PCF8564AU/5BD/1 [NXP]

Real time clock and calendar; 实时时钟和日历
PCF8564AU/5BD/1
型号: PCF8564AU/5BD/1
厂家: NXP    NXP
描述:

Real time clock and calendar
实时时钟和日历

时钟
文件: 总44页 (文件大小:842K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8564A  
Real time clock and calendar  
Rev. 1 — 8 October 2009  
Product data sheet  
1. General description  
The PCF8564A is a CMOS1 real-time clock and calendar optimized for low power  
consumption. A programmable clock output, interrupt output and voltage low detector are  
also provided. All addresses and data are transferred serially via a two-line bidirectional  
I2C-bus. Maximum bus speed is 400 kbit/s. The built-in word address register is  
incremented automatically after each written or read data byte.  
2. Features  
I Provides year, month, day, weekday, hours, minutes, and seconds based on a  
32.768 kHz quartz crystal  
I Century flag  
I Wide clock operating voltage: 1.0 V to 5.5 V  
I Low back-up current typical 250 nA at 3.0 V and 25 °C  
I 400 kHz two-wire I2C interface (1.8 V to 5.5 V)  
I Low-voltage detector  
I Alarm and timer functions  
I Two integrated oscillator capacitors  
I Programmable clock output for peripheral devices (32.768 kHz, 1.024 kHz, 32 Hz and  
1 Hz)  
I Internal Power-On Reset (POR)  
I I2C slave address: read A3h, write A2h  
3. Applications  
I Mobile telephones  
I Portable instruments  
I Electronic metering  
I Battery powered products  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 20.  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Delivery form  
Version  
Die type 1[1]  
PCF8564AU/5BD/1  
PCF8564AU  
PCF8564AU  
PCF8564AU  
wire bond die; 9 bonding pads  
wire bond die; 9 bonding pads  
wire bond die; 9 bonding pads  
unsawn wafer;  
thickness 280 µm  
PCF8564AU  
PCF8564AU  
PCF8564AU  
PCF8564AU/5GE/1  
PCF8564AU/10AA/1  
unsawn wafer;  
thickness 687 µm  
wafer sawn on FFC;  
thickness 200 µm  
Die type 2  
PCF8564AU/5BB/1  
PCF8564AU  
PCF8564AU  
PCF8564AU  
wire bond die; 9 bonding pads  
wire bond die; 9 bonding pads  
wire bond die; 9 bonding pads  
unsawn wafer;  
thickness 280 µm  
PCF8564AU  
PCF8564AU  
PCF8564AU  
PCF8564AU/5GB/1  
PCF8564AU/10AB/1  
unsawn wafer;  
thickness 687 µm  
wafer sawn on FFC;  
thickness 200 µm  
Die type 3  
PCF8564ACX9/1  
PCF8564ACX9 wafer level chip-size package;  
wafer sawn on FFC;  
thickness 200 µm;  
die with solder bumps  
PCF8564ACX9  
PCF8564ACX9  
9 bumps; 1.27 × 1.9 × 0.29 mm  
PCF8564ACX9/B/1  
PCF8564ACX9 wafer level chip-size package;  
tape and reel;  
9 bumps; 1.27 × 1.9 × 0.29 mm  
thickness 200 µm;  
die with solder bumps  
[1] Not to be used for new designs.  
5. Marking  
Table 2.  
Marking codes  
Type number  
Marking code  
Die type 1  
PCF8564AU/5BD/1  
PCF8564AU/5GE/1  
PCF8564AU/10AA/1  
Die type 2  
PC8564A-1  
PC8564A-1  
PC8564A-1  
PCF8564AU/5BB/1  
PCF8564AU/5GB/1  
PCF8564AU/10AB/1  
Die type 3  
PC8564A-1  
PC8564A-1  
PC8564A-1  
PCF8564ACX9/1  
PCF8564ACX9/B/1  
PC8564A-1  
PC8564A-1  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
2 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
6. Block diagram  
CLKOE  
OSCI  
OSCILLATOR  
32.768 kHz  
DIVIDER  
CLOCK OUT  
CLKOUT  
OSCO  
CONTROL  
Control_1  
MONITOR  
00h  
01h  
0Dh  
Control_2  
CLKOUT_ctrl  
POWER ON  
RESET  
TIME  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
Seconds  
Minutes  
Hours  
VDD  
VSS  
Days  
Weekdays  
Months  
Years  
WATCH  
DOG  
ALARM FUNCTION  
Minute_alarm  
Hour_alarm  
09h  
0Ah  
0Bh  
0Ch  
2
Day_alarm  
SDA  
SCL  
I C  
INTERFACE  
Weekday_alarm  
INT  
INTERRUPT  
TIMER FUNCTION  
Timer_ctrl  
0Eh  
0Fh  
PCF8564A  
Timer  
001aah660  
Fig 1. Block diagram of PCF8564A  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
3 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
7. Pinning information  
7.1 Pinning  
CLKOE  
9
8
CLKOE  
9
7
OSCI  
1
2
OSCI  
OSCO  
INT  
1
2
V
8
y
DD  
OSCO  
V
DD  
CLKOUT  
y
CLKOUT  
SCL  
7
6
x
x
0,0  
0,0  
SCL  
SDA  
6
5
3
4
PCF8564AU  
3
4
PCF8564ACX  
INT  
SDA  
5
V
SS  
V
SS  
013aaa032  
013aaa033  
Viewed from pad side. For mechanical details, see  
Figure 27.  
Viewed from bump side. For mechanical details, see  
Figure 28.  
Fig 2. Pinning diagram of PCF8564AU  
Fig 3. Pinning diagram of PCF8564ACX9  
7.2 Pin description  
Table 3.  
Symbol  
OSCI  
OSCO  
INT  
Pin description  
Pin  
1
Description  
oscillator input  
2
oscillator output  
3
interrupt output, open-drain, active LOW  
ground[1]  
VSS  
4
SDA  
5
serial data input and output  
serial clock input  
SCL  
6
CLKOUT  
VDD  
7
clock output, push-pull  
supply voltage  
8
CLKOE  
9
CLKOUT output enable  
[1] The substrate (rear side of the die) is wired to VSS but should not be electrically contacted.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
4 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
8. Functional description  
The PCF8564A contains sixteen 8-bit registers with an auto-incrementing address  
register, an on-chip 32.768 kHz oscillator with integrated capacitors, a frequency divider  
which provides the source clock for the RTC, a programmable clock output, a timer, a  
voltage low detector, and a 400 kHz I2C-bus interface.  
All sixteen registers (see Table 4) are designed as addressable 8-bit parallel registers  
although not all bits are implemented. The first two registers (memory address 00h and  
01h) are used as control and/or status registers. The addresses 02h through 08h are used  
as counters for the clock function (seconds up to years counters). Address locations 09h  
through 0Ch contain alarm registers which define the conditions for an alarm. Address  
0Dh controls the CLKOUT output frequency. 0Eh and 0Fh are the timer control and timer  
registers, respectively.  
The seconds, minutes, hours, days, weekdays, months, years, as well as the minute  
alarm, hour alarm, day alarm, and weekday alarm registers are all coded in BCD format.  
8.1 CLKOUT output  
A programmable square wave is available at the CLKOUT pin. Frequencies of 32.768 kHz,  
1.024 kHz, 32 Hz and 1 Hz can be generated for use as a system clock, microcontroller  
clock, input to a charge pump, or for calibration of the oscillator. CLKOUT is a CMOS  
push-pull output, and if disabled it becomes logic 0.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
5 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
8.2 Register organization  
Table 4.  
Register overview  
Bit positions labelled as - are not implemented. Bit positions labelled as N should always be written with logic 0. After reset, all  
registers are set according to Table 27.  
Address  
Register name  
Bit  
7
6
5
4
3
2
1
0
Control registers  
00h  
01h  
Control_1  
Control_2  
TEST1  
N
N
N
STOP  
N
N
TESTC  
AF  
N
N
N
TI_TP  
TF  
AIE  
TIE  
Time and date registers  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
Seconds  
Minutes  
Hours  
VL  
-
SECONDS (0 to 59)  
MINUTES (0 to 59)  
-
-
-
-
-
HOURS (0 to 23)  
DAYS (1 to 31)  
Days  
-
Weekdays  
Months  
Years  
-
-
-
-
-
WEEKDAYS  
C
MONTH (1 to 12)  
YEARS (0 to 99)  
Alarm registers  
09h  
0Ah  
0Bh  
0Ch  
Minute_alarm  
AE_M  
AE_H  
AE_D  
AE_W  
MINUTE_ALARM (0 to 59)  
Hour_alarm  
Day_alarm  
-
-
-
HOUR_ALARM (0 to 23)  
DAY_ALARM (1 to 31)  
Weekday_alarm  
-
-
-
-
-
-
-
-
-
WEEKDAY_ALARM  
CLKOUT control register  
0Dh CLKOUT_ctrl  
Timer registers  
FE  
-
-
-
FD  
TD  
0Eh  
0Fh  
Timer_ctrl  
Timer  
TE  
-
TIMER_VALUE  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
6 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
8.3 Control registers  
8.3.1 Register Control_1  
