PCF8591T,112 [NXP]

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin;
PCF8591T,112
型号: PCF8591T,112
厂家: NXP    NXP
描述:

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin

PC
文件: 总31页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8591  
8-bit A/D and D/A converter  
Rev. 7 — 27 June 2013  
Product data sheet  
1. General description  
The PCF8591 is a single-chip, single-supply low-power 8-bit CMOS data acquisition  
device with four analog inputs, one analog output and a serial I2C-bus interface. Three  
address pins A0, A1 and A2 are used for programming the hardware address, allowing  
the use of up to eight devices connected to the I2C-bus without additional hardware.  
Address, control and data to and from the device are transferred serially via the two-line  
bidirectional I2C-bus.  
The functions of the device include analog input multiplexing, on-chip track and hold  
function, 8-bit analog-to-digital conversion and an 8-bit digital-to-analog conversion. The  
maximum conversion rate is given by the maximum speed of the I2C-bus.  
2. Features and benefits  
Single power supply  
Operating supply voltage 2.5 V to 6.0 V  
Low standby current  
Serial input and output via I2C-bus  
I2C address selection by 3 hardware address pins  
Max sampling rate given by I2C-bus speed  
4 analog inputs configurable as single ended or differential inputs  
Auto-incremented channel selection  
Analog voltage range from VSS to VDD  
On-chip track and hold circuit  
8-bit successive approximation A/D conversion  
Multiplying DAC with one analog output.  
3. Applications  
Supply monitoring  
Reference setting  
Analog control loops  
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PCF8591P  
PCF8591T  
DIP16  
plastic dual in-line package; 16 leads  
(300 mil)  
SOT38-4  
SO16  
plastic small outline package; 16 leads;  
body width 7.5 mm  
SOT162-1  
4.1 Ordering options  
Table 2.  
Ordering options  
Product type number  
Sales item (12NC) Orderable part  
number  
IC  
revision  
Delivery form  
PCF8591P  
933768130112  
935276541512  
935276541518  
PCF8591P,112  
PCF8591T/2,512  
PCF8591T/2,518  
1
1
1
tube  
PCF8591T/2  
tube, dry pack  
tape and reel, dry pack, 13 inch  
5. Marking  
Table 3.  
Marking codes  
Type number  
PCF8591P  
PCF8591T  
Marking code  
PCF8591P  
PCF8591T  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
2 of 31  
 
 
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
6. Block diagram  
SCL  
SDA  
A0  
A1  
2
I C BUS  
INTERFACE  
STATUS  
REGISTER  
DAC DATA  
REGISTER  
ADC DATA  
REGISTER  
PCF8591  
A2  
EXT  
V
V
POWER ON  
RESET  
DD  
SS  
CONTROL  
LOGIC  
OSCILLATOR  
OSC  
AIN0  
AIN1  
AIN2  
AIN3  
SAMPLE  
AND  
HOLD  
ANALOGUE  
MULTIPLEXER  
SUCCESSIVE  
APPROXIMATION  
REGISTER/LOGIC  
COMPARATOR  
SAMPLE  
AND  
HOLD  
V
AOUT  
REF  
DAC  
AGND  
mbl821  
Fig 1. Block diagram of PCF8591  
7. Pinning information  
7.1 Pinning  
$,1ꢁ  
ꢀꢂ 9  
$,1ꢁ  
$,1ꢀ  
$,1ꢃ  
$,1ꢅ  
$ꢁ  
ꢀꢂ 9  
''  
''  
ꢀꢄ $287  
ꢀꢆ 9  
$,1ꢀ  
$,1ꢃ  
$,1ꢅ  
$ꢁ  
ꢀꢄ $287  
ꢀꢆ 9  
5()  
5()  
ꢀꢅ $*1'  
ꢀꢃ (;7  
ꢀꢀ 26&  
ꢀꢁ 6&/  
ꢀꢅ $*1'  
ꢀꢃ (;7  
ꢀꢀ 26&  
ꢀꢁ 6&/  
3&)ꢀꢁꢂꢃ3  
3&)ꢀꢁꢂꢃ7  
$ꢀ  
$ꢀ  
$ꢃ  
$ꢃ  
9
66  
6'$  
9
66  
 6'$  
DDDꢀꢁꢁꢂꢁꢁꢃ  
DDDꢀꢁꢁꢂꢁꢁꢂ  
Top view. For mechanical details, see  
Figure 22 on page 21.  
Top view. For mechanical details, see  
Figure 23 on page 22.  
Fig 2. Pin configuration for PCF8591P  
(DIP16)  
Fig 3. Pin configuration for PCF8591T  
(SO16)  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
3 of 31  
 
