PCF8576CU/5 [NXP]

Universal LCD driver for low multiplex rates; 低复用率的通用LCD驱动器
PCF8576CU/5
型号: PCF8576CU/5
厂家: NXP    NXP
描述:

Universal LCD driver for low multiplex rates
低复用率的通用LCD驱动器

显示驱动器 驱动程序和接口 接口集成电路 CD
文件: 总44页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCF8576C  
Universal LCD driver for low  
multiplex rates  
1998 Jul 30  
Product specification  
Supersedes data of 1997 Nov 14  
File under Integrated Circuits, IC12  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
CONTENTS  
8
LIMITING VALUES  
HANDLING  
9
1
2
3
4
5
6
FEATURES  
10  
11  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
11.1  
11.2  
Typical supply current characteristics  
Typical characteristics of LC D outputs  
PINNING  
12  
APPLICATION INFORMATION  
Chip-on-glass cascadability in single plane  
BONDING PAD LOCATIONS  
PACKAGE OUTLINES  
FUNCTIONAL DESCRIPTION  
12.1  
13  
6.1  
Power-on reset  
6.2  
6.3  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
6.5  
LCD bias generator  
LCD voltage selector  
LCD drive mode waveforms  
Static drive mode  
1 : 2 multiplex drive mode  
1 : 3 multiplex drive mode  
1 : 4 multiplex drive mode  
Oscillator  
14  
15  
SOLDERING  
15.1  
15.2  
15.3  
15.3.1  
15.3.2  
15.3.3  
15.4  
Introduction  
Reflow soldering  
Wave soldering  
LQFP  
VSO  
6.5.1  
6.5.2  
6.6  
Internal clock  
External clock  
Timing  
Method (LQFP and VSO)  
Repairing soldered joints  
16  
17  
18  
DEFINITIONS  
6.7  
Display latch  
6.8  
Shift register  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
6.9  
Segment outputs  
Backplane outputs  
Display RAM  
6.10  
6.11  
6.12  
6.13  
6.14  
6.15  
6.16  
Data pointer  
Subaddress counter  
Output bank selector  
Input bank selector  
Blinker  
7
CHARACTERISTICS OF THE I2C-BUS  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
Bit transfer (see Fig.12)  
Start and stop conditions (see Fig.13)  
System configuration (see Fig.14)  
Acknowledge (see Fig.15)  
PCF8576C I2C-bus controller  
Input filters  
I2C-bus protocol  
Command decoder  
Display controller  
Cascaded operation  
1998 Jul 30  
2
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
1
FEATURES  
Single-chip LCD controller/driver  
Selectable backplane drive configuration: static or 2/3/4  
backplane multiplexing  
Selectable display bias configuration: static, 1/2 or 1/3  
Internal LCD bias generation with voltage-follower  
May be cascaded for large LCD applications (up to  
buffers  
2560 segments possible)  
40 segment drives: up to twenty 8-segment numeric  
characters; up to ten 15-segment alphanumeric  
characters; or any graphics of up to 160 elements  
Cascadable with 24-segment LCD driver PCF8566  
Optimized pinning for plane wiring in both and multiple  
PCF8576C applications  
40 × 4-bit RAM for display data storage  
Space-saving 56-lead plastic very small outline package  
(VSO56) or 64-lead low profile quad flat package  
(LQFP64)  
Auto-incremented display data loading across device  
subaddress boundaries  
Display memory bank switching in static and duplex  
drive modes  
No external components  
Compatible with chip-on-glass technology  
Manufactured in silicon gate CMOS process.  
Versatile blinking modes  
LCD and logic supplies may be separated  
Wide power supply range: from 2 V for low-threshold  
LCDs and up to 6 V for guest-host LCDs and  
2
GENERAL DESCRIPTION  
The PCF8576C is a peripheral device which interfaces to  
almost any Liquid Crystal Display (LCD) with low multiplex  
rates. It generates the drive signals for any static or  
multiplexed LCD containing up to four backplanes and up  
to 40 segments and can easily be cascaded for larger LCD  
applications. The PCF8576C is compatible with most  
microprocessors/microcontrollers and communicates via a  
two-line bidirectional I2C-bus. Communication overheads  
are minimized by a display RAM with auto-incremented  
addressing, by hardware subaddressing and by display  
memory switching (static and duplex drive modes).  
high-threshold (automobile) twisted nematic LCDs.  
A 9 V version is also available on request.  
Low power consumption  
Power-saving mode for extremely low power  
consumption in battery-operated and telephone  
applications  
I2C-bus interface  
TTL/CMOS compatible  
Compatible with any 4-bit, 8-bit or 16-bit  
microprocessors/microcontrollers  
3
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
PCF8576CT  
VSO56  
plastic very small outline package; 56 leads  
chip in tray  
SOT190-1  
PCF8576CU  
PCF8576CU/2  
PCF8576CU/5  
PCF8576CU/7  
PCF8576CU/10  
PCF8576CU/12  
PCF8576CH  
chip with bumps in tray  
unsawn wafer  
chip with bumps on tape  
FFC  
FFC  
LQFP64  
chip-on-film frame carrier  
chip with bumps on film frame carrier  
plastic low profile quad flat package; 64 leads; body 10 × 10 × 1.4 mm  
SOT314-2  
1998 Jul 30  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
BP0 BP2 BP1 BP3  
13 14 15 16  
S0 to S39  
40  
17 to 56  
5
V
BACKPLANE  
OUTPUTS  
DD  
DISPLAY SEGMENT OUTPUTS  
DISPLAY LATCH  
LCD  
VOLTAGE  
SELECTOR  
LCD BIAS  
GENERATOR  
SHIFT REGISTER  
12  
V
LCD  
PCF8576C  
4
3
CLK  
INPUT  
BANK  
SELECTOR  
DISPLAY  
RAM  
40 x 4 BITS  
OUTPUT  
BANK  
SELECTOR  
TIMING  
BLINKER  
SYNC  
DISPLAY  
CONTROLLER  
6
OSC  
OSCILLATOR  
POWER-  
ON  
DATA  
POINTER  
RESET  
COMMAND  
DECODER  
11  
V
SS  
2
1
SUB-  
ADDRESS  
COUNTER  
SCL  
SDA  
2
INPUT  
FILTERS  
I C - BUS  
CONTROLLER  
10  
7
8
9
SA0  
A0 A1 A2  
MLD332  
Fig.1 Block diagram; VSO56.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
5
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
SOT190  
SOT314  
SDA  
1
10  
11  
I2C-bus serial data input/output  
I2C-bus serial clock input  
cascade synchronization input/output  
external clock input  
SCL  
2
SYNC  
3
12  
CLK  
4
13  
VDD  
5
6
14  
supply voltage  
OSC  
15  
oscillator input  
A0 to A2  
7 to 9  
10  
16 to 18  
19  
I2C-bus subaddress inputs  
I2C-bus slave address input; bit 0  
logic ground  
SA0  
VSS  
11  
20  
VLCD  
12  
21  
LCD supply voltage  
BP0, BP2, BP1, BP3  
S0 to S39  
13 to 16  
17 to 56  
25 to 28  
LCD backplane outputs  
29 to 32, 34 to 47, 49 to 64, 2 to 7 LCD segment outputs  
1, 8, 9, 22 to 24, 33 and 48 not connected  
n.c.  
1998 Jul 30  
5
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
handbook, halfpage  
SDA  
SCL  
1
2
3
4
5
6
7
8
9
56 S39  
55 S38  
54 S37  
53 S36  
52 S35  
51 S34  
50 S33  
49 S32  
48 S31  
47 S30  
46 S29  
45 S28  
44 S27  
43 S26  
42 S25  
41 S24  
40 S23  
39 S22  
38 S21  
37 S20  
36 S19  
35 S18  
34 S17  
33 S16  
32 S15  
31 S14  
30 S13  
29 S12  
SYNC  
CLK  
V
DD  
OSC  
A0  
A1  
A2  
SA0 10  
V
11  
12  
SS  
V
LCD  
BP0 13  
BP2 14  
BP1 15  
BP3 16  
S0 17  
S1 18  
S2 19  
S3 20  
S4 21  
S5 22  
S6 23  
S7 24  
S8 25  
S9 26  
S10 27  
S11 28  
PCF8576CT  
MLD334  
Fig.2 Pin configuration; VSO56.  
6
1998 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
n.c.  
S34  
S35  
S36  
S37  
S38  
S39  
n.c.  
n.c.  
1
2
3
4
5
6
7
8
9
48 n.c.  
47 S17  
46 S16  
45 S15  
44 S14  
