PCE84C486PN [NXP]

IC 8-BIT, MROM, 10 MHz, MICROCONTROLLER, PDIP32, Microcontroller;
PCE84C486PN
型号: PCE84C486PN
厂家: NXP    NXP
描述:

IC 8-BIT, MROM, 10 MHz, MICROCONTROLLER, PDIP32, Microcontroller

微控制器和处理器 外围集成电路 电视 光电二极管 时钟
文件: 总36页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCE84C486; PCE84C487  
Microcontrollers for digital  
auto-sync and VST TV controller  
applications  
1996 Feb 21  
Objective specification  
File under Integrated Circuits, IC14  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync  
and VST TV controller applications  
PCE84C486;  
PCE84C487  
CONTENTS  
14  
LIMITING VALUES  
15  
16  
17  
18  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
PACKAGE OUTLINES  
SOLDERING  
1
FEATURES  
1.1  
1.2  
General  
Special  
2
3
4
5
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAMS  
18.1  
18.2  
Introduction  
SDIP  
19  
20  
21  
DEFINITIONS  
PINNING INFORMATION  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
5.1  
5.2  
Pinning  
Pin description  
6
RESET  
6.1  
6.2  
6.3  
6.4  
6.5  
External reset using the RESET pin  
Power-on-reset  
Watchdog Timer reset  
Reset trip level  
Reset status  
7
ANALOG (DC) CONTROL  
7.1  
7.2  
7.3  
7.4  
6 and 7-bit PWM outputs  
8-bit PWM outputs  
14-bit PWM output (PWM8)  
A typical PWM output application  
8
ANALOG-TO-DIGITAL CONVERTER (ADC)  
8.1  
8.2  
Conversion algorithm  
A typical application for keypad detection  
9
I2C-BUS INTERFACE  
8-BIT COUNTER (T3)  
WATCHDOG TIMER (WDT)  
OUTPUT PORTS  
10  
11  
12  
12.1  
13  
Mask options  
DERIVATIVE REGISTERS  
1996 Feb 21  
2
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
1
FEATURES  
General  
2
GENERAL DESCRIPTION  
The PCE84C486 and PCE84C487 are low-cost  
microcontrollers and have been designed for use with  
auto-sync monitors, handling mode detection, digital  
control and Voltage Synthesized Tuning (VST). These  
microcontrollers have no on-chip OSD function.  
1.1  
CMOS 8-bit CPU (enhanced 8048 CPU) with 4 kbytes  
system ROM and 128 bytes system RAM  
One 8-bit timer/event counter (T1) and one 8-bit counter  
(T3) triggered by external input  
The term PCE84C48X is used throughout this data sheet  
to refer to both devices. Differences between the  
PCE84C486 and the PCE84C487 are highlighted  
throughout the document.  
Three single level vectored interrupt sources: external  
(INTN), counter/timer and I2C-bus  
2 directly testable inputs T0 and T1  
The PCE84C48X is a member of the 84CXXX CMOS  
microcontroller family. The device uses the PCE84CXX  
processor core and has 4 kbytes of ROM and 128 bytes of  
RAM. I/O requirements are catered for with 11 general  
purpose bidirectional I/O lines (the PCE84C487 has 12)  
plus 12 function combined I/O lines (the PCE84C487 has  
16). Nine PWM analog outputs (the PCE84C487 has 13)  
are available for analog control purposes and also a two  
channel 4-bit ADC. The device has an 8-bit counter (T3),  
for use in pulse counting applications and also an 8-bit  
timer/counter (T1) with programmable clock. A Watchdog  
timer, a master-slave I2C-bus interface and 2 directly  
testable lines are also available on-chip.  
On-chip oscillator clock frequency: 1 to 10 MHz  
On-chip Power-on-reset with low power detector  
The PCE84C486 has eleven quasi-bidirectional I/O  
lines, the PCE84C487 has twelve. The configuration of  
each I/O line individually selected by mask option  
Idle and Stop modes for reduced power consumption  
Operating temperature: 25 to +85 °C  
Operating voltage: 4.5 to 5.5 V  
Packages: SDIP32 for the PCE84C486; SDIP42 for the  
PCE84C487.  
1.2  
Special  
The block diagram of the PCE84C486 is shown in Fig.1;  
the block diagram of the PCE84C487 is shown in Fig.2.  
Master-slave I2C-bus interface  
Four 6-bit Pulse Width Modulated outputs  
Four 7-bit Pulse Width Modulated outputs  
Four 8-bit Pulse Width Modulated outputs (PCE84C487  
only)  
One 14-bit Pulse Width Modulated output  
Two 4-bit Analog-to-Digital Converter (ADC) channels  
14 derivative I/O ports  
Watchdog Timer.  
3
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
SOT232-1  
SOT270-1  
PCE84C486  
PCE84C487  
SDIP32  
SDIP42  
plastic shrink dual in-line package; 32 leads (400 mil)  
plastic shrink dual in-line package; 42 leads (600 mil)  
1996 Feb 21  
3
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
4
BLOCK DIAGRAMS  
GM9C12  
a n d b l p a g e w i d t h  
1996 Feb 21  
4
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
GM9C13  
a n d l l p a g e w i d t h  
1996 Feb 21  
5
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
5
PINNING INFORMATION  
Pinning  
5.1  
handbook, halfpage  
DP20/SDA  
1
2
3
4
5
6
7
8
9
42 DP07/PWM7  
41 DP12/ADC2  
40 INTN/T0  
39 T1  
P10/SCL  
P11  
DP13/PWM8  
P12  
handbook, halfpage  
DP20/SDA  
1
2
3
4
5
6
7
8
9
32 DP07/PWM7  
31 DP12/ADC2  
30 INTN/T0  
29 T1  
P10/SCL  
38 RESET  
P11  
n.c.  
37 n.c.  
DP13/PWM8  
T3  
36 XTAL2(OUT)  
35 XTAL1(IN)  
34 DP27/PWM13  
P12  
T3  
28 RESET  
DP24/PWM10  
P14  
27 XTAL2(OUT)  
26 XTAL1(IN)  
P14  
P00  
P01  
P00 10  
RSTO 11  
P01 12  
33 V  
DD  
25 V  
DD  
PCE84C486  
32 EMU  
PCE84C487  
24 DP00/PWM0  
23 DP01/PWM1  
22 DP02/PWM2  
21 DP03/PWM3  
20 DP04/PWM4  
19 DP05/PWM5  
18 DP06/PWM6  
17 DP11/ADC1  
31 DP00/PWM0  
30 DP01/PWM1  
29 DP26/PWM12  
28 DP02/PWM2  
27 n.c.  
P02 10  
P03 11  
P04 12  
P05 13  
P06 14  
P07 15  
P02 13  
DP25/PWM11 14  
P03 15  
n.c. 16  
P04 17  
26 DP03/PWM3  
25 DP04/PWM4  
24 DP05/PWM5  
23 DP06/PWM6  
22 DP11/ADC1  
P05 18  
V
16  
SS  
P06 19  
MGC904  
P07 20  
V
21  
SS  
MGC905  
Fig.3 Pin configuration - PCE84C486.  
Fig.4 Pin configuration - PCE84C487.  
1996 Feb 21  
6
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
5.2  
Pin description  
Table 1 SDIP32 package  
SYMBOL  
PIN  
DESCRIPTION  
DP20/SDA  
1
Derivative port line 20 or I2C-bus data line.  
P10/SCL  
2
Port line 10 or I2C-bus clock line or emulation input DXWR.  
Port line 11 or emulation input DXRD.  
Derivative I/O port 13 or PWM8 output.  
Port line 12 or emulation input DXALE.  
8-bit counter input (Schmitt trigger).  
Port line 14 or emulation output DXINT.  
General I/O port lines.  
P11  
3
DP13/PWM8  
4
P12  
5
6
T3  
P14  
7
P00 to P07  
8 to 15  
16  
VSS  
Ground pin.  
DP11/ADC1  
17  
Derivative I/O port 11 or ADC Channel 1input.  
DP00/PWM0 to DP07/PWM7  
24 to 18, 32 Derivative I/O ports or 6 and 7-bit PWM outputs.  
