PCF8566T,118 [NXP]

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin;
PCF8566T,118
型号: PCF8566T,118
厂家: NXP    NXP
描述:

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin

PC CD 光电二极管
文件: 总48页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8566  
Universal LCD driver for low multiplex rates  
Rev. 07 — 25 February 2009  
Product data sheet  
1. General description  
The PCF8566 is a peripheral device which interfaces to almost any Liquid Crystal Display  
(LCD) with low multiplex rates. It generates the drive signals for any static or multiplexed  
LCD containing up to four backplanes and up to 24 segments and can easily be cascaded  
for larger LCD applications. The PCF8566 is compatible with most microprocessors or  
microcontrollers and communicates via a two-line bidirectional I2C-bus. Communication  
overheads are minimized by a display RAM with auto-incremented addressing, by  
hardware subaddressing and by display memory switching (static and duplex drive  
modes).  
2. Features  
I Single-chip LCD controller/driver  
I 24 segment drives:  
N Up to twelve 7-segment numeric characters including decimal pointer  
N Up to six 14-segment alphanumeric characters  
N Any graphics of up to 96 elements  
I Versatile blinking modes  
I No external components required (even in multiple device applications)  
I Selectable backplane drive configuration: static or 2, 3, 4 backplane multiplexing  
I Selectable display bias configuration: static, 12 or 13  
I Internal LCD bias generation with voltage-follower buffers  
I 24 × 4-bit RAM for display data storage  
I Auto-incremented display data loading across device subaddress boundaries  
I Display memory bank switching in static and duplex drive modes  
I LCD and logic supplies may be separated  
I 2.5 V to 6 V power supply range  
I Low power consumption  
I Power-saving mode for extremely low power consumption in battery-operated and  
telephone applications  
I I2C-bus interface  
I TTL and CMOS compatible  
I Compatible with any 4, 8 or 16-bit microprocessor or microcontroller  
I May be cascaded for large LCD applications (up to 1536 segments possible)  
I Cascadable with 40-segment LCD driver PCF8576C  
I Optimized pinning for plane wiring in both and multiple PCF8566 applications  
I Space-saving 40-lead plastic very small outline package (VSO40; SOT158-1)  
I Manufactured in silicon gate CMOS process  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PCF8566P  
DIP40  
plastic dual in-line package; 40 leads (600 mil)  
plastic very small outline package; 40 leads  
plastic very small outline package; 40 leads  
SOT129-1  
SOT158-1  
SOT158-1  
PCF8566U  
PCF8566T  
VSO40  
VSO40  
PCF8566TS[1]  
PCF8566U[2]  
PCF8566U wire bond die; 40 bonding pads;  
2.5 × 2.91 × 0.381 mm  
[1] Dark-green version.  
[2] Chip in tray for chip on board.  
4. Marking  
Table 2.  
Marking codes  
Type number  
PCF8566P  
PCF8566T  
PCF8566TS  
PCF8566U  
Marking code  
PCF8566P  
PCF8566T  
PCF8566TS  
PC8566-1  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
2 of 48  
 
