cut off  
the biasing of the internal amplifiers, considerably  
reducing current requirements.  
The derivative interrupt routine must include instructions  
that will remove the cause of the derivative interrupt by  
explicitly clearing T2F. If the derivative interrupt is not  
used, T2F may directly be tested by the program.  
Obviously, T2F can also be asserted under program  
control, e.g. to generate a software interrupt.  
The Stop mode must not be entered while an erase  
and/or write access to EEPROM is in progress. The STOP  
instruction may only be executed when EWP in EPCR is  
zero. The Timer 2 section is frozen during Stop mode.  
After exit from Stop mode by a HIGH level on CE/T0,  
Timer 2 proceeds from the held state.  
9
TIMING  
Although thePCD3755A, PCD3755E and PCD3755F  
operate over a clock frequency range from 1 to 16 MHz,  
fxtal = 3.58 MHz will usually be chosen to take full  
advantage of the frequency generator section.  
13 INSTRUCTION SET RESTRICTIONS  
As RAM space is restricted to 128 bytes, care should be  
taken to avoid accesses to non-existing RAM locations.  
10 RESET  
In addition to the conditions given in the “PCD33xxA  
Family” data sheet, all derivative registers are cleared in  
the reset state.  
14 OVERVIEW OF PORT AND POWER-ON-RESET CONFIGURATION  
Table 24 Port and Power-on-reset configuration  
See note 1 and 2.  
PORT 0  
PORT 1  
PORT 2  
TYPE  
VPOR  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
PCD3755A 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1R 1R(3) 2S 2S 2S 2S 1.3 V  
PCD3755E 1S 1S 1S 1S 1S 1S 1S 1S 2S 2S 2S 2S 2S 2S 1S 1S(3) 2S 1R 1R 1R 2.0 V  
PCD3755F 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1S 1R 1R(3) 2S 2S 2S 2S 2.0 V  
Notes  
1. Port output drive: 1 = standard I/O; 2 = open-drain I/O, see “PCD33xxA Family” data sheet.  
2. Port state after reset: S = Set (HIGH) and R = Reset (LOW).  
3. The Melody Output drive type is push-pull.  
1997 Apr 16  
18  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
Thus, the complete OTP memory cannot be tested by the  
factory, but only partially via a special test array.  
The average expected yield is 97%.  
15 OTP PROGRAMMING  
The programming of the PCD3755x and PCD3756x OTPs  
is based on the OM4260 programmer (Ceibo MP-51),  
available from Philips. The OM4260 works in conjunction  
with various adapters supporting the different package  
types available as listed in Table 25.  
Detailed information on the OTP programming is available  
in the “PCD3755x Application Note”, which is available via  
your Philips Sales office.  
The low-voltage OTP program memory used is of  
Anti-Fuse-PROM type and can not be erased after  
programming.  
Table 25 OTP programming overview  
DEVICE  
PHILIPS TYPE NUMBER  
OM4260  
CEIBO TYPE NUMBER  
MP-51 programmer base  
SUPPORTED PACKAGE  
Ceibo MP-51  
PCD3755x/56x  
PCD3755x/56x  
PCD3755x/56x  
OM5007  
PCD3755A / 56A adapter DIP  
PCD3755A / 56A adapter SO  
DIP28  
SO28  
OM5030  
OM5037(1)  
PCD3755A / 56A adapter QFP32 LQFP32  
Note  
1. As the OM5037 is only a socket converter, the OM5007 is also needed to program the PCD3755x/56x in the LQFP32  
package.  
1997 Apr 16  
19  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
16 SUMMARY OF DERIVATIVE REGISTERS  
Table 26 Register map  
ADDR.  
(HEX)  
REGISTER  
7
6
5
4
3
2
1
0
R/W  
00  
01  
not used  
EEPROM Address Register  
(ADDR)  
0
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
R/W  
02  
03  
not used  
EEPROM Data Register  
(DATR)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
R/W  
R/W  
R/W  
R
04  
05  
06  
07  
EEPROM Control Register  
(EPCR)  
STT2 ET21 TF2  
R7 R6 R5  
T2.7 T2.6 T2.5  
EWP MC3 MC2 MC1  
Timer 2 Reload Register  
(RELR)  
R4  
R3  
R2  
R1  
R0  
Timer 2 Register  
(T2)  
T2.4  
T2.3 T2.2 T2.1 T2.0  
Test Register  
(TST)  
only for test purposes; not to be accessed by the device user  
08 to 10 not used  
11  
12  
13  
High Group Frequency Register  
