PCF8537 [NXP]

Industrial LCD driver for multiplex rates up to 1:8; 8:复用率高达1工业LCD驱动器
PCF8537
型号: PCF8537
厂家: NXP    NXP
描述:

Industrial LCD driver for multiplex rates up to 1:8
8:复用率高达1工业LCD驱动器

驱动器 CD
文件: 总82页 (文件大小:2925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8537  
Industrial LCD driver for multiplex rates up to 1:8  
Rev. 1 — 31 May 2012  
Product data sheet  
1. General description  
The PCF8537 is a fully featured Liquid Crystal Display (LCD)1 driver, specifically designed  
for high-contrast Vertical Alignment (VA) LCD with multiplex rates up to 1:8. It generates  
the drive signals for any static or multiplexed LCD containing up to eight backplanes,  
46 segments, and up to 352 elements. The PCF8537 features an internal charge pump  
with internal capacitors for on-chip generation of the LCD driving voltage. To ensure an  
optimal and stable contrast over the full temperature range, the PCF8537 offers a  
programmable temperature compensation of the LCD supply voltage. The PCF8537 can  
be easily connected to a microcontroller by either the two-line I2C-bus (PCF8537AH) or a  
three-line bidirectional SPI-bus (PCF8537BH).  
2. Features and benefits  
Low-power single-chip LCD controller and driver  
352 elements allowing to drive:  
up to 44 7-segment alphanumeric characters  
up to 22 14-segment alphanumeric characters  
Selectable backplane drive configuration: static, 2, 4, 6, or 8 backplane multiplexing  
Software programmable internal charge pump for on-chip LCD voltage generation up  
to 9 V with internal capacitors  
400 kHz I2C-bus interface (PCF8537AH)  
5 MHz SPI-bus interface (PCF8537BH)  
Programmable temperature compensation of VLCD in four regions  
Selectable display bias configuration  
Wide range for digital power supply: from 1.8 V to 5.5 V  
Wide LCD supply range: from 2.5 V for low threshold LCDs and up to 9.0 V for high  
threshold twisted nematic LCDs  
Display memory bank switching in static, duplex, and quadruplex drive modes  
352-bit RAM for display data storage  
Programmable frame frequency in the range of 60 Hz to 300 Hz in steps of 10 Hz;  
factory calibrated  
Integrated temperature sensor with temperature readout  
On chip calibration of internal oscillator frequency and VLCD  
Manufactured in silicon gate CMOS process  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 17.  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
3. Applications  
White goods  
Handheld electronics  
Battery operated equipment  
Machine control systems  
Measuring equipment  
Information boards  
Panels  
Consumer  
Industrial  
Medical and health care  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Interface type  
Package  
Name  
Description  
Version  
PCF8537AH/1  
PCF8537BH/1  
I2C-bus  
SPI-bus  
TQFP64  
plastic thin quad flat package; 64 leads;  
body 10 10 1.0 mm  
SOT357-1  
TQFP64  
plastic thin quad flat package; 64 leads;  
SOT357-1  
body 10 10 1.0 mm  
5. Marking  
Table 2.  
Marking codes  
Type number  
PCF8537AH/1  
PCF8537BH/1  
Marking code  
PCF8537AH  
PCF8537BH  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
2 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
6. Block diagram  
S44/BP7  
S45/BP6  
VLCD  
BP0 to BP5  
S0 to S43  
VDD2  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT OUTPUTS  
LCD  
VOLTAGE  
SELECTOR  
CHARGE  
PUMP  
(VOLTAGE  
MULTIPLIER)  
DISPLAY REGISTER  
DISPLAY  
CONTROL  
OUTPUT BANK SELECT  
LCD BIAS  
GENERATOR  
V
SS  
DISPLAY RAM  
PCF8537AH  
CLOCK SELECT  
AND TIMING  
TEMPERATURE  
SENSOR  
OSCILLATOR  
CLK  
DATA POINTER,  
AUTO INCREMENT  
COMMAND  
DECODER  
WRITE DATA  
CONTROL  
POWER-ON  
RESET  
RESET  
2
SCL  
SDA  
I C-BUS  
CONTROLLER  
013aaa671  
A0  
VSS  
VDD1  
T1 T2 T3  
Fig 1. Block diagram of PCF8537AH  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
3 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
S44/BP7  
S45/BP6  
VLCD  
BP0 to BP5  
S0 to S43  
VDD2  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT OUTPUTS  
LCD  
VOLTAGE  
SELECTOR  
CHARGE  
PUMP  
(VOLTAGE  
MULTIPLIER)  
DISPLAY REGISTER  
DISPLAY  
CONTROL  
OUTPUT BANK SELECT  
LCD BIAS  
GENERATOR  
V
SS  
DISPLAY RAM  
PCF8537BH  
CLOCK SELECT  
AND TIMING  
TEMPERATURE  
SENSOR  
OSCILLATOR  
CLK  
DATA POINTER,  
AUTO INCREMENT  
COMMAND  
DECODER  
WRITE DATA  
CONTROL  
POWER-ON  
RESET  
RESET  
SCL  
SPI-BUS  
CONTROLLER  
SDIO  
013aaa672  
CE  
VSS  
VDD1  
T1 T2 T3  
Fig 2. Block diagram of PCF8537BH  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
4 of 82  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
7. Pinning information  
7.1 Pinning  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
BP3  
BP2  
BP1  
BP0  
VLCD  
VDD2  
VDD1  
VSS  
T3  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
BP3  
BP2  
BP1  
BP0  
VLCD  
VDD2  
VDD1  
VSS  
T3  
3
3
4
4
5
5
6
6
7
7
8
8
PCF8537AH  
PCF8537BH  
9
9
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
15  
16  
CLK  
T2  
CLK  
T2  
T1  
T1  
A0  
SDIO  
SCL  
CE  
SCL  
SDA  
RESET  
RESET  
013aaa673  
013aaa674  
Top view. For mechanical details, see Figure 62.  
Top view. For mechanical details, see Figure 62.  
Fig 3. Pin configuration for TQFP64 (PCF8537AH)  
Fig 4. Pin configuration for TQFP64 (PCF8537BH)  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
7.2 Pin description  
Table 3.  
Pin  
Pin description of PCF8537AH and PCF8537BH  
Symbol  
Type  
Description  
PCF8537AH PCF8537BH  
1 to 32  
33  
S31 to S0  
output  
input  
LCD segments  
RESET  
active low reset input  
34  
SDA  
input/output I2C-bus serial data  
CE  
input  
input  
input  
input  
SPI-bus chip enable - active LOW  
I2C-bus serial clock  
35  
36  
SCL  
SCL  
A0  
SPI-bus serial clock  
I2C-bus slave address selection  
SDIO  
T1 to T3  
input/output SPI-bus serial data  
input test pins; must be tied to VSS in  
applications  
37, 38,  
40  
39  
CLK  
input/output internal oscillator output, external  
oscillator input  
41  
VSS  
VDD1  
supply  
supply  
supply  
supply  
output  
output  
ground supply  
supply voltage 1  
supply voltage 2  
LCD supply[2]  
42  
43  
VDD2  
44  
VLCD[1]  
BP0 to BP5  
S45/BP6  
45 to 50  
51  
LCD backplanes  
LCD segments for 1:6 multiplex drive  
mode;  
LCD backplanes for 1:8 multiplex drive  
mode  
52  
S44/BP7  
output  
output  
53 to 64  
S43 to S32  
LCD segments  
[1] VLCD must be equal to or greater than VDD2  
.
[2] When the internal VLCD generation is used, this pin drives the VLCD voltage. In this case pin VLCD is an  
output. When the external supply is requested, then pin VLCD is an input and VLCD can be supplied on it. In  
this case, the internal charge pump must be disabled (see Table 8).  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
6 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8. Functional description  
The PCF8537 is a versatile peripheral device designed to interface any microcontroller to  
a wide variety of LCDs. It can directly drive any static or multiplexed LCD containing up to  
352 elements.  
8.1 Commands of PCF8537  
The commands to control the PCF8537 are defined in Table 4. Any other combinations of  
operation code bits that are not mentioned in this document can lead to undesired  
operation modes of PCF8537.  
Table 4.  
Commands of PCF8537  
The bit labeled with - is not implemented.  
Command name RS[1] Bits  
Reference  
7
6
0
1
1
1
1
0
0
0
0
1
1
0
0
1
0
1
0
5
4
1
1
0
0
0
1
0
0
1
0
1
1
0
0
3
1
0
1
0
1
1
0
1
0
2
0
0
1
0
0
1
1
0
0
0
0
Initialize  
0
0
0
0
1
Section 8.1.1  
Section 8.1.2  
OTP-refresh  
Oscillator-ctrl  
1
0
1
0
COE OSC Section 8.1.3  
CPC  
TME  
Charge-pump-ctrl 0  
1
0
CPE  
TCE  
Section 8.1.4  
Section 8.1.5  
Section 8.1.6  
Temp-msr-ctrl  
Temp-comp  
0
0
0
0
0
0
0
0
0
0
1
0
0
0
SLA[2:0]  
SLB[2:0]  
SLC[2:0]  
SLD[2:0]  
0
1
0
1
0
1
Set-VPR  
0
0
VPR[7:4]  
VPR[3:0]  
Section 8.1.7  
0
0
Display-enable  
Set-MUX-mode  
Set-bias-mode  
0
1
1
0
0
0
0
E
Section 8.1.8  
Section 8.1.9  
Section 8.1.10  
Section 8.1.11  
Section 8.1.12  
0
0
M[2:0]  
1
1
0
B[1:0]  
Load-data-pointer 0  
1
P[5:0]  
Frame-frequency  
Bank-select  
0
0
1
-
0
1
0
F[4:0]  
0
IBS  
0
1
0
OBS Section 8.1.13  
Section 8.1.14  
Write-RAM-data  
Temp-read  
B[7:0]  
TD[7:0]  
Section 8.1.15  
Invmode_ctrl  
Temp-filter  
0
0
1
1
1
1
0
0
1
1
0
0
1
0
LF  
1
0
Section 8.1.16  
Section 8.1.17  
TFE  
[1] For further information about the register selection bit, see Table 30 on page 52.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
7 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.1.1 Command: Initialize  
This command generates a chip-wide reset which resets all command values to their  
default values. After this command is sent, it is possible to send additional commands  
without the need to re-initialize the interface. The reset takes 100 ns to complete.  
Table 5.  
Initialize - initialize command bit description  
For further information, see Section 8.2 on page 17.  
Bit  
Symbol  
Binary value Description  
00111010 fixed value  
7 to 0  
-
8.1.2 Command: OTP-refresh  
During production and testing of the device, each IC is calibrated to achieve the specified  
accuracy of VLCD, the frame frequency, and the temperature measurement. This  
calibration is performed on EPROM cells called One Time Programmable (OTP) cells.  
The device reads these cells every time at power-on, after a reset, and every time when  
the initialize command or the OTP-refresh command is sent.  
Remark: It is recommended not to enter power-down mode during the OTP refresh cycle.  
Table 6.  
Bit  
OTP-refresh - OTP-refresh command bit description  
Symbol Binary value Description  
- 11010000 fixed value  
7 to 0  
8.1.3 Command: Oscillator-ctrl  
The Oscillator-ctrl command switches between internal and external oscillator and  
enables or disables the pin CLK.  
Table 7.  
Oscillator-ctrl - oscillator control command bit description  
For further information, see Section 8.1.3.1.  
Bit  
7 to 2  
1
Symbol  
Binary value Description  
-
110011  
fixed value  
COE  
control pin CLK  
0[1]  
1
clock signal not available on pin CLK;  
pin CLK is in 3-state and may be left floating  
clock signal available on pin CLK  
oscillator source  
0
OSC  
0[1]  
1
internal oscillator used  
external oscillator used;  
pin CLK becomes an input  
[1] Default value.  
8.1.3.1 Oscillator  
The internal logic and LCD drive signals of the PCF8537 are timed either by the built-in  
oscillator or from an external clock.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
8 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.1.3.2 Internal oscillator  
When the internal oscillator is used, it is possible to make the clock signal available on pin  
CLK by using the Oscillator-ctrl command (see Table 7). If this is not intended, the pin  
CLK should be left open. At power-on the signal at pin CLK is disabled and pin CLK is in  
3-state.  
If the internal charge pump is enabled, then the internal oscillator starts and is used to run  
the charge pump. An external oscillator can still be applied for driving the display  
waveforms.  
The duty cycle of the output clock provided on the CLK pin is not always 50 : 50. Table 17  
on page 13 shows the expected duty cycle for each of the chosen frame frequencies.  
8.1.3.3 External clock  
In applications where an external clock must be applied to the PCF8537, bit OSC (see  
Table 7) must be set logic 1. In this case, pin CLK becomes an input.  
The CLK signal is a signal that is fed into the VDD1 domain. Therefore it must have an  
amplitude equal to the VDD1 voltage supplied to the chip and be referenced to VSS  
.
The clock frequency (fclk) determines the LCD frame frequency.  
Remark: If an external clock is used then this clock signal must always be supplied to the  
device. Removing the clock can freeze the LCD in a DC state. Removal of the clock is  
possible when following the correct procedures (see Figure 11 on page 21 and Figure 12  
on page 22).  
8.1.4 Command: Charge-pump-ctrl  
The Charge-pump-ctrl command enables or disables the internal VLCD generation and  
controls the charge pump voltage multiplier setting.  
Table 8.  
Charge-pump-ctrl - charge pump control command bit description  
For further information, see Table 11 on page 11 and Section 8.4.3 on page 26.  
Bit  
7 to 2  
1
Symbol  
Binary value Description  
-
110000  
fixed value  
CPE  
charge pump switch  
0[1]  
charge pump disabled;  
no internal VLCD generation;  
external supply of VLCD  
1
charge pump enabled  
charge pump voltage multiplier setting  
VLCD = 2 VDD2  
0
CPC  
0[1]  
1
VLCD = 3 VDD2  
[1] Default value.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
9 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.1.5 Command: Temp-msr-ctrl  
The Temp-msr-ctrl command enables or disables the temperature measurement block  
and the temperature compensation of VLCD  
.
Table 9.  
Temp-msr-ctrl - temperature measurement control command bit description  
For further information, see Section 8.4.4 on page 28.  
Bit  
7 to 2  
1
Symbol  
Binary value Description  
-
110010  
fixed value  
TCE  
temperature compensation switch  
0
no temperature compensation of VLCD  
possible  
1[1]  
temperature compensation of VLCD possible  
temperature measurement switch  
temperature measurement disabled:  
no temperature readout possible  
0
TME  
0
1[1]  
temperature measurement enabled:  
temperature readout possible  
[1] Default value.  
8.1.6 Command: Temp-comp  
The Temp-comp command allows setting the temperature compensation coefficients for  
each of the temperature regions SFA to SFD. For further information, see Section 8.4.4.2.  
Table 10. Temp-comp - temperature compensation coefficients command  
For further information, see Section 8.4.4 on page 28.  
Bit  
Symbol  
Binary value Description  
SLA  
7 to 3  
-
00011  
fixed value  
2 to 0 SLA[2:0]  
000[1] to 111  
temperature compensation coefficient SLA,  
see Table 26 on page 30  
SLB  
7 to 3  
-
00100  
fixed value  
2 to 0 SLB[2:0]  
000[1] to 111  
temperature compensation coefficient SLB,  
see Table 26 on page 30  
SLC  
7 to 3  
-
00101  
fixed value  
2 to 0 SLC[2:0]  
000[1] to 111  
temperature compensation coefficient SLC,  
see Table 26 on page 30  
SLD  
7 to 3  
-
00110  
fixed value  
2 to 0 SLD[2:0]  
000[1] to 111  
temperature compensation coefficient SLD,  
see Table 26 on page 30  
[1] Default value.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
10 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.1.7 Command: Set-VPR  
With these two instructions, it is possible to set the target VLCD voltage for the internal  
charge pump.  
Table 11. Set-VPR - set VPR command bit description  
For further information, see Section 8.4.2 on page 25.  