VDD  
25  
26  
27  
28  
29  
30  
31  
Power supply.  
XTAL1 (IN)  
XTAL2 (OUT)  
RESET  
Oscillator input pin for system clock.  
Oscillator output pin for system clock.  
Reset input; active LOW input initializes device.  
Direct testable pin or event counter input.  
External interrupt or direct testable pin.  
Derivative I/O port 12 or ADC Channel 2 input.  
T1  
INTN/T0  
DP12/ADC2  
1996 Feb 21  
7
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
Table 2 SDIP42 package  
SYMBOL  
PIN  
DESCRIPTION  
DP20/SDA  
P10/SCL  
P11  
1
2
3
4
5
6
7
Derivative port line 20 or I2C-bus data line.  
Port line 10 or I2C-bus clock line or emulation input DXWR.  
Port line 11 or emulation input DXRD.  
Derivative I/O port 13 or PWM8 output.  
Port line 12 or emulation input DXALE.  
Not connected.  
DP13/PWM8  
P12  
n.c.  
T3  
8-bit counter input (Schmitt trigger).  
DP24/PWM10 to DP27/PWM13  
P14  
8, 14, 29, 34 Derivative I/O ports or 8-bit PWM outputs.  
Port line 14 or emulation output DXINT.  
9
10, 12, 13, 15, General I/O port lines.  
17, 18, 19, 20  
P00 to P07  
RSTO  
11  
Used for emulation purposes only. This active HIGH output is the  
result of the OR operation carried out internally on the RESET  
input and the Watchdog Timer reset line.  
n.c.  
16  
21  
22  
Not connected.  
VSS  
Ground pin.  
DP11/ADC1  
Derivative I/O port 11 or ADC channel 1 input.  
DP04/PWM4 to DP07/PWM7  
25, 24, 23, 42 Derivative I/O ports or 6-bit PWM outputs.  
27 Not connected.  
31, 30, 28, 26 Derivative I/O ports or 7-bit PWM outputs.  
n.c.  
DP00/PWM0 to DP03/PWM3  
EMU  
32  
33  
35  
36  
37  
38  
39  
40  
41  
Emulation mode control input, normally LOW.  
Power supply.  
VDD  
XTAL1 (IN)  
XTAL2 (OUT)  
n.c.  
Oscillator input pin for system clock.  
Oscillator output pin for system clock.  
Not connected.  
RESET  
T1  
Reset input; active LOW input initializes device.  
Direct testable pin or event counter input.  
External interrupt or direct testable pin.  
Derivative I/O port 12 or ADC Channel 2 input.  
INTN/T0  
DP12/ADC2  
1996 Feb 21  
8
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
6
RESET  
6.4  
Reset trip level  
To initialize the microcontroller to a defined state a reset  
operation is performed. A reset can be generated in three  
ways:  
The RESET trip voltage level for both the PCE84C486 and  
PCE84C487 is masked to 1.3 V.  
6.5  
Reset status  
applying an external signal to the RESET pin  
via Power-on-reset circuitry  
Derivative Registers reset status; see Table 8 for details  
Program Counter 00H  
by the Watchdog Timer.  
Memory Bank 0  
6.1  
External reset using the RESET pin  
Register Bank 0  
An active LOW signal from an external logic device will  
reset the device. The signal must be maintained long  
enough to allow VDD to reach its fxtal-dependent minimum  
operating voltage.  
Stack Pointer 00H  
All interrupts disabled  
Timer/event counter 1 stopped and cleared  
Timer pre-scaler modulo-32 (PS = 0)  
Timer flag cleared  
6.2  
Power-on-reset  
A Power-on-reset can be generated using an external RC  
circuit. To avoid overload of the internal diode, an external  
diode should be added in parallel if CRESET 2.2 µF.  
The RC circuit is shown in Fig.5.  
Serial I/O interface disabled (ESO = 0) and in slave  
receiver mode  
Idle and Stop mode cleared.  
6.3  
Watchdog Timer reset  
An overflow of the Watchdog Timer will cause the device  
to be reset. The operation of the Watchdog Timer is  
described in Chapter 12.  
handbook, halfpage  
V
DD  
R
RESET  
internal reset  
(
100 k)  
RESET  
C
RESET  
V
SS  
PCA84C8XX  
MLC259  
Fig.5 External components for RESET pin.  
1996 Feb 21  
9
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
The maximum repetition frequency (fPWM) of the 6 and  
7-bit PWM outputs is shown below.  
7
ANALOG (DC) CONTROL  
The PCE84C486 has nine Pulse Width Modulated outputs  
(PWM0 to PWM8) and the PCE84C487 has thirteen Pulse  
Width Modulated outputs (PWM0 to PWM8 and  
PWM10 to PWM13). These outputs are used for analog  
control purposes e.g. brightness, contrast, H-shift, V-shift,  
H-width, V-size, pin-cushion, trapezium, R (or G or B) gain  
control, sound volume etc. Each PWM output generates a  
pulse pattern with a programmable duty cycle.  
fxtal  
For the 6-bit PWM outputs: fPWM  
For the 7-bit PWM outputs: f PWM  
=
=
---------  
192  
fxtal  
---------  
384  
7.2  
8-bit PWM outputs  
The PWM outputs are specified below:  
The block diagram for the 8-bit PWM outputs is shown in  
Fig.8.  
PWM0 to PWM3: 4 PWM outputs with 7-bit resolution  
PWM4 to PWM7: 4 PWM outputs with 6-bit resolution  
PWM8: 1 PWM output with 14-bit resolution  
The 8-bit PWM outputs PWM10 to PWM13 (only available  
with the PCE84C487) share the same pins as Derivative  
Port lines DP24 to DP27, respectively. Selection of the pin  
function as either a PWM output or a Derivative Port line is  
achieved using the appropriate PWMnE bit in the  
PWME2 Register (see Table 8). In the PCE84C486 the  
contents of the PWME2 register should be set so that  
these PWM outputs are disabled (i.e 00H).  
PWM10 to PWM13: 4 PWM outputs with 8-bit  
resolution.  
The 6 and 7-bit PWM outputs are described in Section 7.1;  
the 8-bit PWM outputs are described in Section 7.2 and  
the 14-bit PWM output is described in Section 7.3. A  
typical PWM output application is described in Section 7.4.  
The polarity of the 8-bit PWM outputs is programmable  
and is selected by the P8LVL bit in the CON2 Register.  
7.1  
6 and 7-bit PWM outputs  
The duty cycle of each 8-bit PWM output is dependent  
upon the programmable contents of its associated data  
latch (PWM10 to PWM13 Registers respectively). As the  
clock frequency of each PWM circuit is fxtal, the pulse  
width of the pulse generated can be calculated as shown  
below.  
The block diagram for the 6 and 7-bit PWM outputs is  
shown in Fig.6.  
Pulse Width Modulated outputs PWM0 to PWM7 share  
the same pins as Derivative Port lines DP00 to DP07,  
respectively. Selection of the pin function as either a PWM  
output or a Derivative Port line is achieved using the  
appropriate PWMnE bit in the PWME1 Register (see  
Table 8).  
(PWMn)  
Pulse width =  
------------------------  
fxtal  
The polarity of the 6 and 7-bit PWM outputs is  
programmable and is selected by the P7LVL or the P6LVL  
bit in the CON2 Register (see Table 8). The state of the  
