PCF8570T [NXP]

256 x 8-bit static low-voltage RAM with I2C-bus interface; 256 ×8位的静态低电压内存与I 2 C总线接口
PCF8570T
型号: PCF8570T
厂家: NXP    NXP
描述:

256 x 8-bit static low-voltage RAM with I2C-bus interface
256 ×8位的静态低电压内存与I 2 C总线接口

内存集成电路 静态存储器 光电二极管 时钟
文件: 总20页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCF8570  
256 × 8-bit static low-voltage RAM  
with I2C-bus interface  
1999 Jan 06  
Product specification  
Supersedes data of 1997 Sep 02  
File under Integrated Circuits, IC12  
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
CONTENTS  
1
2
3
4
5
6
7
8
FEATURES  
APPLICATIONS  
GENERAL DESCRIPTION  
QUICK REFERENCE DATA  
ORDERING INFORMATION  
BLOCK DIAGRAM  
PINNING  
CHARACTERISTICS OF THE I2C-BUS  
8.1  
8.2  
8.3  
8.4  
8.5  
Bit transfer  
Start and stop conditions  
System configuration  
Acknowledge  
I2C-bus protocol  
9
LIMITING VALUES  
10  
11  
12  
13  
HANDLING  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
APPLICATION INFORMATION  
13.1  
13.2  
13.3  
Application example  
Slave address  
Power-saving mode  
14  
15  
PACKAGE OUTLINES  
SOLDERING  
15.1  
Introduction  
15.2  
Through-hole mount packages  
Soldering by dipping or by solder wave  
Manual soldering  
Surface mount packages  
Reflow soldering  
Wave soldering  
Manual soldering  
Suitability of IC packages for wave, reflow and  
dipping soldering methods  
15.2.1  
15.2.2  
15.3  
15.3.1  
15.3.2  
15.3.3  
15.4  
16  
17  
18  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
1999 Jan 06  
2
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
1
FEATURES  
Operating supply voltage 2.5 to 6.0 V  
Low data retention voltage; minimum 1.0 V  
Low standby current; maximum 15 µA  
Power-saving mode; typical 50 nA  
Serial input/output bus (I2C-bus)  
3
GENERAL DESCRIPTION  
Address by 3 hardware address pins  
Automatic word address incrementing  
Available in DIP8 and SO8 packages.  
The PCF8570 is a low power static CMOS RAM,  
organized as 256 words by 8-bits.  
Addresses and data are transferred serially via a two-line  
bidirectional bus (I2C-bus). The built-in word address  
register is incremented automatically after each written or  
read data byte. Three address pins, A0, A1 and A2 are  
used to define the hardware address, allowing the use of  
up to 8 devices connected to the bus without additional  
hardware.  
2
APPLICATIONS  
Telephony:  
– RAM expansion for stored numbers in repertory  
dialling (e.g. PCD33xxA applications)  
General purpose RAM for applications requiring  
extremely low current and low-voltage RAM retention,  
such as battery or capacitor-backed.  
Radio, television and video cassette recorder:  
– channel presets  
General purpose:  
– RAM expansion for the microcontroller families  
PCD33xxA, PCF84CxxxA, P80CLxxx and most other  
microcontrollers.  
4
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. MAX. UNIT  
VDD  
IDD  
supply voltage  
2.5  
6.0  
15  
supply current (standby)  
fSCL = 0 Hz  
Tamb = 25 °C  
µA  
nA  
°C  
IDDR  
Tamb  
Tstg  
supply current (power-saving mode)  
operating ambient temperature  
storage temperature  
400  
+85  
40  
65  
+150 °C  
5
ORDERING INFORMATION  
PACKAGE  
TYPE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
PCF8570P  
PCF8570T  
DIP8  
SO8  
plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
plastic small outline package; 8 leads; body width 7.5 mm  
SOT176-1  
1999 Jan 06  
3
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
6
BLOCK DIAGRAM  
WORD  
ADDRESS  
REGISTER  
MEMORY  
CELL  
ARRAY  
ROW  
SELECT  
PCF8570  
7
1
2
3
A0  
A1  
A2  
6
5
2
SCL  
SDA  
INPUT  
FILTER  
COLUMN  
SELECT  
I C BUS  
MULTIPLEXER  
CONTROL  
8
SHIFT  
REGISTER  
R/W  
CONTROL  
POWER  
ON  
8
V
DD  
RESET  
4
7
V
SS  
TEST  
MLB928  
Fig.1 Block diagram.  
7
PINNING  
SYMBOL  