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
5. Block diagram  
BP0 BP2 BP1 BP3  
13 14 15 16  
S0 to S23  
17 to 40  
5
V
DD  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT OUTPUTS  
R
R
R
LCD  
VOLTAGE  
SELECTOR  
DISPLAY LATCH  
SHIFT REGISTER  
LCD BIAS  
GENERATOR  
12  
V
LCD  
PCF8566  
4
3
DISPLAY  
RAM  
24 × 4 BITS  
CLK  
INPUT  
BANK  
SELECTOR  
OUTPUT  
BANK  
SELECTOR  
TIMING  
BLINKER  
SYNC  
DISPLAY  
CONTROLLER  
6
OSC  
OSCILLATOR  
POWER-  
ON  
DATA  
POINTER  
RESET  
COMMAND  
DECODER  
11  
V
SS  
2
1
SUB-  
ADDRESS  
COUNTER  
SCL  
SDA  
2
INPUT  
FILTERS  
I C-BUS  
CONTROLLER  
10  
7
8
9
SA0  
A0 A1 A2  
mgg383  
Fig 1. Block diagram of PCF8566  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
3 of 48  
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6. Pinning information  
6.1 Pinning  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
SDA  
SCL  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
3
SYNC  
CLK  
4
V
DD  
5
6
OSC  
A0  
7
8
A1  
9
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SA0  
PCF8566  
V
SS  
V
LCD  
BP0  
BP2  
BP1  
BP3  
S0  
S8  
S7  
S1  
S6  
S2  
S5  
S3  
S4  
001aai338  
Fig 2. Pin configuration for PCF8566  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
4 of 48  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
25 24 23 22 21  
20 19 18 17 16  
15  
14  
13  
12  
BP1  
BP2  
BP0  
26  
S9  
S10  
S11  
27  
28  
29  
30  
31  
32  
33  
34  
35  
V
LCD  
S12  
V
11  
10  
9
S13  
S14  
S15  
S16  
S17  
SS  
PCF8566U  
SA0  
A2  
8
A1  
7
A0  
6
OSC  
S18  
36 37 38 39 40  
1
2
3
4
5
mbh783  
Fig 3. Pin configuration for PCF8566U  
6.2 Pin description  
Table 3.  
Pin description  
Symbol  
SDA  
SCL  
SYNC  
CLK  
VDD  
Pin  
1
Description  
I2C-bus data input and output  
I2C-bus clock input and output  
2
3
cascade synchronization input and output  
external clock input and output  
positive supply voltage[1]  
4
5
OSC  
A0  
6
oscillator select  
I2C-bus subaddress inputs  
7
A1  
8
A2  
9
SA0  
VSS  
10  
11  
12  
I2C-bus slave address bit 0 input  
logic ground  
VLCD  
LCD supply voltage  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
5 of 48  
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 3.  
Pin description …continued  
Symbol  
BP0  
Pin  
13  
Description  
LCD backplane outputs  
BP2  
14  
BP1  
15  
BP3  
16  
S0 to S23  
17 to 40  
LCD segment outputs  
[1] The substrate (rear side of the die) is wired to VDD but should not be electrically connected.  
7. Functional description  
The PCF8566 is a versatile peripheral device designed to interface any  
microprocessor or microcontroller to a wide variety of LCDs. It can directly drive any static  
or multiplexed LCD containing up to 4 backplanes and up to 24 segments.  
The display configurations possible with the PCF8566 depend on the number of active  
backplane outputs required. Display configuration selection is shown in Table 4. All of the  
display configurations given in Table 4 can be implemented in the typical system shown in  
Figure 4.  
The host microprocessor or microcontroller maintains the 2-line I2C-bus communication  
channel with the PCF8566.  
Biasing voltages for the multiplexed LCD waveforms are generated internally, removing  
the need for an external bias generator. The internal oscillator is selected by connecting  
pin OSC to VSS. The only other connections required to complete the system are the  
power supplies (pins VDD, VSS and VLCD) and the LCD panel selected for the application.  
Table 4.  
Display configurations  
7-segment numeric  
Backplanes Elements  
14-segment numeric  
Dot matrix  
Digits  
Indicator  
symbols  
Characters Indicator  
symbols  
4
3
2
1
96  
72  
48  
24  
12  
9
12  
9
6
4
3
1
12  
16  
6
96 (4 × 24)  
72 (3 × 24)  
48 (2 × 24)  
24  
6
6
3
3
10  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
6 of 48  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
V
DD  
t
rise  
R ≤  
2 C  
bus  
V
V
LCD  
DD  
5
12  
SDA  
HOST  
MICRO-  
1
2
6
17 to 40 24 segment drives  
LCD PANEL  
SCL  
PCF8566  
PROCESSOR/  
MICRO-  
CONTROLLER  
(up to 96  
elements)  
OSC  
4 backplanes  
13 to 16  
10 11  
7
8
9
mgg385  
A0 A1 A2 SA0 V  
SS  
V
SS  
Fig 4. Typical system configuration  
7.1 Power-on reset  
At power-on the PCF8566 resets to the following starting conditions:  
All backplane outputs are set to VDD  
All segment outputs are set to VDD  
Drive mode 1:4 multiplex with 13 bias is selected  
Blinking is switched off  
Input and output bank selectors are reset (as defined in Table 8)  
The I2C-bus interface is initialized  
The data pointer and the subaddress counter are cleared  
Do not transfer data on the I2C-bus after a power-on for at least 1 ms to allow the reset  
action to complete.  
7.2 LCD bias generator  
The full-scale LCD voltage (Voper) is obtained from VDD VLCD. The LCD voltage may be  
temperature compensated externally through the VLCD supply to pin 12.  
Fractional LCD biasing voltages are obtained from an internal voltage divider comprising  
three series resistors connected between VDD and VLCD. The center resistor can be  
switched out of the circuit to provide a 12 bias voltage level for the 1:2 multiplex  
configuration.  
7.3 LCD voltage selector  
The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the  
selected LCD drive configuration. The operation of the voltage selector is controlled by  
mode-set commands from the command decoder. The biasing configurations that apply to  
the preferred modes of operation, together with the biasing characteristics as functions of  
VLCD and the resulting discrimination ratios (D), are given in Table 5.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
7 of 48  
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 5.  
Preferred LCD drive modes: summary of characteristics  
LCD drive mode Number of:  
LCD bias  
configuration  
V off (RMS)  
V on(RMS)  
V on(RMS)  
--------------------------  
V LCD  
D = --------------------------  
V off (RMS)  
------------------------  
V LCD  
Backplanes Bias levels  
static  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
1:2 multiplex  
1:2 multiplex  
1:3 multiplex  
1:4 multiplex  
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
2
1
3
1
3
1
3
A practical value for VLCD is determined by equating Voff(RMS) with a defined LCD  
threshold voltage (Vth), typically when the LCD exhibits approximately 10 % contrast. In  
the static drive mode a suitable choice is VLCD > 3Vth.  
Multiplex drive modes of 1:3 and 1:4 with 12 bias are possible but the discrimination and  
hence the contrast ratios are smaller.  
1
Bias is calculated by ------------ , where the values for a are  
1 + a  
a = 1 for 12 bias  
a = 2 for 13 bias  
The RMS on-state voltage (Von(RMS)) for the LCD is calculated with the equation  
2
1
n
1
-- + (n 1) ×  
------------  
1 + a  
V
LCD  
Von(RMS)  
=
------------------------------------------------------------  
(1)  
n
where VLCD is the resultant voltage at the LCD segment and where the values for n are  
n = 1 for static mode  
n = 2 for 1:2 multiplex  
n = 3 for 1:3 multiplex  
n = 4 for 1:4 multiplex  
The RMS off-state voltage (Voff(RMS)) for the LCD is calculated with the equation:  
a2 (2a + n)  
n × (1 + a)2  
V
Voff (RMS)  
=
--------------------------------  
(2)  
(3)  
LCD  
Discrimination is the ratio of Von(RMS) to Voff(RMS) and is determined from the equation:  
(a + 1)2 + (n 1)  
Von(RMS)  
=
-------------------------------------------  
------------------------  
(a 1)2 + (n 1)  
V off (RMS)  
Using Equation 3, the discrimination for an LCD drive mode of  
1:3 multiplex with 12 bias is 3 = 1.732  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
8 of 48  
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
21  
1:4 multiplex with 12 bias is ---------- = 1.528  
3
The advantage of these LCD drive modes is a reduction of the LCD full scale voltage VLCD  
as follows:  
1:3 multiplex (12 bias): V LCD  
=
6 × V off (RMS) = 2.449V off (RMS)  
(4 × 3)  
1:4 multiplex (12 bias): V LCD  
=
= 2.309V off (RMS)  
---------------------  
3
These compare with V LCD = 3V off (RMS) when 13 bias is used.  
It should be noted that VLCD is sometimes referred as the LCD operating voltage.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
9 of 48  
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4 LCD drive mode waveforms  
7.4.1 Static drive mode  
The static LCD drive mode is used when a single backplane is provided in the LCD.  
Backplane and segment drive waveforms for this mode are shown in Figure 5.  
T
fr  
LCD segments  
V
LCD  
BP0  
Sn  
V
SS  
state 1  
(on)  
state 2  
(off)  
V
LCD  
V
SS  
V
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
LCD  
state 1  
0 V  
V  
LCD  
V
LCD  
state 2  
0 V  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl745  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = VLCD  
.
Vstate2(t) = VSn+1(t) VBP0(t).  
Voff(RMS) = 0 V.  
Fig 5. Static drive mode waveforms  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
10 of 48  
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.2 1:2 Multiplex drive mode  
When two backplanes are provided in the LCD, the 1:2 multiplex mode applies. The  
PCF8566 allows the use of 12 bias or 13 bias (see Figure 6 and Figure 7).  
T
fr  
V
LCD  
LCD segments  
V
V
/ 2  
/ 2  
BP0  
BP1  
Sn  
LCD  
SS  
state 1  
state 2  
V
LCD  
V
V
LCD  
SS  
V
LCD  
V
V
SS  
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
V
LCD  
/ 2  
LCD  
0 V  
V  
state 1  
/ 2  
LCD  
V  
LCD  
V
V
LCD  
/ 2  
LCD  
0 V  
state 2  
V  
/ 2  
LCD  
LCD  
V  
(b) Resultant waveforms  
at LCD segment.  
mgl746  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.791VLCD  
.
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.354VLCD  
Fig 6. Waveforms for the 1:2 multiplex drive mode with 12 bias  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
11 of 48  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
T
fr  
V
LCD  
2V  
LCD segments  
/ 3  
LCD  
/ 3  
BP0  
BP1  
Sn  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
V
LCD  
2V  
/ 3  
/ 3  
LCD  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl747  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.745VLCD  
Vstate2(t) = VSn(t) VBP1(t)  
Voff(RMS) = 0.333VLCD.  
Fig 7. Waveforms for the 1:2 multiplex drive mode with 13 bias  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
12 of 48  
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.3 1:3 Multiplex drive mode  
When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies as  
shown in Figure 8.  
T
fr  
V
LCD  
2V  
LCD segments  
/ 3  
LCD  
/ 3  
BP0  
BP1  
BP2  
Sn  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+2  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
V
LCD  
2V  
/ 3  
/ 3  
LCD  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl748  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.638VLCD  
.
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD.  
Fig 8. Waveforms for the 1:3 multiplex drive mode with 13 bias  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
13 of 48  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.4 1:4 multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies, as  
shown in Figure 9.  
T
fr  
V
LCD segments  
LCD  
2V  
/ 3  
LCD  
/ 3  
BP0  
BP1  
BP2  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
BP3  
Sn  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+2  
Sn+3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
V
LCD  
2V  
/ 3  
/ 3  
LCD  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
/ 3  
LCD  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl749  
Vstate1(t) = VSn(t) VBP0(t).  
Von(RMS) = 0.577VLCD  
.
Vstate2(t) = VSn(t) VBP1(t).  
Voff(RMS) = 0.333VLCD.  
Fig 9. Waveforms for the 1:4 multiplex mode with 13 bias  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
14 of 48  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.5 Oscillator  
The internal logic and the LCD drive signals of the PCF8566 are timed by the frequency  
fclk, which equals either the built-in oscillator frequency fosc or the external clock frequency  
fclk(ext)  
.
The clock frequency (fclk) determines the LCD frame frequency (ffr) and the maximum rate  
for data reception from the I2C-bus. To allow I2C-bus transmissions at their maximum data  
rate of 100 kHz, fclk should be chosen to be above 125 kHz.  
7.5.1 Internal clock  
The internal oscillator is enabled by connecting pin OSC to pin VSS. In this case, the  
output from pin CLK is the clock signal for any cascaded PCF8566s or PCF8576s in the  
system.  
7.5.2 External clock  
Connecting pin OSC to VDD enables an external clock source. Pin CLK then becomes the  
external clock input.  
Remark: A clock signal must always be supplied to the device. Removing the clock,  
freezes the LCD in a DC state.  
7.6 Timing  
The timing of the PCF8566 sequences the internal data flow of the device. This includes  
the transfer of display data from the display RAM to the display segment outputs. In  
cascaded applications, the synchronization signal (SYNC) maintains the correct timing  
relationship between the PCF8566s in the system. The timing also generates the LCD  
frame frequency which is derived as an integer division of the clock frequency (see  
Table 6). The frame frequency is set by the mode set commands when an internal clock is  
used or by the frequency applied to the pin CLK when an external clock is used.  
Table 6.  
LCD frame frequencies [1]  
PCF8566 mode  
Frame frequency  
Nominal frame frequency (Hz)  
normal mode  
69 [2]  
f clk  
f fr  
=
=
------------  
2880  
power saving mode  
65 [3]  
f clk  
f fr  
---------  
480  
[1] The possible values for fclk see Table 20.  
[2] For fclk = 200 kHz.  
[3] For fclk = 31 kHz.  
The ratio between the clock frequency and the LCD frame frequency depends on the  
mode in which the device is operating. In the power-saving mode the reduction ratio is six  
times smaller; this allows the clock frequency to be reduced by a factor of six. The  
reduced clock frequency results in a significant reduction in power dissipation.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
15 of 48  
 
