PCF210AA [NXP]

SPI Real time clock/calendar Time keeping application; SPI实时时钟/日历计时的应用
PCF210AA
型号: PCF210AA
厂家: NXP    NXP
描述:

SPI Real time clock/calendar Time keeping application
SPI实时时钟/日历计时的应用

时钟
文件: 总63页 (文件大小:828K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF2123  
SPI Real time clock/calendar  
Rev. 5 — 27 April 2011  
Product data sheet  
1. General description  
The PCF2123 is a CMOS1 Real-Time Clock (RTC) and calendar optimized for low power  
applications. Data is transferred serially via a Serial Peripheral Interface (SPI-bus) with a  
maximum data rate of 6.25 Mbit/s. An alarm and timer function is also available providing  
the possibility to generate a wake-up signal on an interrupt pin. An offset register allows  
fine tuning of the clock.  
2. Features and benefits  
„ Real time clock provides year, month, day, weekday, hours, minutes, and seconds  
based on a 32.768 kHz quartz crystal  
„ Low backup current while running: typical 100 nA at VDD = 2.0 V and Tamb = 25 °C  
„ Resolution: seconds to years  
„ Watchdog functionality  
„ Freely programmable timer and alarm with interrupt capability  
„ Clock operating voltage: 1.1 V to 5.5 V  
„ 3 line SPI-bus with separate, but combinable data input and output  
„ Serial interface at VDD = 1.6 V to 5.5 V  
„ 1 second or 1 minute interrupt output  
„ Integrated oscillator load capacitors for CL = 7 pF  
„ Internal Power-On Reset (POR)  
„ Open-drain interrupt and clock output pins  
„ Programmable offset register for frequency adjustment  
3. Applications  
„ Time keeping application  
„ Battery powered devices  
„ Metering  
„ High duration timers  
„ Daily alarms  
„ Low standby power applications  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 21.  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PCF2123BS/1  
PCF2123TS/1  
HVQFN16  
plastic thermal enhanced very thin quad flat package;  
no leads; 16 terminals; body 3 × 3 × 0.85 mm  
SOT758-1  
TSSOP14  
plastic thin shrink small outline package; 14 leads;  
body width 4.4 mm  
SOT402-1  
PCF2123U/5GA/1  
PCF2123U/10AA/1  
PCF2123U/12AA/1  
PCF2123U/12HA/1  
wire bond die  
wire bond die  
WLCSP12  
12 bonding pads[1]  
12 bonding pads[2]  
wafer level chip size package; 12 bumps[3]  
wafer level chip size package; 12 bumps[3]  
PCF2123U/10  
PCF2123U/10  
PCF2123U/12  
PCF2123U/12  
WLCSP12  
[1] Unsawn wafer.  
[2] Sawn 6 inch wafer on Film Frame Carrier (FFC) for 6 inch wafer, see Figure 37 on page 53.  
[3] Sawn 6 inch wafer with gold bumps on Film Frame Carrier (FFC) for 8 inch wafer, see Figure 38 on page 53.  
5. Marking  
Table 2.  
Marking codes  
Type number  
Marking code  
123  
PCF2123BS/1  
PCF2123TS/1  
PCF2123  
PC2123-1  
PC2123-1  
PC2123-1  
PC2123-1  
PCF2123U/5GA/1  
PCF2123U/10AA/1  
PCF2123U/12AA/1  
PCF2123U/12HA/1  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
2 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
6. Block diagram  
OSCI  
CLKOE  
C
OSCI  
OSCILLATOR  
32.768 kHz  
DIVIDER  
CLOCK OUT  
CLKOUT  
OSCO  
C
OSCO  
MONITOR  
OFFSET FUNCTION  
Offset_register  
0Dh  
TIMER FUNCTION  
Timer_clkout  
TEST  
0Eh  
0Fh  
V
DD  
Countdown_timer  
V
SS  
CONTROL  
Control_1  
Control_2  
00h  
01h  
POWER ON  
RESET  
TIME  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
Seconds  
Minutes  
Hours  
WATCH  
DOG  
Days  
Weekdays  
Months  
Years  
SDO  
SDI  
SCL  
CE  
SPI  
INTERFACE  
ALARM FUNCTION  
Minute_alarm  
Hour_alarm  
INT  
INTERRUPT  
09h  
0Ah  
0Bh  
0Ch  
R
pd  
Day_alarm  
PCF2123  
Weekday_alarm  
013aaa223  
Fig 1. Block diagram of PCF2123  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
3 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
1
2
3
4
12  
11  
10  
9
OSCO  
TEST  
INT  
CLKOUT  
CLKOE  
SCL  
1
2
3
4
5
6
7
14  
OSCI  
OSCO  
n.c.  
V
DD  
PCF2123BS  
13  
12  
11  
10  
9
CLKOUT  
CLKOE  
n.c.  
CE  
SDI  
TEST  
INT  
PCF2123TS  
SCL  
CE  
SDI  
001aai550  
V
8
SDO  
SS  
Transparent top view  
001aai551  
For mechanical details, see Figure 30 on page 45.  
Top view. For mechanical details, see Figure 31 on  
page 46.  
Fig 2. Pin configuration for HVQFN16 (PCF2123BS/1) Fig 3. Pin configuration for TSSOP14 (PCF2123TS/1)  
6
5
4
V
DD  
OSCI  
7
8
CLKOUT  
CLKOE  
OSCO  
PCF2123U  
TEST  
INT  
9
3
2
SCL  
SDI  
10  
11  
12  
CE  
V
SS  
1
SDO  
001aai544  
Viewed from active side. For mechanical details, see Figure 33 on page 48 and Figure 34 on  
page 49.  
Fig 4. Pin configuration for PCF2123Ux (bare die)  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
4 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
7.2 Pin description  
Table 3.  
Symbol Pin  
HVQFN16  
(PCF2123BS/1) (PCF2123TS/1) (bare die)  
Pin description  
Description  
TSSOP14  
PCF2123Ux  
OSCI  
OSCO  
n.c.  
16  
1
7
8
-
oscillator input; high-impedance node; minimize wire length  
between quartz and package  
1
2
oscillator output; high-impedance node; minimize wire length  
between quartz and package  
6, 7, 14, 15  
2
3, 11  
4
do not connect and do not use as feed through; connect to  
VDD if floating pins are not allowed  
TEST  
9
test pin; not user accessible; connect to VSS or leave floating  
(internally pulled down)  
INT  
CE  
3
5
6
7
8
10  
11  
12[2]  
interrupt output (open-drain; active LOW)  
chip enable input (active HIGH) with internal pull down  
ground  
4
5[1]  
VSS  
SDO  
8
1
serial data output, push-pull; high-impedance when not  
driving; can be connected to SDI for single wire data line  
SDI  
9
9
2
3
4
5
6
serial data input; may float when CE is inactive  
serial clock input; may float when CE is inactive  
CLKOUT enable or disable pin; enable is active HIGH  
clock output (open-drain)  
SCL  
10  
10  
12  
13  
14  
CLKOE 11  
CLKOUT 12  
VDD  
13  
supply voltage; positive or negative steps in VDD may affect  
oscillator performance; recommend 100 nF decoupling close  
to the device (see Figure 29)  
[1] The die paddle (exposed pad) is wired to VSS and should be electrically isolated.  
[2] The substrate (rear side of the die) is wired to VSS and should be electrically isolated.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
5 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8. Functional description  
The PCF2123 contains 16 8-bit registers with an auto-incrementing address counter, an  
on-chip 32.768 kHz oscillator with two integrated load capacitors, a frequency divider  
which provides the source clock for the Real Time Clock (RTC), a programmable clock  
output, and a 6.25 Mbit/s SPI-bus. An offset register allows fine tuning of the clock.  
All 16 registers are designed as addressable 8-bit parallel registers although not all bits  
are implemented.  
The first two registers (memory address 00h and 01h) are used as control registers.  
The memory addresses 02h through 08h are used as counters for the clock function  
(seconds up to years). The registers Seconds, Minutes, Hours, Days, Weekdays,  
Months, and Years are all coded in Binary Coded Decimal (BCD) format. When one of  
the RTC registers is written or read the contents of all counters are frozen. Therefore,  
faulty writing or reading of the clock and calendar during a carry condition is  
prevented.  
Addresses 09h through 0Ch define the alarm condition.  
Address 0Dh defines the offset calibration.  
Address 0Eh defines the clock out and timer mode.  
Address registers 0Eh and 0Fh are used for the countdown timer function. The  
countdown timer has four selectable source clocks allowing for countdown periods in  
the range from 244 μs up to four hours. There are also two pre-defined timers which  
can be used to generate an interrupt once per second or once per minute. These are  
defined in register Control_2 (01h).  
8.1 Low power operation  
Minimum power operation will be achieved by reducing the number and frequency of  
switching signals inside the IC, i.e., low frequency timer clocks and a low frequency  
CLKOUT will result in lower operating power. A second prime consideration is the series  
resistance Rs of the quartz used.  
8.1.1 Power consumption with respect to quartz series resistance  
The series resistance acts as a loss element. Low Rs will reduce current consumption  
further.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
6 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
001aai558  
250  
(1)  
I
DD  
(nA)  
210  
170  
130  
90  
50  
0
20  
40  
60  
80  
100  
(2)  
Rs (kΩ)  
Configuration: CLKOUT disabled, VDD = 3 V, timer clock set to 160 Hz.  
(1) IDD (nA) minimum power mode.  
(2) Maximum value for RS is 100 kΩ.  
Fig 5. IDD with respect to quartz RS  
8.1.2 Power consumptions with respect to timer mode  
Four source clocks are possible for the timer. The 4.096 kHz source clock will add the  
greatest part to the power consumption. The selection of 64 Hz, 1 Hz, or 160 Hz will be  
almost indistinguishable and add very little.  
001aai559  
400  
(1)  
I
DD  
(nA)  
300  
(2)  
(3)  
200  
100  
0
0
2
4
6
V
DD  
(V)  
Configuration: CLKOUT disabled, quartz RS = 15 kΩ.  
(1) IDD (nA) minimum power mode.  
(2) Timer clock = 4 kHz.  
(3) Timer clock = 64 Hz, 1 Hz, 160 Hz.  
Fig 6. IDD with respect to timer clock selection  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
7 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.2 Register overview  
16 registers are available. The time registers are encoded in the Binary Coded Decimal  
(BCD) format to simplify application use. Other registers are either bit-wise or standard  
binary.  
Table 4.  
Bit positions labelled as - are not implemented and will return a 0 when read. The bit position labelled as -- is not implemented  
and will return a 0 or 1 when read. Bit positions labelled with N should always be written with logic 0[1]  
Registers overview  
.
Address Register name  
Bit  
7
6
5
4
3
2
1
0
Control and status registers  
00h  
01h  
Control_1  
Control_2  
EXT_TEST  
MI  
N
STOP  
MSF  
SR  
N
12_24  
TF  
CIE  
AIE  
N
SI  
TI_TP  
AF  
TIE  
Time and date registers  
02h  
03h  
04h  
Seconds  
Minutes  
Hours  
OS  
--  
SECONDS (0 to 59)  
MINUTES (0 to 59)  
-
-
AMPM  
HOURS (1 to 12) in 12 h mode  
HOURS (0 to 23) in 24 h mode  
