PIP213-12M,518 [NXP]

IC 40 A SWITCHING REGULATOR, 1000 kHz SWITCHING FREQ-MAX, PQCC56, 8 X 8 MM, 0.85 MM HEIGHT, LEAD FREE, PLASTIC, MO-220, SOT684-4, HVQFN-56, Switching Regulator or Controller;
PIP213-12M,518
型号: PIP213-12M,518
厂家: NXP    NXP
描述:

IC 40 A SWITCHING REGULATOR, 1000 kHz SWITCHING FREQ-MAX, PQCC56, 8 X 8 MM, 0.85 MM HEIGHT, LEAD FREE, PLASTIC, MO-220, SOT684-4, HVQFN-56, Switching Regulator or Controller

开关
文件: 总21页 (文件大小:139K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PIP213-12M  
DC-to-DC converter power train  
Rev. 01 — 25 September 2007  
Product data sheet  
1. General description  
The PIP213-12M is a fully optimized power train for high-current high-frequency  
synchronous buck DC-to-DC converter applications. The PIP213-12M replaces two power  
MOSFETs, a Schottky diode and a driver IC, resulting in a significant increase in power  
density. The integrated solution allows for optimization of individual components and  
greatly reduces the parasitics associated with conventional discrete solutions, resulting in  
higher system efficiencies at higher operating frequencies.  
2. Features  
I Input voltage range from 3.3 V to 16 V  
I Output voltages from 0.8 V to 6 V  
I Capable of up to 25 A maximum output current at 1 MHz  
I Operating frequency up to 1 MHz  
I Peak system efficiency > 85 % at 1 MHz  
I Automatic Dead-time Reduction (ADR) for maximum efficiency  
I Internal thermal shutdown  
I Auxiliary 5 V output  
I Power ready output flag  
I Power sequencing functions  
I Internal 6.5 V regulator for efficient gate drive  
I Compatible with single and multi-phase Pulse Width Modulation (PWM) controllers  
I Low-profile, surface-mounted package (8 mm × 8 mm × 0.85 mm)  
3. Applications  
I High-current DC-to-DC point-of-load converters  
I Small form-factor voltage regulator modules  
I Microprocessor and memory voltage regulators  
I Intel DriverMOS (DrMOS) compatible  
 
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PIP213-12M  
HVQFN56 plastic thermal enhanced very thin quad flat package; no leads; 56  
SOT684-4  
terminals; body 8 × 8 × 0.85 mm  
5. Block diagram  
V
CBP CBN  
DDO  
5
10  
8, 11  
to 20  
PIP213-12M  
4
2
V
DDC  
6.5 V  
REG  
INTERNAL  
5 V REG  
BOOST  
SWITCH  
VDDG_EN  
UVLO  
3
V
DDG  
54  
upper  
driver  
REG5V  
5 V REG  
5 V  
42 to 50  
56  
VO  
VI  
CONTROL LOGIC  
AND  
DEAD-TIME  
CONTROL  
5 V  
OTP  
30 k  
55  
53  
DISABLE  
PRDY  
V
DDG  
lower  
driver  
1, 7, 51  
22 to 41  
V
V
SSO  
003aac025  
SSC  
signal ground  
power ground  
A bootstrap switch is integrated into the design of the PIP213-12M between VDDC and CBN  
Fig 1. Block diagram  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
2 of 21  
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
6. Functional diagram  
conversion supply  
control circuit supply  
V
V
V
DDC  
DDO  
DDG  
100 nF  
CBP  
CBN  
REG5V  
VI  
PWM input  
PIP213-12M  
L
o(ext)  
DISABLE  
output  
VO  
C
o(ext)  
V
V
SSC  
SSO  
003aac027  
signal ground  
power ground  
Fig 2. Simplified functional block diagram of a synchronous DC-to-DC converter output  
stage  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
1
2
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
V
VO  
SSC  
VDDG_EN  
V
V
V
V
V
V
V
V
V
V
V
V
V
SSO  
SSO  
SSO  
SSO  
SSO  
SSO  
SSO  
SSO  
SSO  
SSO  
SSO  
SSO  
SSO  
3
V
DDG  
V
SSC  
4
V
DDC  
PAD 1  
5
CBP  
n.c  
6
7
V
SSC  
PIP213-12M  
8
V
DDO  
n.c.  
9
VO  
PAD 3  
10  
11  
12  
13  
14  
CBN  
V
DDO  
V
DDO  
DDO  
DDO  
DDO  
PAD 2  
V
V
V
003aac026  
Transparent top view  
Fig 3. Pin configuration  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
3 of 21  
 