P7LVL bit determines the polarity of the 7-bit PWMs; the  
state of the P6LVL bit determines the polarity of the 6-bit  
PWMs.  
Where (PWMn) is the decimal value held in the data latch.  
The maximum repetition frequency (fPWM) of the 8-bit  
PWM outputs is shown below.  
fxtal  
f PWM  
=
---------  
256  
The duty cycle of each PWM output is dependent upon the  
programmable contents of its associated data latch  
(PWM0 to PWM7 Registers respectively). As the clock  
frequency of each PWM circuit is 13 × fxtal, the pulse width  
of the pulse generated can be calculated as shown below.  
An 8-bit PWM output is driven HIGH when the value held  
in its data latch is 00H. This is different to the 6 and 7-bit  
PWM outputs which are driven LOW when their data  
latches contain 00H.  
3 × (PWMn)  
Pulse width =  
---------------------------------  
fxtal  
Where (PWMn) is the decimal value held in the data latch.  
1996 Feb 21  
10  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
internal data bus  
DP0x data  
I/O  
f
xtal  
3
6 or 7-BIT PWM DATA LATCH  
P6LVL/P7LVL  
PWMnE  
Q
6 or 7-BIT DAC PWM  
CONTROLLER  
DP0x/PWMx  
Q
MLC069  
Fig.6 Block diagram for 6 and 7-bit PWMs.  
f
xtal  
3
64  
or  
1
2
3
m
m + 1  
m + 2  
64  
or  
1
128  
128  
00  
01  
m
63  
or  
127  
MLC261  
decimal value PWM data latch  
Fig.7 Typical non-inverted output pulse patterns for 6 or 7-bit PWM outputs.  
11  
1996 Feb 21  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
DP2x data  
I/O  
f
8-BIT PWM DATA LATCH  
P8LVL  
osc  
PWMnE  
Q
Q
8-BIT DAC PWM  
CONTROLLER  
DP2x/PWMx  
MGC907  
Fig.8 Block diagram for 8-bit PWMs.  
f
osc  
256  
1
2
3
m
m + 1  
m + 2  
256  
1
00  
01  
m
256  
MGC908  
decimal value PWM data latch  
Fig.9 Typical non-inverted output pulse patterns for 8-bit PWM outputs.  
12  
1996 Feb 21  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
7.3  
14-bit PWM output (PWM8)  
7.3.1  
COARSE ADJUSTMENT  
The 14-bit PWM output can be used to generate the  
Automatic Frequency Control (AFC) signal used in VST  
applications.  
An active HIGH pulse is generated in every subperiod; the  
pulse width being determined by the contents of PWM8H.  
The coarse output (OUT1) is LOW at the start of each  
subperiod and will remain LOW until the time  
PWM8 shares the same pin as Derivative Port line DP13.  
Selection of the pin function as either a PWM output or as  
a Derivative Port line is achieved using the PWM8E bit in  
Register 22.  
[3 fxtal × (PWM8H + 1) ] has elapsed. The output will  
then go HIGH and remain HIGH until the start of the next  
subperiod. The coarse pulse width may be calculated as  
shown below.  
The Block diagram for the 14-bit PWM output is shown in  
Fig.10 and comprises:  
3
--------  
fxtal  
Pulse duration = (127 PWM8H) ×  
Two 7-bit latches: PWM8L (Register 18) and PWM8H  
7.3.2  
FINE ADJUSTMENT  
(Register 19)  
14-bit data latch (PWMREG)  
14-bit counter  
Fine adjustment is achieved by generating an additional  
pulse in specific subperiods. The pulse is added at the  
start of the selected subperiod and has a pulse width of  
3/fxtal. The contents of PWM8L determine in which  
subperiods a fine pulse will be added. It is the logic 0 state  
of the value held in PWM8L that actually selects the  
subperiods. When more than one bit is a logic 0 then the  
subperiods selected will be a combination of those  
subperiods specified in Table 3. For example, if  
Coarse pulse controller  
Fine pulse controller  
Mixer.  
Data is loaded into the 14-bit data latch (PWMREG) from  
the two 7-bit data latches (PWM8H and PWM8L) when  
PWM8L is written to. The contents of PWMREG determine  
the active time of the PWM8 output. The upper seven bits  
of PWMREG are used by the coarse pulse controller and  
determine the coarse pulse width; the lower seven bits are  
used by the fine pulse controller and determine in which  
subperiods fine pulses will be added. The outputs OUT1  
and OUT2 of the coarse and fine pulse controllers are  
‘ORED’ in the mixer to give the PWM8 output. The polarity  
of the PWM8 output is programmable and is selected by  
the P8LVL bit in Register 23.  
PWM8L = 111 1010 then this is a combination of:  
PWM8L = 111 1110: subperiod 64 and  
PWM8L = 111 1011: subperiods 16, 48, 80 and 112.  
Pulses will be added in subperiods 16, 48, 64, 80 and 112.  
This example is illustrated in Fig.13.  
When PWM8L holds 111 1111 fine adjustment is inhibited  
and the PWM8 output is determined only by the contents  
of PWM8H.  
As the 14-bit counter is clocked by 13 × fxtal, the repetition  
times of the coarse and fine pulse controllers may be  
calculated as shown below.  
Table 3 Additional pulse distribution  
PWM8L  
ADDITIONAL PULSE IN SUBPERIOD  
64  
111 1110  
111 1101  
111 1011  
111 0111  
110 1111  
101 1111  
011 1111  
384  
fxtal  
Coarse controller repetition time: tsub  
=
---------  
32 and 96  
16, 48, 80 and 112  
49152  
----------------  
fxtal  
Fine controller repetition time: t r =  
8, 24, 40, 56, 72, 88, 104 and 120  
4, 12, 20, 28, 36, 44, 52...116 and 124  
2, 6, 10, 14, 18, 22, 26, 30...122 and 126  
1, 3, 5, 7, 9, 11, 13, 15, 17...125 and 127  
Figure 11 shows typical PWM8 outputs, with coarse  
adjustment only, for different values held in PWM8H. Note  
that the PWM8 coarse controller output is the same as the  
7-bit PWM outputs except the polarity is reversed.  
Figure 12 shows typical PWM8 outputs, with coarse and  
fine adjustment, after the coarse and fine pulse controller  
outputs have been ‘ORED’ by the mixer.  
1996 Feb 21  
13  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
Internal data bus  
‘MOV instruction’  
PWM8L  
PWM8H  
7
7
DATA LOAD  
TIMING PULSE  
LOAD  
PWMREG  
7
7
COARSE 7-BIT  
PWM  
FINE PULSE  
GENERATOR  
OUT1  
OUT2  
MIXER  
polarity  
control bit  
Q
Q
PWM8 output  
P14LVL  
Q14 to 8  
Q7 to 1  
f
= f  
14-BIT COUNTER  
tdac xtal  
3
MGC909  
Fig.10 14-bit PWM Block diagram.  
14  
1996 Feb 21  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
f
xtal  
3
127  
0
1
2
m
m + 1  
m + 2  
127  
0
1
00  
01  
m
127  
MLC263  
decimal value PWM8H data latch  
Fig.11 Non-inverted PWM8 output patterns - Coarse adjustment only.  
f
xtal  
3
127  
0
1
2
m
m + 1  
m + 2  
127  
0
1
00  
01  
m
127  
MLC262  
decimal value PWM8H data latch  
Fig.12 Non-inverted PWM8 output patterns - Coarse and Fine adjustment.  