 
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
7.2 Pin description  
Table 4.  
Symbol  
AIN0  
AIN1  
AIN2  
AIN3  
A0  
Pin description  
Pin  
1
Description  
analog inputs (A/D converter)  
2
3
4
5
hardware slave address  
A1  
6
A2  
7
VSS  
8
ground supply voltage  
SDA  
SCL  
9
I2C-bus serial data input and output  
I2C-bus serial clock input  
oscillator input/output  
10  
11  
12  
13  
14  
15  
16  
OSC  
EXT  
external/internal switch for oscillator input  
analog ground supply  
AGND  
VREF  
AOUT  
VDD  
voltage reference input  
analog output (D/A converter)  
supply voltage  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
4 of 31  
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
8. Functional description  
8.1 Addressing  
Each PCF8591 device in an I2C-bus system is activated by sending a valid address to the  
device. The address consists of a fixed part and a programmable part. The programmable  
part must be set according to the address pins A0, A1 and A2. The address is always sent  
as the first byte after the start condition in the I2C-bus protocol. The last bit of the address  
byte is the read/write-bit which sets the direction of the following data transfer (see Table 5  
on page 13, Figure 15 on page 13 and Figure 16 on page 13).  
8.2 Control byte  
The second byte sent to a PCF8591 device is stored in its control register and is required  
to control the device function. The upper nibble of the control register is used for enabling  
the analog output, and for programming the analog inputs as single-ended or differential  
inputs. The lower nibble selects one of the analog input channels defined by the upper  
nibble (see Figure 4). If the auto-increment flag is set, the channel number is incremented  
automatically after each A/D conversion.  
If the auto-increment mode is desired in applications where the internal oscillator is used,  
the analog output enable flag must be set in the control byte (bit 6). This allows the  
internal oscillator to run continuously, by this means preventing conversion errors  
resulting from oscillator start-up delay. The analog output enable flag can be reset at other  
times to reduce quiescent power consumption.  
The selection of a non-existing input channel results in the highest available channel  
number being allocated. Therefore, if the auto-increment flag is set, the next selected  
channel is always channel 0. The most significant bits of both nibbles are reserved for  
possible future functions and must be set to logic 0. After a Power-On Reset (POR)  
condition, all bits of the control register are reset to logic 0. The D/A converter and the  
oscillator are disabled for power saving. The analog output is switched to a  
high-impedance state.  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
5 of 31  
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
06%  
/6%  
;
;
;
;
;
;
&21752/ꢊ%<7(  
$ꢍ'ꢊ&+$11(/ꢊ180%(5ꢌ  
ꢁꢁꢊꢊFKDQQHOꢊꢁ  
ꢁꢀꢊꢊFKDQQHOꢊꢀ  
ꢀꢁꢊꢊFKDQQHOꢊꢃ  
ꢀꢀꢊꢊFKDQQHOꢊꢅ  
$872ꢋ,1&5(0(17ꢊ)/$*ꢌ  
DFWLYHꢊLIꢊꢀ  
$1$/2*ꢊ,1387ꢊ352*5$00,1*ꢌ  
ꢁꢁꢊꢊIRXUꢊVLQJOHꢋHQGHGꢊLQSXWV  
ꢊꢊꢊꢊꢊꢊ$,1ꢁꢊꢊFKDQQHOꢊꢁ  
ꢊꢊꢊꢊꢊꢊ$,1ꢀꢊꢊFKDQQHOꢊꢀ  
ꢊꢊꢊꢊꢊꢊ$,1ꢃꢊꢊFKDQQHOꢊꢃ  
ꢊꢊꢊꢊꢊꢊ$,1ꢅꢊꢊFKDQQHOꢊꢅ  
ꢁꢀꢊꢊWKUHHꢊGLIIHUHQWLDOꢊLQSXWV  
$,1ꢁ  
FKDQQHOꢊꢁ  
$,1ꢀ  
FKDQQHOꢊꢀ  
$,1ꢃ  
FKDQQHOꢊꢃ  
$,1ꢅ  
ꢀꢁꢊꢊVLQJOHꢋHQGHGꢊDQGꢊGLIIHUHQWLDOꢊPL[HG  
ꢊꢊꢊꢊꢊꢊ$,1ꢁꢊꢊFKDQQHOꢊꢁ  
ꢊꢊꢊꢊꢊꢊ$,1ꢀꢊꢊFKDQQHOꢊꢀ  
$,1ꢃ  
FKDQQHOꢊꢃ  
$,1ꢅ  
ꢀꢀꢊꢊWZRꢊGLIIHUHQWLDOꢊLQSXWV  
$,1ꢁ  
FKDQQHOꢊꢁ  
$,1ꢀ  
$,1ꢃ  
FKDQQHOꢊꢀ  
$,1ꢅ  
$1$/2*ꢊ287387ꢊ(1$%/(ꢊ)/$*ꢌ  
DQDORJꢊRXWSXWꢊDFWLYHꢊLIꢊꢀ  
DDDꢀꢁꢁꢂꢁꢄꢅ  
Fig 4. Control byte  
8.3 D/A conversion  
The third byte sent to a PCF8591 device is stored in the DAC data register and is  
converted to the corresponding analog voltage using the on-chip D/A converter. This D/A  
converter consists of a resistor divider chain connected to the external reference voltage  
with 256 taps and selection switches. The tap-decoder switches one of these taps to the  
DAC output line (see Figure 5).  
The analog output voltage is buffered by an auto-zeroed unity gain amplifier. Setting the  
analog output enable flag of the control register switches this buffer amp on or off. In the  
active state, the output voltage is held until a further data byte is sent.  
The on-chip D/A converter is also used for successive approximation A/D conversion. In  
order to release the DAC for an A/D conversion cycle the unity gain amplifier is equipped  
with a track and hold circuit. This circuit holds the output voltage while executing the A/D  
conversion.  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
6 of 31  
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
The formula for the output voltage supplied to the analog output AOUT is shown in  
Figure 6. The waveforms of a D/A conversion sequence are shown in Figure 7.  
'$&ꢊRXW  
9
5()  
5ꢃꢄꢂ  
5ꢃꢄꢄ  
))  
'ꢇ  
'ꢂ  
5ꢅ  
5ꢃ  
5ꢀ  
7$3  
'(&2'(5  
ꢁꢃ  
ꢁꢀ  
ꢁꢁ  
'ꢁ  
$*1'  
DDDꢀꢁꢁꢂꢁꢆꢇ  
Fig 5. DAC resistor divider chain  
06%  
/6%  
'$&ꢊGDWD  
UHJLVWHU  
'ꢇ 'ꢂ 'ꢄ 'ꢆ 'ꢅ 'ꢃ 'ꢀ 'ꢁ  
9
$287  
9
ꢊꢋꢊ9  
$*1'  
95()  
L
9
ꢊ ꢊ9  
$287  
ꢊꢎꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊꢊ™ꢊ'Lꢊîꢊꢃ  