DAYS (1 to 31)  
05h  
06h  
07h  
08h  
Days  
-
-
-
-
-
-
Weekdays  
Months  
Years  
-
-
-
-
WEEKDAYS (0 to 6)  
MONTHS (1 to 12)  
YEARS (0 to 99)  
Alarm registers  
09h  
0Ah  
Minute_alarm  
AE_M  
MINUTE_ALARM (0 to 59)  
AMPM HOUR_ALARM (1 to 12) in 12 h mode  
Hour_alarm  
AE_H  
-
HOUR_ALARM (0 to 23) in 24 h mode  
DAY_ALARM (1 to 31)  
0Bh  
0Ch  
Day_alarm  
AE_D  
AE_W  
-
-
Weekday_alarm  
-
-
-
WEEKDAY_ALARM (0 to 6)  
Offset register  
0Dh  
Offset_register  
MODE  
OFFSET[6:0]  
Timer registers  
0Eh  
0Fh  
Timer_clkout  
-
COF[2:0]  
TE  
-
CTD[1:0]  
Countdown_timer COUNTDOWN_TIMER[7:0]  
[1] Except in the case of software reset, see Section 8.3.1.1.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
8 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.3 Control registers  
8.3.1 Register Control_1  
Table 5.  
Control_1 - control and status register 1 (address 00h) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
7
EXT_TEST  
0[1]  
normal mode  
Section 8.10  
1
external clock test mode  
unused  
6
5
N
-
-
STOP  
0[1]  
the RTC source clock runs  
the RTC clock is stopped;  
Section 8.11  
1
RTC divider chain flip-flops are  
asynchronously set to logic 0;  
CLKOUT at 32.768 kHz, 16.384 kHz or  
8.192 kHz is still available  
4
SR  
0[1]  
1
no software reset  
initiate software reset[2];  
Section 8.3.1.1  
this register will always return a 0 when  
read  
3
2
N
-
unused  
-
-
12_24  
0[1]  
24 hour mode is selected  
12 hour mode is selected  
no correction interrupt generated  
1
1
CIE  
0[1]  
1
Section 8.9  
interrupt pulses will be generated at every  
correction cycle  
0
N
-
unused  
-
[1] Default value.  
[2] For a software reset, 01011000 (58h) must be sent to register Control_1 (see Section 8.3.1.1).  
8.3.1.1 Reset  
A reset is automatically generated at power-on. A reset can also be initiated with the  
software reset command. It is generally recommended to make a software reset after  
power-on.  
A software reset can be initiated by setting the bits 6, 4 and 3 in register Control_1 logic 1  
and all other bits logic 0 by sending the bit sequence 01011000 (58h), see Figure 7. If this  
bit sequence is not correct, the software reset instruction will be ignored to protect the  
device from accidently being reset. When sending the software instruction, the other bits  
are not written.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
9 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
R/W  
addr 00  
software reset 58  
HEX  
HEX  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
0
0
0
1
0
0
0
0
0
1
0
1
1
0
0
0
SCL  
CE  
(1)  
internal  
reset signal  
001aai562  
(1) When CE is inactive, the interface is reset.  
Fig 7. Software reset command  
After reset, the following mode is entered:  
32.768 kHz on pin CLKOUT active  
24 hour mode is selected  
Offset register is set to 0  
No alarms set  
Timer disabled  
No interrupts enabled  
Table 6.  
Register reset values  
Bits labeled as - are not implemented. Bits labeled as X are undefined at power-on and unchanged  
by subsequent resets.  
Address Register name  
Bit  
7
0
0
1
-
6
0
0
X
X
-
5
0
0
X
X
X
X
-
4
0
0
X
X
X
X
-
3
0
0
X
X
X
X
-
2
1
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
Control_1  
Control_2  
Seconds  
0
0
0
0
0
0
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
0
Minutes  
Hours  
-
Days  
-
-
Weekdays  
Months  
-
-
-
-
-
X
X
X
X
X
-
X
X
X
X
X
-
Years  
X
1
1
1
1
0
-
X
X
-
X
X
X
X
-
Minute_alarm  
Hour_alarm  
Day_alarm  
Weekday_alarm  
Offset_register  
Timer_clkout  
Countdown_timer  
-
-
0
0
X
0
0
X
0
0
X
0
0
X
-
1
1
X
X
X
X
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
10 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.3.2 Register Control_2  
Table 7.  
Control_2 - control and status register 2 (address 01h) bits description  
Bit  
Symbol  
Value  
0[1]  
1
Description  
Reference  
7
MI  
minute interrupt is disabled  
minute interrupt is enabled  
second interrupt is disabled  
second interrupt is enabled  
no minute or second interrupt generated  
Section 8.6.3  
6
5
SI  
0[1]  
1
MSF  
0[1]  
1
flag set when minute or second interrupt  
generated;  
flag must be cleared to clear interrupt  
when TI_IP = 0  
4
3
TI_TP  
AF  
0[1]  
1
0[1]  
interrupt pin follows timer flags  
interrupt pin generates a pulse  
no alarm interrupt generated  
Section 8.7.2  
Section 8.5.5  
1
flag set when alarm triggered;  
flag must be cleared to clear interrupt  
no countdown timer interrupt generated  
2
TF  
0[1]  
1
Section 8.6.4  
flag set when countdown timer interrupt  
generated;  
flag must be cleared to clear interrupt  
when TI_IP = 0  
1
0
AIE  
TIE  
0[1]  
1
0[1]  
no interrupt generated from the alarm flag Section 8.7.3  
interrupt generated when alarm flag set  
no interrupt generated from the countdown Section 8.7.2  
timer  
1
interrupt generated by the countdown timer  
[1] Default value.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
11 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.4 Time and date function  
The majority of the registers are coded in the Binary Coded Decimal (BCD) format. BCD is  
used to simplify application use. An example is shown for the seconds in Table 9.  
8.4.1 Register Seconds  
Table 8.  
Bit  
Seconds - seconds register (address 02h) bit description  
Symbol  
Value  
Place value Description  
7
OS  
0
1[1]  
-
-
clock integrity is guaranteed  
clock integrity is not guaranteed;  
oscillator has stopped or has  
been interrupted  
6 to 4 SECONDS  
3 to 0  
0 to 5  
0 to 9  
ten’s place actual seconds coded in BCD  
format, see Table 9  
unit place  
[1] Default value.  
Table 9.  
Seconds coded in BCD format  
Seconds value Upper-digit (ten’s place)  
(decimal)  
Digit (unit place)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
01  
02  
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
09  
10  
:
0
0
:
0
0
:
0
0
:
0
1
:
1
0
:
0
0
:
0
0
:
1
0
:
58  
59  
0
0
1
1
0
0
1
1
1
1
0
0
0
0
0
1
8.4.1.1 OS flag  
The PCF2123 includes a flag (OS in register Seconds, see Table 8) which is set whenever  
the oscillator is stopped (see Figure 8 and Figure 9). The flag will remain set until cleared  
by software. If the flag cannot be cleared, then the PCF2123 oscillator is not running. This  
method can be used to monitor the oscillator and to determine if the supply voltage has  
reduced to the point where oscillation fails.  
main supply  
V
DD  
battery operation  
V
OSC(MIN)  
t
001aai561  
Fig 8. OS set by failing VDD  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
12 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
OS = 1 and flag can not be cleared  
OS = 1 and flag can be cleared  
V
DD  
oscillation  
OS flag  
OS flag set when  
oscillation stops  
OS flag cleared  
by software  
t
oscillation now stable  
001aai553  
Fig 9. OS flag  
The oscillator may be stopped, for example, by grounding one of the oscillator pins, OSCI  
or OSCO. The oscillator is also considered to be stopped during the time between  
power-on and stable crystal resonance. This time may be in the range of 200 ms to 2 s  
depending on crystal type, temperature and supply voltage. At power-on the OS flag is  
always set.  
8.4.2 Register Minutes  
Table 10. Minutes - minutes register (address 03h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
- unused  
7
-
6 to 4 MINUTES  
3 to 0  
0 to 5  
0 to 9  
ten’s place actual minutes coded in BCD  
format  
unit place  
8.4.3 Register Hours  
Table 11. Hours - hours register (address 04h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7 to 6  
-
-
-
unused  
12 hour mode[1]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOURS  
0 to 1  
0 to 9  
ten’s place actual hours in 12 hour mode  
coded in BCD format  
3 to 0  
unit place  
24 hour mode[1]  
5 to 4 HOURS  
3 to 0  
0 to 2  
0 to 9  
ten’s place actual hours in 24 hour mode  
coded in BCD format  
unit place  
[1] Hour mode is set by the 12_24 bit in register Control_1.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
13 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.4.4 Register Days  
Table 12. Days - days register (address 05h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
- unused  
7 to 6  
-
5 to 4 DAYS[1]  
0 to 3  
0 to 9  
ten’s place actual day coded in BCD format  
unit place  
3 to 0  
[1] The PCF2123 compensates for leap years by adding a 29th day to February if the year counter contains a  
value which is exactly divisible by 4, including the year 00.  
8.4.5 Register Weekdays  
Table 13. Weekdays - weekdays register (address 06h) bit description  
Bit  
Symbol  
Value  
-
Description  
7 to 3  
-
unused  
2 to 0 WEEKDAYS  
0 to 6  
actual weekday values, see Table 14  
Table 14. Weekday assignments  
Day[1]  
Bit  
2
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
Sunday  
0
Monday  
Tuesday  
Wednesday  
Thursday  
Friday  
0
0
0
1
1
Saturday  
1
[1] Definition may be re-assigned by the user.  
8.4.6 Register Months  
Table 15. Months - months register (address 07h) bit description  
Bit  
Symbol  
-
Value  
-
Place value Description  
- unused  
7 to 5  
4
MONTHS  
0 to 1  
0 to 9  
ten’s place actual month coded in BCD  
format, see Table 16  
3 to 0  
unit place  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
14 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Table 16. Month assignments in BCD format  
Month  
Upper-digit  
(ten’s place)  
Digit (unit place)  
Bit 4  
0
Bit 3  
0
Bit 2  
Bit 1  
0
Bit 0  
1
January  
February  
March  
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
April  
0
0
0
0
May  
0
0
0
1
June  
0
0
1
0
July  
0
0
1
1
August  
September  
October  
November  
December  
0
1
0
0
0
1
0
1
1
0
0
0
1
0
0
1
1
0
1
0
8.4.7 Register Years  
Table 17. Years - years register (08h) bit description  
Bit  
Symbol  
Value  
0 to 9  
0 to 9  
Place value Description  
7 to 4 YEARS  
3 to 0  
ten’s place actual year coded in BCD format  
unit place  
8.4.8 Setting and reading the time  
Figure 10 shows the data flow and data dependencies starting from the 1 Hz clock tick.  
1 Hz tick  
SECONDS  
MINUTES  
12_24 hour mode  
HOURS  
DAYS  
LEAP YEAR  
CALCULATION  
WEEKDAY  