15  
1996 Feb 21  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
t
r
t
t
t
t
t
t
t
t
t
sub0  
sub16  
sub32  
sub48  
sub64  
sub80  
sub96  
sub112  
sub127  
111 1110  
111 1011  
111 1010  
PWM8L  
MLC755  
Fig.13 Fine adjustment output (OUT2).  
7.4  
A typical PWM output application  
A typical PWM application is shown in Fig.14. R1 and C1  
form an integration network the time constant of which  
should be at least 5 times greater than the repetition period  
of the PWM output pattern. In order to smooth a changing  
PWM output a high value of C1 should be chosen. The  
value of C1 will normally be in the range 1 to 10 µF. The  
potential divider chain formed by R2 and R3 is used only  
when the output voltage is to be offset. The output voltages  
for this application are calculated using  
supply  
voltage  
handbook, halfpage  
R2  
R3  
R1  
analog  
output  
PWMn  
PCE84C48X  
Equations (1) and (2).  
R3 × supply voltage  
C1  
Vmax  
=
(1)  
----------------------------------------------------  
R1 × R2  
R3 +  
----------------------  
V
R1 + R2  
SS  
R1 × R3  
---------------------  
R1 + R3  
MGD136  
× supply voltage  
V min  
=
(2)  
------------------------------------------------------------------  
R1 × R3  
R2 +  
----------------------  
R1 + R3  
The loop from the PWM pin through R1 and C1 to VSS will  
radiate high frequency energy pulses. In order to limit the  
effect of this unwanted radiation source, the loop should  
be kept short and a high value of R1 selected. The value  
of R1 will normally be in the range 3.3 to 100 k. It is good  
practice to avoid sharing VSS with the return leads of other  
sensitive signals.  
Fig.14 Typical PWM output circuit.  
1996 Feb 21  
16  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
The ADC channel selector is controlled by the ADCS1 and  
ADCS0 bits in Register 20. The channels are selected as  
shown in Table 5.  
8
ANALOG-TO-DIGITAL CONVERTER (ADC)  
The two-channel ADC comprises a 4-bit Digital-to-Analog  
Converter (DAC); a comparator; an analog channel  
selector and control circuitry. As the digital input to the 4-bit  
DAC is loaded by software (a subroutine in the program),  
it is known as a software ADC. The block diagram is shown  
in Fig.15.  
Table 5 Selection of ADC channel  
ADCS1  
ADCS0  
CHANNEL SELECTED  
0
0
1
1
0
1
0
1
not allowed  
ADC1  
The ADC inputs ADC1 and ADC2 share the same pins as  
Derivative Port lines DP11 and DP12 respectively.  
Selection of the pin function as either an ADC input or as  
a Derivative Port line is achieved using bits ADCE1 and  
ADCE2 in Register 22. When ADCEn = 1, the ADC  
function is enabled.  
ADC2  
not allowed  
8.1  
Conversion algorithm  
There are many algorithms available to achieve the ADC  
conversion. The algorithm described below and shown in  
Fig.16 uses an iteration process.  
The 4-bit DAC analog output voltage (Vref) is determined  
by the decimal value of the data held in bits DAC0 to DAC3  
of Register 20. Vref is calculated as shown in Equation (3)  
and Table 4 lists the Vref values assuming VDD = 5 V.  
1. Enable and then select the ADC channel for  
conversion. Channel selection is achieved using bits  
ADCS1 and ADCS0 in Register 20.  
V
Vref  
=
DD × (DAC value + 1)  
(3)  
----------  
16  
2. Set the digital input to the DAC to 1000. The digital  
input to the DAC is selected using bits DAC3 to DAC0  
in Register 20.  
When the analog input voltage is higher than Vref, the  
COMP bit in Register 20 will be HIGH.  
3. Determine the result of the compare operation. This is  
achieved by reading the COMP bit in Register 20  
using the instruction MOV A, D20H. If COMP = 1; the  
analog input voltage is higher than the reference  
voltage (Vref). If COMP = 0; the analog input voltage is  
lower than the reference voltage (Vref).  
Table 4 Selection of Vref  
DAC3  
DAC2  
DAC1  
DAC0  
Vref (V)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.3125  
0.6250  
0.9375  
1.2500  
1.5625  
1.8750  
2.1875  
2.5000  
2.8125  
3.1250  
3.4375  
3.7500  
4.0625  
4.3750  
4.6875  
5.0000  
4. If COMP = 1; then the analog input voltage is higher  
than the reference voltage (Vref) and therefore the  
digital input to the DAC needs to be increased. Set the  
input to the DAC to 1100.  
5. If COMP = 0; then the analog input voltage is lower  
than the reference voltage (Vref) and therefore the  
digital input to the DAC needs to be decreased. Set the  
input to the DAC to 0100.  
6. Determine the result of the compare operation by  
reading the COMP bit in Register 20.  
1996 Feb 21  
17  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
7. For the DAC = 1100 case  
9. The operations detailed in 6, 7 and 8 above are  
repeated and each time the digital input to the DAC is  
changed accordingly; as dictated by the state of the  
COMP bit. The complete process is shown in Fig.16.  
Each time the DAC input is changed the number of  
values which the analog input can take is reduced by  
half. In this manner the actual analog value is honed  
into. The value of the analog input (VA) is determined  
using Equation (4):  
If COMP = 1; then the analog input voltage is still  
greater than Vref and therefore the digital input to the  
DAC needs to be increased again. Set the input to the  
DAC to 1110.  
If COMP = 0; then the analog input voltage is now less  
than Vref and therefore the digital input to the DAC  
needs to be decreased. Set the input to the DAC to  
1010  
V
VA  
=
DD × (DAC value + 1)  
(4)  
8. For the DAC = 0100 case  
----------  
16  
If COMP = 1; then the analog input voltage is now  
greater than Vref and therefore the digital input to the  
DAC needs to be increased. Set the input to the DAC  
to 0110.  
As the conversion time of each compare operation is  
greater than 6 µs but less than 9 µs; a NOP instruction is  
recommended to be used in between the instructions that  
change the value of Vref; select the ADC channel and read  
the COMP bit.  
If COMP = 0; then the analog input voltage is still lower  
than Vref and therefore the digital input to the DAC  
needs to be decreased again. Set the input to the DAC  
to 0010.  
Internal bus  
DERIVATIVE PORT  
SELECTOR  
EN1  
EN2  
DP11/ADC1  
ADC  
COMP bit  
+
CHANNEL  
SELECTOR  
COMPARATOR  
EN  
V
‘MOV A, D20’  
instruction  
to read COMP bit  
ref  
DP12/ADC2  
ENABLE  
SELECTOR  
Channel selection  