$*1'  
9
''  
ꢃꢄꢂ  
Lꢊ ꢊꢁ  
9
95()  
9
$*1'  
9
66  
ꢁꢁ ꢁꢀ ꢁꢃ ꢁꢅ ꢁꢆ  
)( ))  
'$&ꢊꢏKH[ꢐ  
DDDꢀꢁꢁꢂꢁꢆꢃ  
Fig 6. DAC data and DC conversion characteristics  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
7 of 31  
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
SURWRFRO  
6&/  
6
$''5(66  
$
&21752/ꢊ%<7(  
$
'$7$ꢊ%<7(ꢊꢀ  
$
'$7$ꢊ%<7(ꢊꢃ  
$
6'$  
9
$287  
KLJKꢋLPSHGDQFHꢊVWDWHꢊRI  
SUHYLRXVꢊYDOXHꢊKHOGꢊLQꢊ'$&ꢊUHJLVWHU  
SUHYLRXVꢊYDOXHꢊKHOG  
LQꢊ'$&ꢊUHJLVWHU  
YDOXHꢊRIꢊGDWDꢊE\WHꢊꢀ  
WLPH  
DDDꢀꢁꢁꢂꢁꢈꢃ  
Fig 7. D/A conversion sequence  
8.4 A/D conversion  
The A/D converter uses the successive approximation conversion technique. The on-chip  
D/A converter and a high-gain comparator are used temporarily during an A/D conversion  
cycle.  
An A/D conversion cycle is always started after sending a valid read mode address to a  
PCF8591 device. The A/D conversion cycle is triggered at the trailing edge of the  
acknowledge clock pulse and is executed while transmitting the result of the previous  
conversion (see Figure 8).  
protocol  
SCL  
S
ADDRESS  
1
A
DATA BYTE 0  
A
DATA BYTE 1  
A
DATA BYTE 2  
A
1
2
8
9
1
9
1
9
1
SDA  
sampling byte 1  
sampling byte 2  
sampling byte 3  
conversion of byte 1  
conversion of byte 2  
conversion of byte 3  
transmission  
of previously  
converted byte  
transmission  
of byte 1  
transmission  
of byte 2  
mbl829  
Fig 8. A/D conversion sequence  
Once a conversion cycle is triggered, an input voltage sample of the selected channel is  
stored on the chip and is converted to the corresponding 8-bit binary code. Samples  
picked up from differential inputs are converted to an 8-bit two's complement code (see  
Figure 9 and Figure 10).  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
8 of 31  
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
The conversion result is stored in the ADC data register and awaits transmission. If the  
auto-increment flag is set, the next channel is selected.  
The first byte transmitted in a read cycle contains the conversion result code of the  
previous read cycle. After a POR condition, the first byte read is 80h. The protocol of an  
I2C-bus read cycle is shown in Section 9.  
The maximum A/D conversion rate is given by the actual speed of the I2C-bus.  
HEX  
code  
FF  
V
V  
REF  
AGND  
FE  
V
=
lsb  
256  
04  
03  
02  
01  
00  
0
1
2
3
4
254 255  
V
AIN  
V  
AGND  
V
lsb  
mbl830  
Fig 9. A/D conversion characteristics of single ended inputs  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
9 of 31  
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
HEX  
CODE  
7F  
7E  
02  
01  
00  
128 127  
2  
1  
0
1
2
126  
127  
V
AIN +  
V  
AIN −  
FF  
V
lsb  
FE  
V
REF  
V  
AGND  
V
=
lsb  
256  
81  
80  
mbl831  
Fig 10. A/D conversion characteristics of differential inputs  
8.5 Reference voltage  
For the D/A and A/D conversion, either a stable external voltage reference or the supply  
voltage must be applied to the resistor divider chain (pins VREF and AGND). The AGND  
pin has to be connected to the system analog ground. It may have a DC off-set with  
reference to VSS  
.
A low frequency can be applied to the VREF and AGND pins. This allows the use of the  
D/A converter as a one-quadrant multiplier (see Section 10 and Figure 6)  
The A/D converter can also be used as a one or two quadrant analog divider. The analog  
input voltage is divided by the reference voltage. The result is converted to a binary code.  
In this application, the reference voltage must be kept stable during the conversion cycle.  
8.6 Oscillator  
An on-chip oscillator generates the clock signal required for the A/D conversion cycle and  
for refreshing the auto-zeroed buffer amplifier. When using this oscillator the EXT pin must  
be connected to VSS. The oscillator frequency is available at the OSC pin.  
If the EXT pin is connected to VDD, the oscillator output OSC is switched to a  
high-impedance state allowing to feed an external clock signal to OSC.  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
10 of 31  
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
9. Characteristics of the I2C bus  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only  
when the bus is not busy.  
9.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse, as changes in the data line at this time  
are interpreted as a control signal (see Figure 11).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mbc621  
Fig 11. Bit transfer  
9.2 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy.  
A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START  
condition - S.  
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition - P (see Figure 12).  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 12. Definition of START and STOP conditions  
9.3 System configuration  
A device generating a message is a transmitter; a device receiving a message is a  
receiver. The device that controls the message is the master; and the devices which are  
controlled by the master are the slaves (see Figure 13).  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
11 of 31  
 
