PLC42VA12A [NXP]

CMOS programmable multi-function PLD 42 】 105 】 12; CMOS可编程的多功能PLD 42 】 105 】 12
PLC42VA12A
型号: PLC42VA12A
厂家: NXP    NXP
描述:

CMOS programmable multi-function PLD 42 】 105 】 12
CMOS可编程的多功能PLD 42 】 105 】 12

可编程逻辑器件 输入元件 时钟
文件: 总20页 (文件大小:437K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
DESCRIPTION  
FEATURES  
PIN CONFIGURATIONS  
The new PLC42VA12 CMOS PLD from  
Philips Semiconductors exhibits a unique  
combination of the two architectural concepts  
that revolutionized the PLD marketplace.  
High-speed EPROM-based CMOS  
Multi-Function PLD  
FA and N Pack-  
ages  
Super set of 22V10, 32VX10 and  
20RA10 PAL ICs  
1
2
24  
V
I0/CLK  
I1  
CC  
The Philips Semiconductors unique Output  
Macro Cell (OMC) embodies all the  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
M9  
M8  
M7  
M6  
M5  
M4  
M3  
M2  
M1  
M0  
I9/OE  
Two fully programmable arrays eliminate  
“P-term Depletion”  
3
I2  
advantages and none of the disadvantages  
associated with the “V” type Output Macro  
Cell devices. This new design, combined with  
added functionality of two programmable  
arrays, represents a significant advancement  
in the configurability and efficiency of  
multi-function PLDs.  
Up to 64 P-terms per OR function  
4
I3  
5
I4  
Improved Output Macro Cell Structure  
Individually programmable as:  
* Registered Output with feedback  
* Registered Input  
6
I5  
7
I6  
8
I7  
* Combinatorial I/O with Buried Register  
* Dedicated I/O with feedback  
* Dedicated Input (combinatorial)  
9
I8  
The most significant improvement in the  
Output Macro Cell structure is the  
10  
11  
B0  
B1  
implementation of the register bypass  
function. Any of the 10 J-K/D registers can be  
individually bypassed, thus creating a  
combinatorial I/O path from the AND array to  
the output pin. Unlike other “V” type devices,  
the register in the PLC42VA12 Macro Cell  
remains fully functional as a buried register.  
Both the combinatorial I/O and buried register  
have separate input paths (from the AND  
array). In most V-type architectures, the  
register is lost as a resource when the cell is  
configured as a combinatorial I/O. This  
feature provides the capability to operate the  
buried register independently from the  
combinatorial I/O.  
Bypassed Registers are 100% functional  
with separate input and feedback paths  
GND 12  
Individual Output Enable control  
functions  
N = Plastic DIP (300mil-wide)  
FA = Ceramic DIP with Quartz Window (300mil-wide)  
* From pin or AND array  
Reprogrammable – 100% tested for  
programmability  
Eleven clock sources  
Register Preload and Diagnostic Test Mode  
A Package  
Features  
I0/  
I2 I1 CLK N/C  
M9 M8  
V
Security fuse  
CC  
28 27 26  
4
3
2
1
5
6
25  
24  
23  
I3  
I4  
M7  
M6  
M5  
APPLICATIONS  
The PLC42VA12 is an EPROM-based CMOS  
device. Designs can be generated using  
Philips Semiconductors SNAP PLD design  
software packages or one of several other  
commercially available JEDEC standard PLD  
design software packages.  
Mealy or Moore State Machines  
Synchronous  
7
I5  
N/C  
8
22 N/C  
Asynchronous  
9
21  
20  
19  
I6  
I7  
I8  
M4  
M3  
M2  
Multiple, independent State Machines  
10-bit ripple cascade  
Sequence recognition  
Bus Protocol generation  
Industrial control  
10  
11  
12 13 14 15 16 17 18  
B0 B1 GND N/C I9/ M0 M1  
OE  
A = Plastic Leaded Chip Carrier (450mil-square)  
A/D Scanning  
ORDERING INFORMATION  
DESCRIPTION  
ORDER CODE  
DRAWING NUMBER  
24-Pin Ceramic Dual In-Line with window,  
Reprogrammable (300mil-wide)  
PLC42VA12FA  
1478A  
24-Pin Plastic Dual In-Line,  
One Time Programmable (300mil-wide)  
PLC42VA12N  
PLC42VA12A  
0410D  
0401F  
28-Pin Plastic Leaded Chip Carrier,  
One Time Programmable (450mil-wide)  
PAL is a registered trademark of Advanced Micro Devices, Inc.  
73  
October 22, 1993  
853–1414 11164  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
LOGIC DIAGRAM  
R R R R C  
P
A
MMMM K  
8 7 6 5  
8
63  
56 55  
48 47  
40 39  
32 31  
24 23  
16 15  
8
7
0 F  
C
I1  
I2  
I3  
I4  
I5  
I6  
I7  
I8  
2
3
4
5
6
7
8
9
PR  
J
K
CK  
Q
PR  
J
CK  
K
Q
PR  
J
CK  
K
Q
PR  
J
CK  
K
Q
NOTE:  
Programmable  
Connection  
74  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
LOGIC DIAGRAM (Continued)  
C C C  
K K K  
7 6 5  
R R R R C  
MMMM K  
C C C  
K K K  
3 2 1  
P R P R  
MMMM  
9 9 0 0  
C
K
9
C
K
0
L
L D D D D D D D D  
M MMMMM MMMM  
0 1 2 3 4 5 6 7 8  
D D  
MM  
0 9  
L
A
P
B
L
B
D D  
1 0  
4 3 2 1  
4
9
13 I9/OE  
I0/CLK  
1
CK  
CK  
22 M8  
21 M7  
20 M6  
19 M5  
CK  
CK  
PR  
CK  
J
CK  
K
Q
18 M4  
17 M3  
16 M2  
15 M1  
CK  
CK  
CK  
PR  
J
CK  
K
Q
PR  
J
CK  
K
Q
PR  
J
CK  
K
Q
CK  
PR  
J
CK  
K
Q
23 M9  
CK  
PR  
J
CK  
K
Q
14 M0  
11 B1  
10 B0  
75  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
FUNCTIONAL DIAGRAM  
P
P
F
L
P
R
CK  
LM  
PM  
RM  
CK  
DM  
DM  
DB  
n
63  
0
C
n
n
n
n
n
n
n
n
n
n
I
/OE  
9
I1 – I8  
X8  
I
/CLK  
0
X1  
X2  
X2  
X8  
X8  
X2  
X2  
X2  
X2  
X8  
X2  
X2  
CLK  
CONTROL  
P
J
R
X8  
X8  
CK  
X8  
X8  
E
(X2)  
n
OE  
n
K
Q
X8  
OMC  
CONFIG.  
POLARITY  
M1 – M8  
CLK  
CONTROL  
P
J
R
X2  
X2  
CK  
X2  
E
(X2)  
n
OE  
n
K
Q
X2  
OMC  
CONFIG.  
M0, M9  
X2  
X2  
POLARITY  
POLARITY  
B0 – B1  
76  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