Table 5.  
Control_1 - control and status register 1 (address 00h) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
7
TEST1  
0[1]  
normal mode;  
Section 8.9  
must be set to logic 0 during normal operations  
EXT_CLK test mode (see Section 8.9)  
default value  
1
6
5
N
0[2]  
0[1]  
1
STOP  
RTC source clock runs  
Section 8.10  
RTC divider chain flip-flops are asynchronously set to logic 0  
the RTC clock is stopped (CLKOUT at 32.768 kHz is still available)  
default value  
4
3
N
0[2]  
0
TESTC  
Power-On Reset (POR) override facility is disabled;  
set to logic 0 for normal operation (see Section 8.11.1)  
Power-On Reset (POR) override is enabled  
default value  
Section 8.11.1  
1[1]  
000[2]  
2 to 0  
N
[1] Default value.  
[2] Bits labeled as N should always be written with logic 0.  
8.3.2 Register Control_2  
Table 6.  
Bit  
Control_2 - control and status register 2 (address 01h) bit description  
Symbol  
N
Value  
000[1]  
0[2]  
Description  
Reference  
7 to 5  
4
default value  
TI_TP  
INT is active when TF is active (subject to the status of TIE)  
INT pulses active according to Table 7 (subject to the status of TIE);  
1
Section 8.3.2.1  
and  
Section 8.8  
Remark: note that if AF and AIE are active then INT will be  
permanently active  
3
2
1
0
AF  
0[2]  
1
0[2]  
alarm flag inactive  
Section 8.3.2.1  
Section 8.3.2.1  
Section 8.3.2.1  
Section 8.3.2.1  
alarm flag active  
TF  
timer flag inactive  
1
timer flag active  
AIE  
TIE  
0[2]  
1
0[2]  
alarm interrupt disabled  
alarm interrupt enabled  
timer interrupt disabled  
timer interrupt enabled  
1
[1] Bits labeled as N should always be written with logic 0.  
[2] Default value.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
7 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
8.3.2.1 Interrupt output  
Bits TF and AF: When an alarm occurs, AF is set to 1. Similarly, at the end of a timer  
countdown, TF is set to 1. These bits maintain their value until overwritten using the  
interface. If both timer and alarm interrupts are required in the application, the source of  
the interrupt can be determined by reading these bits. To prevent one flag being  
overwritten while clearing another, a logic AND is performed during a write access.  
TI_TP  
TE  
E.G.AIE  
to interface:  
read TF  
TF: TIMER  
SET  
TIE  
0
1
COUNTDOWN COUNTER  
0
1
PULSE  
GENERATOR 2  
CLEAR  
TRIGGER  
CLEAR  
INT  
from interface:  
clear TF  
AIE  
to interface:  
read AF  
AF: ALARM  
FLAG  
set alarm  
flag, AF  
SET  
CLEAR  
from interface:  
clear AF  
013aaa087  
When bits TIE and AIE are disabled, pin INT will remain high-impedance.  
Fig 4. Interrupt scheme  
Bits TIE and AIE: These bits activate or deactivate the generation of an interrupt when  
TF or AF is asserted respectively. The interrupt is the logical OR of these two conditions  
when both AIE and TIE are set.  
Countdown timer interrupts: The pulse generator for the countdown timer interrupt  
uses an internal clock and is dependent on the selected source clock for the countdown  
timer and on the countdown value n. As a consequence, the width of the interrupt pulse  
varies (see Table 7).  
Table 7.  
INT operation (bit TI_TP = 1)[1]  
Source clock (Hz)  
INT period (s)  
n = 1[2]  
n > 1  
1
1
4096  
64  
8192  
4096  
1
1
128  
64  
1
1
1
64  
64  
1
1
1
64  
60  
64  
[1] TF and INT become active simultaneously.  
[2] n = loaded countdown value. Timer is stopped when n = 0.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
8 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
8.4 Time and date registers  
The majority of the registers are coded in the BCD format to simplify application use.  
8.4.1 Register Seconds  
Table 8.  
Seconds - seconds and clock integrity status register (address 02h) bit  
description  
Bit  
Symbol Value  
Place value Description  
7
VL  
0
-
clock integrity is guaranteed  
1[1]  
-
integrity of the clock information is not guaranteed  
actual seconds coded in BCD format, see Table 9  
6 to 4 SECONDS 0 to 5  
ten’s place  
unit place  
3 to 0  
0 to 9  
[1] Start-up value.  
Table 9.  
Seconds coded in BCD format  
Seconds value in Upper-digit (ten’s place)  
decimal  
Digit (unit place)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
01  
02  
:
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
09  
10  
:
0
0
0
0
0
1
1
0
0
0
0
0
1
0
58  
59  
1
1
0
0
1
1
1
1
0
0
0
0
0
1
8.4.1.1 Voltage low detector and clock monitor  
The PCF8564A has an on-chip voltage low detector. When VDD drops below Vlow the VL  
(Voltage Low) flag is set to indicate that the integrity of the clock information is no longer  
guaranteed. The VL flag can only be cleared by using the interface.  
mgr887  
V
DD  
normal power  
operation  
period of battery  
operation  
V
low  
t
VL set  
Fig 5. Voltage low detection  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
9 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
The VL flag is intended to detect the situation when VDD is decreasing slowly, for example  
under battery operation. Should the oscillator stop or VDD reach Vlow before power is  
re-asserted, then the VL flag will be set. This indicates that the time is possibly corrupted.  
8.4.2 Register Minutes  
Table 10. Minutes - minutes register (address 03h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
-
-
-
unused  
6 to 4 MINUTES 0 to 5  
ten’s place  
unit place  
actual minutes coded in BCD format  
3 to 0  
0 to 9  
8.4.3 Register Hours  
Table 11. Hours - hours register (address 04h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
7 to 6 -  
-
unused  
5 to 4 HOURS  
3 to 0  
0 to 2  
0 to 9  
ten’s place  
unit place  
actual hours coded in BCD format  
8.4.4 Register Days  
Table 12. Days - days register (address 05h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
7 to 6 -  
-
unused  
5 to 4 DAYS[1]  
0 to 3  
0 to 9  
ten’s place  
unit place  
actual day coded in BCD format  
3 to 0  
[1] The PCF8564A compensates for leap years by adding a 29th day to February if the year counter contains a  
value which is exactly divisible by 4, including the year 00.  
8.4.5 Register Weekdays  
Table 13. Weekdays - weekdays register (address 06h) bit description  
Bit  
Symbol  
Value  
-
Description  
7 to 3 -  
unused  
2 to 0 WEEKDAYS  
0 to 6  
actual weekday values, see Table 14  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
10 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
Table 14. Weekday assignments  
Day[1]  
Bit  
2
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
Sunday  
0
Monday  
Tuesday  
Wednesday  
Thursday  
Friday  
0
0
0
1
1
Saturday  
1
[1] Definition may be re-assigned by the user.  
8.4.6 Register Months  
Table 15. Months - months and century flag register (address 07h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
C[1]  
0[2]  
-
indicates the century is x  
1
-
indicates the century is x + 1  
unused  
6 to 5 -  
-
-
4
MONTHS 0 to 1  
0 to 9  
ten’s place  
unit place  
actual month coded in BCD format, see Table 16  
3 to 0  
[1] This bit may be re-assigned by the user.  
[2] This bit is toggled when the register Years overflows from 99 to 00.  
Table 16. Month assignments coded in BCD format  
Month  
Upper-digit  
(ten’s place)  
Digit (unit place)  
Bit 4  
0
Bit 3  
0
Bit 2  
Bit 1  
0
Bit 0  
1
January  
February  
March  
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
1
1
April  
0
0
0
0
May  
0
0
0
1
June  
0
0
1
0
July  
0
0
1
1
August  
September  
October  
November  
December  
0
1
0
0
0
1
0
1
1
0
0
0
1
0
0
1
1
0
1
0
