PCF8563BS/4-T [NXP]

IC,REAL-TIME CLOCK,CMOS,LLCC,10PIN,PLASTIC;
PCF8563BS/4-T
型号: PCF8563BS/4-T
厂家: NXP    NXP
描述:

IC,REAL-TIME CLOCK,CMOS,LLCC,10PIN,PLASTIC

光电二极管
文件: 总32页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8563  
Real-time clock/calendar  
Rev. 06 — 21 February 2008  
Product data sheet  
1. General description  
The PCF8563 is a CMOS real-time clock/calendar optimized for low power consumption.  
A programmable clock output, interrupt output and voltage-low detector are also provided.  
All addresses and data are transferred serially via a two-line bidirectional I2C-bus.  
Maximum bus speed is 400 kbit/s. The built-in word address register is incremented  
automatically after each written or read data byte.  
2. Features  
I Provides year, month, day, weekday, hours, minutes and seconds based on  
32.768 kHz quartz crystal  
I Century flag  
I Clock operating voltage: 1.8 V to 5.5 V  
I Low backup current; typical 0.25 µA at VDD = 3.0 V and Tamb = 25 °C  
I 400 kHz two-wire I2C-bus interface (at VDD = 1.8 V to 5.5 V)  
I Programmable clock output for peripheral devices (32.768 kHz, 1024 Hz, 32 Hz and  
1 Hz)  
I Alarm and timer functions  
I Integrated oscillator capacitor  
I Internal power-on reset  
I I2C-bus slave address: read A3h and write A2h  
I Open-drain interrupt pin  
I ElectroStatic Discharge (ESD) protection exceeds 2000 V Human Body Model (HBM)  
per JESD22-A114, 200 V Machine Model (MM) per JESD22-A115 and 2000 V  
Charged Device Model (CDM) per JESD22-C101  
I Latch-up testing is done to JEDEC standard JESD78 which exceeds 100 mA  
3. Applications  
I Mobile telephones  
I Portable instruments  
I Electronic metering  
I Battery powered products  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
4. Ordering information  
Table 1.  
Ordering information  
Type number Topside  
mark  
Package  
Name  
DIP8  
Description  
Version  
PCF8563P  
PCF8563T  
PCF8563TS  
PCF8563P  
8563T  
plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
SO8  
plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
8563  
TSSOP8  
plastic thin shrink small outline package; 8 leads; body width  
3 mm  
SOT505-1  
PCF8563BS  
8563S  
HVSON10 plastic thermal enhanced very thin small outline package;  
SOT650-1  
no leads; 10 terminals; body 3 × 3 × 0.85 mm  
5. Block diagram  
OSCI  
OSCILLATOR  
32.768 kHz  
DIVIDER  
CLOCK OUT  
CLKOUT  
OSCO  
CONTROL  
MONITOR  
00  
01  
0D  
CONTROL_STATUS_1  
CONTROL_STATUS_2  
CLKOUT_CONTROL  
POWER ON  
RESET  
TIME  
VL_SECONDS  
MINUTES  
02  
03  
04  
05  
06  
07  
08  
HOURS  
V
DD  
DAYS  
V
SS  
WEEKDAYS  
CENTURY_MONTHS  
YEARS  
WATCH  
DOG  
ALARM FUNCTION  
MINUTE_ALARM  
HOUR_ALARM  
09  
0A  
0B  
0C  
2
DAY_ALARM  
SDA  
SCL  
I C-BUS  
INTERFACE  
WEEKDAY_ALARM  
INT  
INTERRUPT  
TIMER FUNCTION  
TIMER_CONTROL  
TIMER  
0E  
0F  
PCF8563  
001aah658  
Fig 1. Block diagram  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
2 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
6. Pinning information  
6.1 Pinning  
1
2
3
4
8
7
6
5
OSCI  
OSCO  
INT  
V
DD  
1
2
3
4
8
7
6
5
OSCI  
OSCO  
INT  
V
DD  
CLKOUT  
SCL  
CLKOUT  
SCL  
PCF8563T  
PCF8563P  
V
SS  
SDA  
V
SDA  
SS  
001aaf977  
001aaf975  
Fig 2. Pin configuration DIP8  
Fig 3. Pin configuration SO8  
terminal 1  
index area  
1
2
3
4
5
10  
9
OSCI  
OSCO  
n.c.  
n.c.  
V
DD  
8
PCF8563BS  
CLKOUT  
SCL  
1
2
3
4
8
7
6
5
OSCI  
OSCO  
INT  
V
DD  
7
INT  
CLKOUT  
SCL  
PCF8563TS  
6
V
SS  
SDA  
V
SS  
SDA  
001aaf981  
001aaf976  
Transparent top view  
Fig 4. Pin configuration TSSOP8  
Fig 5. Pin configuration HVSON10  
8
1
V
DD  
OSCI  
7
2
CLKOUT  
SCL  
OSCO  
6
5
3
INT  
4
V
SS  
SDA  
PCF8563  
mgr886  
Fig 6. Device diode protection diagram  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
3 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
6.2 Pin description  
Table 2.  
Symbol  
Pin description  
Pin  
Description  
DIP8, SO8, TSSOP8 HVSON10  
OSCI  
OSCO  
n.c.  
1
2
-
1
2
oscillator input  
oscillator output  
3
not connected  
INT  
3
4
5
6
7
8
-
4
interrupt output (open-drain; active LOW)  
ground  
VSS  
5
SDA  
SCL  
6
serial data input and output  
serial clock input  
7
CLKOUT  
VDD  
8
clock output, open-drain  
positive supply voltage  
not connected  
9
n.c.  
10  
7. Functional description  
The PCF8563 contains sixteen 8-bit registers with an auto-incrementing address register,  
an on-chip 32.768 kHz oscillator with one integrated capacitor, a frequency divider which  
provides the source clock for the Real-Time Clock/calender (RTC), a programmable clock  
output, a timer, an alarm, a voltage-low detector and a 400 kHz I2C-bus interface.  
All 16 registers are designed as addressable 8-bit parallel registers although not all bits  
are implemented. The first two registers (memory address 00h and 01h) are used as  
control and/or status registers. The memory addresses 02h through 08h are used as  
counters for the clock function (seconds up to years counters). Address locations 09h  
through 0Ch contain alarm registers which define the conditions for an alarm.  
Address 0Dh controls the CLKOUT output frequency. 0Eh and 0Fh are the timer control  
and timer registers, respectively.  
The seconds, minutes, hours, days, weekdays, months, years as well as the minute alarm,  
hour alarm, day alarm and weekday alarm registers are all coded in Binary Coded  
Decimal (BCD) format.  