ADCS1 ADCS0  
4-BIT DAC  
ADCE1 ADCE2  
DAC3  
DAC2  
DAC1  
DAC0  
ADC enable selection  
MGD263  
DAC value selection  
Fig.15 Block diagram of 2 channel ADC.  
1996 Feb 21  
18  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
LM0C73  
a n d b o o k , f u l l p a g e w  
1996 Feb 21  
19  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
The input voltage generated by the operation of any key  
(ignoring the effect of the 100 kresistor) can be  
calculated as follows:  
8.2  
A typical application for keypad detection  
The ADC channels of the PCE84C48X can be used in  
keypad applications to detect and identify the operation of  
individual keys. The circuit for a 14-key application is  
shown in Fig.17.  
(n 0.5)  
VADCn  
=
× V DD  
-----------------------  
16  
When no key is depressed the input voltage at the ADC  
input pin will be greater than 1516VDD and if the DAC value  
selected is 1110 then the COMP bit will be HIGH. When  
any key is depressed the input voltage at the ADC input pin  
will change, and as each key will generate its own unique  
input voltage, this can be measured by the ADC channel  
and the actual key depressed can then be identified.  
Where n is the key number and can take any integer value  
in the range 1 to 14.  
The input voltage at the ADC input will be influenced by the  
tolerance of the resistors and the length of the cable  
connecting the keypad to the monitor. In the worse case  
situation this may reduce the number of keys that can be  
uniquely detected and identified.  
handbook, halfpage  
V
DD  
100 kΩ  
key 14  
5 kΩ  
2 kΩ  
ADCx  
1 µF  
key 13  
PCE84C486  
PCE84C487  
2 kΩ  
2 kΩ  
1 kΩ  
key 2  
key 1  
V
SS  
14 key matrix  
MGC910  
Fig.17 A typical ADC application for keypad detection.  
1996 Feb 21  
20  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
I2C-BUS INTERFACE  
If the rising and falling edges of the input pulse are less  
than 30 ns then the minimum pulse width that the T3 input  
will recognise is 3/fosc + 100 ns. If the system clock is  
10 MHz then the minimum pulse width is 400 ns. In some  
display modes, the active pulse width of the Hsync signal  
can be less than 400 ns; in this situation some external  
application circuitry may be required.  
9
The PCE84C48X has an on-chip I2C-bus interface that  
can be used in master or slave mode. Full details of the  
I2C-bus are given in the document “The I2C-bus and how  
to use it”. This document may be ordered using the code  
9398 393 40011.  
The I2C-bus interface lines SDA and SCL share the same  
pins as port lines DP20 and P10 respectively. Selection of  
the pin function as either an I2C-bus line or a port line is  
achieved using the SDAE and SCLE bits in Derivative  
Register 22. Only port Option 2 is available for both of  
these pins.  
t
H
handbook, halfpage  
0.9 V  
DD  
10 8-BIT COUNTER (T3)  
0.1 V  
DD  
The main application for this counter is in the frequency  
measurement of the Hsync signal.  
t
t
r
f
t
t
f
r
The block diagram of the 8-bit counter is shown in Fig.22.  
A Schmitt trigger is used at the input for noise rejection and  
also to shape the input signal into a square wave. The T3  
input is sampled at a frequency of 13 × fosc by the sample  
clock which synchronizes the internal T3 clock and the  
read operation of Derivative Register 24. The rising edge  
of the input increments the ripple counter by 1.  
0.9 V  
0.1 V  
DD  
DD  
MGC719  
t
L
The contents of T3 may be read using the instruction  
MOV A, D24H. As soon as the data is read, the counter is  
reset to zero. A counter overflow or Power-on-reset also  
resets the counter contents to zero.  
Fig.18 T3 input waveform.  
CK  
SYNCHRONISATION  
T3  
8-BIT COUNTER  
CIRCUIT  
RESET  
Q0 to Q7  
sample clock  
Power-on-reset  
T3 COUNTER  
EMU  
CONTROL CIRCUIT  
READ D24H  
Data bus  
MGC717  
Fig.19 Block diagram of the 8-bit counter (T3).  
21  
1996 Feb 21  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
The maximum time period (tp) which the counter may run  
and not cause a reset operation, is calculated as shown  
below.  
11 WATCHDOG TIMER (WDT)  
The purpose of the Watchdog Timer is to reset the  
microcontroller, within a reasonable period of time, if it  
enters an erroneous processor state. Erroneous processor  
states can be caused by noise or RFI.  
tp  
=
× 2 22  
1
--------  
fosc  
The Watchdog Timer consists of a 23-bit counter which is  
clocked at a frequency of fosc. During a Power-on-reset the  
contents of the counter are cleared. The counter contents  
are then incremented by ‘1’ every oscillator clock cycle.  
If the maximum count is exceeded, the counter overflows  
and the microcontroller is reset. In order to prevent a  
counter overflow and its resulting reset operation, the user  
program must clear the contents of the Watchdog Timer  
before its maximum count is exceeded. During normal  
processing, the contents of the Watchdog Timer are  
In the Idle mode the oscillator is still running and the  
Watchdog Timer remains active. In the Stop mode  
however, the oscillator is stopped and the operation of the  
Watchdog Timer is halted but its contents are retained.  
Therefore, it may be advisable for the user to clear the  
contents of the Watchdog Timer before the Stop mode is  
entered, in order to avoid an unexpected reset operation  
after the device is woken-up.  
The operational voltage range of the Watchdog Timer is  
2 to 5.5 V.  
cleared by writing a logic 1 to Derivative Register 45H (this  
is a dummy register).  
f
CLK  
osc  
23-BIT COUNTER  
RESET  
Q22  
WR45H  
on-chip RESET  
Power-on-reset  
MGC906  
Fig.20 The Watchdog Timer.  
1996 Feb 21  
22  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
12 OUTPUT PORTS  
Each I/O port line may be individually configured using one  
of three mask options. The three I/O mask options are  
specified below:  
Option 1 Standard input/output with switched pull-up  
current source; this is shown in Fig.24.  
Option 2 Input/output with open-drain output; this is  
shown in Fig.25.  
Option 3 Push-pull output; this is shown in Fig.26.  
The state of each output port after a Power-on-reset can  
also be selected using the mask options. All port mask  
options are given in Section 13.1.  
WRITE PULSE  
OUTL/ORL/ANL/MOV  
V
DD  
constant  
current  
TR2  
source  
100 µA typ.  
TR3  
DATA BUS  
D
D
SQ  
SLAVE  
SQ  