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
11 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
8.4.7 Register Years  
Table 17. Years - years register (08h) bit description  
Bit  
Symbol  
Value  
0 to 9  
0 to 9  
Place value Description  
ten’s place actual year coded in BCD format[1]  
7 to 4 YEARS  
3 to 0  
unit place  
[1] When the register Years overflows from 99 to 00, the century bit C in the register Months is toggled.  
The PCF8564A compensates for leap years by adding a 29th day to February if the year  
counter contains a value which is divisible by 4, including the year 00.  
8.5 Setting and reading the time  
Figure 6 shows the data flow and data dependencies starting from the 1 Hz clock tick.  
1 Hz tick  
SECONDS  
MINUTES  
HOURS  
LEAP YEAR  
CALCULATION  
DAYS  
MONTHS  
YEARS  
C
WEEKDAY  
013aaa092  
Fig 6. Data flow for the time function  
During read/write operations, the time counting circuits (memory locations 02h through  
08h) are blocked.  
This prevents  
Faulty reading of the clock and calendar during a carry condition  
Incrementing the time registers, during the read cycle  
After this read/write access is completed, the time circuit is released again and any  
pending request to increment the time counters, that occurred during the read access, is  
serviced. A maximum of 1 request can be stored; therefore, all accesses must be  
completed within 1 second (see Figure 7).  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
12 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
t < 1 s  
START  
slave address  
data data data  
STOP  
013aaa215  
Fig 7. Access time for read/write operations  
As a consequence of this method, it is very important to make a read or write access in  
one go, that is, setting or reading seconds through to years should be made in one single  
access. Failing to comply with this method could result in the time becoming corrupted.  
As an example, if the time (seconds through to hours) is set in one access and then in a  
second access the date is set, it is possible that the time may increment between the two  
accesses. A similar problem exists when reading. A roll over may occur between reads  
thus giving the minutes from one moment and the hours from the next.  
Recommended method for reading the time:  
1. Send a START condition and the slave address for write (A2h).  
2. Set the address pointer to 2 (seconds) by sending 02h.  
3. Send a RE-START condition or STOP followed by START.  
4. Send the slave address for read (A3h).  
5. Read the seconds.  
6. Read the minutes.  
7. Read the hours.  
8. Read the days.  
9. Read the weekdays.  
10. Read the century and month.  
11. Read the years.  
12. Send a STOP condition.  
8.6 Alarm registers  
8.6.1 Register Minute_alarm  
Table 18. Minute_alarm - minute alarm register (address 09h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_M  
0
1[1]  
-
-
minute alarm is enabled  
minute alarm is disabled  
6 to 4 MINUTE_ALARM  
3 to 0  
0 to 5  
0 to 9  
ten’s place minute alarm information coded in BCD  
format  
unit place  
[1] Default value.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
13 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
8.6.2 Register Hour_alarm  
Table 19. Hour_alarm - hour alarm register (address 0Ah) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_H  
0
1[1]  
-
-
-
hour alarm is enabled  
hour alarm is disabled  
unused  
6
-
-
5 to 4 HOUR_ALARM  
3 to 0  
0 to 2  
0 to 9  
ten’s place hour alarm information coded in BCD  
format  
unit place  
[1] Default value.  
8.6.3 Register Day_alarm  
Table 20. Day_alarm - day alarm register (address 0Bh) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_D  
0
1[1]  
-
-
-
day alarm is enabled  
day alarm is disabled  
unused  
6
-
-
5 to 4 DAY_ALARM  
3 to 0  
0 to 3  
0 to 9  
ten’s place day alarm information coded in BCD  
format  
unit place  
[1] Default value.  
8.6.4 Register Weekday_alarm  
Table 21. Weekday_alarm - weekday alarm register (address 0Ch) bit description  
Bit  
Symbol  
Value  
Description  
7
AE_W  
0
1[1]  
weekday alarm is enabled  
weekday alarm is disabled  
unused  
6 to 3 -  
-
2 to 0 WEEKDAY_ALARM 0 to 6  
[1] Default value.  
weekday alarm information coded in BCD format  
8.6.5 Alarm flag  
By clearing the MSB of one or more of the alarm registers AE_x (Alarm Enable), the  
corresponding alarm condition(s) are active. When an alarm occurs, AF is set to logic 1.  
The asserted AF can be used to generate an interrupt (INT). The AF is cleared using the  
interface.  
The registers at addresses 09h through 0Ch contain alarm information. When one or  
more of these registers is loaded with a valid minute, hour, day or weekday and its  
corresponding Alarm Enable bit (AE_x) is logic 0, then that information is compared with  
the current minute, hour, day and weekday. When all enabled comparisons first match, the  
Alarm Flag (AF in register Control_2) is set to logic 1.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
14 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
The generation of interrupts from the alarm function is controlled via bit AIE. If bit AIE is  
enabled, the INT pin follows the condition of bit AF. AF will remain set until cleared by the  
interface. Once AF has been cleared it will only be set again when the time increments to  
match the alarm condition once more. Alarm registers which have their AE_x bit at logic 1  
are ignored.  
check now signal  
example  
AE_M  
AE_M= 1  
MINUTE ALARM  
=
1
MINUTE TIME  
0
AE_H  
HOUR ALARM  
=
HOUR TIME  
(1)  
set alarm flag, AF  
AE_D  
DAY ALARM  
=
DAY TIME  
AE_W  
WEEKDAY ALARM  
=
013aaa088  
WEEKDAY TIME  
(1) Only when all enabled alarm settings are matching.  
It’s only on increment to a matched case that the alarm flag is set, see Section 8.6.5.  
Fig 8. Alarm function block diagram  
8.7 Register CLKOUT_ctrl and clock output  
A programmable square wave is available at pin CLKOUT. Operation is controlled by the  
FE bit in register CLKOUT_ctrl at address 0Dh and the CLKOUT output enable pin  
(CLKOE). To enable pin CLKOUT pin CLKOE must be set HIGH.  
Frequencies of 32.768 kHz (default), 1.024 kHz, 32 Hz and 1 Hz can be generated for use  
as a system clock, microcontroller clock, input to a charge pump, or for calibration of the  
oscillator.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
15 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
Table 22. CLKOUT_ctrl - CLKOUT control register (address 0Dh) bit description  
Bit  
Symbol  
Value  
Description  
7
FE  
0
the CLKOUT output is inhibited and CLKOUT output is  
set to logic 0  
1[1]  
-
the CLKOUT output is activated  
6 to 2 -  
unused  
1 to 0 FD[1:0]  
frequency output at pin CLKOUT  
00[1]  
01  
32.768 kHz  
1.024 kHz  
32 Hz  
10  
11  
1 Hz  
[1] Default value.  
8.8 Timer function  
The 8-bit countdown timer at address 0Fh is controlled by the timer control register at  
address 0Eh. The timer control register determines one of 4 source clock frequencies for  
the timer (4.096 kHz, 64 Hz, 1 Hz, or 160 Hz) and enables or disables the timer. The timer  
counts down from a software-loaded 8-bit binary value. At the end of every countdown,  
the timer sets the TF (Timer Flag) to logic 1. The TF may only be cleared using the  
interface.  
The generation of interrupts from the timer function is controlled via bit TIE. If bit TIE is  
enabled the INT pin follows the condition of bit TF. The interrupt may be generated as a  
pulsed signal every countdown period or as a permanently active signal which follows the  