 
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 13. System configuration  
9.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of 8 bits is followed by an acknowledge  
cycle.  
A slave receiver, which is addressed, must generate an acknowledge after the  
reception of each byte  
Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be considered)  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition  
Acknowledgement on the I2C-bus is shown in Figure 14.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 14. Acknowledgement on the I2C-bus  
9.5 I2C bus protocol  
After a START condition, the I2C slave address has to be sent to the PCF8591 device.  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
12 of 31  
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
Eight different I2C-bus slave addresses can be used to address the PCF8591 (see  
Table 5).  
Table 5.  
I2C slave address byte  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
slave address  
1
0
0
1
A2  
A1  
A0  
The least significant bit of the slave address byte is bit R/W (see Table 6).  
Table 6.  
R/W-bit description  
R/W  
0
Description  
write data  
read data  
1
Bit 1 to bit 3 of the slave address are defined by connecting the input pins A0 to A2 to  
either VSS (logic 0) or VDD (logic 1). Therefore, eight instances of PCF8591 can be  
distinguished on the same I2C-bus.  
acknowledge  
acknowledge  
acknowledge  
from PCF8591  
from PCF8591  
from PCF8591  
S
ADDRESS  
0
A
CONTROL BYTE  
A
DATA BYTE  
A
P/S  
N = 0 to M  
data bytes  
mbl833  
Fig 15. Bus protocol for write mode, D/A conversion  
acknowledge  
acknowledge  
no acknowledge  
from PCF8591  
from master  
S
ADDRESS  
1
A
DATA BYTE  
A
LAST DATA BYTE  
1
P
N = 0 to M  
data bytes  
mbl834  
Fig 16. Bus protocol for read mode, A/D conversion  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
13 of 31  
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
10. Application design-in information  
Inputs must be connected to VSS or VDD when not in use. Analog inputs may also be  
connected to AGND or VREF  
.
In order to prevent excessive ground and supply noise and to minimize crosstalk of the  
digital to analog signal paths the printed-circuit board layout must be very carefully  
designed. Supply lines common to a PCF8591 device and noisy digital circuits and ground  
loops should be avoided. Decoupling capacitors (>10 F) are recommended for power  
supply and reference voltage inputs.  
V
DD  
V
V
V
DD  
DD  
V
0
DD  
AIN0  
AIN1  
AIN2  
AIN3  
A0  
AOUT  
V
OUT  
V
REF  
AGND  
EXT  
V
DD  
+θ  
OSC  
PCF8591  
A1  
SCL  
SDA  
A2  
V
SS  
+θ  
V
V
DD  
DD  
AIN0  
AIN1  
AIN2  
AIN3  
A0  
AOUT  
V
OUT  
V
V
REF  
AGND  
EXT  
V
V
1
0
2
OSC  
V
DD  
PCF8591  
A1  
SCL  
SDA  
A2  
V
SS  
V
DD  
MASTER  
TRANSMITTER  
ANALOGUE GROUND  
DIGITAL GROUND  
2
I C bus  
mbl839  
Fig 17. Application diagram  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
14 of 31  
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
11. Internal circuitry  
3&)ꢀꢁꢂꢃ  
9
''  
VXEVWUDWH  
$,1ꢁ  
$,1ꢀ  
$,1ꢃ  
$,1ꢅ  
$ꢁ  
$287  
9
5()  
$*1'  
(;7  
26&  
6&/  
6'$  
$ꢀ  
$ꢃ  
9
66  
DDDꢀꢁꢁꢂꢁꢃꢈ  
Fig 18. Device protection diagram  
12. Safety notes  
CAUTION  
This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling  
electrostatic sensitive devices.  
Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or  
equivalent standards.  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
15 of 31  
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
13. Limiting values  
Table 7.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
VI  
Parameter  
Conditions  
Min  
Max  
+8.0  
VDD + 0.5  
10  
Unit  
V
supply voltage  
input voltage  
0.5  
any input  
0.5  
V
II  
input current  
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mW  
mW  
IO  
output current  
supply current  
ground supply current  
20  
IDD  
50  
ISS  
50  
Ptot  
P/out  
total power dissipation per package  
300  
power dissipation per  
output  
100  
[1]  
[2]  
[3]  
VESD  
electrostatic  
discharge voltage  
HBM  
MM  
-
3000  
300  
200  
V
-
V
Ilu  
latch-up current  
-
mA  
C  
C  
Tamb  
Tstg  
ambient temperature operating device  
storage temperature  
40  
65  
+85  
[4]  
+150  
[1] Pass level; Human Body Model (HBM), according to Ref. 6 “JESD22-A114”.  
[2] Pass level; Machine Model (MM), according to Ref. 7 “JESD22-A115”.  
[3] Pass level; latch-up testing according to Ref. 8 “JESD78” at maximum ambient temperature (Tamb(max)).  
[4] According to the store and transport requirements (see Ref. 12 “UM10569”) the devices have to be stored at a temperature of +8 C to  
+45 C and a humidity of 25 % to 75 %.  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
16 of 31  
 