 
 
 
 
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
The lower clock frequency has the disadvantage of increasing the response time when  
large amounts of display data are transmitted on the I2C-bus. When a device is unable to  
process a display data byte before the next one arrives, it holds the SCL line LOW until the  
first display data byte is stored. This slows down the transmission rate of the I2C-bus but  
no data loss occurs.  
7.7 Display register  
The display register holds the display data while the corresponding multiplex signals are  
generated. There is a one-to-one relationship between the data in the display register, the  
LCD segment outputs and one column of the display RAM.  
7.8 Shift register  
The shift register transfers display information from the display RAM to the display register  
while previous data is displayed.  
7.9 Segment outputs  
The LCD drive section includes 24 segment outputs S0 to S23 which must be connected  
directly to the LCD. The segment output signals are generated based on the multiplexed  
backplane signals and with data resident in the display register. When less than  
24 segment outputs are required, the unused segment outputs should be left open-circuit.  
7.10 Backplane outputs  
The LCD drive section includes four backplane outputs: BP0 to BP3. The backplane  
output signals are generated based on the selected LCD drive mode.  
In 1:4 multiplex drive mode: BP0 to BP3 must be connected directly to the LCD.  
If less than four backplane outputs are required the unused outputs can be left as an  
open-circuit.  
In 1:3 multiplex drive mode: BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced drive capabilities.  
In 1:2 multiplex drive mode: BP0 and BP2, BP1 and BP3 respectively carry the same  
signals and can also be paired to increase the drive capabilities.  
In static drive mode: the same signal is carried by all four backplane outputs and they  
can be connected in parallel for very high drive requirements.  
7.11 Display RAM  
The display RAM is a static 24 × 4-bit RAM which stores LCD data. Logic 1 in the RAM bit  
map indicates the on-state of the corresponding LCD segment; similarly, logic 0 indicates  
the off-state. There is a direct relationship between the RAM addresses and the segment  
outputs, and between the individual bits of a RAM word and the backplane outputs. The  
first RAM row corresponds to the 24 segments operated with respect to backplane BP0  
(see Figure 10). In multiplexed LCD applications, the segment data of rows 1 to 4 of the  
display RAM are time-multiplexed with BP0, BP1, BP2 and BP3 respectively.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
16 of 48  
 
 
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
display RAM addresses (columns)/segment outputs (S)  
0
1
2
3
4
19 20 21 22 23  
0
1
2
3
display RAM bits  
(rows)/  
backplane outputs  
(BP)  
mgg389  
Fig 10. Display RAM bit map showing the direct relationship between display RAM  
addresses and segment outputs and between bits in a RAM word and backplane  
outputs  
When display data is transmitted to the PCF8566 the display bytes received are stored in  
the display RAM based on the selected LCD drive mode. An example of a 7-segment  
numeric display illustrating the storage order for all drive modes is shown in Figure 11.  
The RAM storage organization applies equally to other LCD types.  
The following applies to Figure 11:  
Static drive mode: the eight transmitted data bits are placed in row 0 to eight  
successive display RAM addresses.  
1:2 multiplex drive mode: the eight transmitted data bits are placed in row 0 and 1 to  
four successive display RAM addresses.  
1:3 multiplex drive mode: the eight transmitted data bits are placed in row 0, 1 and 2 of  
three successive addresses, with bit 2 of the third address left unchanged. This last bit  
can, if necessary, be controlled by an additional transfer to this address but avoid  
overriding adjacent data because always full bytes are transmitted.  
1:4 multiplex drive mode: the eight transmitted data bits are placed in row 0, 1, 2 and  
3 to two successive display RAM addresses.  
7.12 Data pointer  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the load data pointer command (see Table 13). After this, the data byte is  
stored starting at the display RAM address indicated by the data pointer (see Figure 11).  
Once each byte is stored, the data pointer is automatically incremented based on the  
selected LCD configuration.  
The contents of the data pointer are incremented as follows:  
In static drive mode by eight.  
In 1:2 multiplex drive mode by four.  
In 1:3 multiplex drive mode by three.  
In 1:4 multiplex drive mode by two.  
If an I2C-bus data access terminates early, the state of the data pointer is unknown.  
Consequently, the data pointer must be rewritten prior to further RAM accesses.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
17 of 48  
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
drive mode  
LCD segments  
a
LCD backplanes  
display RAM filling order  
transmitted display byte  
S
n+2  
n
n
1
n
2
n
3
n
4
n
5
n
6
n 7  
b
BP0  
f
S
S
n+3  
n+1  
MSB  
LSB  
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
bit/  
BP  
g
S
n+4  
S
n
x
x
x
x
x
x
c
b
a
f
g
e
d
DP  
static  
e
S
S
S
n+5  
n+7  
DP  
c
d
n+6  
BP0  
S
n
a
n
n
n
n
1
1
1
n
2
n 3  
b
b
b
1:2  
f
S
n+1  
MSB  
LSB  
DP  
0
1
2
3
a
b
x
x
f
e
c
x
x
d
bit/  
BP  
g
g
x
x
DP  
x
x
a
b
f
g
e c d  
BP1  
multiplex  
S
S
e
n+2  
n+3  
c
c
c
d
d
d
DP  
BP0  
BP1  
S
n+1  
a
n
n 2  
S
S
n
f
1:3  
n+2  
MSB  
LSB  
e
0
1
2
3
b
DP  
c
a
d
g
x
f
bit/  
BP  
g
e
x
x
BP2  
multiplex  
b
DP  
c
a
d
g
f
e
x
DP  
S
n
a
n
BP2  
BP3  
BP0  
BP1  
f
1:4  
0
1
2
3
a
c
f
bit/  
BP  
MSB  
LSB  
d
g
e
g
d
multiplex  
b
DP  
e
a
c
b
DP  
f
e
g
S
n+1  
DP  
mgl751  
x = data bit unchanged  
Fig 11. Relationship between LCD layout, drive mode, display RAM filling order and display data transmitted over the I2C-bus  
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.13 Sub-address counter  
The storage of display data is conditioned by the contents of the subaddress counter.  
Storage is allowed to take place only when the contents of the subaddress counter match  
with the hardware subaddress applied to A0, A1 and A2. The subaddress counter value is  
defined by the device select command (see Table 14 and Table 21). If the contents of the  
subaddress counter and the hardware subaddress do not match then data storage is  
blocked but the data pointer will be incremented as if data storage had taken place. The  
subaddress counter is also incremented when the data pointer overflows.  
The storage arrangements described lead to extremely efficient data loading in cascaded  
applications. When a series of display bytes are sent to the display RAM, automatic  
wrap-over to the next PCF8566 occurs when the last RAM address is exceeded.  
Subaddressing across device boundaries is successful even if the change to the next  
device in the cascade occurs within a transmitted character (such as during the 14th  
display data byte transmitted in 1:3 multiplex mode).  
7.14 Output bank selector  
The output bank selector (see Table 15), selects one of the four bits per display RAM  
address for transfer to the display register. The actual bit selected depends on the LCD  
drive mode in operation and on the instant in the multiplex sequence.  
In 1:4 multiplex mode: all RAM addresses of bit 0 are selected, followed sequentially  
by the contents of bit 1, bit 2 and then bit 3.  
In 1:3 multiplex mode: bits 0, 1 and 2 are selected sequentially.  
In 1:2 multiplex mode: bits 0 and 1 are selected.  
In the static mode: bit 0 is selected.  
The PCF8566 includes a RAM bank switching feature in the static and 1:2 multiplex drive  
modes. In the static drive mode, the bank select command may request the contents of  
bit 2 to be selected for display instead of the contents of bit 0. In 1:2 multiplex drive mode,  
the contents of bits 2 and 3 may be selected instead of bits 0 and 1. This enables  
preparation of display information in an alternative bank and the ability to switch to it once  
it has been assembled.  
7.15 Input bank selector  
The input bank selector loads display data into the display RAM based on the selected  
LCD drive configuration. Using the bank select command, display data can be loaded in  
bit 2 into static drive mode or in bits 2 and 3 into 1:2 multiplex drive mode. The input bank  
selector functions independently of the output bank selector.  
7.16 Blinker  
The display blinking capabilities of the PCF8566 are very versatile. The whole display can  
be blinked at frequencies selected by the blink command. The blinking frequencies are  
integer fractions of the clock frequency; the ratios between the clock and blinking  
frequencies depend on the mode in which the device is operating (see Table 7).  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
19 of 48  
 
