PN5120A0HN1/C1,151 [NXP]

PN512 - Full NFC Forum-compliant frontend QFN 32-Pin;
PN5120A0HN1/C1,151
型号: PN5120A0HN1/C1,151
厂家: NXP    NXP
描述:

PN512 - Full NFC Forum-compliant frontend QFN 32-Pin

电信 电信集成电路
文件: 总136页 (文件大小:1068K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PN512  
Full NFC Forum Compliant Solution  
Rev. 4.4 — 30 July 2013  
111344  
Product data sheet  
COMPANY PUBLIC  
1. Introduction  
This document describes the functionality and electrical specifications of the  
transceiver IC PN512.  
The PN512 is a highly integrated transceiver IC for contactless communication at  
13.56 MHz. This transceiver IC utilizes an outstanding modulation and demodulation  
concept completely integrated for different kinds of contactless communication methods  
and protocols at 13.56 MHz.  
1.1 Different available versions  
The PN512 is available in three versions:  
PN5120A0HN1/C2 (HVQFN32), PN5120A0HN/C2 (HVQFN40) and PN5120A0ET/C2  
(TFBGA64), hereafter named as version 2.0  
PN512AA0HN1/C2 (HVQFN32) and PN512AA0HN1/C2BI (HVQFN32 with Burn In),  
hereafter named as industrial version, fulfilling the automotive qualification stated in  
AEC-Q100 grade 3 from the Automotive Electronics Council, defining the critical  
stress test qualification for automotive integrated circuits (ICs).  
PN5120A0HN1/C1(HVQFN32) and PN5120A0HN/C1 (HVQFN40), hereafter named  
as version 1.0  
The data sheet describes the functionality for the industrial version and version 2.0. The  
differences of the version 1.0 to the version 2.0 are summarized in Section 21. The  
industrial version has only differences within the outlined characteristics and limitations.  
2. General description  
The PN512 transceiver ICs support 4 different operating modes  
Reader/Writer mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme  
Reader/Writer mode supporting ISO/IEC 14443B  
Card Operation mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme  
NFCIP-1 mode  
Enabled in Reader/Writer mode for ISO/IEC 14443A/MIFARE, the PN512’s internal  
transmitter part is able to drive a reader/writer antenna designed to communicate with  
ISO/IEC 14443A/ MIFARE cards and transponders without additional active circuitry. The  
receiver part provides a robust and efficient implementation of a demodulation and  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
decoding circuitry for signals from ISO/IEC 14443A/MIFARE compatible cards and  
transponders. The digital part handles the complete ISO/IEC 14443A framing and error  
detection (Parity & CRC).  
The PN512 supports MIFARE 1K or MIFARE 4K emulation products. The PN512 supports  
contactless communication using MIFARE higher transfer speeds up to 424 kbit/s in both  
directions.  
Enabled in Reader/Writer mode for FeliCa, the PN512 transceiver IC supports the FeliCa  
communication scheme. The receiver part provides a robust and efficient implementation  
of the demodulation and decoding circuitry for FeliCa coded signals. The digital part  
handles the FeliCa framing and error detection like CRC. The PN512 supports contactless  
communication using FeliCa Higher transfer speeds up to 424 kbit/s in both directions.  
The PN512 supports all layers of the ISO/IEC 14443B reader/writer communication  
scheme, given correct implementation of additional components, like oscillator, power  
supply, coil etc. and provided that standardized protocols, e.g. like ISO/IEC 14443-4  
and/or ISO/IEC 14443B anticollision are correctly implemented.  
In Card Operation mode, the PN512 transceiver IC is able to answer to a reader/writer  
command either according to the FeliCa or ISO/IEC 14443A/MIFARE card interface  
scheme. The PN512 generates the digital load modulated signals and in addition with an  
external circuit the answer can be sent back to the reader/writer. A complete card  
functionality is only possible in combination with a secure IC using the S2C interface.  
Additionally, the PN512 transceiver IC offers the possibility to communicate directly to an  
NFCIP-1 device in the NFCIP-1 mode. The NFCIP-1 mode offers different communication  
mode and transfer speeds up to 424 kbit/s according to the Ecma 340 and ISO/IEC 18092  
NFCIP-1 Standard. The digital part handles the complete NFCIP-1 framing and error  
detection.  
Various host controller interfaces are implemented:  
8-bit parallel interface1  
SPI interface  
serial UART (similar to RS232 with voltage levels according pad voltage supply)  
I2C interface.  
A purchaser of this NXP IC has to take care for appropriate third party patent licenses.  
1. 8-bit parallel Interface only available in HVQFN40 package.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
2 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
3. Features and benefits  
Highly integrated analog circuitry to demodulate and decode responses  
Buffered output drivers for connecting an antenna with the minimum number of  
external components  
Integrated RF Level detector  
Integrated data mode detector  
Supports ISO/IEC 14443 A/MIFARE  
Supports ISO/IEC 14443 B Read/Write modes  
Typical operating distance in Read/Write mode up to 50 mm depending on the  
antenna size and tuning  
Typical operating distance in NFCIP-1 mode up to 50 mm depending on the antenna  
size and tuning and power supply  
Typical operating distance in ISO/IEC 14443A/MIFARE card or FeliCa Card Operation  
mode of about 100 mm depending on the antenna size and tuning and the external  
field strength  
Supports MIFARE 1K or MIFARE 4K emulation encryption in Reader/Writer mode  
ISO/IEC 14443A higher transfer speed communication at 212 kbit/s and 424 kbit/s  
Contactless communication according to the FeliCa scheme at 212 kbit/s and  
424 kbit/s  
Integrated RF interface for NFCIP-1 up to 424 kbit/s  
S2C interface  
Additional power supply to directly supply the smart card IC connected via S2C  
Supported host interfaces  
SPI up to 10 Mbit/s  
I2C-bus interface up to 400 kBd in Fast mode, up to 3400 kBd in High-speed mode  
RS232 Serial UART up to 1228.8 kBd, with voltage levels dependant on pin  
voltage supply  
8-bit parallel interface with and without Address Latch Enable  
FIFO buffer handles 64 byte send and receive  
Flexible interrupt modes  
Hard reset with low power function  
Power-down mode per software  
Programmable timer  
Internal oscillator for connection to 27.12 MHz quartz crystal  
2.5 V to 3.6 V power supply  
CRC coprocessor  
Programmable I/O pins  
Internal self-test  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
3 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
4. Quick reference data  
Table 1.  
Quick reference data  
Symbol Parameter  
Conditions  
Min  
Typ  
Max Unit  
[1][2]  
[3]  
VDDA  
VDDD  
analog supply voltage  
digital supply voltage  
VDD(PVDD) VDDA = VDDD = VDD(TVDD)  
;
2.5  
-
3.6  
V
VSSA = VSSD = VSS(PVSS) = VSS(TVSS) = 0 V  
VDD(TVDD) TVDD supply voltage  
VDD(PVDD) PVDD supply voltage  
VDD(SVDD) SVDD supply voltage  
1.6  
1.6  
-
-
3.6  
3.6  
V
V
VSSA = VSSD = VSS(PVSS) = VSS(TVSS) = 0 V  
VDDA = VDDD = VDD(TVDD) = VDD(PVDD) = 3 V  
hard power-down; pin NRSTPD set LOW  
soft power-down; RF level detector on  
pin DVDD; VDDD = 3 V  
Ipd  
power-down current  
[4]  
[4]  
-
-
-
-
-
5
A  
A  
-
10  
9
IDDD  
IDDA  
digital supply current  
analog supply current  
6.5  
7
mA  
mA  
pin AVDD; VDDA = 3 V, CommandReg register’s  
RcvOff bit = 0  
10  
pin AVDD; receiver switched off; VDDA = 3 V,  
CommandReg register’s RcvOff bit = 1  
-
3
5
mA  
[5]  
IDD(PVDD) PVDD supply current  
IDD(TVDD) TVDD supply current  
pin PVDD  
-
-
40  
mA  
mA  
C  
[6][7][8]  
pin TVDD; continuous wave  
HVQFN32, HVQFN40, TFBGA64  
-
60  
100  
+85  
Tamb  
ambient temperature  
30  
lndustrial version:  
Ipd  
power-down current  
VDDA = VDDD = VDD(TVDD) = VDD(PVDD) = 3 V  
hard power-down; pin NRSTPD set LOW  
soft power-down; RF level detector on  
HVQFN32  
[4]  
[4]  
-
-
-
-
15  
A  
A  
C  
-
30  
Tamb  
ambient temperature  
40  
+90  
[1] Supply voltages below 3 V reduce the performance in, for example, the achievable operating distance.  
[2] DDA, VDDD and VDD(TVDD) must always be the same voltage.  
V
[3] VDD(PVDD) must always be the same or lower voltage than VDDD  
.
[4] Ipd is the total current for all supplies.  
[5]  
IDD(PVDD) depends on the overall load at the digital pins.  
[6] IDD(TVDD) depends on VDD(TVDD) and the external circuit connected to pins TX1 and TX2.  
[7] During typical circuit operation, the overall current is below 100 mA.  
[8] Typical value using a complementary driver configuration and an antenna matched to 40 between pins TX1 and TX2 at 13.56 MHz.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
4 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
5. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PN5120A0HN1/C2  
PN5120A0HN/C2  
PN512AA0HN1/C2  
HVQFN32 plastic thermal enhanced very thin quad flat package; no leads;  
SOT617-1  
SOT618-1  
SOT617-1  
SOT617-1  
SOT617-1  
SOT618-1  
SOT1336-1  
32 terminal; body 5 5 0.85 mm  
HVQFN40 plastic thermal enhanced very thin quad flat package; no leads;  
40 terminals; body 6 6 0.85 mm  
HVQFN32 plastic thermal enhanced very thin quad flat package; no leads;  
32 terminal; body 5 5 0.85 mm  
PN512AA0HN1/C2BI HVQFN32 plastic thermal enhanced very thin quad flat package; no leads;  
32 terminal; body 5 5 0.85 mm  
PN5120A0HN1/C1  
PN5120A0HN/C1  
PN5120A0ET/C2  
HVQFN32 plastic thermal enhanced very thin quad flat package; no leads;  
32 terminal; body 5 5 0.85 mm  
HVQFN40 plastic thermal enhanced very thin quad flat package; no leads;  
40 terminals; body 6 6 0.85 mm  
TFBGA64 plastic thin fine-pitch ball grid array package; 64 balls  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
5 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
6. Block diagram  
The analog interface handles the modulation and demodulation of the analog signals  
according to the Card Receiving mode, Reader/Writer mode and NFCIP-1 mode  
communication scheme.  
The RF level detector detects the presence of an external RF-field delivered by the  
antenna to the RX pin.  
The Data mode detector detects a MIFARE, FeliCa or NFCIP-1 mode in order to prepare  
the internal receiver to demodulate signals, which are sent to the PN512.  
The communication (S2C) interface provides digital signals to support communication for  
transfer speeds above 424 kbit/s and digital signals to communicate to a secure IC.  
The contactless UART manages the protocol requirements for the communication  
protocols in cooperation with the host. The FIFO buffer ensures fast and convenient data  
transfer to and from the host and the contactless UART and vice versa.  
Various host interfaces are implemented to meet different customer requirements.  
REGISTER BANK  
ANALOG  
INTERFACE  
CONTACTLESS  
UART  
ANTENNA  
FIFO  
BUFFER  
SERIAL UART  
SPI  
I C-BUS  
HOST  
2
001aaj627  
Fig 1. Simplified block diagram of the PN512  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
6 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
D6/ADR_0/  
MOSI/MX  
D2/ADR_4  
D1/ADR_5 D3/ADR_3  
25 26 27  
D4/ADR_2  
D5/ADR_1/  
D7/SCL/  
SDA/NSS/RX EA I2C  
24 32  
PVDD PVSS  
SCK/DTRQ  
MISO/TX  
1
28  
29  
30  
31  
2
5
3
4
DVDD  
DVSS  
VOLTAGE  
MONITOR  
AND  
POWER ON  
DETECT  
2
SPI, UART, I C-BUS INTERFACE CONTROL  
15  
18  
AVDD  
AVSS  
FIFO CONTROL  
STATE MACHINE  
64-BYTE FIFO  
BUFFER  
RESET  
CONTROL  
COMMAND REGISTER  
PROGRAMABLE TIMER  
INTERRUPT CONTROL  
CRC16  
6
POWER-DOWN  
CONTROL  
NRSTPD  
IRQ  
CONTROL REGISTER  
BANK  
23  
MIFARE CLASSIC UNIT  
GENERATION AND CHECK  
RANDOM NUMBER  
GENERATOR  
PARALLEL/SERIAL  
CONVERTER  
BIT COUNTER  
PARITY GENERATION AND CHECK  
FRAME GENERATION AND CHECK  
BIT DECODING  
BIT ENCODING  
7
8
9
MFIN  
SERIAL DATA SWITCH  
MFOUT  
SVDD  
21  
22  
CLOCK  
OSCIN  
GENERATION,  
FILTERING AND  
DISTRIBUTION  
AMPLITUDE  
RATING  
OSCILLATOR  
ANALOG TO DIGITAL  
CONVERTER  
OSCOUT  
REFERENCE  
VOLTAGE  
Q-CLOCK  
GENERATION  
TEMPERATURE  
SENSOR  
ANALOG TEST  
MULTIPLEXOR  
AND  
DIGITAL TO  
ANALOG  
I-CHANNEL  
AMPLIFIER  
Q-CHANNEL  
AMPLIFIER  
TRANSMITTER CONTROL  
I-CHANNEL  
DEMODULATOR  
Q-CHANNEL  
DEMODULATOR  
CONVERTER  
16  
19  
20  
17  
RX  
10, 14  
TVSS  
11  
TX1  
13  
TX2  
12  
VMID AUX1 AUX2  
TVDD  
001aak602  
Fig 2. Detailed block diagram of the PN512  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
7 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
A1  
ALE  
PVDD  
DVDD  
IRQ  
OSCOUT  
OSCIN  
AUX2  
AUX1  
AVSS  
RX  
DVSS  
PN512  
PVSS  
NRSTPD  
SIGIN  
SIGOUT  
001aan212  
Transparent top view  
Fig 3. Pinning configuration HVQFN32 (SOT617-1)  
terminal 1  
index area  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
A2  
A3  
NCS  
ALE  
3
A4  
NRD  
4
A5  
NWR  
IRQ  
5
PVDD  
DVDD  
DVSS  
PVSS  
NRSTPD  
SIGIN  
PN512  
6
OSCOUT  
OSCIN  
AUX2  
AUX1  
AVSS  
7
8
9
10  
001aan213  
Transparent top view  
Fig 4. Pinning configuration HVQFN40 (SOT618-1)  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
8 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
ball A1  
index area  
TFBGA64  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
G
H
aaa-005873  
Transparent top view  
Fig 5. Pin configuration TFBGA64 (SOT1336-1)  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
9 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
7.2 Pin description  
Table 3.  
Pin description HVQFN32  
Pin  
1
Symbol  
A1  
Type  
I
Description  
Address Line  
2
PVDD  
DVDD  
DVSS  
PVSS  
NRSTPD  
PWR  
PWR  
PWR  
PWR  
I
Pad power supply  
Digital Power Supply  
Digital Ground  
3
4
5
Pad power supply ground  
6
Not Reset and Power Down: When LOW, internal current sinks are switched off, the  
oscillator is inhibited, and the input pads are disconnected from the outside world. With  
a positive edge on this pin the internal reset phase starts.  