43 S13  
42 S12  
41 S11  
40 S10  
39 S9  
38 S8  
37 S7  
36 S6  
35 S5  
34 S4  
33 n.c.  
PCF8576CH  
SDA 10  
SCL 11  
12  
SYNC  
CLK 13  
V
14  
DD  
OSC 15  
A0 16  
MLD333  
Fig.3 Pin configuration; LQFP64.  
1998 Jul 30  
7
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
The host microprocessor/microcontroller maintains the  
2-line I2C-bus communication channel with the  
PCF8576C. The internal oscillator is selected by tying  
OSC (pin 6) to VSS (pin 11). The appropriate biasing  
voltages for the multiplexed LCD waveforms are  
generated internally. The only other connections required  
to complete the system are to the power supplies (VDD  
VSS and VLCD) and the LCD panel chosen for the  
application.  
6
FUNCTIONAL DESCRIPTION  
The PCF8576C is a versatile peripheral device designed  
to interface to any microprocessor/microcontroller to a  
wide variety of LCDs. It can directly drive any static or  
multiplexed LCD containing up to four backplanes and up  
to 40 segments. The display configurations possible with  
the PCF8576C depend on the number of active backplane  
outputs required; a selection of display configurations is  
given in Table 1.  
,
All of the display configurations given in Table 1 can be  
implemented in the typical system shown in Fig.4.  
Table 1 Selection of display configurations  
14-SEGMENTS  
ALPHANUMERIC  
NUMBER OF  
7-SEGMENTS NUMERIC  
DOT MATRIX  
INDICATOR  
DIGITS  
INDICATOR  
SYMBOLS  
BACKPLANES SEGMENTS  
CHARACTERS  
SYMBOLS  
4
3
2
1
160  
120  
80  
20  
15  
10  
5
20  
15  
10  
5
10  
8
20  
8
160 dots (4 × 40)  
120 dots (3 × 40)  
80 dots (2 × 40)  
40 dots (1 × 40)  
5
10  
12  
40  
2
V
DD  
t
r
R
2C  
B
V
V
DD  
LCD  
5
12  
SDA  
SCL  
HOST  
MICRO-  
1
2
6
17 to 56 40 segment drives  
LCD PANEL  
PCF8576CT  
PROCESSOR/  
MICRO-  
CONTROLLER  
(up to 160  
elements)  
OSC  
4 backplanes  
13 to 16  
10 11  
A0 A1 A2 SA0 V  
7
8
9
MBE524  
SS  
V
SS  
Fig.4 Typical system configuration.  
8
1998 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
6.1  
Power-on reset  
6.3  
LCD voltage selector  
At power-on the PCF8576C resets to a starting condition  
as follows:  
The LCD voltage selector co-ordinates the multiplexing of  
the LCD in accordance with the selected LCD drive  
configuration. The operation of the voltage selector is  
controlled by MODE SET commands from the command  
decoder. The biasing configurations that apply to the  
preferred modes of operation, together with the biasing  
characteristics as functions of Vop = VDD VLCD and the  
resulting discrimination ratios (D), are given in Table 2.  
1. All backplane outputs are set to VDD  
2. All segment outputs are set to VDD  
.
.
3. The drive mode ‘1 : 4 multiplex with 13bias’ is selected.  
4. Blinking is switched off.  
5. Input and output bank selectors are reset (as defined  
in Table 5).  
6. The I2C-bus interface is initialized.  
A practical value for Vop is determined by equating Voff(rms)  
with a defined LCD threshold voltage (Vth), typically when  
the LCD exhibits approximately 10% contrast. In the static  
drive mode a suitable choice is Vop > 3Vth approximately.  
7. The data pointer and the subaddress counter are  
cleared.  
Multiplex drive ratios of 1 : 3 and 1 : 4 with 12bias are  
possible but the discrimination and hence the contrast  
Data transfers on the I2C-bus should be avoided for 1 ms  
following power-on to allow completion of the reset action.  
ratios are smaller ( 3 = 1.732 for 1 : 3 multiplex or  
21  
6.2  
The full-scale LCD voltage (Vop) is obtained from  
DD VLCD. The LCD voltage may be temperature  
compensated externally through the VLCD supply to pin 12.  
Fractional LCD biasing voltages are obtained from an  
internal voltage divider of the three series resistors  
connected between VDD and VLCD. The centre resistor can  
be switched out of the circuit to provide a 12bias voltage  
level for the 1 : 2 multiplex configuration.  
LCD bias generator  
= 1.528 for 1 : 4 multiplex).  
----------  
3
V
The advantage of these modes is a reduction of the LCD  
full-scale voltage Vop as follows:  
1 : 3 multiplex (12bias):  
Vop  
=
6 × Voff  
= 2.449 Voff(rms)  
rms  
1 : 4 multiplex (12bias):  
(4 × 3)  
-----------------------  
3
Vop  
=
= 2.309 Voff(rms)  
These compare with Vop = 3 Voff(rms) when 13bias is used.  
Table 2 Preferred LCD drive modes: summary of characteristics  
NUMBER OF  
V on(rms)  
Voff(rms)  
V on(rms)  
LCD BIAS  
CONFIGURATION  
D =  
--------------------  
Voff(rms)  
--------------------  
Vop  
--------------------  
Vop  
LCD DRIVE MODE  
BACKPLANES LEVELS  
static  
1 : 2  
1 : 2  
1 : 3  
1 : 4  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
2
1
3
1
3
1
3
1998 Jul 30  
9
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
6.4  
LCD drive mode waveforms  
6.4.1  
STATIC DRIVE MODE  
The static LCD drive mode is used when a single backplane is provided in the LCD. Backplane and segment drive  
waveforms for this mode are shown in Fig.5.  
T
frame  
LCD segments  
V
DD  
BP0  
V
V
LCD  
state 1  
(on)  
state 2  
(off)  
V
DD  
S
n
LCD  
V
DD  
S
n
1
V
LCD  
(a) waveforms at driver  
V
op  
0
state 1  
V
op  
V
op  
state 2  
0
V
op  
(b) resultant waveforms  
at LCD segment  
MBE539  
Vstate1(t) = VS (t) VBP0(t)  
n
Von(rms) = Vop  
V
state2(t) = VS (t) VBP0(t)  
n + 1  
Voff(rms) = 0 V  
Fig.5 Static drive mode waveforms (Vop = VDD VLCD).  
1998 Jul 30  
10  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
6.4.2  
1 : 2 MULTIPLEX DRIVE MODE  
When two backplanes are provided in the LCD, the 1 : 2 multiplex mode applies. The PCF8576C allows use of 12bias or  
13bias in this mode as shown in Figs 6 and 7.  
T
frame  
V
DD  
LCD segments  
(V  
V
V
)/2  
)/2  
BP0  
DD  
LCD  
LCD  
V
V
LCD  
state 1  
DD  
state 2  
BP1 (V  
V
DD  
LCD  
DD  
V
S
n
V
V
LCD  
DD  
S
n
1
V
V
LCD  
(a) waveforms at driver  
op  
V
/2  
/2  
op  
0
state 1  
V
V
op  
op  
V
op  
V
/2  
/2  
op  
0
state 2  
V
V
op  
op  
(b) resultant waveforms  
at LCD segment  
MBE540  
Vstate1(t) = VS (t) VBP0(t)  
n
Von(rms) = 0.791Vop  
Vstate2(t) = VS (t) VBP1(t)  
n
Voff(rms) = 0.354Vop  
Fig.6 Waveforms for the 1 : 2 multiplex drive mode with 12bias (Vop = VDD VLCD).  
1998 Jul 30  
11  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
T
frame  
V
DD  
LCD segments  
V
V
/3  
op  
2V /3  
DD  
BP0  
BP1  
V
V
op  
DD  
LCD  
state 1  
V
V
DD  
state 2  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
1
V
V
op  
DD  
LCD  
(a) waveforms at driver  
V
op  
2V /3  
op  
V
/3  
0
op  
state 1  
V
/3  
op  
2V /3  
op  
V
op  
V
op  
2V /3  
op  
V
V
/3  
0
/3  
op  
state 2  
op  
2V /3  
op  
V
op  
(b) resultant waveforms  
at LCD segment  
MBE541  
Vstate1(t) = VS (t) VBP0(t)  
n
Von(rms) = 0.745Vop  
Vstate2(t) = VS (t) VBP1(t)  
n
Voff(rms) = 0.333Vop  
Fig.7 Waveforms for the 1 : 2 multiplex drive mode with 13bias (Vop = VDD VLCD).  
1998 Jul 30  
12  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
6.4.3  
1 : 3 MULTIPLEX DRIVE MODE  