When one of the RTC registers is read the contents of all counters are frozen. Therefore,  
faulty reading of the clock/calendar during a carry condition is prevented.  
7.1 Alarm function modes  
By clearing the MSB of one or more of the alarm registers (bit AE = Alarm Enable), the  
corresponding alarm condition(s) will be active. In this way an alarm can be generated  
from once per minute up to once per week. The alarm condition sets the Alarm Flag (AF).  
The asserted AF can be used to generate an interrupt (on pin INT). The AF can only be  
cleared by software.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
4 of 32  
PCF8563  
NXP Semiconductors  
7.2 Timer  
Real-time clock/calendar  
The 8-bit countdown timer at address 0Fh is controlled by the timer control register at  
address 0Eh. The timer control register determines one of 4 source clock frequencies for  
the timer (4096 Hz, 64 Hz, 1 Hz, or 160 Hz), and enables or disables the timer. The timer  
counts down from a software-loaded 8-bit binary value. At the end of every countdown,  
the timer sets the Timer Flag (TF). The TF may only be cleared by software. The  
asserted TF can be used to generate an interrupt (on pin INT). The interrupt may be  
generated as a pulsed signal every countdown period or as a permanently active signal  
which follows the state of TF. Bit TI_TP is used to control this mode selection. When  
reading the timer, the current countdown value is returned.  
7.3 Clock output  
A programmable square wave is available at pin CLKOUT. Operation is controlled by the  
CLKOUT control register at address 0Dh. Frequencies of 32.768 kHz (default), 1024 Hz,  
32 Hz and 1 Hz can be generated for use as a system clock, microcontroller clock, input to  
a charge pump, or for calibration of the oscillator. CLKOUT is an open-drain output and  
enabled at power-on. If disabled it becomes high-impedance.  
7.4 Reset  
The PCF8563 includes an internal reset circuit which is active whenever the oscillator is  
stopped. In the reset state the I2C-bus logic is initialized and all registers are reset  
according to Table 25.  
7.5 Voltage-low detector  
The PCF8563 has an on-chip voltage-low detector (see Figure 7). When VDD drops below  
Vlow, bit VL in the seconds register is set to indicate that the integrity of the clock  
information is no longer guaranteed. The VL flag can only be cleared by software.  
Bit VL is intended to detect the situation when VDD is decreasing slowly, for example under  
battery operation. Should VDD reach Vlow before power is re-asserted then bit VL is set.  
This will indicate that the time may be corrupted.  
mgr887  
V
DD  
normal power  
operation  
period of battery  
operation  
V
low  
t
VL set  
Fig 7. Voltage-low detection  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
5 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
7.6 Register organization  
Table 3.  
Formatted registers overview  
Bit positions labelled as x are not relevant. Bit positions labelled with 0 should always be written with logic 0; if read they could  
be either logic 0 or logic 1.  
Address Register name  
Bit 7  
Bit 6  
Bit 5  
STOP  
0
Bit 4  
0
Bit 3  
TESTC  
AF  
Bit 2  
0
Bit 1  
0
Bit 0  
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
control_status_1  
control_status_2  
VL_seconds  
minutes  
TEST1  
0
0
0
VL  
x
TI_TP  
TF  
AIE  
TIE  
<seconds 00 to 59 coded in BCD>  
<minutes 00 to 59 coded in BCD>  
hours  
x
x
x
x
x
<hours 00 to 23 coded in BCD>  
<days 01 to 31 coded in BCD>  
days  
x
weekdays  
x
x
x
x
x
<weekdays 0 to 6 in BCD>  
century_months  
years  
C
<months 01 to 12 coded in BCD>  
<years 00 to 99 coded in BCD>  
minute_alarm  
hour_alarm  
day_alarm  
weekday_alarm  
CLKOUT_control  
timer_control  
timer  
AE  
AE  
AE  
AE  
FE  
TE  
<minute alarm 00 to 59 coded in BCD>  
<hour alarm 00 to 23 coded in BCD>  
<day alarm 01 to 31 coded in BCD>  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
<weekday alarm 0 to 6 in BCD>  
x
x
FD1  
TD1  
FD0  
TD0  
<timer countdown value>  
7.6.1 Control_status_1 register  
Table 4.  
Control_status_1 - Control and Status register 1 (address 00h) bit description  
Symbol Value Description  
Bit  
7
TEST1  
0
1
Normal mode  
EXT_CLK test mode  
default value is logic 0  
RTC source clock runs  
6
5
0
STOP  
0
1
all RTC divider chain flip-flops are asynchronously set to logic 0; the  
RTC clock is stopped (CLKOUT at 32.768 kHz is still available)  
4
3
0
default value is logic 0  
TESTC  
0
1
Power-on reset override facility is disabled; set to logic 0 for normal  
operation  
Power-on reset override may be enabled  
default value is logic 0  
2 to 0  
0
7.6.2 Control_status_2 register  
Bits TF and AF: When an alarm occurs, AF is set to logic 1. Similarly, at the end of a timer  
countdown, TF is set to logic 1. These bits maintain their value until overwritten by  
software. If both timer and alarm interrupts are required in the application, the source of  
the interrupt can be determined by reading these bits. To prevent one flag being  
overwritten while clearing another a logic AND is performed during a write access.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
6 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
Bits TIE and AIE: These bits activate or deactivate the generation of an interrupt when  
TF or AF is asserted, respectively. The interrupt is the logical OR of these two conditions  