7
SIGIN  
SIGOUT  
SVDD  
TVSS  
TX1  
I
Communication Interface Input: accepts a digital, serial data stream  
Communication Interface Output: delivers a serial data stream  
S2C Pad Power Supply: provides power to the S2C pads  
Transmitter Ground: supplies the output stage of TX1 and TX2  
Transmitter 1: delivers the modulated 13.56 MHz energy carrier  
Transmitter Power Supply: supplies the output stage of TX1 and TX2  
Transmitter 2: delivers the modulated 13.56 MHz energy carrier  
Transmitter Ground: supplies the output stage of TX1 and TX2  
Analog Power Supply  
8
O
9
PWR  
PWR  
O
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
TVDD  
TX2  
PWR  
O
TVSS  
AVDD  
VMID  
RX  
PWR  
PWR  
PWR  
I
Internal Reference Voltage: This pin delivers the internal reference voltage.  
Receiver Input  
AVSS  
AUX1  
AUX2  
OSCIN  
PWR  
O
Analog Ground  
Auxiliary Outputs: These pins are used for testing.  
O
I
Crystal Oscillator Input: input to the inverting amplifier of the oscillator. This pin is  
also the input for an externally generated clock (fosc = 27.12 MHz).  
22  
23  
24  
OSCOUT  
IRQ  
O
O
I
Crystal Oscillator Output: Output of the inverting amplifier of the oscillator.  
Interrupt Request: output to signal an interrupt event  
ALE  
Address Latch Enable: signal to latch AD0 to AD5 into the internal address latch  
when HIGH.  
25 to 31  
D1 to D7  
I/O  
8-bit Bi-directional Data Bus.  
Remark: An 8-bit parallel interface is not available.  
Remark: If the host controller selects I2C as digital host controller interface, these pins  
can be used to define the I2C address.  
Remark: For serial interfaces this pins can be used for test signals or I/Os.  
32  
A0  
I
Address Line  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
10 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 4.  
Pin description HVQFN40  
Pin  
Symbol  
A2 to A5  
PVDD  
Type  
I
Description  
1 to 4  
Address Line  
5
6
7
8
9
PWR  
PWR  
PWR  
PWR  
I
Pad power supply  
Digital Power Supply  
Digital Ground  
DVDD  
DVSS  
PVSS  
Pad power supply ground  
NRSTPD  
Not Reset and Power Down: When LOW, internal current sinks are switched off, the  
oscillator is inhibited, and the input pads are disconnected from the outside world. With  
a positive edge on this pin the internal reset phase starts.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SIGIN  
SIGOUT  
SVDD  
TVSS  
TX1  
I
Communication Interface Input: accepts a digital, serial data stream  
Communication Interface Output: delivers a serial data stream  
S2C Pad Power Supply: provides power to the S2C pads  
Transmitter Ground: supplies the output stage of TX1 and TX2  
Transmitter 1: delivers the modulated 13.56 MHz energy carrier  
Transmitter Power Supply: supplies the output stage of TX1 and TX2  
Transmitter 2: delivers the modulated 13.56 MHz energy carrier  
Transmitter Ground: supplies the output stage of TX1 and TX2  
Analog Power Supply  
O
PWR  
PWR  
O
TVDD  
TX2  
PWR  
O
TVSS  
AVDD  
VMID  
RX  
PWR  
PWR  
PWR  
I
Internal Reference Voltage: This pin delivers the internal reference voltage.  
Receiver Input  
AVSS  
AUX1  
AUX2  
OSCIN  
PWR  
O
Analog Ground  
Auxiliary Outputs: These pins are used for testing.  
O
I
Crystal Oscillator Input: input to the inverting amplifier of the oscillator. This pin is  
also the input for an externally generated clock (fosc = 27.12 MHz).  
25  
26  
27  
28  
29  
OSCOUT  
IRQ  
O
O
I
Crystal Oscillator Output: Output of the inverting amplifier of the oscillator.  
Interrupt Request: output to signal an interrupt event  
NWR  
NRD  
Not Write: strobe to write data (applied on D0 to D7) into the PN512 register  
Not Read: strobe to read data from the PN512 register (applied on D0 to D7)  
I
ALE  
I
Address Latch Enable: signal to latch AD0 to AD5 into the internal address latch  
when HIGH.  
30  
NCS  
I
Not Chip Select: selects and activates the host controller interface of the PN512  
8-bit Bi-directional Data Bus.  
31 to 38  
D0 to D7  
I/O  
Remark: For serial interfaces this pins can be used for test signals or I/Os.  
Remark: If the host controller selects I2C as digital host controller interface, these pins  
can be used to define the I2C address.  
39 to 40  
A0 to A1  
I
Address Line  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
11 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 5.  
Pin  
Pin description TFBGA64  
Symbol  
Type  
Description  
A1 to A5, A8,  
PVSS  
PWR  
Pad power supply ground  
B3, B4, B8, E1  
A6  
A7  
D4  
D2  
I/O  
I/O  
8-bit Bi-directional Data Bus.  
Remark: For serial interfaces this pins can be used for test signals or I/Os.  
Remark: If the host controller selects I2C as digital host controller interface, these  
pins can be used to define the I2C address.  
B1  
B2  
B5  
B6  
B7  
PVDD  
A0  
PWR  
I
Pad power supply  
Address Line  
D5  
I/O  
I/O  
I/O  
8-bit Bi-directional Data Bus.  
Remark: For serial interfaces this pins can be used for test signals or I/Os.  
Remark: If the host controller selects I2C as digital host controller interface, these  
pins can be used to define the I2C address.  
D3  
D1  
C1  
C2  
C3  
C4  
DVDD  
A1  
PWR  
I
Digital Power Supply  
Address Line  
D7  
I/O  
I/O  
8-bit Bi-directional Data Bus.  
Remark: For serial interfaces this pins can be used for test signals or I/Os.  
D6  
Remark: If the host controller selects I2C as digital host controller interface, these  
pins can be used to define the I2C address.  
C5  
C6  
IRQ  
ALE  
O
I
Interrupt Request: output to signal an interrupt event  
Address Latch Enable: signal to latch AD0 to AD5 into the internal address latch  
when HIGH.  
C7, C8, D6, D8, AVSS  
E6, E8, F7, G8,  
H8  
PWR  
Analog Ground  
D1  
D2  
DVSS  
PWR  
I
Digital Ground  
NRSTPD  
Not Reset and Power Down: When LOW, internal current sinks are switched off,  
the oscillator is inhibited, and the input pads are disconnected from the outside  
world. With a positive edge on this pin the internal reset phase starts.  
D3 to D5, E3 to TVSS  
E5, F3, F4,  
PWR  
Transmitter Ground: supplies the output stage of TX1 and TX2  
G1 to G6,  
H1, H2, H6  
D7  
E2  
E7  
OSCOUT  
O
I
Crystal Oscillator Output: Output of the inverting amplifier of the oscillator.  
Communication Interface Input: accepts a digital, serial data stream  
SIGIN  
OSCIN  
I
Crystal Oscillator Input: input to the inverting amplifier of the oscillator. This pin  
is also the input for an externally generated clock (fosc = 27.12 MHz).  
F1  
F2  
F5  
F6  
F8  
G7  
H3  
SVDD  
SIGOUT  
AUX1  
AUX2  
RX  
PWR  
S2C Pad Power Supply: provides power to the S2C pads  
Communication Interface Output: delivers a serial data stream  
Auxiliary Outputs: These pins are used for testing.  
O
O
O
I
Receiver Input  
VMID  
TX1  
PWR  
O
Internal Reference Voltage: This pin delivers the internal reference voltage.  
Transmitter 1: delivers the modulated 13.56 MHz energy carrier  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
12 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 5.  
Pin  
Pin description TFBGA64  
Symbol  
TVDD  
TX2  
Type  
PWR  
O
Description  
H4  
Transmitter Power Supply: supplies the output stage of TX1 and TX2  
Transmitter 2: delivers the modulated 13.56 MHz energy carrier  
Analog Power Supply  
H5  
H7  
AVDD  
PWR  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
13 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
8. Functional description  
The PN512 transmission module supports the Read/Write mode for  
ISO/IEC 14443 A/MIFARE and ISO/IEC 14443 B using various transfer speeds and  
modulation protocols.  
PN512 transceiver IC supports the following operating modes:  
Reader/Writer mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme  
Card Operation mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme  
NFCIP-1 mode  
The modes support different transfer speeds and modulation schemes. The following  
chapters will explain the different modes in detail.  
Note: All indicated modulation indices and modes in this chapter are system parameters.  
This means that beside the IC settings a suitable antenna tuning is required to achieve the  
optimum performance.  
BATTERY  
PN512  
ISO/IEC 14443 A CARD  
MICROCONTROLLER  
contactless card  
reader/writer  
001aan218  
Fig 6. PN512 Read/Write mode  
8.1 ISO/IEC 14443 A/MIFARE functionality  
The physical level communication is shown in Figure 7.  
(1)  
ISO/IEC 14443 A  
READER  
ISO/IEC 14443 A CARD  
(2)  
PN512  
001aan219  
Fig 7. ISO/IEC 14443 A/MIFARE Read/Write mode communication diagram  
The physical parameters are described in Table 4.  
Table 6.  
Communication overview for ISO/IEC 14443 A/MIFARE reader/writer  
Communication  
direction  
Signal type  
Transfer speed  
106 kBd  
212 kBd  
424 kBd  
Reader to card (send reader side  
data from the PN512 modulation  
100 % ASK  
100 % ASK  
100 % ASK  
to a card)  
bit encoding  
modified Miller  
encoding  
modified Miller  
encoding  
modified Miller  
encoding  
bit length  
128 (13.56 s)  
64 (13.56 s)  
32 (13.56 s)  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
14 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 6.  
Communication overview for ISO/IEC 14443 A/MIFARE reader/writer …continued  
Communication  
direction  
Signal type  
Transfer speed  
106 kBd  
212 kBd  
424 kBd  
Card to reader  
(PN512 receives data modulation  
card side  
subcarrier load  
modulation  
subcarrier load  
modulation  
subcarrier load  
modulation  
from a card)  
subcarrier  
13.56 MHz/16  
13.56 MHz/16  
13.56 MHz/16  
frequency  
bit encoding  
Manchester  
encoding  
BPSK  
BPSK  
The PN512’s contactless UART and dedicated external host must manage the complete  
ISO/IEC 14443 A/MIFARE protocol. Figure 8 shows the data coding and framing  
according to ISO/IEC 14443 A/MIFARE.  
ISO/IEC 14443 A framing at 106 kBd  
start  
8-bit data  
8-bit data  
8-bit data  
odd  
odd  
odd  
parity  
parity  
parity  
start bit is 1  
ISO/IEC 14443 A framing at 212 kBd, 424 kBd and 848 kBd  
start  
even  
parity  
8-bit data  
8-bit data  
8-bit data  
odd  
parity  
odd  
parity  
start bit is 0  
burst of 32  
subcarrier clocks  
even parity at the  
end of the frame  
001aak585  
Fig 8. Data coding and framing according to ISO/IEC 14443 A  
The internal CRC coprocessor calculates the CRC value based on ISO/IEC 14443 A  
part 3 and handles parity generation internally according to the transfer speed. Automatic  
parity generation can be switched off using the ManualRCVReg register’s ParityDisable  
bit.  
8.2 ISO/IEC 14443 B functionality  
The MFRC523 reader IC fully supports international standard ISO 14443 which includes  
communication schemes ISO 14443 A and ISO 14443 B.  
Refer to the ISO 14443 reference documents Identification cards - Contactless integrated  
circuit cards - Proximity cards (parts 1 to 4).  
Remark: NXP Semiconductors does not offer a software library to enable design-in of the  
ISO 14443 B protocol.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
15 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
8.3 FeliCa reader/writer functionality  
The FeliCa mode is the general reader/writer to card communication scheme according to  
the FeliCa specification. The following diagram describes the communication on a  
physical level, the communication overview describes the physical parameters.  
1. PCD to PICC, 8-30 % ASK  
Felica READER  
Manchester coded, baudrate 212 to 424 kbaud  
FeliCa CARD  
(PICC)  
(PCD)  
PN512  
2. PICC to PCD, > 12 % ASK loadmodulation  
Manchester coded, baudrate 212 to 424 kbaud  
001aan214  
Fig 9. FeliCa reader/writer communication diagram  
Table 7. Communication overview for FeliCa reader/writer  
Communication  
direction  
FeliCa  
FeliCa Higher  
transfer speeds  
Transfer speed  
Modulation on reader side  
bit coding  
212 kbit/s  
424 kbit/s  
PN512 card  
card PN512  
8-30 % ASK  
8-30 % ASK  
Manchester Coding  
(64/13.56) s  
Manchester Coding  
(32/13.56) s  
> 12 % ASK  
Bitlength  
Loadmodulation on card side > 12 % ASK  
bit coding Manchester coding  
Manchester coding  
The contactless UART of PN512 and a dedicated external host controller are required to  
handle the complete FeliCa protocol.  
8.3.1 FeliCa framing and coding  
Table 8.  
FeliCa framing and coding  
Preamble  
Sync  
Len n-Data  
CRC  
00h 00h 00h 00h 00h 00h B2h 4Dh  
To enable the FeliCa communication a 6 byte preamble (00h, 00h, 00h, 00h, 00h, 00h)  
and 2 bytes Sync bytes (B2h, 4Dh) are sent to synchronize the receiver.  
The following Len byte indicates the length of the sent data bytes plus the LEN byte itself.  
The CRC calculation is done according to the FeliCa definitions with the MSB first.  
To transmit data on the RF interface, the host controller has to send the Len- and data-  
bytes to the PN512's FIFO-buffer. The preamble and the sync bytes are generated by the  
PN512 automatically and must not be written to the FIFO by the host controller. The  
PN512 performs internally the CRC calculation and adds the result to the data frame.  
Example for FeliCa CRC Calculation:  
Table 9.  
Start value for the CRC Polynomial: (00h), (00h)  
Preamble  
Sync  
Len  
03h  
2 Data Bytes CRC  
ABh CDh 90h  
00h  
00h  
00h  
00h  
00h  
00h  
B2h  
4Dh  
35h  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
16 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
8.4 NFCIP-1 mode  
The NFCIP-1 communication differentiates between an active and a Passive  
Communication mode.  
Active Communication mode means both the initiator and the target are using their  
own RF field to transmit data.  
Passive Communication mode means that the target answers to an initiator command  
in a load modulation scheme. The initiator is active in terms of generating the RF field.  
Initiator: generates RF field at 13.56 MHz and starts the NFCIP-1 communication  
Target: responds to initiator command either in a load modulation scheme in Passive  
Communication mode or using a self generated and self modulated RF field for Active  
Communication mode.  
In order to fully support the NFCIP-1 standard the PN512 supports the Active and Passive  
Communication mode at the transfer speeds 106 kbit/s, 212 kbit/s and 424 kbit/s as  
defined in the NFCIP-1 standard.  