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 7.  
Blink frequencies  
Blinking mode  
Normal operating  
mode ratio  
Power saving mode  
ratio  
Blink frequency  
off  
1
-
-
blinking off  
2 Hz  
f clk  
f elk  
f blink  
f blink  
f blink  
=
=
=
f blink  
f blink  
f blink  
=
=
=
----------------  
92160  
----------------  
15360  
2
3
1 Hz  
f clk  
f clk  
-------------------  
184320  
----------------  
30720  
0.5 Hz  
f clk  
f clk  
-------------------  
368640  
----------------  
61440  
An additional feature is for an arbitrary selection of LCD segments to be blinked. This  
applies to the static and 1:2 multiplex drive modes and can be implemented without any  
communication overheads. Using the output bank selector, the displayed RAM banks are  
exchanged with alternate RAM banks at the blinking frequency. This mode can also be  
specified by the blink select command.  
In the 1:3 and 1:4 multiplex modes, where no alternate RAM bank is available, groups of  
LCD segments can be blinked by selectively changing the display RAM data at fixed time  
intervals.  
If the entire display needs to be blinked at a frequency other than the nominal blinking  
frequency, this can be done using the mode set command to set and reset the display  
enable bit E at the required rate (see Table 9).  
8. Basic architecture  
8.1 Characteristics of the I2C-bus  
The I2C-bus provides bidirectional, two-line communication between different IC or  
modules. The two lines are a Serial Data line (SDA) and a Serial Clock Line (SCL). When  
connected to the output stages of a device, both lines must be connected to a positive  
supply via a pull-up resistor. Data transfer is initiated only when the bus is not busy.  
8.1.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse. Changes in the data line at this time will  
be interpreted as a control signal. Bit transfer is illustrated in Figure 12.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 12. Bit transfer  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
20 of 48  
 
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8.1.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW change  
of the data line, while the clock is HIGH, is defined as the START condition (S).  
A LOW-to-HIGH change of the data line, while the clock is HIGH, is defined as the STOP  
condition (P). The START and STOP conditions are illustrated in Figure 13.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 13. Definition of START and STOP conditions  
8.1.2 System configuration  
A device generating a message is a transmitter and a device receiving a message is the  
receiver. The device that controls the message is the master and the devices which are  
controlled by the master are the slaves. The system configuration is illustrated in  
Figure 14.  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 14. System configuration  
8.1.3 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
bit. The acknowledge bit is a HIGH level signal put on the bus by the transmitter during  
which time the master generates an extra acknowledge related clock pulse. (See  
Figure 15).  
Acknowledgement on the I2C-bus is illustrated in  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte.  
A master receiver must generate an acknowledge after the reception of each byte that  
has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be taken into  
consideration).  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
21 of 48  
 
 
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
A master receiver must signal an end-of-data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
master receiver must leave the data line HIGH during the 9th pulse to not  
acknowledge. The master will now generate a STOP condition.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 15. Acknowledgement on the I2C-bus  
8.1.4 PCF8566 I2C-bus controller  
The PCF8566 acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. The only data output from the PCF8566 are  
the acknowledge signals of the selected devices. Device selection depends on the  
I2C-bus slave address, the transferred command data and the hardware subaddress.  
In single device application, the hardware subaddress inputs A0, A1 and A2 are normally  
tied to VSS which defines the hardware subaddress 0. In multiple device applications  
A0, A1 and A2 are tied to VSS or VDD using a binary coding scheme so that no two  
devices with a common I2C-bus slave address have the same hardware subaddress.  
In the power-saving mode it is possible that the PCF8566 is not able to keep up with the  
highest transmission rates when large amounts of display data are transmitted. If this  
situation occurs, the PCF8566 forces the SCL line LOW until its internal operations are  
completed. This is known as the clock synchronization feature of the I2C-bus and serves  
to slow down fast transmitters. Data loss does not occur.  
8.1.5 Input filter  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
8.2 I2C-bus protocol  
Two I2C-bus 7 bit slave addresses (0111 110 and 0111 111) are reserved for the  
PCF8566. The least significant bit after the slave address is bit R/W. The PCF8566 is a  
write-only device. It will not respond to a read access, so this bit should always be logic 0.  
The second bit of the slave address is defined by the level tied at input SA0.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
22 of 48  
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
R/W  
slave address  
S
A
0
0
1
1
1
1
1
0
1 byte  
001aai455  
Fig 16. Slave address structure  
Two displays controlled by PCF8566 can be recognized on the same I2C-bus which  
allows:  
Up to 16 PCF8566s on the same I2C-bus for very large LCD applications (see  
Section 13)  
The use of two types of LCD multiplex on the same I2C-bus  
The I2C-bus protocol is shown in Figure 17. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of the PCF8566 slave  
addresses. All PCF8566s with the same SA0 level acknowledge in parallel to the slave  
address. All PCF8566s with the alternative SA0 level ignore the whole I2C-bus transfer.  
After acknowledgement, one or more command bytes (m) follow which define the status of  
the addressed PCF8566s. The last command byte is tagged with a cleared most  
significant bit, the continuation bit C. The command bytes are also acknowledged by all  
addressed PCF8566s on the bus.  
After the last command byte, a series of display data bytes (n) may follow. These display  
bytes are stored in the display RAM at the address specified by the data pointer and the  
subaddress counter. Both data pointer and subaddress counter are automatically updated  
and the data is directed to the intended PCF8566 device.  
The acknowledgement after each byte is made only by the (A0, A1 and A2) addressed  
PCF8566. After the last display byte, the I2C-bus master issues a STOP condition (P).  
acknowledge  
acknowledge by  
by A0, A1 and A2  
all addressed  
selected  
PCF8566 only  
R/W  
0
PCF8566s  
slave address  
S
A
0
S
0
1
1
1
1
1
A C  
A
DISPLAY DATA  
n > 0 byte(s)  
A P  
COMMAND  
1 byte  
m 1 byte(s)  
update data pointers  
and if necessary,  
subaddress counter  
mgg390  
Fig 17. I2C-bus protocol  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
23 of 48  
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8.3 Command decoder  
The command decoder identifies command bytes that arrive on the I2C-bus. All available  
commands carry a continuation bit C in their most significant bit position as shown in  
Figure 18. When this bit is set, it indicates that the next byte of the transfer to arrive will  
also represent a command. If this bit is reset, it indicates that the command byte is the last  
in the transfer. Further bytes will be regarded as display data.  
The five commands available to the PCF8566 are defined in Table 8.  
MSB  
LSB  
C
REST OF OPCODE  
msa833  
(1) C = 0; last command.  
(2) C = 1; commands continue.  
Fig 18. General format of byte command  
Table 8.  
Definition of PCF8566 commands  
Command  
Opcode  
Reference  
Description  
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
Mode set  
C
1
0
LP  
E
B
M1  
M0  
Section 8.3.1 defines LCD drive mode, LCD bias  
configuration, display status and  
power dissipation mode  
Load data  
pointer  
C
C
C
0
1
1
0
1
1
P4  
0
P3  
0
P2  
A2  
0
P1  
A1  
I
P0  
A0  
O
Section 8.3.2 data pointer to define one of 24  
display RAM addresses  
Device select  
Section 8.3.3 define one of eight hardware  
subaddresses  
Bank select  
1
1
Section 8.3.4 bit I: defines input bank selection  
(storage of arriving display data);  
bit O: defines output bank selection  
(retrieval of LCD display data)  
Blink  
C
1
1
1
0
A
BF1 BF0 Section 8.3.5 defines the blink frequency and blink  
mode  
8.3.1 Mode set command  
Table 9.  
LCD drive mode command bit description  
LCD drive mode  
Bit  
M1  
0
Drive mode  
Backplane  
BP0  
M0  
1
static  
1:2  
BP0, BP1  
1
0
1:3  
BP0, BP1. BP2  
BP0, BP1. BP2, BP3  
1
1
1:4  
0
0
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
24 of 48  
 