Bit  
Set-VPR MSB  
7 to 4  
Symbol  
Binary value Description  
-
0100  
fixed value  
3 to 0 VPR[7:4]  
0000[1] to  
1111[2]  
the four most significant bits of VPR[7:0]  
Set-VPR LSB  
7 to 4  
-
0101  
fixed value  
3 to 0 VPR[3:0]  
0000[1] to  
1111[2]  
the four least significant bits of VPR[7:0]  
[1] Default value.  
[2] VPR[7:0] = 0h results in Vprog(LCD) = 3 V;  
VPR[7:0] = C8h results in Vprog(LCD) = 9 V.  
8.1.8 Command: Display-enable  
This command allows switching the display on and off. The possibility to disable and  
enable the display allows implementation of blinking the entire display under external  
control.  
Table 12. Display-enable - display enable command bit description  
Bit  
7 to 1  
0
Symbol  
Binary value Description  
-
0011100  
0[1]  
fixed value  
E
display disabled  
backplane and segment outputs are internally  
connected to VSS  
1
display enabled  
[1] Default value.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
11 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.1.9 Command: Set-MUX-mode  
The multiplex drive mode is configured with the bits described in Table 13.  
Table 13. Set-MUX-mode - set multiplex drive mode command bit description  
For further information, see Section 8.4.5 on page 31.  
Bit  
Symbol  
Binary value Description  
7 to 3  
-
00000  
fixed value  
2 to 0 M[2:0]  
000[1]  
011  
101  
111  
1:8 multiplex drive mode  
8 backplanes and 44 segments  
110  
100  
010  
001  
1:6 multiplex drive mode  
6 backplanes and 46 segments  
1:4 multiplex drive mode  
4 backplanes and 44 segments  
1:2 multiplex drive mode  
2 backplanes and 44 segments  
static drive mode  
1 backplane and 44 segments  
[1] Default value.  
8.1.10 Command: Set-bias-mode  
The Set-bias-mode command allows setting the bias level.  
Table 14. Set-bias-mode - set bias mode command bit description  
For further information, see Section 8.4.5 on page 31.  
Bit  
Symbol  
Binary value Description  
7 to 2  
-
110001  
fixed value  
1 to 0 B[1:0]  
LCD bias configuration[1]  
14 bias  
00[2]  
01  
11  
10  
13 bias  
12 bias  
[1] Not applicable for static drive mode.  
[2] Default value.  
8.1.11 Command: Load-data-pointer  
The Load-data-pointer command defines the display RAM address where the following  
display data will be sent to.  
Table 15. Load-data-pointer - load data pointer command bit description  
For further information, see Section 8.8 on page 44.  
Bit  
Symbol  
Binary value Description  
7 to 6  
-
10  
fixed value  
5 to 0 P[5:0]  
000000 to  
101101  
RAM address  
6-bit binary value of 0 to 45  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
12 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.1.12 Command: Frame-frequency  
With the Frame-frequency command, the frame frequency and the output clock frequency  
can be configured.  
Table 16. Frame frequency - frame frequency and output clock frequency command bit  
description  
Bit  
Symbol  
Binary value Description  
7 to 5  
-
011  
fixed value  
4 to 0 F[4:0]  
see Table 17  
frame frequency values, see Table 17  
Table 17. Frame frequency values  
F[4:0]  
Nominal frame  
frequency ffr (Hz)[1]  
Resultant output  
clock frequency,  
fclk(o) (Hz)  
Duty cycle (%)[2]  
00000  
60  
2880  
3360  
3840  
4368  
4800  
5232  
5760  
6226  
6778  
7200  
7680  
8227  
8534  
9216  
9600  
10018  
10474  
10973  
11520  
12125  
12802  
13555  
14400  
20 : 80  
7 : 93  
00001  
70  
00010  
80  
47 : 53  
40 : 60  
33 : 67  
27 : 73  
20 : 80  
13 : 87  
5 : 95  
00011  
91  
00100  
100  
00101  
109  
00110  
120  
00111  
129.7  
141.2  
150  
01000  
01001  
50 : 50  
47 : 53  
43 : 57  
41 : 59  
36 : 64  
33 : 67  
30 : 70  
27 : 73  
23 : 77  
20 : 80  
16 : 84  
10 : 90  
5 : 95  
01010  
160  
01011  
171.4  
177.8  
192  
01100  
01101  
01110[3]  
200  
01111  
208.7  
218.2  
228.6  
240  
10000  
10001  
10010  
10011  
252.6  
266.7  
282.4  
300  
10100, 10101  
10110, 10111  
11000 to 11111  
50 : 50  
[1] Nominal frame frequency calculated for the default clock frequency of 9600 Hz.  
[2] Duty cycle definition: % HIGH-level time : % LOW-level time.  
[3] Default value.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
13 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.1.12.1 Timing and frame frequency  
The timing of the PCF8537 organizes the internal data flow of the device. This includes  
the transfer of display data from the display RAM to the display segment outputs. The  
timing also generates the LCD frame frequency. The frame frequency is a fixed division of  
the internal clock or of the frequency applied to pin CLK when an external clock is used.  
When the internal clock is used, the clock frequency can be programmed by software  
such that the nominal frame frequency can be chosen in steps of 10 Hz in the range of  
60 Hz to 300 Hz (see Table 17). Furthermore the nominal frame frequency is  
factory-calibrated with an accuracy of ±15 %.  
When the internal clock is enabled at pin CLK by using bit COE, the duty ratio of the clock  
may change when choosing different values for the frame frequency prescaler. Table 17  
shows the different output duty ratios for each frame frequency prescaler setting.  
8.1.13 Command: Bank-select  
For the multiplex drive modes 1:4, 1:2, and the static drive mode, it is possible to write  
data to one area of the RAM while displaying from another. These areas are named RAM  
banks. There are two banks, 0 and 1. Figure 39 on page 50 and Figure 40 on page 50  
show the concept. The Bank-select command controls where data is written to and where  
it is displayed from.  
Table 18. Bank-select - bank select command bit description  
For further information, see Section 8.9 on page 50.  
Bit  
7 to 2  
1
Symbol  
Binary value Description  
-
000010  
fixed value  
IBS  
selects RAM bank to write to  
0[1]  
1
Bank 0  
Bank 1  
0
OBS  
selects RAM bank to read from to the LCD  
0[1]  
1
Bank 0  
Bank 1  
[1] Default value.  
8.1.14 Command: Write-RAM-data  
By setting the RS bit of the control byte to logic 1, all data transferred is interpreted as  
RAM data and placed in the RAM in accordance with the current setting of the RAM  
address pointer (see Section 8.1.11 on page 12). Definition of the RS can be found in  
Table 30 on page 52.  
Remark: After Power-On Reset (POR) the RAM content is random and should be brought  
to a defined status by clearing it (setting it to logic 0).  
Table 19. Write-RAM-data - write RAM data command bit description  
For further information, see Section 8.8 on page 44.  
Bit  
Symbol  
Binary value Description  
7 to 0 B[7:0]  
00000000 to  
11111111  
writing data byte-wise to the RAM  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
14 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.1.15 Command: Temp-read  
The Temp-read command allows reading out the temperature values measured by the  
internal temperature sensor.  
Table 20. Temp-read - temperature readout command bit description  
For further information, see Section 8.4.4 on page 28.  
Bit  
Symbol  
Binary value Description  
7 to 0 TD[7:0]  
00000000 to  
11111111  
digital temperature values[1]  
[1] For this command, bit R/W of the I2C-bus slave address byte has to be set logic 1 (see Table 31).  
8.1.16 Command: Invmode_ctrl  
The Invmode_ctrl command allows changing the drive scheme inversion mode.  
The waveforms used to drive LCD displays inherently produce a DC voltage across the  
display cell. The PCF8537 compensates for the DC voltage by inverting the waveforms on  
alternate frames or alternate lines. The choice of compensation method is determined  
with the LF bit.  
Table 21. Invmode_ctrl - drive scheme inversion command bit description  
For further information, see Section 8.4.6 on page 34.  
Bit  
7 to 2  
1
Symbol  
Binary value Description  
-
110101  
fixed value  
LF  
set inversion mode  
0[1]  
1
driving scheme A: line inversion mode  
driving scheme B: frame inversion mode  
fixed value  
0
-
0
[1] Default value.  
In frame inversion mode, the DC value is compensated across two frames and not within  
one frame. Changing the inversion mode to frame inversion reduces the power  
consumption, therefore it is useful when power consumption is a key point in the  
application.  
Frame inversion may not be suitable for all applications. The RMS voltage across a  
segment is better defined, however since the switching frequency is reduced there is  
possibility for flicker to occur.  
Figure 24 on page 34 to Figure 30 on page 40 are showing the waveforms in line  
inversion mode. Figure 31 on page 41 shows an example of frame inversion.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
15 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.1.17 Command: Temp-filter  
Table 22. Temp-filter - digital temperature filter command bit description  
For further information, see Section 8.4.4 on page 28.  
Bit  
7 to 1  
0
Symbol  
Binary value Description  
-
1101001  
fixed value  
TFE  
digital temperature filter switch  
0[1]  
digital temperature filter disabled; the  
unfiltered digital value of TD[7:0] is  
immediately available for the readout and  
VLCD compensation, see Section 8.4.4.1  
1
digital temperature filter enabled  
[1] Default value.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
16 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.2 Start-up and shut-down  
8.2.1 Power-On Reset (POR)  
At power-on, the PCF8537 resets to starting conditions as follows:  
1. All backplane and segment outputs are set to VSS  
2. Selected drive mode is: 1:8 with 14 bias.  
3. Input and output bank selectors are reset.  
4. The I2C-bus and SPI-bus interface are initialized.  
5. The data pointer is cleared (set logic 0).  
.
6. The internal oscillator is running; no clock signal is available on pin CLK; pin CLK is in  
3-state.  
7. Temperature measurement is enabled.  
8. Temperature filter is disabled.  
9. The internal VLCD voltage generation is disabled. The charge pump is switched off.  
10. The VLCD temperature compensation is enabled.  
11. The display is disabled.  
The reset state is as shown in Table 23.  
Table 23. Reset state  
Reset state of configuration bits shown in the command table format for clarity. The bit labeled with - has an undefined reset  
state.  
Command name  
Bits  
7
6
1
1
1
0
0
0
0
1
1
0
0
1
0
1
0
1
1
5
0
0
0
0
1
1
1
0
0
1
0
0
4
0
0
0
1
0
0
1
0
1
1
0
0
3
1
0
1
1
0
1
0
2
1
0
0
1
0
Oscillator-ctrl  
Charge-pump-ctrl  
Temp-msr-ctrl  
Temp-comp  
1
COE = 0  
CPE = 0  
TCE = 1  
OSC = 0  
CPC = 0  
TME = 1  
1
1
0
SLA[2:0] = 000  
SLB[2:0] = 000  
SLC[2:0] = 000  
SLD[2:0] = 000  
0
0
0
Set-VPR  
0
VPR[7:4] = 0000  
VPR[3:0] = 0000  
0
Display-enable  
Set-MUX-mode  
Set-bias-mode  
Load-data-pointer  
Frame-frequency  
Bank-select  
0
1
0
0
0
0
E = 0  
0
M[2:0] = 000  
1
1
B[1:0] = 00  
1
P[5:0] is undefined  
0
1
0
0
0
F[4:0] = 01110  
IBS = 0  
LF = 0  
1
0
0
1
1
1
0
0
0
1
0
OBS = 0  
-
Invmode_ctrl  
1
Temp-filter  
1
TFE = 0  
Remark: Do not transfer data on the I2C-bus or SPI-bus for at least 1 ms after a power-on  
reset to allow the reset action to complete.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
17 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
The first command sent to the device after the power-on event must be the Initialize  
command (see Section 8.1.1).  
After POR and before enabling the display, the RAM content should be brought to a  
defined status  
by clearing it (setting it all to logic 0) or  
by writing meaningful content (for example, a graphic)  
otherwise unwanted display artifacts may appear on the display.  
8.2.2 RESET pin function  
The RESET pin of the PCF8537 resets all the registers to their default state. The reset  
state is given in Table 23. The RAM contents remain unchanged. After the reset signal is  
removed, the PCF8537 will behave in the same manner as after POR. See Section 8.2.1  
for details.  
8.2.3 Recommended start-up sequences  
This chapter describes how to proceed with the initialization of the chip in different  
application modes.  
Set VPR  
register to  
desired V  
value  
LCD  
START  
Power-on  
V
and  
DD1  
Set  
V
at the  
DD2  
same time  
multiplication  
factor for  
charge pump  
and enable it  
Wait minimum  
1 ms  
Wait till  
V
reaches  
LCD  
programmed  
Initialize  
command  
(1)  
value  
Write RAM  
content to be  
displayed and  
enable the  
display  
Initiate an  
OTP-refresh  
STOP  
013aaa632  
(1) This time depends on the external capacitor on pin VLCD. For a capacitor of 100 nF a delay of 5 ms  
to 15 ms is expected.  
Fig 5. Recommended start-up sequence when using the internal charge pump and the  
internal clock signal  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
18 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
If the display is enabled too soon after the charge pump is enabled, then the VLCD voltage  
may not have yet stabilized leading to an uneven display effect.  
START  
Initiate an  
OTP-refresh  
Power-on  
, V  
V
DD1 DD2  
and V  
LCD  
at the  
same time  
Write RAM  
content to be  
displayed and  
enable the  
display  
Wait minimum  
1 ms  
STOP  
Initialize  
command  
013aaa633  
Fig 6. Recommended start-up sequence when using an external supplied VLCD and the  
internal clock signal  
START  
Apply external  
Power-on  
Wait till  
clock signal  
to pin CLK;  
set OSC bit  
V
and  
DD1  
DD2  
same time  
V
reaches  
LCD  
V
at the  
programmed  
(1)  
(1)  
value  
logic 1  
(2)  
Wait minimum  
1 ms  
Set VPR  
Write RAM  
content to be  
displayed and  
enable the  
display  
register to  
desired V  
value  
LCD  
Initialize  
command  
Set  
STOP  
multiplication  
factor for  
Initiate an  
OTP-refresh  
charge pump  
and enable it  
013aaa634  
(1) The external clock signal can be applied after the generation of the VLCD voltage as well.  
(2) This time depends on the external capacitor on pin VLCD. For a capacitor of 100 nF a delay of 5 ms  
to 15 ms is expected.  
Fig 7. Recommended start-up sequence when using the internal charge pump and an  
external clock signal  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
19 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
START  
Power-on  
, V  
V
DD1 DD2  
Apply external  
clock signal  
to pin CLK;  
set OSC bit  
logic 1  
and V  
LCD  
at the  
same time  
Wait minimum  
1 ms  
Write RAM  
content to be  
displayed and  
enable the  
display  
Initialize  
command  
STOP  
Initiate an  
OTP-refresh  
013aaa635  
Fig 8. Recommended start-up sequence when using an external supplied VLCD and an  
external clock signal  
8.2.4 Recommended sequences to enter power-down mode  