when both AIE and TIE are set.  
Table 5.  
Bit  
Control_status_2 - Control and Status register 2 (address 01h) bit description  
Symbol Value  
Description  
7 to 5  
4
0
default value is logic 0  
TI_TP  
0
1
INT is active when TF is active (subject to the status of TIE)  
INT pulses active according to Table 6 (subject to the status of  
TIE); note that if AF and AIE are active then INT will be  
permanently active  
3
2
AF  
0 (read) alarm flag inactive  
1 (read) alarm flag active  
0 (write) alarm flag is cleared  
1 (write) alarm flag remains unchanged  
0 (read) timer flag inactive  
TF  
1 (read) timer flag active  
0 (write) timer flag is cleared  
1 (write) timer flag remains unchanged  
1
0
AIE  
TIE  
0
1
0
1
alarm interrupt disabled  
alarm interrupt enabled  
timer interrupt disabled  
timer interrupt enabled  
Table 6.  
INT operation (bit TI_TP = 1)  
Source clock (Hz)  
INT period (s)[1]  
n = 1[2]  
n > 1[2]  
1
1
4096  
64  
8192  
128  
64  
4096  
64  
1
1
1
1
1
1
1
64  
1
60  
64  
64  
[1] TF and INT become active simultaneously.  
[2] n = loaded countdown value. Timer stopped when n = 0.  
7.6.3 Time and date registers  
Table 7.  
VL_seconds - Validity and Seconds register (address 02h) bit description  
Bit  
Symbol  
Value  
Description  
7
VL  
0
1
clock integrity is guaranteed  
integrity of the clock information is no longer guaranteed  
6 to 0  
SECONDS[6:0] 00 to 59 the current seconds, coded in BCD format. Example:  
seconds register contains x101 1001 = 59 seconds  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
7 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
Table 8.  
Minutes - Minutes register (address 03h) bit description  
Bit  
7
Symbol  
Value  
Description  
x
not relevant  
6 to 0  
MINUTES[6:0]  
00 to 59 the current minutes, coded in BCD format  
Table 9.  
Bit  
Hours - Hours register (address 04h) bit description  
Symbol  
x
Value  
Description  
7 to 6  
5 to 0  
not relevant  
HOURS[5:0]  
00 to 23 the current hours, coded in BCD format  
Table 10. Days - Days register (address 05h) bit description  
Bit  
Symbol  
x
Value  
Description  
7 to 6  
5 to 0  
not relevant  
DAYS[5:0]  
01 to 31 the current day, coded in BCD format[1]  
[1] The PCF8563 compensates for leap years by adding a 29th day to February if the year counter contains a  
value which is exactly divisible by 4, including the year 00.  
Table 11. Weekdays - Weekdays register (address 06h) bit description  
Bit  
Symbol  
Value  
Description  
7 to 3  
2 to 0[1]  
x
not relevant  
WEEKDAYS[2:0] 0 to 6  
the current weekday, coded in BCD format,  
see Table 12.  
[1] These bits may be re-assigned by the user.  
Table 12. Weekday assignments  
Weekday  
Sunday  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Monday  
Tuesday  
Wednesday  
Thursday  
Friday  
Saturday  
Table 13. Century_months - Century and Months register (address 07h) bit description  
Bit  
Symbol  
Value  
Description  
7
C[1]  
century; this bit is toggled when the years register  
overflows from 99 to 00  
0
1
indicates the century is 20xx  
indicates the century is 19xx  
not relevant  
6 to 5  
4 to 0  
x
MONTHS[4:0]  
01 to 12 the current month, coded in BCD format, see Table 14  
[1] This bit may be re-assigned by the user.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
8 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
Table 14. Month assignments  
Month  
Bit 7  
C
Bit 6  
Bit 5  
Bit 4  
0
Bit 3  
0
Bit 2  
0
Bit 1  
0
Bit 0  
1
January  
February  
March  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
C
0
0
0
1
0
C
0
0
0
1
1
April  
C
0
0
1
0
0
May  
C
0
0
1
0
1
June  
C
0
0
1
1
0
July  
C
0
0
1
1
1
August  
September  
October  
November  
December  
C
0
1
0
0
0
C
0
1
0
0
1
C
1
0
0
0
0
C
1
0
0
0
1
C
1
0
0
1
0
Table 15. Years - Years register (address 08h) bit description  
Bit  
Symbol  
Value  
Description  
7 to 0  
YEARS[7:0]  
00 to 99 the current year, coded in BCD format  
7.6.4 Alarm registers  
When one or more of these registers are loaded with a valid minute, hour, day or weekday  
and its corresponding bit Alarm Enable (AE) is logic 0, then that information will be  
compared with the current minute, hour, day and weekday. When all enabled comparisons  
first match, the Alarm Flag (AF) is set. AF will remain set until cleared by software.  
Once AF has been cleared it will only be set again when the time increments to match the  
alarm condition once more. Alarm registers which have their bit AE at logic 1 will be  
ignored.  
Table 16. Minute_alarm - Minute alarm register (address 09h) bit description  
Bit  
Symbol  
Value  
Description  
7
AE  
0
1
minute alarm is enabled  
minute alarm is disabled  
6 to 0  
ALARM _MINUTES[6:0] 00 to 59 the minute alarm information, coded in BCD  
format  
Table 17. Hour_alarm - Hour alarm register (address 0Ah) bit description  
Bit  
Symbol  
Value  
Description  
7
AE  
0
1
hour alarm is enabled  
hour alarm is disabled  
not relevant  
6
x
5 to 0  
ALARM_HOURS[5:0]  
00 to 23 the hour alarm information, coded in BCD format  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
9 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
Table 18. Day_alarm - Day alarm register (address 0Bh) bit description  
Bit  
Symbol  
Value  
Description  
7
AE  
0
1
day alarm is enabled  
day alarm is disabled  
not relevant  
6
x
5 to 0  
ALARM_DAYS[5:0]  