 
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
7.2 Pin description  
Table 2.  
Symbol  
VDDC  
Pin description  
Pin  
Type  
Description  
4
-
control circuit supply voltage  
output stage supply voltage  
control circuit ground  
VDDO  
8, 11 to 20, pad 2  
I
VSSC  
1, 7, 51, pad 1  
22 to 41  
56  
-
VSSO  
-
output stage ground supply voltage  
pulse width modulation input  
output voltage  
VI  
I
VO  
42 to 50, pad 3  
21  
O
O
VO_SENSE  
sense connection to VO often required for remote  
current sensing  
CBP  
5
-
connection to bootstrap capacitor  
connection to bootstrap capacitor  
enables internal 6.5 V regulator for VDDG  
gate driver supply voltage  
CBN  
10  
2
-
VDDG_EN  
VDDG  
I
3
-
PRDY  
53  
O
indicates that VDDC is above the UVLO  
(UnderVoltage Lockout) level (open drain)  
REG5V  
DISABLE  
n.c.  
54  
O
I/O  
-
5 V regulated supply output  
55  
disable driver function (active LOW)  
6, 9, 52  
not connected - leave open or connected to GND  
on PCB (Printed-Circuit Board) layout  
8. Functional description  
8.1 Basic operation  
The PIP213-12M combines two MOSFET’s and a MOSFET driver in a thermally  
enhanced low inductance package for use in high frequency and high efficiency  
synchronous buck DC-to-DC converters; see Figure 2. The two MOSFETs are connected  
in a half bridge configuration between VDDO and VSSO. The mid point of the two transistors  
is VO which is connected to the output of DC-to-DC converter via an inductor. A logic  
HIGH signal on the VI pin causes the lower MOSFET to be switched off and the upper  
MOSFET to be switched on. Current will then flow from the supply (VDDO), through the  
upper MOSFET and the inductor (Lo(ext)) to the output.  
A logic LOW signal on the VI pin causes the upper MOSFET to be turned off and the lower  
MOSFET to be switched on. Current then flows from the power ground (VSSO), through  
the lower MOSFET and the inductor (Lo(ext)), to the output. The output voltage is  
determined by the ratio of the times that the upper and lower MOSFETs conduct.  
8.2 UnderVoltage Lockout (UVLO)  
The UVLO function ensures the correct operation of the control circuit during a power-up  
and power-down sequence. Power to the control circuit is provided by the VDDC pin. This  
voltage is internally monitored to ensure that if VDDC is below the UVLO threshold, the  
DISABLE pin is internally pulled LOW and both MOSFETs are off. This is indicated by the  
power ready (PRDY) flag, an open drain output that is pulled LOW whenever VDDC is  
below the UVLO threshold.  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
4 of 21  
 