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 10. LCD bias configuration command bit description  
LCD bias  
Bit B  
13 bias  
12 bias  
0
1
Table 11. Display status command bit description[1]  
Display status  
disabled (blank)  
enabled  
Bit E  
0
1
[1] The possibility to disable the display allows implementation of blinking under external control.  
Table 12. Power dissipation mode command bit description  
Display status  
normal mode  
Bit LP  
0
1
power saving mode  
8.3.2 Load data pointer command  
Table 13. Load data pointer command bit description  
Description  
Bit  
5 bit binary value, 0 to 23  
P4  
P3  
P2  
P1  
P0  
8.3.3 Device select command  
Table 14. Device select command bit description  
Description  
Bit  
3 bit binary value, 0 to 7  
A2  
A1  
A0  
8.3.4 Bank select command  
Table 15. Bank select command[1]  
Bank  
Mode  
Static  
Bit  
I
Value  
1:2 MUX  
Input bank  
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
Output bank  
RAM bit 0  
RAM bit 2  
RAM bits 0 and 1  
RAM bits 2 and 3  
O
0
1
[1] The bank select command has no effect in 1:3 or 1:4 multiplex drive modes.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
25 of 48  
 
 
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8.3.5 Blink command  
Table 16. Blink frequency command bit description  
Blink frequency  
Bit  
BF1  
0
BF0  
0
off  
1
0
1
2
1
0
3
1
1
Table 17. Blink mode command bit description  
Blink mode  
Bit A  
Normal blinking  
0
1
Alternate RAM bank blinking  
8.4 Display controller  
The display controller executes the commands identified by the command decoder. It  
contains the status registers of the PCF8566 and coordinates their effects. The controller  
also loads display data into the display RAM as required by the storage order.  
9. Internal circuitry  
V
LCD  
V
SS  
BP0 to BP3,  
S0 to S23  
SDA, SCL, SYNC,  
CLK, OSC, A0 to A2,  
SA0  
V
DD  
001aai456  
Fig 19. Device protection diagram  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
26 of 48  
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
10. Limiting values  
CAUTION  
Static voltages across the liquid crystal display can build up when the LCD supply voltage  
(VLCD) is on while the IC supply voltage (VDD) is off, or vice versa. This may cause unwanted  
display artifacts. To avoid such artifacts, VLCD and VDD must be applied or removed together.  
Table 18. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
Max  
7.0  
7.0  
7.0  
Unit  
V
supply voltage  
LCD supply voltage  
input voltage  
[1]  
[1]  
VLCD  
VI  
V
on each of the pins SCL,  
SDA, A0 to A2, OSC, CLK,  
SYNC and SA0  
V
VO  
output voltage  
on each of the pins S0 to S23  
and BP0 to BP3  
0.5  
7.0  
V
II  
input current  
output current  
supply current  
20  
25  
50  
50  
+20  
+25  
+50  
+50  
mA  
mA  
mA  
mA  
IO  
IDD  
ISS  
ground supply  
current  
IDD(LCD)  
Ptot  
LCD supply current  
50  
+50  
400  
mA  
total power  
dissipation  
per package  
-
mW  
Po  
output power  
-
100  
mW  
[2]  
Tstg  
storage  
65  
+150  
°C  
temperature  
[3]  
[4]  
[5]  
Vesd  
electrostatic  
discharge voltage  
HBM  
MM  
-
-
-
±2000  
±200  
100  
V
V
Ilu  
latch-up current  
mA  
[1] Values with respect to VDD  
.
[2] According to the NXP store and transport conditions (document SNW-SQ-623) the devices have to be  
stored at a temperature of +5 °C to +45 °C and a humidity of 25 % to 75 %.  
[3] Pass level; Human Body Model (HBM) according to JESD22-A114.  
[4] Pass level; Machine Model (MM), according to JESD22-A115.  
[5] Pass level; latch-up testing, according to JESD78.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
27 of 48  
 
 
 