01 to 31 the day alarm information, coded in BCD format  
Table 19. Weekday_alarm - Weekday alarm register (address 0Ch) bit description  
Bit  
Symbol  
Value  
Description  
7
AE  
0
1
weekday alarm is enabled  
weekday alarm is disabled  
not relevant  
6 to 3  
2 to 0  
x
ALARM_  
WEEKDAYS[2:0]  
0 to 6  
the weekday alarm information, coded in BCD  
format  
7.6.5 Clock output control register  
Table 20. CLKOUT_control - CLKOUT control register (address 0Dh) bit description  
Bit  
Symbol  
Value  
Description  
7
FE  
0
the CLKOUT output is inhibited and set to  
high-impedance  
1
the CLKOUT output is activated  
not relevant  
6 to 2  
1 to 0  
x
FD[1:0]  
see Table 21  
these bits control the frequency output at  
pin CLKOUT  
Table 21. FD1 and FD0: CLKOUT frequency selection  
FD1  
0
FD0  
0
CLKOUT frequency  
32.768 kHz  
1024 Hz  
0
1
1
0
32 Hz  
1
1
1 Hz  
7.6.6 Countdown timer  
The timer register is an 8-bit binary countdown timer. It is enabled and disabled via the  
timer control register bit TE. The source clock for the timer is also selected by the timer  
control register. Other timer properties such as interrupt generation are controlled via  
control_status_2 register.  
For accurate read back of the countdown value, the I2C-bus clock (SCL) must be  
operating at a frequency of at least twice the selected timer clock.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
10 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
Table 22. Timer_control - Timer control register (address 0Eh) bit description  
Bit  
Symbol  
Value  
Description  
7
TE  
0
1
timer is disabled  
timer is enabled  
not relevant  
6 to 2  
1 to 0  
x
TD[1:0]  
see Table 23  
timer source clock frequency select; these bits  
determine the source clock for the countdown  
timer; when not in use, TD[1:0] should be set  
to 11 (160 Hz) for power saving  
Table 23. TD1 and TD0: Timer frequency selection  
TD1  
0
TD0  
0
TIMER Source clock frequency  
4096 Hz  
64 Hz  
0
1
1
0
1 Hz  
1
1
1
60 Hz  
Table 24. Timer - Timer value register (address 0Fh) bit description  
Bit  
Symbol  
Value  
Description  
7 to 0  
TIMER  
00h to FFh  
countdown value = n;  
n
CountdownPeriod =  
--------------------------------------------------------------  
SourceClockFrequency  
7.7 EXT_CLK test mode  
A Test mode is available which allows for on-board testing. In such a mode it is possible to  
set up test conditions and control the operation of the RTC.  
The Test mode is entered by setting bit TEST1 in control_status_1 register. Then  
pin CLKOUT becomes an input. The Test mode replaces the internal 64 Hz signal with the  
signal applied to pin CLKOUT. Every 64 positive edges applied to pin CLKOUT will then  
generate an increment of one second.  
The signal applied to pin CLKOUT should have a minimum pulse width of 300 ns and a  
minimum period of 1000 ns. The internal 64 Hz clock, now sourced from CLKOUT, is  
divided down to 1 Hz by a 26 divide chain called a pre-scaler. The pre-scaler can be set  
into a known state by using bit STOP. When bit STOP is set, the pre-scaler is reset to 0  
(STOP must be cleared before the pre-scaler can operate again).  
From a STOP condition, the first 1 second increment will take place after 32 positive  
edges on CLKOUT. Thereafter, every 64 positive edges will cause a one-second  
increment.  
Remark: Entry into EXT_CLK test mode is not synchronized to the internal 64 Hz clock.  
When entering the Test mode, no assumption as to the state of the pre-scaler can be  
made.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
11 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
Operation example:  
1. Set EXT_CLK test mode (control_status_1, bit TEST1 = 1)  
2. Set STOP (control_status_1, bit STOP = 1)  
3. Clear STOP (control_status_1, bit STOP = 0)  
4. Set time registers to desired value  
5. Apply 32 clock pulses to CLKOUT  
6. Read time registers to see the first change  
7. Apply 64 clock pulses to CLKOUT  
8. Read time registers to see the second change  
Repeat steps 7 and 8 for additional increments.  
7.8 Power-On Reset (POR) override  
The POR duration is directly related to the crystal oscillator start-up time. Due to the long  
start-up times experienced by these types of circuits, a mechanism has been built in to  
disable the POR and hence speed up on-board test of the device. The setting of this mode  
requires that the I2C-bus pins, SDA and SCL, be toggled in a specific order as shown in  
Figure 8. All timings are required minimums.  
Once the Override mode has been entered, the device immediately stops being reset and  
normal operation may commence i.e. entry into the EXT_CLK test mode via I2C-bus  
access. The Override mode may be cleared by writing a logic 0 to TESTC. TESTC must  
be set to logic 1 before re-entry into the Override mode is possible. Setting TESTC to  
logic 0 during normal operation has no effect except to prevent entry into the POR  
override mode.  
500 ns  
2000 ns  
SDA  
SCL  
8 ms  
power up  
mgm664  
override active  
Fig 8. POR override sequence  
Table 25 shows the register reset values.  
Table 25. Register reset value[1]  
Address Register name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00h  
01h  
02h  
03h  
04h  
control_status_1  
control_status_2  
VL_seconds  
minutes  
0
x
1
1
x
0
x
x
x
x
0
0
x
x
x
0
0
x
x
x
1
0
x
x
x
0
0
x
x
x
0
0
x
x
x
0
0
x
x
x
hours  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