When three backplanes are provided in the LCD, the 1 : 3 multiplex drive mode applies, as shown in Fig.8.  
T
frame  
V
DD  
LCD segments  
V
V
/3  
op  
2V /3  
DD  
BP0  
BP1  
V
V
op  
DD  
LCD  
state 1  
state 2  
V
V
DD  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
BP2/S23  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
n
1
2
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
V
V
op  
DD  
LCD  
(a) waveforms at driver  
V
op  
2V /3  
op  
V
/3  
0
op  
state 1  
V
/3  
op  
2V /3  
op  
V
op  
V
op  
2V /3  
op  
V
V
/3  
0
/3  
op  
state 2  
op  
2V /3  
op  
V
op  
(b) resultant waveforms  
at LCD segment  
MBE542  
Vstate1(t) = VS (t) VBP0(t)  
n
Von(rms) = 0.638Vop  
Vstate2(t) = VS (t) VBP1(t)  
n
Voff(rms) = 0.333Vop  
Fig.8 Waveforms for the 1 : 3 multiplex drive mode (Vop = VDD VLCD).  
1998 Jul 30  
13  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
6.4.4  
1 : 4 MULTIPLEX DRIVE MODE  
When four backplanes are provided in the LCD, the 1 : 4 multiplex drive mode applies, as shown in Fig.9.  
T
frame  
V
V
LCD segments  
DD  
V
/3  
op  
2V /3  
DD  
BP0  
BP1  
BP2  
BP3  
V
V
op  
DD  
LCD  
state 1  
state 2  
V
V
DD  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
n
n
1
2
3
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
S
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
(a) waveforms at driver  
V
op  
2V /3  
op  
V
/3  
0
op  
state 1  
V
/3  
op  
2V /3  
op  
Vstate1(t) = VS (t) VBP0(t)  
V
op  
n
V
op  
Von(rms) = 0.577Vop  
2V /3  
op  
V
state2(t) = VS (t) VBP1(t)  
n
V
V
/3  
0
/3  
op  
op  
state 2  
Voff(rms) = 0.333Vop  
2V /3  
op  
V
op  
(b) resultant waveforms  
at LCD segment  
MBE543  
Fig.9 Waveforms for the 1 : 4 multiplex drive mode (Vop = VDD VLCD).  
1998 Jul 30  
14  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
When a device is unable to digest a display data byte  
before the next one arrives, it holds the SCL line LOW until  
the first display data byte is stored. This slows down the  
transmission rate of the I2C-bus but no data loss occurs.  
6.5  
Oscillator  
6.5.1  
INTERNAL CLOCK  
The internal logic and the LCD drive signals of the  
PCF8576C are timed either by the built-in oscillator or from  
an external clock. When the internal oscillator is used,  
OSC (pin 6) should be connected to VSS (pin 11). In this  
event, the output from CLK (pin 4) provides the clock  
signal for cascaded PCF8566s or PCF8576Cs in the  
system.  
6.7  
Display latch  
The display latch holds the display data while the  
corresponding multiplex signals are generated. There is a  
one-to-one relationship between the data in the display  
latch, the LCD segment outputs and one column of the  
display RAM.  
Note that the PCF8576C is backwards compatible with the  
PCF8576. Where resistor Rosc to VSS is present, the  
internal oscillator is selected.  
6.8  
Shift register  
The shift register serves to transfer display information  
from the display RAM to the display latch while previous  
data is displayed.  
6.5.2  
EXTERNAL CLOCK  
The condition for external clock is made by tying OSC  
(pin 6) to VDD; CLK (pin 4) then becomes the external  
clock input.  
6.9  
Segment outputs  
The clock frequency (fclk) determines the LCD frame  
frequency and the maximum rate for data reception from  
the I2C-bus. To allow I2C-bus transmissions at their  
maximum data rate of 100 kHz, fclk should be chosen to be  
above 125 kHz.  
The LCD drive section includes 40 segment outputs  
S0 to S39 (pins 17 to 56) which should be connected  
directly to the LCD. The segment output signals are  
generated in accordance with the multiplexed backplane  
signals and with data resident in the display latch. When  
less than 40 segment outputs are required the unused  
segment outputs should be left open-circuit.  
A clock signal must always be supplied to the device;  
removing the clock may freeze the LCD in a DC state.  
6.10 Backplane outputs  
6.6  
Timing  
The LCD drive section includes four backplane outputs  
BP0 to BP3 which should be connected directly to the  
LCD. The backplane output signals are generated in  
accordance with the selected LCD drive mode. If less than  
four backplane outputs are required the unused outputs  
can be left open-circuit. In the 1 : 3 multiplex drive mode  
BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced  
drive capabilities. In the 1 : 2 multiplex drive mode BP0  
and BP2, BP1 and BP3 respectively carry the same  
signals and may also be paired to increase the drive  
capabilities. In the static drive mode the same signal is  
carried by all four backplane outputs and they can be  
connected in parallel for very high drive requirements.  
The timing of the PCF8576C organizes the internal data  
flow of the device. This includes the transfer of display data  
from the display RAM to the display segment outputs. In  
cascaded applications, the synchronization signal SYNC  
maintains the correct timing relationship between the  
PCF8576Cs in the system. The timing also generates the  
LCD frame frequency which it derives as an integer  
multiple of the clock frequency (see Table 3). The frame  
frequency is set by the MODE SET commands when  
internal clock is used, or by the frequency applied to pin 4  
when external clock is used.  
The ratio between the clock frequency and the LCD frame  
frequency depends on the mode in which the device is  
operating. In the power-saving mode the reduction ratio is  
six times smaller; this allows the clock frequency to be  
reduced by a factor of six. The reduced clock frequency  
results in a significant reduction in power dissipation.  
The lower clock frequency has the disadvantage of  
increasing the response time when large amounts of  
display data are transmitted on the I2C-bus.  
1998 Jul 30  
15  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
In the 1 : 2 multiplex drive mode the eight transmitted data  
bits are placed in bits 0 and 1 of four successive display  
RAM addresses. In the 1 : 3 multiplex drive mode these  
bits are placed in bits 0, 1 and 2 of three successive  
addresses, with bit 2 of the third address left unchanged.  
This last bit may, if necessary, be controlled by an  
additional transfer to this address but care should be taken  
to avoid overriding adjacent data because full bytes are  
always transmitted. In the 1 : 4 multiplex drive mode the  
eight transmitted data bits are placed in bits 0, 1, 2 and 3  
of two successive display RAM addresses.  
6.11 Display RAM  
The display RAM is a static 40 × 4-bit RAM which stores  
LCD data. A logic 1 in the RAM bit-map indicates the on  
state of the corresponding LCD segment; similarly, a  
logic 0 indicates the off state. There is a one-to-one  
correspondence between the RAM addresses and the  
segment outputs, and between the individual bits of a RAM  
word and the backplane outputs. The first RAM column  
corresponds to the 40 segments operated with respect to  
backplane BP0 (see Fig.10). In multiplexed LCD  
applications the segment data of the second, third and  