 
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
14. Characteristics  
14.1 Static characteristics  
Table 8.  
Characteristics  
V
DD = 2.5 V to 6.0 V; VSS = 0; Tamb = 40 oC to +85 oC unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
2.5  
-
Typ  
Max  
6.0  
15  
Unit  
V
Supply  
VDD  
supply voltage  
supply current  
-
IDD  
standby; VI = VSS or VDD; no load  
operating; fSCL = 100 kHz  
AOUT off  
1
A  
-
125  
0.45  
-
250  
1.0  
2.0  
A  
mA  
V
AOUT active  
-
[1]  
VPOR  
power-on reset  
voltage  
0.8  
Digital in- and outputs: SCL, SDA, A0, A1, A2  
VIL  
VIH  
IL  
LOW-level input  
voltage  
0
-
-
0.3 VDD  
V
V
HIGH-level input  
voltage  
0.7 VDD  
VDD  
leakage current  
VI = VSS to VDD  
A0, A1, A2  
250  
1  
-
-
-
-
+250  
nA  
A  
pF  
SCL, SDA  
+1  
5
Ci  
input capacitance  
-
IOL  
LOW-level output  
current  
VOL = 0.4 V  
3.0  
-
mA  
Reference voltage inputs  
[2]  
[2]  
Vref  
reference voltage  
Vref > VAGND  
VSS + 1.6  
-
VDD  
V
VAGND  
ILI  
voltage on pin AGND Vref > VAGND  
input leakage current  
VSS  
250  
-
-
VDD 0.8  
V
-
+250  
-
nA  
k  
Rref  
reference resistance  
pins VREF and AGND  
100  
Oscillator: OSC, EXT  
ILI  
input leakage current  
oscillator frequency  
-
-
-
250  
nA  
fOSC  
0.75  
1.25  
MHz  
[1] The power-on reset circuit resets the I2C-bus logic when VDD is less than VPOR  
.
Vref + VAGND  
---------------------------------  
2
[2] A further extension of the range is possible, if the following conditions are fulfilled:  
0.8 V ,  
Vref + VAGND  
---------------------------------  
0.4 V .  
VDD  
2
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
17 of 31  
 