condition of the timer flag TF. TI_TP is used for this mode control. When reading the timer,  
the current countdown value is returned.  
8.8.1 Register Timer_ctrl  
Table 23. Timer_ctrl - timer control register (address 0Eh) bit description  
Bit  
Symbol  
Value  
Description  
7
TE  
0[1]  
timer is disabled  
timer is enabled  
unused  
1
6 to 2 -  
-
1 to 0 TD[1:0]  
timer source clock frequency select[2]  
00  
4.096 kHz  
01  
64 Hz  
10  
1 Hz  
1
11[2]  
60 Hz  
[1] Default value.  
[2] These bits determine the source clock for the countdown timer; when not in use, TD[1:0] should be set to  
1
60 Hz for power saving.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
16 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
8.8.2 Register Timer  
Table 24. Timer - timer register (address 0Fh) bit description  
Bit Symbol Value Description  
7 to 0 TIMER_VALUE[7:0] 00h to FFh countdown value = n;  
n
CountdownPeriod =  
--------------------------------------------------------------  
SourceClockFrequency  
Table 25. Timer register bits value range  
Bit  
7
6
5
4
3
2
1
0
128  
64  
32  
16  
8
4
2
1
The timer register is an 8-bit binary countdown timer. It is enabled or disabled via the timer  
control register. The source clock for the timer is also selected by the timer control  
register. Other timer properties such as single or periodic interrupt generation are  
controlled via the register Control_2 (address 01h).  
For accurate read back of the count down value, the I2C-bus clock (SDA) must be  
operating at a frequency of at least twice the selected timer clock. Since it is not possible  
to freeze the countdown timer counter during read back, it is recommended to read the  
register twice and check for consistent results.  
8.9 EXT_CLK test mode  
The test mode is entered by setting the TEST1 bit of register Control_1 to logic 1. The  
CLKOUT pin then becomes an input. The test mode replaces the internal 64 Hz signal  
with that applied to the CLKOUT pin. Every 64 positive edges applied to CLKOUT then  
generates an increment of one second.  
The signal applied to the CLKOUT pin should have a minimum pulse width of 300 ns and  
a maximum period of 1000 ns. The 64 Hz clock, now sourced from CLKOUT, is divided  
down to 1 Hz by a 26 divide chain called a prescaler. The prescaler can be set to a known  
state by using the STOP bit. When the STOP bit is set, the prescaler is reset to logic 0.  
(STOP must be cleared before the prescaler can operate.)  
From a STOP condition, the first 1 second increment will take place after 32 positive  
edges on CLKOUT. Thereafter, every 64 positive edges will cause a 1 second increment.  
Remark: Entry into EXT_CLK test mode is not synchronized to the internal 64 Hz clock.  
When entering the test mode, no assumption as to the state of the prescaler can be  
made.  
8.9.1 Operation example  
1. Set EXT_CLK test mode (Bit 7 Control_1 = 1).  
2. Set STOP (Bit 5 Control_1 = 1).  
3. Clear STOP (Bit 5 Control_1 = 0).  
4. Set time registers to desired value.  
5. Apply 32 clock pulses to CLKOUT.  
6. Read time registers to see the first change.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
17 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
7. Apply 64 clock pulses to CLKOUT.  
8. Read time registers to see the second change.  
Repeat 7 and 8 for additional increments.  
8.10 STOP bit function  
The function of the STOP bit is to allow for accurate starting of the time circuits. The STOP  
bit function will cause the upper part of the prescaler (F2 to F14) to be held in reset and  
thus no 1 Hz ticks will be generated (see Figure 9). The time circuits can then be set and  
will not increment until the STOP bit is released (see Figure 10 and Table 26).  
OSC STOP  
reset  
DETECTOR  
F
F
F
F
F
14  
0
1
2
13  
OSC  
1 Hz tick  
stop  
RES  
RES  
RES  
1 Hz  
32 Hz  
CLKOUT source  
1024 Hz  
32768 Hz  
013aaa089  
Fig 9. STOP bit functional diagram  
The STOP bit function will not affect the output of 32.768 kHz on CLKOUT, but will stop  
the generation of 1.024 kHz, 32 Hz and 1 Hz.  
The lower two stages of the prescaler (F0 and F1) are not reset and because the I2C-bus  
is asynchronous to the crystal oscillator, the accuracy of re-starting the time circuits will be  
between zero and one 8.192 kHz cycle (see Figure 10).  
8192 Hz  
stop released  
0 µs to 122 µs  
001aaf912  
Fig 10. STOP bit release timing  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
18 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
Table 26. First increment of time circuits after STOP bit release  
[1]  
Bit  
Prescaler bits  
F0F1-F2 to F14  
1 Hz tick  
Time  
Comment  
STOP  
hh:mm:ss  
Clock is running normally  
0
01-0 0001 1101 0100  
12:45:12  
prescaler counting normally  
STOP bit is activated by user. F0F1 are not reset and values cannot be predicted externally  
1
XX-0 0000 0000 0000  
12:45:12  
prescaler is reset; time circuits are frozen  
New time is set by user  
1
XX-0 0000 0000 0000  
08:00:00  
prescaler is reset; time circuits are frozen  
STOP bit is released by user  
0
XX-0 0000 0000 0000  
XX-1 0000 0000 0000  
XX-0 1000 0000 0000  
XX-1 1000 0000 0000  
:
08:00:00  
08:00:00  
08:00:00  
08:00:00  
:
prescaler is now running  
-
-
-
:
11-1 1111 1111 1110  
00-0 0000 0000 0001  
10-0 0000 0000 0001  
:
08:00:00  
08:00:01  
08:00:01  
:
-
0 to 1 transition of F14 increments the time circuits  
-
:
11-1 1111 1111 1111  
00-0 0000 0000 0000  
10-0 0000 0000 0000  
:
08:00:01  
08:00:01  
08:00:01  
:
-
-
-
-
11-1 1111 1111 1110  
00-0 0000 0000 0001  
08:00:01  
08:00:02  
-
0 to 1 transition of F14 increments the time circuits  
013aaa076  
[1] F0 is clocked at 32.768 kHz.  
The first increment of the time circuits is between 0.507813 s and 0.507935 s after STOP  
bit is released. The uncertainty is caused by the prescaler bits F0 and F1 not being reset  
(see Table 26) and the unknown state of the 32 kHz clock.  
8.11 Reset  
The PCF8564A includes an internal reset circuit which is active whenever the oscillator is  
stopped. In the reset state the I2C-bus logic is initialized including the address pointer and  
all registers are set according to Table 27. I2C-bus communication is not possible during  
reset.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
19 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
Table 27. Register reset values[1]  
Address Register name  
Bit  
7
0
0
1
x
6
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
5
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
4
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
3
1
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
2
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
x
1
0
0
x
x
x
x
x
x
x
x
x
x
x
0
1
x
0
0
0
x
x
x
x
x
x
x
x
x
x
x
0
1
x
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
Control_1  
Control_2  
Seconds  
Minutes  
Hours  
x
Days  
x
Weekdays  
Months  
x
x
Years  
x
Minute_alarm  
Hour_alarm  
Day_alarm  
Weekday_alarm  
CLKOUT_ctrl  
Timer_ctrl  
Timer  
1
1
1
1
1
0
x
[1] Registers marked ‘x’ are undefined at power-on and unchanged by subsequent resets.  
8.11.1 Power-On Reset (POR) override  
The POR duration is directly related to the crystal oscillator start-up time. Due to the long  
start-up times experienced by these types of circuits, a circuit has been implemented to  
disable the POR and speed up functional test of the module. The setting of this mode  
requires that the I2C signals on the pins SDA and SCL are toggled as illustrated in  
Figure 11. All timings shown are required minimums.  