1
ABSOLUTE MAXIMUM RATINGS  
THERMAL RATINGS  
TEMPERATURE  
Maximum junction  
SYMBOL  
PARAMETER  
Supply voltage  
RATINGS  
UNIT  
150°C  
75°C  
V
V
V
–0.5 to +7  
V
DC  
V
DC  
V
DC  
CC  
IN  
Maximum ambient  
Input voltage  
–0.5 to V +0.5  
CC  
Output voltage  
–0.5 to V +0.5  
Allowable thermal  
rise ambient to  
junction  
OUT  
CC  
75°C  
I
Input currents  
–10 to +10  
+24  
mA  
mA  
°C  
IN  
OUT  
I
Output currents  
T
amb  
Operating temperature range  
Storage temperature range  
0 to +75  
–65 to +150  
T
stg  
°C  
NOTE:  
1. Stresses above those listed may cause malfunction or permanent damage to the device. This  
is a stress rating only. Functional operation at these or any other condition above those  
indicated in the operational and programming specification of the device is not implied.  
AC TEST CONDITIONS  
VOLTAGE WAVEFORMS  
+5V  
OE  
V
S
+3.0V  
CC  
1
90%  
C
C
2
R
10%  
90%  
1
1
0V  
M
I
I
Z
n
t
t
F
5ns  
5ns  
R
C
R
L
2
+3.0V  
0V  
INPUTS  
DUT  
n
M
B
10%  
B
M
M
Z
GND  
OUTPUTS  
CK  
5ns  
5ns  
MEASUREMENTS:  
All circuit delays are measured at the +1.5V level  
of inputs and outputs, unless otherwise specified.  
NOTE:  
and C are to bypass V to GND.  
CC  
C
1
2
Test Load Circuit  
Input Pulses  
77  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
DC ELECTRICAL CHARACTERISTICS  
0°C T  
+75°C, 4.75V V 5.25V  
amb  
CC  
LIMITS  
1
SYMBOL  
Input voltage  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
2
V
V
Low  
V
= MIN  
–0.3  
2.0  
0.8  
V
V
IL  
CC  
High  
V
CC  
= MAX  
V
+ 0.3  
IH  
CC  
2
Output voltage  
V
Low  
V
= MIN; I = 16mA  
0.3  
4.3  
0.5  
V
V
OL  
CC  
OL  
V
OH  
High  
V
CC  
= MIN; I = –3.2mA  
2.4  
OH  
Input current  
I
I
Low  
V
= GND  
–1  
+1  
–10  
10  
µA  
µA  
IL  
IN  
High  
V
= V  
IN CC  
IH  
Output current  
V
= V  
= GND  
10  
–10  
OUT  
CC  
1
–1  
µA  
µA  
I
Hi-Z state  
O(OFF)  
V
OUT  
3,7  
I
I
I
Short-circuit  
V
= GND  
–130  
120  
mA  
mA  
mA  
OS  
OUT  
4
5
6
V
CC  
CC  
supply current (Active)  
supply current (Active)  
I
I
= 0mA, f = 15MHz , V = MAX  
90  
70  
CC1  
CC2  
OUT  
CC  
6
V
= 0mA, f = 15MHz , V = MAX  
100  
OUT  
CC  
Capacitance  
C
C
Input  
I/O  
V
CC  
= 5V; V = 2.0V  
12  
15  
pF  
pF  
I
IN  
V
B
= 2.0V  
B
NOTES:  
1. All typical values are at V = 5V. T  
= +25°C.  
amb  
CC  
2. All voltage values are with respect to network ground terminal.  
3. Duration of short–circuit should not exceed one second. Test one at a time.  
4. Tested with V = 0.45V, V = 2.4V.  
IL  
IH  
5. Tested with V = 0V, V = V .  
IL  
IH  
CC  
6. Refer to Figure 1, I vs Frequency (worst case). (Referenced from 15MHz)  
CC  
The I increases by 1.5mA per MHz for the frequency range of 16MHz up to 25MHz.  
CC  
The I remains at a worst case for the frequency range of 26MHz up to 37MHz.  
CC  
The I decreases by 1.0mA per MHz for the frequency range of 14MHz down to 1MHz.  
CC  
The worst case I is calculated as follows:  
CC  
All dedicated inputs are switching.  
All OMCs are configured as JK flip-flops in the toggle mode. . .all are toggling.  
All 12 outputs are disabled.  
The number of product terms connected does not impact the I  
.
CC  
7. Refer to Figure 2 for t vs output capacitance loading.  
PD  
+30  
+25  
+20  
+15  
+10  
+5  
6
5
4
3
2
1
0
0
–5  
–1  
–2  
–10  
–15  
0
20 40 60 80 100 120 140 160 180 200  
OUTPUT CAPACITANCE LOADING (pF)  
1
5
10  
15  
f(MHz)  
20  
25  
30  
35  
40  
Figure 1. I vs Frequency  
Figure 2. t vs Output  
PD  
CC  
(Worst Case) (Referenced from 15MHz)  
Capacitance Loading (Typical)  
78  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
AC ELECTRICAL CHARACTERISTICS  
0°C T  
+75°C, 4.75V V 5.25V; R = 238, R = 170Ω  
amb  
CC 1 2  
2
TEST  
CONDITION  
PLC42VA12  
1
SYMBOL  
PARAMETER  
FROM  
TO  
MIN  
TYP  
MAX  
UNIT  
(C (pF))  
L
Set-up Time  
t
t
t
t
Input; dedicated clock  
(I, B, M) +/–  
(I, B, M) +/–  
(M) +/–  
CK+  
50  
50  
50  
50  
23  
20  
10  
2
16  
13  
ns  
ns  
ns  
ns  
IS1  
IS2  
IS3  
IS4  
Input; P-term clock  
(I, B, M) +/–  
CK+  
3
3
Preload; dedicated clock  
Preload; P-term clock  
3.5  
(M) +/–  
(I, B, M) +/–  
–1.0  
Input through complement array;  
dedicated clock  
3
3
t
(I, B, M) +/–  
(I, B, M) +/–  
CK+  
50  
50  
50  
40  
34  
ns  
ns  
IS5  
IS6  
Input through complement array;  
P-term clock  
t
(I, B, M) +/–  
30  
Propagation Delay  
t
Propagation Delay  
(I, B, M) +/–  
(I, B,) +/–  
(I, B, M) +/–  
(I, B, M) +/–  
50  
50  
20  
36  
35  
55  
ns  
ns  
PD1  
PD2  
Propagation Delay with complement  
array (2 passes)  
t
t
t
Clock to Output; Dedicated clock  
Clock to output; P-term clock  
Registered operating period;  
CK+  
(M) +/–  
(M) +/–  
50  
50  
13  
18  
17  
27  
ns  
ns  
CKO1  
(I, B, M) +/–  
CKO2  
t
t
t
t
(I, B, M) +/–  
(I, B, M) +/–  
(M) +/–  
(M) +/–  
(M) +/–  
(M) +/–  
(M) +/–  
50  
50  
50  
50  
29  
31  
40  
47  
27  
29  
ns  
ns  
ns  
ns  
RP1  
Dedicated clock (t + t  
)
IS1  
CKO1  
Registered operating period;  
P-term clock (t + t  
RP2  
)
CKO2  
IS2  
Register preload operating period;  
Dedicated clock (t + t  
3
16.5  
17  
RP3  
)
CKO1  
IS3  
Register preload operating period;  
P-term clock (t + t  
3
(M) +/–  
RP4  
)
CKO2  
IS4  
Registered operating period with comple-  