 
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
8.3 Upper driver operation  
The gate drive to the upper MOSFET is provided by a bootstrap capacitor (typically  
100 nF) that is placed between the CBP and CBN pins. This capacitor is charged via an  
internal boost switch to a voltage within a few millivolts of VDDC up to a maximum of 12 V  
(this is to prevent excessive gate charge losses when VDDC > 12 V). The upper MOSFET  
will be switched according to PWM input once the boost capacitor voltage is above  
Vth(CBP-CBN) on. When ever the voltage is below Vth(CBP-CBN) off the upper MOSFET will  
remain off.  
8.4 VDDG regulator  
The gate drive voltage level to the lower MOSFET is set by the voltage on the VDDG pin. A  
1 µF capacitor must be connected between this pin and VSSC. For minimum power loss  
within the PIP213-12M, an external power supply of between 5 V and 12 V must be  
connected to this pin. The optimum value for this voltage is dependent on the application  
but in the majority of cases a 5 V supply is recommended; see Figure 11. In cases where  
the VDDG maximum voltage will not be exceeded, the VDDG pin can be connected to the  
V
DDC pin and the VDDG capacitor can be omitted; see Figure 13.  
When VDDC is connected to a supply greater than 9 V, an internal 6.5 V regulator  
connected to VDDG can be used to provide the gate drive for the lower MOSFET;  
see Figure 12. The VDDG regulator is enabled by leaving the VDDG_EN pin open resulting  
in this pin being pulled internally to 5 V. If an external supply is to be connected to VDDG  
then the VDDG_EN pin must be pulled low by connecting to VSSC to disable the internal  
VDDG regulator.  
Table 3.  
VDDG biasing  
VDDG  
VDDG_EN  
Open circuit  
VSSC  
internal 6.5 V regulator used (VDDC > 9 V)  
connection to external supply required  
8.5 3-state function  
If the input to VI from the PWM controller becomes high impedance, then the VI input is  
driven to 2.5 V by an internal voltage divider. A voltage on the VI pin that is in-between the  
VIH and VIL levels and present for longer than td(3-state), causes both MOSFETs to be  
turned off. Normal operation commences once the VI input is outside this window for  
longer than td(3-state)  
.
8.6 Automatic Dead-time Reduction (ADR)  
Protection against cross-conduction (shoot-through) is achieved via by a delay (or  
dead-time) between the switching off of one MOSFET and the switching on of the other  
MOSFET. The automatic dead-time reduction feature continuously monitors the body  
diode of the lower MOSFET adjusting the dead-time to minimize body diode conduction.  
This reduces power loss in both the upper and lower MOSFETs due to the reduction in  
body diode conduction and reverse recovery charge. The lower power dissipation leads to  
higher system efficiency and enables higher frequency operation.  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
5 of 21  
 
 
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
8.7 Overtemperature Protection (OTP)  
Protection against over temperature is provided by an internal thermal shutdown  
incorporated into the control circuit. When the control circuit die temperature exceeds the  
upper thermal trip level, both MOSFETs are switched off and the internal VDDG regulator  
disabled. This state continues until the die temperature falls below the lower trip  
temperature. This function is only operational when VDDC is above the UVLO level.  
8.8 Disable  
This is the disable or enable function of the driver. Pulling the DISABLE pin LOW switches  
off both MOSFETs and disables the REG5V output. This pin is internally pulled LOW  
whilst VDDC remains below the UVLO threshold. Once VDDC exceeds the UVLO threshold,  
this pin is pulled HIGH by an internal resistor. In this way the driver will enable itself unless  
there is an external pull down. In multiphase applications, connecting the DISABLE pins of  
multiple PIP213-12M devices together will ensure that all devices will only become  
enabled when the voltage on the VDDC pins of all of the devices has exceeded the UVLO  
threshold; see Figure 10.  
8.9 Reg5V  
This function provides a low current regulated 5 V output voltage suitable for providing  
power to a PWM controller. It is operational when both PRDY and DISABLE are HIGH.  
Operation as a 5 V power supply is only guaranteed when VDDC is > 7 V. This pin can also  
be used as part of an enable function for a PWM controller; this ensures that the PWM is  
enabled only when the PIP213-12M is fully operational (i.e. both PRDY and DISABLE are  
HIGH).  
9. Limiting values  
Table 4.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDDC  
VDDO  
VI  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
-
Max  
+15  
Unit  
V
control circuit supply voltage  
output stage supply voltage  
input voltage  
+24  
V
+12.6  
+12.6  
V
VDDG  
VO  
gate driver supply voltage  
output voltage  
V
VDDO + 0.5 V  
Vc(bs)  
IO(AV)  
bootstrap capacitance voltage  
average output current  
VO + 15  
25  
V
A
VDDC = 12 V; Tpcb 90 °C;  
fi = 1 MHz  
[1]  
IORM  
repetitive peak output current  
voltage on pin PRDY  
VDDC = 12 V; tp 10 µs  
-
40  
A
VPRDY  
VDISABLE  
VREG5V  
Ptot  
0.5  
0.5  
0.5  
-
+12.6  
+12.6  
+12.6  
21  
V
voltage on pin DISABLE  
voltage on pin REG5V  
total power dissipation  
V
V
Tmb = 25 °C  
Tmb = 90 °C  
W
W
°C  
°C  
[2]  
-
10  
Tstg  
Tj  
storage temperature  
junction temperature  
55  
55  
+150  
+150  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
6 of 21  
 