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
11. Static characteristics  
Table 19. Static characteristics  
VSS = 0 V; VDD = 2.5 V to 6.0 V; VLCD = VDD 2.5 V to VDD 6.0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
Supplies  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
2.5  
-
6.0  
V
VLCD  
LCD supply voltage  
supply current:  
V
DD 6.0  
-
V
DD 2.5  
V
[1]  
[1]  
IDD  
fclk = 200 kHz  
VDD = 3.5 V;  
-
30  
15  
90  
40  
µA  
µA  
IDD(lp)  
low-power mode supply current  
-
V
LCD = 0 V;  
f
clk = 35 kHz;  
A0 to A2 tied to  
VSS  
Logic  
Vi  
input voltage  
V
SS 0.5  
-
-
-
-
VDD + 0.5  
0.3VDD  
VDD  
V
VIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level output current  
VSS  
V
VIH  
IOL  
0.7VDD  
1  
V
on pins CLK and  
SYNC;  
-
mA  
V
V
OL = 1.0 V;  
DD = 5.0 V  
IL  
leakage current  
on pins SA0, CLK,  
OSC, A0 to A2;  
VI = VDD or VSS  
1  
-
+1  
µA  
IOH(CLK)  
Ipd  
HIGH-level output current on pin  
CLK  
VOH = 4.0 V;  
-
-
+1  
mA  
V
DD = 5.0 V  
pull-down current  
on pins OSC and  
A0 to A2;  
15  
50  
150  
µA  
VI = 1.0 V;  
V
DD = 5.0 V  
RPU  
VPOR  
CI  
pull-up resistance  
power-on reset voltage  
input capacitance  
on pin SYNC  
15  
-
25  
1.3  
-
60  
2
kΩ  
V
[2]  
[3]  
-
7
pF  
I2C-bus; pins SDA and SCL  
Vi  
input voltage  
VSS 0.5  
-
6
V
VIL  
VIH  
IL  
LOW-level input voltage  
HIGH-level input voltage  
leakage current  
VSS  
0.7VDD  
1  
-
0.3VDD  
V
-
6
V
VI = VDD or VSS  
VOL = 0.4 V;  
0
-
+1  
-
µA  
mA  
IOL  
LOW-level output current  
3  
V
DD = 5.0 V  
[3]  
CI  
input capacitance  
spike pulse width  
-
-
-
-
7
pF  
ns  
tw(spike)  
on bus  
100  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
28 of 48  
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 19. Static characteristics …continued  
VSS = 0 V; VDD = 2.5 V to 6.0 V; VLCD = VDD 2.5 V to VDD 6.0 V; Tamb = 40 °C to +85 °C; unless otherwise specified.  
Symbol  
LCD outputs  
VBP  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
voltage on pin BP  
voltage on pin S  
output impedance  
BP0 to BP3;  
-
-
-
-
±20  
±20  
1
-
mV  
mV  
kΩ  
kΩ  
C
bpl = 35 nF  
S0 to S23;  
sgm = 5 nF  
on pin BP0 to BP3;  
LCD = VDD 5 V  
on pin S0 to S23;  
LCD = VDD 5 V  
VS  
Zo  
-
C
[4]  
[4]  
5
7
V
3
V
[1] Outputs open; inputs at VSS or VDD; external clock with 50 % duty factor; I2C-bus inactive.  
[2] Resets all logic when VDD < VPOR  
.
[3] Periodically sampled, not 100 % tested.  
[4] Outputs measured one at a time.  
11.1 Typical supply current characteristics  
mgg397  
mgg398  
40  
24  
I
DD  
I
(µA)  
DD  
(µA)  
40 °C  
+85 °C  
40 °C  
+85 °C  
30  
16  
20  
8
0
10  
0
0
2
4
6
8
0
2
4
6
8
V
(V)  
V
(V)  
DD  
DD  
VLCD = 0 V; fclk(ext) = 200 kHz.  
VLCD = 0 V; fclk(ext) = 35 kHz.  
Fig 20. Normal mode  
Fig 21. Low power mode  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
29 of 48  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
11.2 Typical LCD output characteristics  
mgg400  
mgg399  
6
4
12  
R
BP  
R
S
(k)  
(k)  
8
40 °C  
2
0
4
0
+25 °C  
+85 °C  
0
2
4
6
8
0
2
4
6
8
V
(V)  
V
(V)  
DD  
DD  
VDD = 5 V; Tamb = 40 °C to +85 °C.  
VDD = 5 V.  
Fig 22. Backplane output impedance BP0 to BP3 (RBP  
)
Fig 23. Segment output impedance S0 to S23 (RS)  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
30 of 48  
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
12. Dynamic characteristics  
Table 20. Dynamic characteristics  
VSS = 0 V; VDD = 2.5 V to 6.0 V; VLCD = VDD 2.5 V to VDD 6.0 V; Tamb = 40 °C to +85 °C; unless otherwise specified. [1]  
Symbol  
Clock  
fclk  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[2]  
clock frequency  
normal mode;  
125  
21  
200  
31  
315  
48  
kHz  
kHz  
V
DD = 5 V  
power saving mode;  
DD = 3.5 V  
V
tclk(H)  
tclk(L)  
HIGH-level clock time  
LOW-level clock time  
1
1
-
-
-
-
-
-
-
µs  
µs  
ns  
µs  
µs  
-
tPD(SYNC_N) SYNC propagation delay  
400  
-
tSYNC_NL  
tPD(drv)  
SYNC LOW time  
1
-
driver propagation delay  
with test loads;  
LCD = VDD 5 V  
30  
V
I2C-bus  
tBUF  
bus free time between a STOP and  
START condition  
4.7  
-
-
µs  
tHD;STA  
tLOW  
hold time (repeated) START condition  
low period of the SCL clock  
4.0  
4.7  
4.0  
4.7  
-
-
-
-
-
-
-
-
µs  
µs  
µs  
µs  
tHIGH  
high period of the SCL clock  
tSU;STA  
set-up time for a repeated START  
condition  
tHD;DAT  
tSU;DAT  
tr  
data hold time  
0
-
-
-
-
-
-
ns  
ns  
µs  
ns  
µs  
data set-up time  
250  
-
rise time of both SDA and SCL signals  
fall time of both SDA and SCL signals  
set-up time for STOP condition  
-
1.0  
300  
-
tf  
-
tSU;STO  
4.7  
[1] All timing values referred to VIH and VIL levels with an input voltage swing of VSS to VDD  
[2] At fclk < 125 kHz, I2C-bus maximum transmission speed is derated.  
.
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
31 of 48  
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1
f
clk  
t
t
clk(H)  
clk(L)  
0.7V  
DD  
CLK  
0.3V  
DD  
0.7V  
DD  
SYNC  
0.3V  
DD  
t
PD(SYNC_N)  
t
SYNC_NL  
0.5 V  
(V  
BP0 to BP3  
S0 to S23  
= 5 V)  
DD  
0.5 V  
mgg391  
t
PD(drv)  
Fig 24. Driver timing waveforms  
SDA  
t
t
t
f
BUF  
LOW  
SCL  
SDA  
t
HD;STA  
t
t
t
SU;DAT  
r
HD;DAT  
t
HIGH  
t
SU;STA  
t
SU;STO  
mga728  
Fig 25. I2C-bus timing waveforms  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
32 of 48  
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
13. Application information  
13.1 Cascaded operation  
Large display configurations of up to sixteen PCF8566s can be recognized on the same  
I2C-bus by using the 3-bit hardware subaddress (A0, A1 and A2) and the programmable  
I2C-bus slave address (SA0).  
Table 21. Addressing cascaded PCF8566  
Cluster  
Bit SA0  
Pin A2  
Pin A1  
Pin A0  
Device  
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
2
1
8
9
10  
11  
12  
13  
14  
15  
Cascaded PCF8566s are synchronized. They can share the backplane signals from one  
of the devices in the cascade. Such an arrangement is cost-effective in large LCD  
applications since the backplane outputs of only one device need to be through-plated to  
the backplane electrodes of the display. The other PCF8566s of the cascade contribute  
additional segment outputs but their backplane outputs are left open-circuit (see  
Figure 26).  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
33 of 48  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
V
DD  
V
LCD  
5
12  
SDA  
SCL  
1
2
24 segment drives  
17 to 40  
LCD PANEL  
SYNC  
CLK  
PCF8566  
3
4
6
(up to 1536  
elements)  
13 to 16  
OSC  
BP0 to BP3  
(open-circuit)  
7
8
9
10 11  
A0 A1 A2 SA0 V  
SS  
V
LCD  
V
DD  
t
rise  
R ≤  
2 C  
V
V
LCD  
bus  
DD  
5
12  
SDA  
SCL  
HOST  
MICRO-  
1
24 segment drives  
17 to 40  
2
3
4
6
PROCESSOR/  
MICRO-  
CONTROLLER  
SYNC  
CLK  
PCF8566  
4 backplanes  
BP0 to BP3  
13 to 16  
OSC  
7
8
9
10 11  
mgg384  
A0 A1 A2 SA0  
V
SS  
V
SS  
Fig 26. Cascaded PCF8566 configuration  
The SYNC line is provided to maintain the correct synchronization between all cascaded  
PCF8566s. This synchronization is guaranteed after the power-on reset. The only time  
that SYNC is likely to be needed is if synchronization is accidentally lost (e.g. by noise in  
adverse electrical environments or by defining a multiplex mode when PCF8566s with  
differing SA0 levels are cascaded).  
SYNC is organized as an input/output pin; the output selection being realized as an  
open-drain driver with an internal pull-up resistor. A PCF8566 asserts the SYNC line at  
the onset of its last active backplane signal and monitors the SYNC line at all other times.  
If synchronization in the cascade is lost, it is restored by the first PCF8566 to assert  
SYNC. The timing relationship between the backplane waveforms and the SYNC signal  
for the various drive modes of the PCF8566 are shown in Figure 27.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
34 of 48  
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1
T
=
fr  
f
fr  
BP0  
SYNC  
(a) static drive mode.  
BP0  
(1/2 bias)  
BP0  
(1/3 bias)  
SYNC  
(b) 1:2 multiplex drive mode.  
BP0  
(1/3 bias)  
SYNC  
(c) 1:3 multiplex drive mode.  
BP0  
(1/3 bias)  
SYNC  
(d) 1:4 multiplex drive mode.  
mgl755  
Fig 27. Synchronization of the cascade for the various PCF8566 drive modes  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
35 of 48  
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Single plane wiring of packaged PCF8566s is illustrated in Figure 28.  
SDA  
SCL  
SYNC  
CLK  
V
DD  
V
SS  
V
LCD  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
1
2
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
SDA  
SCL  
S23  
S22  
S21  
S20  
S19  
S18  
S17  
S16  
S15  
S14  
S13  
S12  
S11  
S10  
S9  
S47  
S46  
S45  
S44  
S43  
S42  
S41  
S40  
S39  
S38  
S37  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
S29  
S28  
3
3
SYNC  
CLK  
4
4
V
5
5
DD  
6
6
OSC  
A0  
7
7
8
8
A1  
9
9
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
SA0  
V
SS  
V
LCD  
BP0  
BP2  
BP1  
BP3  
S0  
BP0  
BP2  
BP1  
BP3  
S24  
S25  
S26  
S27  
PCF8566  
PCF8566  
open-circuit  
S8  
S7  
S1  
S6  
S2  
S5  
S3  
S4  
S0  
S23  
S24  
S47  
SEGMENTS  
mgg386  
BACKPLANES  
Fig 28. Single plane wiring of packaged PCF8566s  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
36 of 48  
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