ment array; dedicated clock (t  
3
+
t
(I, B, M) +/–  
(I, B, M) +/–  
(M) +/–  
(M) +/–  
50  
50  
47  
48  
67  
67  
ns  
ns  
IS5  
RP5  
t
)
CKO1  
Registered operating period with  
complement array; P-term clock  
3
t
RP6  
(t  
IS6  
+ t  
CKO2  
)
4
t
t
Output Enable; from /OE pin  
/OE –  
(M) +/–  
50  
50  
10  
20  
25  
ns  
ns  
OE1  
4
Output Enable; from P-term  
(I, B, M) +/–  
(B, M) +/–  
12.5  
OE2  
Outputs dis-  
abled  
4
t
t
Output Disable; from /OE pin  
/OE +  
5
5
10  
20  
25  
ns  
ns  
OD1  
Outputs dis-  
abled  
4
Output Disable; from P-term  
(I, B, M) +/–  
(I, B, M) +/–  
14.5  
25  
OD2  
3
t
t
Preset to Output  
(M) +/–  
(M) +/–  
50  
50  
35  
15  
ns  
ns  
PRO  
3
Power-on Reset (Mn = 1)  
V
CC  
+
PPR  
Hold Time  
t
t
t
t
Input (Dedicated clock)  
CK+  
(I, B, M) +/–  
(I, B, M) +/–  
(M) +/–  
50  
50  
50  
50  
0
5
–13  
–7.5  
–1.5  
3.5  
ns  
ns  
ns  
ns  
IH1  
IH2  
IH3  
IH4  
Input (P-term clock)  
(I, B, M) +/–  
CK+  
3
3
Input; from Mn (Dedicated clock)  
Input; from Mn (P-term clock)  
5
(I, B, M) +/–  
(M) +/–  
10  
Pulse Width  
t
t
t
t
t
Clock High; Dedicated clock  
Clock Low; Dedicated clock  
Clock High; P-term clock  
CK+  
CK–  
CK–  
CK+  
50  
50  
50  
50  
50  
10  
10  
15  
15  
30  
5
5
7
7
7
ns  
ns  
ns  
ns  
ns  
CKH1  
CKL1  
CKH2  
CKL2  
CK+  
CK–  
Clock Low; P-term clock  
CK–  
CK+  
3
Width of preset/reset input pulse  
(I, B, M) +/–  
(I, B, M) +/–  
PRH  
Notes on page 80.  
79  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
AC ELECTRICAL CHARACTERISTICS (Continued)  
0°C T  
+75°C, 4.75V V 5.25V; R = 238, R = 170Ω  
amb  
CC  
1
2
2
TEST  
CONDITION  
PLC42VA12  
1
SYMBOL  
PARAMETER  
FROM  
TO  
MIN  
TYP  
MAX  
UNIT  
(C (pF))  
L
Frequency of Operation  
f
f
Dedicated clock frequency  
P-term clock frequency  
C+  
C+  
C+  
C+  
50  
50  
50  
33  
100  
MHz  
MHz  
CK1  
CK2  
71.4  
Registered operating frequency;  
Dedicated clock (t + t  
f
(I, B, M) +/–  
(I, B, M) +/–  
(M) +/–  
(M) +/–  
50  
50  
25  
34.5  
32.3  
MHz  
MHz  
MAX1  
MAX2  
)
CKO1  
IS1  
Registered operating frequency;  
P-term clock (t + t  
f
21.3  
)
CKO2  
IS2  
Register preload operating  
frequency; Dedicated clock  
3
3
3
3
f
f
f
f
(M) +/–  
(M) +/–  
(M) +/–  
(M) +/–  
(M) +/–  
(M) +/–  
50  
50  
50  
50  
37  
60.6  
58.8  
21.3  
20.8  
MHz  
MHz  
MHz  
MHz  
MAX3  
MAX4  
MAX5  
MAX6  
(t  
IS3  
+ t  
CKO1  
)
Register preload operating  
frequency; P-term clock  
34.5  
14.9  
14.9  
(t  
IS4  
+ t  
CKO2  
)
Registered operating frequency  
with complement array;  
(I, B, M) +/–  
(I, B, M) +/–  
Dedicated clock (t + t  
)
IS5  
CKO1  
Registered operating frequency  
with complement array;  
P-term clock (t + t  
)
IS6  
CKO2  
NOTES:  
1. All typical values are at V = 5V, T  
2. Refer also to AC Test Conditions (Test Load Circuit).  
= +25°C. These limits are not tested/guaranteed.  
amb  
CC  
3. These limits are not tested, but are characterized periodically and are guaranteed by design.  
4. For 3-State output; output enable times are tested with C = 50pF to the 1.5V level, and S is open for high-impedance to High tests and  
L
1
closed for high-impedance to Low tests. Output disable times are tested with C = 5pF. High-to-High impedance tests are made to an output  
L
voltage of V = (V – 0.5V) with S open, and Low-to-High impedance tests are made to the V = (V + 0.5V) level with S closed.  
T
OH  
1
T
OL  
1
BLOCK DIAGRAM  
65 X 105 PROGRAMMABLE AND ARRAY  
I1  
64 LOGIC TERMS  
41 CONTROL TERMS  
I8  
CK  
I0/CLK  
I9/OE  
J
P
R L D  
MUX  
COMPLEMENT  
JK/D  
OMC OE  
MUX  
(10)  
Q
64 X 32  
PROGRAMMABLE  
OR ARRAY  
K
MUX  
Q
M0 – M9  
B0 – B1  
BYPASS  
80  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
OUTPUT MACRO CELL (OMC)  
FROM AND ARRAY  
O
E
LOAD PRESET RESET  
CK  
OE  
F
CONTROL  
C
0
1
OUTPUT ENABLE  
SELECT MUX  
0
P
J
R
CK  
CLOCK  
FROM OR ARRAY  
SELECT  
MUX  
1
CLK  
M
JK/D  
MUX  
1
M
FROM OR ARRAY  
TO AND ARRAY  
K
Q
OUTPUT  
SELECT  
MUX  
FROM OR ARRAY  
(REGISTER BYPASS)  
TO AND ARRAY  
These 14 configurations, combined with the  
fully programmable OR array, make the  
PLC42VA12 the most versatile and silicon  
efficient of all the Output Macro Cell-type  
PLDs.  
source – make it possible to design  
synchronous state machine functions,  
event-driven state machine functions and  
combinatorial (asynchronous) functions all on  
the same chip.  
Output Macro Cell Configuration  
Philips Semiconductors unique Output Macro  
Cell design represents a significant  
advancement in the configurability of  
multi-function Programmable Logic Devices.  
The most significant Output Macro Cell  
(OMC) feature is the implementation of the  
register bypass function. Any of the 10 J-K/D  
registers can be individually bypassed, thus  
creating a combinatorial I/O path from the  
AND array to the output pin. Unlike other  
Output Macro Cell-type devices, the register  
in the OMC is fully functional as a buried  
register. Furthermore, both the combinatorial  
I/O and the buried register have separate  
input paths (from the AND array) and  
separate feedback paths (to the AND array).  
This feature provides the capability to operate  
the buried register independently from the  
combinatorial I/O.  
Sophisticated control functions support  