BATTERY  
MICROCONTROLLER  
BATTERY  
PN512  
PN512  
MICROCONTROLLER  
001aan215  
initiator: active  
target:  
passive or active  
Fig 10. NFCIP-1 mode  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
17 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
8.4.1 Active communication mode  
Active communication mode means both the initiator and the target are using their own  
RF field to transmit data.  
Initial command  
host  
host  
NFC INITIATOR  
NFC TARGET  
1. initiator starts communication at  
selected transfer speed  
powered to  
powered for  
generate RF field  
digital processing  
response  
host  
host  
NFC INITIATOR  
NFC TARGET  
2. target answers at  
the same transfer speed  
powered for digital  
processing  
powered to  
generate RF field  
001aan216  
Fig 11. Active communication mode  
Table 10. Communication overview for Active communication mode  
Communication 106 kbit/s  
direction  
212 kbit/s  
424 kbit/s  
848 kbit/s  
1.69 Mbit/s,  
3.39 Mbit/s  
Initiator Target According to  
According to FeliCa, 8-30 % digital capability to handle  
ASK Manchester Coded this communication  
ISO/IEC 14443A  
Target Initiator  
100 % ASK,  
Modified  
Miller Coded  
The contactless UART of PN512 and a dedicated host controller are required to handle  
the NFCIP-1 protocol.  
Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard. The  
PN512 supports these transfer speeds only with dedicated external circuits.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
18 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
8.4.2 Passive communication mode  
Passive Communication mode means that the target answers to an initiator command in a  
load modulation scheme. The initiator is active meaning generating the RF field.  
1. initiator starts communication  
at selected transfer speed  
host  
host  
NFC INITIATOR  
NFC TARGET  
2. targets answers using  
load modulated data  
at the same transfer speed  
powered to  
powered for  
generate RF field  
digital processing  
001aan217  
Fig 12. Passive communication mode  
Table 11. Communication overview for Passive communication mode  
Communication 106 kbit/s  
direction  
212 kbit/s  
424 kbit/s  
848 kbit/s  
1.69 Mbit/s,  
3.39 Mbit/s  
Initiator Target According to  
ISO/IEC 14443A  
100 % ASK,  
According to FeliCa, 8-30  
% ASK Manchester Coded this communication  
digital capability to handle  
Modified  
Miller Coded  
Target Initiator According to  
ISO/IEC 14443A  
According to FeliCa, > 12 %  
ASK Manchester Coded  
subcarrier load  
modulation,  
Manchester Coded  
The contactless UART of PN512 and a dedicated host controller are required to handle  
the NFCIP-1 protocol.  
Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard. The  
PN512 supports these transfer speeds only with dedicated external circuits.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
19 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
8.4.3 NFCIP-1 framing and coding  
The NFCIP-1 framing and coding in Active and Passive Communication mode is defined  
in the NFCIP-1 standard.  
Table 12. Framing and coding overview  
Transfer speed  
106 kbit/s  
Framing and Coding  
According to the ISO/IEC 14443A/MIFARE scheme  
According to the FeliCa scheme  
According to the FeliCa scheme  
212 kbit/s  
424 kbit/s  
8.4.4 NFCIP-1 protocol support  
The NFCIP-1 protocol is not completely described in this document. For detailed  
explanation of the protocol refer to the NFCIP-1 standard. However the datalink layer is  
according to the following policy:  
Speed shall not be changed while continuum data exchange in a transaction.  
Transaction includes initialization and anticollision methods and data exchange (in  
continuous way, meaning no interruption by another transaction).  
In order not to disturb current infrastructure based on 13.56 MHz general rules to start  
NFCIP-1 communication are defined in the following way.  
1. Per default NFCIP-1 device is in Target mode meaning its RF field is switched off.  
2. The RF level detector is active.  
3. Only if application requires the NFCIP-1 device shall switch to Initiator mode.  
4. Initiator shall only switch on its RF field if no external RF field is detected by RF Level  
detector during a time of TIDT.  
5. The initiator performs initialization according to the selected mode.  
8.4.5 MIFARE Card operation mode  
Table 13. MIFARE Card operation mode  
Communication  
direction  
ISO/IEC 14443A/  
MIFARE  
MIFARE Higher transfer speeds  
transfer speed 106 kbit/s  
212 kbit/s  
424 kbit/s  
reader/writer Modulation on  
100 % ASK  
100 % ASK  
100 % ASK  
PN512  
reader side  
bit coding  
Bitlength  
Modified Miller  
Modified Miller  
Modified Miller  
(128/13.56) s  
(64/13.56) s  
(32/13.56) s  
PN512 reader/ Modulation on  
subcarrier load  
modulation  
subcarrier load  
modulation  
subcarrier load  
modulation  
writer  
PN512 side  
subcarrier  
frequency  
13.56 MHz/16  
13.56 MHz/16  
13.56 MHz/16  
bit coding  
Manchester coding  
BPSK  
BPSK  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
20 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
8.4.6 FeliCa Card operation mode  
Table 14. FeliCa Card operation mode  
Communication  
direction  
FeliCa  
FeliCa Higher  
transfer speeds  
Transfer speed  
212 kbit/s  
424 kbit/s  
reader/writer   
PN512  
Modulation on reader side  
bit coding  
8-30 % ASK  
8-30 % ASK  
Manchester Coding  
(64/13.56) s  
Manchester Coding  
(32/13.56) s  
Bitlength  
PN512 reader/ Load modulation on PN512  
> 12 % ASK load  
modulation  
> 12 % ASK load  
modulation  
writer  
side  
bit coding  
Manchester coding  
Manchester coding  
9. PN512 register SET  
9.1 PN512 registers overview  
Table 15. PN512 registers overview  
Addr  
(hex)  
Register Name Function  
Page 0: Command and Status  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
PageReg  
Selects the register page  
Starts and stops command execution  
CommandReg  
ComlEnReg  
DivlEnReg  
Controls bits to enable and disable the passing of Interrupt Requests  
Controls bits to enable and disable the passing of Interrupt Requests  
Contains Interrupt Request bits  
ComIrqReg  
DivIrqReg  
Contains Interrupt Request bits  
ErrorReg  
Error bits showing the error status of the last command executed  
Contains status bits for communication  
Status1Reg  
Status2Reg  
FIFODataReg  
FIFOLevelReg  
Contains status bits of the receiver and transmitter  
In- and output of 64 byte FIFO-buffer  
Indicates the number of bytes stored in the FIFO  
WaterLevelReg Defines the level for FIFO under- and overflow warning  
ControlReg  
BitFramingReg  
CollReg  
Contains miscellaneous Control Registers  
Adjustments for bit oriented frames  
Bit position of the first bit collision detected on the RF-interface  
Reserved for future use  
RFU  
Page 1: Command  
0
1
2
3
4
5
PageReg  
Selects the register page  
ModeReg  
Defines general modes for transmitting and receiving  
Defines the data rate and framing during transmission  
Defines the data rate and framing during receiving  
Controls the logical behavior of the antenna driver pins TX1 and TX2  
Controls the setting of the antenna drivers  
TxModeReg  
RxModeReg  
TxControlReg  
TxAutoReg  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
21 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 15. PN512 registers overview …continued  
Addr  
(hex)  
Register Name Function  
6
7
8
9
A
B
C
TxSelReg  
RxSelReg  
Selects the internal sources for the antenna driver  
Selects internal receiver settings  
RxThresholdReg Selects thresholds for the bit decoder  
DemodReg  
FelNFC1Reg  
FelNFC2Reg  
MifNFCReg  
Defines demodulator settings  
Defines the length of the valid range for the receive package  
Defines the length of the valid range for the receive package  
Controls the communication in ISO/IEC 14443/MIFARE and NFC  
target mode at 106 kbit  
D
E
F
ManualRCVReg Allows manual fine tuning of the internal receiver  
TypeBReg Configure the ISO/IEC 14443 type B  
SerialSpeedReg Selects the speed of the serial UART interface  
Page 2: CFG  
0
1
2
3
PageReg  
Selects the register page  
CRCResultReg  
Shows the actual MSB and LSB values of the CRC calculation  
GsNOffReg  
Selects the conductance of the antenna driver pins TX1 and TX2 for  
modulation, when the driver is switched off  
4
5
6
7
ModWidthReg  
Controls the setting of the ModWidth  
TxBitPhaseReg Adjust the TX bit phase at 106 kbit  
RFCfgReg  
GsNOnReg  
Configures the receiver gain and RF level  
Selects the conductance of the antenna driver pins TX1 and TX2 for  
modulation when the drivers are switched on  
8
9
CWGsPReg  
ModGsPReg  
Selects the conductance of the antenna driver pins TX1 and TX2 for  
modulation during times of no modulation  
Selects the conductance of the antenna driver pins TX1 and TX2 for  
modulation during modulation  
A
B
C
D
E
F
TModeReg  
TPrescalerReg  
Defines settings for the internal timer  
TReloadReg  
Describes the 16-bit timer reload value  
TCounterValReg Shows the 16-bit actual timer value  
Page 3: TestRegister  
0
1
2
3
PageReg  
selects the register page  
TestSel1Reg  
TestSel2Reg  
TestPinEnReg  
General test signal configuration  
General test signal configuration and PRBS control  
Enables pin output driver on 8-bit parallel bus (Note: For serial  
interfaces only)  
4
TestPin  
Defines the values for the 8-bit parallel bus when it is used as I/O bus  
ValueReg  
5
6
TestBusReg  
AutoTestReg  
Shows the status of the internal testbus  
Controls the digital selftest  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
22 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 15. PN512 registers overview …continued  
Addr  
(hex)  
Register Name Function  
7
VersionReg  
AnalogTestReg  
TestDAC1Reg  
TestDAC2Reg  
TestADCReg  
RFT  
Shows the version  
Controls the pins AUX1 and AUX2  
8
9
Defines the test value for the TestDAC1  
Defines the test value for the TestDAC2  
Shows the actual value of ADC I and Q  
Reserved for production tests  
A
B
C-F  
9.1.1 Register bit behavior  
Depending on the functionality of a register, the access conditions to the register can vary.  
In principle bits with same behavior are grouped in common registers. In Table 16 the  
access conditions are described.  
Table 16. Behavior of register bits and its designation  
Abbreviation Behavior  
Description  
r/w  
read and write These bits can be written and read by the -Controller. Since they  
are used only for control means, there content is not influenced by  
internal state machines, e.g. the PageSelect-Register may be  
written and read by the -Controller. It will also be read by internal  
state machines, but never changed by them.  
dy  
r
dynamic  
These bits can be written and read by the -Controller.  
Nevertheless, they may also be written automatically by internal  
state machines, e.g. the Command-Register changes its value  
automatically after the execution of the actual command.  
read only  
These registers hold bits, which value is determined by internal  
states only, e.g. the CRCReady bit can not be written from  
external but shows internal states.  
w
write only  
-
Reading these registers returns always ZERO.  
These registers are reserved for future use.  
RFU  
In case of a PN512 Version version 2.0 (VersionReg = 82h) a  
read access to these registers returns always the value “0”.  
Nevertheless this is not guaranteed for future chips versions  
where the value is undefined. In case of a write access, it is  
recommended to write always the value “0”.  
RFT  
-
These registers are reserved for production tests and shall not be  
changed.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
23 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2 Register description  
9.2.1 Page 0: Command and status  
9.2.1.1 PageReg  
Selects the register page.  
Table 17. PageReg register (address 00h); reset value: 00h, 0000000b  
7
UsePage Select  
r/w  
6
0
5
0
4
0
3
0
2
0
1
0
PageSelect  
r/w r/w  
Access  
Rights  
RFU  
RFU  
RFU  
RFU  
RFU  
Table 18. Description of PageReg bits  
Bit  
Symbol  
Description  
7
UsePageSelect Set to logic 1, the value of PageSelect is used as register address A5  
and A4. The LSB-bits of the register address are defined by the  
address pins or the internal address latch, respectively.  
Set to logic 0, the whole content of the internal address latch defines  
the register address. The address pins are used as described in  
Section 10.1 “Automatic microcontroller interface detection”.  
6 to 2  
1 to 0  
-
Reserved for future use.  
PageSelect  
The value of PageSelect is used only if UsePageSelect is set to  
logic 1. In this case it specifies the register page (which is A5 and A4  
of the register address).  
9.2.1.2 CommandReg  
Starts and stops command execution.  
Table 19. CommandReg register (address 01h); reset value: 20h, 00100000b  
7
0
6
0
5
4
3
2
1
0
RcvOff Power Down  
r/w dy  
Command  
Access  
Rights  
RFU  
RFU  
dy  
dy  
dy  
dy  
Table 20. Description of CommandReg bits  
Bit  
7 to 6  
5
Symbol  
-
Description  
Reserved for future use.  
RcvOff  
PowerDown  
Set to logic 1, the analog part of the receiver is switched off.  
Set to logic 1, Soft Power-down mode is entered.  
4
Set to logic 0, the PN512 starts the wake up procedure. During this  
procedure this bit still shows a 1. A 0 indicates that the PN512 is ready  
for operations; see Section 16.2 “Soft power-down mode”.  
Note: The bit Power Down cannot be set, when the command  
SoftReset has been activated.  
3 to 0  
Command  
Activates a command according to the Command Code. Reading this  
register shows, which command is actually executed (see Section 19.3  
“PN512 command overview”).  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
24 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.3 CommIEnReg  
Control bits to enable and disable the passing of interrupt requests.  
Table 21. CommIEnReg register (address 02h); reset value: 80h, 10000000b  
7
6
5
4
3
2
1
0
IRqInv  
r/w  
TxIEn  
r/w  
RxIEn  
r/w  
IdleIEn HiAlertIEn LoAlertIEn ErrIEn TimerIEn  
r/w r/w r/w r/w r/w  
Access  
Rights  
Table 22. Description of CommIEnReg bits  
Bit  
Symbol  
Description  
7
IRqInv  
Set to logic 1, the signal on pin IRQ is inverted with respect to bit IRq in the  
register Status1Reg. Set to logic 0, the signal on pin IRQ is equal to bit IRq.  
In combination with bit IRqPushPull in register DivIEnReg, the default value  
of 1 ensures, that the output level on pin IRQ is 3-state.  
6
5
4
3
2
1
0
TxIEn  
RxIEn  
IdleIEn  
Allows the transmitter interrupt request (indicated by bit TxIRq) to be  
propagated to pin IRQ.  
Allows the receiver interrupt request (indicated by bit RxIRq) to be  
propagated to pin IRQ.  
Allows the idle interrupt request (indicated by bit IdleIRq) to be propagated to  
pin IRQ.  
HiAlertIEn Allows the high alert interrupt request (indicated by bit HiAlertIRq) to be  
propagated to pin IRQ.  
LoAlertIEn Allows the low alert interrupt request (indicated by bit LoAlertIRq) to be  
propagated to pin IRQ.  
ErrIEn  
Allows the error interrupt request (indicated by bit ErrIRq) to be propagated  
to pin IRQ.  
TimerIEn  
Allows the timer interrupt request (indicated by bit TimerIRq) to be  
propagated to pin IRQ.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
25 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.4 DivIEnReg  
Control bits to enable and disable the passing of interrupt requests.  