14. Package outline  
DIP40: plastic dual in-line package; 40 leads (600 mil)  
SOT129-1  
D
M
E
A
2
A
L
A
1
c
e
w M  
Z
b
1
(e )  
1
b
M
H
40  
21  
pin 1 index  
E
1
20  
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
(1)  
(1)  
Z
1
2
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
1
1
E
H
max.  
min.  
max.  
max.  
1.70  
1.14  
0.53  
0.38  
0.36  
0.23  
52.5  
51.5  
14.1  
13.7  
3.60  
3.05  
15.80  
15.24  
17.42  
15.90  
4.7  
0.51  
4
2.54  
0.1  
15.24  
0.6  
0.254  
0.01  
2.25  
0.067  
0.045  
0.021  
0.015  
0.014  
0.009  
2.067  
2.028  
0.56  
0.54  
0.14  
0.12  
0.62  
0.60  
0.69  
0.63  
inches  
0.19  
0.02  
0.16  
0.089  
Note  
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-13  
SOT129-1  
051G08  
MO-015  
SC-511-40  
Fig 29. Package outline SOT129-1 (DIP40)  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
37 of 48  
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
VSO40: plastic very small outline package; 40 leads  
SOT158-1  
D
E
A
X
c
y
H
v
M
A
E
Z
40  
21  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
detail X  
1
20  
w
M
b
p
e
0
5
scale  
10 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(2)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
0.3  
0.1  
2.45  
2.25  
0.42  
0.30  
0.22  
0.14  
15.6  
15.2  
7.6  
7.5  
12.3  
11.8  
1.7  
1.5  
1.15  
1.05  
0.6  
0.3  
2.7  
0.25  
0.01  
0.762  
0.03  
2.25  
0.089  
0.2  
0.1  
0.1  
7o  
0o  
0.012 0.096  
0.004 0.089  
0.017 0.0087 0.61  
0.012 0.0055 0.60  
0.30  
0.29  
0.48  
0.46  
0.067 0.045  
0.059 0.041  
0.024  
0.012  
inches  
0.008 0.004 0.004  
0.11  
Notes  
1. Plastic or metal protrusions of 0.4 mm (0.016 inch) maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
95-01-24  
03-02-19  
SOT158-1  
Fig 30. Package outline SOT158-1 (VSO40)  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
38 of 48  
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
15. Bare die outline  
Wire bond die; 40 bonding pads; 2.5 x 2.91 x 0.381 mm  
PCF8566U  
D
e
A
P C 8 5 6 6 - 1  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
C1  
15  
e
26  
14  
13  
12  
F
27  
28  
29  
30  
31  
32  
33  
34  
11  
10  
9
x
E
0
0
y
8
C2  
P
P
3
4
7
35  
6
P
P
2
36  
37  
38  
39  
40  
1
2
3
4
5
1
X
detail X  
0
0.5  
scale  
1 mm  
DIMENSIONS (mm are the original dimensions)  
(1)  
(2)  
(1)  
(2)  
UNIT  
A
D
E
e
P
P
P
P
4
1
2
3
max 0.406  
0.548  
mm  
nom 0.381 2.5  
min 0.356  
2.91 0.200 0.12 0.106 0.12 0.106  
0.018  
Notes  
1. Pad size  
2. Passivation opening  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
08-06-19  
08-09-03  
PCF8566U  
Fig 31. Bare die outline PCF8566U  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
39 of 48  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 22. Bonding pad description  
All x/y coordinates represent the position of the center of each pad with respect to the center  
(x/y = 0) of the chip (see Figure 31).  
Symbol  
SDA  
SCL  
SYNC  
CLK  
VDD  
OSC  
A0  
Pad  
1
X (µm)  
200  
Y (µm)  
1235  
1235  
1235  
1235  
1235  
1235  
825  
625  
425  
225  
25  
Description  
I2C-bus data input / output  
I2C-bus clock input / output  
cascade synchronization input / output  
external clock input / output  
supply voltage  
2
400  
3
604  
4
856  
5
1062  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1074  
874  
6
oscillator select  
I2C-bus subaddress input  
7
A1  
8
A2  
9
SA0  
VSS  
VLCD  
BP0  
BP2  
BP1  
BP3  
S0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
I2C-bus slave address bit 0 input  
logic ground  
347  
LCD supply voltage  
547  
LCD backplane output  
747  
947  
1235  
1235  
1235  
1235  
1235  
1235  
1235  
1235  
1235  
1235  
765  
LCD segment output  
S1  
674  
S2  
474  
S3  
274  
S4  
274  
474  
674  
874  
1074  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1080  
1056  
830  
S5  
S6  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
565  
365  
165  
35  
235  
435  
635  
835  
1035  
1235  
1235  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
40 of 48  
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 22. Bonding pad description …continued  
All x/y coordinates represent the position of the center of each pad with respect to the center  
(x/y = 0) of the chip (see Figure 31).  
Symbol  
S21  
Pad  
38  
X (µm)  
630  
430  
230  
Y (µm)  
1235  
1235  
1235  
Description  
S22  
39  
S23  
40  
REF  
C1  
REF  
F
REF  
001aai300  
C2  
Fig 32. Alignment marks  
Table 23. Alignment marks  
Symbol  
X (µm)  
1100  
325  
Y (µm)  
C1  
C2  
F
1090  
625  
700  
790  
16. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC 61340-5 or equivalent  
standards.  
17. Packing information  
Tray information for the PCF8566U is shown in Figure 33, Figure 35 and Table 24.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
41 of 48  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
G
A
C
H
D
B
F
E
001aai237  
Fig 33. Tray details  
001aaj619  
Fig 34. Tray alignment  
Table 24. Tray dimensions  
Symbol  
Description  
Value  
A
B
C
D
pocket pitch; x direction  
pocket pitch; y direction  
pocket width; x direction  
pocket width; y direction  
4.43 mm  
4.43 mm  
3.04 mm  
3.04 mm  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
42 of 48  
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 24. Tray dimensions …continued  
Symbol  
Description  
Value  
E
F
G
H
x
tray width; x direction  
tray width; y direction  
50.8 mm  
50.8 mm  
cut corner to pocket 1,1 center  
cut corner to pocket 1,1 center  
number of pockets; x direction  
number of pockets; y direction  
5.47 mm  
5.47 mm  
10  
y
10  
18. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
18.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
18.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
43 of 48  
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Lead-free soldering versus SnPb soldering  
18.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
18.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 35) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 25 and 26  
Table 25. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 26. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 35.  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
44 of 48  
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 35. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
19. Abbreviations  
Table 27. Abbreviations  
Acronym  
CMOS  
DC  
Description  
Complementary Metal Oxide Semiconductor  
Direct Current  
HBM  
I2C  
Human Body Model  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
LCD  
MM  
Liquid Crystal Display  
Machine Model  
MSL  
POR  
RC  
Moisture Sensitivity Level  
Power-On Reset  
Resistance and Capacitance  
Random Access Memory  
Root Mean Square  
RAM  
RMS  
SMD  
TTL  
Surface Mount Device  
Transistor-Transistor Logic  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
45 of 48  
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
20. Revision history  
Table 28. Revision history  
Document ID  
PCF8566_7  
Release date  
20090225  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF8566_6  
Modifications:  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
Added U and TS type  
Added tray information  
Changed values in limiting values table from relative to absolute values  
Changed letter symbols to NXP approved symbols  
Rewritten chapter 7.3  
PCF8566_6  
PCF8566_5  
PCF8566_4  
PCF8566_3  
19980504  
19970402  
19961203  
19961029  
Product specification  
Product specification  
Product specification  
Product specification  
-
-
-
-
PCF8566_5  
PCF8566_4  
PCF8566_3  
PCF8566_2  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
46 of 48  
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
21. Legal information  
21.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
transportation conditions. If there are data sheet limits not guaranteed, these  
will be separately indicated in the data sheet. There are no post-packing tests  
performed on individual die or wafers.  
21.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
NXP Semiconductors has no control of third party procedures in the sawing,  
handling, packing or assembly of the die. Accordingly, NXP Semiconductors  
assumes no liability for device functionality or performance of the die or  
systems after third party sawing, handling, packing or assembly of the die. It  
is the responsibility of the customer to test and qualify their application in  
which the die is used.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
All die sales are conditioned upon and subject to the customer entering into a  
written die sale agreement with NXP Semiconductors through its legal  
department.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
21.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
21.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Bare die — All die are tested on compliance with their related technical  
specifications as stated in this data sheet up to the point of wafer sawing and  
are handled in accordance with the NXP Semiconductors storage and  
I2C-bus — logo is a trademark of NXP B.V.  
22. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF8566_7  
© NXP B.V. 2009. All rights reserved.  
Product data sheet  
Rev. 07 — 25 February 2009  
47 of 48  
 