 
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
[1] Pulse width and repetition rate limited by maximum value of Tj.  
[2] Assumes a thermal resistance from junction to mounting base of 6 K/W.  
10. Thermal characteristics  
Table 5.  
Symbol  
Rth(j-mb)  
Thermal characteristics  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
6 K/W  
thermal resistance from junction device tested with upper and  
-
3
to mounting base  
lower MOSFETs in series  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
7 of 21  
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
11. Characteristics  
Table 6.  
Characteristics  
VDDC = 12 V; Tj = 25 °C unless otherwise specified.  
Symbol Parameter  
Static characteristics  
Conditions  
Min  
Typ  
Max Unit  
VDDC  
control circuit supply voltage  
25 °C Tj 150 °C  
4.5  
12  
14  
4.45  
4.1  
4.35  
2.85  
3.7  
1.6  
-
V
Vth(UVLO)  
undervoltage lockout threshold voltage turn on  
4.05 4.2  
3.7 3.9  
V
turn off  
turn on  
turn off  
V
Vth(CBP-CBN) threshold voltage between pin CBP  
and pin CBN  
3.85 4.1  
2.35 2.6  
V
V
[1]  
[1]  
VIH  
VIL  
ILI  
HIGH-level input voltage  
LOW-level input voltage  
input leakage current  
3.3  
3.5  
1.5  
180  
8.2  
40  
V
1.4  
V
0 V VI 5 V  
-
-
-
-
µA  
mA  
mA  
mA  
V
IDDC  
control circuit supply current  
fi = 0 Hz, VI = 0 V  
-
fi = 500 kHz, VDDG_EN = open  
fi = 500 kHz, VDDG_EN = ground  
IL = 65 mA  
-
12  
-
VDDG  
gate driver supply voltage  
voltage on pin REG5V  
current on pin REG5V  
enable threshold voltage  
disable threshold voltage  
5.75 6.5  
7.25  
5.5  
-
VREG5V  
IREG5V  
Vth(en)  
Vth(dis)  
Ttrip(otp)  
IL IREG5V minimum, VDDC > 7 V  
VREG5V = 4.5 V  
4.5  
18  
2.9  
1.4  
-
5.0  
-
V
mA  
V
on pin DISABLE, VDDC > 4.5 V  
on pin DISABLE, VDDC > 4.5 V  
3.2  
1.6  
160  
3.5  
1.8  
-
V
over-temperature protection trip  
temperature  
°C  
Ttrip(otp)hys  
Ptot  
hysteresis of over-temperature  
protection trip temperature  
-
40  
-
°C  
total power dissipation  
VDDO = 12 V; IO(AV) = 20 A;  
VO = 1.3 V; Tpcb = 90 °C;  
fi = 500 kHz  
fi = 1 MHz  
-
-
4.7  
5.5  
-
-
W
W
Upper MOSFET  
RDSon  
drain-source on-state resistance  
IO = 10 A; VCBP = 12 V  
-
6.5  
-
mΩ  
Lower MOSFET  
RDSon  
drain-source on-state resistance  
IO = 10 A; VDDG = 12 V  
IO = 10 A; VDDG = 6.5 V  
-
-
3.8  
4.5  
-
-
mΩ  
mΩ  
Dynamic characteristics  
td(on)(IH-OH) turn-on delay time from input HIGH to VDDO = 12 V; IO(AV) = 12.5 A  
output HIGH  
-
-
-
-
80  
75  
-
ns  
ns  
ns  
td(off)(IL-OL)  
turn-off delay time from input LOW to  
output LOW  
-
td(3-state)  
3-state delay time  
90  
[1] If the input voltage remains between VIH and VIL (2.5 V typ) for longer than td(3-state), then both MOSFETs are turned off.  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
8 of 21  
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
003aab957  
003aab958  
10  
1.3  
1.2  
1.1  
1
P
tot  
(W)  
a
8
6
4
2
0
1 MHz  
500 kHz  
0.9  
0
10  
20  
30  
0
6
12  
18  
I
(A)  
V
(V)  