individual OE control and Reset functions  
from the AND array. OE control is also  
available from the I9/OE pin. Register Preset  
and Load functions are controlled from the  
AND array, in 2 banks of 4 for OMCs M1 –  
M8. Output Macro Cells M0 and M9 have  
individual Preset and Load Control terms.  
The PLC42VA12 has 10 programmable  
Output Macro Cells. Each can be individually  
programmed in any of 5 basic configurations:  
Dedicated I/O (combinatorial) with  
feedback to AND array  
Dedicated Input  
Combinatorial I/O with feedback and  
Buried Register with feedback (register  
bypass)  
Output Polarity for the combinatorial I/O  
paths is configurable via 12 programmable  
EX-OR gates. The output of each register  
can be configured as inverting (active Low) or  
non-inverting (active High) via manipulation  
of the logic equations.  
Registered Input  
Registered Output with feedback  
Each of the registered options can be further  
customized as J-K type or D-type, with either  
an internally derived clock (from the AND  
array) or clocked from an external source.  
With these additional programmable options,  
it is possible to program each Output Macro  
Cell in any one of 14 different configurations.  
The output of each buried register can also  
be configured as inverting or non-inverting via  
the input buffer which feeds back to the AND  
array.  
The PLC42VA12 is ideally suited for both  
synchronous and asynchronous logic  
functions. Eleven clock sources – 10 driven  
from the AND array and one from an external  
81  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
OUTPUT MACRO CELL PROGRAMMABLE OPTIONS  
OMC Programmable Options  
For purposes of programming, the Output  
Macro Cell should be considered to be  
partitioned into five separate blocks. As  
shown in the drawing titled “Output Macro Cell  
Programmable Options”, the programmable  
blocks are: Register Select Options, Polarity  
Options, Clock Options, OMC Configuration  
Options and Output Enable Control Options.  
OUTPUT MACRO CELL  
REGISTER  
SELECT  
OPTIONS  
CLOCK OPTIONS  
OUTPUT  
M
OMC  
CONFIGURATION  
OPTIONS  
OUTPUT ENABLE  
CONTROL  
There is one programmable location  
associated with each block except the Output  
Enable Control block which has two  
programmable fuse locations per OMC.  
OPTIONS  
POLARITY  
OPTIONS  
The following drawings detail the options  
associated with each programmable block.  
The associated programming codes are also  
included. The table titled “Output Macro Cell  
Configurations” (page 87) lists all the possible  
combinations of the five programmable  
options.  
ARCHITECTURAL OPTIONS  
REGISTER SELECT OPTIONS  
Register Select Options  
Each OMC Register can be configured either  
as a dedicated D-type or a J-K flip-flop. The  
Flip-Flop Control term, Fc, provides the  
option to control each Register  
P
R
dynamically—switching from D-type to J-K  
type, based on the Fc control signal.  
P
R
CK  
CLOCK  
OPTIONS  
FROM  
OR ARRAY  
D
Register Preset and Reset are controlled  
from the AND array. Each OMC has an  
individual Reset Control term (RMn). The  
Register Preset function is controlled in two  
banks of 4 for OMCs M1 – M3 and M4 – M8  
(via the control terms PA and PB). OMCs M0  
and M9 have individual control terms (PM0  
and PM9 respectively).  
OMC  
CONFIG.  
OPTIONS  
OUTPUT  
CONTROL  
OPTIONS  
Q
FROM  
AND ARRAY  
CODE  
REGISTER MODE (D or JK)  
D-TYPE  
A
L
F
CONTROL P-TERM  
C
P
P
R
R
CK  
CLOCK  
OPTIONS  
J
FROM  
OR ARRAY  
OMC  
CONFIG.  
OPTIONS  
OUTPUT  
CONTROL  
OPTIONS  
K
Q
FROM  
AND ARRAY  
CODE  
REGISTER MODE (D or JK)  
JK-TYPE  
F
CONTROL P-TERM  
C
Notes on page 87.  
82  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
REGISTER SELECT OPTIONS (Continued)  
P
P
R
P
R
F
C
R
CK  
P
R
CK  
CLOCK  
OPTIONS  
CLOCK  
OPTIONS  
FROM  
OR ARRAY  
J
D
FROM  
OR ARRAY  
OMC  
CONFIG.  
OPTIONS  
OUTPUT  
CONTROL  
OPTIONS  
OMC  
CONFIG.  
OPTIONS  
OUTPUT  
CONTROL  
OPTIONS  
K
Q
Q
FROM  
AND ARRAY  
FROM  
AND ARRAY  
REGISTER MODE (D or JK)  
CODE  
DYNAMICALLY CONTROLLABLE  
CONTROL P-TERM  
A
L or H  
F
C
F
= LOW  
F
= HIGH  
C
C
1
POLARITY OPTIONS (for Combinatorial I/O Configurations Only )  
Polarity Options  
When an OMC is configured as a  
FROM  
OR ARRAY  
Combinatorial I/O with Buried Register, the  
polarity of the combinatorial path can be  
programmed as Active-High or Active-Low. A  
configurable EX-OR gate provides polarity  
control.  
OMC CONFIG.  
OPTIONS  
OUTPUT SELECT  
OPTIONS  
M
POLARITY  
CODE  
4
ACTIVE-HIGH (NON-INVERTING)  
H
If an OMC is configured as a Registered  
Output, /Q is propagated to the output pin.  
Note that either Q or /Q can be fedback to  
the AND array by manipulating the feedback  
logic equations. (TRUE or COMPLEMENT).  
FROM  
OR ARRAY  
OMC CONFIG.  
OPTIONS  
OUTPUT CONTROL  
OPTIONS  
M
POLARITY  
CODE  
4
L
ACTIVE-LOW (INVERTING)  
CLOCK OPTIONS  
Clock Options  
In the unprogrammed state, all Output Macro  
Cell clock sources are connected to the  
External Clock pin (I /CLK pin 1). Each OMC  
can be individually programmed such that its  
CLK OPTIONS  
CODE  
A
REGISTER SELECT OPTIONS  
EXTERNAL CLOCK  
(FROM PIN 1)  
0
P-term Clock (CK ) is enabled, thus disabling  
it from the External Clock and providing  