fourth column of the display RAM are time-multiplexed  
with BP1, BP2 and BP3 respectively.  
Table 3 LCD frame frequencies  
NOMINAL  
When display data is transmitted to the PCF8576C the  
display bytes received are stored in the display RAM in  
accordance with the selected LCD drive mode.  
To illustrate the filling order, an example of a 7-segment  
numeric display showing all drive modes is given in Fig.11;  
the RAM filling organization depicted applies equally to  
other LCD types.  
FRAME  
FREQUENCY  
FRAME  
FREQUENCY  
(Hz)  
PCF8576C MODE  
fclk  
Normal mode  
64  
64  
------------  
2880  
f clk  
Power-saving mode  
With reference to Fig.11, in the static drive mode the eight  
transmitted data bits are placed in bit 0 of eight successive  
display RAM addresses.  
---------  
480  
display RAM addresses (rows) / segment outputs (S)  
0
1
2
3
4
35 36 37 38 39  
0
1
2
3
display RAM bits  
(columns) /  
backplane outputs  
(BP)  
MBE525  
Fig.10 Display RAM bit-map showing direct relationship between display RAM addresses  
and segment outputs, and between bits in a RAM word and backplane outputs.  
1998 Jul 30  
16  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
6.12 Data pointer  
6.14 Output bank selector  
The addressing mechanism for the display RAM is  
realized using the data pointer. This allows the loading of  
an individual display data byte, or a series of display data  
bytes, into any location of the display RAM. The sequence  
commences with the initialization of the data pointer by the  
LOAD DATA POINTER command. Following this, an  
arriving data byte is stored starting at the display RAM  
address indicated by the data pointer thereby observing  
the filling order shown in Fig.11. The data pointer is  
automatically incremented in accordance with the chosen  
LCD configuration. That is, after each byte is stored, the  
contents of the data pointer are incremented by eight  
(static drive mode), by four (1 : 2 multiplex drive mode) or  
by two (1 : 4 multiplex drive mode).  
This selects one of the four bits per display RAM address  
for transfer to the display latch. The actual bit chosen  
depends on the particular LCD drive mode in operation  
and on the instant in the multiplex sequence.  
In 1 : 4 multiplex, all RAM addresses of bit 0 are the first to  
be selected, these are followed by the contents of  
bit 1, bit 2 and then bit 3. Similarly in 1 : 3 multiplex,  
bits 0, 1 and 2 are selected sequentially. In 1 : 2 multiplex,  
bits 0 and 1 are selected and, in the static mode, bit 0 is  
selected.  
The PCF8576C includes a RAM bank switching feature in  
the static and 1 : 2 multiplex drive modes. In the static  
drive mode, the BANK SELECT command may request  
the contents of bit 2 to be selected for display instead of  
bit 0 contents. In the 1 : 2 drive mode, the contents of  
bits 2 and 3 may be selected instead of bits 0 and 1. This  
gives the provision for preparing display information in an  
alternative bank and to be able to switch to it once it is  
assembled.  
6.13 Subaddress counter  
The storage of display data is conditioned by the contents  
of the subaddress counter. Storage is allowed to take  
place only when the contents of the subaddress counter  
agree with the hardware subaddress applied to  
A0, A1 and A2. The subaddress counter value is defined  
by the DEVICE SELECT command. If the contents of the  
subaddress counter and the hardware subaddress do not  
agree then data storage is inhibited but the data pointer is  
incremented as if data storage had taken place.  
The subaddress counter is also incremented when the  
data pointer overflows.  
6.15 Input bank selector  
The input bank selector loads display data into the display  
RAM in accordance with the selected LCD drive  
configuration. Display data can be loaded in bit 2 in static  
drive mode or in bits 2 and 3 in 1 : 2 drive mode by using  
the BANK SELECT command. The input bank selector  
functions independent of the output bank selector.  
The storage arrangements described lead to extremely  
efficient data loading in cascaded applications. When a  
series of display bytes are sent to the display RAM,  
automatic wrap-over to the next PCF8576C occurs when  
the last RAM address is exceeded. Subaddressing across  
device boundaries is successful even if the change to the  
next device in the cascade occurs within a transmitted  
character (such as during the 14th display data byte  
transmitted in 1 : 3 multiplex mode).  
1998 Jul 30  
17  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
By means of the output bank selector, the displayed RAM  
banks are exchanged with alternate RAM banks at the  
blinking frequency. This mode can also be specified by the  
BLINK command.  
6.16 Blinker  
The display blinking capabilities of the PCF8576C are very  
versatile. The whole display can be blinked at frequencies  
selected by the BLINK command. The blinking frequencies  
are integer multiples of the clock frequency; the ratios  
between the clock and blinking frequencies depend on the  
mode in which the device is operating, as shown in  
Table 4.  
In the 1 : 3 and 1 : 4 multiplex modes, where no alternate  
RAM bank is available, groups of LCD segments can be  
blinked by selectively changing the display RAM data at  
fixed time intervals.  
If the entire display is to be blinked at a frequency other  
than the nominal blinking frequency, this can be effectively  
performed by resetting and setting the display enable bit E  
at the required rate using the MODE SET command.  
An additional feature is for an arbitrary selection of LCD  
segments to be blinked. This applies to the static and  
1 : 2 LCD drive modes and can be implemented without  
any communication overheads.  
Table 4 Blinking frequencies  
NORMAL OPERATING  
BLINKING MODE  
POWER-SAVING MODE  
RATIO  
NOMINAL BLINKING  
FREQUENCY  
MODE RATIO  
Off  
blinking off  
fclk  
f clk  
2 Hz  
2 Hz  
----------------  
92160  
----------------  
15360  
f clk  
f clk  
1 Hz  
1 Hz  
-------------------  
184320  
----------------  
30720  
f clk  
f clk  
0.5 Hz  
0.5 Hz  
-------------------  
368640  
----------------  
61440  
1998 Jul 30  
18  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
drive mode  
LCD segments  
LCD backplanes  
display RAM filling order  
transmitted display byte  
a
S
2
n
n
1
n
2
n
3
n
4
n
5
n
6
n 7  
n
n
b
BP0  
f
S
1
7
S
3
MSB  
LSB  
DP  
n
n
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
bit/  
BP  
g
4
S
S
S
n
n
x
x
x
x
x
x
c
b
a
f
g e d  
static  
e
S
5
6
c
n
d
DP  
S
n
BP0  
S
n
a
n
n
n
n
1
1
1
n
2
n 3  
b
b
b
1 : 2  
f
S
1
n
MSB  
LSB  
DP  
0
1
2
3
a
b
x
x
f
e
c
x
x
d
bit/  
BP  
g
g
x
x
DP  
x
x
a
b
f
g
e c d  
BP1  
S
S
e
2
3
multiplex  
n
n
c
c
c
d
d
d
DP  
BP0  
BP1  
S
1
a
n
n
n 2  
S
S
2
f
1 : 3  
n
n
MSB  
LSB  
e
0
1
2
3
b
DP  
c
a
d
g
x
f
bit/  
BP  
g
e
x
x
BP2  
b DP  
c
a
d
g
f
e
multiplex  
x
DP  
S
n
a
n
BP2  
BP3  
BP0  
BP1  
f
1 : 4  
0
1
2
3
a
c
f
bit/  
BP  
MSB  
LSB  
d
g
e
g
d
b
DP  
e
multiplex  
a
c
b
DP  
f
e
g
S
1
DP  
n
MBE534  