12 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
Table 25. Register reset value[1] …continued  
Address Register name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
days  
x
x
x
x
1
1
1
1
1
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
0
1
x
x
x
x
x
x
x
x
x
0
1
x
weekdays  
century_months  
years  
minute_alarm  
hour_alarm  
day_alarm  
weekday_alarm  
CLKOUT_control  
timer_control  
timer  
[1] registers marked ‘x’ are undefined at power-up and unchanged by subsequent resets.  
8. Characteristics of the I2C-bus  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be  
connected to a positive supply via a pull-up resistor. Data transfer may be initiated only  
when the bus is not busy.  
8.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as a control signal (see Figure 9).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mbc621  
Fig 9. Bit transfer  
8.2 Start and stop conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line, while the clock is HIGH is defined as the START condition (S). A  
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition (P); see Figure 10.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
13 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 10. Definition of start and stop conditions  
8.3 System configuration  
A device generating a message is a transmitter, a device receiving a message is a  
receiver. The device that controls the message is the master and the devices which are  
controlled by the master are the slaves (see Figure 11).  
SDA  
SCL  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
TRANSMITTER /  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
mba605  
Fig 11. System configuration  
8.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
bit. The acknowledge bit is a HIGH-level signal put on the bus by the transmitter during  
which time the master generates an extra acknowledge-related clock pulse. A slave  
receiver which is addressed must generate an acknowledge after the reception of each  
byte. Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter (see Figure 12).  
The device that acknowledges must pull down the SDA line during the acknowledge clock  
pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge-related clock pulse (set-up and hold times must be taken into  
consideration). A master receiver must signal an end of data to the transmitter by not  
generating an acknowledge on the last byte that has been clocked out of the slave. In this  
event the transmitter must leave the data line HIGH to enable the master to generate a  
STOP condition.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
14 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
8
SCL from  
master  
1
2
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 12. Acknowledgement on the I2C-bus  
8.5 I2C-bus protocol  
8.5.1 Addressing  
Before any data is transmitted on the I2C-bus, the device which should respond is  
addressed first. The addressing is always carried out with the first byte transmitted after  
the start procedure.  
The PCF8563 acts as a slave receiver or slave transmitter. Therefore the clock signal SCL  
is only an input signal, but the data signal SDA is a bidirectional line.  
The PCF8563 slave address is shown in Figure 13.  
1
0
1
0
0
0
1
R/W  
group 2  
group 1  
mce189  
Fig 13. Slave address  
8.5.2 Clock/calendar read/write cycles  
The I2C-bus configuration for the different PCF8563 read and write cycles is shown in  
Figure 14, Figure 15 and Figure 16. The word address is a 4-bit value that defines which  
register is to be accessed next. The upper four bits of the word address are not used.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
15 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from slave  
S
SLAVE ADDRESS  
0
A
WORD ADDRESS  
A
DATA  
A
P
R/W  
n bytes  
auto increment  
memory word address  
mbd822  
Fig 14. Master transmits to slave receiver (Write mode)  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from master  
S
SLAVE ADDRESS  
0
A
WORD ADDRESS  
A
S
SLAVE ADDRESS  
1
A
DATA  
A
n bytes  
R/W  
R/W  
at this moment master transmitter  
becomes master receiver and  
PCA8563 slave receiver  
auto increment  
memory word address  
becomes slave transmitter  
no acknowledgement  
from master  
DATA  
1
P
last byte  
auto increment  
memory word address  
001aag133  
Fig 15. Master reads after setting word address (write word address; read data)  
acknowledgement  
from slave  
acknowledgement  
from master  
no acknowledgement  
from master  
1
A
A
DATA  
1
P
S
SLAVE ADDRESS  
DATA  
R/W  
n bytes  
last byte  
auto increment  
word address  
auto increment  
word address  
mgl665  
Fig 16. Master reads slave immediately after first byte (Read mode)  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
16 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
9. Limiting values  
Table 26. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
IDD  
Parameter  
Conditions  
Min  
0.5  
50  
0.5  
0.5  
0.5  
10  
10  
-
Max  
+6.5  
+50  
Unit  
V
supply voltage  
supply current  
input voltage  
mA  
V
VI  
on pins SCL and SDA  
on pin OSCI  
+6.5  
VDD + 0.5  
+6.5  
+10  
V
VO  
II  
output voltage  
on pins CLKOUT and INT  
at any input  
V
input current  
mA  
mA  
mW  
°C  
°C  
IO  
output current  
at any output  
+10  
Ptot  
Tamb  
Tstg  
total power dissipation  
ambient temperature  
storage temperature  