event-driven clocking capability.  
n
D (OR J) CK  
CLK  
FROM  
OR ARRAY  
This feature supports multiple state machines,  
clocked at several different rates, all on one  
chip, or the ability to collect large amounts of  
random logic, including 10 separately clocked  
flip-flops.  
OMC  
CONFIG.  
OPTIONS  
OUTPUT  
CONTROL  
OPTIONS  
(K)  
Q
TO  
AND ARRAY  
CLK OPTIONS  
CODE  
REGISTER SELECT OPTIONS  
CK  
P-TERM CLOCK  
D (OR J) CK  
FROM  
OR ARRAY  
OMC  
CONFIG.  
OPTIONS  
OUTPUT  
CONTROL  
OPTIONS  
(K)  
Q
TO  
AND ARRAY  
Notes on page 87.  
October 22, 1993  
83  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
OUTPUT MACRO CELL CONFIGURATION OPTIONS  
REGISTER SELECT OPTIONS  
CLOCK  
OPTIONS  
D (OR J) CK  
REGISTER SELECT OPTIONS  
FROM  
OR ARRAY  
CLOCK  
D (OR J) CK  
(K)  
Q
OPTIONS  
TO  
FROM  
OR ARRAY  
OMC  
AND ARRAY  
M
(K)  
Q
CONFIG.  
OPTIONS  
COMBINATORIAL OPTIONS  
TO  
FROM  
OR  
ARRAY  
OUTPUT  
CONTROL  
OPTIONS  
AND ARRAY  
M
CODE  
OMC CONFIGURATION  
CODE  
A
OMC CONFIGURATION  
COMBINATORIAL OUTPUT  
WITH BURIED REGISTER  
(D or JK)  
REGISTERED OUTPUT  
(D or JK)  
OMC Configuration Options  
L
Each OMC can be configured as a Registered  
Output with feedback, a Registered Input or a  
Combinatorial I/O with Buried Register.  
Dedicated Input and dedicated I/O  
Note that an OMC can be configured as  
either a Combinatorial I/O (with Buried  
Register) or a Registered Output with  
feedback and it can still be used as a  
Registered Input. By disabling the outputs via  
any OE control function, the M pin can be  
used as an input. When the Load Control  
P-term is asserted HIGH, the register is  
preloaded from the M pin(s). When the L  
P-term is Active-Low and the output is  
enabled, the OMC will again function as  
configured (either a combinatorial I/O or a  
registered output with feedback). This feature  
is suited for synchronizing input signals prior  
to commencing a state sequence.  
M
configurations are also possible.  
When the Combinatorial I/O option is  
selected, (the Register Bypass option), the  
Buried Register remains 100% functional, with  
its own inputs from the AND array and a  
separate feedback path. This unique feature is  
ideal for designing any type of state machine;  
synchronous Mealy-types that require both  
Buried and Output Registers, or asynchronous  
Mealy-types that require buried registers and  
combinatorial output functions. Both  
CLOCK  
OPTIONS  
D
CK  
Q
C
OUTPUT  
CONTROL  
OPTIONS  
TO AND  
ARRAY  
CODE  
OMC CONFIGURATION  
REGISTERED INPUT  
synchronous and asynchronous Moore-type  
state machines can also be easily  
A or 5  
accommodated with the flexible OMC  
structure.  
6
LOAD CONTROL P-TERM  
H
Notes on page 87.  
84  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
OUTPUT CONTROL OPTIONS  
Output Enable Control Options  
Similar to the Clock Options, the Output  
Enable Control for each OMC can be  
connected either to an external source  
(I9/OE, pin 13) or controlled from the AND  
OE  
OMC  
CONFIG.  
OPTIONS  
M
array (P-terms DM ). Each Output can also  
n
be permanently enabled.  
Output Enable control for the two  
bi-directional I/O (B pins 10 and 11) is from  
the AND array only (P-terms DB0 and DB1  
respectively).  
TO  
AND ARRAY  
CODE  
A
CODE  
A
OE CONTROL FUSE  
FROM OE PIN  
E
FUSE  
n
FROM OE PIN  
DM  
OMC  
CONFIG.  
OPTIONS  
M
OMC  
CONFIG.  
OPTIONS  
M
TO  
TO  
AND ARRAY  
AND ARRAY  
CODE  
CODE  
A or 0  
CODE  
A
CODE  
0
OE FUSE  
OE CONTROL FUSE  
ALWAYS ENABLED  
E
FUSE  
E FUSE  
n
n
FROM P-TERM CONTROL  
ALWAYS ENABLED  
FROM P-TERM CONTROL  
COMPLEMENT ARRAY DETAIL  
Complement Array Detail  
The complement array is a special sequencer  
feature that is often used for detecting illegal  
states. It is also ideal for generating  
IF-THEN-ELSE logic statements with a  
minimum number of product terms.  
P
P
P
P
P
F
C
LM  
PM  
RM  
n
63  
62  
61  
1
0
n
n
The concept is deceptively simple. If you  
subscribe to the theory that the expressions  
(/A * /B * /C) and (A + B + C) are equivalent,  
you will begin to see the value of this single  
term NOR array.  
The complement array is a single OR gate  
with inputs from the AND array. The output of  
the complement array is inverted and fedback  
to the AND array (NOR function). The output  
of the array will be LOW if any one or more of  
the AND terms connected to it are active  
(HIGH). If, however, all the connected terms  
are inactive (LOW), which is a classic  
unknown state, the output of the complement  
array will be HIGH.  
C0  
A
B
D
E
Consider the product terms A, B and D that  
represent defined states. They are also  
connected to the input of the complement  
array. When the condition (not A and not B  
and not D) exists, the Complement Array will  
detect this and propagate an Active-High  
signal to the AND array. This signal can be  
connected to product term E, which could be  
used in turn to preset the state machine to  
known state. Without the complement array,  
one would have to generate product terms for  
all unknown or illegal states. With very  
complex state machines, such an approach  
can be prohibitive, both in terms of time and  
wasted resources.  
C0  
TO OR ARRAY  
TO OMCs AND BIDIRECTIONAL I/O  
Notes on page 87.  
October 22, 1993  