MONTHS  
YEARS  
001aaf901  
Fig 10. Data flow of the time function  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
15 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
During read/write operations, the time counting circuits (memory locations 02h through  
08h) are blocked.  
This prevents  
Faulty reading of the clock and calendar during a carry condition  
Incrementing the time registers during the read cycle  
After this read/write access is completed, the time circuit is released again and any  
pending request to increment the time counters that occurred during the read/write access  
is serviced. A maximum of 1 request can be stored; therefore, all accesses must be  
completed within 1 second (see Figure 11).  
t < 1 s  
data bus  
COMMAND  
DATA  
DATA  
DATA  
chip enable  
013aaa222  
Fig 11. Access time for read/write operations  
As a consequence of this method, it is very important to make a read or write access in  
one go, that is, setting or reading seconds through to years should be made in one single  
access. Failing to comply with this method could result in the time becoming corrupted.  
As an example, if the time (seconds through to hours) is set in one access and then in a  
second access the date is set, it is possible that the time may increment between the two  
accesses. A similar problem exists when reading. A roll over may occur between reads  
thus giving the minutes from one moment and the hours from the next. Therefore it is  
advised to read all time and date registers in one access.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
16 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.5 Alarm function  
When one or more of these registers are loaded with a valid minute, hour, day, or  
weekday and its corresponding alarm enable bit (AE_x) is logic 0, then that information  
will be compared with the current minute, hour, day, and weekday.  
8.5.1 Register Minute_alarm  
Table 18. Minute_alarm - minute alarm register (address 09h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_M  
0
1[1]  
-
-
minute alarm is enabled  
minute alarm is disabled  
6 to 4 MINUTE_ALARM  
3 to 0  
0 to 5  
0 to 9  
ten’s place minute alarm information coded in  
BCD format  
unit place  
[1] Default value.  
8.5.2 Register Hour_alarm  
Table 19. Hour_alarm - hour alarm register (address 0Ah) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_H  
0
1[1]  
-
-
-
hour alarm is enabled  
hour alarm is disabled  
unused  
6
-
-
12 hour mode[2]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOUR_ALARM  
0 to 1  
0 to 9  
ten’s place hour alarm information coded in  
BCD format when in 12 hour  
3 to 0  
unit place  
mode  
24 hour mode[2]  
5 to 4 HOUR_ALARM  
3 to 0  
0 to 2  
0 to 9  
ten’s place hour alarm information coded in  
BCD format when in 24 hour  
unit place  
mode  
[1] Default value.  
[2] Hour mode is set by the 12_24 bit in register Control_1.  
8.5.3 Register Day_alarm  
Table 20. Day_alarm - day alarm register (address 0Bh) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_D  
0
1[1]  
-
-
-
day alarm is enabled  
day alarm is disabled  
unused  
6
-
-
5 to 4 DAY_ALARM  
3 to 0  
0 to 3  
0 to 9  
ten’s place day alarm information coded in  
BCD format  
unit place  
[1] Default value.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
17 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.5.4 Register Weekday_alarm  
Table 21. Weekday_alarm - weekday alarm register (address 0Ch) bit description  
Bit  
Symbol  
Value  
Description  
7
AE_W  
0
weekday alarm is enabled  
weekday alarm is disabled  
unused  
1[1]  
-
6 to 3  
-
2 to 0 WEEKDAY_ALARM  
0 to 6  
weekday alarm information coded in BCD  
format  
[1] Default value.  
8.5.5 Alarm flag  
By clearing the MSB, AE_x (Alarm Enable), of one or more of the alarm registers the  
corresponding alarm condition(s) are active. When an alarm occurs, AF (register  
Control_2, see Table 7) is set logic 1. The asserted AF can be used to generate an  
interrupt (INT). The AF is cleared using the interface.  
check now signal  
example  
AE_M  
AE_M = 1  
MINUTE ALARM  
=
1
MINUTE TIME  
0
AE_H  
HOUR ALARM  
=
HOUR TIME  
(1)  
set alarm flag AF  
AE_D  
DAY ALARM  
=
DAY TIME  
AE_W  
WEEKDAY ALARM  
=
013aaa088  
WEEKDAY TIME  
(1) Only when all enabled alarm settings are matching.  
It’s only on increment to a matched case that the alarm flag is set, see Section 8.5.5.  
Fig 12. Alarm function block diagram  
The registers at addresses 09h through 0Ch contain alarm information. When one or  
more of these registers is loaded with minute, hour, day, or weekday, and its  
corresponding Alarm Enable bit (AE_x) is logic 0, then that information is compared with  
the current minute, hour, day, and weekday. When all enabled comparisons first match,  
the Alarm Flag (AF) is set logic 1.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
18 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
The generation of interrupts from the alarm function is controlled via bit AIE (register  
Control_2, see Table 7). If bit AIE is enabled, the INT pin follows the condition of bit AF. AF  
will remain set until cleared by the interface. Once AF has been cleared, it will only be set  
again when the time increments to match the alarm condition once more. Alarm registers  
which have their AE_x bit logic 1 are ignored.  
Generation of interrupts from the alarm function is described in Section 8.7.3.  
minutes counter  
minute alarm  
AF  
44  
45  
45  
46  
INT when AIE = 1  
001aaf903  
Example where only the minute alarm is used and no other interrupts are enabled.  
Fig 13. Alarm flag timing  
Figure 13, Table 22, and Table 23 show an example for clearing bit AF, but leaving bit  
MSF and bit TF unaffected. The flags are cleared by a write command, therefore bits 7, 6,  
4, 1 and 0 must be written with their previous values. Repeatedly re-writing these bits has  
no influence on the functional behavior.  
To prevent the timer flags being overwritten while clearing bit AF, logic AND is performed  
during a write access. A flag is cleared by writing logic 0 whilst a flag is not cleared by  
writing logic 1. Writing logic 1 will result in the flag value remaining unchanged.  
Table 22. Flag location in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
-
-
MSF  
-
AF  
TF  
-
-
Table 23 shows what instruction must be sent to clear bit AF. In this example, bit MSF and  
bit TF are unaffected.  
Table 23. Example to clear only AF (bit 3) in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
-
-
1
-
0
1
-
-
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
19 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.6 Timer functions  
The countdown timer has four selectable source clocks allowing for countdown periods in  
the range from 244 μs to 4 h 15 min. There are also two pre-defined timers which can be  
used to generate an interrupt once per second or once per minute. For periods greater  
than 4 hours, the alarm function can be used. Registers 01h, 0Eh and 0Fh are used to  
control the timer function and output.  
8.6.1 Register Timer_clkout  
Table 24. Timer_clkout - timer control register (address 0Eh) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
-
7
-
-
unused  
[1]  
6 to 4 COF[2:0]  
CLKOUT control  
Section 8.8  
Section 8.6.4  
3
TE  
0
countdown timer is disabled  
countdown timer is enabled  
unused  
1
2
-
-
1 to 0 CTD[1:0]  
00  
01  
10  
11[2]  
4.096 kHz countdown timer source clock  
64 Hz countdown timer source clock  
1 Hz countdown timer source clock  
1
60 Hz countdown timer source clock  
[1] Values of COF[2:0] see Table 35.  
[2] Default value.  
8.6.2 Register Countdown_timer  
Table 25. Countdown_timer - countdown timer register (address 0Ah) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
7 to 0 COUNTDOWN_TIMER[7:0]  
0h to FFh  
countdown period in seconds:  
Section 8.6.4  
n
CountdownPeriod =  
--------------------------------------------------------------  
SourceClockFrequency  
where n is the countdown value  
8.6.3 Minute and second interrupt  
The minute and second interrupts (bits MI and SI) are pre-defined timers for generating  
periodic interrupts. The timers can be enabled independently from one another. However,  
a minute interrupt enabled on top of a second interrupt will not be distinguishable since it  
will occur at the same time; see Figure 14.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
20 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
seconds counter  
minutes counter  
58  
59  
59  
11  
00  
12  
00  
01  
INT when SI enabled  
MSF when SI enabled  
INT when only MI enabled  
MSF when only MI enabled  
001aaf905  
In this example, TI_TP is set to logic 1 resulting in 164 Hz wide interrupt pulse and the MSF flag is  
not cleared after an interrupt.  
Fig 14. INT example for MI and SI  
Table 26. Effect of bits MI and SI on INT generation  
Minute interrupt (bit MI) Second interrupt (bit SI) Result  
0
1
0
1
0
0
1
1
no interrupt generated  
an interrupt once per minute  
an interrupt once per second  
an interrupt once per second  
The minute and second flag (bit MSF) is set logic 1 when either the seconds or the  
minutes counter increments according to the currently enabled interrupt. The flag can be  
read and cleared by the interface. The status of bit MSF does not affect the INT pulse  
generation. If the MSF flag is not cleared prior to the next coming interrupt period, an INT  
pulse will still be generated.  
The purpose of the flag is to allow the controlling system to interrogate the PCF2123 and  
identify the source of the interrupt, i.e., minute or second, countdown timer or alarm.  
Table 27. Effect of MI and SI on MSF  
Minute interrupt (bit MI) Second interrupt (bit SI) Result  
0
1
0
0
MSF never set  
MSF set when minutes counter  
increments  
0
1
1
1
MSF set when seconds counter  
increments  
MSF set when seconds counter  
increments  
The duration of both of these timers will be affected by the register Offset_register (see  
Section 8.9). Only when the Offset_register has the value 00h the periods will be  
consistent.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