(HGF)  
H7  
L7  
0
H6  
L6  
0
H5  
L5  
0
H4  
L4  
0
H3  
L3  
0
H2  
L2  
0
H1  
L1  
0
H0  
L0  
W
W
Low Group Frequency Register  
(LGF)  
Melody Control Register  
(MDYCON)  
EMO R/W  
14 to FF not used  
17 HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, it is good practice to take  
normal precautions appropriate to handling MOS devices (see “Data Handbook IC14, Section: Handling MOS devices”).  
18 LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
MIN.  
MAX.  
+7.0  
UNIT  
VDD  
VI  
supply voltage  
0.8  
0.5  
10  
10  
V
all input voltages  
DC input current  
DC output current  
VDD + 0.5  
+10  
V
II  
mA  
mA  
mW  
mW  
mA  
°C  
IO  
+10  
Ptot  
PO  
ISS  
Tstg  
Tj  
total power dissipation  
125  
power dissipation per output  
ground supply current  
30  
50  
65  
+50  
storage temperature  
+150  
90  
operating junction temperature  
°C  
1997 Apr 16  
20  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
19 DC CHARACTERISTICS  
VDD = 1.8 to 6 V; VSS = 0 V; Tamb = 25 to +70 °C; all voltages with respect to VSS; fxtal = 3.58 MHz; unless otherwise  
specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supply  
VDD  
supply voltage  
see Fig.6  
note 1  
operating  
1.8  
6
V
RAM data retention in Stop  
mode  
1.0  
6
V
IDD  
operating supply current  
supply current (Idle mode)  
supply current (Stop mode)  
see Figs 7 and 8; note 2  
VDD = 3 V; value HGF or LGF 0  
0.8  
0.35  
1.5  
2.4  
1.6  
0.7  
4.0  
6.0  
mA  
mA  
mA  
mA  
VDD = 3 V  
VDD = 5 V; fxtal = 10 MHz  
VDD = 5 V; fxtal = 16 MHz  
see Figs 9 and 10; note 2  
IDD(idle)  
VDD = 3 V; value HGF or LGF 0 −  
0.7  
0.25  
1.1  
1.4  
0.5  
3.4  
5.0  
mA  
mA  
mA  
mA  
VDD = 3 V  
V
DD = 5 V; fxtal = 10 MHz  
DD = 5 V; fxtal = 16 MHz  
V
1.7  
IDD(stp)  
see Fig.11; note 3  
V
DD = 1.8 V; Tamb = 25 °C  
DD = 1.8 V; Tamb = 70 °C  
1.0  
5.5  
10  
µA  
µA  
V
Inputs  
VIL  
VIH  
ILI  
LOW level input voltage  
HIGH level input voltage  
input leakage current  
0
0.3VDD  
VDD  
V
0.7VDD  
V
VSS VI VDD  
1  
+1  
µA  
Port outputs  
IOL LOW level port sink current  
IOH  
VDD = 3 V; VO = 0.4 V; see Fig.12  
0.7  
10  
3.5  
mA  
µA  
HIGH level pull-up output source VDD = 3 V; VO = 2.7 V; see Fig.13  
current  
30  
140  
3.5  
VDD = 3 V; VO = 0 V; see Fig.13  
300  
µA  
IOH1  
HIGH level push-pull output  
source current  
VDD = 3 V; VO = 2.6 V; see Fig.14  
0.7  
mA  
Tone output (see Fig.15; note 4)  
VHG(RMS) HGF voltage (RMS)  
VLG(RMS) LGF voltage (RMS)  
158  
125  
0.6  
181  
142  
205  
160  
+0.6  
mV  
mV  
%
f f  
VDC  
Zo  
frequency deviation  
DC voltage level  
0.5VDD  
100  
2.0  
V
output impedance  
500  
2.5  
Gv  
pre-emphasis of group  
total harmonic distortion  
1.5  
dB  
dB  
THD  
Tamb = 25 °C; note 5  
25  
1997 Apr 16  
21  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
EEPROM (notes 1 and 6)  
CYt/w  
tret  
endurance (erase/write cycles)  
data retention time  
note 7  
105  
10  
years  
Power-on-reset (see Fig.16)  
VPOR  
Power-on-reset level  
PCD3755A  
0.8  
1.5  
1.5  
1.3  
2.0  
2.0  
1.8  
2.5  
2.5  
V
V
V
PCD3755E  
PCD3755F  
Oscillator (see Fig.17)  
gm  
RF  
transconductance  
feedback resistor  
VDD = 5 V  
0.2  
0.3  
0.4  
1.0  
1.0  
3.0  
mS  
MΩ  
Notes  
1. TONE output, EEPROM erase and write require VDD 2.5 V.  
2. VIL = VSS; VIH = VDD; open-drain outputs connected to VSS; all other outputs open; value HGF = LGF = 0, unless  
otherwise specified.  
a) Maximum values: external clock at XTAL1 and XTAL2 open-circuit.  
b) Typical values: Tamb = 25 °C; crystal connected between XTAL1 and XTAL2.  
3. VIL = VSS; VIH = VDD; RESET, T1 and CE/T0 at VSS; crystal connected between XTAL1 and XTAL2; pins T1 and  
CE/T0 at VSS  
.
4. Values are specified for DTMF frequencies only (CEPT).  
5. Related to the Low Group Frequency (LGF) component (CEPT).  
6. After final testing the value of each EEPROM bit is a logic 1, but this cannot be guaranteed after board assembly.  