A0  
PIN  
DESCRIPTION  
1
2
3
4
5
6
7
hardware address input 0  
hardware address input 1  
hardware address input 2  
negative supply  
A1  
page  
V
A2  
A0  
A1  
A2  
1
2
3
4
8
7
6
5
DD  
VSS  
SDA  
SCL  
TEST  
TEST  
PCF8570  
serial data input/output  
serial clock input  
SCL  
SDA  
V
SS  
Input for power-saving mode (see section  
MLB929  
“Power-saving mode”). Also used as a test output  
during manufacture. TEST should be tied to VSS  
during normal operation.  
Fig.2 Pin configuration.  
VDD  
8
positive supply  
1999 Jan 06  
4
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
CHARACTERISTICS OF THE I2C-BUS  
8.1  
Bit transfer  
8
The I2C-bus is for bidirectional, two-line communication  
between different ICs or modules. The two lines are a  
serial data line (SDA) and a serial clock line (SCL). Both  
lines must be connected to a positive supply via a pull-up  
resistor. Data transfer may be initiated only when the bus  
is not busy.  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable during the  
HIGH period of the clock pulse as changes in the data line  
at this time will be interpreted as a control signal.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBA607  
Fig.3 Bit transfer.  
8.2  
Start and stop conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the  
clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is  
defined as the stop condition (P).  
SDA  
SCL  
SDA  
SCL  
S
P
STOP condition  
START condition  
MBA608  
Fig.4 Definition of start and stop conditions.  
1999 Jan 06  
5
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
8.3  
System configuration  
A device generating a message is a ‘transmitter’, a device receiving a message is the ‘receiver’. The device that controls  
the message is the ‘master’ and the devices which are controlled by the master are the ‘slaves’.  
SDA  
SCL  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
TRANSMITTER /  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
MBA605  
Fig.5 System configuration.  
The device that acknowledges must pull down the SDA  
line during the acknowledge clock pulse, so that the SDA  
line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times  
must be taken into consideration). A master receiver must  
signal an end of data to the transmitter by not generating  
an acknowledge on the last byte that has been clocked out  
of the slave. In this event the transmitter must leave the  
data line HIGH to enable the master to generate a stop  
condition.  
8.4  
Acknowledge  
The number of data bytes transferred between the start  
and stop conditions from transmitter to receiver is  
unlimited. Each byte of eight bits is followed by an  
acknowledge bit. The acknowledge bit is a HIGH level  
signal put on the bus by the transmitter during which time  
the master generates an extra acknowledge related clock  
pulse. A slave receiver which is addressed must generate  
an acknowledge after the reception of each byte. Also a  
master receiver must generate an acknowledge after the  
reception of each byte that has been clocked out of the  
slave transmitter.  
clock pulse for  
acknowledgement  
START  
condition  
SCL FROM  
MASTER  
2
9
1
8
DATA OUTPUT  
BY TRANSMITTER  
S
DATA OUTPUT  
BY RECEIVER  
MBA606 - 1  
Fig.6 Acknowledgement on the I2C-bus.  
1999 Jan 06  
6
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
8.5  
I2C-bus protocol  
Before any data is transmitted on the I2C-bus, the device which should respond is addressed first. The addressing is  
always carried out with the first byte transmitted after the start procedure. The I2C-bus configuration for the different  
PCF8570 WRITE and READ cycles is shown in Figs 7, 8 and 9.  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from slave  
S
SLAVE ADDRESS  
0
A
WORD ADDRESS  
A