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
14.2 D/A characteristics  
Table 9.  
D/A characteristics  
VDD = 5.0 V; VSS = 0; VREF =5.0 V; VAGND = 0 V; RL = 10 k; CL = 100 pF; Tamb = 40 oC to +85 oC unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog output  
Voa  
analog output voltage no resistive load  
RL = 10 k  
VSS  
VSS  
-
-
-
-
VDD  
V
0.9 VDD  
250  
V
ILO  
output leakage current AOUT disabled  
nA  
Accuracy  
EO  
offset error  
Tamb = 25 oC  
-
-
-
-
-
-
-
-
-
-
50  
mV  
LSB  
%
EL  
linearity error  
gain error  
1.5  
1
EG  
no resistive load  
ts(DAC)  
fc(DAC)  
DAC settling time  
to 1/2 LSB full scale  
90  
s  
DAC conversion  
frequency  
11.1  
kHz  
SNRR  
supply noise rejection f = 100 Hz;  
ratio  
-
40  
-
dB  
V
DDN = 0.1 VPP  
14.3 A/D characteristics  
Table 10. A/D characteristics  
VDD = 5.0 V; VSS = 0; VREF =5.0 V; VAGND = 0 V; RS = 10 k; Tamb = 40 oC to +85 oC unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog inputs  
Via  
analog input voltage  
VSS  
-
-
-
VDD  
100  
V
ILIA  
analog input leakage  
current  
nA  
Ci(a)  
analog input  
capacitance  
-
10  
-
pF  
Ci(dif)  
Vi(se)  
differential input capacitance  
-
10  
-
-
pF  
V
single-ended input  
voltage  
measuring range  
VAGND  
VREF  
Vi(dif)  
differential input  
voltage  
measuring range:  
-
V
VFS  
------------  
2
+VFS  
------------  
2
VFS = VREF - VAGND  
Accuracy  
EO  
EL  
offset error  
linearity error  
gain error  
Tamb = 25 oC  
-
-
-
-
-
-
-
-
20  
1.5  
1
mV  
LSB  
%
EG  
small signal;  
5
%
Vi = 16 LSB  
CMRR  
common mode  
rejection ratio  
-
60  
-
dB  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
18 of 31  
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
Table 10. A/D characteristics …continued  
VDD = 5.0 V; VSS = 0; VREF =5.0 V; VAGND = 0 V; RS = 10 k; Tamb = 40 oC to +85 oC unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SNRR  
supply noise rejection f = 100 Hz;  
ratio  
-
40  
-
dB  
V
DDN = 0.1 VPP  
tconv  
fs  
conversion time  
-
-
-
-
90  
s  
sampling frequency  
11.1  
kHz  
DDDꢀꢁꢁꢂꢁꢉꢈ  
DDDꢀꢁꢁꢂꢁꢉꢅ  
ꢃꢁꢁ  
''  
ꢏ—$ꢐ  
ꢀꢂꢁ  
,,  
,,  
''  
ꢏ—$ꢐ  
ꢀꢂꢁ  
ꢀꢃꢁ  
ꢀꢃꢁ  
ꢈꢁ  
ꢆꢁ  
ꢋꢆꢁꢊž&  
ꢎꢃꢇꢊž&  
ꢎꢈꢄž&  
ꢈꢁ  
ꢆꢁ  
9
ꢊꢏ9ꢐ  
9
ꢊꢏ9ꢐ  
''  
''  
a. internal oscillator; Tamb = +27 C  
b. External oscillator  
Fig 19. Operating supply current as a function of supply voltage (analog output disabled)  
DDDꢀꢁꢁꢂꢁꢇꢁ  
DDDꢀꢁꢁꢂꢁꢇꢄ  
ꢄꢁꢁ  
ꢄꢁꢁ  
'ꢍ$ꢊRXWSXWꢊ  
'ꢍ$ꢊRXWSXWꢊ  
LPSHGDQFH  
ꢏŸꢐ  
LPSHGDQFH  
ꢏŸꢐ  
ꢆꢁꢁ  
ꢅꢁꢁ  
ꢃꢁꢁ  
ꢀꢁꢁ  
ꢆꢁꢁ  
ꢅꢁꢁ  
ꢃꢁꢁ  
ꢀꢁꢁ  
ꢁK  
ꢃK  
ꢆK  
ꢂK  
ꢈK  
ꢁ$K  
%ꢁK  
&ꢁK  
'ꢁK  
(ꢁK  
)ꢁK  
))K  
KH[ꢊLQSXWꢊFRGH  
KH[ꢊLQSXWꢊFRGH  
a. Output impedance near negative power rail;  
amb = +27  C  
b. Output impedance near positive power rail; Tamb  
+27  C  
=
T
Fig 20. Output impedance of analog output buffer (near power rails)  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
19 of 31  
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
14.4 Dynamic characteristics  
Table 11. Dynamic characteristics  
All timing characteristics are valid within the operating supply voltage and ambient temperature  
range and reference to VIL and VIH with an input voltage swing of VSS to VDD  
.
Symbol Parameter  
Min  
Typ  
Max  
Unit  
[1]  
I2C bus timing (see Figure 21)  
fSCL  
tSP  
SCL clock frequency  
-
-
-
-
100  
100  
kHz  
ns  
pulse width of spikes that must be  
suppressed by the input filter  
tBUF  
bus free time between a STOP and START  
condition  
4.7  
-
-
s  
tSU;STA  
tHD;STA  
tLOW  
tHIGH  
tr  
set-up time for a repeated START condition  
hold time (repeated) START condition  
LOW period of the SCL clock  
4.7  
4.0  
4.7  
4.0  
-
-
-
-
-
-
-
-
-
-
-
-
s  
s  
s  
s  
s  
s  
s  
s  
s  
s  
-
-
HIGH period of the SCL clock  
-
rise time of both SDA and SCL signals  
fall time of both SDA and SCL signals  
data set-up time  
1.0  
0.3  
-
tf  
-
tSU;DAT  
250  
0
tHD;DAT data hold time  
tVD;DAT data valid time  
tSU;STO set-up time for STOP condition  
-
-
3.4  
-
4.0  