7. Verified on sampling basis.  
1997 Apr 16  
22  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
MGB827  
MLA493  
18  
6
handbook, halfpage  
handbook, halfpage  
f
xtal  
(MHz)  
I
DD  
15  
(mA)  
16 MHz  
4
12  
9
3.58 MHz  
HGF or LGF 0  
guaranteed  
operating range  
10 MHz  
2
6
3.58 MHz  
3
0
1
3
5
7
0
1
V
(V)  
DD  
3
5
7
V
(V)  
DD  
Measured with crystal between XTAL1 and XTAL2.  
Fig.6 Maximum clock frequency (fxtal) as a  
function of supply voltage (VDD).  
Fig.7 Typical operating supply current (IDD) as a  
function of supply voltage (VDD).  
MGB828  
MGB829  
6
6
handbook, halfpage  
handbook, halfpage  
I
I
DD(idle)  
(mA)  
DD  
(mA)  
4
4
16 MHz  
5 V  
3.58 MHz  
HGF or LGF 0  
2
2
10 MHz  
3 V  
3.58 MHz  
0
0
2
1
3
5
7
1
10  
10  
V
(V)  
f
(MHz)  
DD  
xtal  
Measured with function generator on XTAL1.  
Measured with crystal between XTAL1 and XTAL2.  
Fig.8 Typical operating supply current (IDD) as a  
function of clock frequency (fxtal).  
Fig.9 Typical supply current in Idle mode (IDD(idle)  
)
as a function of supply voltage (VDD).  
1997 Apr 16  
23  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
MGB830  
MGB826  
6
6
handbook, halfpage  
handbook, halfpage  
I
DD(stp)  
(µA)  
I
DD(idle)  
(mA)  
5
4
4
3
2
2
1
5 V  
3 V  
0
1
0
1
2
3
5
7
10  
10  
f
(MHz)  
V
(V)  
DD  
xtal  
Measured with function generator on XTAL1.  
Fig.11 Typical supply current in Stop mode  
Fig.10 Typical supply current in Idle mode (IDD(idle)  
)
(IDD(stp)) as a function of supply voltage  
(VDD).  
as a function of clock frequency (fxtal).  
MGB831  
MGB832  
12  
300  
handbook, halfpage  
handbook, halfpage  
I
I
OL  
OH  
(mA)  
(µA)  
V
= 0 V  
O
8
200  
4
0
100  
V
= 0.9V  
DD  
O
0
1
1
3
5
7
3
5
7
V
(V)  
V
(V)  
DD  
DD  
VO = 0.4 V.  
Fig.13 Typical HIGH level pull-up output source  
current (IOH) as a function of supply voltage  
(VDD).  
Fig.12 Typical LOW level output sink current (IOL  
)
as a function of supply voltage (VDD).  
1997 Apr 16  
24  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
MGB833  
12  
handbook, halfpage  
I
OH1  
V
handbook, halfpage  
DD  
(mA)  
8  
1 µF  
TONE  
DEVICE TYPE NUMBER  
(1)  
10 kΩ  
50 pF  
4  
V
MGB835  
SS  
0
1
3
5
7
V
(V)  
DD  
VO = VDD 0.4 V.  
(1) Device type number: PCD3755A, PCD3755E or PCD3755F.  
Fig.14 Typical HIGH level push-pull output source  
current (IOH1) as a function of supply voltage  
(VDD).  
Fig.15 TONE output test circuit.  
MGD495  
MGB834  
6
10  
handbook, halfpage  
handbook, halfpage  
V
DD  
(V)  
g
m
(mS)  
4
1
V
V
= 2.0 V  
= 1.3 V  
POR  
POR  
2
0
1
10  
1
3
5
7
V
(V)  
DD  
25  
25  
75  
125  
T
(°C)  
amb  
70  
Fig.16 Typical Power-on-reset level (VPOR) as  
function of ambient temperature (Tamb).  
Fig.17 Typical transconductance (gm) as a function  
of supply voltage (VDD).  
1997 Apr 16  
25  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
20 AC CHARACTERISTICS  
VDD = 1.8 to 6 V; VSS = 0 V; Tamb = 25 to +70 °C; all voltages with respect to VSS; unless otherwise specified.  
SYMBOL  
PARAMETER  
rise time all outputs  
fall time all outputs  
clock frequency  
CONDITIONS  
MIN.  
TYP.  
30  
MAX. UNIT  
tr  
tf  
VDD = 5 V; Tamb = 25 °C; CL = 50 pF  
ns  
30  
ns  
fxtal  
see Fig.6  
1
16  
MHz  
1997 Apr 16  
26  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
21 PACKAGE OUTLINES  
handbook, full pagewidth  
DIP28: plastic dual in-line package; 28 leads (600 mil)  
SOT117-1  
D
M
E
A
2
A
L
A
1
c
e
w M  
Z
b
1
(e )  
1
b
M
H
28  
15  
pin 1 index  
E
1
14  
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
max.  
A
A
Z
(1)  
(1)  
1
2
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
w
1
1
E
H
min.  
max.  
max.  
1.7  
1.3  
0.53  
0.38  
0.32  
0.23  
36.0  
35.0  
14.1  
13.7  
3.9  
3.4  
15.80  
15.24  
17.15  
15.90  
5.1  
0.51  
4.0  
2.54  
0.10  
15.24  
0.60  
0.25  
0.01  
1.7  
0.013  
0.009  
0.066  
0.051  
0.020  
0.014  
1.41  
1.34  
0.56  
0.54  
0.15  
0.13  
0.62  
0.60  