300  
40  
65  
+85  
+150  
10. Static characteristics  
Table 27. Static characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; fosc = 32.768 kHz; quartz Rs = 40 k; CL = 8 pF; unless otherwise  
specified.  
Symbol  
Supplies  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[1]  
supply voltage  
interface inactive; fSCL = 0 Hz; Tamb = 25 °C;  
see Figure 20  
1.0  
-
5.5  
V
interface active; fSCL = 400 kHz; see Figure 20  
clock data integrity; Tamb = 25 °C  
interface active; see Figure 19  
fSCL = 400 kHz  
1.8  
-
-
5.5  
5.5  
V
V
Vlow  
IDD  
supply current  
-
-
-
-
800  
200  
µA  
µA  
fSCL = 100 kHz  
[2]  
interface inactive (fSCL = 0 Hz); CLKOUT  
disabled; Tamb = 25 °C; see Figure 17  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 2.0 V  
-
-
-
275  
250  
225  
550  
500  
450  
nA  
nA  
nA  
[2]  
interface inactive (fSCL = 0 Hz); CLKOUT  
disabled; Tamb = 40 °C to +85 °C;  
see Figure 17  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 2.0 V  
-
-
-
500  
400  
400  
750  
650  
600  
nA  
nA  
nA  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
17 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
Table 27. Static characteristics …continued  
VDD = 1.8 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; fosc = 32.768 kHz; quartz Rs = 40 k; CL = 8 pF; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[2]  
IDD  
supply current  
interface inactive (fSCL = 0 Hz); CLKOUT  
enabled at 32 kHz; Tamb = 25 °C; see Figure 18  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 2.0 V  
-
-
-
825  
550  
425  
1600  
1000  
800  
nA  
nA  
nA  
[2]  
interface inactive (fSCL = 0 Hz); CLKOUT  
enabled at 32 kHz; Tamb = 40 °C to +85 °C;  
see Figure 18  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 2.0 V  
-
-
-
950  
650  
500  
1700  
1100  
900  
nA  
nA  
nA  
Inputs  
VIL  
LOW-level input  
voltage  
VSS  
-
0.3VDD  
VDD  
+1  
V
VIH  
ILI  
HIGH-levelinput  
voltage  
0.7VDD  
-
V
input leakage  
current  
VI = VDD or VSS  
1  
0
-
µA  
pF  
[3]  
Ci  
input  
-
7
capacitance  
Outputs  
IOL  
LOW-level  
output current  
VOL = 0.4 V; VDD = 5 V  
on pin SDA  
3  
1  
1  
1
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
on pin INT  
on pin CLKOUT  
IOH  
ILO  
HIGH-level  
output current  
on pin CLKOUT; VOH = 4.6 V; VDD = 5 V  
output leakage VO = VDD or VSS  
current  
1  
0
+1  
µA  
Voltage detector  
Vlow low voltage  
Tamb = 25 °C; sets bit VL; see Figure 7  
-
0.9  
1.0  
V
[1] For reliable oscillator start-up at power-up: VDD(min)power-up = VDD(min) + 0.3 V.  
[2] Timer source clock = 160 Hz, level of pins SCL and SDA is VDD or VSS  
.
[3] Tested on sample basis.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
18 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
mgr888  
mgr889  
1
1
I
I
DD  
DD  
(µA)  
(µA)  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
0
2
4
6
0
2
4
6
V
DD  
(V)  
V
DD  
(V)  
Tamb = 25 °C; Timer = 1 minute.  
Tamb = 25 °C; Timer = 1 minute.  
Fig 17. Supply current IDD as a function of supply  
voltage VDD; CLKOUT disabled  
Fig 18. Supply current IDD as a function of supply  
voltage VDD; CLKOUT = 32 kHz  
mgr891  
mgr890  
1
I
DD  
4
(µA)  
frequency  
deviation  
0.8  
(ppm)  
2
0.6  
0.4  
0.2  
0
0
2  
4  
0
2
4
6
40  
0
40  
80  
120  
V
DD  
(V)  
T (°C)  
VDD = 3 V; Timer = 1 minute.  
Tamb = 25 °C; normalized to VDD = 3 V.  
Fig 19. Supply current IDD as a function of  
temperature T; CLKOUT = 32 kHz  
Fig 20. Frequency deviation as a function of supply  
voltage VDD  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
19 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
11. Dynamic characteristics  
Table 28. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; fosc = 32.768 kHz; quartz Rs = 40 k; CL = 8 pF; unless otherwise  
specified.  
Symbol  
Oscillator  
CL(itg)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
integrated load capacitance  
15  
-
25  
2 × 107  
35  
-
pF  
fosc/fosc  
relative oscillator frequency variation  
VDD = 200 mV;  
T
amb = 25 °C  
Quartz crystal parameters (f = 32.768 kHz)  
Rs  
series resistance  
load capacitance  
trimmer capacitance  
-
-
40  
-
kΩ  
pF  
pF  
CL  
parallel  
-
10  
-
Ctrim  
5
25  
CLKOUT output  
[1]  
[2][3]  
[4]  
δCLKOUT  
duty cycle on pin CLKOUT  
-
50  
-
%
I2C-bus timing characteristics (see Figure 21)  
fSCL  
SCL clock frequency  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
400  
-
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
pF  
ns  
ns  
µs  
ns  
tHD;STA  
tSU;STA  
tLOW  
tHIGH  
tr  
hold time (repeated) START condition  
set-up time for a repeated START condition  
LOW period of the SCL clock  
0.6  
0.6  
1.3  
0.6  
-
-
-
HIGH period of the SCL clock  
-
rise time of both SDA and SCL signals  
SDA  
SCL  
SDA  
SCL  
0.3  
0.3  
0.3  
0.3  
400  
-
-
tf  
fall time of both SDA and SCL signals  
-
-
Cb  
capacitive load for each bus line  
data set-up time  
-
tSU;DAT  
tHD;DAT  
tSU;STO  
tw(spike)  
100  
0
data hold time  
-
set-up time for STOP condition  
spike pulse width  
0.6  
-
-
on bus  
50  
[1] Unspecified for fCLKOUT = 32.768 kHz.  
[2] All timing values are valid within the operating supply voltage at ambient temperature and referenced to VIL and VIH with an input voltage  
swing of VSS to VDD  
.
[3] A detailed description of the I2C-bus specification, with applications, is given in brochure The I2C-bus specification. This brochure may  