x = data bit unchanged.  
2
ahdnbok,uflapegwidt  
Fig.11 Relationships between LCD layout, drive mode, display RAM filling order and display data transmitted over the I C-bus.  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
7
CHARACTERISTICS OF THE I2C-BUS  
7.5  
PCF8576C I2C-bus controller  
The I2C-bus is for bidirectional, two-line communication  
between different ICs or modules. The two lines are a  
serial data line (SDA) and a serial clock line (SCL). Both  
lines must be connected to a positive supply via a pull-up  
resistor when connected to the output stages of a device.  
Data transfer may be initiated only when the bus is not  
busy.  
The PCF8576C acts as an I2C-bus slave receiver. It does  
not initiate I2C-bus transfers or transmit data to an I2C-bus  
master receiver. The only data output from the PCF8576C  
are the acknowledge signals of the selected devices.  
Device selection depends on the I2C-bus slave address,  
on the transferred command data and on the hardware  
subaddress.  
In single device application, the hardware subaddress  
inputs A0, A1 and A2 are normally tied to VSS which  
defines the hardware subaddress 0. In multiple device  
applications A0, A1 and A2 are tied to VSS or VDD in  
accordance with a binary coding scheme such that no two  
devices with a common I2C-bus slave address have the  
same hardware subaddress.  
7.1  
Bit transfer (see Fig.12)  
One data bit is transferred during each clock pulse.  
The data on the SDA line must remain stable during the  
HIGH period of the clock pulse as changes in the data line  
at this time will be interpreted as a control signal.  
7.2  
Start and stop conditions (see Fig.13)  
In the power-saving mode it is possible that the PCF8576C  
is not able to keep up with the highest transmission rates  
when large amounts of display data are transmitted. If this  
situation occurs, the PCF8576C forces the SCL line LOW  
until its internal operations are completed. This is known  
as the ‘clock synchronization feature’ of the I2C-bus and  
serves to slow down fast transmitters. Data loss does not  
occur.  
Both data and clock lines remain HIGH when the bus is not  
busy. A HIGH-to-LOW transition of the data line, while the  
clock is HIGH is defined as the START condition (S).  
A LOW-to-HIGH transition of the data line while the clock  
is HIGH is defined as the STOP condition (P).  
7.3  
System configuration (see Fig.14)  
A device generating a message is a ‘transmitter’, a device  
receiving a message is the ‘receiver’. The device that  
controls the message is the ‘master’ and the devices which  
are controlled by the master are the ‘slaves’.  
7.6  
Input filters  
To enhance noise immunity in electrically adverse  
environments, RC low-pass filters are provided on the  
SDA and SCL lines.  
7.4  
Acknowledge (see Fig.15)  
7.7  
I2C-bus protocol  
The number of data bytes transferred between the START  
and STOP conditions from transmitter to receiver is  
unlimited. Each byte of eight bits is followed by an  
acknowledge bit. The acknowledge bit is a HIGH level  
signal put on the bus by the transmitter during which time  
the master generates an extra acknowledge related clock  
pulse. A slave receiver which is addressed must generate  
an acknowledge after the reception of each byte. Also a  
master receiver must generate an acknowledge after the  
reception of each byte that has been clocked out of the  
slave transmitter. The device that acknowledges must  
pull-down the SDA line during the acknowledge clock  
pulse, so that the SDA line is stable LOW during the HIGH  
period of the acknowledge related clock pulse (set-up and  
hold times must be taken into consideration). A master  
receiver must signal an end of data to the transmitter by  
not generating an acknowledge on the last byte that has  
been clocked out of the slave. In this event the transmitter  
must leave the data line HIGH to enable the master to  
generate a STOP condition.  
Two I2C-bus slave addresses (0111000 and 0111001) are  
reserved for the PCF8576C. The least significant bit of the  
slave address that a PCF8576C will respond to is defined  
by the level tied at its input SA0 (pin 10). Therefore, two  
types of PCF8576C can be distinguished on the same  
I2C-bus which allows:  
1. Up to 16 PCF8576Cs on the same I2C-bus for very  
large LCD applications.  
2. The use of two types of LCD multiplex on the same  
I2C-bus.  
The I2C-bus protocol is shown in Fig.16. The sequence is  
initiated with a START condition (S) from the I2C-bus  
master which is followed by one of the two PCF8675C  
slave addresses available. All PCF8576Cs with the  
corresponding SA0 level acknowledge in parallel with the  
slave address but all PCF8576Cs with the alternative SA0  
level ignore the whole I2C-bus transfer.  
1998 Jul 30  
20  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
After acknowledgement, one or more command bytes (m)  
follow which define the status of the addressed  
PCF8576Cs.  
7.8  
Command decoder  
The command decoder identifies command bytes that  
arrive on the I2C-bus. All available commands carry a  
continuation bit C in their most significant bit position  
(Fig.17). When this bit is set, it indicates that the next byte  
of the transfer to arrive will also represent a command.  
If this bit is reset, it indicates the last command byte of the  
transfer. Further bytes will be regarded as display data.  
The last command byte is tagged with a cleared most  
significant bit, the continuation bit C. The command bytes  
are also acknowledged by all addressed PCF8576Cs on  
the bus.  
After the last command byte, a series of display data bytes  
(n) may follow. These display bytes are stored in the  
display RAM at the address specified by the data pointer  
and the subaddress counter. Both data pointer and  
subaddress counter are automatically updated and the  
data is directed to the intended PCF8576C device.  
The acknowledgement after each byte is made only by the  
(A0, A1 and A2) addressed PCF8576C. After the last  
display byte, the I2C-bus master issues a STOP  
condition (P).  
The five commands available to the PCF8576C are  
defined in Table 5.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBA607  
Fig.12 Bit transfer.  
SDA  
SCL  
SDA  
SCL  
S
P
STOP condition  
START condition  
MBC622  
Fig.13 Definition of START and STOP conditions.  
1998 Jul 30  
21  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
MGA807  
Fig.14 System configuration.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
8
SCL FROM  
MASTER  
1
2
9
S
clock pulse for  
acknowledgement  
START  
condition  
MBC602  
Fig.15 Acknowledgement on the I2C-bus.  
22  
1998 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
acknowledge  
by A0, A1 and A2  
selected  
acknowledge by  
all addressed  
PCF8576Cs  
R / W  
PCF8576C only  
slave address  
S
A
0
0
1
1
1
0
0
0
A C  
A
DISPLAY DATA  
A
P
COMMAND  
S
1 byte  
n
1 byte(s)  
n
0 byte(s)  
update data pointers  
and if necessary,  
subaddress counter  