With the following sequences, the PCF8537 can be set to a state of minimum power  
consumption, called power-down mode.  
START  
Disable dis-  
play by setting  
bit E logic 0  
Stop genera-  
tion of V  
LCD  
by setting bit  
CPE logic 0  
Disable tem-  
perature mea-  
surement by  
setting bit  
TME logic 0  
STOP  
013aaa636  
Fig 9. Recommended power-down sequence for minimum power-down current when  
using the internal charge pump and the internal clock signal  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
20 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
START  
Disable dis-  
play by setting  
bit E logic 0  
Disable tem-  
perature mea-  
surement by  
setting bit  
TME logic 0  
STOP  
013aaa637  
Fig 10. Recommended power-down sequence when using an external supplied VLCD and  
the internal clock signal  
START  
Disable dis-  
play by setting  
Bring pin CLK  
to 3-state by  
setting bit  
bit E logic 0  
OSC and bit  
COE logic 0  
Stop genera-  
tion of V  
LCD  
by setting bit  
CPE logic 0  
External  
clock may  
be switched  
off  
Disable tem-  
perature mea-  
surement by  
setting bit  
STOP  
TME logic 0  
013aaa638  
Fig 11. Recommended power-down sequence when using the internal charge pump and  
an external clock signal  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
21 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
START  
Bring pin CLK  
to 3-state by  
setting bit  
OSC and bit  
Disable dis-  
play by setting  
bit E logic 0  
COE logic 0  
External  
clock may  
be switched  
off  
Disable tem-  
perature mea-  
surement by  
setting bit  
TME logic 0  
STOP  
013aaa639  
Fig 12. Recommended power-down sequence for minimum power-down current when  
using an external supplied VLCD and an external clock signal  
Remark: It is necessary to run the power-down sequence before removing the supplies.  
Depending on the application, care must be taken that no other signals are present at the  
chip input or output pins when removing the supplies (see Section 10). Otherwise this  
may cause unwanted display artifacts. In the case of uncontrolled removal of supply  
voltages the PCF8537 will not be damaged.  
Remark: Static voltages across the liquid crystal display can build up when the external  
LCD supply voltage (VLCD) is on while the IC supply voltage (VDD1 or VDD2) is off, or the  
other way around. This may cause unwanted display artifacts. To avoid such artifacts,  
V
LCD, VDD1, and VDD2 must be applied or removed together.  
Remark: A clock signal must always be supplied to the device when the display is active.  
Removing the clock may freeze the LCD in a DC state, which is not suitable for the liquid  
crystal. It is recommended to first disable the display and afterwards to remove the clock  
signal.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
22 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.3 Possible display configurations  
The PCF8537 is a versatile peripheral device designed to interface between any  
microcontroller to a wide variety of LCD segment or dot matrix displays (see Figure 13). It  
can directly drive any static or multiplexed LCD containing up to eight backplanes with  
44 segments.  
The display configurations possible with the PCF8537 depend on the number of active  
backplane outputs required. A selection of possible display configurations is given in  
Table 24.  
dot matrix  
7-segment with dot  
14-segment with dot and accent  
013aaa312  
Fig 13. Example of displays suitable for PCF8537  
Table 24. Selection of display configurations  
Number of  
Digits/Characters  
7 segment[1] 14 segment[2]  
Dot matrix/  
Elements  
Backplanes  
Segments  
Icons  
352  
276  
176  
88  
8
6
4
2
1
44  
46  
44  
44  
44  
44  
34  
22  
11  
5
22  
17  
11  
5
352 dots (8 44)  
276 dots (6 46)  
176 dots (4 44)  
88 dots (2 44)  
44 dots (1 44)  
44  
2
[1] 7 segment display has 8 elements including the decimal point.  
[2] 14 segment display has 16 elements including decimal point and accent dot.  
All of the display configurations in Table 24 can be implemented in the typical systems  
shown in Figure 14 (internal VLCD) and in Figure 15 (external VLCD).  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
23 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
V
DD2  
V
DD1  
t
r
R =  
2C  
b
V
V
V
LCD  
DD1  
DD2  
SDA  
SCL  
44 segment drives  
8 backplanes  
HOST  
LCD PANEL  
(up to 352  
elements)  
PROCESSOR/  
MICRO-  
PCF8537AH  
CONTROLLER  
RESET  
A0 T1 T2 T3 V  
CLK  
n.c.  
SS  
V
013aaa675  
SS  
VDD1 from 1.8 V to 5.5 V and VDD2 from 2.5 V to 5.5 V.  
Fig 14. Typical I2C system configuration when using the internal VLCD generation  
V
LCD  
V
DD1  
V
V
V
LCD  
DD1  
DD2  
SDIO  
44 segment drives  
8 backplanes  
HOST  
LCD PANEL  
(up to 352  
elements)  
PROCESSOR/  
MICRO-  
SCL  
CE  
PCF8537BH  
CONTROLLER  
RESET  
T1 T2 T3 V  
CLK  
n.c.  
SS  
V
013aaa676  
SS  
VDD1 from 1.8 V to 5.5 V, VDD2 from 2.5 V to 5.5 V and VLCD from 2.5 V to 9.0 V.  
Fig 15. Typical SPI system configuration when using an external VLCD  
The host microcontroller maintains the two-line I2C-bus communication channel with the  
PCF8537AH or the three-line SPI-bus with the PCF8537BH. The appropriate biasing  
voltages for the multiplexed LCD waveforms are generated internally. The only other  
connections required to complete the system are the power supplies (VDD1, VDD2, VSS  
,
V
LCD), the external capacitors, and the LCD panel selected for the application.  
The recommended values for external capacitors on VDD1, VDD2, and VLCD are of nominal  
100 nF value. When using bigger capacitors, especially on the VLCD, the generated ripple  
will be consequently smaller. However it will take longer for the internal charge pump to  
first reach the target VLCD voltage.  
If VDD1 and VDD2 are connected externally, the capacitors on VDD1 and VDD2 can be  
replaced by a single capacitor with a nominal value of 220 nF.  
Remark: In case of insufficient decoupling, ripple on VDD1 and VDD2 will create additional  
V
LCD ripple. The ripple on the VLCD can be reduced by making the VSS connection as  
low-ohmic as possible. Excessive ripple on VLCD may cause flicker on the display.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
24 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.4 LCD supply voltage  
8.4.1 External VLCD supply  
VLCD can be directly supplied to the VLCD pin. In this case, the internal charge pump must  
not be enabled otherwise a high current may occur on pin VDD2 and pin VLCD. When  
V
LCD is supplied externally, no internal temperature compensation occurs on this voltage  
even if bit TCE is set logic 1 (see Section 8.4.4.2). The VLCD voltage which is supplied  
externally will be available at the segments and backplanes of the device through the  
chosen bias system. Also programming VPR[7:0] will have no effect on the VLCD which is  
externally supplied.  
8.4.2 Internal VLCD generation  
VLCD can be generated and controlled on the chip by using software commands. When  
the internal charge pump is used, the programmed VLCD is available on pin VLCD. The  
charge pump generates a VLCD of up to 3 VDD2. The charge pump can be enabled or  
disabled with the CPE bit (see Table 8 on page 9). With bit CPC, the charge pump  
multiplier setting can be configured.  
The final value of VLCD is a combination of the programmed Vprog(LCD) value and the  
output of the temperature compensation block, Voffset(LCD)  
.
VLCD = VprogLCD+ VoffsetLCD  
(1)  
The system is shown in Figure 16.  
SLA  
SLB  
SLC SLD  
V
0 OFFSET  
offset(LCD)  
TEMPERATURE  
READOUT  
8
8
TD[7:0]  
VT[7:0]  
-40  
0
+20  
+50  
+80  
TEMPERATURE  
0.03  
0.03  
3
8
8
VPR[7:0]  
V
LCD  
V
prog(LCD)  
013aaa640  
VPR[7:0] is the binary value of the programmed voltage. VT[7:0] is the binary value of the temperature compensated voltage.  
Its values come from the temperature compensation block and is a two’s complement which has the value 0h at 20 C.  
VprogLCD= VPR7:0  0.03 + 3 .  
The equations for Voffset(LCD), see Table 27 on page 31.  
Fig 16. VLCD generation including temperature compensation  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
25 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
Figure 17 illustrates how VLCD changes with the programmed value of VPR[7:0].  
013aaa661  
V
LCD  
9 V  
(2)  
0.03 V  
(1)  
V
DD2  
3 V  
00 01 02 03 04 05 06 . . .  
. . .  
C8  
CA . . . FC FD FE FF  
C9  
VPR[7:0]  
C7  
(1) If VDD2 > 3.0 V then VPR[7:0] must be set so that VLCD VDD2  
.
(2) Automatic limitation for VLCD > 9.0 V.  
Fig 17. VLCD programming of PCF8537 (assuming VT[7:0] = 0h)  
The programmable range of VPR[7:0] is from 0h to FFh. With the upper part of the  
programmable range, it is possible to achieve more than 9.0 V, but the PCF8537 has a  
built-in automatic limitation of VLCD at 9.0 V. If VDD2 is higher than 3.0 V, then it is  
important that VPR[7:0] is set to a value such that the resultant VLCD (including the  
temperature correction of VT[7:0]) is higher than VDD2  
.
8.4.3 Charge pump  
8.4.3.1 Charge pump configuration  
To obtain the desired VLCD values, the charge pump has to be configured properly. It has  
to be taken into account that the maximum theoretical values cannot be reached due to  
internal losses (see Section 8.4.3.2). So, for example, it is not possible to get a  
V
LCD = 6.0 V with VDD2 = 3.0 V and a charge pump configuration of 2 times VDD2. In this  
case, a charge pump configuration of 3 times VDD2 is needed.  
8.4.3.2 Charge pump driving capability  
Figure 18 and Figure 19 are showing the charge pump driving capability with different  
settings of VDD2 and charge pump configurations.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
26 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
013aaa664  
10  
8
V
LCD  
(V)  
(3)  
6
(2)  
4
(1)  
2
0
0
0.2  
0.4  
0.6  
0.8  
1
I
(mA)  
DD(LCD)  
(1) VPR[7:0] = 42h.  
(2) VPR[7:0] = 85h.  
(3) VPR[7:0] = C6h.  
Tamb = 30 C; VDD1 = VDD2 = 3.3 V.  
Remark: For driving the charge pump safely the VLCD and IDD(LCD) values have to be kept below  
the flat part of the respective graph.  
Charge pump configuration: VLCD = 3 VDD2  
.
Fig 18. Charge pump driving capability with VDD2 = 3.3 V  
013aaa662  
10  
V
LCD  
(V)  
8
6
4
2
0
(3)  
(2)  
(1)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
I
(mA)  
DD(LCD)  
(1) VPR[7:0] = 42h.  
(2) VPR[7:0] = 85h.  
(3) VPR[7:0] = C6h.  
Tamb = 30 C; VDD1 = VDD2 = 5 V.  
Remark: For driving the charge pump safely the VLCD and IDD(LCD) values have to be kept below  
the flat part of the respective graph.  
a. Charge pump configuration: VLCD = 2 VDD2  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
27 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
013aaa663  
10  
8
V
LCD  
(V)  
(3)  
(2)  
(1)  
6
4
2
0
0
0.4  
0.8  
1.2  
1.6  
2
I
(mA)  
DD(LCD)  
(1) VPR[7:0] = 42h.  
(2) VPR[7:0] = 85h.  
(3) VPR[7:0] = C6h.  
Tamb = 30 C; VDD1 = VDD2 = 5 V.  
Remark: For driving the charge pump safely the VLCD and IDD(LCD) values have to be kept below  
the flat part of the respective graph.  
b. Charge pump configuration: VLCD = 3 VDD2  
Fig 19. Charge pump driving capability with VDD2 = 5.0 V  
8.4.4 Temperature measurement and temperature compensation of VLCD  
8.4.4.1 Temperature readout  
The PCF8537 has a built-in temperature sensor which provides an 8 bit digital value,  
TD[7:0], of the ambient temperature. This value can be read through the interface (see  
Figure 47 on page 56 and Figure 51 on page 59). The actual temperature is determined  
from TD[7:0] using Equation 2:  
T (°C) = 0.9375 TD7:040  
(2)  
The measurement needs about 5 ms to complete and is repeated periodically as soon as  
bit TME is set logic 1 (see Table 9 on page 10). The time between measurements is linked  
to the system clock and hence varies with changes in the chosen frame frequency, see  
Table 25.  
Table 25. Temperature measurement update rate  
Selected frame frequency  
Temperature measurement update rate  
60 Hz  
3.3 s  
1 s  
200 Hz  
300 Hz  
0.67 s  
The temperature sensor can be thought of as analog to digital converter. Like all A/D  
converters, jitter will exist on the LSB of the output value. This is also true of the  
temperature sensor in the PCF8537. Jitter of the LSB of TD[7:0] may lead to contrast  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
28 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
stepping of the display due to the VLCD voltage is periodically changing between two  
different target voltages. For this reason, a filter has been implemented to ensure that LSB  
jitter does not affect the display performance.  
TD[7:0]  
unfiltered  
TD[7:0]  
filtered  
To the readout register  
DIGITAL  
TEMPERATURE  
FILTER  
TEMPERATURE  
MEASUREMENT  
BLOCK  
2
via I C-bus and to  
the V  
block  
compensation  
LCD  
enabled or disabled  
by bit TFE  
013aaa642  
Fig 20. Temperature measurement block with digital temperature filter  
Like any other filtering, the digital temperature filter (see Figure 20) introduces a certain  
delay in the measurement of temperature. This behavior is illustrated in Figure 21.  
013aaa643  
50  
16  
T
DT  
(°C)  
12  
(3)  
(°C)  
40  
30  
20  
10  
0
8
(1)  
(2)  
4
(3)  
0
-4  
0
40  
80  
120  
160  
t (s)  
(1) Environment temperature, T1 (C).  
(2) Measured temperature, T2 (C).  
(3) Temperature deviation, T = T2 T1.  
Fig 21. Temperature measurement delay during ramping up-down of the environment  
temperature  
This delay may cause undesired effects at start-up when the environment temperature  
may be different than the reset value of the PCF8537 which is 20 C. In this case, it takes  
up to 30 s until the correct measured temperature value will be available. A control bit,  
TFE (see Table 22 on page 16), is implemented to enable or disable the digital  
temperature filter. This bit is set logic 0 by default, which means, that the filter is disabled  
and the unfiltered environment temperature value is available to calculate the desired  
VLCD  
.
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
29 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.4.4.2 Temperature adjustment of the VLCD  
Due to the temperature dependency of the liquid crystal viscosity the LCD controlling  
voltage VLCD might have to be adjusted at different temperatures to maintain optimal  
contrast. The temperature behavior of the liquid comes from the LCD manufacturer. The  
slope has to be set to compensate for the liquid behavior. Internal temperature  
compensation may be enabled via bit TCE (see Table 9 on page 10).  
The ambient temperature range is split up into four equally sized regions and a different  