be ordered using the code 9398 393 40011.  
[4] I2C-bus access time between two STARTs or between a START and a STOP condition to this device must be less than one second.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
20 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
SDA  
t
t
t
f
BUF  
LOW  
SCL  
SDA  
t
HD;STA  
t
t
t
SU;DAT  
r
HD;DAT  
t
HIGH  
t
SU;STA  
t
SU;STO  
mga728  
Fig 21. I2C-bus timing waveforms  
12. Application information  
V
DD  
SDA  
SCL  
MASTER  
TRANSMITTER/  
RECEIVER  
1 F  
V
DD  
SCL  
SDA  
CLOCK CALENDAR  
OSCI  
PCF8563  
V
R
DD  
OSCO  
V
SS  
R
R: pull-up resistor  
t
r
R =  
C
b
SDA SCL  
mgm665  
2
(I C-bus)  
Fig 22. Application diagram  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
21 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
12.1 Quartz frequency adjustment  
12.1.1 Method 1: fixed OSCI capacitor  
By evaluating the average capacitance necessary for the application layout, a fixed  
capacitor can be used. The frequency is best measured via the 32.768 kHz signal  
available after power-on at pin CLKOUT. The frequency tolerance depends on the quartz  
crystal tolerance, the capacitor tolerance and the device-to-device tolerance (on average  
±5 × 106). Average deviations of ±5 minutes per year can be easily achieved.  
12.1.2 Method 2: OSCI trimmer  
Using the 32.768 kHz signal available after power-on at pin CLKOUT, fast setting of a  
trimmer is possible.  
12.1.3 Method 3: OSCO output  
Direct measurement of OSCO out (accounting for test probe capacitance).  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
22 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
13. Package outline  
DIP8: plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
D
M
E
A
2
A
A
1
L
c
w M  
Z
b
1
e
(e )  
1
M
H
b
b
2
8
5
pin 1 index  
E
1
4
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.14  
0.53  
0.38  
1.07  
0.89  
0.36  
0.23  
9.8  
9.2  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.1  
7.62  
0.3  
0.254  
0.01  
1.15  
0.068 0.021 0.042 0.014  
0.045 0.015 0.035 0.009  
0.39  
0.36  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.02  
0.13  
0.045  
Note  
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-13  
SOT97-1  
050G01  
MO-001  
SC-504-8  
Fig 23. Package outline SOT97-1 (DIP8)  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
23 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
e
w
M
detail X  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
5.0  
4.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.05  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20  
0.014 0.0075 0.19  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches 0.069  
0.01 0.004  
Notes  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT96-1  
076E03  
MS-012  
Fig 24. Package outline SOT96-1 (SO8)  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
24 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
TSSOP8: plastic thin shrink small outline package; 8 leads; body width 3 mm  
SOT505-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
A
(A )  
2
A
3
A
1
pin 1 index  
θ
L
p
L
1
4
detail X  
e
w M  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
A
A
A
b
c
D
E
e
H
E
L
L
p
UNIT  
v
w
y
Z
θ
1
2
3
p
max.  
0.15  
0.05  
0.95  
0.80  
0.45  
0.25  
0.28  
0.15  
3.1  
2.9  
3.1  
2.9  
5.1  
4.7  
0.7  
0.4  
0.70  
0.35  
6°  
0°  
mm  
1.1  
0.65  
0.25  
0.94  
0.1  
0.1  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-04-09  
03-02-18  
SOT505-1  
Fig 25. Package outline SOT505-1 (TSSOP8)  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
25 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
HVSON10: plastic thermal enhanced very thin small outline package; no leads;  
10 terminals; body 3 x 3 x 0.85 mm  
SOT650-1  
0
1
2 mm  
scale  
X
B
A
D
A
A
1
E
c
detail X  
terminal 1  
index area  
C
e
1
terminal 1  
index area  
y
y
v
M
e
C
C
A
B
b
C
1
1
5
w
M
L
E
h
6
10  
D
h
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
(1)  
(1)  
UNIT  
A
b
E
e
e
y
c
D
D
E
L
v
w
y
1
1
h
1
h
0.05 0.30  
0.00 0.18  
3.1  
2.9  
2.55  
2.15  
3.1  
2.9  
1.75  
1.45  
0.55  
0.30  
mm  
0.05  
0.1  
1
0.2  
0.5  
2
0.1  
0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-01-22  
02-02-08  
SOT650-1  
- - -  
MO-229  
- - -  
Fig 26. Package outline SOT650-1 (HVSON10)  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
26 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
14. Handling information  
Inputs and outputs are protected against electrostatic discharge in normal handling.  
However, to be completely safe you must take normal precautions appropriate to handling  
MOS devices; see JESD625-A and/or IEC61340-5.  
15. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
15.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
15.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
15.3 Wave soldering  
Key characteristics in wave soldering are:  
© NXP B.V. 2008. All rights reserved.  
PCF8563_6  
Product data sheet  
Rev. 06 — 21 February 2008  
27 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
15.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 27) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 29 and 30  
Table 29. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 30. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 27.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