DATA  
A
P
R/W  
n bytes  
auto increment  
memory word address  
MBD822  
Fig.7 Master transmits to slave receiver (WRITE) mode.  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from master  
S
SLAVE ADDRESS  
0
A
WORD ADDRESS  
A
S
SLAVE ADDRESS  
1
A
DATA  
A
n bytes  
at this moment master -  
transmitter becomes  
master - receiver and  
PCF8570 slave -  
R/W  
R/W  
auto increment  
memory word address  
receiver becomes  
slave - transmitter  
no acknowledgement  
from master  
DATA  
1
P
last byte  
auto increment  
memory word address  
MLB930  
Fig.8 Master reads after setting word address (WRITE word address; READ data).  
1999 Jan 06  
7
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
acknowledgement  
from slave  
acknowledgement  
from slave  
acknowledgement  
from slave  
a
1
A
A
DATA  
1
P
S
SLAVE ADDRESS  
DATA  
R/W  
n bytes  
last bytes  
auto increment  
word address  
auto increment  
word address  
MBD824  
Fig.9 Master reads slave immediately after first byte (READ mode).  
9
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
MIN.  
0.8  
MAX.  
UNIT  
VDD  
VI  
supply voltage (pin 8)  
input voltage (any input)  
DC input current  
+8.0  
VDD + 0.8  
±10  
V
V
0.8  
II  
mA  
mA  
mA  
mA  
mW  
mW  
°C  
IO  
DC output current  
±10  
IDD  
ISS  
Ptot  
PO  
Tamb  
Tstg  
positive supply current  
negative supply current  
±50  
±50  
total power dissipation per package  
power dissipation per output  
operating ambient temperature  
storage temperature  
300  
50  
40  
65  
+85  
+150  
°C  
10 HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is  
desirable to take precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12 under  
“Handling MOS Devices”.  
1999 Jan 06  
8
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
11 DC CHARACTERISTICS  
VDD = 2.5 to 6.0 V; VSS = 0 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL PARAMETER CONDITIONS MIN.  
TYP.  
MAX.  
UNIT  
Supply  
VDD  
IDD  
supply voltage  
2.5  
6.0  
V
supply current  
standby mode  
VI = VDD or VSS  
SCL = 0 Hz;  
Tamb = 25 to +70 °C  
;
5
µA  
f
operating mode  
VI = VDD or VSS  
fSCL = 100 Hz  
;
200  
2.3  
µA  
VPOR  
Power-on reset voltage  
note 1  
1.5  
1.9  
V
Inputs, input/output SDA  
VIL  
VIH  
IOL  
ILI  
LOW level input voltage  
note 2  
0.8  
0.7VDD  
3
0.3VDD  
V
HIGH level input voltage  
LOW level output current  
input leakage current  
note 2  
VDD + 0.8 V  
VOL = 0.4 V  
VI = VDD or VSS  
mA  
1  
+1  
µA  
nA  
pF  
Inputs A0, A1, A2 and TEST  
ILI input leakage current  
Inputs SCL and SDA  
VI = VDD or VSS  
250  
+250  
7
Ci  
input capacitance  
VI = VSS  
Low VDD data retention  
VDDR  
IDDR  
supply voltage for data retention  
supply current  
1
6
5
2
V
VDDR = 1 V  
µA  
µA  
VDDR = 1 V;  
Tamb = 25 to +70 °C  
Power-saving mode (see Figs 13 and 14)  
IDDR  
tHD2  
supply current  
recovery time  
TEST = VDD; Tamb = 25 °C  
50  
50  
400  
nA  
µs  
Notes  
1. The Power-on reset circuit resets the I2C-bus logic when VDD < VPOR. The status of the device after a Power-on reset  
condition can be tested by sending the slave address and testing the acknowledge bit.  
2. If the input voltages are a diode voltage above or below the supply voltage VDD or VSS an input current will flow; this  
current must not exceed ±0.5 mA.  
1999 Jan 06  
9
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
12 AC CHARACTERISTICS  
All timing values are valid within the operating supply voltage and ambient temperature range and reference to VIL and  
IH with an input voltage swing of VSS to VDD  
V
.
SYMBOL PARAMETER  
I2C-bus timing (see Fig.10; note 1)  
MIN.  
TYP.  
MAX.  
UNIT  
fSCL  
SCL clock frequency  
100  
kHz  
tSP  
tolerable spike width on bus  
bus free time  
100  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