temperature coefficient can be applied to each. Each coefficient can be selected from a  
choice of eight different slopes. Each one of these coefficients may be independently  
selected (see Table 26).  
Table 26. Temperature coefficients  
SLA to SLD register value  
Corresponding slope factor, SFA to SFD (mV/C)  
000[1]  
001  
010  
011  
100  
101  
110  
111  
0
4  
8  
16  
40  
+4  
+8  
+16  
[1] Default value.  
The slope factors imply a linear correction, however the implementation is in steps of  
30 mV.  
TD[7:0]  
0h  
20h  
40h  
60h  
7Fh  
zero offset  
at 20 °C  
SFA  
SFB  
SFC  
SFD  
-40  
-10  
20  
50  
79  
Temperature (°C)  
013aaa644  
Fig 22. Example of segmented temperature coefficients  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
30 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
The offset voltage is calculated according to Table 27.  
Table 27. Calculation of the VLCD offset voltage  
Temperature range  
T  40 C  
Voffset(LCD) voltage (mV)  
VoffsetLCD= 30 SFA + 30 SFB  
VoffsetLCD= 10 T  SFA + 30 SFB  
VoffsetLCD= 20 T  SFB  
40 C T  10 C  
10 C < T 20 C  
20 C < T 50 C  
50 C < T < 80 C  
80 C T[1]  
VoffsetLCD= T 20  SFC  
VoffsetLCD= T 50  SFD + 30 SFC  
VoffsetLCD= 30 SFD + 30 SFC  
[1] No temperature compensation is possible above 80 C. Above this value, the system maintains the  
compensation value from 80 C.  
Example: Assumed that Tamb = 8 C; SFB= 16 mV/C:  
VoffsetLCD= 20 – –8x16= 28  16= –448mV  
Remark: Care must be taken that the ranges of VPR[7:0] and VT[7:0] do not cause  
clipping and hence undesired results. The device will not permit overflow or underflow and  
will clamp results to either end of the range.  
8.4.5 LCD voltage selector  
The LCD voltage selector co-ordinates the multiplexing of the LCD in accordance with the  
selected LCD drive configuration. The operation of the voltage selector is controlled by the  
Set-bias-mode command (see Table 14 on page 12) and the Set-MUX-mode command  
(see Table 13 on page 12).  
Intermediate LCD biasing voltages are obtained from an internal voltage divider. The  
biasing configurations that apply to the preferred modes of operation, together with the  
biasing characteristics as functions of VLCD and the resulting discrimination ratios (D), are  
given in Table 28.  
Discrimination is a term which is defined as the ratio of the one and off RMS voltage  
across a segment. It can be thought of as a measurement of contrast.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
31 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
Table 28. LCD drive modes: summary of characteristics  
[2]  
LCD drive  
mode  
Number of:  
LCD bias  
configuration  
VLCD  
VoffRMSVonRMS  
---------------------- ----------------------  
VLCD VLCD  
VonRMS  
---------------------- [1]  
VoffRMS  
D =  
Backplanes Bias levels  
static  
1
2
2
2
4
4
4
6
6
6
8
8
8
2
3
4
5
3
4
5
3
4
5
3
4
5
static  
0
1
Von(RMS)  
1
1:2 multiplex  
1:2 multiplex  
1:2 multiplex[3]  
1:4 multiplex[3]  
1:4 multiplex  
1:4 multiplex[3]  
1:6 multiplex[3]  
1:6 multiplex  
1:6 multiplex  
1:8 multiplex[3]  
1:8 multiplex[3]  
1:8 multiplex  
0.354  
0.333  
0.395  
0.433  
0.333  
0.331  
0.456  
0.333  
0.306  
0.467  
0.333  
0.293  
0.791  
0.745  
0.729  
0.661  
0.577  
0.545  
0.612  
0.509  
0.467  
0.586  
0.471  
0.424  
2.236  
2.236  
1.845  
1.527  
1.732  
1.646  
1.341  
1.527  
1.527  
1.254  
1.414  
1.447  
2.828Voff(RMS)  
3.0Voff(RMS)  
2
1
3
1
2.529Voff(RMS)  
2.309Voff(RMS)  
3.0Voff(RMS)  
4
1
2
1
3
1
3.024Voff(RMS)  
2.191Voff(RMS)  
3.0Voff(RMS)  
4
1
2
1
3
1
3.266Voff(RMS)  
2.138Voff(RMS)  
3.0Voff(RMS)  
4
1
2
1
3
1
3.411Voff(RMS)  
4
[1] Determined from Equation 5.  
[2] Determined from Equation 4.  
[3] In these examples, the discrimination factor and hence the contrast ratios are smaller. The advantage of these LCD drive modes is a  
power saving from a reduction of the LCD voltage VLCD  
.
A practical value for VLCD is determined by equating Voff(RMS) with a defined LCD  
threshold voltage (Vth), typically when the LCD exhibits approximately 10 % contrast. In  
the static drive mode, a suitable choice is VLCD > 3Vth.  
1
Bias is calculated by ------------ , where the values for a are  
1 + a  
a = 1 for 12 bias  
a = 2 for 13 bias  
a = 3 for 14 bias  
The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 3  
a2 + 2a + n  
n  1 + a2  
VonRMS  
=
-----------------------------  
(3)  
V
LCD  
where VLCD is the resultant voltage at the LCD segment and where the values for n are  
n = 1 for static mode  
n = 2 for 1:2 multiplex  
n = 4 for 1:4 multiplex  
n = 6 for 1:6 multiplex  
n = 8 for 1:8 multiplex  
The RMS off-state voltage (Voff(RMS)) for the LCD is calculated with Equation 4:  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
32 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
a2 2a + n  
n  1 + a2  
VoffRMS  
=
-----------------------------  
(4)  
V
LCD  
Discrimination is the ratio of Von(RMS) to Voff(RMS) and is determined from Equation 5:  
a + 12 + n 1  
VonRMS  
VoffRMS  
=
-------------------------------------------  
(5)  
----------------------  
a 12 + n 1  
It should be noted that VLCD is sometimes referred as the LCD operating voltage.  
8.4.5.1 Electro-optical performance  
Suitable values for Von(RMS) and Voff(RMS) are dependent on the LCD liquid used. The  
RMS voltage, at which a pixel will be switched on or off, determine the transmissibility of  
the pixel.  
For any given liquid, there are two threshold values defined. One point is at 10 % relative  
transmission (at Vth(off)) and the other at 90 % relative transmission (at Vth(on)), see  
Figure 23. For a good contrast performance, the following rules should be followed:  
V
V
onRMSVthon  
offRMSVthoff  
(6)  
(7)  
V
on(RMS) and Voff(RMS) are properties of the display driver and are affected by the selection  
of a (see Equation 3), n (see Equation 5), and the VLCD voltage.  
Vth(off) and Vth(on) are properties of the LCD liquid and can be provided by the module  
manufacturer. Vth(off) is sometimes just named Vth. Vth(on) is sometimes named saturation  
voltage Vsat  
.
It is important to match the module properties to those of the driver in order to achieve  
optimum performance.  
100 %  
90 %  
10 %  
V
[V]  
RMS  
V
th(off)  
V
th(on)  
OFF  
SEGMENT  
GREY  
SEGMENT  
ON  
SEGMENT  
013aaa494  
Fig 23. Electro-optical characteristic: relative transmission curve of the liquid  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
33 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.4.6 LCD drive mode waveforms  
8.4.6.1 Static drive mode  
The static LCD drive mode is used when a single backplane is provided in the LCD.  
T
fr  
LCD segments  
V
LCD  
BP0  
Sn  
V
SS  
state 1  
(on)  
state 2  
(off)  
V
LCD  
V
SS  
V
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
LCD  
0 V  
state 1  
V  
LCD  
V
LCD  
state 2  
0 V  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
013aaa207  
Vstate1(t) = VSn(t) VBP0(t).  
Vstate2(t) = V(Sn + 1)(t) VBP0(t).  
Von(RMS)(t) = VLCD  
off(RMS)(t) = 0 V.  
.
V
Fig 24. Static drive mode waveforms (line inversion mode)  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
34 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.4.6.2 1:2 multiplex drive mode  
When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The  
PCF8537 allows the use of 12 bias or 13 bias in this mode as shown in Figure 25 and  
Figure 26.  
T
fr  
V
LCD  
LCD segments  
V
V
/2  
BP0  
BP1  
Sn  
LCD  
SS  
state 1  
V
LCD  
state 2  
V
V
/2  
LCD  
SS  
V
LCD  
V
V
SS  
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
V
LCD  
/2  
LCD  
0 V  
V  
state 1  
/2  
LCD  
V  
LCD  
V
V
LCD  
/2  
LCD  
0 V  
state 2  
V  
/2  
LCD  
LCD  
V  
(b) Resultant waveforms  
at LCD segment.  
013aaa208  
Vstate1(t) = VSn(t) VBP0(t).  
Vstate2(t) = VSn(t) VBP1(t).  
V
on(RMS)(t) = 0.791VLCD  
.
.
Voff(RMS)(t) = 0.354VLCD  
Fig 25. Waveforms for the 1:2 multiplex drive mode with 12 bias (line inversion mode)  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
35 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
T
fr  
V
LCD  
LCD segments  
2V  
/3  
LCD  
BP0  
BP1  
Sn  
V
V
/3  
LCD  
SS  
state 1  
V
LCD  
state 2  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+1  
V
V
/3  
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 1  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
V
LCD  
2V  
/3  
LCD  
V
/3  
LCD  
0 V  
V  
state 2  
/3  
LCD  
2V  
V  
/3  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
013aaa209  
Vstate1(t) = VSn(t) VBP0(t).  
state2(t) = VSn(t) VBP1(t).  
V
Von(RMS)(t) = 0.745VLCD  
.
.
Voff(RMS)(t) = 0.333VLCD  
Fig 26. Waveforms for the 1:2 multiplex drive mode with 13 bias (line inversion mode)  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
36 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.4.6.3 1:4 multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies, as  
shown in Figure 27.  
T
fr  
V
2V  
LCD segments  
LCD  
LCD  
/3  
BP0  
BP1  
BP2  
V
V
/3  
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
/3  
LCD  
BP3  
Sn  
V
V
LCD  
SS  
V
LCD  
2V  
LCD  
/3  
/3  
V
V
LCD  
SS  
V
LCD  
2V  
/3  
/3  
LCD  
Sn+1  
V
V
LCD  
SS  
V
LCD  
2V  
/3  
/3  
LCD  
Sn+2  
Sn+3  
V
V
LCD  
SS  
V
LCD  
2V  
LCD  
/3  
/3  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/3  
/3  
LCD  
V
LCD  
state 1  
state 2  
0 V  
LCD  
-V  
/3  
/3  
-2V  
LCD  
LCD  
-V  
V
LCD  
2V  
LCD  
/3  
/3  
V
LCD  
0 V  
-V  
/3  
LCD  
-2V  
LCD  
/3  
LCD  
-V  
(b) Resultant waveforms  
at LCD segment.  
013aaa211  
Vstate1(t) = VSn(t) VBP0(t).  
Vstate2(t) = VSn(t) VBP1(t).  
V
on(RMS)(t) = 0.577VLCD  
.
.
Voff(RMS)(t) = 0.333VLCD  
Fig 27. Waveforms for the 1:4 multiplex drive mode with 13 bias (line inversion mode)  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
37 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.4.6.4 1:6 multiplex drive mode  
When six backplanes are provided in the LCD, the 1:6 multiplex drive mode applies. The  
PCF8537 allows the use of 13 bias or 14 bias in this mode as shown in Figure 28 and  
Figure 29.  
T
fr  
LCD segments  
state 2  
V
LCD  
LCD  
state 1  
LCD  
/ 3  
/ 3  
2V  
V
BP0  
BP1  
V
SS  
V
LCD  
LCD  
LCD  
/ 3  
/ 3  
2V  
V
V
SS  
V
LCD  
LCD  
LCD  
/ 3  
/ 3  
2V  
V
BP2  
V
SS  
V
LCD  
LCD  
LCD  
/ 3  
/ 3  
2V  
V
BP3  
V
SS  
V
LCD  
LCD  
LCD  
/ 3  
/ 3  
2V  
V
BP4  
V
SS  
V
LCD  
LCD  
LCD  
/ 3  
/ 3  
2V  
V
BP5  
V
SS  
V
LCD  
LCD  
LCD  
/ 3  
/ 3  
2V  
V
Sn  
V
SS  
V
LCD  
LCD  
LCD  
/ 3  
/ 3  
2V  
V
Sn + 1  
state 1  
V
SS  
(a) Waveforms at driver  
V
LCD  
LCD  
V
LCD  
LCD  
LCD  
/ 3  
/ 3  
SS  
/ 3  
/ 3  
2V  
V
-V  
-2V  
-V  
LCD  
V
LCD  
LCD  
V
LCD  
LCD  
LCD  
/ 3  
/ 3  
SS  
/ 3  
/ 3  
2V  
V
state 2  
-V  
-2V  
(b) Resultant waveforms at LCD segment  
-V  
LCD  
001aal399  
Vstate1(t) = VSn(t) VBP0(t). Vstate2(t) = VSn(t) VBP1(t).  
Von(RMS)(t) = 0.509VLCD. Voff(RMS)(t) = 0.333VLCD  
.
Fig 28. Waveforms for 1:6 multiplex drive mode with 13 bias (line inversion mode)  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
38 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
T
fr  
LCD segments  
V
LCD  
LCD  
3V  
V
/ 4  
state 1  
state 2  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
Sn  
/ 4  
SS  
LCD  
V
V
LCD  
LCD  
3V  
V
/ 4  
/ 4  
SS  
LCD  
V
V
LCD  
LCD  
/ 4  
3V  
V
/ 4  
SS  
LCD  
V
V
LCD  
LCD  
/ 4  
3V  
V
/ 4  
SS  
LCD  
V
V
LCD  
LCD  
/ 4  
3V  
V
/ 4  
SS  
LCD  
V
V
LCD  
LCD  
/ 4  
3V  
V
/ 4  
SS  
LCD  
V
V
LCD  
V
/ 2  
LCD  
V
SS  
V
LCD  
Sn + 1  
V
LCD  
/ 2  
V
SS  
(a) Waveforms at driver  
V
LCD  
LCD  
3V  
V
/ 4  
/ 4  
SS  
/ 4  
LCD  
state 1  
V
-V  
LCD  
-3V  
/ 4  
LCD  
LCD  
-V  
V
LCD  
3V  
V
V
/ 4  
/ 2  
/ 4  
SS  
/ 4  
/ 2  
/ 4  
LCD  
LCD  
LCD  
LCD  
state 2  
V
-V  
-V  
-3V  
LCD  
LCD  
LCD  
(b) Resultant waveforms at LCD segment  
-V  
001aal400  
Vstate1(t) = VSn(t) VBP0(t). Vstate2(t) = VSn(t) VBP1(t).  
on(RMS)(t) = 0.467VLCD. Voff(RMS)(t) = 0.306VLCD  
V
.
Fig 29. Waveforms for 1:6 multiplex drive mode with 14 bias (line inversion mode)  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
39 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.4.6.5 1:8 multiplex drive mode  
T
fr  
V
LCD  
LCD segments  
LCD  
3V  
V
/ 4  
state 1  
state 2  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
BP6  
BP7  
Sn  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
3
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
V
V
/ 2  
LCD  
V
SS  
V
LCD  
Sn + 1  
/ 2  
LCD  
V
SS  
(a) Waveforms at driver  
V
LCD  
LCD  
3V  
V
/ 4  
/ 4  
SS  
/ 4  
LCD  
state 1  
V
-V  
LCD  
-3V  
/ 4  
LCD  
LCD  
-V  
V
LCD  
3V  
V
V
/ 4  
/ 2  
/ 4  
SS  
/ 4  
/ 2  
/ 4  
LCD  
LCD  
LCD  
LCD  
state 2  
V
-V  
-V  
-3V  
LCD  
LCD  
LCD  
(b) Resultant waveforms at LCD segment  
-V  
001aal398  
Vstate1(t) = VSn(t) VBP0(t). Vstate2(t) = VSn(t) VBP1(t). Von(RMS)(t) = 0.424VLCD. Voff(RMS)(t) = 0.293VLCD  
.
Fig 30. Waveforms for 1:8 multiplex drive mode with 14 bias (line inversion mode)  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
40 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
T
T
fr  
frame n  
fr  
frame n+1  
V
3/4 V  
LCD  
LCD  
LCD segments  
state 2  
state 1  
BP0  
1/4 V  
LCD  
SS  
V
V
LCD  
3/4 V  
LCD  
BP1  
BP2  
1/4 V  
LCD  
SS  
V
V
3/4 V  
LCD  
LCD  
1/4 V  
LCD  
V
SS  
V
3/4 V  
LCD  
LCD  
BP3  
BP4  
BP5  
BP6  
1/4 V  
LCD  
SS  
V
V
3/4 V  
LCD  
LCD  
1/4 V  
LCD  
V
SS  
V
3/4 V  
LCD  
LCD  
1/4 V  
LCD  
V
SS  
V
3/4 V  
LCD  
LCD  
1/4 V  
LCD  
V
SS  
V
3/4 V  
LCD  
LCD  
BP7  
Sn  
1/4 V  
LCD  
SS  
V
V
LCD  
LCD  
1/2 V  
V
SS  
V
LCD  
LCD  
Sn + 1  
1/2 V  
V
SS  
(a) Waveforms at driver  
V
LCD  
LCD  
LCD  
LCD  
3/4 V  
1/2 V  
1/4 V  
state 1  
V
SS  
1/4 V  
LCD  
LCD  
LCD  
LCD  
1/2 V  
3/4 V  
V
V
3/4 V  
1/2 V  
1/4 V  
LCD  
LCD  
LCD  
LCD  
V
state 2  
SS  
1/4 V  
LCD  
LCD  
LCD  
LCD  
1/2 V  
3/4 V  
V
001aam359  
(b) Resultant waveforms at LCD segment  
Vstate1(t) = VSn(t) VBP0(t). Vstate2(t) = VSn(t) VBP1(t). Von(RMS)(t) = 0.424VLCD. Voff(RMS)(t) = 0.293VLCD  
Fig 31. Waveforms for 1:8 multiplex drive mode with 14 bias (frame inversion mode)  
.
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
41 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.5 Backplane and segment outputs  
8.5.1 Backplane outputs  
The LCD drive section includes eight backplane outputs: BP0 to BP7. The backplane  
output signals are generated based on the selected LCD multiplex drive mode.  
Table 29 describes which outputs are active for each of the multiplex drive modes and  
what signal is generated.  
Table 29. Mapping of output pins and corresponding signals with respect to driving mode  
MUX  
Output pin  
mode  