85  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
PLC42VA12 logic designs can also be  
configuration have been previously defined in  
the Architectural Options section.  
LOGIC PROGRAMMING  
generated using the program table entry  
format, which is detailed on the following  
pages. This program table entry format is  
supported by SNAP only.  
The PLC42VA12 is fully supported by  
industry standard (JEDEC compatible) PLD  
CAD tools, including Philips Semiconductors  
SNAP design software package. ABEL and  
CUPL design software packages also  
support the PLC42VA12 architecture.  
PROGRAMMING AND  
SOFTWARE SUPPORT  
Refer to Section 9 (Development Software)  
and Section 10 (Third-party Programmer/  
Software Support) of this data handbook for  
additional information.  
To implement the desired logic functions, the  
state of each logic variable from logic  
equations (I, B, O, P, etc.) is assigned a  
symbol. The symbols for TRUE,  
COMPLEMENT, INACTIVE, PRESET, etc.,  
are defined below. Symbols for OMC  
All packages allow Boolean and state  
equation entry formats. SNAP, ABEL and  
CUPL also accept, as input, schematic  
capture format.  
LOGIC IMPLEMENTATION  
“AND” ARRAY – (I), (B), (Qp)  
I, B, Q  
I, B, Q  
I, B, Q  
I, B, Q  
I, B, Q  
I, B, Q  
I, B, Q  
I, B, Q  
I, B, Q  
I, B, Q  
I, B, Q  
I, B, Q  
(T, F , L, P, R, D)  
(T, F , L, P, R, D)  
C
(T, F , L, P, R, D)  
(T, F , L, P, R, D)  
C n  
C
n
n
C
n
CODE  
O
CODE  
H
CODE  
L
CODE  
STATE  
STATE  
I, B, Q  
STATE  
I, B, Q  
STATE  
1
DON’T CARE  
INACTIVE  
“COMPLEMENT” ARRAY – (C)  
C
C
C
C
C
C
C
C
(T , F  
)
(T , F  
)
(T , F  
)
(T , F )  
n C  
n
C
n
C
n
C
CODE  
O
CODE  
A
CODE  
CODE  
ACTION  
1, 3  
ACTION  
ACTION  
ACTION  
PROPAGATE  
TRANSPARENT  
GENERATE  
INACTIVE  
“OR” ARRAY – (J-K Type)  
T
n
T
T
T
n
n
n
J
Q
J
Q
J
Q
J
Q
M = DISABLED  
M = DISABLED  
M = DISABLED  
M = DISABLED  
K
K
K
K
CODE  
CODE  
CODE  
CODE  
ACTION  
TOGGLE  
ACTION  
SET  
ACTION  
RESET  
ACTION  
HOLD  
O
H
L
“OR” ARRAY  
“OR” ARRAY – (D-Type)  
T
T
n
n
T
n
T
n
J
Q
J
Q
P, R, L  
(OR B)  
P, R, L  
(OR B)  
M = ENABLED  
M = ENABLED  
K
K
CODE  
CODE  
CODE  
CODE  
T
STATUS  
1
T
STATUS  
T
STATUS  
T STATUS  
n
n
n
n
A
INACTIVE  
A
INACTIVE (RESET)  
ACTIVE (SET)  
ACTIVE  
Notes on page 87.  
ABEL is a trademark of Data I/O Corp.  
CUPL is a trademark of Logical Devices, Inc.  
86  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
LOGIC IMPLEMENTATION (Continued)  
OUTPUT MACRO CELL CONFIGURATIONS  
PROGRAMMING CODES  
OMC CONFIGURATION POLARITY  
OUTPUT MACRO CELL  
CONFIGURATION  
REGISTER SELECT  
FUSE  
CLOCK  
FUSE  
FUSE  
FUSE  
Combinatorial I/O with Buried D-type register  
External clock source  
P-term clock source  
A
A
H or L  
H or L  
A
Combinatorial I/O with Buried J-K type register  
External clock source  
P-term clock source  
H or L  
H or L  
A
Registered Output (D-type) with feedback  
External clock source  
A
A
A
A
N/A  
N/A  
A
P-term clock source  
Registered Output (J-K type) with feedback  
External clock source  
P-term clock source  
A
A
N/A  
N/A  
A
Registered Input (Clocked Preload) with feedback  
A or 5  
A or 5  
5
5
External clock source  
P-term clock source  
A
Optional  
Optional  
A
A
OUTPUT CONTROL FUSES  
8
OUTPUT ENABLE CONTROL  
CONFIGURATION  
OE CONTROL FUSE  
En FUSES  
CONTROL SIGNAL  
OMC controlled by /OE pin  
Output Enabled  
A
A
Low  
Output Disabled  
High  
OMC controlled by P-term  
Output Enabled  
A or 0  
High  
Low  
Output Disabled  
Output always Enabled  
A
0
Not Applicable  
NOTES:  
1. This is the initial (unprogrammed) state of the device.  
2. Any gate will be unconditionally inhibited if both the TRUE and COMPLEMENT fuses are left intact.  
3. To prevent oscillations, this state is not allowed for Complement Array fuse pairs that are coupled to active product terms.  
4. The OMC Configuration fuse must be programmed as Combinatorial I/O in order to make use of the Polarity Option.  
5. Regardless of the programmed state of the OMC Configuration fuse, an OMC can be used as a Registered Input. Note that the Load Control  
P-term must be asserted Active-High.  
6. Output must be disabled.  
7. Program code definitions:  
A
= Active (unprogrammed fuse)  
0, = Inactive (programmed fuse)  
H
L
= Don’t Care (both TRUE and COMPLEMENT fuses unprogrammed)  
= Active-High connection  
= Active-Low connection  
8. OE control for B0 and B1 (Pins 10 and 11) is from the AND array only.  
87  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
TIMING DIAGRAMS  
TIMING DEFINITIONS  
SYMBOL PARAMETER  
+3V  
0V  
f
f
Clock Frequency; External Clock  
Clock Frequency; P-term Clock  
CK1  
I, B, M  
(INPUTS)  
1.5V  
1.5V  
CK2  
Width of Input Clock Pulse;  
External Clock  
t
t
t
t
t
t
CKH1  
CKH2  
CKL1  
CKL2  
IH2  
IS2,6  
+3V  
Width of Input Clock Pulse;  
P-term Clock  
P-TERM CK  
(I, B, M)  
1.5V  
1.5V  
1.5V  
0V  
V
Interval between Clock pulses;  
External Clock  
t
t
t
IS2,6  
CKH2  
CKL2  
OH  
Interval between Clock Pulses;  
P-term Clock  
M
V
1.5V  
T
(OUTPUTS)  
V
Delay between the Positive  
Transition of External Clock and  
when M Outputs become valid.  
OL  
t
CKO2  
t
OD1,2  
t
CKO1  
CKO2  
t
RP2,6  
+3V  
0V  
I, B, M, OE TERM OR  
OE PIN  
(OUTPUT ENABLE)  
Delay between the Positive  