Table 23. DivIEnReg register (address 03h); reset value: 00h, 00000000b  
7
IRQPushPull  
r/w  
6
5
4
3
2
1
0
0
0
SiginActIEn ModeIEn CRCIEn RFOnIEn RFOffIEn  
r/w r/w r/w r/w r/w  
Access  
Rights  
RFU RFU  
Table 24. Description of DivIEnReg bits  
Bit  
Symbol  
Description  
7
IRQPushPull  
Set to logic 1, the pin IRQ works as standard CMOS output pad.  
Set to logic 0, the pin IRQ works as open drain output pad.  
Reserved for future use.  
6 to 5  
-
4
3
SiginActIEn  
ModeIEn  
Allows the SIGIN active interrupt request to be propagated to pin IRQ.  
Allows the mode interrupt request (indicated by bit ModeIRq) to be  
propagated to pin IRQ.  
2
1
0
CRCIEn  
RfOnIEn  
RfOffIEn  
Allows the CRC interrupt request (indicated by bit CRCIRq) to be  
propagated to pin IRQ.  
Allows the RF field on interrupt request (indicated by bit RfOnIRq) to  
be propagated to pin IRQ.  
Allows the RF field off interrupt request (indicated by bit RfOffIRq) to  
be propagated to pin IRQ.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
26 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.5 CommIRqReg  
Contains Interrupt Request bits.  
Table 25. CommIRqReg register (address 04h); reset value: 14h, 00010100b  
7
Set1  
w
6
5
4
3
2
1
0
TxIRq  
dy  
RxIRq  
dy  
IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq  
dy dy dy dy dy  
Access  
Rights  
Table 26. Description of CommIRqReg bits  
All bits in the register CommIRqReg shall be cleared by software.  
Bit Symbol Description  
7
Set1  
Set to logic 1, Set1 defines that the marked bits in the register CommIRqReg  
are set.  
Set to logic 0, Set1 defines, that the marked bits in the register CommIRqReg  
are cleared.  
6
5
TxIRq  
RxIRq  
Set to logic 1 immediately after the last bit of the transmitted data was sent out.  
Set to logic 1 when the receiver detects the end of a valid datastream.  
If the bit RxNoErr in register RxModeReg is set to logic 1, bit RxIRq is only set  
to logic 1 when data bytes are available in the FIFO.  
4
IdleIRq  
Set to logic 1, when a command terminates by itself e.g. when the  
CommandReg changes its value from any command to the Idle Command.  
If an unknown command is started, the CommandReg changes its content to  
the idle state and the bit IdleIRq is set. Starting the Idle Command by the  
-Controller does not set bit IdleIRq.  
3
2
HiAlertIRq Set to logic 1, when bit HiAlert in register Status1Reg is set. In opposition to  
HiAlert, HiAlertIRq stores this event and can only be reset as indicated by bit  
Set1.  
LoAlertIRq Set to logic 1, when bit LoAlert in register Status1Reg is set. In opposition to  
LoAlert, LoAlertIRq stores this event and can only be reset as indicated by bit  
Set1.  
1
0
ErrIRq  
Set to logic 1 if any error bit in the Error Register is set.  
TimerIRq  
Set to logic 1 when the timer decrements the TimerValue Register to zero.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
27 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.6 DivIRqReg  
Contains Interrupt Request bits  
Table 27. DivIRqReg register (address 05h); reset value: XXh, 000X00XXb  
7
Set2  
w
6
0
5
0
4
3
2
1
0
SiginActIRq ModeIRq CRCIRq RFOnIRq RFOffIRq  
dy dy dy dy dy  
Access  
Rights  
RFU  
RFU  
Table 28. Description of DivIRqReg bits  
All bits in the register DivIRqReg shall be cleared by software.  
Bit  
Symbol  
Description  
7
Set2  
Set to logic 1, Set2 defines that the marked bits in the register  
DivIRqReg are set.  
Set to logic 0, Set2 defines, that the marked bits in the register  
DivIRqReg are cleared  
6 to 5  
4
-
Reserved for future use.  
SiginActIRq  
Set to logic 1, when SIGIN is active. See Section 12.6 “S2C interface  
support”. This interrupt is set when either a rising or falling signal edge  
is detected.  
3
ModeIRq  
Set to logic 1, when the mode has been detected by the Data mode  
detector.  
Note: The Data mode detector can only be activated by the AutoColl  
command and is terminated automatically having detected the  
Communication mode.  
Note: The Data mode detector is automatically restarted after each RF  
Reset.  
2
CRCIRq  
Set to logic 1, when the CRC command is active and all data are  
processed.  
1
0
RFOnIRq  
RFOffIRq  
Set to logic 1, when an external RF field is detected.  
Set to logic 1, when a present external RF field is switched off.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
28 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.7 ErrorReg  
Error bit register showing the error status of the last command executed.  
Table 29. ErrorReg register (address 06h); reset value: 00h, 00000000b  
7
WrErr  
r
6
5
4
3
2
1
0
TempErr RFErr BufferOvfl CollErr CRCErr ParityErr ProtocolErr  
Access  
Rights  
r
r
r
r
r
r
r
Table 30. Description of ErrorReg bits  
Bit  
Symbol  
Description  
7
WrErr  
Set to logic 1, when data is written into FIFO by the host controller  
during the AutoColl command or MFAuthent command or if data is  
written into FIFO by the host controller during the time between  
sending the last bit on the RF interface and receiving the last bit on the  
RF interface.  
6
5
TempErr[1]  
RFErr  
Set to logic 1, if the internal temperature sensor detects overheating.  
In this case, the antenna drivers are switched off automatically.  
Set to logic 1, if in Active Communication mode the counterpart does  
not switch on the RF field in time as defined in NFCIP-1 standard.  
Note: RFErr is only used in Active Communication mode. The bits  
RxFraming or the bits TxFraming has to be set to 01 to enable this  
functionality.  
4
3
BufferOvfl  
CollErr  
Set to logic 1, if the host controller or a PN512’s internal state machine  
(e.g. receiver) tries to write data into the FIFO-bufferFIFO-buffer  
although the FIFO-buffer is already full.  
Set to logic 1, if a bit-collision is detected. It is cleared automatically at  
receiver start-up phase. This bit is only valid during the bitwise  
anticollision at 106 kbit. During communication schemes at 212 and  
424 kbit this bit is always set to logic 1.  
2
1
0
CRCErr  
Set to logic 1, if bit RxCRCEn in register RxModeReg is set and the  
CRC calculation fails. It is cleared to 0 automatically at receiver  
start-up phase.  
ParityErr  
ProtocolErr  
Set to logic 1, if the parity check has failed. It is cleared automatically  
at receiver start-up phase. Only valid for ISO/IEC 14443A/MIFARE or  
NFCIP-1 communication at 106 kbit.  
Set to logic 1, if one out of the following cases occur:  
Set to logic 1 if the SOF is incorrect. It is cleared automatically at  
receiver start-up phase. The bit is only valid for 106 kbit in Active  
and Passive Communication mode.  
If bit DetectSync in register ModeReg is set to logic 1 during  
FeliCa communication or active communication with transfer  
speeds higher than 106 kbit, the bit ProtocolErr is set to logic 1 in  
case of a byte length violation.  
During the AutoColl command, bit ProtocolErr is set to logic 1, if  
the bit Initiator in register ControlReg is set to logic 1.  
During the MFAuthent Command, bit ProtocolErr is set to logic 1,  
if the number of bytes received in one data stream is incorrect.  
Set to logic 1, if the Miller Decoder detects 2 pulses below the  
minimum time according to the ISO/IEC 14443A definitions.  
[1] Command execution will clear all error bits except for bit TempErr. A setting by software is impossible.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
29 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.8 Status1Reg  
Contains status bits of the CRC, Interrupt and FIFO-buffer.  
Table 31. Status1Reg register (address 07h); reset value: XXh, X100X01Xb  
7
6
5
4
IRq  
r
3
2
1
HiAlert  
r
0
LoAlert  
r
RFFreqOK CRCOk CRCReady  
TRunning RFOn  
Access  
Rights  
r
r
r
r
r
Table 32. Description of Status1Reg bits  
Bit  
Symbol  
Description  
7
RFFreqOK  
Indicates if the frequency detected at the RX pin is in the range of  
13.56 MHz.  
Set to logic 1, if the frequency at the RX pin is in the range  
12 MHz < RX pin frequency < 15 MHz.  
Note: The value of RFFreqOK is not defined if the external RF  
frequency is in the range from 9 to 12 MHz or in the range from  
15 to 19 MHz.  
6
CRCOk  
Set to logic 1, if the CRC Result is zero. For data transmission and  
reception the bit CRCOk is undefined (use CRCErr in register  
ErrorReg). CRCOk indicates the status of the CRC co-processor,  
during calculation the value changes to ZERO, when the calculation is  
done correctly, the value changes to ONE.  
5
4
3
CRCReady  
IRq  
Set to logic 1, when the CRC calculation has finished. This bit is only  
valid for the CRC co-processor calculation using the command  
CalcCRC.  
This bit shows, if any interrupt source requests attention (with respect  
to the setting of the interrupt enable bits, see register CommIEnReg  
and DivIEnReg).  
TRunning  
Set to logic 1, if the PN512’s timer unit is running, e.g. the timer will  
decrement the TCounterValReg with the next timer clock.  
Note: In the gated mode the bit TRunning is set to logic 1, when the  
timer is enabled by the register bits. This bit is not influenced by the  
gated signal.  
2
1
RFOn  
Set to logic 1, if an external RF field is detected. This bit does not store  
the state of the RF field.  
HiAlert  
Set to logic 1, when the number of bytes stored in the FIFO-buffer  
fulfills the following equation:  
HiAlert = 64 FIFOLength  WaterLevel  
Example:  
FIFOLength = 60, WaterLevel = 4 HiAlert = 1  
FIFOLength = 59, WaterLevel = 4 HiAlert = 0  
0
LoAlert  
Set to logic 1, when the number of bytes stored in the FIFO-buffer  
fulfills the following equation: LoAlert = FIFOLength WaterLevel  
Example:  
FIFOLength = 4, WaterLevel = 4 LoAlert = 1  
FIFOLength = 5, WaterLevel = 4 LoAlert = 0  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
30 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.9 Status2Reg  
Contains status bits of the Receiver, Transmitter and Data mode detector.  
Table 33. Status2Reg register (address 08h); reset value: 00h, 00000000b  
7
6
5
0
4
3
2
1
0
TempSensClear I2CForceHS  
TargetActivated MFCrypto1On Modem State  
dy dy  
Access  
Rights  
r/w r/w  
RFU  
r
r
r
Table 34. Description of Status2Reg bits  
Bit  
Symbol  
Description  
7
TempSensClear Set to logic 1, this bit clears the temperature error, if the temperature  
is below the alarm limit of 125 C.  
6
I2CForceHS  
I2C input filter settings. Set to logic 1, the I2C input filter is set to the  
High-speed mode independent of the I2C protocol. Set to logic 0, the  
I2C input filter is set to the used I2C protocol.  
5
4
-
Reserved for future use.  
TargetActivated  
Set to logic 1 if the Select command or if the Polling command was  
answered. Note: This bit can only be set during the AutoColl  
command in Passive Communication mode.  
Note: This bit is cleared automatically by switching off the external  
RF field.  
3
MFCrypto1On  
Modem State  
This bit indicates that the MIFARE Crypto1 unit is switched on and  
therefore all data communication with the card is encrypted.  
This bit can only be set to logic 1 by a successful execution of the  
MFAuthent Command. This bit is only valid in Reader/Writer mode  
for MIFARE cards. This bit shall be cleared by software.  
2 to 0  
ModemState shows the state of the transmitter and receiver state  
machines.  
Value Description  
000  
001  
010  
IDLE  
Wait for StartSend in register BitFramingReg  
TxWait: Wait until RF field is present, if the bit TxWaitRF is  
set to logic 1. The minimum time for TxWait is defined by the  
TxWaitReg register.  
011  
100  
Sending  
RxWait: Wait until RF field is present, if the bit RxWaitRF is  
set to logic 1. The minimum time for RxWait is defined by the  
RxWaitReg register.  
101  
110  
Wait for data  
Receiving  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
31 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.10 FIFODataReg  
In- and output of 64 byte FIFO-buffer.  
Table 35. FIFODataReg register (address 09h); reset value: XXh, XXXXXXXXb  
7
6
5
4
3
2
1
0
FIFOData  
Access  
Rights  
dy  
dy  
dy  
dy  
dy  
dy  
dy  
dy  
Table 36. Description of FIFODataReg bits  
Bit  
Symbol  
Description  
7 to 0  
FIFOData  
Data input and output port for the internal 64 byte FIFO-buffer. The  
FIFO-buffer acts as parallel in/parallel out converter for all serial data  
stream in- and outputs.  
9.2.1.11 FIFOLevelReg  
Indicates the number of bytes stored in the FIFO.  
Table 37. FIFOLevelReg register (address 0Ah); reset value: 00h, 00000000b  
7
FlushBuffer  
w
6
5
4
3
2
1
0
FIFOLevel  
r
Access  
Rights  
r
r
r
r
r
r
Table 38. Description of FIFOLevelReg bits  
Bit  
Symbol  
Description  
7
FlushBuffer  
Set to logic 1, this bit clears the internal FIFO-buffer’s read- and  
write-pointer and the bit BufferOvfl in the register ErrReg immediately.  
Reading this bit will always return 0.  
6 to 0  
FIFOLevel  
Indicates the number of bytes stored in the FIFO-buffer. Writing to the  
FIFODataReg increments, reading decrements the FIFOLevel.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
32 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.12 WaterLevelReg  
Defines the level for FIFO under- and overflow warning.  
Table 39. WaterLevelReg register (address 0Bh); reset value: 08h, 00001000b  
7
0
6
0
5
4
3
2
1
0
WaterLevel  
Access  
Rights  
RFU  
RFU  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 40. Description of WaterLevelReg bits  
Bit  
Symbol  
Description  
7 to 6  
5 to 0  
-
Reserved for future use.  
WaterLevel  
This register defines a warning level to indicate a FIFO-buffer over- or  
underflow:  
The bit HiAlert in Status1Reg is set to logic 1, if the remaining number  
of bytes in the FIFO-buffer space is equal or less than the defined  
number of WaterLevel bytes.  
The bit LoAlert in Status1Reg is set to logic 1, if equal or less than  
WaterLevel bytes are in the FIFO.  
Note: For the calculation of HiAlert and LoAlert see Table 31  
9.2.1.13 ControlReg  
Miscellaneous control bits.  
Table 41. ControlReg register (address 0Ch); reset value: 00h, 00000000b  
7
6
5
4
3
0
2
1
0
TStopNow TStartNow WrNFCIDtoFIFO Initiator  
dy r/w  
RxLastBits  
r
Access  
Rights  
w
w
RFU  
r
r
Table 42. Description of ControlReg bits  
Bit  
Symbol  
Description  
7
TStopNow  
Set to logic 1, the timer stops immediately.  
Reading this bit will always return 0.  
Set to logic 1 starts the timer immediately.  
Reading this bit will always return 0.  
6
5
TStartNow  
WrNFCIDtoFIFO Set to logic 1, the internal stored NFCID (10 bytes) is copied into the  
FIFO.  
Afterwards the bit is cleared automatically  
4
3
Initiator  
-
Set to logic 1, the PN512 acts as initiator, otherwise it acts as target  
Reserved for future use.  