MBE538  
Fig.16 I2C-bus protocol.  
MSB  
LSB  
C
REST OF OPCODE  
MSA833  
C = 0; last command.  
C = 1; commands continue.  
Fig.17 General format of command byte.  
1998 Jul 30  
23  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
Table 5 Definition of PCF8576C commands  
COMMAND  
OPCODE  
LP  
OPTIONS  
DESCRIPTION  
MODE SET  
C
1
0
E
B
M1 M0  
Table 6  
Table 7  
Table 8  
Defines LCD drive mode.  
Defines LCD bias configuration.  
Defines display status. The possibility to  
disable the display allows implementation  
of blinking under external control.  
Table 9  
Defines power dissipation mode.  
LOADDATA  
POINTER  
C
C
C
0
1
1
P5 P4 P3 P2 P1 P0  
Table 10 Six bits of immediate data, bits P5 to P0,  
are transferred to the data pointer to  
define one of forty display RAM  
addresses.  
DEVICE  
SELECT  
1
1
0
1
0
1
A2 A1 A0  
Table 11  
Three bits of immediate data, bits A0 to  
A3, are transferred to the subaddress  
counter to define one of eight hardware  
subaddresses.  
BANK  
SELECT  
0
I
O
Table 12 Defines input bank selection (storage of  
arriving display data).  
Table 13 Defines output bank selection (retrieval of  
LCD display data).  
The BANK SELECT command has no  
effect in 1 : 3 and 1 : 4 multiplex drive  
modes.  
BLINK  
C
1
1
1
0
A
BF1 BF0 Table 14 Defines the blinking frequency.  
Table 15 Selects the blinking mode; normal  
operation with frequency set by BF1, BF0  
or blinking by alternation of display RAM  
banks. Alternation blinking does not apply  
in 1 : 3 and 1 : 4 multiplex drive modes.  
Table 6 Mode set option 1  
Table 8 Mode set option 3  
LCD DRIVE MODE  
BITS  
DISPLAY STATUS  
Disabled (blank)  
BIT E  
0
1
DRIVE  
BACKPLANE  
MODE  
M1  
M0  
Enabled  
Static  
1 : 2  
1 : 3  
1 : 4  
1 BP  
0
1
1
0
1
0
1
0
Table 9 Mode set option 4  
MUX (2 BP)  
MUX (3 BP)  
MUX (4 BP)  
MODE  
Normal mode  
BIT LP  
0
1
Power-saving mode  
Table 7 Mode set option 2  
LCD BIAS  
BIT B  
13bias  
12bias  
0
1
1998 Jul 30  
24  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
Table 10 Load data pointer option 1  
Table 14 Blink option 1  
DESCRIPTION  
BITS  
BITS  
BLINK FREQUENCY  
6 bit binary value of 0 to 39 P5 P4 P3 P2 P1 P0  
BF1  
BF0  
Off  
0
0
1
1
0
1
0
1
Table 11 Device select option 1  
2 Hz  
1 Hz  
0.5 Hz  
DESCRIPTION  
BITS  
3 bit binary value of 0 to 7  
A0  
A1  
A2  
Table 12 Bank select option 1  
Table 15 Blink option 2  
STATIC  
RAM bit 0  
RAM bit 2  
1 : 2 MUX  
BIT I  
BLINK MODE  
BIT A  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
Normal blinking  
0
1
Alternation blinking  
Table 13 Bank select option 2  
STATIC 1 : 2 MUX  
RAM bit 0  
RAM bit 2  
BIT O  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
The SYNC line is provided to maintain the correct  
synchronization between all cascaded PCF8576Cs. This  
synchronization is guaranteed after the power-on reset.  
The only time that SYNC is likely to be needed is if  
synchronization is accidentally lost (e.g. by noise in  
adverse electrical environments; or by the definition of a  
multiplex mode when PCF8576Cs with differing SA0  
levels are cascaded). SYNC is organized as an  
input/output pin; the output selection being realized as an  
open-drain driver with an internal pull-up resistor.  
A PCF8576C asserts the SYNC line at the onset of its last  
active backplane signal and monitors the SYNC line at all  
other times. Should synchronization in the cascade be  
lost, it will be restored by the first PCF8675C to assert  
SYNC. The timing relationship between the backplane  
waveforms and the SYNC signal for the various drive  
modes of the PCF8576C are shown in Fig.19.  
7.9  
Display controller  
The display controller executes the commands identified  
by the command decoder. It contains the status registers  
of the PCF8576C and co-ordinates their effects.  
The controller is also responsible for loading display data  
into the display RAM as required by the filling order.  
7.10 Cascaded operation  
In large display configurations, up to 16 PCF8576Cs can  
be distinguished on the same I2C-bus by using the 3-bit  
hardware subaddress (A0, A1 and A2) and the  
programmable I2C-bus slave address (SA0). When  
cascaded PCF8576Cs are synchronized so that they can  
share the backplane signals from one of the devices in the  
cascade. Such an arrangement is cost-effective in large  
LCD applications since the backplane outputs of only one  
device need to be through-plated to the backplane  
electrodes of the display. The other PCF8576Cs of the  
cascade contribute additional segment outputs but their  
backplane outputs are left open-circuit (Fig.18).  
For single plane wiring of packaged PCF8576Cs and  
chip-on-glass cascading, see Chapter “Application  
information”.  
1998 Jul 30  
25  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
V
V
LCD  
DD  
SDA  
1
5
12  
40 segment drives  
SCL  
17 to 56  
2
LCD PANEL  
SYNC  
3
PCF8576CT  
CLK  
(up to 2560  
elements)  
13,15,  
14,16  
4
OSC  
6
BP0 to BP3  
(open-circuit)  
A0 A1 A2 SAO V  
SS  
V
V
LCD  
t
DD  
r
R
V
V
2C  
DD  
LCD  
B
5
12  
SDA  
SCL  
HOST  
MICRO-  
1
2
3
4
6
40 segment drives  
17 to 56  
PROCESSOR/  
MICRO-  
PCF8576CT  
SYNC  
CLK  
13,15,  
14,16  
CONTROLLER  
4 backplanes  
BP0 to BP3  
OSC  
MBE533  
7
8
9
10 11  
A0 A1 A2 SA0 V  
SS  
V
SS  
Fig.18 Cascaded PCF8576C configuration.  
1998 Jul 30  
26  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
1
T
= f  
frame  
frame  
BP0  
SYNC  
(a) static drive mode.  
BP1  
(1/2 bias)  
BP1  
(1/3 bias)  
SYNC  
(b) 1 : 2 multiplex drive mode.  
BP2  
SYNC  
(c) 1 : 3 multiplex drive mode.  
BP3  
SYNC  
MBE535  
(d) 1 : 4 multiplex drive mode.  
Excessive capacitive coupling between SCL or CLK and SYNC may cause erroneous synchronization. If this proves to be a problem, the capacitance of  
the SYNC line should be increased (e.g. by an external capacitor between SYNC and VDD). Degradation of the positive edge of the SYNC pulse may be  
countered by an external pull-up resistor.  
(a) static drive mode.  
(b) 1 : 2 multiplex drive mode.  
(c) 1 : 3 multiplex drive mode.  
(d) 1 : 4 multiplex drive mode.  
Fig.19 Synchronization of the cascade for the various PCF8576C drive modes.  
1998 Jul 30  
27  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
8
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL PARAMETER  
VDD  
MIN.  
0.5  
MAX.  
+8.0  
UNIT  
supply voltage  
V
V
V
V
V
VLCD  
VI1  
VI2  
VO  
II  
LCD supply voltage  
VDD 8.0  
VSS 0.5  
VSS 0.5  
VLCD 0.5  
VDD  
input voltage CLK, SYNC, SA0, OSC, A0 to A2  
input voltage SDA, SCL  
VDD + 0.5  
+8.0  
output voltage S0 to S39, BP0 to BP3  
DC input current  
VDD + 0.5  
+20  
20  
25  
50  
mA  
mA  
mA  
mW  
mW  
°C  
IO  
DC output current  
+25  
IDD, ISS, ILCD VDD, VSS or VLCD current  
+50  
Ptot  
PO  
Tstg  
total power dissipation  
power dissipation per output  
storage temperature  
400  
100  
65  
+150  
9
HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS Devices).  
1998 Jul 30  
28  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