Once the override mode has been entered, the chip immediately stops, being reset, and  
normal operation may begin, i.e., entry into the EXT_CLK test mode via I2C access. The  
override mode may be cleared by writing logic 0 to TESTC. TESTC must be set to logic 1  
before re-entry into the override mode is possible. Setting TESTC to logic 0 during normal  
operation has no effect, except to prevent entry into the POR override mode.  
500 ns  
2000 ns  
SDA  
SCL  
8 ms  
power up  
mgm664  
override active  
Allow 500 ns between the edges of either signal.  
Fig 11. POR override sequence  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
20 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
9. Characteristics of the I2C-bus  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial Data Line (SDA) and a Serial Clock Line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only  
when the bus is not busy.  
9.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as a control signal (see Figure 12).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mbc621  
Fig 12. Bit transfer  
9.2 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line, while the clock is HIGH, is defined as the START condition (S).  
A LOW-to-HIGH transition of the data line, while the clock is HIGH, is defined as the STOP  
condition (P), see Figure 13.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 13. Definition of START and STOP conditions  
9.3 System configuration  
A device generating a message is a transmitter, a device receiving a message is the  
receiver. The device that controls the message is the master; and the devices which are  
controlled by the master are the slaves (see Figure 14).  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
21 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
SDA  
SCL  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
TRANSMITTER /  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
mba605  
Fig 14. System configuration  
9.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
cycle.  
A slave receiver, which is addressed, must generate an acknowledge after the  
reception of each byte.  
Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be taken into  
consideration).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgement on the I2C-bus is shown in Figure 15.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 15. Acknowledgment on the I2C-bus  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
22 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
10. I2C-bus protocol  
10.1 Addressing  
Before any data is transmitted on the I2C-bus, the device which should respond is  
addressed first. The addressing is always carried out with the first byte transmitted after  
the start procedure.  
The PCF8564A acts as a slave receiver or slave transmitter. Therefore, the clock signal  
SCL is only an input signal, but the data signal SDA is a bidirectional line.  
Two slave addresses are reserved for the PCF8564A:  
Read: A3h (10100011)  
Write: A2h (10100010)  
The PCF8564A slave address is shown in Figure 15.  
1
0
1
0
0
0
1
R/W  
group 2  
group 1  
mce189  
Fig 16. Slave address  
10.2 Clock and calendar READ or WRITE cycles  
Figure 17, Figure 18, and Figure 19 show the I2C-bus configuration for the different  
PCF8564A READ and WRITE cycles. The word address is a 4-bit value that defines  
which register is to be accessed next. The upper four bits of the word address are not  
used.  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from slave  
S
SLAVE ADDRESS  
0
A
WORD ADDRESS  
A
DATA  
A
P
R/W  
n bytes  
auto increment  
memory word address  
mbd822  
Fig 17. Master transmits to slave receiver (WRITE mode)  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
23 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
acknowledgement  
from master  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from slave  
DATA  
S
SLAVE ADDRESS  
0
A
WORD ADDRESS  
A
S
SLAVE ADDRESS  
1
A
A
n bytes  
R/W  
R/W  
at this moment master transmitter  
becomes master receiver and  
PCF8564A slave receiver  
auto increment  
memory word address  
becomes slave transmitter  
no acknowledgement  
from master  
1
P
DATA  
last byte  
auto increment  
memory word address  
013aaa034  
Fig 18. Master reads word after setting word address (write word address; READ data)  
acknowledgement  
from slave  
acknowledgement  
from master  
no acknowledgement  
from master  
1
A
A
DATA  
1
P
S
SLAVE ADDRESS  
DATA  
R/W  
n bytes  
last byte  
auto increment  
word address  
auto increment  
word address  
mgl665  
Fig 19. Master reads slave immediately after first byte (READ mode)  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
24 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
11. Internal circuitry  
CLKOE  
OSCI  
V
DD  
OSCO  
CLKOUT  
SCL  
INT  
V
SS  
SDA  
PCF8564A  
013aaa035  
Fig 20. Device diode protection diagram  
12. Limiting values  
Table 28. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
Max  
+6.5  
+6.5  
+6.5  
+50.0  
+10.0  
+10.0  
+50.0  
300  
Unit  
V
VDD  
VI  
supply voltage  
0.5  
0.5  
0.5  
50.0  
10.0  
10.0  
50.0  
-
input voltage  
V
VO  
IDD  
II  
output voltage  
V
supply current  
mA  
mA  
mA  
mA  
mW  
°C  
input current  
IO  
output current  
ISS  
Ptot  
Tamb  
VESD  
ground supply current  
total power dissipation  
ambient temperature  
40.0  
+85  
[1]  
[2]  
electrostatic discharge voltage HBM  
die type 1 and 3  
die type 2  
MM  
-
-
±2500  
±3500  
V
V
die type 1 and 3  
die type 2  
-
±200  
±250  
100  
V
-
V
[3]  
[4]  
latch-up current  
all pins but OSCI  
-
mA  
°C  
Ilu  
Tstg  
storage temperature  
65.0  
+150  
[1] Pass level; Human Body Model (HBM) according to Ref. 6 “JESD22-A114”.  
[2] Pass level; Machine Model (MM), according to Ref. 7 “JESD22-A115”.  
[3] Pass level; latch-up testing, according to Ref. 8 “JESD78” at maximum ambient temperature  
(Tamb(max) = +85 °C).  
[4] According to the NXP store and transport conditions (see Ref. 10 “SNW-SQ-623”) the devices have to be  
stored at a temperature of +5 °C to +45 °C and a humidity of 25 % to 75 %.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
25 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
13. Static characteristics  
Table 29. Static characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; fosc = 32.768 kHz; quartz Rs = 40 k; CL = 8 pF; unless otherwise  
specified.  
Symbol  
Supplies  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[1]  
supply voltage  
interface inactive;  
1.0  
1.8  
Vlow  
-
-
-
5.5  
5.5  
5.5  
V
V
V
T
amb = 25 °C  
interface active;  
SCL = 400 kHz  
for clock data integrity;  
amb = 25 °C  
f
T
IDD  
supply current  
interface active  
fSCL = 400 kHz  
fSCL = 100 kHz  
-
-
-
-
800  
200  
µA  
µA  
[2] [3]  
[4]  
interface inactive (fSCL = 0 Hz);  
CLKOUT disabled;  
T
amb = 25 °C  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 2.0 V  
-
-
-
275  
250  
225  
550  
500  
450  
nA  
nA  
nA  
[2] [3]  
[4]  
interface inactive (fSCL = 0 Hz);  
CLKOUT disabled;  
T
amb = 40 °C to +85 °C  
VDD = 5.0 V  
-
-
-
500  
400  
400  
750  
650  
600  
nA  
nA  
nA  
VDD = 3.0 V  
VDD = 2.0 V  
[4] [5]  
[6]  
interface inactive (fSCL = 0 Hz);  
CLKOUT enabled at 32 kHz;  
T
amb = 25 °C  
VDD = 5.0 V  
VDD = 3.0 V  
VDD = 2.0 V  
-
-
-
1500  
1000  
700  
3000  
2000  
1400  
nA  
nA  
nA  
[4] [5]  
[6]  
interface inactive (fSCL = 0 Hz);  
CLKOUT enabled at 32 kHz;  
T
amb = 40 °C to +85 °C  
VDD = 5.0 V  
-
-
-
1700  
1100  
800  
3400  
2200  
1600  
nA  
nA  
nA  
VDD = 3.0 V  
VDD = 2.0 V  
Inputs  