2 to 0 RxLastBits  
Shows the number of valid bits in the last received byte. If zero, the  
whole byte is valid.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
33 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.14 BitFramingReg  
Adjustments for bit oriented frames.  
Table 43. BitFramingReg register (address 0Dh); reset value: 00h, 00000000b  
7
StartSend  
w
6
5
4
3
0
2
1
TxLastBits  
r/w  
0
RxAlign  
r/w  
Access  
Rights  
r/w  
r/w  
RFU  
r/w  
r/w  
Table 44. Description of BitFramingReg bits  
Bit  
Symbol  
StartSend Set to logic 1, the transmission of data starts.  
This bit is only valid in combination with the Transceive command.  
Description  
7
6 to 4  
RxAlign  
Used for reception of bit oriented frames: RxAlign defines the bit position  
for the first bit received to be stored in the FIFO. Further received bits are  
stored at the following bit positions.  
Example:  
RxAlign = 0: the LSB of the received bit is stored at bit 0, the second  
received bit is stored at bit position 1.  
RxAlign = 1: the LSB of the received bit is stored at bit 1, the second  
received bit is stored at bit position 2.  
RxAlign = 7: the LSB of the received bit is stored at bit 7, the second  
received bit is stored in the following byte at bit position 0.  
This bit shall only be used for bitwise anticollision at 106 kbit/s in Passive  
Communication mode. In all other modes it shall be set to logic 0.  
3
-
Reserved for future use.  
2 to 0  
TxLastBits Used for transmission of bit oriented frames: TxLastBits defines the  
number of bits of the last byte that shall be transmitted. A 000 indicates  
that all bits of the last byte shall be transmitted.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
34 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.1.15 CollReg  
Defines the first bit collision detected on the RF interface.  
Table 45. CollReg register (address 0Eh); reset value: XXh, 101XXXXXb  
7
6
5
4
3
2
1
0
Values  
AfterColl  
0
CollPos  
NotValid  
CollPos  
Access  
Rights  
r/w  
RFU  
r
r
r
r
r
r
Table 46. Description of CollReg bits  
Bit  
Symbol  
Description  
7
ValuesAfterColl If this bit is set to logic 0, all receiving bits will be cleared after a  
collision. This bit shall only be used during bitwise anticollision at  
106 kbit, otherwise it shall be set to logic 1.  
6
5
-
Reserved for future use.  
CollPosNotValid Set to logic 1, if no Collision is detected or the Position of the  
Collision is out of the range of bits CollPos. This bit shall only be  
interpreted in Passive Communication mode at 106 kbit or  
ISO/IEC 14443A/MIFARE Reader/Writer mode.  
4 to 0  
CollPos  
These bits show the bit position of the first detected collision in a  
received frame, only data bits are interpreted.  
Example:  
00h indicates a bit collision in the 32th bit  
01h indicates a bit collision in the 1st bit  
08h indicates a bit collision in the 8th bit  
These bits shall only be interpreted in Passive Communication mode  
at 106 kbit or ISO/IEC 14443A/MIFARE Reader/Writer mode if bit  
CollPosNotValid is set to logic 0.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
35 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2 Page 1: Communication  
9.2.2.1 PageReg  
Selects the register page.  
Table 47. PageReg register (address 10h); reset value: 00h, 00000000b  
7
UsePage Select  
r/w  
6
0
5
0
4
0
3
0
2
0
1
0
PageSelect  
r/w r/w  
Access  
Rights  
RFU  
RFU  
RFU  
RFU  
RFU  
Table 48. Description of PageReg bits  
Bit  
Symbol  
Description  
7
UsePage Select Set to logic 1, the value of PageSelect is used as register address A5  
and A4. The LSB-bits of the register address are defined by the  
address pins or the internal address latch, respectively.  
Set to logic 0, the whole content of the internal address latch defines  
the register address. The address pins are used as described in  
Section 10.1 “Automatic microcontroller interface detection”.  
6 to 2  
1 to 0  
-
Reserved for future use.  
PageSelect  
The value of PageSelect is used only, if UsePageSelect is set to  
logic 1. In this case it specifies the register page (which is A5 and A4  
of the register address).  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
36 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.2 ModeReg  
Defines general mode settings for transmitting and receiving.  
Table 49. ModeReg register (address 11h); reset value: 3Bh, 00111011b  
7
6
5
4
3
2
1
0
MSBFirst Detect Sync TxWaitRF RxWaitRF PolSigin ModeDetOff CRCPreset  
r/w r/w r/w r/w r/w r/w r/w r/w  
Access  
Rights  
Table 50. Description of ModeReg bits  
Bit  
Symbol  
Description  
7
MSBFirst  
Set to logic 1, the CRC co-processor calculates the CRC with MSB  
first and the CRCResultMSB and the CRCResultLSB in the  
CRCResultReg register are bit reversed.  
Note: During RF communication this bit is ignored.  
6
Detect Sync  
If set to logic 1, the contactless UART waits for the value F0h before  
the receiver is activated and F0h is added as a Sync-byte for  
transmission.  
This bit is only valid for 106 kbit during NFCIP-1 data exchange  
protocol.  
In all other modes it shall be set to logic 0.  
5
4
TxWaitRF  
RxWaitRF  
Set to logic 1 the transmitter in reader/writer or initiator mode for  
NFCIP-1 can only be started, if an RF field is generated.  
Set to logic 1, the counter for RxWait starts only if an external RF field  
is detected in Target mode for NFCIP-1 or in Card Communication  
mode.  
3
PolSigin  
PolSigin defines the polarity of the SIGIN pin. Set to logic 1, the  
polarity of SIGIN pin is active high. Set to logic 0 the polarity of SIGIN  
pin is active low.  
Note: The internal envelope signal is coded active low.  
Note: Changing this bit will generate a SiginActIRq event.  
Set to logic 1, the internal mode detector is switched off.  
Note: The mode detector is only active during the AutoColl command.  
2
ModeDetOff  
CRCPreset  
1 to 0  
Defines the preset value for the CRC co-processor for the command  
CalCRC.  
Note: During any communication, the preset values is selected  
automatically according to the definition in the bits RxMode and  
TxMode.  
Value  
00  
Description  
0000  
01  
6363  
10  
A671  
11  
FFFF  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
37 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.3 TxModeReg  
Defines the data rate and framing during transmission.  
Table 51. TxModeReg register (address 12h); reset value: 00h, 00000000b  
7
6
5
TxSpeed  
dy  
4
3
2
1
0
TxCRCEn  
r/w  
InvMod  
r/w  
TxMix  
r/w  
TxFraming  
Access  
Rights  
dy  
dy  
dy  
dy  
Table 52. Description of TxModeReg bits  
Bit  
Symbol  
Description  
7
TxCRCEn  
Set to logic 1, this bit enables the CRC generation during data  
transmission.  
Note: This bit shall only be set to logic 0 at 106 kbit.  
Defines the bit rate while data transmission.  
6 to 4  
TxSpeed  
Value  
000  
001  
010  
011  
100  
101  
110  
111  
Description  
106 kbit  
212 kbit  
424 kbit  
848 kbit  
1696 kbit  
3392 kbit  
Reserved  
Reserved  
Note: The bit coding for transfer speeds above 424 kbit is equivalent to  
the bit coding of Active Communication mode 424 kbit (Ecma 340).  
3
2
InvMod  
TxMix  
Set to logic 1, the modulation for transmitting data is inverted.  
Set to logic 1, the signal at pin SIGIN is mixed with the internal coder  
(see Section 12.6 “S2C interface support”).  
1 to 0  
TxFraming  
Defines the framing used for data transmission.  
Value  
Description  
00  
ISO/IEC 14443A/MIFARE and Passive Communication mode  
106 kbit  
01  
10  
11  
Active Communication mode  
FeliCa and Passive communication mode 212 and 424 kbit  
ISO/IEC 14443B  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
38 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.4 RxModeReg  
Defines the data rate and framing during reception.  
Table 53. RxModeReg register (address 13h); reset value: 00h, 00000000b  
7
6
5
RxSpeed  
dy  
4
3
2
1
0
RxCRCEn  
r/w  
RxNoErr RxMultiple  
r/w r/w  
RxFraming  
Access  
Rights  
dy  
dy  
dy  
dy  
Table 54. Description of RxModeReg bits  
Bit  
Symbol  
Description  
7
RxCRCEn  
Set to logic 1, this bit enables the CRC calculation during reception.  
Note: This bit shall only be set to logic 0 at 106 kbit.  
Defines the bit rate while data transmission.  
6 to 4  
RxSpeed  
The PN512’s analog part handles only transfer speeds up to 424 kbit  
internally, the digital UART handles the higher transfer speeds as well.  
Value  
000  
001  
010  
011  
100  
101  
110  
111  
Description  
106 kbit  
212 kbit  
424 kbit  
848 kbit  
1696 kbit  
3392 kbit  
Reserved  
Reserved  
Note: The bit coding for transfer speeds above 424 kbit is equivalent to  
the bit coding of Active Communication mode 424 kbit (Ecma 340).  
3
2
RxNoErr  
If set to logic 1 a not valid received data stream (less than 4 bits  
received) will be ignored. The receiver will remain active.  
For ISO/IEC14443B also RxSOFReq logic 1 is required to ignore a non  
valid datastream.  
RxMultiple  
Set to logic 0, the receiver is deactivated after receiving a data frame.  
Set to logic 1, it is possible to receive more than one data frame. Having  
set this bit, the receive and transceive commands will not terminate  
automatically. In this case the multiple receiving can only be deactivated  
by writing any command (except the Receive command) to the  
CommandReg register or by clearing the bit by the host controller.  
At the end of a received data stream an error byte is added to the FIFO.  
The error byte is a copy of the ErrorReg register.  
The behaviour for version 1.0 is described in Section 21 “Errata sheet”  
on page 109.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
39 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 54. Description of RxModeReg bits  
Bit  
Symbol  
Description  
Defines the expected framing for data reception.  
1 to 0  
RxFraming  
Value  
Description  
00  
ISO/IEC 14443A/MIFARE and Passive Communication  
mode 106 kbit  
01  
10  
11  
Active Communication mode  
FeliCa and Passive Communication mode 212 and 424 kbit  
ISO/IEC 14443B  
9.2.2.5 TxControlReg  
Controls the logical behavior of the antenna driver pins Tx1 and Tx2.  
Table 55. TxControlReg register (address 14h); reset value: 80h, 10000000b  
7
6
5
4
3
2
1
0
InvTx2RF InvTx1RF InvTx2RF InvTx1RF Tx2CW CheckRF Tx2RF Tx1RF  
On  
On  
Off  
Off  
En  
En  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
w
r/w  
r/w  
Table 56. Description of TxControlReg bits  
Bit  
Symbol  
Description  
7
InvTx2RFOn  
Set to logic 1, the output signal at pin TX2 will be inverted, if driver TX2  
is enabled.  
6
5
4
3
InvTx1RFOn  
InvTx2RFOff  
InvTx1RFOff  
Tx2CW  
Set to logic 1, the output signal at pin TX1 will be inverted, if driver TX1  
is enabled.  
Set to logic 1, the output signal at pin TX2 will be inverted, if driver TX2  
is disabled.  
Set to logic 1, the output signal at pin TX1 will be inverted, if driver TX1  
is disabled.  
Set to logic 1, the output signal on pin TX2 will deliver continuously the  
un-modulated 13.56 MHz energy carrier.  
Set to logic 0, Tx2CW is enabled to modulate the 13.56 MHz energy  
carrier.  
2
CheckRF  
Set to logic 1, Tx2RFEn and Tx1RFEn can not be set if an external RF  
field is detected. Only valid when using in combination with bit  
Tx2RFEn or Tx1RFEn  
1
0
Tx2RFEn  
Tx1RFEn  
Set to logic 1, the output signal on pin TX2 will deliver the 13.56 MHz  
energy carrier modulated by the transmission data.  
Set to logic 1, the output signal on pin TX1 will deliver the 13.56 MHz  
energy carrier modulated by the transmission data.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
40 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.6 TxAutoReg  
Controls the settings of the antenna driver.  
Table 57. TxAutoReg register (address 15h); reset value: 00h, 00000000b  
7
6
5
4
3
2
1
0
AutoRF Force100  
Auto  
0
CAOn InitialRF Tx2RFAut Tx1RFAuto  
OFF  
ASK  
WakeUp  
On  
oEn  
En  
Access  
Rights  
r/w  
r/w  
r/w  
RFU  
r/w  
r/w  
r/w  
r/w  
Table 58. Description of TxAutoReg bits  
Bit  
Symbol  
Description  
7
AutoRFOFF  
Set to logic 1, all active antenna drivers are switched off after the last  
data bit has been transmitted as defined in the NFCIP-1.  
6
5
Force100ASK Set to logic 1, Force100ASK forces a 100% ASK modulation  
independent of the setting in register ModGsPReg.  
AutoWakeUp Set to logic 1, the PN512 in soft Power-down mode will be started by  
the RF level detector.  
4
3
-
Reserved for future use.  
CAOn  
Set to logic 1, the collision avoidance is activated and internally the  
value n is set in accordance to the NFCIP-1 Standard.  
2
InitialRFOn  
Set to logic 1, the initial RF collision avoidance is performed and the bit  
InitialRFOn is cleared automatically, if the RF is switched on.  
Note: The driver, which should be switched on, has to be enabled by  
bit Tx2RFAutoEn or bit Tx1RFAutoEn.  
1
Tx2RFAutoEn Set to logic 1, the driver Tx2 is switched on after the external RF field  
is switched off according to the time TADT. If the bits InitialRFOn and  
Tx2RFAutoEn are set to logic 1, Tx2 is switched on if no external RF  
field is detected during the time TIDT.  
Note: The times TADT and TIDT are defined in the NFC IP-1 standard  
(ISO/IEC 18092).  
0
Tx1RFAutoEn Set to logic 1, the driver Tx1 is switched on after the external RF field  
is switched off according to the time TADT. If the bit InitialRFOn and  
Tx1RFAutoEn are set to logic 1, Tx1 is switched on if no external RF  
field is detected during the time TIDT.  
Note: The times TADT and TIDT are defined in the NFC IP-1 standard  
(ISO/IEC 18092).  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
41 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.7 TxSelReg  
Selects the sources for the analog part.  
Table 59. TxSelReg register (address 16h); reset value: 10h, 00010000b  
7
0
6
0
5
4
3
2
1
0
DriverSel  
SigOutSel  
Access  
Rights  
RFU  
RFU  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 60. Description of TxSelReg bits  
Bit  
Symbol  
Description  
Reserved for future use.  
Selects the input of driver Tx1 and Tx2.  
7 to 6  
-
5 to 4 DriverSel  
Value  
Description  
00  
Tristate  
Note: In soft power down the drivers are only in Tristate mode  
if DriverSel is set to Tristate mode.  
01  
10  
11  
Modulation signal (envelope) from the internal coder  
Modulation signal (envelope) from SIGIN  
HIGH  
Note: The HIGH level depends on the setting of InvTx1RFOn/  
InvTx1RFOff and InvTx2RFOn/InvTx2RFOff.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
42 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 60. Description of TxSelReg bits …continued  
Bit Symbol Description  
3 to 0 SigOutSel Selects the input for the SIGOUT Pin.  