BP0  
Signal  
BP0  
BP0  
BP0  
BP0  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
S45/BP6 S44/BP7  
1:8  
BP1  
BP1  
BP1  
BP1  
BP0[1]  
BP2  
BP3  
BP4  
BP5  
BP6  
BP7  
1:6  
BP2  
BP3  
BP4  
BP5  
S45  
S44  
1:4  
BP2  
BP3  
BP0[1]  
BP0[1]  
BP0[1]  
BP1[1]  
BP1[1]  
BP0[1]  
BP2[1]  
BP0[1]  
BP0[1]  
BP3[1]  
BP1[1]  
BP0[1]  
1:2  
BP0[1]  
BP0[1]  
BP1[1]  
BP0[1]  
static  
[1] These pins may optionally or alternatively be connected to the display to improve drive strength. Connect  
only with the corresponding output pin carrying the same signal. If not required, they can be left open  
circuit.  
8.5.1.1 1:8 multiplex drive mode  
In 1:8 multiplex drive mode, BP0 to BP7 must be connected directly to the LCD.  
8.5.1.2 1:6 multiplex drive mode  
1:6 multiplex mode is a special case. In this mode BP0 to BP5 must be connected directly  
to the display as back plane signals and S44 and S45 must be connected to the display as  
segment signals.  
8.5.1.3 1:4 multiplex drive mode  
In the 1:4 multiplex drive mode, BP0 to BP3 must be connected directly to the LCD.  
The unused BPs may be left open-circuit. Optionally they may also be connected to the  
display to increase drive strength.  
BP0 is repeated on BP4  
BP1 is repeated on BP5  
BP2 is repeated on BP6  
BP3 is repeated on BP7  
8.5.1.4 1:2 multiplex drive mode  
In the 1:2 multiplex drive mode, BP0 and BP1 must be connected directly to the LCD.  
The unused BPs may be left open-circuit. Optionally they may also be connected to the  
display to increase drive strength.  
BP0 is repeated on BP2, BP4, and BP6  
BP1 is repeated on BP3, BP5, and BP7  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
42 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.5.1.5 Static drive mode  
In the static drive mode, BP0 must be connected directly to the LCD.  
In the static drive mode, the same signal is carried by all eight backplane outputs and they  
can be connected in parallel for very high drive requirements.  
BP0 is repeated on BP1, BP2, BP3, BP4, BP5, BP6, and BP7  
8.5.2 Segment outputs  
The LCD drive section includes up to 46 segment outputs. Segments S0 to S43 are  
always segment outputs. There are also two more segment outputs which become active  
in 1:6 multiplex mode. These are S45/BP6 and S44/BP7 and must also be connected  
directly to the display.  
The segment output signals are generated based on the multiplexed backplane signals  
and with data resident in the display register. When less than 46 segment outputs are  
required, the unused segment outputs must be left open-circuit.  
8.5.2.1 Static, 1:8, 1:4, 1:2 multiplex drive mode  
In these drive modes, segments S0 to S43 must be connected to the display.  
8.5.2.2 1:6 multiplex drive mode  
In this drive mode, segments S0 to S43, S44, and S45 must be connected to the display.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
43 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.6 Display controller  
The display controller executes the commands identified by the command decoder. It  
contains the status registers of the PCF8537 and co-ordinates their effects. The controller  
is also responsible for loading display data into the display RAM as required by the filling  
order.  
8.7 Display register  
The display register holds the display data while the corresponding multiplex signals are  
generated.  
8.8 Display RAM  
The display RAM stores LCD data. Depending on the multiplex drive mode, the  
arrangement of the RAM is changed.  
multiplex drive mode 1:8: RAM is 44 8 bit  
multiplex drive mode 1:6: RAM is 46 6 bit  
multiplex drive mode 1:4: RAM is 44 4 bit arranged in two banks  
multiplex drive mode 1:2: RAM is 44 2 bit arranged in two banks  
static drive mode: RAM is 44 1 bit arranged in two banks  
A logic 1 in the RAM bit map indicates the on-state of the corresponding LCD element;  
similarly, a logic 0 indicates the off-state.  
There is a one-to-one correspondence between  
the bits in the RAM bitmap and the LCD elements,  
the RAM columns and the segment outputs,  
the RAM rows and the backplane outputs.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
44 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
Display RAM addresses (columns)/segment outputs (S)  
Multiplex drive mode 1:8  
S0 S1 S2 S3 S4 S5 S6 S7  
S38 S39  
S43  
S40 S41 S42  
row0/BP0  
row1/BP1  
row2/BP2  
row3/BP3  
row4/BP4  
row5/BP5  
row6/BP6  
row7/BP7  
Multiplex drive mode 1:6  
S0 S1 S2 S3 S4 S5 S6 S7  
S38 S39  
S43  
S43  
S40 S41 S42  
S44  
S45  
row0/BP0  
row1/BP1  
row2/BP2  
row3/BP3  
row4/BP4  
row5/BP5  
Multiplex drive mode 1:4  
S0 S1 S2 S3 S4 S5 S6 S7  
S38 S39  
S40 S41 S42  
row0/BP0  
row1/BP1  
row2/BP2  
row3/BP3  
row4/BP0  
bank 0  
row5/BP1  
row6/BP2  
row7/BP3  
bank 1  
Multiplex drive mode 1:2  
S0 S1 S2 S3 S4 S5 S6 S7  
S38 S39  
S40 S41 S42  
S43  
row0/BP0  
bank 0  
bank 1  
row1/BP1  
row2  
row3  
row4/BP0  
row5/BP1  
row6  
row7  
Static drive mode  
S0 S1 S2 S3 S4 S5 S6 S7  
S38 S39  
S40 S41 S42  
S43  
bank 0  
bank 1  
row0/BP0  
row1  
row2  
row3  
row4/BP1  
row5  
row6  
row7  
013aaa645  
The display RAM bitmap shows the direct relationship between the display RAM column and the  
segment outputs; and between the bits in a RAM row and the backplane outputs.  
Fig 32. Display RAM bitmap  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
45 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
The display RAM bit map, Figure 32, shows row 0 to row 7 which correspond with the  
backplane outputs BP0 to BP7, and column 0 to column 45 which correspond with the  
segment outputs S0 to S45. In multiplexed LCD applications, the data of each row of the  
display RAM is time-multiplexed with the corresponding backplane (row 0 with BP0, row 1  
with BP1, and so on).  
When display data is transmitted to the PCF8537, the display bytes received are stored in  
the display RAM in accordance with the selected LCD multiplex drive mode. The data is  
stored as it arrives. Depending on the current multiplex drive mode, data is stored  
singularly, in pairs, quadruples, sextuples or bytes.  
8.8.1 Data pointer  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte, or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the Load-data-pointer command (see Table 15 on page 12).  
Following this command, an arriving data byte is stored starting at the display RAM  
address indicated by the data pointer.  
After each byte stored, the data pointer is automatically incremented in accordance with  
the chosen LCD multiplex drive mode configuration:  
by eight (static drive mode)  
by four (1:2 multiplex drive mode)  
by two (1:4 multiplex drive mode)  
by one or two (1:6 multiplex drive mode), see Figure 37 on page 49  
by one (1:8 multiplex drive mode)  
When the address counter reaches the end of the RAM row, it stops incrementing after the  
last byte is transmitted. Redundant bits of the last byte transmitted are discarded.  
Additional bytes, sent after the end of the RAM is reached, will be discarded too. The data  
pointer does not wrap around to the beginning. To send new RAM data, the data pointer  
must be reset.  
If an I2C-bus or SPI-bus data access is terminated early, then the state of the data pointer  
is unknown. The data pointer must then be re-written before further RAM accesses.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
46 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.8.2 RAM filling in static drive mode  
In the static drive mode the eight transmitted data bits are placed in eight successive  
display RAM columns in row 0 (see Figure 33).  
columns  
display RAM columns/segment outputs (S)  
rows  
0
1
2
3
4
5
6
7
39 40 41 42 43  
display RAM rows/  
backplane outputs  
(BP)  
b7 b6 b5 b4 b3 b2 b1 b0  
0
b7 b6 b5 b4 b3 b2 b1 b0  
MSB  
LSB  
transmitted data byte  
013aaa646  
Fig 33. Display RAM filling order in static drive mode  
In order to fill the whole RAM row, 6 bytes must be sent to the PCF8537, but the last 4 bits  
from the last byte are discarded (see Figure 34).  
data pointer  
display RAM  
43  
32 33 34 35 36 37 38 39 40 41 42  
e7 e6 e5 e4 e3 e2 e1 e0 f7 f6 f5 f4 f3 f2 f1 f0  
0
1
2
3
4
5
6
7
0
a7 a6 a5 a4 a3 a2 a1 a0  
discarded  
013aaa647  
Fig 34. Discarded bits at the end of data transmission  
When bit IBS is set to bank 1 (see Table 18 on page 14), then data is stored in row 4.  
8.8.3 RAM filling in 1:2 multiplex drive mode  
In the 1:2 multiplex drive mode the eight transmitted data bits are placed in four  
successive display RAM columns (see Figure 35). In order to fill the whole two RAM rows  
11 bytes need to be sent to the PCF8537.  
columns  
display RAM columns/segment outputs (S)  
rows  
0
1
2
3
4
5
6
7
39 40 41 42 43  
0
b7  
b3  
display RAM rows/  
backplane outputs  
(BP)  
b5  
b1  
1 b6 b4 b2 b0  
LSB  
b7 b6 b5 b4 b3 b2 b1 b0  
MSB  
transmitted data byte  
013aaa648  
Fig 35. Display RAM filling order in 1:2 multiplex drive mode  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
47 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
When bit IBS is set to bank 1 (see Table 18 on page 14), then data is stored in row 4 and  
row 5.  
8.8.4 RAM filling in 1:4 multiplex drive mode  
In the 1:4 multiplex drive mode the eight transmitted data bits are placed in two  
successive display RAM columns of four rows (see Figure 36). In order to fill the whole  
four RAM rows 22 bytes need to be sent to the PCF8537.  
columns  
display RAM columns/segment outputs (S)  
0
1
2
3
4
5
6
7
39 40 41 42 43  
0
1
b7 b3  
b6 b2  
rows  
b5  
b1  
2
3
display RAM rows/  
backplane outputs  
(BP)  
b4 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
MSB LSB  
transmitted data byte  
013aaa649  
Fig 36. Display RAM filling order in 1:4 multiplex drive mode  
When bit IBS is set to bank 1 (see Table 18 on page 14), then data is stored in rows 4 to  
row 7.  
8.8.5 RAM filling in 1:6 multiplex drive mode  
In the 1:6 multiplex drive mode the RAM is organized in six rows and 46 columns. The  
eight transmitted data bits are placed in such a way, that a column is filled up (see  
Figure 37). The remaining bits are wrapped up into the next column. In order to fill the  
whole RAM addresses 35 bytes need to be sent to the PCF8537, however the four least  
significant bits of the 35th byte are discarded.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
48 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
columns  
data pointer  
incrementation  
display RAM columns/segment outputs (S)  
0
1
2
3
4
5
6
7
41 42 43 44 45  
0
a7 a1 b3 c5  
a6 a0 b2 c4  
a5 b7 b1 c3  
h3  
h2  
1
2
3
4
5
rows  
discarded  
h7 h1  
a4 b6 b0 c2  
a3 b5 c7 c1  
a2 b4 c6 c0  
h6 h0  
h5  
display RAM rows/  
backplane outputs  
(BP)  
h4  
MSB  
LSB  
a7 a6 a5 a4 a3 a2 a1 a0  
b6 b5 b4 b3 b2 b1 b0  
c6 c5 c4 c3 c2 c1 c0  
b7  
c7  
transmitted data bytes  
013aaa650  
Fig 37. Display RAM filling order in 1:6 multiplex drive mode  
When data transfer is initiated, then the MSB of the first byte will always be placed in  
row 0. Data must be transferred contiguously to achieve RAM filling as described in  
Figure 37.  
8.8.6 RAM filling in 1:8 multiplex drive mode  
In the 1:8 multiplex drive mode the eight transmitted data bits are placed into eight rows of  
one display RAM column (see Figure 38). In order to fill the whole RAM addresses  
44 bytes need to be sent to the PCF8537.  
columns  
transmitted data byte  
display RAM columns/segment outputs (S)  
MSB  
LSB  
b7 b6 b5 b4 b3 b2 b1 b0  
0
1
2
3
4
5
6
7
39 40 41 42 43  
0
1
2
3
4
5
6
7
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
rows  
display RAM rows/  
backplane outputs  
(BP)  
013aaa651  
Fig 38. Display RAM filling order in 1:8 multiplex drive mode  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
49 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.9 Bank selection  
The PCF8537 includes a RAM bank switching feature in the static, 1:2, and 1:4 multiplex  
drive modes. A bank can be thought of as a collection of RAM rows. The RAM bank  
switching gives the provision for preparing display information in an alternative bank and  
to be able to switch to it once it is complete.  
There are two banks; bank 0 and bank 1. Figure 32 on page 45 shows the location of  
these banks relative to the RAM map. Input and output banks can be set independently  
from one another with the Bank-select command (see Table 18 on page 14). Figure 39  
shows the concept.  
IBS CONTROLS THE INPUT  
DATA PATH  
OBS CONTROLS THE OUTPUT  
DATA PATH  
BANK 0  
RAM  
MICROCONTROLLER  
DISPLAY  
BANK 1  
013aaa423  
Fig 39. Bank selection  
In Figure 40 an example is shown for 1:4 multiplex drive mode where the displayed data is  
read from the first four rows of the memory (bank 0), while the transmitted data is stored in  
the second four rows of the memory (bank 1).  
columns  
display RAM columns/segment outputs (S)  
output RAM bank  
0
1
2
3
4
5
6
7
39 40 41 42 43  
0
1
to the LCD  
rows  
2
3
4
5
6
7
display RAM rows/  
backplane outputs  
(BP)  
to the RAM  
input RAM bank  
013aaa652  
Fig 40. Example of the Bank-select command with multiplex drive mode 1:4  
8.9.1 Input bank selection  
The IBS (input bank selection) bit of the Bank-select command (see Table 18) controls  
where display data is loaded into the display RAM.  
The input bank selection works independently of output bank selection.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
50 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
8.9.2 Output bank selection  
The OBS bit of the Bank-select command (see Table 18 on page 14) controls from which  
bank display data is taken,  
The output bank selection works independently of input bank selection.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
51 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
9. Bus interfaces  
9.1 Control byte  
After initiating the communication over the bus and sending the slave address (I2C-bus,  
see Section 9.2) or subaddress (SPI-bus, see Section 9.3), a control byte follows. The  
purpose of this byte is to indicate both, the content for the following data bytes (RAM or  
command) and to indicate that more control bytes will follow.  
Typical sequences could be:  
Slave address/subaddress - control byte - command byte - command byte - command  
byte - end  
Slave address/subaddress - control byte - RAM byte - RAM byte - RAM byte - end  
Slave address/subaddress - control byte - command byte - control byte - RAM byte -  
end  
In this way, it is possible to send a mixture of RAM and command data in one access or  
alternatively, to send just one type of data in one access.  
Table 30. Control byte description  
Bit  
Symbol  
Binary value Description  