VI  
input voltage  
on pins SDA and SCL  
0.5  
0.5  
-
-
+5.5  
V
on pins CLKOE and CLKOUT  
(test mode)  
VDD + 0.5 V  
VIL  
LOW-level input voltage  
-
-
0.3VDD  
V
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
26 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
Table 29. Static characteristics …continued  
VDD = 1.8 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; fosc = 32.768 kHz; quartz Rs = 40 k; CL = 8 pF; unless otherwise  
specified.  
Symbol  
VIH  
Parameter  
Conditions  
Min  
Typ  
Max  
-
Unit  
V
HIGH-level input voltage  
input leakage current  
input capacitance  
0.7VDD  
-
ILI  
VI = VDD or VSS  
1  
0
-
+1  
7
µA  
pF  
[7]  
Ci  
-
Outputs  
VO  
output voltage  
on pin CLKOUT  
on pin INT  
0.5  
0.5  
3
-
-
-
VDD + 0.5 V  
+5.5  
-
V
IOL  
LOW-level output current on pin SDA;  
mA  
VOL = 0.4 V; VDD = 5 V  
on pin INT;  
1  
1  
1
-
-
mA  
mA  
mA  
µA  
VOL = 0.4 V; VDD = 5 V  
on pin CLKOUT:  
VOL = 0.4 V; VDD = 5 V  
-
-
IOH  
HIGH-level output current on pin CLKOUT;  
OH = 4.6 V; VDD = 5 V  
-
-
V
ILO  
Voltage detector  
Vlow low voltage  
output leakage current  
VO = VDD or VSS  
1  
0
+1  
Tamb = 25 °C  
-
0.9  
1.0  
V
[1] For reliable oscillator start-up at power-on: VDD(po)min = VDD(min) + 0.3 V.  
[2] Timer source clock = 160 Hz.  
[3] CLKOUT disabled (FE = 0 or CLKOE = 0).  
[4] VIL and VIH with an input voltage swing of VSS to VDD  
.
[5] CLKOUT is open circuit.  
[6] Current consumption when the CLKOUT pin is enabled is a function of the load on the pin, the output frequency, and the supply voltage.  
The additional current consumption for a given load is calculated from: IDD = C × V DD × FCLKOUT  
.
[7] Tested on sample basis.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
27 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
mgr888  
mgr889  
1
1
I
I
DD  
DD  
(µA)  
(µA)  
0.8  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
0
2
4
6
0
2
4
6
V
DD  
(V)  
V
DD  
(V)  
Tamb = 25 °C; timer = 1 minute; CLKOUT disabled.  
Tamb = 25 °C; timer = 1 minute; CLKOUT = 32 kHz.  
Fig 21. IDD as a function of VDD  
Fig 22. IDD as a function of VDD  
mgr891  
mgr890  
1
I
DD  
4
(µA)  
frequency  
deviation  
0.8  
(ppm)  
2
0.6  
0.4  
0.2  
0
0
2  
4  
40  
0
40  
80  
120  
0
2
4
6
V
DD  
(V)  
T (°C)  
VDD = 3 V; timer = 1 minute; CLKOUT = 32 kHz.  
Tamb = 25 °C; normalized to VDD = 3 V.  
Fig 23. IDD as a function of T  
Fig 24. Frequency deviation as a function of VDD  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
28 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
14. Dynamic characteristics  
Table 30. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; Tamb = 40 °C to +85 °C; fosc = 32.768 kHz; quartz Rs = 40 k; CL = 8 pF; unless otherwise  
specified.  
Symbol  
Oscillator  
CL(itg)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
integrated load capacitance  
6
-
8
10  
-
pF  
fosc/fosc  
relative oscillator frequency variation  
VDD = 200 mV;  
0.2  
ppm  
T
amb = 25 °C  
Quartz crystal parameters  
Rs  
CL  
series resistance  
load capacitance  
-
-
-
100  
-
kΩ  
8
pF  
CLKOUT output  
[2]  
δCLKOUT  
duty cycle on pin CLKOUT  
-
50  
-
%
I2C-bus timing characteristics (see Figure 25)[3][4]  
fSCL  
SCL clock frequency  
-
-
-
-
400  
kHz  
µs  
tHD;STA  
tSU;STA  
hold time (repeated) START condition  
0.6  
0.6  
-
-
set-up time for a repeated START  
condition  
µs  
tLOW  
tHIGH  
tr  
LOW period of the SCL clock  
HIGH period of the SCL clock  
rise time of both SDA and SCL signals  
fall time of both SDA and SCL signals  
capacitive load for each bus line  
data set-up time  
1.3  
0.6  
-
-
-
-
-
-
-
-
-
-
-
µs  
µs  
µs  
µs  
pF  
ns  
ns  
µs  
ns  
-
0.3  
0.3  
400  
-
tf  
-
Cb  
-
tSU;DAT  
tHD;DAT  
tSU;STO  
tw(spike)  
100  
0
data hold time  
-
set-up time for STOP condition  
spike pulse width  
0.6  
-
-
50  
(COSCI COSCO  
)
[1] Integrated load capacitance, CL(itg), is a calculation of COSCI and COSCO in series: CL(itg)  
=
.
--------------------------------------------  
(COSCI + COSCO  
)
[2] Unspecified for fCLKOUT = 32.768 kHz.  
[3] All timing values are valid within the operating supply voltage at ambient temperature and referenced to VIL and VIH with an input voltage  
swing of VSS to VDD  
.
[4] A detailed description of the I2C-bus specification is given in Ref. 11 “UM10204”.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
29 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
SDA  
t
t
t
f
BUF  
LOW  
SCL  
SDA  
t
HD;STA  
t
t
t
SU;DAT  
r
HD;DAT  
t
HIGH  
t
SU;STA  
t
SU;STO  
mga728  
Fig 25. I2C-bus timing waveforms  
15. Application information  
V
DD  
SDA  
SCL  
MASTER  
TRANSMITTER/  
RECEIVER  
1 F  
V
DD  
SCL  
SDA  
CLOCK/CALENDAR  
OSCI  
PCF8564A  
V
DD  
OSCO  
V
SS  
R
R
SDA SCL  
2
013aaa193  
(I C-bus)  
Fig 26. Application diagram  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
30 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
16. Bare die outline  
Wire bond die; 9 bonding pads  
PCF8564AU  
D
e
A
e
1
y
e
2
E
x
0,0  
X
(2)  
P
P
1
2
P
P
4
3
Dimensions Die type 1  
(3)  
(1)  
(1)  
Unit  
max  
A
D
E
e
e
1
e
2
P
P
P
P
4
1
2
3
detail X  
mm nom 0.2 1.27 1.9 1.05 0.22 0.9 0.1 0.09 0.1 0.09  
min  
Dimensions Die type 2  
(3)  
(1)  
(1)  
Unit  
max  
A
D
E
e
e
1
e
2
P
P
P
P
4
1
2
3
0
0.5  
1 mm  
scale  
mm nom 0.2 1.26 1.89 1.05 0.22 0.9 0.1 0.09 0.1 0.09  
min  
Note  
1. Chip dimensions including sawline.  
2. Marking code: PC8564A-1  
3. Dimension depending on delivery form  
pcf8564au_do  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
09-08-25  
09-09-10  
PCF8564AU  
Fig 27. Bare die outline of PCF8564AU  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
31 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
Table 31. Bonding pad description for all PCF8564AU types  
All x/y coordinates represent the position of the center of each pad with respect to the center  
(x/y = 0) of the chip; see Figure 27.  
Symbol  
OSCI  
OSCO  
INT  
Pad  
1
X (µm)  
523.0  
523.0  
523.0  
523.0  
524.9  
Y (µm)  
689.4  
Description  
oscillator input  
2
469.4  
oscillator output  
3
429.8  
684.4  
523.8  
138.6  
162.5  
open-drain interrupt output (active LOW)  
ground (substrate)  
serial data I/O  
VSS  
4
SDA  
5
SCL  
6
524.9  
serial clock input  
CLKOUT  
VDD  
7
524.9  
CMOS push-pull clock output  
supply  
8
524.9  
443.3  
CLKOE  
9
524.9  
716.3  
CLKOUT output enable  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
32 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
WLCSP9: wafer level chip-size package; 9 bumps; 1.27 x 1.9 x 0.29 mm  
PCF8564ACX9  
D
e
b
e
2
y
X
A
2
E
A
e
1
x
0,0  
A
1
detail X  
(2)  
Dimensions  
(1)  
(1)  
Unit  
max  
A
A
A
b
D
E
e
e
1
e
2
1
2
mm nom 0.29 0.09 0.2 0.2 1.27 1.9 0.73 0.45 0.27  
min  
0
0.5  
1 mm  
scale  
Note  
1. Chip dimensions including sawline.  
2. Marking code: PC8564A-1  
pcf8564acx9_po  
Issue date  
References  
Outline  
European  
projection  
version  
IEC  
JEDEC  
JEITA  
09-08-25  
09-09-09  
PCF8564ACX9  
Fig 28. Bare die outline of PCF8564ACX9  
Table 32. Solder bump description for all PCF8564ACX types  
All x/y coordinates represent the position of the center of each bump with respect to the center  
(x/y = 0) of the chip; see Figure 28.  
Symbol  
OSCI  
OSCO  
INT  
Bump  
X (µm)  
368  
368  
368  
368  
362  
Y (µm)  
738  
Description  
1
2
3
4
5
6
7
8
9
oscillator input  
188  
oscillator output  
262  
712  
712  
262  
188  
open-drain interrupt output (active LOW)  
ground (substrate)  
serial data I/O  
VSS  
SDA  
SCL  
362  
serial clock input  