0.68  
0.63  
inches  
0.20  
0.020  
0.16  
0.067  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-14  
SOT117-1  
051G05  
MO-015AH  
1997 Apr 16  
27  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
SO28: plastic small outline package; 28 leads; body width 7.5 mm  
SOT136-1  
D
E
A
X
c
y
H
v
M
A
E
Z
28  
15  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
14  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
18.1  
17.7  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
1.27  
0.050  
1.4  
0.25  
0.01  
0.25  
0.1  
0.25  
0.01  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.71  
0.014 0.009 0.69  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT136-1  
075E06  
MS-013AE  
1997 Apr 16  
28  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
LQFP32: plastic low profile quad flat package; 32 leads; body 7 x 7 x 1.4 mm  
SOT358-1  
c
y
X
A
24  
17  
25  
16  
Z
E
e
H
E
A
E
(A )  
3
2
A
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
32  
9
detail X  
1
8
e
Z
D
v M  
A
w M  
b
p
D
B
H
v M  
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.4 0.18 7.1  
0.3 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.9  
0.5  
0.9  
0.5  
mm  
1.60  
0.25  
0.8  
1.0  
0.2 0.25 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-12-19  
97-08-04  
SOT358 -1  
1997 Apr 16  
29  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF generator,  
8 kbytes OTP and 128 bytes EEPROM  
PCD3755A; PCD3755E;  
PCD3755F  
The longitudinal axis of the package footprint must be  
22 SOLDERING  
parallel to the solder flow.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
The package footprint must incorporate solder thieves at  
the downstream end.  
22.2.3 METHOD (LQFP AND SO)  
22.1 Reflow soldering  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering techniques are suitable for all LQFP and  
SO packages. Reflow soldering requires solder paste (a  
suspension of fine solder particles, flux and binding agent)  
to be applied to the printed-circuit board by screen printing,  
stencilling or pressure-syringe dispensing before package  
placement.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
22.3 DIP  
22.3.1 SOLDERING BY DIPPING OR BY WAVE  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
22.2 Wave soldering  
22.2.1 LQFP  
Wave soldering is not recommended for LQFP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
The device may be mounted up to the seating plane but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
If wave soldering cannot be avoided, the following  
conditions must be observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
22.4 Repairing soldered joints  
The footprint must be at an angle of 45° to the board  
direction and must incorporate solder thieves  
downstream and at the side corners.  
Fix LQFP and SO by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Even with these conditions, do not consider wave  
soldering LQFP packages LQFP32 (SOT401-1),  
LQFP48 (SOT313-2), LQFP64 (SOT314-2 and  
SOT414-1), LQFP80 (SOT315-1) or  
LQFP100 (SOT407-1).  
For DIP, apply a low voltage soldering iron (less than 24 V)  
to the lead(s) of the package, below the seating plane or  
not more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
22.2.2 SO  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
1997 Apr 16  
30  
Philips Semiconductors  
Product specification  
8-bit microcontrollers with DTMF  
generator, 8 kbytes OTP and 128 bytes  
PCD3755A; PCD3755E;  
PCD3755F  
23 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
24 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1997 Apr 16  
31  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.  
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Indonesia: see Singapore  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1997  
SCA54  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
417027/1200/04/pp32  
Date of release: 1997 Apr 16  
Document order number: 9397 750 02065  