[1] A detailed description of the I2C bus specification, with applications, is given in Ref. 11 “UM10204”.  
START  
CONDITION  
(S)  
BIT 7  
MSB  
(A7)  
BIT 6  
(A6)  
BIT 0  
LSB  
(R/W)  
ACKNOWLEDGE  
(A)  
STOP  
CONDITION  
(P)  
PROTOCOL  
t
t
t
SU;STA  
LOW  
HIGH  
1 / f  
SCL  
SCL  
SDA  
t
t
t
BUF  
r
f
t
t
t
t
t
HD;STA  
SU;DAT  
HD;DAT  
VD;DAT  
SU;STO  
mbd820  
Fig 21. I2C bus timing diagram; rise and fall times refer to VIL and VIH  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
20 of 31  
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
15. Package outline  
DIP16: plastic dual in-line package; 16 leads (300 mil)  
SOT38-4  
D
M
E
A
2
A
A
1
L
c
e
w
M
Z
b
1
(e )  
1
b
b
2
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.30  
0.53  
0.38  
1.25  
0.85  
0.36  
0.23  
19.50  
18.55  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.1  
7.62  
0.3  
0.254  
0.01  
0.76  
0.068 0.021 0.049 0.014  
0.051 0.015 0.033 0.009  
0.77  
0.73  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.02  
0.13  
0.03  
Note  
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
95-01-14  
03-02-13  
SOT38-4  
Fig 22. DIP16: plastic dual in-line package; 16 leads (300 mil)  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
21 of 31  
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
SO16: plastic small outline package; 16 leads; body width 7.5 mm  
SOT162-1  
D
E
A
X
c
H
v
M
A
E
y
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
e
w
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
10.5  
10.1  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
2.65  
0.1  
0.25  
0.01  
1.27  
0.05  
1.4  
0.25 0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.41  
0.014 0.009 0.40  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches  
0.055  
0.01 0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT162-1  
075E03  
MS-013  
Fig 23. SO16: plastic small outline package; 16 leads: body width 7.5 mm  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
22 of 31  
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
16. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
23 of 31  
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 24) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 12 and 13  
Table 12. SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 13. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 24.  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
24 of 31  
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 24. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
17. References  
[1] AN10365 Surface mount reflow soldering description  
[2] AN10853 ESD and EMC sensitivity of IC  
[3] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[4] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[5] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[6] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[7] JESD22-A115 Electrostatic Discharge (ESD) Sensitivity Testing Machine Model  
(MM)  
[8] JESD78 IC Latch-Up Test  
[9] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[10] SNV-FA-01-02 Marking Formats Integrated Circuits  
[11] UM10204 I2C-bus specification and user manual  
[12] UM10569 Store and transport requirements  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
25 of 31  
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
18. Revision history  
Table 14. Revision history  
Document ID  
PCF8591 v.7  
Modifications:  
Release date  
20130627  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF8591 v.6  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
PCF8591 v.6  
PCF8591 v.5  
PCF8591 v.4  
PCF8591 v.3  
PCF8591 v.2  
PCF8591 v.1  
20030127  
20011213  
19980702  
19970402  
19910901  
19860627  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
-
-
-
PCF8591 v.5  
PCF8591 v.4  
PCF8591 v.3  
PCF8591 v.2  
PCF8591 v.1  
-
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
26 of 31  
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
19.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
27 of 31  
 