10 DC CHARACTERISTICS  
VDD = 2 to 6 V; VSS = 0 V; VLCD = VDD 2 V to VDD 6 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VDD  
VLCD  
IDD  
supply voltage  
2
6
V
LCD supply voltage  
supply current  
note 1  
V
DD 6  
V
DD 2  
V
note 2  
normal mode  
fclk = 200 kHz  
120  
60  
µA  
µA  
power-saving mode  
f
clk = 35 kHz;  
DD = 3.5 V; VLCD = 0 V;  
V
A0, A1 and A2 tied to VSS  
Logic  
VIL  
LOW-level input voltage SDA, SCL,  
CLK, SYNC, SA0, OSC, A0 to A2  
VSS  
0.3VDD  
VDD  
V
V
VIH1  
HIGH-level input voltage CLK, SYNC,  
SA0, OSC, A0 to A2  
0.7VDD  
VIH2  
VOL  
VOH  
IOL1  
IOH1  
IOL2  
IL1  
HIGH-level input voltage SDA, SCL  
LOW-level output voltage  
0.7VDD  
6.0  
0.05  
V
IOL = 0 mA  
IOH = 0 mA  
V
HIGH-level output voltage  
VDD 0.05 −  
V
LOW-level output current CLK, SYNC VOL = 1 V; VDD = 5 V  
HIGH-level output current CLK VOH = 4 V; VDD = 5 V  
1
mA  
mA  
mA  
µA  
1  
3
LOW-level output current SDA, SCL VOL = 0.4 V; VDD = 5 V  
leakage current SA0, A0 to A2, CLK, VI = VDD or VSS  
SDA and SCL  
1  
+1  
IL2  
Ipd  
leakage current OSC  
VI = VDD  
1  
+1  
µA  
µA  
A0, A1, A2 and OSC pull-down  
current  
VI = 1 V; VDD = 5 V  
15  
50  
150  
RSYNC  
VPOR  
tSW  
pull-up resistor (SYNC)  
power-on reset voltage level  
tolerable spike width on bus  
input capacitance  
20  
50  
1.0  
150  
1.6  
100  
7
kΩ  
V
note 3  
note 4  
ns  
pF  
CI  
LCD outputs  
VBP  
VS  
DC voltage component BP0 to BP3  
CBP = 35 nF  
20  
20  
+20  
+20  
5
mV  
mV  
kΩ  
kΩ  
DC voltage component S0 to S39  
output resistance BP0 to BP3  
output resistance S0 to S39  
CS = 5 nF  
RBP  
RS  
note 5; VLCD = VDD 5 V  
note 5; VLCD = VDD 5 V  
7.5  
Notes  
1. VLCD VDD 3 V for 13bias.  
2. LCD outputs are open-circuit; inputs at VSS or VDD; external clock with 50% duty factor; I2C-bus inactive.  
3. Resets all logic when VDD < VPOR  
.
4. Periodically sampled, not 100% tested.  
5. Outputs measured one at a time.  
1998 Jul 30  
29  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
11 AC CHARACTERISTICS  
VDD = 2 to 6 V; VSS = 0 V; VLCD = VDD 2 V to VDD 6 V; Tamb = 40 to + 85 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
oscillator frequency  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
fclk  
normal mode  
V
DD = 5 V; note 1  
DD = 3.5 V  
125  
200  
31  
315  
48  
kHz  
kHz  
µs  
power-saving mode  
CLK HIGH time  
V
21  
1
tclkH  
tclkL  
CLK LOW time  
1
µs  
tPSYNC  
tSYNCL  
tPLCD  
SYNC propagation delay time  
SYNC LOW time  
400  
ns  
1
µs  
driver delays with test loads  
VLCD = VDD 5 V  
30  
µs  
Timing characteristics: I2C-bus; note 2  
tBUF  
bus free time  
4.7  
4.0  
4.7  
4.7  
4.0  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
pF  
ns  
ns  
µs  
tHD;STA  
tSU;STA  
tLOW  
tHIGH  
tr  
START condition hold time  
set-up time for a repeated START condition  
SCL LOW time  
SCL HIGH time  
SCL and SDA rise time  
SCL and SDA fall time  
capacitive bus line load  
data set-up time  
1
tf  
0.3  
400  
CB  
tSU;DAT  
tHD;DAT  
tSU;STO  
250  
0
data hold time  
set-up time for STOP condition  
4.0  
Notes  
1. At fclk < 125 kHz, I2C-bus maximum transmission speed is derated.  
2. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to  
VIL and VIH with an input voltage swing of VSS to VDD  
.
6.8 Ω  
SYNC  
CLK  
V
DD  
(2%)  
3.3 kΩ  
1.5 kΩ  
SDA,  
SCL  
V
0.5V  
DD  
DD  
(2%)  
(2%)  
1 nF  
BP0 to BP3, and  
S0 to S39  
V
DD  
MBE544  
Fig.20 Test loads.  
30  
1998 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
1/ f  
clk  
t
t
clkL  
clkH  
0.7V  
0.3V  
DD  
CLK  
DD  
0.7V  
0.3V  
DD  
SYNC  
DD  
t
t
PSYNC  
PSYNC  
SYNCL  
t
0.5 V  
BP0 to BP3,  
and S0 to S39  
(V  
= 5 V)  
DD  
0.5 V  
t
PLCD  
MBE545  
Fig.21 Driver timing waveforms.  
SDA  
SCL  
SDA  
t
t
t
f
BUF  
LOW  
t
t
t
SU;DAT  
t
HD;STA  
r
t
HIGH  
HD;DAT  
t
SU;STA  
MGA728  
t
SU;STO  
Fig.22 I2C-bus timing waveforms.  
31  
1998 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
11.1 Typical supply current characteristics  
MBE530  
MBE529  
50  
50  
40  
I
I
SS  
LCD  
(µA)  
(µA)  
normal  
mode  
40  
30  
20  
30  
20  
power-saving  
mode  
10  
0
10  
0
0
100  
200  
f
(Hz)  
0
100  
200  
f
(Hz)  
frame  
frame  
VDD = 5 V; VLCD = 0 V; Tamb = 25 °C.  
VDD = 5 V; VLCD = 0 V; Tamb = 25 °C.  
Fig.24 ILCD as a function of fframe  
.
Fig.23 ISS as a function of fframe  
.
MBE528 - 1  
MBE527 - 1  
50  
50  
handbook, halfpage  
handbook, halfpage  
I
I
LCD  
(µA)  
SS  
(µA)  
normal mode  
= 200 kHz  
40  
40  
85oC  
f
clk  
30  
20  
30  
20  
25oC  
40oC  
power-saving mode  
10  
f
= 35 kHz  
10  
clk  
0
0
0
0
5
10  
5
10  
V
(V)  
V
(V)  
DD  
DD  
VLCD = 0 V; external clock; Tamb = 25 °C.  
VLCD = 0 V; external clock; fclk = nominal frequency.  
Fig.25 ISS as a function of VDD  
.
Fig.26 ILCD as a function of VDD.  
1998 Jul 30  
32  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
11.2 Typical characteristics of LC D outputs  
MBE532 - 1  
MBE526  
2.5  
O(max)  
(kΩ)  
10  
handbook, halfpage  
R
S
R
R
O(max)  
(kΩ)  
2.0  
R
S
1.5  
1.0  
1
R
R
BP  
BP  
0.5  
0
-1  
10  
40  
0
40  
80  
120  
( C)  
amb  
0
3
6
o
V
(V)  
DD  
T
VLCD = 0 V; Tamb = 25 °C.  
VDD = 5 V; VLCD = 0 V.  
Fig.27 RO(max) as a function of VDD  
.
Fig.28 RO(max) as a function of Tamb.  
1998 Jul 30  
33  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  a
SDA  
SCL  
SYNC  
CLK  
V
DD  
V
SS  
V
LCD  
SDA  
SCL  
1
2
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
S39  
S38  
S37  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
1
2
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
S79  
S78  
S77  
S76  
S75  
S74  
S73  
S72  
S71  
S70  
S69  
S68  
S67  
S66  
S65  
S64  
S63  
S62  
S61  
SYNC  
CLK  
3
3
4
4
V
5
5
DD  
OSC  
A0  
6
6
7
7
A1  
8
8
A2  
9
9
SA0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
SS  
V
LCD  
BP0  
BP2  
BP1  
BP3  
S0  
BP0  
BP2  
BP1  
BP3  
S40  
S41  
S42  
S43  
open  
PCF  
8576CT  
PCF  
8576CT  
S1  
S2  
S3  
34  
33  
32  
31  
30  
29  
S17  
S16  
S15  
34  
33  
32  
31  
30  
29  
S57  
S56  
S55  
S7  
S8  
24  
25  
26  
27  
28  
S47  
S48  
S49  
S50  
S51  
24  
25  
26  
27  
28  
S9  
S14  
S13  
S12  
S54  
S53  
S52  
S10  
S11  
S0  
S10  
S11  
S12  
S13  
S39  
S40  
S50  
S51  
S52  
S53  
S79  
backplanes  
segments  
MBE537  
Fig.29 Single plane wiring of packaged PCF8576CTs.  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
The only bus line that does not require a second opening  
to lead through to the next PCF8576C is VLCD, being the  
cascade centre. The placing of VLCD adjacent to VSS  
allows the two supplies to be tied together.  
12.1 Chip-on-glass cascadability in single plane  
In chip-on-glass technology, where driver devices are  
bonded directly onto glass of the LCD, it is important that  
the devices may be cascaded without the crossing of  
conductors, but the paths of conductors can be continued  
on the glass under the chip. All of this is facilitated by the  
PCF8576C bonding pad layout (Fig.30). Pads needing bus  