21 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.6.4 Countdown timer function  
The 8-bit countdown timer at address 0Fh is controlled by the register Timer_clkout at  
address 0Eh. The register Timer_clkout selects one of 4 source clock frequencies for the  
timer (4.096 kHz, 64 Hz, 1 Hz, or 160 Hz) and enables or disables the timer.  
Table 28. Bits CTD0 and CTD1 for timer frequency selection and countdown timer  
durations  
CTD[1:0] Timer source clock Delay  
frequency[1]  
Minimum timer duration  
n = 1  
Maximum timer duration  
n = 255  
00  
01  
10  
11  
4.096 kHz  
64 Hz  
1 Hz[2]  
244 μs  
15.625 ms  
1 s  
62.256 ms  
3.984 s  
255 s  
1
60 Hz[2]  
60 s  
4 h 15 min  
[1] When not in use, CTD must be set to 160 Hz for power saving.  
[2] Time periods can be affected by correction pulses.  
Remark: Note that all timings which are generated from the 32.768 kHz oscillator are  
based on the assumption that there is 0 ppm deviation. Deviation in oscillator frequency  
will result in deviation in timings. This is not applicable to interface timing.  
The timer counts down from a software-loaded 8-bit binary value, n. Loading the counter  
with 0 stops the timer. Values from 1 to 255 are valid. When the counter reaches 1, the  
countdown timer flag (bit TF) will be set and the counter automatically re-loads and starts  
the next timer period. Reading the timer will return the current value of the countdown  
counter (see Figure 15).  
countdown value, n  
xx  
03  
timer source clock  
countdown counter  
xx  
03  
02  
01  
03  
02  
01  
03  
02  
01  
03  
TE  
TF  
INT  
n
n
duration of first timer period after  
enable may range from n 1 to n + 1  
001aaf906  
In this example it is assumed that the timer flag is cleared before the next countdown period  
expires and that the pin INT is set to pulsed mode.  
Fig 15. General countdown timer behavior  
If a new value of n is written before the end of the current timer period, then this value will  
take immediate effect. NXP does not recommend changing n without first disabling the  
counter (by setting bit TE = 0). The update of n is asynchronous to the timer clock,  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
22 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
therefore changing it without setting bit TE = 0 may result in a corrupted value loaded into  
the countdown counter which results in an undetermined countdown period for the first  
period. The countdown value n will, however, be correctly stored and correctly loaded on  
subsequent timer periods.  
When the countdown timer flag is set, an interrupt signal on INT will be generated  
provided that this mode is enabled. See Section 8.7.2 for details on how the interrupt can  
be controlled.  
When starting the timer for the first time, the first period will have an uncertainty which is a  
result of the enable instruction being generated from the interface clock which is  
asynchronous from the timer source clock. Subsequent timer periods will have no such  
delay. The amount of delay for the first timer period will depend on the chosen source  
clock, see Table 29.  
Table 29. First period delay for timer counter value n  
Timer source clock  
4.096 kHz  
Minimum timer period  
Maximum timer period  
n + 1  
n
64 Hz  
n
n + 1  
1 Hz  
(n 1) + 164 Hz  
(n 1) + 164 Hz  
n + 164 Hz  
n + 164 Hz  
1
60 Hz  
At the end of every countdown, the timer sets the countdown timer flag (bit TF). Bit TF  
may only be cleared by software. The asserted bit TF can be used to generate an  
interrupt (INT). The interrupt may be generated as a pulsed signal every countdown  
period or as a permanently active signal which follows the condition of bit TF. Bit TI_TP is  
used to control this mode selection and the interrupt output may be disabled with bit TIE,  
see Table 7.  
When reading the timer, the current countdown value is returned and not the initial  
value n. Since it is not possible to freeze the countdown timer counter during read back, it  
is recommended to read the register twice and check for consistent results.  
Timer source clock frequency selection of 1 Hz and 160 Hz will be affected by the  
Offset_register. The duration of a program period will vary according to when the offset is  
initiated. For example, if a 100 s timer is set using the 1 Hz clock as source, then some  
100 s periods will contain correction pulses and therefor be longer or shorter depending  
on the setting of the Offset_register. See Section 8.9 to understand the operation of the  
Offset_register.  
8.6.5 Timer flags  
When a minute or second interrupt occurs, bit MSF is set logic 1. Similarly, at the end of a  
timer countdown or alarm event, bit TF or AF are set logic 1. These bits maintain their  
value until overwritten by software. If both countdown timer and minute or second  
interrupts are required in the application, the source of the interrupt can be determined by  
reading these bits. To prevent one flag being overwritten while clearing another a logical  
AND is performed during a write access. A flag is cleared by writing logic 0 whilst a flag is  
not cleared by writing logic 1. Writing logic 1 will result in the flag value remaining  
unchanged.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
23 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Three examples are given for clearing the flags. Clearing the flags is made by a write  
command, therefore bits 7, 6, 4, 1 and 0 must be written with their previous values.  
Repeatedly re-writing these bits has no influence on the functional behavior.  
Table 30. Flag location in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
-
-
MSF  
-
AF  
TF  
-
-
Table 31, Table 32, and Table 33 show what instruction must be sent to clear the  
appropriate flag.  
Table 31. Example to clear only TF (bit 2) in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
-
-
1
-
1
0
-
-
Table 32. Example to clear only MSF (bit 5) in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
-
-
0
-
1
1
-
-
Table 33. Example to clear both TF and MSF (bit 2 and bit 5) in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
-
-
0
-
1
0
-
-
Clearing the alarm flag (bit AF) operates in exactly the same way, see Section 8.5.5.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
24 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.7 Interrupt output  
An active LOW interrupt signal is available at pin INT. Operation is controlled via the bits  
of register Control_2. Interrupts may be sourced from four places: second and minute  
timer, countdown timer, alarm function or offset function.  
With bit TI_TP, the timer generated interrupts can be configured to either generate a pulse  
or to follow the status of the interrupt flags (bits TF and MSF). Correction interrupt pulses  
are always 1128 second long. Alarm interrupts always follow the condition of AF.  
SI  
to interface:  
read MSF  
MSF: MINUTE  
SECOND FLAG  
SI MI  
SECONDS COUNTER  
MINUTES COUNTER  
SET  
0
1
PULSE  
GENERATOR 1  
CLEAR  
TRIGGER  
CLEAR  
MI  
from interface:  
clear MSF  
INT  
TI_TP  
TE  
to interface:  
read TF  
TF: TIMER  
TIE  
COUNTDOWN COUNTER  
SET  
0
1
PULSE  
GENERATOR 2  
CLEAR  
TRIGGER  
CLEAR  
E.G.AIE  
from interface:  
0
1
clear TF  
AIE  
CIE  
to interface:  
read AF  
AF: ALARM  
FLAG  
set alarm  
flag, AF  
SET  
CLEAR  
from interface:  
clear AF  
PULSE  
GENERATOR 3  
offset circuit: add/substract  
1/64 Hz pulse  
TRIGGER  
CLEAR  
from interface:  
set CIE  
001aai555  
When bits SI, MI, TIE, AIE, and CIE are all disabled, pin INT will remain high-impedance.  
Fig 16. Interrupt scheme  
Remark: Note that the interrupts from the four sources are wired-OR, meaning they will  
mask one another (see Figure 16).  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
25 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.7.1 Minute and second interrupts  
The pulse generator for the minute and second interrupt operates from an internal 64 Hz  
clock and consequently generates a pulse of 164 second in duration.  
If the MSF flag is cleared before the end of the INT pulse, then the INT pulse is shortened.  
This allows the source of a system interrupt to be cleared immediately it is serviced, i.e.,  
the system does not have to wait for the completion of the pulse before continuing; see  
Figure 17. Instructions for clearing MSF are given in Section 8.6.5.  
seconds counter  
MSF  
58  
59  
INT  
(1)  
SCL  
8th clock  
instruction  
CLEAR INSTRUCTION  
001aaf908  
(1) Indicates normal duration of INT pulse (bit TI_TP = 1)  
Fig 17. Example of shortening the INT pulse by clearing the MSF flag  
The timing shown for clearing bit MSF in Figure 17 is also valid for the non-pulsed  
interrupt mode i.e. when bit TI_TP = 0, INT may be shortened by setting both MI and SI or  
MSF to logic 0.  
8.7.2 Countdown timer interrupts  
The generation of interrupts from the countdown timer is controlled via bit TIE.  
The pulse generator for the countdown timer interrupt also uses an internal clock, but this  
time it is dependent on the selected source clock for the countdown timer and on the  
countdown value n. As a consequence, the width of the interrupt pulse varies (see  
Table 34).  
Table 34. INT operation (bit TI_TP = 1)  
Source clock (Hz)  
INT period (s)  
n = 1[1]  
n > 1  
1
1
4096  
64  
8192  
4096  
1
1
128  
64  
1
1
1
64  
64  
1
1
1
60  
64  
64  
[1] n = loaded countdown value. Timer stopped when n = 0.  
If the TF flag is cleared before the end of the INT pulse, then the INT pulse is shortened.  
This allows the source of a system interrupt to be cleared immediately it is serviced, i.e.,  
the system does not have to wait for the completion of the pulse before continuing (see  
Figure 18). Instructions for clearing MSF can be found in Section 8.6.5.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
26 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
countdown counter  
01  
n
CDTF  
INT  
(1)  
SCL  
8th clock  
instruction  
CLEAR INSTRUCTION  
001aaf909  
(1) Indicates normal duration of INT pulse (bit TI_TP = 1).  
Fig 18. Example of shortening the INT pulse by clearing the TF flag  