DDO  
O
VDDC = 12 V; VDDO = 12 V; VO = 1.3 V; fi = 1 Mhz  
VDDC = 12 V; VO = 1.3 V; fi = 1 MHz; IO(AV) = 20 A  
Ptot  
a =  
----------------------------------------  
Ptot(V  
= 12 V)  
DDO  
Fig 4. Total power dissipation as a function of average  
output current; typical values  
Fig 5. Normalized power dissipation as a function of  
output stage supply voltage; typical values  
003aab959  
003aab960  
1.6  
1.2  
b
c
1.4  
1
1.2  
1
0.8  
0.8  
0.6  
200  
0
2
4
6
400  
600  
800  
1000  
V
(V)  
f (kHz)  
out  
VDDC = 12 V; VDDO = 12 V; fi = 1 MHz; IO(AV) = 20 A  
VDDC = 12 V; VDDO = 12 V; VO = 1.3 V; IO(AV) = 20 A  
Ptot  
Ptot  
b =  
c =  
------------------------------------  
-----------------------------------  
Ptot(V  
= 1.3 V)  
O
Ptot( f  
= 1 MHz)  
i
Fig 6. Normalized power dissipation as a function of  
output voltage; typical values  
Fig 7. Normalized power dissipation as a function of  
input frequency; typical values  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
9 of 21  
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
003aab961  
003aab962  
1.2  
d
1.2  
1.1  
1
e
1.1  
1
0.9  
0.8  
0.9  
6
8
10  
12  
14  
4
6
8
10  
12  
V
(V)  
V
(V)  
DDC  
DDG  
VDDC = 12 V; VO = 1.3 V; fi = 1 MHz; IO(AV) = 20 A  
VDDC = 12 V; VDDO = 12 V; f = 1 MHz; IO(AV) = 20 A  
Ptot  
Ptot  
d =  
e =  
--------------------------------------  
----------------------------------------  
Ptot(V  
= 12 V)  
DDC  
Ptot(V  
= 5 V)  
DDG  
Fig 8. Normalized power dissipation as a function of  
control circuit supply voltage; typical values  
Fig 9. Normalized power dissipation as a function of  
gate driver supply voltage; typical values  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
10 of 21  
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
12. Application information  
12.1 Typical application  
conversion supply  
control circuit supply  
22 µF  
(4×)  
10 Ω  
1 µF  
1 µF  
1 µF  
1 µF  
1 µF  
V
V
V
DDG  
DDC  
DDO  
CBP  
100 nF  
REG5V  
VI  
CBN  
VO  
PIP213-12M  
360 nH  
100 nF  
DISABLE  
V
SSC  
V
SSO  
100 µF  
(2×)  
22 µF  
(4×)  
10 Ω  
1 µF  
V
V
DDC  
V
DDG  
DDO  
CBP  
100 nF  
REG5V  
CBN  
VO  
VI  
PIP213-12M  
360 nH  
DISABLE  
V
CC  
V
SSC  
V
SSO  
100 µF  
(2×)  
PWM 1  
PWM 1  
PWM 1  
PWM 1  
PWM  
CONTROLLER  
22 µF  
(4×)  
10 Ω  
1 µF  
V
V
DDC  
V
DDG  
DDO  
CBP  
100 nF  
REG5V  
VI  
CBN  
VO  
PIP213-12M  
360 nH  
DISABLE  
V
SSC  
V
SSO  
100 µF  
(2×)  
22 µF  
(4×)  
10 Ω  
1 µF  
V
V
V
DDG  
DDC  
DDO  
CBP  
100 nF  
signal ground  
power ground  
REG5V  
VI  
voltage  
output  
CBN  
VO  
PIP213-12M  
360 nH  
DISABLE  
V
SSC  
V
SSO  
100 µF  
(2×)  
003aac028  
Fig 10. Typical application circuit using the PIP213-12M in a four-phase converter  
A typical four-phase buck converter is shown in Figure 10. This system uses four  
PIP213-12M devices to deliver a continuous output current of 100 A at an operating  
frequency of 500 kHz.  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
11 of 21  
 