Value  
0000  
0001  
0010  
0011  
Description  
Tristate  
Low  
High  
TestBus signal as defined by bit TestBusBitSel in register  
TestSel1Reg.  
0100  
0101  
0110  
Modulation signal (envelope) from the internal coder  
Serial data stream to be transmitted  
Output signal of the receiver circuit (card modulation signal  
regenerated and delayed). This signal is used as data output  
signal for SAM interface connection using 3 lines.  
Note: To have a valid signal the PN512 has to be set to the  
receiving mode by either the Transceive or Receive  
command. The bit RxMultiple can be used to keep the PN512  
in receiving mode.  
Note: Do not use this setting in MIFARE mode. Manchester  
coding as data collisions will not be transmitted on the  
SIGOUT line.  
0111  
Serial data stream received.  
Note: Do not use this setting in MIFARE mode. Miller coding  
parameters as the bit length can vary.  
1000-1011 FeliCa Sam modulation  
1000 RX*  
1001 TX  
1010 Demodulator comparator output  
1011 RFU  
Note: * To have a valid signal the PN512 has to be set to the  
receiving mode by either the Transceive or Receive  
command. The bit RxMultiple can be used to keep the PN512  
in receiving mode.  
1100-1111 MIFARE Sam modulation  
1100 RX* with RF carrier  
1101 TX with RF carrier  
1110 RX with RF carrier un-filtered  
1111 RX envelope un-filtered  
Note: *To have a valid signal the PN512 has to be set to the  
receiving mode by either the Transceive or Receive  
command. The bit RxMultiple can be used to keep the PN512  
in receiving mode.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
43 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.8 RxSelReg  
Selects internal receiver settings.  
Table 61. RxSelReg register (address 17h); reset value: 84h, 10000100b  
7
6
5
4
3
2
1
0
UartSel  
RxWait  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 62. Description of RxSelReg bits  
Bit  
Symbol  
Description  
Selects the input of the contactless UART  
7 to 6  
UartSel  
Value  
00  
Description  
Constant Low  
01  
Envelope signal at SIGIN  
10  
Modulation signal from the internal analog part  
11  
Modulation signal from SIGIN pin. Only valid for transfer  
speeds above 424 kbit  
5 to 0  
RxWait  
After data transmission, the activation of the receiver is delayed for  
RxWait bit-clocks. During this ‘frame guard time’ any signal at pin RX  
is ignored. This parameter is ignored by the Receive command. All  
other commands (e.g. Transceive, Autocoll, MFAuthent) use this  
parameter. Depending on the mode of the PN512, the counter starts  
different. In Passive Communication mode the counter starts with the  
last modulation pulse of the transmitted data stream. In Active  
Communication mode the counter starts immediately after the external  
RF field is switched on.  
9.2.2.9 RxThresholdReg  
Selects thresholds for the bit decoder.  
Table 63. RxThresholdReg register (address 18h); reset value: 84h, 10000100b  
7
6
5
4
3
0
2
1
0
MinLevel  
CollLevel  
r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
RFU  
r/w  
r/w  
Table 64. Description of RxThresholdReg bits  
Bit  
Symbol  
Description  
7 to 4  
MinLevel  
Defines the minimum signal strength at the decoder input that shall be  
accepted. If the signal strength is below this level, it is not evaluated.  
3
-
Reserved for future use.  
2 to 0  
CollLevel  
Defines the minimum signal strength at the decoder input that has to be  
reached by the weaker half-bit of the Manchester-coded signal to  
generate a bit-collision relatively to the amplitude of the stronger half-bit.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
44 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.10 DemodReg  
Defines demodulator settings.  
Table 65. DemodReg register (address 19h); reset value: 4Dh, 01001101b  
7
6
5
4
3
2
1
0
AddIQ  
FixIQ  
TPrescal  
Even  
TauRcv  
TauSync  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 66. Description of DemodReg bits  
Bit  
Symbol  
Description  
7 to 6  
AddIQ  
Defines the use of I and Q channel during reception  
Note: FixIQ has to be set to logic 0 to  
enable the following settings.  
Value  
00  
Description  
Select the stronger channel  
01  
Select the stronger and freeze the selected during communication  
10  
combines the I and Q channel  
Reserved  
11  
5
4
FixIQ  
If set to logic 1 and the bits of AddIQ are set to X0, the reception is fixed to  
I channel.  
If set to logic 1 and the bits of AddIQ are set to X1, the reception is fixed to  
Q channel.  
NOTE: If SIGIN/SIGOUT is used as S2C interface FixIQ set to 1 and AddIQ  
set to X0 is rewired.  
TPrescalE If set to logic 0 the following formula is used to calculate fTimer of the  
ven  
prescaler:  
fTimer = 13.56 MHz / (2 * TPreScaler + 1).  
If set to logic 1 the following formula is used to calculate fTimer of the  
prescaler:  
fTimer = 13.56 MHz / (2 * TPreScaler + 2).  
(Default TPrescalEven is logic 0)  
The behaviour for the version 1.0 is described in Section 21 “Errata  
sheet” on page 109.  
3 to 2  
1 to 0  
TauRcv  
Changes the time constant of the internal during data reception.  
Note: If set to 00, the PLL is frozen during data reception.  
Changes the time constant of the internal PLL during burst.  
TauSync  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
45 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.11 FelNFC1Reg  
Defines the length of the FeliCa Sync bytes and the minimum length of the received  
packet.  
Table 67. FelNFC1Reg register (address 1Ah); reset value: 00h, 00000000b  
7
6
5
4
3
2
1
0
FelSyncLen  
r/w r/w  
DataLenMin  
r/w r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
Table 68. Description of FelNFC1Reg bits  
Bit  
Symbol  
Description  
7 to 6  
FelSyncLen Defines the length of the Sync bytes.  
Value  
00  
Sync- bytes in hex  
B2 4D  
01  
00 B2 4D  
10  
00 00 B2 4D  
00 00 00 B2 4D  
11  
5 to 0  
DataLenMin These bits define the minimum length of the accepted packet length:  
DataLenMin * 4 data packet length  
This parameter is ignored at 106 kbit if the bit DetectSync in register  
ModeReg is set to logic 0. If a received data packet is shorter than the  
defined DataLenMin value, the data packet will be ignored.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
46 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.12 FelNFC2Reg  
Defines the maximum length of the received packet.  
Table 69. FelNFC2Reg register (address1Bh); reset value: 00h, 00000000b  
7
6
5
4
3
2
1
0
WaitForSelected ShortTimeSlot  
r/w r/w  
DataLenMax  
r/w r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
Table 70. Description of FelNFC2Reg bits  
Bit  
Symbol  
Description  
7
WaitForSelected Set to logic 1, the AutoColl command is only terminated  
automatically when:  
1. A valid command has been received after performing a valid  
Select procedure according ISO/IEC 14443A.  
2. A valid command has been received after performing a valid  
Polling procedure according to the FeliCa specification.  
Note: If this bit is set, no active communication is possible.  
Note: Setting this bit reduces the host controller interaction in case  
of a communication to another device in the same RF field during  
Passive Communication mode.  
6
ShortTimeSlot  
DataLenMax  
Defines the time slot length for Passive Communication mode at  
424 kbit. Set to logic 1 a short time slot is used (half of the timeslot  
at 212 kbit). Set to logic 0 a long timeslot is used (equal to the  
timeslot for 212 kbit).  
5 to 0  
These bits define the maximum length of the accepted packet  
length: DataLenMax * 4 data packet length  
Note: If set to logic 0 the maximum data length is 256 bytes.  
This parameter is ignored at 106 kbit if the bit DetectSync in  
register ModeReg is set to logic 0. If a received packet is larger  
than the defined DataLenMax value, the packet will be ignored.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
47 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.13 MifNFCReg  
Defines ISO/IEC 14443A/MIFARE/NFC specific settings in target or Card Operating  
mode.  
Table 71. MifNFCReg register (address 1Ch); reset value: 62h, 01100010b  
7
6
SensMiller  
r/w  
5
4
3
2
1
0
TauMiller  
MFHalted  
r/w  
TxWait  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 72. Description of MifNFCReg bits  
Bit  
Symbol  
Description  
These bits define the sensitivity of the Miller decoder.  
These bits define the time constant of the Miller decoder.  
7 to 5  
4 to 3  
2
SensMiller  
TauMiller  
MFHalted  
Set to logic 1, this bit indicates that the PN512 is set to HALT mode in  
Card Operation mode at 106 kbit. This bit is either set by the host  
controller or by the internal state machine and indicates that only the  
code 52h is accepted as a request command. This bit is cleared  
automatically by a RF reset.  
1 to 0  
TxWait  
These bits define the minimum response time between receive and  
transmit in number of data bits + 7 data bits.  
The shortest possible minimum response time is 7 data bits.  
(TxWait=0). The minimum response time can be increased by the  
number of bits defined in TxWait. The longest minimum response time  
is 10 data bits (TxWait = 3).  
If a transmission of a frame is started before the minimum response  
time is over, the PN512 waits before transmitting the data until the  
minimum response time is over.  
If a transmission of a frame is started after the minimum response time  
is over, the frame is started immediately if the data bit synchronization  
is correct. (adjustable with TxBitPhase).  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
48 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.14 ManualRCVReg  
Allows manual fine tuning of the internal receiver.  
Remark: For standard applications it is not recommended to change this register settings.  
Table 73. ManualRCVReg register (address 1Dh); reset value: 00h, 00000000b  
7
6
5
4
3
2
1
0
0
FastFilt  
Delay  
Parity  
LargeBW Manual  
HPFC  
MF_SO MF_SO  
Disable  
PLL  
HPCF  
Access  
Rights  
RFU  
r/w r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 74. Description of ManualRCVReg bits  
Bit  
7
Symbol  
Description  
-
Reserved for future use.  
6
FastFilt  
MF_SO  
If this bit is set to logic 1, the internal filter for the Miller-Delay Circuit is  
set to Fast mode.  
Note: This bit should only set to logic 1, if Millerpulses of less than  
400 ns Pulse length are expected. At 106 kBaud the typical value is  
3 us.  
5
Delay MF_SO If this bit is set to logic 1, the Signal at SIGOUT-pin is delayed, so that  
in SAM mode the Signal at SIGIN must be 128/fc faster compared to  
the ISO/IEC 14443A, to reach the ISO/IEC 14443A restrictions on the  
RF-Field.  
Note: This delay shall only be activated for setting bits SigOutSel to  
(1110b) or (1111b) in register TxSelReg.  
4
Parity Disable If this bit is set to logic 1, the generation of the Parity bit for  
transmission and the Parity-Check for receiving is switched off. The  
received Parity bit is handled like a data bit.  
3
2
LargeBWPLL Set to logic 1, the bandwidth of the internal PLL used for clock  
recovery is extended.  
ManualHPCF Set to logic 0, the HPCF bits are ignored and the HPCF settings are  
adapted automatically to the receiving mode. Set to logic 1, values of  
HPCF are valid.  
1 to 0  
HPFC  
Selects the High Pass Corner Frequency (HPCF) of the filter in the  
internal receiver chain  
00 For signals with frequency spectrum down to 106 kHz.  
01 For signals with frequency spectrum down to 212 kHz.  
10 For signals with frequency spectrum down to 424 kHz.  
11 For signals with frequency spectrum down to 848 kHz  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
49 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.2.15 TypeBReg  
Table 75. TypeBReg register (address 1Eh); reset value: 00h, 00000000b  
7
6
5
4
3
2
1
0
RxSOF  
Req  
RxEOF  
Req  
0
EOFSO NoTxSOF NoTxEOF  
FWidth  
TxEGT  
Access  
Rights  
r/w  
r/w  
RFU  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 76. Description of TypeBReg bits  
Bit  
Symbol  
Description  
7
RxSOFReq  
If this bit is set to logic 1, the SOF is required. A datastream starting  
without SOF is ignored.  
If this bit is cleared, a datastream with and without SOF is accepted.  
The SOF will be removed and not written into the FIFO.  
6
RxEOFReq  
If this bit is set to logic 1, the EOF is required. A datastream ending  
without EOF will generate a Protocol-Error. If this bit is cleared, a  
datastream with and without EOF is accepted. The EOF will be  
removed and not written into the FIFO.  
For the behaviour in version 1.0, see Section 21 “Errata sheet” on  
page 109.  
5
4
-
Reserved for future use.  
EOFSOFWidth If this bit is set to logic 1 and EOFSOFAdjust bit is logic 0, the SOF  
and EOF will have the maximum length defined in ISO/IEC 14443B.  
If this bit is cleared and EOFSOFAdjust bit is logic 0, the SOF and  
EOF will have the minimum length defined in ISO/IEC 14443B.  
If this bit is set to 1 and the EOFSOFadjust bit is logic 1 will result in  
SOF low = (11etu 8 cycles)/fc  
SOF high = (2 etu + 8 cycles)/fc  
EOF low = (11 etu 8 cycles)/fc  
If this bit is set to 0 and the EOFSOFAdjust bit is logic 1 will result in  
an incorrect system behavior in respect to ISO specification.  
For the behaviour in version 1.0, see Section 21 “Errata sheet” on  
page 109.  
3
NoTxSOF  
NoTxEOF  
TxEGT  
If this bit is set to logic 1, the generation of the SOF is suppressed.  
2
If this bit is set to logic 1, the generation of the EOF is suppressed.  
1 to 0  
These bits define the length of the EGT.  
Value Description  
00 0 bit  
01 1 bit  
10 2 bits  
11 3 bits  
9.2.2.16 SerialSpeedReg  
Selects the speed of the serial UART interface.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
50 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 77. SerialSpeedReg register (address 1Fh); reset value: EBh, 11101011b  
7
6
5
4
3
2
1
0
BR_T0  
r/w  
BR_T1  
r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 78. Description of SerialSpeedReg bits  
Bit  
Symbol  
Description  
7 to 5  
BR_T0  
Factor BR_T0 to adjust the transfer speed, for description see Section  
10.3.2 “Selectable UART transfer speeds”.  
3 to 0  
BR_T1  
Factor BR_T1 to adjust the transfer speed, for description see Section  
10.3.2 “Selectable UART transfer speeds”.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
51 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.3 Page 2: Configuration  
9.2.3.1 PageReg  
Selects the register page.  
Table 79. PageReg register (address 20h); reset value: 00h, 00000000b  
7
UsePageSelect  
r/w  
6
0
5
0
4
0
3
0
2
0
1
0
PageSelect  
r/w r/w  
Access Rights  
RFU  
RFU  
RFU  
RFU  
RFU  
Table 80. Description of PageReg bits  
Bit  
Symbol  
Description  
7
UsePageSelect Set to logic 1, the value of PageSelect is used as register address A5  
and A4. The LSB-bits of the register address are defined by the  
address pins or the internal address latch, respectively.  
Set to logic 0, the whole content of the internal address latch defines  
the register address. The address pins are used as described in  
Section 10.1 “Automatic microcontroller interface detection”.  
6 to 2  
1 to 0  
-
Reserved for future use.  
PageSelect  
The value of PageSelect is used only if UsePageSelect is set to  
logic 1. In this case, it specifies the register page (which is A5 and  
A4of the register address).  
9.2.3.2 CRCResultReg  
Shows the actual MSB and LSB values of the CRC calculation.  