The timing shown for clearing bit TF in Figure 18 is also valid for the non-pulsed interrupt  
mode, i.e., when bit TI_TP = 0; INT may be shortened by setting bit TIE to logic 0.  
8.7.3 Alarm interrupts  
The generation of interrupts from the alarm function is controlled via bit AIE (see Table 7).  
If bit AIE is enabled, the INT pin follows the condition of bit AF. Clearing bit AF will  
immediately clear INT. No pulse generation is possible for alarm interrupts (see  
Figure 19).  
minute counter  
minute alarm  
AF  
44  
45  
45  
INT  
SCL  
8th clock  
instruction  
CLEAR INSTRUCTION  
001aaf910  
Example where only the minute alarm is used and no other interrupts are enabled.  
Fig 19. AF timing  
8.7.3.1 Correction pulse interrupts  
Interrupt pulses generated by correction events can be shortened by writing logic 1 to bit  
CIE in register Control_1.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
27 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.8 Clock output  
A programmable square wave is available at pin CLKOUT. Operation is controlled by the  
COF[2:0] bits in the register Timer_clkout. Frequencies of 32.768 kHz (default) down to  
1 Hz can be generated for use as a system clock, microcontroller clock, input to a charge  
pump, or for calibration of the oscillator.  
Pin CLKOUT is an open-drain output and enabled at power-on. When disabled the output  
is high-impedance.  
The duty cycle of the selected clock is not controlled. However, due to the nature of the  
clock generation, all will be 50 : 50 except the 32.768 kHz frequencies.  
The STOP bit function can also affect the CLKOUT signal, depending on the selected  
frequency. When the STOP bit is set logic 1, the CLKOUT pin will generate a continuous  
LOW for those frequencies that can be stopped. For more details of the STOP bit function  
see Section 8.11.  
Table 35. CLKOUT frequency selection  
Bits COF[2:0] CLKOUT frequency (Hz) Typical duty cycle[1]  
Effect of STOP bit  
no effect  
000  
001  
010  
011  
100  
101  
110  
111  
32768  
60 : 40 to 40 : 60  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
-
16384  
no effect  
8192  
no effect  
4096  
CLKOUT = LOW  
CLKOUT = LOW  
CLKOUT = LOW  
CLKOUT = LOW  
-
2048  
1024  
1[2]  
CLKOUT = high-Z  
[1] Duty cycle definition: % HIGH-level time : % LOW-level time.  
[2] 1 Hz clock pulses will be affected by offset correction pulses.  
8.8.1 CLKOE pin  
The CLKOE pin can be used to block the CLKOUT function and force the CLKOUT pin to  
a high-impedance state. The effect is the same as setting COF[2:0] = 111.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
28 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.9 Offset register  
The PCF2123 incorporates an offset register (address 0Dh) which can be used to  
implement several functions, such as:  
Ageing adjustment  
Temperature compensation  
Accuracy tuning  
The offset is made once every two hours in the normal mode, or once every hour in the  
course mode. Each LSB will introduce an offset of 2.17 ppm for normal mode and  
4.34 ppm for course mode. The values of 2.17 ppm and 4.34 ppm are based on a nominal  
32.768 kHz clock. The offset value is coded in two’s complement giving a range of  
+63 LSB to 64 LSB.  
Table 36. Register Offset_register  
OFFSET[6:0]  
Offset value in  
decimal  
Offset value in ppm  
Normal mode  
MODE = 0  
Course mode  
MODE = 1  
0 1 1 1 1 1 1  
0 1 1 1 1 1 0  
:
+63  
+62  
:
+136.71  
+134.54  
:
+273.42  
+269.08  
:
0 0 0 0 0 1 0  
0 0 0 0 0 0 1  
0 0 0 0 0 0 0  
1 1 1 1 1 1 1  
1 1 1 1 1 1 0  
:
+2  
+1  
0[1]  
1  
2  
:
+4.34  
+2.17  
0
+8.68  
+4.34  
0
2.17  
4.34  
:
4.34  
8.68  
:
1 0 0 0 0 0 1  
1 0 0 0 0 0 0  
63  
64  
136.71  
138.88  
273.42  
277.76  
[1] Default mode.  
The correction is made by adding or subtracting 64 Hz clock correction pulses, thereby  
changing the period of a single second.  
Table 37. Example of converting the offset in ppm to seconds  
Offset in ppm  
Seconds per  
Day  
Week  
1.31  
Month  
5.69  
Year  
68.2  
136  
2.17  
4.34  
0.187  
0.375  
2.62  
11.4  
In normal mode, the correction is triggered once per two hours and then correction pulses  
are applied once per minute until the programmed correction values have been  
implement.  
In course mode, the correction is triggered once per hour and then correction pulses are  
applied once per minute up to a maximum of 60 minutes. When correction values greater  
than 60 are used, additional correction pulses are made in the 59th minute (see Table 38).  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
29 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Table 38. Correction pulses for course mode  
Correction value  
Hour:Minute[1]  
Correction pulses on INT per  
minute[2]  
+1 or 1  
+2 or 2  
02:00  
1
0
02:01 to  
02:59  
02:00  
02:01  
1
1
0
02:02 to  
02:59  
+3 or 3  
02:00  
02:01  
02:02  
1
1
1
0
02:03 to  
02:59  
:
:
:
+59 or 59  
02:00 to  
02:58  
1
02:59  
0
1
+60 or 60  
+61 or 61  
02:00 to  
02:59  
02:00 to  
02:58  
1
02:59  
2
1
+62 or 62  
+63 or 63  
64  
02:00 to  
02:58  
02:59  
3
1
02:00 to  
02:58  
02:59  
4
1
02:00 to  
02:58  
02:59  
5
[1] Example is given in a time range from 2:00 to 2:59.  
[2] Correction INT pulses are 1128 s wide. For multiple pulses they are repeated at 164 s interval.  
It is possible to monitor when correction pulses are applied. The correction interrupt  
enable mode (bit CIE) will generate a 1128 second pulse on INT for every correction  
applied. In the case where multiple correction pulses are applied, a 1128 second interrupt  
pulse will be generated and repeated every 164 seconds.  
Correction is applied to the 1 Hz clock. Any timer or clock output using a frequency of 1 Hz  
or below will also be affected by the correction pulses.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
30 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Table 39. Effect of correction pulses  
Frequency (Hz)  
Effect of correction  
CLKOUT  
32768  
no effect  
no effect  
no effect  
no effect  
no effect  
no effect  
effected  
16384  
8192  
4096  
2048  
1024  
1
Time source clock  
4096  
64  
no effect  
no effect  
effected  
effected  
1
1
60  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
31 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.10 External clock test mode  
A test mode is available which allows for on-board testing. In this mode it is possible to set  
up test conditions and control the operation of the RTC.  
The test mode is entered by setting bit EXT_TEST in register Control_1. Then  
pin CLKOUT becomes an input. The test mode replaces the internal clock signal with the  
signal applied to pin CLKOUT.  
The signal applied to pin CLKOUT should have a minimum pulse width of 300 ns and a  
maximum period of 1000 ns. The internal clock, now sourced from CLKOUT, is divided  
down to 1 Hz by a 26 divide chain called a prescaler. The prescaler can be set into a  
known state by using bit STOP. When bit STOP is set, the prescaler is reset to 0. (STOP  
must be cleared before the prescaler can operate again.)  
From a stop condition, the first 1 second increment will take place after 32 positive edges  
on pin CLKOUT. Thereafter, every 64 positive edges will cause a 1 second increment.  
Remark: Entry into test mode is not synchronized to the internal 64 Hz clock. When  
entering the test mode, no assumption as to the state of the prescaler can be made.  
Operation example:  
1. Set EXT_TEST test mode (register Control_1, bit EXT_TEST = 1).  
2. Set STOP (Control_1, bit STOP = 1).  
3. Clear STOP (Control_1, bit STOP = 0).  
4. Set time registers to desired value.  
5. Apply 32 clock pulses to pin CLKOUT.  
6. Read time registers to see the first change.  
7. Apply 64 clock pulses to pin CLKOUT.  
8. Read time registers to see the second change.  
Repeat 7 and 8 for additional increments.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
32 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
8.11 STOP bit function  
The function of the STOP bit is to allow for accurate starting of the time circuits. The STOP  
bit function will cause the upper part of the prescaler (F2 to F14) to be held in reset and  
thus no 1 Hz ticks will be generated. The time circuits can then be set and will not  
increment until the STOP bit is released (see Figure 21 and Table 40).  
The STOP bit function will not affect the output of 32.768 kHz, 16.384 kHz, or 8.192 kHz  
(see Section 8.8).  
OSCILLATOR STOP  
oscillator stop flag  
DETECTOR  
F
0
F
1
F
F
F
14  
2
13  
OSCILLATOR  
1 Hz tick  
stop  
RESET  
RESET  
RESET  
1 Hz  
1024 Hz  
CLKOUT source  
8192 Hz  
16384 Hz  
001aai556  
Fig 20. STOP bit functional diagram  
The lower two stages of the prescaler (F0 and F1) are not reset and because the SPI-bus  
is asynchronous to the crystal oscillator, the accuracy of re-starting the time circuits will be  
between 0 and one 8.192 kHz cycle (see Figure 21).  
8192 Hz  
stop released  
0 μs to 122 μs  
001aaf912  
Fig 21. STOP bit release timing  
The first increment of the time circuits is between 0.499878 s and 0.500000 s after STOP  
bit is released. The uncertainty is caused by the prescaler bits F0 and F1 not being reset  
(see Table 40).  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
33 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Table 40. First increment of time circuits after STOP bit release  
Bit  
Prescaler bits[1]  
1 Hz tick  
Time  
Comment  
STOP  
F0F1-F2 to F14  
hh:mm:ss  
Clock is running normally  
0
01-0 0001 1101 0100  
12:45:12  
prescaler counting normally  
STOP bit is activated by user. F0F1 are not reset and values cannot be predicted externally  
1
XX-0 0000 0000 0000  
12:45:12  
prescaler is reset; time circuits are frozen  
New time is set by user  
1
XX-0 0000 0000 0000  
08:00:00  
prescaler is reset; time circuits are frozen  
STOP bit is released by user  
0
XX-0 0000 0000 0000  
XX-1 0000 0000 0000  
XX-0 1000 0000 0000  
XX-1 1000 0000 0000  
:
08:00:00  
08:00:00  
08:00:00  
08:00:00  
:
prescaler is now running  
-
-
-
:
11-1 1111 1111 1110  
00-0 0000 0000 0001  