continue bit  
7
CO  
0
1
last control byte  
control bytes continue  
register selection  
command register  
data register  
6
RS  
-
0
1
5 to 0  
not relevant  
MSB  
LSB  
7
6
5
4
3
2
1
0
CO RS  
not relevant  
mgl753  
Fig 41. Control byte format  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
52 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
9.2 I2C-bus interface characteristics (PCF8537AH)  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor when connected to the output  
stages of a device. Data transfer may be initiated only when the bus is not busy.  
9.2.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as a control signal (see Figure 42).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 42. Bit transfer  
9.2.2 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy.  
A HIGH-to-LOW change of the data line, while the clock is HIGH is defined as the START  
condition (S).  
A LOW-to-HIGH change of the data line while the clock is HIGH is defined as the STOP  
condition (P).  
The START and STOP conditions are shown in Figure 43.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 43. Definition of START and STOP conditions  
9.2.3 System configuration  
A device generating a message is a transmitter, a device receiving a message is the  
receiver. The device that controls the message is the master and the devices which are  
controlled by the master are the slaves. The system configuration is shown in Figure 44.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
53 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 44. System configuration  
9.2.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of 8 bits is followed by an acknowledge  
cycle.  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte.  
Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be considered).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgement on the I2C-bus is shown in Figure 45.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 45. Acknowledgement on the I2C-bus  
9.2.5 I2C-bus controller  
The PCF8537AH acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. The only data output from PCF8537AH are  
the acknowledge signals and the temperature readout byte of the selected device.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
54 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
9.2.6 Input filters  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
9.2.7 I2C-bus slave address  
The device selection depends on the I2C-bus slave address.  
Two different I2C-bus slave addresses can be used to address the PCF8537AH (see  
Table 31).  
Table 31. I2C slave address byte  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
0
1
1
1
0
0
A0  
Bit 1 of the slave address is defined by connecting the input A0 to either VSS (logic 0) or  
V
DD (logic 1). Therefore, two instances of PCF8537AH can be distinguished on the same  
I2C-bus.  
The least significant bit of the slave address byte is bit R/W (see Table 32).  
Table 32. R/W bit description  
Symbol  
Value  
Description  
R/W  
data read or write selection  
write data  
read data[1]  
0
1
[1] Only used for temperature readout from PCF8537AH (see Table 20 on page 15).  
9.2.8 I2C-bus protocol  
The I2C-bus protocol is shown in Figure 46. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of the two PCF8537AH  
slave addresses available. All PCF8537AH’s with the corresponding A0 level  
acknowledge in parallel to the slave address, but all PCF8537AH with an alternative A0  
level ignore the whole I2C-bus transfer.  
After acknowledgement, a control byte follows (see Section 9.1 on page 52).  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
55 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
R/W = 0  
slave address  
control byte  
RAM/command byte  
L
S
B
M
S
B
A
0
C
O
R
S
A
S
0
1
1
1
0
0
A
0
P
EXAMPLES  
a) transmit two bytes of RAM data  
A
S
0
1
1
1
0
0
0
A
0
1
0
A
A
RAM DATA  
COMMAND  
COMMAND  
A
A
A
RAM DATA  
A
A
A
P
0
b) transmit two command bytes  
A
S
0
1
1
1
0
0
0
A
1
0
0
0
1
COMMAND  
RAM DATA  
A
A
P
0
c) transmit one command byte and two RAM date bytes  
A
0
0
A
1
0
S
0
1
1
1
0
RAM DATA  
A
P
A
0
013aaa653  
Fig 46. I2C-bus protocol, write mode  
The display bytes are stored in the display RAM at the address specified by the data  
pointer.  
The acknowledgement after each byte is made only by the addressed PCF8537AH. After  
the last display byte, the I2C-bus master issues a STOP condition (P). Alternatively a  
START may be issued to RESTART an I2C-bus access.  
9.2.9 Data read  
If a temperature readout (byte TD[7:0]) is made, the R/W bit must be logic 1 and then the  
next data byte following is provided by the PCF8537AH as shown in Figure 47.  
R/W = 1  
A
temperature  
readout byte  
slave address  
M
S
B
L
S
B
S
0
1
1
1
0
0
1
A
A
P
0
acknowledge  
from PCF8537AH  
acknowledge  
from master  
013aaa677  
Fig 47. I2C-bus protocol, read mode  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
56 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
9.3 SPI-bus interface (PCF8537BH)  
Data transfer to the device is made via a three-line SPI-bus (see Table 30). The SPI-bus is  
reset whenever the chip enable pin CE is inactive.  
Table 33. Serial interface  
Pin  
Function  
Description  
CE  
chip enable input; active LOW[1]  
when HIGH, the interface is reset;  
-
SCL  
SDIO  
serial clock input  
serial data input output  
input data is sampled on the rising edge of SCL;  
data is output on the falling edge of SCL  
[1] The chip enable must not be wired permanently LOW.  
9.3.1 Data transmission  
The chip enable signal is used to identify the transmitted data. Each data transfer is a  
byte, with the Most Significant Bit (MSB) sent first.  
The transmission is controlled by the active LOW chip enable signal CE. The first byte  
transmitted is the subaddress byte.  
data bus  
CE  
SUBADDRESS  
DATA  
DATA  
DATA  
013aaa464  
Fig 48. Data transfer overview  
The subaddress byte opens the communication with a read/write bit and a subaddress.  
The subaddress is used to identify multiple devices on one SPI-bus.  
Table 34. Subaddress byte definition  
Bit  
Symbol  
Binary value Description  
data read or write selection  
write data  
7
R/W  
0
1
read data[1]  
6 to 5 SA[1:0]  
4 to 0  
01  
subaddress; other codes will cause the device  
to ignore data transfer  
-
-
unused  
[1] Only used for temperature readout from PCF8537BH (see Table 20 on page 15).  
After the subaddress byte, a control byte follows (see Section 9.1 on page 52).  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
57 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
R/W = 0  
subaddress  
control byte  
RAM/command byte  
M
S
B
L
S
B
R
S
C
O
0
0 1  
EXAMPLES  
a) transmit two bytes of display RAM data  
0
0
1
0
1
RAM DATA  
COMMAND  
RAM DATA  
b) transmit two command bytes  
0
0
1
1
0
0
0
0
COMMAND  
RAM DATA  
c) transmit one command byte and two display RAM date bytes  
COMMAND  
0
0
1
1
0
1
RAM DATA  
013aaa656  
Data transfers are terminated by de-asserting CE (set CE to logic 1)  
Fig 49. SPI-bus write example  
R/W  
SA  
unused  
command byte  
multiplex drive mode = 1:8 M[2:0] = 111  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
SCL  
SDIO  
CE  
013aaa657  
In this example, the multiplex mode is set to 1:8. The transfer is terminated by CE returning to logic 1. After the last bit is  
transmitted, the state of the SDIO line is not important.  
Fig 50. SPI-bus write example  
9.3.2 Data read  
The temperature readout data byte TD[7:0] can be read from the PCF8537BH.  
A readout is initiated by sending the subaddress byte with the R/W bit set high. The  
transmission is controlled by the active LOW chip enable signal CE.  
After the last bit of the subaddress byte is transmitted, the PCF8537BH will immediately  
start to drive the SDIO line. It is only necessary to read the values once, however since  
the update of the register is asynchronous to the interface clock, it is recommended to  
read the register twice and check for a stable value.  
The readout is terminated by asserting CE. At this time, the SDIO bus is released. It is  
important that the bus is not left floating and that the microcontroller then takes over  
driving of the bus.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
58 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
R/W  
SA  
unused  
temperature data 11  
temperature data 11  
BCD  
BCD  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
1
0
1
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
SCL  
SDIO  
CE  
PCF8537BH driving SDIO  
microcontroller driving SDIO  
013aaa678  
Fig 51. SPI-bus read example  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
59 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
10. Internal circuitry  
V
DD1  
A0, RESET,  
T1, T2, CLK  
T3, V  
, SDA,  
LCD  
SCL, V  
, V  
DD1 DD2  
V
V
SS  
LCD  
V
SS  
BP0 to BP5,  
S0 to S43,  
BP7/S44,  
BP6/S45  
(1)  
V
SS  
013aaa659  
(1) Output resistance, RO, see Table 36 on page 62.  
Fig 52. Device protection diagram for PCF8537AH  
V
DD1  
SDIO, RESET,  
T1, T2, CLK  
T3, V  
, CE,  
LCD  
SCL, V  
, V  
DD1 DD2  
V
V
SS  
LCD  
V
BP0 to BP5,  
S0 to S43,  
BP7/S44,  
BP6/S45  
SS  
(1)  
013aaa660  
V
SS  
(1) Output resistance, RO, see Table 36 on page 62.  
Fig 53. Device protection diagram for PCF8537BH  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
60 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
11. Limiting values  
CAUTION  
Static voltages across the liquid crystal display can build up when the LCD supply voltage  
(VLCD) is on while the IC supply voltage (VDD) is off, or vice versa. This may cause unwanted  
display artifacts. To avoid such artifacts, VLCD and VDD must be applied or removed together.  
Table 35. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD1  
VDD2  
IDD1  
Parameter  
Conditions  
digital  
Min  
0.5  
0.5  
50  
50  
0.5  
50  
0.5  
Max  
+6.5  
+6.5  
+50  
+50  
+10  
+50  
+6.5  
Unit  
V
supply voltage 1  
supply voltage 2  
supply current 1  
supply current 2  
LCD supply voltage  
LCD supply current  
input voltage  
analog  
digital  
V
mA  
mA  
V
IDD2  
analog  
VLCD  
IDD(LCD)  
Vi  
mA  
V
on pins CLK, CE,  
SDA, SCL, A0,  
SDIO, T1, T2  
II  
input current  
10  
+10  
+10  
mA  
V
VO  
output voltage  
on pins S0 to S45,  
BP0 to BP7  
0.5  
on pins SDA,  
SDIO, CLK  
0.5  
+6.5  
V
IO  
output current  
10  
+10  
+50  
400  
100  
mA  
mA  
mW  
mW  
ISS  
ground supply current  
total power dissipation  
50  
Ptot  
P/out  
-
-
power dissipation per  
output  
[1]  
[2]  
[3]  
[4]  
VESD  
electrostatic discharge  
voltage  
HBM  
CDM  
-
4500  
1500  
200  
V
-
V
Ilu  
latch-up current  
-
mA  
C  
C  
Tstg  
Tamb  
storage temperature  
ambient temperature  
65  
40  
+150  
+85  
operating device  
[1] Pass level; Human Body Model (HBM), according to Ref. 6 “JESD22-A114”.  
[2] Pass level; Charged-Device Model (CDM), according to Ref. 7 “JESD22-C101”.  
[3] Pass level; latch-up testing according to Ref. 8 “JESD78” at maximum ambient temperature (Tamb(max)).  
[4] According to the NXP store and transport requirements (see Ref. 10 “NX3-00092”) the devices have to be  
stored at a temperature of +8 C to +45 C and a humidity of 25 % to 75 %. For long term storage products  
deviant conditions are described in that document.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
61 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
12. Static characteristics  
Table 36. Static characteristics  
V
DD1 = 1.8 V to 5.5 V; VDD2 = 2.5 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 9.0 V; Tamb = 40 C to +85 C; temperature  
measurement enabled; 1:8 multiplex drive mode; 14 bias; LCD outputs are open circuit; RAM is all written with logic 1; inputs  
at VSS or VDD; internal clock with maximum prescale factor; I2C-bus/SPI-bus inactive; unless otherwise specified.  
Symbol  
Supplies  
VDD1  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage 1  
supply voltage 2  
logic  
1.8  
-
5.5  
V
VDD2  
analog;  
VDD2 VDD1  
charge pump set to 2 VDD2  
charge pump set to 3 VDD2  
VLCD VDD2  
2.5  
-
-
-
-
5.5  
V
V
V
V
2.5  
5.5  
[1]  
[2]  
VLCD  
LCD supply voltage  
2.5  
9.0  
VLCD  
LCD voltage variation  
VDD1 = VDD2 = 5.0 V;  
VLCD = 6.99 V  
0.10  
+0.10  
IDD1  
supply current 1  
supply current 2  
digital;  
display disabled;  
charge pump off  
-
-
90  
200  
-
A  
A  
IDD2  
display disabled;  
charge pump off;  
external VLCD  
0.5  
V
DD2 = 5.5 V;  
charge pump set to 2 VDD2  
;
internal VLCD = 7.0 V  
display disabled  
display enabled  
-
-
-
30  
40  
-
A  
A  
A  
[3]  
200  
85  
IDD(LCD)  
IDD(pd)  
LCD supply current  
external VLCD = 7.0 V;  
display enabled;  
-
power-down mode supply on pin VDD1  
current  
-
-
1
3
A  
A  
ILCD(pd)  
Tacc  
power-down LCD current  
15  
25  
temperature accuracy  
readout temperature error;  
VDD1 = 5.0 V  
Tamb = 40 C to +85 C  
Tamb = 25 C  
5  
3  
-
-
+5  
+3  
C  
C  
Logic  
VI  
input voltage  
VSS 0.5  
-
-
-
-
-
-
-
VDD + 0.5 V  
VIL  
LOW-level input voltage  
on pins CLK and A0  
-
0.3VDD  
-
V
V
VIH  
VO  
HIGH-level input voltage on pins CLK and A0  
output voltage  
0.7VDD  
0.5  
VDD + 0.5 V  
VOH  
VOL  
IOH  
HIGH-level output voltage on pin CLK  
LOW-level output voltage on pin CLK  
0.8VDD  
-
V
-
0.2VDD  
-
V
HIGH-level output current output source current;  
1
mA  
VOH = 4.6 V;  
VDD = 5 V;  
on pin CLK  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
62 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
Table 36. Static characteristics …continued  
VDD1 = 1.8 V to 5.5 V; VDD2 = 2.5 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 9.0 V; Tamb = 40 C to +85 C; temperature  
measurement enabled; 1:8 multiplex drive mode; 14 bias; LCD outputs are open circuit; RAM is all written with logic 1; inputs  
at VSS or VDD; internal clock with maximum prescale factor; I2C-bus/SPI-bus inactive; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IOL  
LOW-level output current output sink current;  
1
-
-
mA  
VOL = 0.4 V;  
VDD = 5 V;  
on pin CLK  
[4]  
VPOR  
IL  
power-on reset voltage  
-
-
-
1.6  
+1  
V
leakage current  
Vi = VDD or VSS  
;
1  
A  
on pins CLK and A0  
I2C- and SPI-bus lines; pins SDA, SCL and SDIO  
VI  
input voltage  
pins SDA, SCL  
VSS 0.5  
VSS 0.5  
-
-
-
-
-
5.5  
V
pin SDIO  
VDD + 0.5 V  
VIL  
VIH  
VO  
LOW-level input voltage  
pins SDA, SCL, and SDIO  
0.3VDD  
-
V
V
HIGH-level input voltage pins SDA, SCL, and SDIO  
0.7VDD  
output voltage  
pins SDA and SCL  
SDIO  
0.5  
0.5  
3
-
-
-
5.5  
V
VDD + 0.5 V  
IOL  
LOW-level output current VOL = 0.4 V;  
VDD = 5 V;  
-
mA  
on pin SDA and SDIO  
IOH  
HIGH-level output current VOH = 4.6 V;  