interconnection between all PCF8576Cs of the cascade  
are VDD, VSS, VLCD, CLK, SCL, SDA and SYNC. These  
lines may be led to the corresponding pads of the next  
PCF8576C through the wide opening between VLCD pad  
and the backplane output pads.  
When an external clocking source is to be used, OSC of all  
devices should be tied to VDD. The pads OSC, A0, A1, A2  
and SA0 have been placed between VSS and VDD to  
facilitate wiring of oscillator, hardware subaddress and  
slave address.  
13 BONDING PAD LOCATIONS  
34 33 32 31 30 29 28 27 26 25 24 23 22 21  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
20  
19  
18  
17  
16  
15  
14  
13  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S3  
S2  
S1  
S0  
BP3  
BP1  
BP2  
BP0  
x
3.20  
mm  
0
0
y
V
12  
LCD  
PCF8576C  
V
11  
10  
9
SS  
SA0  
A2  
8
A1  
51 52 53 54 55 56  
1
2
3
4
5
6
7
MBE536  
2.92 mm  
Chip dimensions: approximately 2.92 × 3.20 mm.  
Pad area: 0.0121 mm2.  
Bonding pad dimensions: 110 × 110 µm.  
Fig.30 Bonding pad locations.  
35  
1998 Jul 30  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
Table 16 Bonding pad locations (dimensions in µm)  
All x/y coordinates are referenced to the centre of the chip  
(see Fig.30).  
SYMBOL  
S15  
PAD  
x
y
SYMBOL  
SDA  
PAD  
x
y
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
751  
1380  
1380  
1380  
1243  
1083  
910  
1
74  
1380  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
924  
1084  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1083  
923  
SCL  
SYNC  
CLK  
VDD  
OSC  
A0  
2
148  
355  
1380  
1380  
1380  
1380  
1380  
1380  
1284  
1116  
945  
751  
485  
125  
3
4
534  
5
742  
6
913  
750  
7
1087  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1290  
1074  
914  
577  
A1  
8
417  
A2  
9
244  
SA0  
VSS  
VLCD  
BP0  
BP2  
BP1  
BP3  
S0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
84  
89  
249  
422  
582  
755  
915  
1088  
1248  
1380  
1380  
1380  
1380  
1380  
1380  
285  
458  
618  
791  
S1  
951  
S2  
1124  
1284  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
1380  
S3  
S4  
750  
S5  
590  
S6  
741  
417  
S7  
581  
257  
S8  
408  
S9  
248  
Alignment marks  
S10  
S11  
S12  
S13  
S14  
75  
C1  
C2  
F
1290  
1295  
1305  
1385  
1385  
1405  
85  
258  
418  
591  
1998 Jul 30  
36  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
14 PACKAGE OUTLINES  
VSO56: plastic very small outline package; 56 leads  
SOT190-1  
D
E
A
X
c
y
H
v
M
A
E
Z
56  
29  
Q
p
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
L
detail X  
1
28  
w
M
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(2)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
0.3  
0.1  
3.0  
2.8  
0.42  
0.30  
0.22 21.65 11.1  
0.14 21.35 11.0  
15.8  
15.2  
1.6  
1.4  
1.45  
1.30  
0.90  
0.55  
3.3  
0.25  
0.01  
0.75  
2.25  
0.2  
0.1  
0.1  
7o  
0o  
0.012 0.12  
0.004 0.11  
0.017 0.0087 0.85  
0.012 0.0055 0.84  
0.44  
0.43  
0.62  
0.60  
0.063 0.057  
0.055 0.051  
0.035  
0.022  
inches  
0.008 0.004 0.004  
0.0295  
0.089  
0.13  
Note  
1. Plastic or metal protrusions of 0.3 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
96-04-02  
97-08-11  
SOT190-1  
1998 Jul 30  
37  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm  
SOT314-2  
y
X
A
48  
33  
Z
49  
32  
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
64  
17  
detail X  
1
16  
Z
v
M
A
D
e
w M  
b
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 10.1 10.1  
0.17 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.45 1.45  
1.05 1.05  
1.60  
mm  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-12-19  
97-08-01  
SOT314-2  
1998 Jul 30  
38  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
If wave soldering cannot be avoided, for LQFP  
15 SOLDERING  
packages with a pitch (e) larger than 0.5 mm, the  
following conditions must be observed:  
15.1 Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
The footprint must be at an angle of 45° to the board  
direction and must incorporate solder thieves  
downstream and at the side corners.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(order code 9398 652 90011).  
15.3.2 VSO  
Wave soldering techniques can be used for all VSO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
15.2 Reflow soldering  
Reflow soldering techniques are suitable for all LQFP and  
VSO packages.  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
The package footprint must incorporate solder thieves at  
the downstream end.  
15.3.3 METHOD (LQFP AND VSO)  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow peak temperatures range from  
215 to 250 °C.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
15.3 Wave soldering  
15.3.1 LQFP  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
Wave soldering is not recommended for LQFP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
15.4 Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
CAUTION  
Wave soldering is NOT applicable for all LQFP  
packages with a pitch (e) equal or less than 0.5 mm.  
1998 Jul 30  
39  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
16 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
17 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
18 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1998 Jul 30  
40  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
NOTES  
1998 Jul 30  
41  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
NOTES  
1998 Jul 30  
42  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex  
rates  
PCF8576C  
NOTES  
1998 Jul 30  
43  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Fax. +43 160 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Brazil: see South America  
Pakistan: see Singapore  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Portugal: see Spain  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Czech Republic: see Austria  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
Slovakia: see Austria  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1998  
SCA60  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
415106/1200/06/pp44  
Date of release: 1998 Jul 30  
Document order number: 9397 750 04196  

相关型号:

PCF8576CU/7

Universal LCD driver for low multiplex rates
NXP

PCF8576CU/F1

IC LIQUID CRYSTAL DISPLAY DRIVER, UUC56, DIE-56, Display Driver
NXP

PCF8576CU/F1,026

PCF8576C - Universal LCD driver for low multiplex rates DIE 56-Pin
NXP

PCF8576C_10

Universal LCD driver for low multiplex rates
NXP

PCF8576D

Universal LCD driver for low multiplex rates
NXP

PCF8576DH

Universal LCD driver for low multiplex rates
NXP

PCF8576DH/2

Universal LCD driver for low multiplex rates
NXP

PCF8576DH/2

Interface Circuit, CMOS, PQFP64
PHILIPS

PCF8576DH/2,518

IC LIQUID CRYSTAL DISPLAY DRIVER, PQFP64, 10 X 10 MM, 1 MM HEIGHT, PLASTIC, MS-026, SOT-357-1, TQFP-64, Display Driver
NXP

PCF8576DH/2-T

Universal LCD driver for low multiplex rates
NXP

PCF8576DT

Universal LCD driver for low multiplex rates
NXP

PCF8576DT/2

Universal LCD driver for low multiplex rates
NXP