Transition of P-term Clock and  
when M Outputs become valid.  
1.5V  
1.5V  
t
t
OE1,2  
Delay between beginning of Valid  
Input and when the M outputs  
become Valid when using  
External Clock.  
t
RP1  
RP2  
Flip-Flop Outputs with P-term Clock  
Delay between beginning of Valid  
Input and when the M outputs  
become Valid when using P-term  
Clock.  
t
+3V  
0V  
I, B, M  
(INPUTS)  
1.5V  
1.5V  
Delay between beginning of Valid  
Input and when the M outputs  
become Valid when using  
Preload Inputs (from M pins) and  
External Clock.  
t
RP3  
RP4  
t
t
IS1,5  
IH1  
+3V  
1.5V  
1.5V  
1.5V  
EXTERNAL CK  
Delay between beginning of Valid  
Input and when the M outputs  
become valid when using  
Preload inputs (from M pins) and  
P-term Clock.  
0V  
V
t
t
t
IS1,5  
CKH1  
CKL1  
t
OH  
M
V
1.5V  
T
(OUTPUTS)  
Delay between beginning of Valid  
Input and when the M outputs  
become Valid when using Com-  
plement Array and External  
clock.  
V
OL  
t
CKO1  
t
OD1,2  
t
RP1,5  
t
t
RP5  
+3V  
0V  
I, B, M, OE TERM  
OR OE PIN  
(OUTPUT ENABLE)  
1.5V  
1.5V  
Delay between beginning of Valid  
Input and when the M outputs  
become Valid when using Com-  
plement Array and P-term Clock.  
t
OE1,2  
RP6  
Flip-Flop Outputs with External Clock  
Minimum guaranteed Operating  
Frequency; Dedicated Clock  
f
f
MAX1  
Minimum guaranteed Operating  
Frequency; P-term Clock  
MAX2  
+3V  
0V  
V
Minimum guaranteed Operating  
Frequency using Preload;  
Dedicated Clock (M pin to M pin)  
I, B  
(INPUTS)  
f
f
f
f
t
1.5V  
MAX3  
MAX4  
MAX5  
MAX6  
IH1  
Minimum guaranteed Operating  
Frequency using Preload; P-term  
Clock (M pin to M pin)  
t
PD  
OH  
B, M  
(COMBINATORIAL  
OUTPUTS)  
1.5V  
V
T
Minimum guaranteed Operating  
Frequency using Complement  
Array; Dedicated Clock  
V
OL  
t
t
OD2  
OE2  
+3V  
0V  
I, B, M, OE TERM  
OR OE PIN  
(OUTPUT ENABLE)  
Minimum Operating Frequency  
using Complement Array; P-term  
Clock  
+1.5V  
+1.5V  
Required delay between positive  
transition of External Clock and  
end of valid input data.  
Gated Outputs  
88  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
TIMING DIAGRAMS (Continued)  
TIMING DEFINITIONS (Continued)  
SYMBOL PARAMETER  
+3V  
0V  
I, B  
1.5V  
1.5V  
(LOAD SELECT)  
Required delay between positive  
transition of P-term Clock and  
end of valid input data.  
t
IH2  
IH3  
+3V  
0V  
I, B, OE TERM OR OE PIN  
(OUTPUT ENABLE)  
1.5V  
1.5V  
t
Required delay between positive  
transition of External Clock and  
end of valid input data when us-  
ing Preload Inputs (from M pins).  
t
OE1,2  
L
Required delay between positive  
transition of P-term Clock and  
end of valid input data when us-  
ing Preload Inputs (from M pins).  
t
IH4  
+3V  
0V  
M
1.5V  
V
(FORCED D  
t t  
IS3,4  
)
IN  
T
(INPUT)  
Required delay between begin-  
ning of valid input and positive  
transition of External Clock.  
t
OD1,2  
IH3,4  
t
t
t
IS1  
CKL  
+3V  
0V  
P-TERM OR  
EXTERNAL CK  
Required delay between begin-  
ning of valid input and positive  
transition of P-term Clock input.  
t
CKH  
t
IS2  
IH3,4  
Q
(D  
)
IN  
Required delay between  
beginning of valid Preload input  
(from M pins) and positive  
transition of External Clock.  
t
t
t
t
t
t
t
t
IS3  
Flip-Flop Input Mode (Preload)  
Required delay between  
+3V  
0V  
beginning of valid Preload input  
(from M pins) and positive  
transition of P-term Clock input.  
I, B, M  
(INPUTS)  
1.5V  
IS4  
+3V  
0V  
Required delay between  
P-TERM OR  
EXTERNAL CK  
1.5V  
beginning of valid input through  
Complement Array and positive  
transition of External Clock.  
IS5  
t
*
t
t
CKO  
IS  
IS  
+3V  
0V  
Required delay between  
PRESET/RESET  
(I, B, M INPUTS)  
1.5V  
1.5V  
beginning of valid input through  
Complement Array and positive  
transition of P-term Clock input.  
IS6  
t
PRH  
(PRESET)  
(RESET)  
Q
Delay between beginning of  
Output Enable signal (Low) from  
/OE pin and when Outputs  
become valid.  
t
OE1  
OE2  
OD1  
OD2  
PRO  
V
OH  
(RESET)  
(PRESET)  
M
1.5V  
1.5V  
(OUTPUTS)  
Delay between beginning of  
Output Enable signal (High or  
Low) from OE P-term and when  
Outputs become valid.  
V
OL  
*Preset and Reset functions override Clock. However, M outputs may glitch with  
the first positive Clock Edge if t cannot be guaranteed by the user.  
IS  
Delay between beginning of  
Output Enable signal (HIGH) from  
/OE pin and when Outputs  
become disabled.  
Asynchronous Preset/Reset  
+5V  
4.5V  
Delay between beginning of  
Output Enable signal (High or  
Low) from OE P-term and when  
Outputs become disabled.  
V
CC  
0V  
V
t
PPR  
M
OH  
Delay between beginning of valid  
input and when the Outputs be-  
come valid (Combinatorial Path).  
(OUTPUTS)  
1.5V  
1.5V  
1.5V  
t
t
PD  
V
t
OL  
CKO1,2  
Width of Preset/Reset Pulse.  
PRH  
+3V  
0V  
I, B, M  
(INPUTS)  
1.5V  
Delay between beginning of valid  
Preset/Reset Input and when the  
registered Outputs become  
Preset (“1”) or Reset (“0”).  
t
PRO  
t
t
IH  
IS  
+3V  
0V  
1.5V  
t
1.5V  
t
1.5V  
P-TERM OR  
EXTERNAL CK  
Delay between V (after  
CC  
power-up) and when flip-flops  
become Reset to “0”. Note:  
Signal at Output (M pin) will be  
inverted.  
t
IS  
CKH  
CKL  
t
PPR  
t
CK1,2  
Power-On Reset  
89  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