tBUF  
4.7  
4.7  
4.0  
4.7  
4.0  
tSU;STA  
tHD;STA  
tLOW  
tHIGH  
tr  
START condition set-up time  
START condition hold time  
SCL LOW time  
SCL HIGH time  
SCL and SDA rise time  
SCL and SDA fall time  
data set-up time  
1.0  
0.3  
tf  
tSU;DAT  
tHD;DAT  
tVD;DAT  
tSU;STO  
250  
0
data hold time  
SCL LOW-to-data out valid  
STOP condition set-up time  
3.4  
4.0  
Note  
1. A detailed description of the I2C-bus specification, with applications, is given in brochure “The I2C-bus and how to  
use it”. This brochure may be ordered using the code 9398 393 40011.  
START  
CONDITION  
(S)  
BIT 7  
MSB  
(A7)  
BIT 6  
(A6)  
BIT 0  
LSB  
(R/W)  
ACKNOWLEDGE  
(A)  
STOP  
CONDITION  
(P)  
PROTOCOL  
t
t
t
HIGH  
SU;STA  
LOW  
1 / f  
SCL  
SCL  
SDA  
t
t
t
f
BUF  
r
t
t
t
t
t
HD;STA  
SU;DAT  
VD;DAT  
SU;STO  
HD;DAT  
MBD820  
Fig.10 I2C-bus timing diagram; rise and fall times refer to VIL and VIH.  
1999 Jan 06  
10  
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
13 APPLICATION INFORMATION  
13.1 Application example  
V
DD  
SDA  
SCL  
MASTER  
TRANSMITTER/  
RECEIVER  
V
DD  
0
SCL  
SDA  
A0  
A1  
A2  
0
0
PCF8570  
'1010'  
V
SS  
TEST  
V
DD  
1
0
0
V
up to 8 PCF8570C  
SCL  
SDA  
A0  
A1  
A2  
DD  
PCF8570  
'1010'  
V
SS  
TEST  
V
DD  
1
1
1
V
V
V
SCL  
SDA  
A0  
A1  
A2  
DD  
DD  
DD  
PCF8570  
V
'1010'  
DD  
V
SS  
TEST  
R
R
R: pull up resistor  
t
r
R =  
C
BUS  
SDA SCL  
MLB931  
2
(I C bus)  
It is recommended that a 4.7 µF/10 V solid aluminium capacitor (SAL) be connected between VDD and VSS  
.
Fig.11 Application diagram.  
1999 Jan 06  
11  
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
13.2 Slave address  
The PCF8570 has a fixed combination 1 0 1 0 as group 1, while group 2 is fully programmable (see Fig.12).  
handbook, halfpage  
1
0
1
0
A2 A1 A0 R/W  
group 2  
group 1  
MLB892  
Fig.12 Slave address.  
13.3 Power-saving mode  
With the condition TEST = VDD or VDDR the PCF8570 goes into the power-saving mode and I2C-bus logic is reset.  
power saving  
mode (1)  
power saving  
mode (2)  
operating mode  
TEST = V  
DDR  
TEST = V  
DD  
V
V
DD  
TEST  
DDR  
0 V  
V
DD  
SCL  
SDA  
V
DDR  
0 V  
(3)  
(3)  
(3)  
(3)  
t
t
t
t
HD2  
SU  
HD1  
SU  
V
DD  
V
DDR  
0 V  
V
DD  
V
DD  
V
DDR  
0 V  
I
DD  
I
DD  
I
DDS  
MLB932  
(1) Power-saving mode without 5 V supply voltage.  
(2) Power-saving mode with 5 V supply voltage.  
(3) tSU and tHD1 4 µs and tHD2 50 µs.  
Fig.13 Timing for power-saving mode.  
12  
1999 Jan 06  
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
5 V  
V
DD  
8
SDA  
SCL  
A2  
A1  
5
6
3
2
V
DDR  
1.2 V  
PCF8570  
(NiCd)  
MICROCONTROLLER  
(1)  
TEST  
A0  
7
1
4
V
MLB933  
SS  
It is recommended that a 4.7 µF/10 V solid aluminium capacitor (SAL) be connected between VDD and VSS  
.
(1) In the operating mode TEST = 0 V; in the power-saving mode TEST = VDDR  
.
Fig.14 Application example for power-saving mode.  
1999 Jan 06  
13  
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
14 PACKAGE OUTLINES  
DIP8: plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
D
M
E
A
2
A
A
1
L
c
w M  
Z
b
1
e
(e )  
1
M
H
b
b
2
8
5
pin 1 index  
E
1
4
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.14  
0.53  
0.38  
1.07  
0.89  
0.36  
0.23  
9.8  
9.2  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
1.15  
0.068 0.021 0.042 0.014  
0.045 0.015 0.035 0.009  
0.39  
0.36  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.045  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-02-04  
SOT97-1  
050G01  
MO-001AN  
1999 Jan 06  
14  
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
SO8: plastic small outline package; 8 leads; body width 7.5 mm  
SOT176-1  
D
E
A
X
c
y
H
v
M
A
E
Z
8
5
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
detail X  
e
w