10-0 0000 0000 0001  
:
08:00:00  
08:00:01  
08:00:01  
:
-
0 to 1 transition of F14 increments the time circuits  
-
:
11-1 1111 1111 1111  
00-0 0000 0000 0000  
10-0 0000 0000 0000  
:
08:00:01  
08:00:01  
08:00:01  
:
-
-
-
:
11-1 1111 1111 1110  
00-0 0000 0000 0001  
08:00:01  
08:00:02  
-
0 to 1 transition of F14 increments the time circuits  
013aaa352  
[1] F0 is clocked at 32.768 kHz.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
34 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
9. 3-line serial interface  
Data transfer to and from the device is made via a 3-wire SPI-bus (see Table 41). The  
data lines for input and output are split. The data input and output lines can be connected  
together to facilitate a bidirectional data bus. The chip enable signal is used to identify the  
transmitted data. Each data transfer is a byte, with the Most Significant Bit (MSB) sent first  
(see Figure 23).  
Table 41. Serial interface  
Symbol Function  
Description  
CE  
chip enable input  
when LOW, the interface is reset; pull-down resistor  
included; active input may be higher than VDD, but may not  
be wired permanently HIGH  
SCL  
SDI  
serial clock input  
serial data input  
serial data output  
when CE is LOW, this input may float; input may be higher  
than VDD  
when CE is LOW, input may float; input may be higher than  
VDD; input data is sampled on the rising edge of SCL  
SDO  
push-pull output; drives from VSS to VDD; output data is  
changed on the falling edge of SCL; will be high-Z when not  
driving; may be connected directly to SDI  
SDI  
SDI  
SDO  
SDO  
two wire mode  
single wire mode  
001aai560  
Fig 22. SDI, SDO configurations  
The transmission is controlled by the active HIGH chip enable signal CE. The first byte  
transmitted is the command byte. Subsequent bytes will be either data to be written or  
data to be read. Data is sampled on the rising edge of the clock and transferred internally  
on the falling edge.  
data bus  
COMMAND  
DATA  
DATA  
DATA  
chip enable  
001aaf914  
Fig 23. Data transfer overview  
The command byte defines the address of the first register to be accessed and the  
read/write mode. The address counter will auto increment after every access and will  
rollover to zero after the last register is accessed. The read/write bit (R/W) defines if the  
following bytes will be read or write information.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
35 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Table 42. Command byte definition  
Bit  
Symbol  
Value  
Description  
7
R/W  
data read or data write selection  
write data  
0
1
read data  
6 to 4 SA  
3 to 0 RA  
001  
subaddress; other codes will cause the device  
to ignore data transfer  
0h to Fh  
register address range  
In Figure 24, the register Seconds is set to 45 seconds and the register Minutes is set to  
10 minutes.  
R/W  
addr 02  
seconds data 45  
minutes data 10  
BCD  
HEX  
BCD  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
0
0
0
1
0
0
1
0
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
SCL  
SDI  
CE  
address  
counter  
xx  
02  
03  
04  
001aaf915  
Fig 24. Serial bus write example  
R/W  
addr 07  
months data 11  
years data 06  
BCD  
HEX  
BCD  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
1
0
0
1
0
1
1
1
0
0
0
1
0
0
0
1
0
0
0
0
0
1
1
0
SCL  
SDI  
SDO  
CE  
address  
counter  
xx  
07  
08  
09  
001aaf916  
Fig 25. Serial bus read example  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
36 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
In Figure 25, the Months and Years registers are read. In this example, pins SDI and SDO  
are not connected together. For this configuration, it is important that pin SDI is never left  
floating. It must always be driven either HIGH or LOW. If pin SDI is left open, high IDD  
currents may result. Short transition periods in the order of 200 ns will not cause any  
problems.  
9.1 Interface watchdog timer  
During read/write operations, the time counting circuits are frozen. To prevent a situation  
where the accessing device becomes locked and does not clear the interface by setting  
pin CE LOW, the PCF2123 has a built in watchdog timer. Should the interface be active  
for more than 1 s from the time a valid subaddress is transmitted, then the PCF2123 will  
automatically clear the interface and allow the time counting circuits to continue counting.  
CE must return LOW once more before a new data transfer can be executed.  
t
< 1 s  
w(CE)  
CE  
data  
valid sub-address data data data  
WD timer running  
WD timer  
time  
counters  
running  
time counters frozen  
running  
001aai563  
a. Correct data transfer: read or write  
1 s < t  
< 2 s  
w(CE)  
CE  
data transfer fail  
data  
valid sub-address data data data  
WD timer  
WD timer running  
time counters frozen  
WD trips  
time  
counters  
running  
running  
001aai564  
b. Incorrect data transfer: read or write  
Fig 26. Interface watchdog timer  
The watchdog is implemented to prevent the excessive loss of time due to interface  
access failure e.g. if main power is removed from a battery backed-up system during an  
interface access.  
Each time the watchdog period is exceeded, 1 s will be lost from the time counters. The  
watchdog will trigger between 1 s and 2 s after receiving a valid subaddress.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
37 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
10. Internal circuitry  
PCF2123  
V
DD  
OSCI  
OSCO  
TEST  
INT  
CLKOE  
CLKOUT  
SCL  
SDI  
CE  
SDO  
V
SS  
001aai552  
Fig 27. Device diode protection diagram of PCF2123  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
38 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
11. Limiting values  
Table 43. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
IDD  
Parameter  
Conditions  
Min  
0.5  
50  
0.5  
0.5  
10  
10  
-
Max  
+6.5  
+50  
Unit  
V
[1]  
supply voltage  
supply current  
input voltage  
mA  
V
[1]  
[1]  
VI  
+6.5  
+6.5  
+10  
VO  
output voltage  
input current  
V
II  
mA  
mA  
mW  
V
IO  
output current  
total power dissipation  
+10  
Ptot  
VESD  
300  
[2]  
electrostatic discharge  
voltage  
HBM  
-
±3000  
[3]  
[4]  
Ilu  
latch-up current  
-
200  
mA  
°C  
Tstg  
Tamb  
storage temperature  
ambient temperature  
65  
40  
+150  
+85  
operating device  
°C  
[1] With respect to VSS  
.
[2] Pass level; Human Body Model (HBM) according to Ref. 8 “JESD22-A114”  
[3] Pass level; latch-up testing, according to Ref. 9 “JESD78” at maximum ambient temperature (Tamb(max)).  
[4] According to the NXP store and transport requirements (see Ref. 11 “NX3-00092”) the devices have to be  
stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to 75 %. For long term storage products  
deviant conditions are described in that document.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
39 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
12. Static characteristics  
Table 44. Static characteristics  
VDD = 1.1 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; fosc = 32.768 kHz; quartz Rs = 15 kΩ; CL = 7 pF; unless otherwise  
specified.  
Symbol  
Supplies  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
supply voltage  
for clock data integrity;  
SPI-bus inactive  
1.1  
-
5.5  
V
Tamb = 25 °C  
-
0.9  
-
-
V
V
SPI-bus active  
SPI-bus active  
fSCL = 4.5 MHz;  
1.6  
5.5  
IDD  
supply current  
-
-
250  
30  
400  
80  
μA  
μA  
VDD = 5 V  
fSCL = 1.0 MHz;  
VDD = 3 V  
[2]  
SPI-bus inactive;  
CLKOUT disabled  
Tamb = 25 °C;  
VDD = 2.0 V  
-
-
-
100  
110  
120  
-
-
-
nA  
nA  
nA  
Tamb = 25 °C;  
VDD = 3.0 V  
Tamb = 25 °C;  
VDD = 5.0 V  
[2]  
SPI-bus inactive;  
CLKOUT disabled;  
Tamb = 40 °C to +85 °C  
VDD = 2.0 V  
VDD = 3.0 V  
VDD = 5.0 V  
-
-
-
-
-
-
330  
350  
380  
nA  
nA  
nA  
SPI-bus inactive;  
CLKOUT enabled at 32 kHz;  
Tamb = 25 °C  
VDD = 2.0 V  
VDD = 3.0 V  
VDD = 5.0 V  
-
-
-
260  
340  
520  
-
-
-
nA  
nA  
nA  
SPI-bus inactive;  
CLKOUT enabled at 32 kHz;  
Tamb = 40 °C to +85 °C  
VDD = 2.0 V  
VDD = 3.0 V  
VDD = 5.0 V  
-
-
-
-
-
-
450  
550  
750  
nA  
nA  
nA  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
40 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Table 44. Static characteristics …continued  
VDD = 1.1 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; fosc = 32.768 kHz; quartz Rs = 15 kΩ; CL = 7 pF; unless otherwise  
specified.  
Symbol  
Inputs  
VIL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LOW-level input voltage  
HIGH-level input voltage  
input voltage  
-
-
-
-
0.3VDD  
-
V
V
V
VIH  
0.7VDD  
0.5  
VI  
on pins CE, SDI, SCL, OSCI,  
CLKOE, CLKOUT  
+5.5  
[3]  
ILI  
input leakage current  
VI = VDD or VSS on pins SDI,  
SCL, OSCI, CLKOE, CLKOUT  
-
0
-
μA  
VI = VSS on pin CE  
on pin CE  
1  
-
0
-
μA  
kΩ  
pF  
Rpd  
Ci  
pull-down resistance  
input capacitance  
240  
-
550  
7
[4]  
[5]  
on pins SDI, SCL, CLKOE and  
CE  
-
Outputs  
VO  
output voltage  
on pins CLKOUT and INT  
on pin OSCO  
0.5  
0.5  
0.5  
0.8VDD  
VSS  
-
-
-
-
-
-
+5.5  
V
V
V
V
V
V
+5.5  
on pin SDO  
VDD + 0.5  
VDD  
VOH  
VOL  
HIGH-level output voltage on pin SDO  
LOW-level output voltage on pin SDO  
0.2VDD  
0.4  
on pins CLKOUT and INT;  
VSS  
VDD = 5 V;  
IOL = 1.5 mA  
IOH  
HIGH-level output current output source current;  
VOH = 4.6 V;  
1.5  
1.5  
-
-
-
-
mA  
mA  
VDD = 5 V on pin SDO  
IOL  
LOW-level output current output sink current;  
VOL = 0.4 V;  
VDD = 5 V on pins INT, SDO  
and CLKOUT  
[3]  
[6]  
ILO  
output leakage current  
VO = VDD or VSS  
-
0
7
-
μA  
CL(itg)  
integrated load  
capacitance  
on pins OSCO and OSCI  
3.3  
14  
pF  
Rs  
series resistance  
-
-
100  
kΩ  
[1] For reliable oscillator start at power-on: VDD = VDD(min) + 0.3 V.  
[2] Timer source clock = 160 Hz, level of pins CE, SDI, and SCL is VDD or VSS  
[3] In case of an ESD event, the value may increase slightly.  
[4] Implicit by design.  
.
[5] Refers to external pull-up voltage.  
(COSCI COSCO  
)
[6] Integrated load capacitance, CL(itg), is a calculation of COSCI and COSCO in series: CL(itg)  
=
.