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
12.2 VDDG supply options  
The following options can be used for the lower MOSFET driver supply (VDDG).  
conversion supply  
control circuit supply  
V
5 V external gate drive  
PWM input  
V
V
DDC  
DDO  
DDG  
100 nF  
CBP  
CBN  
VI  
PIP213-12M  
L
o(ext)  
VDDG_EN  
output  
VO  
C
o(ext)  
V
V
SSC  
SSO  
003aac030  
signal ground  
power ground  
Fig 11. Dual supply operation using 5 V external supply for VDDG  
conversion supply  
control circuit supply  
V
V
V
DDC  
DDO  
DDG  
100 nF  
CBP  
CBN  
PWM input  
open circuit  
VI  
PIP213-12M  
L
o(ext)  
VDDG_EN  
output  
VO  
C
o(ext)  
V
V
SSC  
SSO  
003aac031  
signal ground  
power ground  
Fig 12. Single supply operation using internal supply for VDDG  
conversion supply  
control circuit supply  
V
V
V
DDC  
DDO  
DDG  
100 nF  
CBP  
CBN  
PWM input  
VI  
PIP213-12M  
L
o(ext)  
VDDG_EN  
output  
VO  
C
o(ext)  
V
V
SSC  
SSO  
003aac029  
signal ground  
power ground  
Fig 13. Single supply operation using external supply for VDDG  
12.3 DrMOS compatibility  
The PIP213-12M can be configured to be compatible with the Intel DrMOS specification.  
Conformance to the Intel DrMOS specification requires that an external power supply to  
the VDDG pin is used and hence the internal VDDG regulator must be disabled by  
connecting the VDDG_EN pin to VSSC  
.
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
12 of 21  
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
The PRDY flag is not used and should be left unconnected on the PCB. The external  
boost capacitor should also be connected between CBP and VO and not CBP and CBN  
with the CBN pin being left unconnected on the PCB. In addition, VSSC pin 7 and VSSO pin  
39 to pin 41 should be left unconnected on the PCB. Note that the sizes of PAD 1, PAD 2  
and PAD 3 can vary between different DrMOS vendors. The PCB footprint must be  
modified to take the pinning modifications and pad size differences into account.  
To ensure footprint compatibility with other DrMOS products, it is recommended that the  
latest multiple vendor compatibility PCB footprint contained within the Intel DrMOS  
specification is used and that the relevant DrMOS product data sheet is checked for  
compatibility.  
13. Marking  
terminal 1  
index area  
TYPE No.  
RoHS compliant  
Mask code  
G = RoHS indicator  
N1I = Mask layout version  
DIFFUSION LOT No.  
Diffusion centre  
h = Hazel Grove,  
UK  
hfGYYWWN1I  
MANUFACTURING CODE  
COUNTRY OF ORIGIN  
Assembly centre  
f = Amkor Korea  
Date code  
YY = last two digits of year  
WW = week number  
03ao89  
03ai72  
TYPE No: PIP213-12M_NN (NN is revision number)  
DIFFUSION LOT No: 7 characters  
MANUFACTURING CODE; see Figure 15  
COUNTRY OF ORIGIN: Korea  
Fig 14. SOT684-4 marking  
Fig 15. Interpretation of manufacturing code  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
13 of 21  
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
14. Package outline  
HVQFN56: plastic thermal enhanced very thin quad flat package; no leads;  
56 terminals; body 8 x 8 x 0.85 mm  
SOT684-4  
D
B
D
A
1
terminal 1  
index area  
A
4
A
E
E
c
1
A
1
detail X  
C
e
1
y
y
v
M
M
C
C
A
B
C
1
e
1/2 e  
b
w
15  
28  
L
29  
14  
e
E
h1  
e
E
2
h
1/2 e  
E
h2  
1
42  
terminal 1  
index area  
56  
43  
X
D
D
h2  
h1  
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
E
UNIT  
A
A
b
c
D
D
D
E
E
E
E
D
e
e
e
2
v
w
y
y
1
L
h2  
1
4
1
h1  
h2  
1
h
h1  
1
max.  
0.05 0.70 0.30  
0.00 0.65 0.18  
8.1 7.8 2.65 3.55 8.1 7.8 6.45 3.25 2.85  
7.9 7.7 2.35 3.25 7.9 7.7 6.15 2.95 2.55  
0.5  
0.3  
mm  
0.2  
0.5 6.5 6.5  
0.05 0.1  
0.9  
0.1 0.05  
REFERENCES  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
JEDEC  
JEITA  
03-10-23  
04-09-14  
SOT684-4  
- - -  
MO-220  
- - -  
Fig 16. Package outline SOT684-4 (HVQFN56)  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
14 of 21  
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
15. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
15.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
15.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
15.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
15 of 21  
 