Note: The CRC is split into two 8-bit register.  
Note: Setting the bit MSBFirst in ModeReg register reverses the bit order, the byte order is  
not changed.  
Table 81. CRCResultReg register (address 21h); reset value: FFh, 11111111b  
7
6
5
4
3
2
1
0
CRCResultMSB  
Access Rights  
r
r
r
r
r
r
r
r
Table 82. Description of CRCResultReg bits  
Bit  
Symbol  
Description  
7 to 0  
CRCResultMSB This register shows the actual value of the most significant byte of  
the CRCResultReg register. It is valid only if bit CRCReady in  
register Status1Reg is set to logic 1.  
Table 83. CRCResultReg register (address 22h); reset value: FFh, 11111111b  
7
6
5
4
3
2
1
0
CRCResultLSB  
Access Rights  
r
r
r
r
r
r
r
r
Table 84. Description of CRCResultReg bits  
Bit  
Symbol  
Description  
7 to 0  
CRCResultLSB This register shows the actual value of the least significant byte of  
the CRCResult register. It is valid only if bit CRCReady in register  
Status1Reg is set to logic 1.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
52 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.3.3 GsNOffReg  
Selects the conductance for the N-driver of the antenna driver pins TX1 and TX2 when the  
driver is switched off.  
Table 85. GsNOffReg register (address 23h); reset value: 88h, 10001000b  
7
6
5
4
3
2
1
0
CWGsNOff  
ModGsNOff  
r/w r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 86. Description of GsNOffReg bits  
Bit  
Symbol  
Description  
7 to 4  
CWGsNOff  
The value of this register defines the conductance of the output  
N-driver during times of no modulation.  
Note: The conductance value is binary weighted.  
Note: During soft Power-down mode the highest bit is forced to 1.  
Note: The value of the register is only used if the driver is switched  
off. Otherwise the bit value CWGsNOn of register GsNOnReg is  
used.  
Note: This value is used for LoadModulation.  
3 to 0  
ModGsNOff  
The value of this register defines the conductance of the output  
N-driver for the time of modulation. This may be used to regulate the  
modulation index.  
Note: The conductance value is binary weighted.  
Note: During soft Power-down mode the highest bit is forced to 1.  
Note: The value of the register is only used if the driver is switched  
off. Otherwise the bit value ModGsNOn of register GsNOnReg is  
used  
Note: This value is used for LoadModulation.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
53 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.3.4 ModWidthReg  
Controls the modulation width settings.  
Table 87. ModWidthReg register (address 24h); reset value: 26h, 00100110b  
7
6
5
4
3
2
1
0
ModWidth  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 88. Description of ModWidthReg bits  
Bit  
Symbol  
Description  
7 to 0  
ModWidth  
These bits define the width of the Miller modulation as initiator in Active  
and Passive Communication mode as multiples of the carrier  
frequency (ModWidth + 1/fc). The maximum value is half the bit  
period.  
Acting as a target in Passive Communication mode at 106 kbit or in  
Card Operating mode for ISO/IEC 14443A/MIFARE these bits are  
used to change the duty cycle of the subcarrier frequency.  
The resulting number of carrier periods are calculated according to the  
following formulas:  
LOW value: #clocksLOW = (ModWidth modulo 8) + 1.  
HIGH value: #clocksHIGH = 16-#clocksLOW.  
9.2.3.5 TxBitPhaseReg  
Adjust the bitphase at 106 kbit during transmission.  
Table 89. TxBitPhaseReg register (address 25h); reset value: 87h, 10000111b  
7
RcvClkChange  
r/w  
6
5
4
3
TxBitPhase  
r/w  
2
1
0
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 90. Description of TxBitPhaseReg bits  
Bit  
Symbol  
Description  
7
RcvClkChange Set to logic 1, the demodulator’s clock is derived by the external RF  
field.  
6 to 0  
TxBitPhase  
These bits are representing the number of carrier frequency clock  
cycles, which are added to the waiting period before transmitting  
data in all communication modes. TXBitPhase is used to adjust the  
TX bit synchronization during passive NFCIP-1 communication mode  
at 106 kbit and in ISO/IEC 14443A/MIFARE card mode.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
54 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.3.6 RFCfgReg  
Configures the receiver gain and RF level detector sensitivity.  
Table 91. RFCfgReg register (address 26h); reset value: 48h, 01001000b  
7
RFLevelAmp  
r/w  
6
5
4
3
2
1
0
RxGain  
RFLevel  
r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 92. Description of RFCfgReg bits  
Bit  
7
Symbol  
Description  
RFLevelAmp Set to logic 1, this bit activates the RF level detectors’ amplifier.  
6 to 4  
RxGain  
This register defines the receivers signal voltage gain factor:  
Value  
000  
001  
010  
011  
100  
101  
110  
111  
Description  
18 dB  
23 dB  
18 dB  
23 dB  
33 dB  
38 dB  
43 dB  
48 dB  
3 to 0  
RFLevel  
Defines the sensitivity of the RF level detector, for description see  
Section 12.3 “RF level detector”.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
55 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.3.7 GsNOnReg  
Selects the conductance for the N-driver of the antenna driver pins TX1 and TX2 when the  
driver is switched on.  
Table 93. GsNOnReg register (address 27h); reset value: 88h, 10001000b  
7
6
5
4
3
2
1
0
CWGsNOn  
ModGsNOn  
r/w r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 94. Description of GsNOnReg bits  
Bit  
Symbol  
Description  
7 to 4  
CWGsNOn  
The value of this register defines the conductance of the output  
N-driver during times of no modulation. This may be used to regulate  
the output power and subsequently current consumption and  
operating distance.  
Note: The conductance value is binary weighted.  
Note: During soft Power-down mode the highest bit is forced to 1.  
Note: This value is only used if the driver TX1 or TX2 are switched on.  
Otherwise the value of the bits CWGsNOff of register GsNOffReg is  
used.  
3 to 0  
ModGsNOn  
The value of this register defines the conductance of the output  
N-driver for the time of modulation. This may be used to regulate the  
modulation index.  
Note: The conductance value is binary weighted.  
Note: During soft Power-down mode the highest bit is forced to 1.  
Note: This value is only used if the driver TX1 or Tx2 are switched on.  
Otherwise the value of the bits ModsNOff of register GsNOffReg is  
used.  
9.2.3.8 CWGsPReg  
Defines the conductance of the P-driver during times of no modulation  
Table 95. CWGsPReg register (address 28h); reset value: 20h, 00100000b  
7
0
6
0
5
4
3
2
1
0
CWGsP  
Access  
Rights  
RFU  
RFU  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 96. Description of CWGsPReg bits  
Bit  
Symbol  
-
Description  
Reserved for future use.  
7 to 6  
5 to 0  
CWGsP  
The value of this register defines the conductance of the output  
P-driver. This may be used to regulate the output power and  
subsequently current consumption and operating distance.  
Note: The conductance value is binary weighted.  
Note: During soft Power-down mode the highest bit is forced to 1.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
56 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.3.9 ModGsPReg  
Defines the driver P-output conductance during modulation.  
Table 97. ModGsPReg register (address 29h); reset value: 20h, 00100000b  
7
0
6
0
5
4
3
2
1
0
ModGsP  
Access  
Rights  
RFU  
RFU  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 98. Description of ModGsPReg bits  
Bit  
Symbol  
Description  
Reserved for future use.  
The value of this register defines the conductance of the output  
7 to 6  
5 to 0  
-
ModGsP[1]  
P-driver for the time of modulation. This may be used to regulate the  
modulation index.  
Note: The conductance value is binary weighted.  
Note: During soft Power-down mode the highest bit is forced to 1.  
[1] If Force100ASK is set to logic 1, the value of ModGsP has no effect.  
9.2.3.10 TMode Register, TPrescaler Register  
Defines settings for the timer.  
Note: The Prescaler value is split into two 8-bit registers  
Table 99. TModeReg register (address 2Ah); reset value: 00h, 00000000b  
7
6
5
4
TAutoRestart  
r/w  
3
2
1
0
TAuto  
r/w  
TGated  
TPrescaler_Hi  
r/w r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
Table 100. Description of TModeReg bits  
Bit  
Symbol  
Description  
7
TAuto  
Set to logic 1, the timer starts automatically at the end of the transmission  
in all communication modes at all speeds or when bit InitialRFOn is set to  
logic 1 and the RF field is switched on.  
In mode MIFARE and ISO14443-B 106kbit/s the timer stops after the 5th  
bit (1 startbit, 4 databits) if the bit RxMultiple in the register RxModeReg is  
not set. In all other modes, the timer stops after the 4th bit if the bit  
RxMultiple the register RxModeReg is not set.  
If RxMultiple is set to logic 1, the timer never stops. In this case the timer  
can be stopped by setting the bit TStopNow in register ControlReg to 1.  
Set to logic 0 indicates, that the timer is not influenced by the protocol.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
57 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 100. Description of TModeReg bits …continued  
Bit Symbol Description  
6 to 5 TGated  
The internal timer is running in gated mode.  
Note: In the gated mode, the bit TRunning is 1 when the timer is enabled  
by the register bits. This bit does not influence the gating signal.  
Value  
00  
Description  
Non gated mode  
Gated by SIGIN  
Gated by AUX1  
Gated by A3  
01  
10  
11  
4
TAutoRestart Set to logic 1, the timer automatically restart its count-down from  
TReloadValue, instead of counting down to zero.  
Set to logic 0 the timer decrements to ZERO and the bit TimerIRq is set  
to logic 1.  
3 to 0 TPrescaler_Hi Defines higher 4 bits for TPrescaler.  
The following formula is used to calculate fTimer if TPrescalEven bit in  
Demot Reg is set to logic 0:  
Timer = 13.56 MHz/(2*TPreScaler+1).  
f
Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value  
on 12 bits) (Default TPrescalEven is logic 0)  
The following formula is used to calculate fTimer if TPrescalEven bit in  
Demot Reg is set to logic 1:  
f
Timer = 13.56 MHz/(2*TPreScaler+2).  
For detailed description see Section 15 “Timer unit”. For the behaviour  
within version 1.0, see Section 21 “Errata sheet” on page 109.  
Table 101. TPrescalerReg register (address 2Bh); reset value: 00h, 00000000b  
7
6
5
4
3
2
1
0
TPrescaler_Lo  
r/w r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 102. Description of TPrescalerReg bits  
Bit  
Symbol  
Description  
7 to 0  
TPrescaler_Lo Defines lower 8 bits for TPrescaler.  
The following formula is used to calculate fTimer if TPrescalEven bit in  
Demot Reg is set to logic 0:  
f
Timer = 13.56 MHz/(2*TPreScaler+1).  
Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value  
on 12 bits)  
The following formula is used to calculate fTimer if TPrescalEven bit in  
Demot Reg is set to logic 1:  
f
Timer = 13.56 MHz/(2*TPreScaler+2).  
Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value  
on 12 bits)  
For detailed description see Section 15 “Timer unit”.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
58 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.3.11 TReloadReg  
Describes the 16-bit long timer reload value.  
Note: The Reload value is split into two 8-bit registers.  
Table 103. TReloadReg (Higher bits) register (address 2Ch); reset value: 00h, 00000000b  
7
6
5
4
3
2
1
0
TReloadVal_Hi  
r/w r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 104. Description of the higher TReloadReg bits  
Bit  
Symbol  
Description  
7 to 0  
TReloadVal_Hi Defines the higher 8 bits for the TReloadReg.  
With a start event the timer loads the TReloadVal. Changing this  
register affects the timer only at the next start event.  
Table 105. TReloadReg (Lower bits) register (address 2Dh); reset value: 00h, 00000000b  
7
6
5
4
3
2
1
0
TReloadVal_Lo  
r/w r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 106. Description of lower TReloadReg bits  
Bit  
Symbol  
Description  
7 to 0  
TReloadVal_Lo Defines the lower 8 bits for the TReloadReg.  
With a start event the timer loads the TReloadVal. Changing this  
register affects the timer only at the next start event.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
59 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.3.12 TCounterValReg  
Contains the current value of the timer.  
Note: The Counter value is split into two 8-bit register.  
Table 107. TCounterValReg (Higher bits) register (address 2Eh); reset value: XXh,  
XXXXXXXXb  
7
6
5
4
3
2
1
0
TCounterVal_Hi  
Access  
Rights  
r
r
r
r
r
r
r
r
Table 108. Description of the higher TCounterValReg bits  
Bit  
Symbol  
Description  
7 to 0  
TCounterVal_Hi Current value of the timer, higher 8 bits.  
Table 109. TCounterValReg (Lower bits) register (address 2Fh); reset value: XXh,  
XXXXXXXXb  
7
6
5
4
3
2
1
0
TCounterVal_Lo  
Access  
Rights  
r
r
r
r
r
r
r
r
Table 110. Description of lower TCounterValReg bits  
Bit  
Symbol  
Description  
7 to 0  
TCounterVal_Lo Current value of the timer, lower 8 bits.  
9.2.4 Page 3: Test  
9.2.4.1 PageReg  
Selects the register page.  
Table 111. PageReg register (address 30h); reset value: 00h, 00000000b  
7
UsePageSelect  
r/w  
6
0
5
0
4
0
3
0
2
0
1
0
PageSelect  
r/w r/w  
Access  
Rights  
RFU  
RFU  
RFU  
RFU  
RFU  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
60 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 112. Description of PageReg bits  
Bit  
Symbol  
Description  
7
UsePageSelect Set to logic 1, the value of PageSelect is used as register address  
A5 and A4. The LSB-bits of the register address are defined by the  
address pins or the internal address latch, respectively.  
Set to logic 0, the whole content of the internal address latch defines  
the register address. The address pins are used as described in  
Section 10.1 “Automatic microcontroller interface detection”.  
6 to 2  
1 to 0  
-
Reserved for future use.  
PageSelect  
The value of PageSelect is used only if UsePageSelect is set to  
logic 1. In this case, it specifies the register page (which is A5 and  
A4 of the register address).  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
61 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.4.2 TestSel1Reg  
General test signal configuration.  
Table 113. TestSel1Reg register (address 31h); reset value: 00h, 00000000b  
7
-
6
-
5
4
3
SAMClkD1  
r/w  
2
1
TstBusBitSel  
r/w  
0
SAMClockSel  
r/w r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
Table 114. Description of TestSel1Reg bits  
Bit  
Symbol  
Description  
Reserved for future use.  
7 to 6  
5 to 4  
-
SAMClockSel Defines the source for the 13.56 MHz SAM clock  
Value  
00  
Description  
GND- Sam Clock switched off  
clock derived by the internal oscillator  
internal UART clock  
01  
10  
11  
clock derived by the RF field  
3
SAMClkD1  
Set to logic 1, the SAM clock is delivered to D1.  
Note: Only possible if the 8bit parallel interface is not used.  
Select the TestBus bit from the testbus to be propagated to SIGOUT.  
2 to 0  
TstBusBitSel  
9.2.4.3 TestSel2Reg  
General test signal configuration and PRBS control  
Table 115. TestSel2Reg register (address 32h); reset value: 00h, 00000000b  
7
TstBusFlip  
r/w  
6
5
4
3
2
TestBusSel  
r/w  
1
0
PRBS9 PRBS15  
r/w r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
Table 116. Description of TestSel2Reg bits  
Bit  
Symbol  
Description  
7
TstBusFlip  
If set to logic 1, the testbus is mapped to the parallel port by the  
following order:  
D4, D3, D2, D6, D5, D0, D1. See Section 20 “Testsignals”.  