MQ  
MASTER  
I/O PORT  
LINE  
TR1  
V
SS  
ORL/ANL/MOV  
MLA696  
IN/MOV  
Fig.21 Standard I/O with pull-up transistor source (Option 1).  
1996 Feb 21  
23  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
WRITE PULSE  
OUTL/ORL/ANL  
V
DD  
DATA BUS  
D
D
MQ  
SQ  
SLAVE  
SQ  
MASTER  
I/O PORT  
LINE  
TR1  
V
SS  
ORL/ANL  
MLA697  
IN  
Fig.22 Open-drain I/O without pull-up transistor (Option 2).  
WRITE PULSE  
OUTL / ORL / ANL  
V
DD  
TR2  
constant  
current  
source  
DATA BUS  
D
D
SQ  
SLAVE  
SQ  
MQ  
100 µA typ.  
MASTER  
OUTPUT  
LINE  
TR1  
V
SS  
ORL / ANL  
MLB998  
IN  
Fig.23 Push-pull output with pull-up transistor (Option 3).  
24  
1996 Feb 21  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
12.1 Mask options  
Table 7 Port options - PCE84C487  
Table 6 lists the port mask options available for the  
PCE84C486; Table 7 lists the port mask options available  
for the PCE84C487.  
OPTION  
PORT PIN  
CONFIGURATION  
10 1, 2 or 3  
12 1, 2 or 3  
RESET STATE  
P00  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH  
Table 6 Port options - PCE84C486  
P01  
P02  
13 1, 2 or 3  
15 1, 2 or 3  
17 1, 2 or 3  
18 1, 2 or 3  
19 1, 2 or 3  
20 1, 2 or 3  
OPTION  
PORT PIN  
P03  
CONFIGURATION  
RESET STATE  
P04  
P00  
8
9
1, 2 or 3  
1, 2 or 3  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH  
P05  
P01  
P06  
P02  
10 1, 2 or 3  
11 1, 2 or 3  
12 1, 2 or 3  
13 1, 2 or 3  
14 1, 2 or 3  
15 1, 2 or 3  
P07  
P03  
P10  
2
3
5
9
1, 2 or 3  
1, 2 or 3  
1, 2 or 3  
1, 2 or 3  
P04  
P11  
P05  
P12  
P06  
P14  
P07  
DP00  
DP01  
DP02  
DP03  
DP04  
DP05  
DP06  
DP07  
DP11  
DP12  
DP13  
DP20  
DP24  
DP25  
DP26  
DP27  
31 1, 2 or 3  
30 1, 2 or 3  
28 1, 2 or 3  
26 1, 2 or 3  
25 1, 2 or 3  
24 1, 2 or 3  
23 1, 2 or 3  
42 1, 2 or 3  
22 1, 2 or 3  
41 1, 2 or 3  
P10  
2
3
5
7
1, 2 or 3  
1, 2 or 3  
1, 2 or 3  
1, 2 or 3  
P11  
P12  
P14  
DP00  
DP01  
DP02  
DP03  
DP04  
DP05  
DP06  
DP07  
DP11  
DP12  
DP13  
DP20  
24 1, 2 or 3  
23 1, 2 or 3  
22 1, 2 or 3  
21 1, 2 or 3  
20 1, 2 or 3  
19 1, 2 or 3  
18 1, 2 or 3  
32 1, 2 or 3  
17 1, 2 or 3  
31 1, 2 or 3  
4
1
8
1, 2 or 3  
2
1, 2 or 3  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
HIGH or LOW  
14 1, 2 or 3  
29 1, 2 or 3  
34 1, 2 or 3  
4
1
1, 2 or 3  
2
1996 Feb 21  
25  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
13 DERIVATIVE REGISTERS  
The PCE84C486 has 22 Derivative Registers and the PCE84C487 has 26 Derivative Registers. Both devices have one  
dummy register associated with the Watchdog Timer; this resides at address 45H. The Derivative Port I/O registers are  
located at addresses 00 to 05H. When DP0TR, DP1TR and DP2TR are read the data is read directly from the pin.  
However, when DP0R, DP1R and DP2R are read the data is read from the port latch (see Figs 24 to 26 for the port  
configuration).  
As the PCE84C486 has no 8-bit PWM outputs the PWME2 Register (address 44H) is not used and its contents must be  
set to 00H. Registers PWME2, PWM10 to PWM13 and the 4 MSBs of Registers DP2TR and DP2R are only available in  
the PCE84C487.  
Table 8 Register map (see note 1)  
ADDR  
(HEX)  
REG  
7
6
5
4
3
2
1
0
R/W  
00  
DP0TR  
DP07  
DP06  
(X)  
DP05  
(X)  
DP04  
(X)  
DP03  
(X)  
DP02  
(X)  
DP01  
(X)  
DP00  
(X)  
R
(terminal) (X)  
DP1TR  
(terminal) (X)  
01  
02  
03  
04  
05  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
(X)  
(X)  
(X)  
DP13  
(X)  
DP12  
(X)  
DP11  
(X)  
R
DP2TR  
(terminal) (X)  
DP27  
DP26  
(X)  
DP25  
(X)  
DP24  
(X)  
(X)  
(X)  
(X)  
DP20  
(X)  
R
DP0R  
(latch)  
DP07  
(1)  
DP06  
(1)  
DP05  
(1)  
DP04  
(1)  
DP03  
(1)  
DP02  
(1)  
DP01  
(1)  
DP00  
(1)  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DP1R  
(latch)  
(X)  
(X)  
(X)  
(X)  
DP13  
(1)  
DP12  
(1)  
DP11  
(1)  
(1)  
DP2R  
(latch)  
DP27  
(1)  
DP26  
(1)  
DP25  
(1)  
DP24  
(1)  
(X)  
(X)  
(X)  
DP20  
(1)  
PWM0  
PWM1  
PWM2  
PWM3  
PWM4  
PWM5  
PWM6  
PWM7  
PWM8L  
PWM8H  
(X)  
PWM06  
(0)  
PWM05  
(0)  
PWM04  
(0)  
PWM03  
(0)  
PWM02  
(0)  
PWM01  
(0)  
PWM00  
(0)  
(X)  
PWM16  
(0)  
PWM15  
(0)  
PWM14  
(0)  
PWM13  
(0)  
PWM12  
(0)  
PWM11  
(0)  
PWM10  
(0)  
(X)  
PWM26  
(0)  
PWM25  
(0)  
PWM24  
(0)  
PWM23  
(0)  
PWM22  
(0)  
PWM21  
(0)  
PWM20  
(0)  
(X)  
PWM36  
(0)  
PWM35  
(0)  
PWM34  
(0)  
PWM33  
(0)  
PWM32  
(0)  
PWM31  
(0)  
PWM30  
(0)  
(X)  
(X)  
PWM45  
(0)  
PWM44  
(0)  
PWM43  
(0)  
PWM42  
(0)  
PWM41  
(0)  
PWM40  
(0)  
(X)  
(X)  
PWM55  
(0)  
PWM54  
(0)  
PWM53  
(0)  
PWM52  
(0)  
PWM51  
(0)  
PWM50  
(0)  
(X)  
(X)  
PWM65  
(0)  
PWM64  
(0)  
PWM63  
(0)  
PWM62  
(0)  
PWM61  
(0)  
PWM60  
(0)  
(X)  
(X)  
PWM75  
(0)  
PWM74  
(0)  
PWM73  
(0)  
PWM72  
(0)  
PWM71  
(0)  
PWM70  
(0)  
(X)  
PWM86L PWM85L PWM84L PWM83L PWM82L PWM81L PWM80L RW  
(0) (0) (0) (0) (0) (0) (0)  
PWM86H PWM85H PWM84H PWM83H PWM82H PWM81H PWM80H RW  
(0) (0) (0) (0) (0) (0) (0)  
(X)  
1996 Feb 21  
26  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
ADDR  
(HEX)  
REG  
7
6
5
4
3
2
1
0
R/W  
20  
ADCCN  
(X)  
ADCS1  
(0)  
ADCS0  
(0)  
DAC3  
(0)  
DAC2  
(0)  
DAC1  
(0)  
DAC0  
(0)  
COMP(2) RW  
(0)  
21  
22  
23  
24  
40  
41  
42  
43  
44  
PWME1 PWM7E PWM6E PWM5E PWM4E PWM3E PWM2E PWM1E PWM0E RW  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
(0)  
CON1  
CON2  
T3CON  
PWM8E SCLE  
SDAE  
(0)  
ADCE2  
(0)  
ADCE1  
(0)  
0(3)  
(X)  
(X)  
RW  
RW  
R
(0)  
(0)  
(X)  
(X)  
P8LVL  
(0)  
P14LVL  
(0)  
P7LVL  
(0)  
P6LVL  
(0)  
(X)  
(X)  
T3B7  
(0)  
T3B6  
(0)  
T3B5  
(0)  
T3B4  
(0)  
T3B3  
(0)  
T3B2  
(0)  
T3B1  
(0)  
T3B0  
(0)  
PWM10 PWM107 PWM106 PWM105 PWM104 PWM103 PWM102 PWM101 PWM100 RW  
(0) (0) (0) (0) (0) (0) (0) (0)  
PWM117 PWM116 PWM115 PWM114 PWM113 PWM112 PWM111( PWM110 RW  
(0) (0) (0) (0) (0) (0) 0) (0)  
PWM12 PWM127 PWM126 PWM125 PWM124 PWM123 PWM122 PWM121 PWM120 RW  
(0) (0) (0) (0) (0) (0) (0) (0)  
PWM13 PWM137 PWM136 PWM135 PWM134 PWM133 PWM132 PWM131 PWM130 RW  
PWM11  
(0)  
(0)  
(0)  
(0)  
(0)  
PWM13E PWM12E PWM11E PWM10E RW  
(0) (0) (0) (0)  
(0)  
(0)  
(0)  
PWME2  
(X)  
(X)  
(X)  
(X)  
Notes  
1. Values within parethesis show the bit state after a reset operation. ‘X’ denotes an undefined state.  
2. This bit is Read only.  
3. This bit must be set to logic 0.  
14 LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 34)  