VDD = 5 V;  
3
-
-
-
mA  
on pin SDIO  
IL  
leakage current  
VI = VDD or VSS  
1  
+1  
A  
LCD outputs  
[5]  
[6]  
[7]  
VO  
output voltage variation  
output resistance  
on pins BP0 to BP7  
on pins S0 to S45  
15  
15  
0.3  
-
+15  
+15  
1.5  
mV  
mV  
k  
-
RO  
VLCD = 7 V;  
0.8  
on pins BP0 to BP7  
[7]  
VLCD = 7 V;  
0.6  
1.5  
3
k  
on pins S0 to S45  
[1] When supplying external VLCD it must be VLCD VDD2. Also when using the internal charge pump to generate a certain VLCD, VPR[7:0]  
must be set to a value that the voltage is higher than VDD2 (see Section 8.4.2).  
[2] Calibrated at testing stage. VLCD temperature compensation is disabled.  
[3] Tested on sample basis.  
[4] If VDD1 < VPOR a reset occurs.  
[5] Variation between any 2 backplanes on a given voltage level; static measured.  
[6] Variation between any 2 segments on a given voltage level; static measured.  
[7] Outputs measured one at a time.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
63 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
013aaa687  
195  
ΔV  
LCD  
(mV)  
130  
65  
0
-65  
-130  
-195  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (ºC)  
VLCD = 5 V to 9 V.  
Remark: Only valid if the charge pump is driven in a safe range as described in Figure 18 and  
Figure 19.  
a.  
V
DD  
= 5 V  
013aaa688  
195  
ΔV  
LCD  
(mV)  
130  
65  
0
-65  
-130  
-195  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (ºC)  
VLCD = 5 V to 9 V.  
Remark: Only valid if the charge pump is driven in a safe range as described in Figure 18 and  
Figure 19.  
b.  
V
DD  
= 3 V  
Fig 54. LCD voltage variation with respect to temperature  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
64 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
013aaa668  
160  
I
DD1  
(μA)  
150  
140  
130  
120  
110  
100  
(1)  
(2)  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (ºC)  
VDD2 = 5.0 V; 1:8 multiplex drive mode; 14 bias; temperature measurement enabled; LCD outputs  
are open circuit; RAM all logic 1; inputs at VSS or VDD; internal clock with max prescale factor; bus  
active.  
(1) Charge pump on; VDD1 = 5.5 V; charge pump configuration: VLCD = 2 VDD2; VPR[7:0] set to  
7.0 V; display enabled.  
(2) Charge pump off; VDD1 = 5.0 V; display disabled.  
Fig 55. Typical IDD1 with respect to temperature  
013aaa669  
160  
I
DD2  
(μA)  
150  
140  
130  
120  
110  
100  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (ºC)  
VDD1 = VDD2 = 5.0 V; 1:8 multiplex drive mode; 14 bias; temperature measurement enabled; flat  
temperature compensation; LCD outputs are open circuit; RAM all logic 1; inputs at VSS or VDD  
;
internal clock with max prescale factor; bus inactive; charge pump on; charge pump configuration:  
VLCD = 2 VDD2; VPR[7:0] set to 7.0 V; display enabled.  
Fig 56. Typical IDD2 with respect to temperature  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
65 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
013aaa670  
140  
I
DD(LCD)  
(μA)  
130  
120  
110  
100  
90  
80  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (ºC)  
VDD1 = VDD2 = 5.0 V; 1:8 multiplex drive mode; 14 bias; temperature measurement enabled; flat  
temperature compensation; LCD outputs are open circuit; RAM all logic 1; inputs at VSS or VDD  
;
internal clock with max prescale factor; bus inactive; charge pump on; charge pump configuration:  
VLCD = 7.0 V, external supplied; display enabled.  
Fig 57. Typical IDD(LCD) with respect to temperature  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
66 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
13. Dynamic characteristics  
Table 37. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 9.0 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
450  
33  
Typ  
Max  
Unit  
Hz  
s  
fclk(ext)  
tclk(H)  
tclk(L)  
fclk  
external clock frequency  
clock HIGH time  
clock LOW time  
clock frequency  
-
14500  
external clock source used  
on pin CLK; see Table 17  
-
-
33  
-
-
s  
[1]  
7800  
400  
9600  
-
11040  
-
Hz  
ns  
tw(rst)L  
LOW-level reset time  
[1] Frequency present on OSCCLK with default display frequency division factor.  
1/f  
clk  
t
t
clk(L)  
clk(H)  
0.7 V  
0.3 V  
DD  
CLK  
DD  
013aaa296  
Fig 58. Driver timing waveforms  
t
w(rst)L  
RESET  
0.3 V  
DD  
013aaa665  
Fig 59. RESET timing  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
67 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
Table 38. Timing characteristics: I2C-bus  
VDD1 = 1.8 V to 5.5 V; VDD2 = 2.5 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
fSCL  
Parameter  
Conditions  
Min  
-
Typ  
Max  
400  
-
Unit  
kHz  
s  
SCL clock frequency  
-
-
tBUF  
bus free time between a  
1.3  
STOP and START condition  
tHD;STA  
tSU;STA  
hold time (repeated) START  
condition  
0.6  
0.6  
-
-
-
-
s  
s  
set-up time for a repeated  
START condition  
[4]  
[5]  
tVD;DAT  
tVD;ACK  
tLOW  
tHIGH  
tf  
data valid time  
-
-
-
-
-
-
-
-
0.9  
0.9  
-
s  
s  
s  
s  
s  
s  
pF  
data valid acknowledge time  
LOW period of the SCL clock  
HIGH period of the SCL clock  
fall time  
-
1.3  
0.6  
-
of both SDA and SCL signals  
of both SDA and SCL signals  
-
-
-
0.3  
0.3  
400  
tr  
rise time  
Cb  
capacitive load for each bus  
line  
tSU;DAT  
tHD;DAT  
tSU;STO  
data set-up time  
data hold time  
100  
0
-
-
-
-
-
-
ns  
ns  
s  
set-up time for STOP  
condition  
0.6  
tw(spike)  
spike pulse width  
-
-
50  
ns  
[1] Internal calibration made with OTP so that the maximum variation is 15 % over whole temperature and voltage range. The typical fclk  
frequency generates a typical frame frequency of 200 Hz when the default frequency division factor is used.  
[2] The typical value is defined at VDD1 = VDD2 = 5.0 V and 30 C.  
[3] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VIL and VIH with an  
input voltage swing of VSS to VDD  
.
[4] tVD;DAT = minimum time for valid SDA output following SCL LOW.  
[5] tVD;ACK = time for acknowledgement signal from SCL LOW to SDA output LOW.  
START  
condition  
(S)  
bit 7  
MSB  
(A7)  
STOP  
condition  
(P)  
bit 6  
(A6)  
bit 0 acknowledge  
(R/W) (A)  
protocol  
t
t
t
HIGH  
SU;STA  
LOW  
1
/f  
SCL  
SCL  
SDA  
t
t
BUF  
f
t
r
t
t
t
t
t
t
HD;DAT  
VD;DAT  
VD;ACK  
SU;STO  
013aaa417  
HD;STA  
SU;DAT  
Fig 60. I2C-bus timing waveforms  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
68 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
Table 39. Timing characteristics: SPI-bus  
VDD = 1.8 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +85 C. All timing values are valid within the operating supply voltage and  
temperature range and referenced to VIL and VIH with an input voltage swing of VSS to VDD  
.
Symbol  
Parameter  
Conditions  
VDD < 2.7 V VDD 2.7 V Unit  
Min  
Max Min  
Max  
Timing characteristics (see Figure 61)  
fclk(SCL)  
tSCL  
tclk(H)  
tclk(L)  
tr  
SCL clock frequency  
SCL time  
-
2
-
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
500  
200  
200  
-
-
200  
80  
80  
-
-
clock HIGH time  
clock LOW time  
rise time  
-
-
-
-
for SCL signal  
for SCL signal  
100  
100  
tf  
fall time  
-
100  
-
100  
tsu(CE)  
th(CE)  
trec(CE)  
tsu  
CE set-up time  
CE hold time  
CE recovery time  
set-up time  
150  
0
-
-
-
-
-
80  
0
-
-
-
-
-
100  
35  
25  
100  
10  
15  
set-up time for SDI data  
hold time for SDI data  
th  
hold time  
CE  
t
SCL  
t
su(CE)  
t
rec(CE)  
t
r
t
clk(H)  
t
f
t
h(CE)  
70 %  
SCL  
30 %  
t
clk(L)  
t
su  
t
h
SDIO  
b7  
b7  
b6  
b6  
b0  
Write example  
t
t
dis(SDIO)  
t(SDIO-SDIO)  
SDIO  
b0  
b7  
b6  
b0  
Read example  
t
d(R)SDIO  
Microcontroller driving SDIO bus  
PCF8537BH driving SDIO bus  
013aaa679  
Fig 61. SPI-bus timing  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
69 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
14. Package outline  
TQFP64: plastic thin quad flat package; 64 leads; body 10 x 10 x 1.0 mm  
SOT357-1  
y
X
A
48  
33  
Z
49  
32  
E
e
H
E
E
(A )  
3
A
2
A
A
1
w M  
p
θ
pin 1 index  
b
L
p
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.05  
0.05 0.95  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.2  
mm  
0.25  
0.5  
1
0.2 0.08 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
02-03-14  
SOT357-1  
137E10  
MS-026  
Fig 62. Package outline SOT357-1 (TQFP64)  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
70 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
15. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC 61340-5 or equivalent  
standards.  
16. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
71 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 63) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 40 and 41  
Table 40. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 41. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 63.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
72 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 63. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
73 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
17. Abbreviations  
Table 42. Abbreviations  
Acronym  
AEC  
CMOS  
DC  
Description  
Automotive Electronics Council  
Complementary Metal Oxide Semiconductor  
Direct Current  
EPROM  
HBM  
I2C  
Erasable Programmable Read-Only Memory  
Human Body Model  
Inter-Integrated Circuit bus  
Integrated Circuit  
IC  
LCD  
LSB  
Liquid Crystal Display  
Least Significant Bit  
MSB  
MSL  
MUX  
OTP  
PCB  
POR  
RC  
Most Significant Bit  
Moisture Sensitivity Level  
Multiplexer  
One Time Programmable  
Printed-Circuit Board  
Power-On Reset  
Resistance-Capacitance  
Random Access Memory  
Root Mean Square  
RAM  
RMS  
SCL  
Serial Clock Line  
SDA  
SMD  
SPI  
Serial DAta line  
Surface Mount Device  
Serial Peripheral Interface  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
74 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
18. References  
[1] AN10365 Surface mount reflow soldering description  
[2] AN10853 ESD and EMC sensitivity of IC  
[3] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[4] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[5] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[6] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[7] JESD22-C101 Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
[8] JESD78 IC Latch-Up Test  
[9] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[10] NX3-00092 NXP store and transport requirements  
[11] SNV-FA-01-02 Marking Formats Integrated Circuits  
[12] UM10204 I2C-bus specification and user manual  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
75 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
19. Revision history  
Table 43. Revision history  
Document ID  
Release date  
20120531  
Data sheet status  
Change notice  
Supersedes  
PCF8537 v.1  
Product data sheet  
-
-
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
76 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
20. Legal information  
20.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
20.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
20.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
77 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
20.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP B.V.  
21. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
78 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
22. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 3. Pin description of PCF8537AH and  
Table 40. SnPb eutectic process (from J-STD-020C) . . . 72  
Table 41. Lead-free process (from J-STD-020C) . . . . . . 72  
Table 42. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Table 43. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 76  
PCF8537BH . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Table 4. Commands of PCF8537 . . . . . . . . . . . . . . . . . .7  
Table 5. Initialize - initialize command bit description . . .8  
Table 6. OTP-refresh - OTP-refresh command bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Table 7. Oscillator-ctrl - oscillator control command bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Table 8. Charge-pump-ctrl - charge pump control  
command bit description . . . . . . . . . . . . . . . . . .9  
Table 9. Temp-msr-ctrl - temperature measurement control  
command bit description . . . . . . . . . . . . . . . . .10  
Table 10. Temp-comp - temperature compensation  
coefficients command . . . . . . . . . . . . . . . . . . .10  
Table 11. Set-VPR - set VPR command bit description .11  
Table 12. Display-enable - display enable command bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Table 13. Set-MUX-mode - set multiplex drive mode  
command bit description . . . . . . . . . . . . . . . . .12  
Table 14. Set-bias-mode - set bias mode command bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Table 15. Load-data-pointer - load data pointer command  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .12  
Table 16. Frame frequency - frame frequency and output  
clock frequency command bit description . . . .13  
Table 17. Frame frequency values . . . . . . . . . . . . . . . . .13  
Table 18. Bank-select - bank select command bit  
description . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Table 19. Write-RAM-data - write RAM data command  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .14  
Table 20. Temp-read - temperature readout command  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .15  
Table 21. Invmode_ctrl - drive scheme inversion  
command bit description . . . . . . . . . . . . . . . . .15  
Table 22. Temp-filter - digital temperature filter command  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .16  
Table 23. Reset state . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Table 24. Selection of display configurations . . . . . . . . . .23  
Table 25. Temperature measurement update rate . . . . . .28  
Table 26. Temperature coefficients. . . . . . . . . . . . . . . . . .30  
Table 27. Calculation of the VLCD offset voltage. . . . . . . .31  
Table 28. LCD drive modes: summary of characteristics .32  
Table 29. Mapping of output pins and corresponding  
signals with respect to driving mode. . . . . . . . .42  
Table 30. Control byte description . . . . . . . . . . . . . . . . . .52  
Table 31. I2C slave address byte . . . . . . . . . . . . . . . . . . .55  
Table 32. R/W bit description . . . . . . . . . . . . . . . . . . . . . .55  
Table 33. Serial interface . . . . . . . . . . . . . . . . . . . . . . . . .57  
Table 34. Subaddress byte definition . . . . . . . . . . . . . . . .57  
Table 35. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .61  
Table 36. Static characteristics . . . . . . . . . . . . . . . . . . . .62  