-------------------------------------------  
(COSCI + COSCO  
)
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
41 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
13. Dynamic characteristics  
Table 45. SPI-bus characteristics  
VSS = 0 V; Tamb = 40 °C to +85 °C. All timing values are valid within the operating supply voltage and temperature range and  
referenced to VIL and VIH with an input voltage swing of VSS to VDD  
.
Symbol Parameter Conditions VDD = 1.6 V VDD = 2.4 V VDD = 3.3 V VDD = 5.0 V Unit  
Min  
Max Min  
Max Min  
Max Min  
Max  
Timing characteristics (see Figure 28)  
fclk(SCL)  
tSCL  
SCL clock frequency  
SCL time  
-
2.9  
-
4.54  
-
5.71  
-
8.0  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
s
345  
90  
200  
-
-
220  
50  
120  
-
-
175  
45  
95  
-
-
125  
40  
70  
-
-
tclk(H)  
tclk(L)  
tr  
clock HIGH time  
clock LOW time  
rise time  
-
-
-
-
-
-
-
-
for SCL signal  
for SCL signal  
100  
100  
50  
50  
tf  
fall time  
-
100  
-
100  
-
50  
-
50  
tsu(CE)  
th(CE)  
trec(CE)  
tw(CE)  
CE set-up time  
CE hold time  
CE recovery time  
CE pulse width  
40  
40  
30  
-
-
35  
30  
25  
-
-
30  
25  
20  
-
-
25  
15  
15  
-
-
-
-
-
-
-
-
-
-
measured after valid  
subaddress is  
received  
0.99  
0.99  
0.99  
0.99  
tsu  
set-up time  
hold time  
set-up time for SDI  
data  
10  
-
5
-
3
-
2
-
ns  
th  
hold time for SDI data 25  
-
10  
-
-
8
-
-
5
-
-
ns  
ns  
ns  
td(R)SDO  
tdis(SDO)  
SDO read delay time bus load = 50 pF  
-
-
190  
70  
108  
45  
85  
40  
60  
27  
SDO disable time  
no load value; bus will  
be held up by bus  
capacitance; use RC  
time constant with  
application values  
-
-
-
tt(SDI-SDO) transition time from  
SDI to SDO  
to avoid bus conflict  
0
-
0
-
0
-
0
-
ns  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
42 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
t
t
w(CE)  
CE  
SCL  
t
su(CE)  
t
t
rec(CE)  
t
r
clk(H)  
t
t
f
t
h(CE)  
clk(L)  
80%  
SCL  
20%  
WRITE  
t
su  
t
h
SDI  
R/W  
SA2  
RA0  
b7  
b6  
b0  
Hi Z  
SDO  
READ  
SDI  
b7  
b6  
b0  
t
t(SDI-SDO)  
t
t
dis(SDO)  
d(R)SDO  
Hi Z  
SDO  
b7  
b6  
b0  
001aai554  
Fig 28. SPI-bus timing  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
43 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
14. Application information  
1 F  
supercapacitor  
100 nF  
V
CLKOE CLKOUT  
INT  
CE  
DD  
OSCI  
SCL  
SDI  
PCF2123  
OSCO  
SDO  
V
SS  
001aai557  
A 1 farad super capacitor combined with a low VF diode can be used as a standby or back-up  
supply. With the RTC in its minimum power configuration i.e. timer off and CLKOUT off, the RTC  
may operate for weeks.  
Fig 29. Typical application diagram  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
44 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
15. Package outline  
HVQFN16: plastic thermal enhanced very thin quad flat package; no leads;  
16 terminals; body 3 x 3 x 0.85 mm  
SOT758-1  
B
A
D
terminal 1  
index area  
A
E
A
1
c
detail X  
e
C
y
1
1/2 e  
y
v
M
C
M
C
A B  
C
1
e
b
w
5
8
L
4
9
e
e
E
2
h
1/2 e  
12  
1
16  
13  
terminal 1  
index area  
D
h
X
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
b
c
E
e
e
e
2
D
D
E
L
y
1
v
w
y
1
h
1
h
max.  
0.05 0.30  
0.00 0.18  
3.1 1.75  
2.9 1.45  
3.1  
2.9  
1.75  
1.45  
0.5  
0.3  
mm  
0.05  
0.1  
1
0.2  
0.5  
1.5  
1.5  
0.1  
0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
02-03-25  
02-10-21  
SOT758-1  
- - -  
MO-220  
- - -  
Fig 30. Package outline SOT758-1 (HVQFN16) of PCF2123BS/1  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
45 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm  
SOT402-1  
D
E
A
X
c
y
H
v
M
A
E
Z
8
14  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
7
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.72  
0.38  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT402-1  
MO-153  
Fig 31. Package outline SOT402-1 (TSSOP14) of PCF2123TS/1  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
46 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
HVQFN16  
a. SOT758-1 (HVQFN16) of PCF2123BS/1  
PCF8885TS  
b. SOT402-1 (TSSOP14) of PCF2123TS/1  
Fig 32. Three dimensional package drawings of PCF2123BS/1 and PCF2123TS/1  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
47 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
16. Bare die outline  
Wire bond die; 12 bonding pads  
PCF2123U/10  
D
A
6
5
4
7
8
P
P
3
4
x
E
9
0
3
2
10  
11  
12  
0
y
P
P
2
1
1
X
e
D
detail X  
0
1 mm  
scale  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
08-07-24  
11-04-06  
PCF2123U/10  
Fig 33. Bare die outline PCF2123U/10 of PCF2123U/5GA/1 and PCF2123U/10AA/1 (for dimensions see Table 46)  
Table 46. Dimensions of PCF2123U/10  
Original dimensions are in mm.  
[3]  
[4]  
[3]  
[4]  
Unit (mm) A[1]  
D[2]  
E[2]  
eD  
P1  
P2  
P3  
P4  
PCF2123U/5GA/1  
nom  
PCF2123U/10AA/1  
nom 0.20  
0.20  
1.492  
1.449  
1.296  
0.09  
0.081  
0.09  
0.09  
0.081  
0.081  
1.492  
1.449  
1.296  
0.09  
0.081  
[1] Nominal die thickness. Compare with wafer thickness given in Table 50.  
[2] Dimension includes saw lane.  
[3] P1 and P3: pad size.  
[4] P2 and P4: passivation opening.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
48 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
WLCSP12: wafer level chip size package; 12 bumps.  
PCF2123U/12  
D
6
5
4
7
PC2123-1  
8
E
9
10  
11  
12  
x 0  
0
y
3
2
e
1
Y
e
X
P
P
3
4
A
1
P
P
A
2
2
A
1
detail Y  
detail X  
0
0.5  
scale  
1 mm  
pcf2123u_12_do  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
- - -  
JEDEC  
- - -  
JEITA  
- - -  
10-07-13  
11-04-06  
PCF2123U/12  
Fig 34. Bare die outline PCF2123U/12 of PCF2123U/12AA/1 and PCF2123U/12HA/1 (for dimensions see Table 47)  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
49 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Table 47. Dimensions of PCF2123U/12  
Original dimensions are in mm.  
[1]  
[3]  
[4]  
[3]  
[4]  
Unit (mm) A[1]  
A1  
A2  
D[2]  
E[2]  
e
P1  
P2  
P3  
P4  
PCF2123U/12AA  
max  
nom  
min  
-
0.018  
-
-
-
1.296  
-
-
0.084  
-
0.084  
0.081  
0.078  
0.22  
-
0.015 0.2  
1.492 1.449  
0.09  
-
0.081 0.09  
0.012  
-
-
-
-
-
-
0.198  
0.078  
-
-
PCF2123U/12HA  
max  
nom  
min  
-
0.018  
1.296  
-
-
0.084  
0.084  
0.081  
0.078  
0.17  
-
0.015 0.15  
0.012  
1.492 1.449  
0.09  
-
0.081 0.09  
0.078  
-
-
-
0.198  
-
[1] Nominal die thickness. Compare with wafer thickness given in Table 50.  
[2] Dimension includes saw lane.  
[3] P1 and P3: pad size.  
[4] P2 and P4: bump size.  
Table 48. Bump locations of all PCF2123U types  
All x/y coordinates represent the position of the center of each pad with respect to the center  
(x/y = 0) of the chip; see Figure 33 and Figure 34.  
Symbol  
Bump  
Coordinates  
x
y
SDO  
SDI  
1
648.0  
575.0  
377.0  
179.0  
171.2  
369.2  
625.7  
639.0  
421.9  
25.9  
223.9  
441.0  
639.0  
2
648.0  
SCL  
3
648.0  
CLKOE  
CLKOUT  
VDD  
4
648.0  
5
648.0  
6
648.0  
OSCI  
OSCO  
TEST  
INT  
7
648.0  
648.0  
648.0  
648.0  
648.0  
648.0  
8
9
10  
11  
12  
CE  
VSS  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
50 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Table 49. Alignment mark dimension and location of all PCF2123U types  
Coordinates  
x
y
Location[1]  
693  
Dimension[2]  
516.2  
13 μm  
16 μm  
[1] The x/y coordinates of the alignment mark location represent the position of the REF point (see Figure 35)  
with respect to the center (x/y = 0) of the chip; see Figure 33 and Figure 34.  
[2] The x/y values of the dimensions represent the extensions of the alignment mark in direction of the  
coordinate axis (see Figure 35).  
REF  
y
x
013aaa231  
Fig 35. Alignment mark  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
51 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
17. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC 61340-5 or equivalent  
standards.  
18. Packing information  
1.492 mm  
(1)  
~18 μm  
1
1
1.449 mm  
45 μm  
~18 μm  
Saw lane  
X
1
1
70 μm  
detail X  
straight edge  
of the wafer  
013aaa232  
(1) Die marking code.  
Seal ring plus gap to active circuit ~18 μm.  
Fig 36. PCF2123Ux wafer information  
Table 50. PCF2123Ux wafer information  
Type number  
Wafer thickness (μm) Wafer diameter  
Marking of bad die  
wafer mapping[1]  
inking  
PCF2123U/5GA/1  
PCF2123U/10AA/1  
PCF2123U/12AA/1  
PCF2123U/12HA/1  
687  
200  
200  
150  
6 inch  
6 inch  
6 inch  
6 inch  
wafer mapping[1]  
inking  
[1] Wafer mapping information will be distributed to customer’s ftp server.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
52 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
214.50 mm  
73.68 mm 71.79 mm  
+0  
1.2  
mm  
0.1  
metal frame  
0.25  
straight edge  
of the wafer  
214.50 mm 193.50 mm  
plastic film  
013aaa350  
Fig 37. Film Frame Carrier (FFC) for 6 inch wafer (PCF2123U/10AA/1)  
276 mm  
60.2 mm  
63.5 mm  
2.6 mm  
plastic frame  
0.3  
straight edge  
of the wafer  
276 mm  
250 mm  
plastic film  
013aaa351  
Fig 38. Film Frame Carrier (FFC) for 8 inch wafer (PCF2123U/12AA/1 and PCF2123U/12HA/1)  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
53 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
19. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
19.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
19.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
19.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
54 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
19.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 39) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 51 and 52  
Table 51. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 52. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 39.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
55 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 39. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
56 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
20. Footprint information for reflow soldering  
Footprint information for reflow soldering of HVQFN16 package  
SOT758-1  
Hx  
Gx  
D
P
0.025  
0.025  
C
(0.105)  
SPx  
SPy  
nSPx  
Hy Gy  