CLKOUT  
VDD  
362  
CMOS push-pull clock output  
supply  
0
456  
CLKOE  
362  
738  
CLKOUT output enable  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
33 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
REF  
REF  
C2  
C1  
013aaa036  
REF  
F
Fig 29. Alignment marks of all PCF8564A types  
Table 33. Alignment marks of all PCF8564A types  
All x/y coordinates represent the position of the REF point (see Figure 29) with respect to the center  
(x/y = 0) of the chip; see Figure 27 and Figure 28.  
Alignment markers  
Size (µm)  
100 × 100  
100 × 100  
90 × 117  
X (µm)  
465.2  
Y (µm)  
826.3  
890.0  
C1  
C2  
F
523.0  
569.9  
885.5  
17. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC61340-5 or equivalent  
standards.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
34 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
18. Packing information  
18.1 Wafer and FFC information  
18 µm  
18 µm  
die type 1 = 84 µm  
die type 2 = 74 µm  
Saw lane  
Seal ring plus gap to  
active circuit ~18 µm  
die type 1 = 84 µm  
die type 2 = 74 µm  
detail X  
Marking code  
Pin 1  
Straight edge  
of the wafer  
X
013aaa037  
Wafer thickness, see Table 1.  
Fig 30. Wafer layout of PCF8564AU  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
35 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
18 µm  
18 µm  
84 µm  
Saw lane  
Seal ring plus gap to  
active circuit ~18 µm  
84 µm  
detail X  
Marking code  
Pin 1  
Straight edge  
of the wafer  
X
013aaa192  
Wafer thickness, see Table 1.  
Fig 31. Wafer layout of PCF8564ACX9  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
36 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
18.2 Tape and reel information  
4 mm  
A0  
K0  
W
B0  
P1  
direction of feed  
013aaa202  
Fig 32. Tape and reel details for PCF8564ACX9/B/1  
Table 34. Tape and reel dimensions [1]  
Dimension  
Description  
tape width  
Value  
W
8 mm  
A0  
B0  
K0  
P1  
pocket length  
pocket width  
pocket depth  
pocket pitch  
1.5 mm  
2.2 mm  
0.25 mm  
4 mm  
[1] Die is placed in pocket bump side down.  
013aaa191  
pin 1  
Transparent top view. The orientation of the IC in a pocket is indicated by the position of pin 1, with  
respect to the sprocket holes.  
Fig 33. Pin 1 indication for PCF8564ACX9/B/1  
19. Soldering of WLCSP packages  
19.1 Introduction to soldering WLCSP packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering WLCSP (Wafer Level Chip-Size Packages) can be found in application note  
AN10439 “Wafer Level Chip Scale Package” and in application note AN10365 “Surface  
mount reflow soldering description”.  
Wave soldering is not suitable for this package.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
37 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
All NXP WLCSP packages are lead-free.  
19.2 Board mounting  
Board mounting of a WLCSP requires several steps:  
1. Solder paste printing on the PCB  
2. Component placement with a pick and place machine  
3. The reflow soldering itself  
19.3 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 34) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues, such as smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature), and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic) while being low enough that the packages and/or boards are not  
damaged. The peak temperature of the package depends on package thickness and  
volume and is classified in accordance with Table 35.  
Table 35. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
260  
> 2000  
260  
< 1.6  
1.6 to 2.5  
> 2.5  
260  
250  
245  
250  
245  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 34.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
38 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 34. Temperature profiles for large and small components  
For further information on temperature profiles, refer to application note AN10365  
“Surface mount reflow soldering description”.  
19.3.1 Stand off  
The stand off between the substrate and the chip is determined by:  
The amount of printed solder on the substrate  
The size of the solder land on the substrate  
The bump height on the chip  
The higher the stand off, the better the stresses are released due to TEC (Thermal  
Expansion Coefficient) differences between substrate and chip.  
19.3.2 Quality of solder joint  
A flip-chip joint is considered to be a good joint when the entire solder land has been  
wetted by the solder from the bump. The surface of the joint should be smooth and the  
shape symmetrical. The soldered joints on a chip should be uniform. Voids in the bumps  
after reflow can occur during the reflow process in bumps with high ratio of bump diameter  
to bump height, i.e. low bumps with large diameter. No failures have been found to be  
related to these voids. Solder joint inspection after reflow can be done with X-ray to  
monitor defects such as bridging, open circuits and voids.  
19.3.3 Rework  
In general, rework is not recommended. By rework we mean the process of removing the  
chip from the substrate and replacing it with a new chip. If a chip is removed from the  
substrate, most solder balls of the chip will be damaged. In that case it is recommended  
not to re-use the chip again.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
39 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
Device removal can be done when the substrate is heated until it is certain that all solder  
joints are molten. The chip can then be carefully removed from the substrate without  
damaging the tracks and solder lands on the substrate. Removing the device must be  
done using plastic tweezers, because metal tweezers can damage the silicon. The  
surface of the substrate should be carefully cleaned and all solder and flux residues  
and/or underfill removed. When a new chip is placed on the substrate, use the flux  
process instead of solder on the solder lands. Apply flux on the bumps at the chip side as  
well as on the solder pads on the substrate. Place and align the new chip while viewing  
with a microscope. To reflow the solder, use the solder profile shown in application note  
AN10365 “Surface mount reflow soldering description”.  
19.3.4 Cleaning  
Cleaning can be done after reflow soldering.  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
40 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
20. Abbreviations  
Table 36. Abbreviations  
Acronym  
BCD  
CMOS  
FFC  
Description  
Binary Coded Decimal  
Complementary Metal Oxide Semiconductor  
Film Frame Carrier  
HBM  
I2C  
Human Body Model  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
LSB  
Least Significant Bit  
Machine Model  
MM  
MOS  
MSB  
MSL  
PCB  
POR  
ROM  
RTC  
Metal Oxide Semiconductor  
Most Significant Bit  
Moisture Sensitivity Level  
Printed-Circuit Board  
Power-On Reset  
Read Only Memory  
Real Time Clock  
SCL  
Serial Clock Line  
SDA  
Serial Data Line  
SRAM  
WLCSP  
Static Random Access Memory  
Wafer Level Chip-Size Package  
21. References  
[1] AN10365 Surface mount reflow soldering description  
[2] AN10706 Handling bare die  
[3] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[4] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[5] IPC/JEDEC J-STD-020 — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[6] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[7] JESD22-A115 Electrostatic Discharge (ESD) Sensitivity Testing Machine Model  
(MM)  
[8] JESD78 IC Latch-Up Test  
[9] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[10] SNW-SQ-623 NXP store and transport conditions  