SYMBOL  
VDD  
PARAMETER  
MIN.  
0.3  
MAX.  
+8.0  
UNIT  
supply voltage  
V
V
VI  
input voltage on any pin with respect to ground (VSS  
maximum source current for all port lines  
maximum sink current for all port lines  
total power dissipation  
)
0.3  
VDD + 0.3  
10.0  
30.0  
IOH  
IOL  
mA  
mA  
W
Ptot  
Tamb  
Tstg  
1
operating ambient temperature  
25  
55  
+85  
°C  
storage temperature  
+125  
°C  
1996 Feb 21  
27  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
15 DC CHARACTERISTICS  
VDD = 5 V ±10%; VSS = 0 V; Tamb = 25 to +85 °C; all voltages with respect to VSS; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Supply  
VDD  
IDD  
operating supply voltage  
4.5  
5.0  
5
5.5  
10  
7
V
operating supply current  
fxtal = 10 MHz; VDD = 5 V  
mA  
mA  
mA  
mA  
mA  
V
fxtal = 6 MHz; VDD = 5 V  
3.5  
3
Stop; fxtal = 10 MHz  
Stop; fxtal = 6 MHz  
6
1.5  
4
ILU  
latch-up current for all pins  
Power-on-reset voltage level  
50  
0.7  
VPOR  
1.3  
1.9  
Ports P0; P1; DP0; DP1 and DP2 inputs  
VIL  
VIH  
ILI  
LOW level input voltage  
HIGH level input voltage  
input leakage current  
0
0.3VDD  
VDD  
V
0.7VDD  
V
VSS < VI < VDD  
±10  
µA  
Port P0 outputs  
VOL  
IOH1  
LOW level output voltage  
HIGH level pull-up output source current  
VDD = 5 V; IOL = 10 mA  
VDD = 5 V; VO = 0.7VDD  
1.2  
V
40  
100  
µA  
µA  
mA  
V
DD = 5 V; VO = VSS  
140 400  
IOH2  
HIGH level push-pull output source current VDD = 5 V; VO = VDD 0.4 V 3.0  
7.0  
DP00/PWM0 to DP07/PWM7; DP24/PWM10 to DP27/PWM13 as derivative ports  
IOL  
LOW level output sink current  
VDD = 5 V; VOL = 0.4 V  
VDD = 5 V; VO = 0.7VDD  
5.0  
40  
12.0  
mA  
µA  
IOH1  
HIGH level pull-up output source current  
100  
V
DD = 5 V; VO = VSS  
140 400  
µA  
IOH2  
HIGH level push-pull output source current VDD = 5 V; VO = VDD 0.4 V 3.0  
7.0  
mA  
DP00/PWM0 to DP07/PWM7; DP24/PWM10 to DP27/PWM13 as PWM outputs  
IOL  
LOW level output sink current  
VDD = 5 V; VOL = 0.4 V  
VDD = 5 V; VO = 0.7VDD  
VDD = 5 V; VO = VSS  
0.7  
40  
1.5  
mA  
µA  
IOH1  
HIGH level pull-up output source current  
100  
140 400  
µA  
IOH2  
HIGH level push-pull output source current VDD = 5 V; VO = VDD 0.4 V 0.7  
1.5  
mA  
P10 to P12 and P14 outputs  
IOL  
LOW level output sink current  
HIGH level pull-up output source current  
VDD = 5 V; VOL = 0.4 V  
VDD = 5 V; VO = 0.7VDD  
5.0  
40  
12.0  
mA  
µA  
IOH1  
100  
V
DD = 5 V; VO = VSS  
140 400  
µA  
IOH2  
HIGH level push-pull output source current VDD = 5 V; VO = VDD 0.4 V 3.0  
7.0  
mA  
DP20/SDA and DP21/SCL outputs  
IOL  
LOW level output sink current  
VDD = 5 V; VOL = 0.4 V  
VDD = 5 V; VO = 0.7VDD  
3.0  
40  
mA  
µA  
IOH1  
HIGH level pull-up output source current  
100  
V
DD = 5 V; VO = VSS  
140 400  
7.0  
µA  
IOH2  
HIGH level push-pull output source current VDD = 5 V; VO = VDD 0.4 V 3.0  
mA  
1996 Feb 21  
28  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
DP13/PWM8 as PWM8 output  
IOL  
LOW level output sink current  
HIGH level pull-up output source current  
VDD = 5 V; VOL = 0.4 V  
VDD = 5 V; VO = 0.7VDD  
1.4  
3.0  
mA  
µA  
IOH1  
40  
100  
V
DD = 5 V; VO = VSS  
140 400  
µA  
IOH2  
HIGH level push-pull output source current VDD = 5 V; VO = VDD 0.4 V 1.4  
3.0  
mA  
DP11/ADC1 or DP12/ADC2 as derivative output ports  
IOL  
LOW level output sink current  
VDD = 5 V; VOL = 0.4 V  
VDD = 5 V; VO = 0.7VDD  
VDD = 5 V; VO = VSS  
5.0  
40  
12.0  
mA  
µA  
IOH1  
HIGH level pull-up output source current  
100  
140 400  
µA  
IOH2  
HIGH level push-pull output source current VDD = 5 V; VO = VDD 0.4 V 3.0  
7.0  
mA  
TEST/EMU; RESET; INTN/T0; T1 and T3  
VIL  
VIH  
ILI  
LOW level input voltage  
HIGH level input voltage  
input leakage current  
0
0.3VDD  
VDD  
V
0.7VDD  
1.0  
V
VSS < VI < VDD  
+1.0  
µA  
16 AC CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
fxtal  
Crystal oscillator frequency  
Option 1: gm = 0.4 mS  
Option 2: gm = 1.2 mS  
PXE resonator frequency  
Option 2: gm = 1.2 mS  
VDD = 5 V; Tamb = 25 to +85 °C  
1
4
6
MHz  
MHz  
10  
fPXE  
VDD = 5 V; Tamb = 25 to +85 °C  
VDD = 5 V; Tamb = 25 to +85 °C  
1
5
MHz  
pF  
Cxtal1  
Cxtal2  
tT3  
external capacitance at XTAL1 (IN)  
pin (PXE resonator)  
30  
100  
external capacitance at XTAL2 (OUT) VDD = 5 V; Tamb = 25 to +85 °C  
pin (PXE resonator)  
30  
100  
pF  
minimum pulse width period at T3  
input  
rising or falling edge of T3  
pulse < 30 ns  
0.4  
µs  
Analog-to-Digital (software) Converter  
VAI  
DP11/ADC1 or DP12/ADC2  
VSS  
VDD  
V
comparator analog input voltage  
VAE  
conversion error range  
±12  
LSB  
TAFC  
conversion time (from any change in  
ADC input i.e. channel select, voltage  
level or enable/disable)  
7
µs  
1996 Feb 21  
29  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
17 PACKAGE OUTLINES  
SDIP32: plastic shrink dual in-line package; 32 leads (400 mil)  
SOT232-1  
D
M
E
A
2
A
A
L
1
c
(e )  
w M  
e
Z
1
b
1
M
H
b
32  
17  
pin 1 index  
E
1
16  
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
A
A
2
max.  
(1)  
(1)  
Z
1
w
UNIT  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
min.  
max.  
1.3  
0.8  
0.53  
0.40  
0.32  
0.23  
29.4  
28.5  
9.1  
8.7  
3.2  
2.8  
10.7  
10.2  
12.2  
10.5  
mm  
4.7  
0.51  
3.8  
1.778  
10.16  
0.18  
1.6  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-02-04  
SOT232-1  
1996 Feb 21  
30  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
SDIP42: plastic shrink dual in-line package; 42 leads (600 mil)  
SOT270-1  
D
M
E
A
2
A
L
A
1
c
e
(e )  
1
w M  
Z
b
1
M
H
b
42  
22  
pin 1 index  
E
1
21  
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
A
A
2
max.  
(1)  
(1)  
Z
1
w
UNIT  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
min.  
max.  
1.3  
0.8  
0.53  
0.40  
0.32  
0.23  
38.9  
38.4  
14.0  
13.7  
3.2  
2.9  
15.80  
15.24  
17.15  
15.90  
mm  
5.08  
0.51  
4.0  
1.778  
15.24  
0.18  
1.73  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
90-02-13  
95-02-04  
SOT270-1  
1996 Feb 21  
31  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
18 SOLDERING  
18.1 Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
18.2 SDIP  
18.2.1 SOLDERING BY DIPPING OR BY WAVE  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
18.2.2 REPAIRING SOLDERED JOINTS  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
1996 Feb 21  