28 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 27. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
29 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
16. Revision history  
Table 31. Revision history  
Document ID  
PCF8563_6  
Release date  
20080221  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF8563_5  
Modifications:  
Register names modified in Figure 1 and various tables.  
Figure 17, Figure 18 and Figure 19: corrected the unit on the vertical axis.  
20070717 Product data sheet PCF8563-04  
PCF8563_5  
-
Modifications:  
The format of this data sheet has been redesigned to comply with the new identity guidelines  
of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Quick reference data table removed to comply with guidelines.  
Table 3: Table 3 and Table 4 combined in one table.  
Section 4: added topside mark.  
Section 4: added HVSON10 package.  
PCF8563-04  
(9397 750 12999)  
20040312  
20030414  
19990416  
19980325  
Product data  
-
-
-
-
PCF8563-03  
PCF8563-02  
PCF8563_N_1  
-
PCF8563-03  
(9397 750 11158)  
Product data  
PCF8563-02  
(9397 750 04855)  
Product data  
PCF8563_N_1  
Objective specification  
(9397 750 03282)  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
30 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
to result in personal injury, death or severe property or environmental  
17.2 Definitions  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
17.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
I2C-bus — logo is a trademark of NXP B.V.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF8563_6  
© NXP B.V. 2008. All rights reserved.  
Product data sheet  
Rev. 06 — 21 February 2008  
31 of 32  
PCF8563  
NXP Semiconductors  
Real-time clock/calendar  
19. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
15.4  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 28  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
16  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 30  
17  
Legal information . . . . . . . . . . . . . . . . . . . . . . 31  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 31  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
17.1  
17.2  
17.3  
17.4  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
18  
19  
Contact information . . . . . . . . . . . . . . . . . . . . 31  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.6.1  
7.6.2  
7.6.3  
7.6.4  
7.6.5  
7.6.6  
7.7  
Functional description . . . . . . . . . . . . . . . . . . . 4  
Alarm function modes. . . . . . . . . . . . . . . . . . . . 4  
Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Voltage-low detector . . . . . . . . . . . . . . . . . . . . . 5  
Register organization . . . . . . . . . . . . . . . . . . . . 6  
Control_status_1 register . . . . . . . . . . . . . . . . . 6  
Control_status_2 register . . . . . . . . . . . . . . . . . 6  
Time and date registers . . . . . . . . . . . . . . . . . . 7  
Alarm registers . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Clock output control register. . . . . . . . . . . . . . 10  
Countdown timer. . . . . . . . . . . . . . . . . . . . . . . 10  
EXT_CLK test mode. . . . . . . . . . . . . . . . . . . . 11  
Power-On Reset (POR) override . . . . . . . . . . 12  
7.8  
8
Characteristics of the I2C-bus. . . . . . . . . . . . . 13  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Start and stop conditions . . . . . . . . . . . . . . . . 13  
System configuration . . . . . . . . . . . . . . . . . . . 14  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 14  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 15  
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Clock/calendar read/write cycles . . . . . . . . . . 15  
8.1  
8.2  
8.3  
8.4  
8.5  
8.5.1  
8.5.2  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 17  
Static characteristics. . . . . . . . . . . . . . . . . . . . 17  
Dynamic characteristics . . . . . . . . . . . . . . . . . 20  
10  
11  
12  
12.1  
12.1.1  
12.1.2  
12.1.3  
Application information. . . . . . . . . . . . . . . . . . 21  
Quartz frequency adjustment . . . . . . . . . . . . . 22  
Method 1: fixed OSCI capacitor . . . . . . . . . . . 22  
Method 2: OSCI trimmer. . . . . . . . . . . . . . . . . 22  
Method 3: OSCO output . . . . . . . . . . . . . . . . . 22  
13  
14  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 23  
Handling information. . . . . . . . . . . . . . . . . . . . 27  
15  
Soldering of SMD packages . . . . . . . . . . . . . . 27  
Introduction to soldering . . . . . . . . . . . . . . . . . 27  
Wave and reflow soldering . . . . . . . . . . . . . . . 27  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 27  
15.1  
15.2  
15.3  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2008.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 21 February 2008  
Document identifier: PCF8563_6  

相关型号:

PCF8563BS4

Real-time clock/calendar
NXP

PCF8563P

Real-time clock/calendar
NXP

PCF8563P-F4

Real-time clock/calendar
NXP

PCF8563P/F4

Real-time clock/calendar
NXP

PCF8563P/F4,112

PCF8563 - Real-time clock/calendar DIP 8-Pin
NXP

PCF8563PF4

Real-time clock/calendar
NXP

PCF8563PN

暂无描述
NXP

PCF8563T

Real-time clock/calendar
NXP

PCF8563T-5

Real-time clock/calendar
NXP

PCF8563T-F4

Real-time clock/calendar
NXP

PCF8563T-T

IC 1 TIMER(S), REAL TIME CLOCK, PDSO8, 3.90 MM, PLASTIC, MS-012, SOT-96-1, SOP-8, Timer or RTC
NXP

PCF8563T/5

Real-time clock/calendar
NXP