[11] UM10204 I2C-bus specification and user manual  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
41 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
22. Revision history  
Table 37. Revision history  
Document ID  
Release date  
20091008  
Data sheet status  
Change notice  
Supersedes  
PCF8564A_1  
Product data sheet  
-
-
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
42 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
23. Legal information  
23.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Limiting values — Stress above one or more limiting values (as defined in  
23.2 Definitions  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
23.3 Disclaimers  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
Bare die — All die are tested on compliance with their related technical  
specifications as stated in this data sheet up to the point of wafer sawing and  
are handled in accordance with the NXP Semiconductors storage and  
transportation conditions. If there are data sheet limits not guaranteed, these  
will be separately indicated in the data sheet. There are no post-packing tests  
performed on individual die or wafers.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
NXP Semiconductors has no control of third party procedures in the sawing,  
handling, packing or assembly of the die. Accordingly, NXP Semiconductors  
assumes no liability for device functionality or performance of the die or  
systems after third party sawing, handling, packing or assembly of the die. It  
is the responsibility of the customer to test and qualify their application in  
which the die is used.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
All die sales are conditioned upon and subject to the customer entering into a  
written die sale agreement with NXP Semiconductors through its legal  
department.  
23.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
I2C-bus — logo is a trademark of NXP B.V.  
24. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF8564A_1  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 1 — 8 October 2009  
43 of 44  
PCF8564A  
NXP Semiconductors  
Real time clock and calendar  
25. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
10  
10.1  
10.2  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 23  
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Clock and calendar READ or WRITE cycles . 23  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
11  
12  
13  
14  
15  
16  
17  
Internal circuitry . . . . . . . . . . . . . . . . . . . . . . . 25  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 25  
Static characteristics . . . . . . . . . . . . . . . . . . . 26  
Dynamic characteristics. . . . . . . . . . . . . . . . . 29  
Application information . . . . . . . . . . . . . . . . . 30  
Bare die outline . . . . . . . . . . . . . . . . . . . . . . . . 31  
Handling information . . . . . . . . . . . . . . . . . . . 34  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
Functional description . . . . . . . . . . . . . . . . . . . 5  
CLKOUT output . . . . . . . . . . . . . . . . . . . . . . . . 5  
Register organization . . . . . . . . . . . . . . . . . . . . 6  
Control registers . . . . . . . . . . . . . . . . . . . . . . . . 7  
Register Control_1 . . . . . . . . . . . . . . . . . . . . . . 7  
Register Control_2 . . . . . . . . . . . . . . . . . . . . . . 7  
Interrupt output . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Time and date registers . . . . . . . . . . . . . . . . . . 9  
Register Seconds . . . . . . . . . . . . . . . . . . . . . . . 9  
Voltage low detector and clock monitor . . . . . . 9  
Register Minutes. . . . . . . . . . . . . . . . . . . . . . . 10  
Register Hours . . . . . . . . . . . . . . . . . . . . . . . . 10  
Register Days . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Register Weekdays. . . . . . . . . . . . . . . . . . . . . 10  
Register Months . . . . . . . . . . . . . . . . . . . . . . . 11  
Register Years . . . . . . . . . . . . . . . . . . . . . . . . 12  
Setting and reading the time. . . . . . . . . . . . . . 12  
Alarm registers . . . . . . . . . . . . . . . . . . . . . . . . 13  
Register Minute_alarm . . . . . . . . . . . . . . . . . . 13  
Register Hour_alarm . . . . . . . . . . . . . . . . . . . 14  
Register Day_alarm . . . . . . . . . . . . . . . . . . . . 14  
Register Weekday_alarm . . . . . . . . . . . . . . . . 14  
Alarm flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Register CLKOUT_ctrl and clock output. . . . . 15  
Timer function. . . . . . . . . . . . . . . . . . . . . . . . . 16  
Register Timer_ctrl . . . . . . . . . . . . . . . . . . . . . 16  
Register Timer . . . . . . . . . . . . . . . . . . . . . . . . 17  
EXT_CLK test mode. . . . . . . . . . . . . . . . . . . . 17  
Operation example . . . . . . . . . . . . . . . . . . . . . 17  
STOP bit function . . . . . . . . . . . . . . . . . . . . . . 18  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Power-On Reset (POR) override . . . . . . . . . . 20  
8.1  
8.2  
8.3  
18  
18.1  
18.2  
Packing information . . . . . . . . . . . . . . . . . . . . 35  
Wafer and FFC information . . . . . . . . . . . . . . 35  
Tape and reel information. . . . . . . . . . . . . . . . 37  
8.3.1  
8.3.2  
8.3.2.1  
8.4  
8.4.1  
8.4.1.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.4.7  
8.5  
19  
19.1  
19.2  
19.3  
19.3.1  
19.3.2  
19.3.3  
19.3.4  
Soldering of WLCSP packages . . . . . . . . . . . 37  
Introduction to soldering WLCSP packages. . 37  
Board mounting . . . . . . . . . . . . . . . . . . . . . . . 38  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 38  
Stand off. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Quality of solder joint . . . . . . . . . . . . . . . . . . . 39  
Rework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Cleaning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
20  
21  
22  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 41  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 42  
23  
Legal information . . . . . . . . . . . . . . . . . . . . . . 43  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 43  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
8.6  
23.1  
23.2  
23.3  
23.4  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
8.7  
24  
25  
Contact information . . . . . . . . . . . . . . . . . . . . 43  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
8.8  
8.8.1  
8.8.2  
8.9  
8.9.1  
8.10  
8.11  
8.11.1  
9
Characteristics of the I2C-bus. . . . . . . . . . . . . 21  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
START and STOP conditions . . . . . . . . . . . . . 21  
System configuration . . . . . . . . . . . . . . . . . . . 21  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 22  
9.1  
9.2  
9.3  
9.4  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 8 October 2009  
Document identifier: PCF8564A_1  

相关型号:

PCF8564AU/5BD/1,01

PCF8564A - Real time clock and calendar
NXP

PCF8564AU/5GB/1

Real time clock and calendar
NXP

PCF8564AU/5GC/1

Real time clock and calendar
NXP

PCF8564AU/5GC/1,01

PCF8564A - Real time clock and calendar
NXP

PCF8564AU/5GE/1

Real time clock and calendar
NXP

PCF8564AUG

Real time clock and calendar
NXP

PCF8564AUG/12HB/1

Real time clock and calendar
NXP

PCF8564AUG/12HB/1V

PCF8564A - Real time clock and calendar
NXP

PCF8564A_10

Real time clock and calendar
NXP

PCF8564A_1308

Real time clock and calendar
NXP

PCF8566

Universal LCD driver for low multiplex rates
NXP

PCF8566P

Universal LCD driver for low multiplex rates
NXP