Table 37. Dynamic characteristics . . . . . . . . . . . . . . . . . .67  
Table 38. Timing characteristics: I2C-bus . . . . . . . . . . . .68  
Table 39. Timing characteristics: SPI-bus . . . . . . . . . . . .69  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
79 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
23. Figures  
Fig 1. Block diagram of PCF8537AH. . . . . . . . . . . . . . . .3  
Fig 2. Block diagram of PCF8537BH. . . . . . . . . . . . . . . .4  
Fig 3. Pin configuration for TQFP64 (PCF8537AH). . . . .5  
Fig 4. Pin configuration for TQFP64 (PCF8537BH). . . . .5  
Fig 5. Recommended start-up sequence when using  
the internal charge pump and the internal clock  
signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Fig 6. Recommended start-up sequence when using  
an external supplied VLCD and the internal clock  
signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Fig 7. Recommended start-up sequence when using the  
internal charge pump and an external clock  
signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Fig 8. Recommended start-up sequence when using  
an external supplied VLCD and an external  
clock signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Fig 9. Recommended power-down sequence for  
minimum power-down current when using the  
with 13 bias (line inversion mode) . . . . . . . . . . . . 36  
Fig 27. Waveforms for the 1:4 multiplex drive mode  
with 13 bias (line inversion mode) . . . . . . . . . . . . 37  
Fig 28. Waveforms for 1:6 multiplex drive mode  
with 13 bias (line inversion mode) . . . . . . . . . . . . 38  
Fig 29. Waveforms for 1:6 multiplex drive mode  
with 14 bias (line inversion mode) . . . . . . . . . . . . 39  
Fig 30. Waveforms for 1:8 multiplex drive mode  
with 14 bias (line inversion mode) . . . . . . . . . . . . 40  
Fig 31. Waveforms for 1:8 multiplex drive mode  
with 14 bias (frame inversion mode) . . . . . . . . . . 41  
Fig 32. Display RAM bitmap . . . . . . . . . . . . . . . . . . . . . . 45  
Fig 33. Display RAM filling order in static drive mode. . . 47  
Fig 34. Discarded bits at the end of data transmission . . 47  
Fig 35. Display RAM filling order in 1:2 multiplex drive  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Fig 36. Display RAM filling order in 1:4 multiplex drive  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Fig 37. Display RAM filling order in 1:6 multiplex drive  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Fig 38. Display RAM filling order in 1:8 multiplex drive  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Fig 39. Bank selection. . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Fig 40. Example of the Bank-select command with  
multiplex drive mode 1:4 . . . . . . . . . . . . . . . . . . . 50  
Fig 41. Control byte format . . . . . . . . . . . . . . . . . . . . . . . 52  
Fig 42. Bit transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Fig 43. Definition of START and STOP conditions . . . . . 53  
Fig 44. System configuration. . . . . . . . . . . . . . . . . . . . . . 54  
Fig 45. Acknowledgement on the I2C-bus. . . . . . . . . . . . 54  
Fig 46. I2C-bus protocol, write mode. . . . . . . . . . . . . . . . 56  
Fig 47. I2C-bus protocol, read mode . . . . . . . . . . . . . . . . 56  
Fig 48. Data transfer overview . . . . . . . . . . . . . . . . . . . . 57  
Fig 49. SPI-bus write example . . . . . . . . . . . . . . . . . . . . 58  
Fig 50. SPI-bus write example . . . . . . . . . . . . . . . . . . . . 58  
Fig 51. SPI-bus read example. . . . . . . . . . . . . . . . . . . . . 59  
Fig 52. Device protection diagram for PCF8537AH . . . . 60  
Fig 53. Device protection diagram for PCF8537BH . . . . 60  
Fig 54. LCD voltage variation with respect to  
internal charge pump and the internal clock  
signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
Fig 10. Recommended power-down sequence when  
using an external supplied VLCD and the internal  
clock signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Fig 11. Recommended power-down sequence when  
using the internal charge pump and an external  
clock signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Fig 12. Recommended power-down sequence for  
minimum power-down current when using an  
external supplied VLCD and an external clock  
signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Fig 13. Example of displays suitable for PCF8537 . . . . .23  
Fig 14. Typical I2C system configuration when using  
the internal VLCD generation . . . . . . . . . . . . . . . .24  
Fig 15. Typical SPI system configuration when using  
an external VLCD . . . . . . . . . . . . . . . . . . . . . . . . .24  
Fig 16. VLCD generation including temperature  
compensation . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Fig 17. VLCD programming of PCF8537 (assuming  
VT[7:0] = 0h) . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Fig 18. Charge pump driving capability with  
temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Fig 55. Typical IDD1 with respect to temperature. . . . . . . 65  
Fig 56. Typical IDD2 with respect to temperature. . . . . . . 65  
Fig 57. Typical IDD(LCD) with respect to temperature . . . . 66  
Fig 58. Driver timing waveforms . . . . . . . . . . . . . . . . . . . 67  
Fig 59. RESET timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Fig 60. I2C-bus timing waveforms . . . . . . . . . . . . . . . . . . 68  
Fig 61. SPI-bus timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Fig 62. Package outline SOT357-1 (TQFP64) . . . . . . . . 70  
Fig 63. Temperature profiles for large and small  
VDD2 = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Fig 19. Charge pump driving capability with  
VDD2 = 5.0 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Fig 20. Temperature measurement block with digital  
temperature filter . . . . . . . . . . . . . . . . . . . . . . . . .29  
Fig 21. Temperature measurement delay during  
ramping up-down of the environment  
temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Fig 22. Example of segmented temperature coefficients.30  
Fig 23. Electro-optical characteristic: relative  
components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
transmission curve of the liquid . . . . . . . . . . . . . .33  
Fig 24. Static drive mode waveforms (line inversion  
mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Fig 25. Waveforms for the 1:2 multiplex drive mode  
with 12 bias (line inversion mode) . . . . . . . . . . . .35  
Fig 26. Waveforms for the 1:2 multiplex drive mode  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
80 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
24. Contents  
1
2
3
4
5
6
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.4.4.1  
8.4.4.2  
8.4.5  
8.4.5.1  
8.4.6  
8.4.6.1  
8.4.6.2  
8.4.6.3  
8.4.6.4  
8.4.6.5  
8.5  
Temperature readout . . . . . . . . . . . . . . . . . . . 28  
Temperature adjustment of the VLCD . . . . . . . 30  
LCD voltage selector . . . . . . . . . . . . . . . . . . . 31  
Electro-optical performance. . . . . . . . . . . . . . 33  
LCD drive mode waveforms. . . . . . . . . . . . . . 34  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . 34  
1:2 multiplex drive mode . . . . . . . . . . . . . . . . 35  
1:4 multiplex drive mode . . . . . . . . . . . . . . . . 37  
1:6 multiplex drive mode . . . . . . . . . . . . . . . . 38  
1:8 multiplex drive mode . . . . . . . . . . . . . . . . 40  
Backplane and segment outputs . . . . . . . . . . 42  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 42  
1:8 multiplex drive mode . . . . . . . . . . . . . . . . 42  
1:6 multiplex drive mode . . . . . . . . . . . . . . . . 42  
1:4 multiplex drive mode . . . . . . . . . . . . . . . . 42  
1:2 multiplex drive mode . . . . . . . . . . . . . . . . 42  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . 43  
Segment outputs . . . . . . . . . . . . . . . . . . . . . . 43  
Static, 1:8, 1:4, 1:2 multiplex drive mode . . . . 43  
1:6 multiplex drive mode . . . . . . . . . . . . . . . . 43  
Display controller . . . . . . . . . . . . . . . . . . . . . . 44  
Display register . . . . . . . . . . . . . . . . . . . . . . . 44  
Display RAM . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
RAM filling in static drive mode . . . . . . . . . . . 47  
RAM filling in 1:2 multiplex drive mode . . . . . 47  
RAM filling in 1:4 multiplex drive mode . . . . . 48  
RAM filling in 1:6 multiplex drive mode . . . . . 48  
RAM filling in 1:8 multiplex drive mode . . . . . 49  
Bank selection . . . . . . . . . . . . . . . . . . . . . . . . 50  
Input bank selection. . . . . . . . . . . . . . . . . . . . 50  
Output bank selection . . . . . . . . . . . . . . . . . . 51  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8
8.1  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Commands of PCF8537. . . . . . . . . . . . . . . . . . 7  
Command: Initialize . . . . . . . . . . . . . . . . . . . . . 8  
Command: OTP-refresh . . . . . . . . . . . . . . . . . . 8  
Command: Oscillator-ctrl . . . . . . . . . . . . . . . . . 8  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Internal oscillator . . . . . . . . . . . . . . . . . . . . . . . 9  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Command: Charge-pump-ctrl . . . . . . . . . . . . . . 9  
Command: Temp-msr-ctrl . . . . . . . . . . . . . . . . 10  
Command: Temp-comp . . . . . . . . . . . . . . . . . 10  
Command: Set-VPR. . . . . . . . . . . . . . . . . . . . 11  
Command: Display-enable . . . . . . . . . . . . . . . 11  
Command: Set-MUX-mode . . . . . . . . . . . . . . 12  
Command: Set-bias-mode . . . . . . . . . . . . . . . 12  
Command: Load-data-pointer. . . . . . . . . . . . . 12  
Command: Frame-frequency . . . . . . . . . . . . . 13  
8.5.1  
8.5.1.1  
8.5.1.2  
8.5.1.3  
8.5.1.4  
8.5.1.5  
8.5.2  
8.5.2.1  
8.5.2.2  
8.6  
8.7  
8.8  
8.8.1  
8.8.2  
8.8.3  
8.8.4  
8.8.5  
8.8.6  
8.9  
8.9.1  
8.9.2  
8.1.1  
8.1.2  
8.1.3  
8.1.3.1  
8.1.3.2  
8.1.3.3  
8.1.4  
8.1.5  
8.1.6  
8.1.7  
8.1.8  
8.1.9  
8.1.10  
8.1.11  
8.1.12  
8.1.12.1 Timing and frame frequency. . . . . . . . . . . . . . 14  
8.1.13  
8.1.14  
8.1.15  
8.1.16  
8.1.17  
8.2  
8.2.1  
8.2.2  
8.2.3  
8.2.4  
Command: Bank-select . . . . . . . . . . . . . . . . . 14  
Command: Write-RAM-data . . . . . . . . . . . . . . 14  
Command: Temp-read . . . . . . . . . . . . . . . . . . 15  
Command: Invmode_ctrl . . . . . . . . . . . . . . . . 15  
Command: Temp-filter . . . . . . . . . . . . . . . . . . 16  
Start-up and shut-down. . . . . . . . . . . . . . . . . . 17  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . 17  
RESET pin function . . . . . . . . . . . . . . . . . . . . 18  
Recommended start-up sequences . . . . . . . . 18  
Recommended sequences to enter  
power-down mode . . . . . . . . . . . . . . . . . . . . . 20  
Possible display configurations . . . . . . . . . . . 23  
LCD supply voltage. . . . . . . . . . . . . . . . . . . . . 25  
External VLCD supply . . . . . . . . . . . . . . . . . . . 25  
Internal VLCD generation. . . . . . . . . . . . . . . . . 25  
Charge pump . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Charge pump configuration . . . . . . . . . . . . . . 26  
Charge pump driving capability . . . . . . . . . . . 26  
Temperature measurement and temperature  
compensation of VLCD . . . . . . . . . . . . . . . . . . 28  
9
9.1  
9.2  
Bus interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Control byte . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
I2C-bus interface characteristics  
(PCF8537AH) . . . . . . . . . . . . . . . . . . . . . . . . 53  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
START and STOP conditions. . . . . . . . . . . . . 53  
System configuration . . . . . . . . . . . . . . . . . . . 53  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 54  
I2C-bus controller . . . . . . . . . . . . . . . . . . . . . . 54  
Input filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
I2C-bus slave address . . . . . . . . . . . . . . . . . . 55  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 55  
Data read . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
SPI-bus interface (PCF8537BH) . . . . . . . . . . 57  
Data transmission . . . . . . . . . . . . . . . . . . . . . 57  
Data read . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
9.2.9  
9.3  
8.3  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.4.3.1  
8.4.3.2  
8.4.4  
9.3.1  
9.3.2  
continued >>  
PCF8537  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 1 — 31 May 2012  
81 of 82  
PCF8537  
NXP Semiconductors  
Industrial LCD driver for multiplex rates up to 1:8  
10  
11  
12  
13  
14  
15  
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 60  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 61  
Static characteristics. . . . . . . . . . . . . . . . . . . . 62  
Dynamic characteristics . . . . . . . . . . . . . . . . . 67  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 70  
Handling information. . . . . . . . . . . . . . . . . . . . 71  
16  
Soldering of SMD packages . . . . . . . . . . . . . . 71  
Introduction to soldering . . . . . . . . . . . . . . . . . 71  
Wave and reflow soldering . . . . . . . . . . . . . . . 71  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 72  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 72  
16.1  
16.2  
16.3  
16.4  
17  
18  
19  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 74  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 76  
20  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 77  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 77  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
20.1  
20.2  
20.3  
20.4  
21  
22  
23  
24  
Contact information. . . . . . . . . . . . . . . . . . . . . 78  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2012.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 31 May 2012  
Document identifier: PCF8537  

相关型号:

PCF8537AH

Industrial LCD driver for multiplex rates up to 1:8
NXP

PCF8537AH1

Industrial LCD driver for multiplex rates up to 1:8
NXP

PCF8537BH

Industrial LCD driver for multiplex rates up to 1:8
NXP

PCF8537BH1

Industrial LCD driver for multiplex rates up to 1:8
NXP

PCF8538UG

Universal 36 × 4 LCD segment driver
NXP

PCF8545ATT

Universal 36 × 4 LCD segment driver
NXP

PCF8545ATT/A

IC LIQUID CRYSTAL DISPLAY DRIVER, Display Driver
NXP

PCF8545ATT/AJ

PCF8545 - Universal LCD driver for multiplex rates up to 1:8 TSSOP 56-Pin
NXP

PCF8545BTT

Universal 36 × 4 LCD segment driver
NXP

PCF8545BTT/A

IC LIQUID CRYSTAL DISPLAY DRIVER, Display Driver
NXP

PCF8545BTT/AJ

PCF8545 - Universal LCD driver for multiplex rates up to 1:8 TSSOP 56-Pin
NXP

PCF8548

65 x 102 pixels matrix LCD driver
NXP