SLy By  
Ay  
nSPy  
SPx tot  
SLx  
Bx  
Ax  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
solder paste deposit  
solder land plus solder paste  
occupied area  
nSPx nSPy  
1
1
Dimensions in mm  
Ax  
P
Ay  
Bx  
By  
C
D
SLx  
SLy  
SPx tot  
0.650  
SPy tot  
0.650  
SPx  
SPy  
Gx  
Gy  
Hx  
Hy  
0.500 4.000 4.000 2.200 2.200 0.900 0.240 1.500 1.500  
0.650 0.650 3.300 3.300 4.250 4.250  
07-05-07  
Issue date  
sot758-1_fr  
09-06-15  
Fig 40. Footprint information for reflow soldering of SOT758-1 (HVQFN16) package of PCF2123BS/1  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
57 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Footprint information for reflow soldering of TSSOP14 package  
SOT402-1  
Hx  
Gx  
P2  
(0.125)  
(0.125)  
Hy Gy  
By Ay  
C
D2 (4x)  
P1  
D1  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ay  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.650 0.750 7.200 4.500 1.350 0.400 0.600 4.950 5.300 5.800 7.450  
sot402-1_fr  
Fig 41. Footprint information for reflow soldering of SOT402-1 (TSSOP14) package of PCF2123TS/1  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
58 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
21. Abbreviations  
Table 53. Abbreviations  
Acronym  
CMOS  
BCD  
ESD  
FFC  
Description  
Complementary Metal Oxide Semiconductor  
Binary Coded Decimal  
ElectroStatic Discharge  
Film Frame Carrier  
HBM  
LSB  
Human Body Model  
Least Significant Bit  
MM  
Machine Model  
MOS  
MSB  
MSL  
PCB  
RTC  
Metal Oxide Semiconductor  
Most Significant Bit  
Moisture Sensitivity Level  
Printed-Circuit Board  
Real Time Clock  
SMD  
SPI  
Surface Mount Device  
Serial Peripheral Interface  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
59 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
22. References  
[1] AN10365 Surface mount reflow soldering description  
[2] AN10366 HVQFN application information  
[3] AN10706 Handling bare die  
[4] AN10853 Handling precautions of ESD sensitive devices  
[5] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[6] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[7] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[8] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[9] JESD78 IC Latch-Up Test  
[10] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[11] NX3-00092 NXP store and transport requirements  
[12] SNV-FA-01-02 Marking Formats Integrated Circuits  
23. Revision history  
Table 54. Revision history  
Document ID  
PCF2123 v.5  
Modifications:  
Release date  
20110427  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF2123 v.4  
Added product type PCF2123U/5GA/1  
Adjusted the bare die outline drawings  
Added 3d package drawings  
Added footprint information  
PCF2123 v.4  
PCF2123 v.3  
PCF2123_2  
PCF2123_1  
20101222  
20101005  
20091204  
20081119  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
-
PCF2123 v.3  
PCF2123_2  
PCF2123_1  
-
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
60 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
24. Legal information  
24.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
24.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
24.3 Disclaimers  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
61 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
transportation conditions. If there are data sheet limits not guaranteed, these  
will be separately indicated in the data sheet. There are no post-packing tests  
performed on individual die or wafers.  
NXP Semiconductors has no control of third party procedures in the sawing,  
handling, packing or assembly of the die. Accordingly, NXP Semiconductors  
assumes no liability for device functionality or performance of the die or  
systems after third party sawing, handling, packing or assembly of the die. It  
is the responsibility of the customer to test and qualify their application in  
which the die is used.  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
All die sales are conditioned upon and subject to the customer entering into a  
written die sale agreement with NXP Semiconductors through its legal  
department.  
24.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Bare die — All die are tested on compliance with their related technical  
specifications as stated in this data sheet up to the point of wafer sawing and  
are handled in accordance with the NXP Semiconductors storage and  
25. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF2123  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2011. All rights reserved.  
Product data sheet  
Rev. 5 — 27 April 2011  
62 of 63  
PCF2123  
NXP Semiconductors  
SPI Real time clock/calendar  
26. Contents  
1
2
3
4
5
6
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.8  
8.8.1  
8.9  
8.10  
8.11  
Clock output. . . . . . . . . . . . . . . . . . . . . . . . . . 28  
CLKOE pin. . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Offset register . . . . . . . . . . . . . . . . . . . . . . . . 29  
External clock test mode . . . . . . . . . . . . . . . . 32  
STOP bit function. . . . . . . . . . . . . . . . . . . . . . 33  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
9
3-line serial interface . . . . . . . . . . . . . . . . . . . 35  
Interface watchdog timer . . . . . . . . . . . . . . . . 37  
Internal circuitry . . . . . . . . . . . . . . . . . . . . . . . 38  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 39  
Static characteristics . . . . . . . . . . . . . . . . . . . 40  
Dynamic characteristics. . . . . . . . . . . . . . . . . 42  
Application information . . . . . . . . . . . . . . . . . 44  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 45  
Bare die outline . . . . . . . . . . . . . . . . . . . . . . . . 48  
Handling information . . . . . . . . . . . . . . . . . . . 52  
Packing information . . . . . . . . . . . . . . . . . . . . 52  
9.1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
8.1  
8.1.1  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Low power operation . . . . . . . . . . . . . . . . . . . . 6  
Power consumption with respect to  
quartz series resistance . . . . . . . . . . . . . . . . . . 6  
Power consumptions with respect to  
8.1.2  
timer mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Register overview. . . . . . . . . . . . . . . . . . . . . . . 8  
Control registers . . . . . . . . . . . . . . . . . . . . . . . . 9  
Register Control_1 . . . . . . . . . . . . . . . . . . . . . . 9  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Register Control_2 . . . . . . . . . . . . . . . . . . . . . 11  
Time and date function . . . . . . . . . . . . . . . . . . 12  
Register Seconds . . . . . . . . . . . . . . . . . . . . . . 12  
OS flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Register Minutes. . . . . . . . . . . . . . . . . . . . . . . 13  
Register Hours . . . . . . . . . . . . . . . . . . . . . . . . 13  
Register Days. . . . . . . . . . . . . . . . . . . . . . . . . 14  
Register Weekdays. . . . . . . . . . . . . . . . . . . . . 14  
Register Months . . . . . . . . . . . . . . . . . . . . . . . 14  
Register Years . . . . . . . . . . . . . . . . . . . . . . . . 15  
Setting and reading the time. . . . . . . . . . . . . . 15  
Alarm function. . . . . . . . . . . . . . . . . . . . . . . . . 17  
Register Minute_alarm . . . . . . . . . . . . . . . . . . 17  
Register Hour_alarm . . . . . . . . . . . . . . . . . . . 17  
Register Day_alarm . . . . . . . . . . . . . . . . . . . . 17  
Register Weekday_alarm . . . . . . . . . . . . . . . . 18  
Alarm flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Timer functions . . . . . . . . . . . . . . . . . . . . . . . . 20  
Register Timer_clkout. . . . . . . . . . . . . . . . . . . 20  
Register Countdown_timer . . . . . . . . . . . . . . . 20  
Minute and second interrupt. . . . . . . . . . . . . . 20  
Countdown timer function. . . . . . . . . . . . . . . . 22  
Timer flags . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Interrupt output . . . . . . . . . . . . . . . . . . . . . . . . 25  
Minute and second interrupts . . . . . . . . . . . . . 26  
Countdown timer interrupts. . . . . . . . . . . . . . . 26  
Alarm interrupts . . . . . . . . . . . . . . . . . . . . . . . 27  
Correction pulse interrupts . . . . . . . . . . . . . . . 27  
8.2  
8.3  
8.3.1  
8.3.1.1  
8.3.2  
8.4  
19  
Soldering of SMD packages. . . . . . . . . . . . . . 54  
Introduction to soldering. . . . . . . . . . . . . . . . . 54  
Wave and reflow soldering. . . . . . . . . . . . . . . 54  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 54  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 55  
19.1  
19.2  
19.3  
19.4  
8.4.1  
8.4.1.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.4.7  
8.4.8  
8.5  
8.5.1  
8.5.2  
8.5.3  
8.5.4  
8.5.5  
8.6  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
8.7  
8.7.1  
8.7.2  
8.7.3  
8.7.3.1  
20  
21  
22  
23  
Footprint information for reflow soldering. . 57  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 59  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 60  
24  
Legal information . . . . . . . . . . . . . . . . . . . . . . 61  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 61  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
24.1  
24.2  
24.3  
24.4  
25  
26  
Contact information . . . . . . . . . . . . . . . . . . . . 62  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2011.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 27 April 2011  
Document identifier: PCF2123  

相关型号:

PCF2110

LCD Display Driver
ETC

PCF2111

LCD drivers
NXP

PCF2111C

LCD drivers
NXP

PCF2111CP

LCD drivers
NXP

PCF2111CPN

IC LIQUID CRYSTAL DISPLAY DRIVER, PDIP40, Display Driver
NXP

PCF2111CT

LCD drivers
NXP

PCF2111CT-T

LIQUID CRYSTAL DISPLAY DRIVER, PDSO40, PLASTIC, SOT158-1, VSOP-40
NXP

PCF2111CT/1,112

PCF21xxC family - LCD drivers VSOP 40-Pin
NXP

PCF2111CT/1,118

PCF21xxC family - LCD drivers VSOP 40-Pin
NXP

PCF2111CT/F1,112

PCF21xxC family - LCD drivers VSOP 40-Pin
NXP

PCF2111CT/F1,118

PCF21xxC family - LCD drivers VSOP 40-Pin
NXP

PCF2111CT/S410/1,1

PCF21xxC family - LCD drivers VSOP 40-Pin
NXP