 
 
 
 
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
19.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP B.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
28 of 31  
 
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
21. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering options. . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 3. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 4. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Table 5. I2C slave address byte . . . . . . . . . . . . . . . . . . .13  
Table 6. R/W-bit description . . . . . . . . . . . . . . . . . . . . . .13  
Table 7. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .16  
Table 8. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .17  
Table 9. D/A characteristics . . . . . . . . . . . . . . . . . . . . . .18  
Table 10. A/D characteristics . . . . . . . . . . . . . . . . . . . . . .18  
Table 11. Dynamic characteristics . . . . . . . . . . . . . . . . . .20  
Table 12. SnPb eutectic process (from J-STD-020D) . . .24  
Table 13. Lead-free process (from J-STD-020D) . . . . . .24  
Table 14. Revision history . . . . . . . . . . . . . . . . . . . . . . . .26  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
29 of 31  
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
22. Figures  
Fig 1. Block diagram of PCF8591 . . . . . . . . . . . . . . . . . .3  
Fig 2. Pin configuration for PCF8591P (DIP16). . . . . . . .3  
Fig 3. Pin configuration for PCF8591T (SO16) . . . . . . . .3  
Fig 4. Control byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Fig 5. DAC resistor divider chain . . . . . . . . . . . . . . . . . . .7  
Fig 6. DAC data and DC conversion characteristics . . . .7  
Fig 7. D/A conversion sequence . . . . . . . . . . . . . . . . . . .8  
Fig 8. A/D conversion sequence . . . . . . . . . . . . . . . . . . .8  
Fig 9. A/D conversion characteristics of single ended  
inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Fig 10. A/D conversion characteristics of differential  
inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Fig 11. Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Fig 12. Definition of START and STOP conditions. . . . . .11  
Fig 13. System configuration . . . . . . . . . . . . . . . . . . . . . .12  
Fig 14. Acknowledgement on the I2C-bus . . . . . . . . . . . .12  
Fig 15. Bus protocol for write mode, D/A conversion. . . .13  
Fig 16. Bus protocol for read mode, A/D conversion. . . .13  
Fig 17. Application diagram . . . . . . . . . . . . . . . . . . . . . . .14  
Fig 18. Device protection diagram. . . . . . . . . . . . . . . . . .15  
Fig 19. Operating supply current as a function of supply  
voltage (analog output disabled) . . . . . . . . . . . . .19  
Fig 20. Output impedance of analog output buffer  
(near power rails). . . . . . . . . . . . . . . . . . . . . . . . .19  
Fig 21. I2C bus timing diagram; rise and fall times  
refer to VIL and VIH. . . . . . . . . . . . . . . . . . . . . . . .20  
Fig 22. DIP16: plastic dual in-line package; 16 leads  
(300 mil). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Fig 23. SO16: plastic small outline package; 16 leads:  
body width 7.5 mm. . . . . . . . . . . . . . . . . . . . . . . .22  
Fig 24. Temperature profiles for large and small  
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
PCF8591  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 7 — 27 June 2013  
30 of 31  
 
PCF8591  
NXP Semiconductors  
8-bit A/D and D/A converter  
23. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
19.4  
20  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Contact information . . . . . . . . . . . . . . . . . . . . 28  
Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
21  
4
4.1  
5
22  
23  
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
Functional description . . . . . . . . . . . . . . . . . . . 5  
Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Control byte . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
D/A conversion . . . . . . . . . . . . . . . . . . . . . . . . . 6  
A/D conversion . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Reference voltage. . . . . . . . . . . . . . . . . . . . . . 10  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
9
Characteristics of the I2C bus. . . . . . . . . . . . . 11  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
START and STOP conditions . . . . . . . . . . . . . 11  
System configuration . . . . . . . . . . . . . . . . . . . 11  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 12  
I2C bus protocol . . . . . . . . . . . . . . . . . . . . . . . 12  
9.1  
9.2  
9.3  
9.4  
9.5  
10  
11  
12  
13  
Application design-in information . . . . . . . . . 14  
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 15  
Safety notes . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 16  
14  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 17  
Static characteristics. . . . . . . . . . . . . . . . . . . . 17  
D/A characteristics . . . . . . . . . . . . . . . . . . . . . 18  
A/D characteristics . . . . . . . . . . . . . . . . . . . . . 18  
Dynamic characteristics . . . . . . . . . . . . . . . . . 20  
14.1  
14.2  
14.3  
14.4  
15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 21  
16  
Soldering of SMD packages . . . . . . . . . . . . . . 23  
Introduction to soldering . . . . . . . . . . . . . . . . . 23  
Wave and reflow soldering . . . . . . . . . . . . . . . 23  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 23  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 24  
16.1  
16.2  
16.3  
16.4  
17  
18  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 26  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 27  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 27  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
19.1  
19.2  
19.3  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2013.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 27 June 2013  
Document identifier: PCF8591  
 

相关型号:

PCF8591T,118

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin
NXP

PCF8591T,512

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin
NXP

PCF8591T,518

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin
NXP

PCF8591T-T

IC SPECIALTY ANALOG CIRCUIT, PDSO16, 7.50 MM, PLASTIC, SOT162-1, SO-16, Analog IC:Other
NXP

PCF8591T/2

IC SPECIALTY ANALOG CIRCUIT, PDSO16, 7.50 MM, LEAD FREE, PLASTIC, SOT162-1, SO-16, Analog IC:Other
NXP

PCF8591T/2,512

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin
NXP

PCF8591TD

IC SPECIALTY ANALOG CIRCUIT, PDSO16, 7.50 MM, LEAD FREE, PLASTIC, SOT162-1, SO-16, Analog IC:Other
NXP

PCF8591TD-T

CODEC, Single
ETC

PCF8591_03

8-bit A/D and D/A converter
NXP

PCF8593

Low power clock/calendar
NXP

PCF8593N

IC REAL TIME CLOCK, PDIP8, 0.300 INCH, PLASTIC, MO-001AN, SOT-97-1, DIP-8, Timer or RTC
NXP

PCF8593P

Low power clock/calendar
NXP