LOGIC FUNCTION  
PLC42VA12 UNPROGRAMMED  
STATE  
A factory shipped unprogrammed device is  
configured such that all cells are in a  
conductive state.  
ERASURE CHARACTERISTICS  
(For Quartz Window Packages  
Q3 Q2 Q1 Q0  
Only)  
1
0
1
0
PRESENT STATE  
. . .  
NEXT STATE  
S
R
The erasure characteristics of the  
PLC42VA12 devices are such that erasure  
begins to occur upon exposure to light with  
wavelength shorter than approximately 4000  
Angstroms (Å). It should be noted that  
sunlight and certain types of fluorescent  
lamps have wavelengths in the 3000 – 4000Å  
range. Data shows that constant exposure to  
room level fluorescent lighting could erase a  
typical PLC42VA12 in approximately three  
years, while it would take approximately one  
week to cause erasure when exposed to  
direct sunlight. If the PLC42VA12 is to be  
exposed to these types of lighting conditions  
for extended periods of time, opaque labels  
should be placed over the window to prevent  
unintentional erasure.  
A
B C  
STATE REGISTER  
The following are:  
0
0
0
1
2
S
n + 1  
ACTIVE:  
– OR array logic terms  
SET Q : J = (Q  
Q
Q ) A B C . . .  
0
0
1 0  
– Output Macro Cells M1 – M8;  
K
= 0  
0
D-type registered outputs (D = 0)  
– External clock path  
RESET Q : J = 0  
1
1
K
= (Q  
Q
Q
Q
Q )  
0
A
B
C . . .  
1
3
2
1
– Inputs: B0, B1, M0, M9  
HOLD Q : J = 0  
2
2
2
K
= 0  
INACTIVE:  
– AND array logic and control terms (except  
RESET Q : J = (Q  
Q
Q
)
0
A
A
B
B
C . . .  
C . . .  
3
3
3
3
2
2
1
K
= (Q  
Q
Q
Q )  
flip-flop mode control term, F )  
3
1 0  
C
– Bidirectional I/O (B0, B1);  
NOTE:  
Inputs are active. Outputs are 3-Stated  
via the OE P-terms, D0 and D1.  
Similar logic functions are applicable for D  
mode flip-flops.  
The recommended erasure procedure for the  
PLC42VA12 is exposure to shortwave  
ultraviolet light which has a wavelength of  
2537 Angstroms (Å). The integrated dose  
(i.e., UV intensity × exposure time) for  
erasure should be a minimum of  
D-type registers (D = 0).  
– Output Macro Cells M0 and M9;  
Bidirectional I/O, 3-Stated via the OE  
P-terms, DM0 and DM9. The inputs are  
active.  
FLIP-FLOP TRUTH TABLE  
OE  
H
L
L
CK  
P
R
n
J
K
Q
M
Hi-Z  
H
n
n
n
2
15Wsec/cm . The erasure time with this  
– P-term clocks  
dosage is approximately 30 to 35 minutes  
using an ultraviolet lamp with a  
X
X
X
X
X
X
X
X
X
X
X
X
L
H
L
– Complement Array  
– J-K Flip-Flop mode  
L
X
X
H
L
L
L
2
12,000µW/cm power rating. The device  
should be placed within one inch of the lamp  
tubes during erasure. The maximum  
integrated dose a CMOS EPLD can be  
exposed to without damage is  
L
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
Q
L
Q
H
L
PROGRAMMING AND  
SOFTWARE SUPPORT  
Refer to Section 9 (Development Software)  
and Section 10 (Third-party Programmer/  
Software Support) in this data handbook for  
additional information.  
2
2
7258Wsec/cm (1 week @ 12000µW/cm ).  
Exposure of these CMOS EPLDs to high  
intensity UV light for longer periods may  
cause permanent damage.  
H
H
H
Q
H
Q
H
H
H
H
L
L
L
L
L
H
L
L
H*  
L*  
H
H
The maximum number of guaranteed  
erase/write cycles is 50. Data retentions  
exceeds 20 years.  
+10V  
X
X
X
X
X
X
L
H
L
L
H**  
L**  
H
H
NOTES:  
1. Positive Logic:  
J-K = T + T + T + ... + T  
0
1
2
31  
T = C (I0 I1 I2...) (Q0 Q1...)  
n
(B0 B1...)  
2. denotes transition for Low to High level.  
3. X = Don’t care  
4. * = Forced at M pin for loading the J-K  
n
flip-flop in the Input mode. The load  
control term, L must be enabled (HIGH)  
n
and the p-terms that are connected to the  
associated flip-flop must be forced LOW  
(disabled) during Preload.  
5. At P = R = H, Q = H. The final state of Q  
depends on which is released first.  
6. ** = Forced at F pin to load J/K flip-flop  
n
(Diagnostic mode).  
90  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
PROGRAM TABLE  
91  
October 22, 1993  
Philips Semiconductors Programmable Logic Devices  
Product specification  
CMOS programmable multi-function PLD  
(42 × 105 × 12)  
PLC42VA12  
SNAP RESOURCE SUMMARY DESIGNATIONS  
P
P
F
L
P
R
CK  
LM  
PM  
RM  
CK  
DM  
DM  
DB  
n
63  
0
C
n
n
n
n
n
n
n
n
n
n
I9/OE  
I1 – I8  
DIN42  
NIN42  
X8  
I0/CK  
NOR  
AND  
ANDFC  
CAND  
X2  
X1  
X2  
X2  
X8  
X8  
X2  
X2  
X2  
X8  
X2  
X2  
NTIM42  
CLK  
CONTROL  
DTIM42  
OR  
X8  
P
J
R
CK42  
CK  
X8  
E
(X2)  
n
OE  
n
X8  
OR  
K
Q
X8  
OMC  
CONFIG.  
OENAND  
OEBUFF  
JKFFPR42  
X8  
POLARITY  
M1 – M8  
TNOO42  
EXOR42  
CLK  
CONTROL  
OR  
P
J
R
X2  
CK42  
CK  
X2  
E
(X2)  
X2  
n
OE  
n
X2  
K
Q
OENAND  
OMC  
OR  
CONFIG.  
JKFFPR42  
OEBUFF  
M0, M9  
X2  
POLARITY  
POLARITY  
TNOU42  
EXOR42  
B0 – B1  
X2  
TNOU42  
EXOR42  
92  
October 22, 1993  

相关型号:

PLC42VA12FA

CMOS programmable multi-function PLD 42 】 105 】 12
NXP

PLC42VA12IA

UV-Erasable/OTP PLD
ETC

PLC42VA12IFA

UV-Erasable/OTP PLD
ETC

PLC42VA12IN

UV-Erasable/OTP PLD
ETC

PLC42VA12N

CMOS programmable multi-function PLD 42 】 105 】 12
NXP

PLC4510

Heavy-duty construction
LSTD

PLC4510N

Heavy-duty construction
LSTD

PLC456

Heavy-duty construction
LSTD

PLC456N

Heavy-duty construction
LSTD

PLC4710

Heavy-duty construction
LSTD

PLC4710N

Heavy-duty construction
LSTD

PLC473-35FA

Programmable Logic Device, 35ns, PLA-Type, CMOS, CDIP24
PHILIPS