 
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
15.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 17) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 7 and 8  
Table 7.  
SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
350  
220  
< 2.5  
235  
220  
2.5  
220  
Table 8.  
Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 17.  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
16 of 21  
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 17. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
16. Mounting  
16.1 PCB design guidelines  
The terminals on the underside of the package are rectangular in shape with a rounded  
edge on the inside. Electrical connection between the package and the printed-circuit  
board is made by printing solder paste onto the PCB footprint followed by component  
placement and reflow soldering. The PCB footprint shown in Figure 18 is designed to form  
reliable solder joints.  
The use of solder resist between each solder land is recommended. PCB tracks should  
not be routed through the corner areas shown in Figure 18. This is because there is a  
small, exposed remnant of the lead frame in each corner of the package, left over from the  
cropping process.  
Good surface flatness of the PCB lands is desirable to ensure accuracy of placement after  
soldering. Printed-circuit boards that are finished with a roller tin process tend to leave  
small lumps of tin in the corners of each land. Levelling with a hot air knife improves  
flatness. Alternatively, an electro-less silver or silver immersion process produces  
completely flat PCB lands.  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
17 of 21  
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
9.25 (2×)  
8.30 (2×)  
6.20 (2×)  
0.475  
1.40  
0.50  
0.25  
0.30  
1.60  
0.40  
0.70 (3×)  
0.45  
0.525  
7.04  
(4×)  
e = 0.50  
0.615  
0.05  
0.80 (2×)  
1.90  
0.50  
0.29 (56×)  
solder lands  
Cu pattern  
0.50  
2.00  
0.425  
0.075  
0.150  
7.20 (2×)  
9.00 (2×)  
001aaa064  
clearance  
solder paste  
placement area  
occupied area  
0.025  
All dimensions in mm  
Fig 18. PCB footprint for SOT684-4 package (reflow soldering)  
16.2 Solder paste printing  
The process of printing the solder paste requires care because of the fine pitch and small  
size of the solder lands. A stencil thickness of 0.125 mm is recommended. The stencil  
apertures can be made the same size as the solder lands in Figure 18.  
The type of solder paste recommended for MLF (Micro Lead-Frame) packages is “No  
clean”, Type 3, due to the difficulty of cleaning flux residues from beneath the MLF  
package.  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
18 of 21  
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
17. Revision history  
Table 9.  
Revision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
PIP213-12M_1  
20070925  
Product data sheet  
-
-
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
19 of 21  
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
result in personal injury, death or severe property or environmental damage.  
18.2 Definitions  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
18.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of a NXP Semiconductors product can reasonably be expected to  
TrenchMOS — is a trademark of NXP B.V.  
19. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
PIP213-12M_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 25 September 2007  
20 of 21  
 