32  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
19 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
20 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
21 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1996 Feb 21  
33  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
NOTES  
1996 Feb 21  
34  
Philips Semiconductors  
Objective specification  
Microcontrollers for digital auto-sync and  
VST TV controller applications  
PCE84C486; PCE84C487  
NOTES  
1996 Feb 21  
35  
Philips Semiconductors – a worldwide company  
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)  
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. (63) 2 816 6380, Fax. (63) 2 817 3474  
Tel. (02)805 4455, Fax. (02)805 4466  
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,  
Tel. (01)60 101-1236, Fax. (01)60 101-1211  
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,  
Portugal: PHILIPS PORTUGUESA, S.A.,  
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,  
Apartado 300, 2795 LINDA-A-VELHA,  
Tel. (01)4163160/4163333, Fax. (01)4163174/4163366  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. (65)350 2000, Fax. (65)251 6500  
South Africa: S.A. PHILIPS Pty Ltd.,  
Tel. (31)40-2783749, Fax. (31)40-2788399  
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,  
CEP: 04552-903-SÃO PAULO-SP, Brazil,  
P.O. Box 7383 (01064-970),  
195-215 Main Road Martindale, 2092 JOHANNESBURG,  
P.O. Box 7430, Johannesburg 2000,  
Tel. (011)470-5911, Fax. (011)470-5494  
Tel. (011)821-2333, Fax. (011)829-1849  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:  
Tel. (800) 234-7381, Fax. (708) 296-8556  
Chile: Av. Santa Maria 0760, SANTIAGO,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. (03)301 6312, Fax. (03)301 42 43  
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,  
Tel. (0)8-632 2000, Fax. (0)8-632 2745  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. (02)773 816, Fax. (02)777 6730  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. (852)2319 7888, Fax. (852)2319 7700  
Tel. (01)488 2211, Fax. (01)481 77 30  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West  
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,  
TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444  
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,  
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,  
Fax. (571)217 4549  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong,  
Bangkok 10260, THAILAND,  
Tel. (66) 2 745-4090, Fax. (66) 2 398-0793  
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. (0212)279 27 70, Fax. (0212)282 67 07  
Ukraine: Philips UKRAINE, 2A Akademika Koroleva str., Office 165,  
Denmark: Prags Boulevard 80, PB 1919, DK-2300  
COPENHAGEN S, Tel. (45)32 88 26 36, Fax. (45)31 57 19 49  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. (358)0-615 800, Fax. (358)0-61580 920  
France: 4 Rue du Port-aux-Vins, BP317,  
92156 SURESNES Cedex,  
Tel. (01)4099 6161, Fax. (01)4099 6427  
Germany: P.O. Box 10 51 40, 20035 HAMBURG,  
252148 KIEV, Tel. 380-44-4760297, Fax. 380-44-4766991  
United Kingdom: Philips Semiconductors LTD.,  
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,  
Tel. (0181)730-5000, Fax. (0181)754-8421  
United States:811 East Arques Avenue, SUNNYVALE,  
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556  
Uruguay: Coronel Mora 433, MONTEVIDEO,  
Tel. (040)23 53 60, Fax. (040)23 53 63 00  
Greece: No. 15, 25th March Street, GR 17778 TAVROS,  
Tel. (01)4894 339/4894 911, Fax. (01)4814 240  
India: Philips INDIA Ltd, Shivsagar Estate, A Block,  
Dr. Annie Besant Rd. Worli, Bombay 400 018  
Tel. (022)4938 541, Fax. (022)4938 722  
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,  
P.O. Box 4252, JAKARTA 12950,  
Tel. (02)70-4044, Fax. (02)92 0601  
Tel. (021)5201 122, Fax. (021)5205 189  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. (01)7640 000, Fax. (01)7640 200  
Italy: PHILIPS SEMICONDUCTORS S.r.l.,  
Piazza IV Novembre 3, 20124 MILANO,  
Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557  
Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108,  
Tel. (03)3740 5130, Fax. (03)3740 5077  
Korea: Philips House, 260-199 Itaewon-dong,  
Internet: http://www.semiconductors.philips.com/ps/  
For all other countries apply to: Philips Semiconductors,  
International Marketing and Sales, Building BE-p,  
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,  
Telex 35000 phtcnl, Fax. +31-40-2724825  
Yongsan-ku, SEOUL, Tel. (02)709-1412, Fax. (02)709-1415  
SCDS47  
© Philips Electronics N.V. 1996  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,  
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,  
Tel. 9-5(800)234-7381, Fax. (708)296-8556  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. (040)2783749, Fax. (040)2788399  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
All rights are reserved. Reproduction in whole or in part is prohibited without the  
prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation  
or contract, is believed to be accurate and reliable and may be changed without  
notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent- or  
other industrial or intellectual property rights.  
Tel. (09)849-4160, Fax. (09)849-7811  
Norway: Box 1, Manglerud 0612, OSLO,  
Printed in The Netherlands  
Tel. (022)74 8000, Fax. (022)74 8341  
Pakistan: Philips Electrical Industries of Pakistan Ltd.,  
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,  
KARACHI 75600, Tel. (021)587 4641-49,  
Fax. (021)577035/5874546  
457021/1100/01/pp36  
Date of release: 1996 Feb 21  
9397 750 00676  
Document order number:  

相关型号:

PCE84C487

Microcontrollers for digital auto-sync and VST TV controller applications
NXP

PCE84C882

Microcontroller for monitor OSD and auto-sync applications
NXP

PCE84C882

Microcontroller, 8-Bit, MROM, 8048 CPU, 10MHz, CMOS, PDIP42,
PHILIPS

PCE84C886

Microcontroller for monitor OSD and auto-sync applications
NXP

PCEA02

.100&.156 RECEPTACLE WITH BOARD HOOKS
ADAM-TECH

PCEA10

.100&.156 RECEPTACLE WITH BOARD HOOKS
ADAM-TECH

PCEA20

.100&.156 RECEPTACLE WITH BOARD HOOKS
ADAM-TECH

PCEB02

.100&.156 RECEPTACLE WITH BOARD HOOKS
ADAM-TECH

PCEB10

.100&.156 RECEPTACLE WITH BOARD HOOKS
ADAM-TECH

PCEB20

.100&.156 RECEPTACLE WITH BOARD HOOKS
ADAM-TECH

PCEC02

.100&.156 RECEPTACLE WITH BOARD HOOKS
ADAM-TECH

PCEC10

.100&.156 RECEPTACLE WITH BOARD HOOKS
ADAM-TECH