 
 
 
 
 
PCF8566  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
23. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
8.4  
9
Display controller . . . . . . . . . . . . . . . . . . . . . . 26  
Internal circuitry . . . . . . . . . . . . . . . . . . . . . . . 26  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 27  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
10  
11  
11.1  
11.2  
Static characteristics . . . . . . . . . . . . . . . . . . . 28  
Typical supply current characteristics. . . . . . . 29  
Typical LCD output characteristics. . . . . . . . . 30  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
12  
Dynamic characteristics. . . . . . . . . . . . . . . . . 31  
Application information . . . . . . . . . . . . . . . . . 33  
Cascaded operation. . . . . . . . . . . . . . . . . . . . 33  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 37  
Bare die outline . . . . . . . . . . . . . . . . . . . . . . . . 39  
Handling information . . . . . . . . . . . . . . . . . . . 41  
Packing information . . . . . . . . . . . . . . . . . . . . 41  
13  
13.1  
14  
7
7.1  
7.2  
7.3  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . 7  
LCD bias generator. . . . . . . . . . . . . . . . . . . . . . 7  
LCD voltage selector . . . . . . . . . . . . . . . . . . . . 7  
LCD drive mode waveforms . . . . . . . . . . . . . . 10  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . 10  
1:2 Multiplex drive mode. . . . . . . . . . . . . . . . . 11  
1:3 Multiplex drive mode. . . . . . . . . . . . . . . . . 13  
1:4 multiplex drive mode. . . . . . . . . . . . . . . . . 14  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Internal clock. . . . . . . . . . . . . . . . . . . . . . . . . . 15  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 16  
Shift register . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 16  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 16  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Sub-address counter . . . . . . . . . . . . . . . . . . . 19  
Output bank selector. . . . . . . . . . . . . . . . . . . . 19  
Input bank selector . . . . . . . . . . . . . . . . . . . . . 19  
Blinker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
15  
16  
7.4  
17  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.5  
7.5.1  
7.5.2  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.15  
7.16  
18  
Soldering of SMD packages . . . . . . . . . . . . . . 43  
Introduction to soldering. . . . . . . . . . . . . . . . . 43  
Wave and reflow soldering . . . . . . . . . . . . . . . 43  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 44  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 44  
18.1  
18.2  
18.3  
18.4  
19  
20  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 46  
21  
Legal information . . . . . . . . . . . . . . . . . . . . . . 47  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 47  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
21.1  
21.2  
21.3  
21.4  
22  
23  
Contact information . . . . . . . . . . . . . . . . . . . . 47  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
8
8.1  
Basic architecture . . . . . . . . . . . . . . . . . . . . . . 20  
Characteristics of the I2C-bus. . . . . . . . . . . . . 20  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
START and STOP conditions . . . . . . . . . . . . . 21  
System configuration . . . . . . . . . . . . . . . . . . . 21  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 21  
PCF8566 I2C-bus controller . . . . . . . . . . . . . . 22  
Input filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 22  
Command decoder . . . . . . . . . . . . . . . . . . . . . 24  
Mode set command . . . . . . . . . . . . . . . . . . . . 24  
Load data pointer command. . . . . . . . . . . . . . 25  
Device select command . . . . . . . . . . . . . . . . . 25  
Bank select command . . . . . . . . . . . . . . . . . . 25  
Blink command . . . . . . . . . . . . . . . . . . . . . . . . 26  
8.1.1  
8.1.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.5  
8.2  
8.3  
8.3.1  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 25 February 2009  
Document identifier: PCF8566_7  
 

相关型号:

PCF8566T-T

暂无描述
NXP

PCF8566T/1

IC,LCD DISPLAY DRIVER,24-SEG,4-BP,CMOS,SOP,40PIN,PLASTIC
NXP

PCF8566T/1,112

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566T/1,118

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566T/S420/1,11

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566T/S480/1,11

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566TD

LCD Display Driver
ETC

PCF8566TD-T

LCD Display Driver
ETC

PCF8566TS

Universal LCD driver for low multiplex rates
NXP

PCF8566TS/1

IC,LCD DISPLAY DRIVER,24-SEG,4-BP,CMOS,SOP,40PIN,PLASTIC
NXP

PCF8566TS/1,112

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP

PCF8566TS/1,118

PCF8566 - Universal LCD driver for low multiplex rates VSOP 40-Pin
NXP