 
 
 
 
 
PIP213-12M  
NXP Semiconductors  
DC-to-DC converter powertrain  
20. Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
8
Functional description . . . . . . . . . . . . . . . . . . . 4  
Basic operation. . . . . . . . . . . . . . . . . . . . . . . . . 4  
UnderVoltage Lockout (UVLO) . . . . . . . . . . . . . 4  
Upper driver operation . . . . . . . . . . . . . . . . . . . 5  
VDDG regulator . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3-state function . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Automatic Dead-time Reduction (ADR) . . . . . . 5  
Overtemperature Protection (OTP). . . . . . . . . . 6  
Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Reg5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal characteristics. . . . . . . . . . . . . . . . . . . 7  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Application information. . . . . . . . . . . . . . . . . . 11  
Typical application. . . . . . . . . . . . . . . . . . . . . . 11  
10  
11  
12  
12.1  
12.2  
12.3  
VDDG supply options . . . . . . . . . . . . . . . . . . . . 12  
DrMOS compatibility. . . . . . . . . . . . . . . . . . . . 12  
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 14  
13  
14  
15  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Introduction to soldering . . . . . . . . . . . . . . . . . 15  
Wave and reflow soldering . . . . . . . . . . . . . . . 15  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 15  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 16  
15.1  
15.2  
15.3  
15.4  
16  
16.1  
16.2  
Mounting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
PCB design guidelines . . . . . . . . . . . . . . . . . . 17  
Solder paste printing. . . . . . . . . . . . . . . . . . . . 18  
17  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 19  
18  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 20  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 20  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information. . . . . . . . . . . . . . . . . . . . . 20  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 25 September 2007  
Document identifier: PIP213-12M_1  
 

相关型号:

PIP24

TRANSIENT ABSORPTION ZENER
MICROSEMI

PIP24

7,500 & 15,000 Watt TVS Module
SEMTECH

PIP24

ac power bus voltage suppressor
PROTEC

PIP24

Transient Voltage Suppressor, Unidirectional
SENSITRON

PIP24H1

Trans Voltage Suppressor Diode, 7500W, 34V V(RWM), Bidirectional, 1 Element, Silicon, PLASTIC, CASE-11, 2 PIN
MICROSEMI

PIP24H2

Trans Voltage Suppressor Diode, 7500W, 34V V(RWM), Bidirectional, 1 Element, Silicon, PLASTIC, CASE-11, 2 PIN
MICROSEMI

PIP24H3

Trans Voltage Suppressor Diode, 7500W, 34V V(RWM), Bidirectional, 1 Element, Silicon, PLASTIC, CASE-11, 2 PIN
MICROSEMI

PIP250

TRANSIENT ABSORPTION ZENER
MICROSEMI

PIP250

7,500 & 15,000 Watt TVS Module
SEMTECH

PIP250

Transient Voltage Suppressor, Unidirectional
SENSITRON

PIP250

AC POWER BUS VOLTAGE SUPPRESSOR
PROTEC

PIP250H1

Trans Voltage Suppressor Diode, 15000W, 354V V(RWM), Bidirectional, 1 Element, Silicon, PLASTIC, CASE-11, 2 PIN
MICROSEMI