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
θ
1
2
3
p
E
Z
max.  
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
7.65  
7.45  
7.6  
7.4  
10.65  
10.00  
1.1  
0.45  
1.1  
1.0  
2.0  
1.8  
mm  
2.65  
0.25  
0.01  
1.27  
0.050  
1.45  
0.057  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.30  
0.014 0.009 0.29  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.018 0.039  
0.079  
0.071  
inches 0.10  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-25  
97-05-22  
SOT176-1  
1999 Jan 06  
15  
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
Typical reflow peak temperatures range from  
15 SOLDERING  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
15.1 Introduction  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
15.3.2 WAVE SOLDERING  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mount components are mixed on  
one printed-circuit board. However, wave soldering is not  
always suitable for surface mount ICs, or for printed-circuit  
boards with high population densities. In these situations  
reflow soldering is often used.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
15.2 Through-hole mount packages  
15.2.1 SOLDERING BY DIPPING OR BY SOLDER WAVE  
For packages with leads on two sides and a pitch (e):  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
15.2.2 MANUAL SOLDERING  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
300 and 400 °C, contact may be up to 5 seconds.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
15.3 Surface mount packages  
15.3.1 REFLOW SOLDERING  
15.3.3 MANUAL SOLDERING  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 Jan 06  
16  
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
15.4 Suitability of IC packages for wave, reflow and dipping soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(1) DIPPING  
suitable(2)  
not suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(3)  
MOUNTING  
PACKAGE  
Through-hole mount DBS, DIP, HDIP, SDIP, SIL  
suitable  
Surface mount  
BGA, SQFP  
suitable  
suitable  
suitable  
suitable  
suitable  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(4)(5)  
not recommended(6)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
1999 Jan 06  
17  
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
16 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
17 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
18 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1999 Jan 06  
18  
Philips Semiconductors  
Product specification  
256 × 8-bit static low-voltage RAM with  
I2C-bus interface  
PCF8570  
NOTES  
1999 Jan 06  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Brazil: see South America  
Pakistan: see Singapore  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Portugal: see Spain  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Czech Republic: see Austria  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
Slovakia: see Austria  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 489 4339/4239, Fax. +30 1 481 4240  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1999  
SCA61  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
415106/00/04/pp20  
Date of release: 1999 Jan 06  
Document order number: 9397 750 04971  

相关型号:

ETC

PCF8570T/F5,512

PCF8570 - 256 x 8-bit static low-voltage RAM with I2C-bus interface SOIC 8-Pin
NXP

PCF8570T/F5,518

PCF8570 - 256 x 8-bit static low-voltage RAM with I2C-bus interface SOIC 8-Pin
NXP

PCF8570TD

Serial SRAM
ETC

PCF8570TD-T

Serial SRAM
ETC

PCF8571TD-T

Serial SRAM
ETC

PCF8573

Clock/calendar with Power Fail Detector
NXP

PCF8573P

Clock/calendar with Power Fail Detector
NXP

PCF8573PN

Real-Time Clock
ETC

PCF8573T

Clock/calendar with Power Fail Detector
NXP

PCF8573TD

Real-Time Clock
ETC

PCF8573TD-T

Real-Time Clock
ETC