相关型号:

PCD3755EH-T

IC 8-BIT, OTPROM, 16 MHz, MICROCONTROLLER, PQFP32, Microcontroller
NXP

PCD3755EHB-S

8-Bit Microcontroller
ETC

PCD3755EP

8-bit microcontrollers with DTMF generator, 8 kbytes OTP and 128 bytes EEPROM
NXP

PCD3755ET

8-bit microcontrollers with DTMF generator, 8 kbytes OTP and 128 bytes EEPROM
NXP

PCD3755ET-T

IC 8-BIT, OTPROM, 16 MHz, MICROCONTROLLER, PDSO28, Microcontroller
NXP

PCD3755F

8-bit microcontrollers with DTMF generator, 8 kbytes OTP and 128 bytes EEPROM
NXP

PCD3755FH

8-bit microcontrollers with DTMF generator, 8 kbytes OTP and 128 bytes EEPROM
NXP

PCD3755FH-T

IC 8-BIT, OTPROM, 16 MHz, MICROCONTROLLER, PQFP32, Microcontroller
NXP

PCD3755FP

8-bit microcontrollers with DTMF generator, 8 kbytes OTP and 128 bytes EEPROM
NXP

PCD3755FP/F2

IC 8-BIT, OTPROM, 16 MHz, MICROCONTROLLER, PDIP28, 0.600 INCH, PLASTIC, DIP-28, Microcontroller
NXP

PCD3755FT

8-bit microcontrollers with DTMF generator, 8 kbytes OTP and 128 bytes EEPROM
NXP

PCD3755FT-T

暂无描述
NXP