Starts and enables the PRBS9 sequence according ITU-TO150.  
6
PRBS9  
Note: All relevant registers to transmit data have to be configured  
before entering PRBS9 mode.  
Note: The data transmission of the defined sequence is started by the  
send command.  
5
PRBS15  
Starts and enables the PRBS15 sequence according ITU-TO150.  
Note: All relevant registers to transmit data have to be configured  
before entering PRBS15 mode.  
Note: The data transmission of the defined sequence is started by the  
send command.  
4 to 0  
TestBusSel  
Selects the testbus. See Section 20 “Testsignals”  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
62 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.4.4 TestPinEnReg  
Enables the pin output driver on the 8-bit parallel bus.  
Table 117. TestPinEnReg register (address 33h); reset value: 80h, 10000000b  
7
RS232LineEn  
r/w  
6
5
4
3
2
1
0
TestPinEn  
r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 118. Description of TestPinEnReg bits  
Bit  
Symbol  
Description  
7
RS232LineEn Set to logic 0, the lines MX and DTRQ for the serial UART are  
disabled.  
6 to 0  
TestPinEn  
Enables the pin output driver on the 8-bit parallel interface.  
Example:  
Setting bit 0 to 1 enables D0  
Setting bit 5 to 1 enables D5  
Note: Only valid if one of serial interfaces is used.  
If the SPI interface is used only D0 to D4 can be used. If the serial  
UART interface is used and RS232LineEn is set to logic 1 only D0 to  
D4 can be used.  
9.2.4.5 TestPinValueReg  
Defines the values for the 7-bit parallel port when it is used as I/O.  
Table 119. TestPinValueReg register (address 34h); reset value: 00h, 00000000b  
7
6
5
4
3
TestPinValue  
r/w  
2
1
0
UseIO  
r/w  
Access  
Rights  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 120. Description of TestPinValueReg bits  
Bit  
Symbol  
Description  
7
UseIO  
Set to logic 1, this bit enables the I/O functionality for the 7-bit parallel  
port in case one of the serial interfaces is used. The input/output  
behavior is defined by TestPinEn in register TestPinEnReg. The value  
for the output behavior is defined in the bits TestPinVal.  
Note: If SAMClkD1 is set to logic 1, D1 can not be used as I/O.  
6 to 0  
TestPinValue Defines the value of the 7-bit parallel port, when it is used as I/O. Each  
output has to be enabled by the TestPinEn bits in register  
TestPinEnReg.  
Note: Reading the register indicates the actual status of the pins D6 -  
D0 if UseIO is set to logic 1. If UseIO is set to logic 0, the value of the  
register TestPinValueReg is read back.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
63 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.4.6 TestBusReg  
Shows the status of the internal testbus.  
Table 121. TestBusReg register (address 35h); reset value: XXh, XXXXXXXXb  
7
6
5
4
3
2
1
0
TestBus  
Access Rights  
r
r
r
r
r
r
r
r
Table 122. Description of TestBusReg bits  
Bit  
Symbol  
Description  
7 to 0  
TestBus  
Shows the status of the internal testbus. The testbus is selected by the  
register TestSel2Reg. See Section 20 “Testsignals”.  
9.2.4.7 AutoTestReg  
Controls the digital selftest.  
Table 123. AutoTestReg register (address 36h); reset value: 40h, 01000000b  
7
6
5
4
3
2
1
0
0
AmpRcv EOFSO  
FAdjust  
-
SelfTest  
Access Rights  
RFT  
r/w  
RFU  
RFU  
r/w  
r/w  
r/w  
r/w  
Table 124. Description of bits  
Bit  
7
Symbol  
-
Description  
Reserved for production tests.  
6
AmpRcv  
If set to logic 1, the internal signal processing in the receiver chain is  
performed non-linear. This increases the operating distance in  
communication modes at 106 kbit.  
Note: Due to the non linearity the effect of the bits MinLevel and  
CollLevel in the register RxThreshholdReg are as well non linear.  
5
EOFSOFAdjust If set to logic 0 and the EOFSOFwidth is set to 1 will result in the  
Maximum length of SOF and EOF according to ISO/IEC14443B  
If set to logic 0 and the EOFSOFwidth is set to 0 will result in the  
Minimum length of SOF and EOF according to ISO/IEC14443B  
If this bit is set to 1 and the EOFSOFwidth bit is logic 1 will result in  
SOF low = (11 etu 8 cycles)/fc  
SOF high = (2 etu + 8 cycles)/fc  
EOF low = (11 etu 8 cycles)/fc  
For the behaviour in version 1.0, see Section 21 “Errata sheet” on  
page 109.  
4
-
Reserved for future use.  
3 to 0  
SelfTest  
Enables the digital self test. The selftest can be started by the selftest  
command in the command register. The selftest is enabled by 1001.  
Note: For default operation the selftest has to be disabled by 0000.  
9.2.4.8 VersionReg  
Shows the version.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
64 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 125. VersionReg register (address 37h); reset value: XXh, XXXXXXXXb  
7
6
5
4
3
2
1
0
Version  
Access Rights  
r
r
r
r
r
r
r
r
Table 126. Description of VersionReg bits  
Bit  
Symbol  
Description  
7 to 0  
Version  
80h indicates PN512 version 1.0, differences to version 2.0 are  
described within Section 21 “Errata sheet” on page 109.  
82h indicates PN512 version 2.0, which covers also the industrial  
version.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
65 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.4.9 AnalogTestReg  
Controls the pins AUX1 and AUX2  
Table 127. AnalogTestReg register (address 38h); reset value: 00h, 00000000b  
7
6
5
4
3
2
1
0
AnalogSelAux1  
r/w r/w  
AnalogSelAux2  
r/w r/w  
Access Rights  
r/w  
r/w  
r/w  
r/w  
Table 128. Description of AnalogTestReg bits  
Bit Symbol Description  
7 to 4 AnalogSelAux1 Controls the AUX pin.  
3 to 0 AnalogSelAux2 Note: All test signals are described in Section 20 “Testsignals”.  
Value Description  
0000  
0001  
Tristate  
Output of TestDAC1 (AUX1), output of TESTDAC2 (AUX2)  
Note: Current output. The use of 1 kpull-down resistor on AUX is recommended.  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
Testsignal Corr1  
Note: Current output. The use of 1 kpull-down resistor on AUX is recommended.  
Testsignal Corr2  
Note: Current output. The use of 1 kpull-down resistor on AUX is recommended.  
Testsignal MinLevel  
Note: Current output. The use of 1 kpull-down resistor on AUX is recommended.  
Testsignal ADC channel I  
Note: Current output. The use of 1 kpull-down resistor on AUX is recommended.  
Testsignal ADC channel Q  
Note: Current output. The use of 1 kpull-down resistor on AUX is recommended.  
Testsignal ADC channel I combined with Q  
Note: Current output. The use of 1 kpull-down resistor on AUX is recommended.  
Testsignal for production test  
Note: Current output. The use of 1 kpull-down resistor on AUX is recommended.  
1001  
1010  
1011  
1100  
SAM clock (13.56 MHz)  
HIGH  
LOW  
TxActive  
At 106 kbit: HIGH during Startbit, Data bit, Parity and CRC. At 212 and 424 kbit: High  
during Preamble, Sync, Data and CRC.  
1101  
1110  
1111  
RxActive  
At 106 kbit: High during databit, Parity and CRC.  
At 212 and 424 kbit: High during data and CRC.  
Subcarrier detected  
106 kbit: not applicable  
212 and 424 kbit: High during last part of Preamble, Sync data and CRC  
TestBus-Bit as defined by the TstBusBitSel in register TestSel1Reg.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
66 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.4.10 TestDAC1Reg  
Defines the testvalues for TestDAC1.  
Table 129. TestDAC1Reg register (address 39h); reset value: XXh, 00XXXXXXb  
7
0
6
0
5
4
3
2
1
0
TestDAC1  
Access  
Rights  
RFT  
RFU  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 130. Description of TestDAC1Reg bits  
Bit  
7
Symbol  
Description  
-
Reserved for production tests.  
Reserved for future use.  
6
-
5 to 0  
TestDAC1  
Defines the testvalue for TestDAC1. The output of the DAC1 can be  
switched to AUX1 by setting AnalogSelAux1 to 0001 in register  
AnalogTestReg.  
9.2.4.11 TestDAC2Reg  
Defines the testvalue for TestDAC2.  
Table 131. TestDAC2Reg register (address 3Ah); reset value: XXh, 00XXXXXXb  
7
0
6
0
5
4
3
2
1
0
TestDAC2  
Access  
Rights  
RFU  
RFU  
r/w  
r/w  
r/w  
r/w  
r/w  
r/w  
Table 132. Description ofTestDAC2Reg bits  
Bit  
Symbol  
-
Description  
Reserved for future use.  
7 to 6  
5 to 0  
TestDAC2  
Defines the testvalue for TestDAC2. The output of the DAC2 can be  
switched to AUX2 by setting AnalogSelAux2 to 0001 in register  
AnalogTestReg.  
9.2.4.12 TestADCReg  
Shows the actual value of ADC I and Q channel.  
Table 133. TestADCReg register (address 3Bh); reset value: XXh, XXXXXXXXb  
7
6
5
4
3
2
1
0
ADC_I  
ADC_Q  
Access  
Rights  
Table 134. Description of TestADCReg bits  
Bit  
Symbol  
ADC_I  
Description  
7 to 4  
3 to 0  
Shows the actual value of ADC I channel.  
Shows the actual value of ADC Q channel.  
ADC_Q  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
67 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
9.2.4.13 RFTReg  
Table 135. RFTReg register (address 3Ch); reset value: FFh, 11111111b  
7
1
6
1
5
1
4
1
3
1
2
1
1
1
0
1
Access  
Rights  
RFT  
RFT  
RFT  
RFT  
RFT  
RFT  
RFT  
RFT  
Table 136. Description of RFTReg bits  
Bit  
Symbol  
Description  
Reserved for production tests.  
7 to 0  
-
Table 137. RFTReg register (address 3Dh, 3Fh); reset value: 00h, 00000000b  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
Access  
Rights  
RFT  
RFT  
RFT  
RFT  
RFT  
RFT  
RFT  
RFT  
Table 138. Description of RFTReg bits  
Bit  
Symbol  
Description  
Reserved for production tests.  
7 to 0  
-
Table 139. RFTReg register (address 3Eh); reset value: 03h, 00000011b  
7
0
6
0
5
0
4
0
3
0
2
0
1
1
0
1
Access  
Rights  
RFT  
RFT  
RFT  
RFT  
RFT  
RFT  
RFT  
RFT  
Table 140. Description of RFTReg bits  
Bit  
Symbol  
Description  
Reserved for production tests.  
7 to 0  
-
10. Digital interfaces  
10.1 Automatic microcontroller interface detection  
The PN512 supports direct interfacing of hosts using SPI, I2C-bus or serial UART  
interfaces. The PN512 resets its interface and checks the current host interface type  
automatically after performing a power-on or hard reset. The PN512 identifies the host  
interface by sensing the logic levels on the control pins after the reset phase. This is done  
using a combination of fixed pin connections. Table 141 shows the different connection  
configurations.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
68 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 141. Connection protocol for detecting different interface types  
Pin  
Interface type  
UART (input)  
SPI (output)  
I2C-bus (I/O)  
SDA  
SDA  
I2C  
EA  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
RX  
NSS  
0
0
1
0
1
EA  
TX  
MISO  
SCL  
MX  
MOSI  
ADR_0  
ADR_1  
ADR_2  
ADR_3  
ADR_4  
ADR_5  
DTRQ  
SCK  
-
-
-
-
-
-
-
-
Table 142. Connection scheme for detecting the different interface types  
PN512 Parallel Interface Type Serial Interface Types  
Separated Read/Write Strobe Common Read/Write Strobe  
Dedicated Multiplexed Dedicated Multiplexed  
Address Bus Address Bus Address Bus Address Bus  
I2C  
Pin  
UART  
SPI  
ALE  
1
ALE  
0
1
AS  
RX  
NSS  
SDA  
0
A5[1]  
A4[1]  
A3[1]  
A2[1]  
A1  
A5  
A4  
A3  
A2  
A1  
A0  
A5  
0
0
0
0
A4  
0
0
0
0
0
A3  
0
0
0
0
1
A2  
1
0
0
0
1
A1  
1
0
0
1
A0  
1
A0  
0
0
1
EA  
NRD[1] NRD  
NWR[1] NWR  
NCS[1] NCS  
NRD  
NWR  
NCS  
D7  
NDS  
RD/NWR  
NCS  
D7  
NDS  
RD/NWR  
NCS  
D7  
1
1
1
1
1
1
NCS  
NCS  
NCS  
SCL  
ADR_0  
ADR_1  
ADR_2  
ADR_3  
ADR_4  
ADR_5  
ADR_6  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TX  
MISO  
D6  
D6  
D6  
MX  
MOSI  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
D5  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
DTRQ  
SCK  
D4  
-
-
-
-
-
-
-
-
-
-
D3  
D2  
D1  
D0  
Remark: Overview on the pin behavior  
Pin behavior Input Output  
In/Out  
[1] only available in HVQFN 40.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
69 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
10.2 Serial Peripheral Interface  
A serial peripheral interface (SPI compatible) is supported to enable high-speed  
communication to the host. The interface can handle data speeds up to 10 Mbit/s. When  
communicating with a host, the PN512 acts as a slave, receiving data from the external  
host for register settings, sending and receiving data relevant for RF interface  
communication.  
An interface compatible with SPI enables high-speed serial communication between the  
PN512 and a microcontroller. The implemented interface is in accordance with the SPI  
standard.  
The timing specification is given in Section 26.1 on page 117.  
PN512  
SCK  
SCK  
MOSI  
MOSI  
MISO  
MISO  
NSS  
NSS  
001aan220  
Fig 13. SPI connection to host  
The PN512 acts as a slave during SPI communication. The SPI clock signal SCK must be  
generated by the master. Data communication from the master to the slave uses the  
MOSI line. The MISO line is used to send data from the PN512 to the master.  
Data bytes on both MOSI and MISO lines are sent with the MSB first. Data on both MOSI  
and MISO lines must be stable on the rising edge of the clock and can be changed on the  
falling edge. Data is provided by the PN512 on the falling clock edge and is stable during  
the rising clock edge.  
10.2.1 SPI read data  
Reading data using SPI requires the byte order shown in Table 143 to be used. It is  
possible to read out up to n-data bytes.  
The first byte sent defines both the mode and the address.  
Table 143. MOSI and MISO byte order  
Line  
Byte 0  
address 0  
X[1]  
Byte 1  
Byte 2  
To  
...  
Byte n  
Byte n + 1  
00  
MOSI  
MISO  
address 1  
data 0  
address 2  
data 1  
address n  
data n 1  
...  
data n  
[1] X = Do not care.  
Remark: The MSB must be sent first.  
10.2.2 SPI write data  
To write data to the PN512 using SPI requires the byte order shown in Table 144. It is  
possible to write up to n data bytes by only sending one address byte.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
70 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
The first send byte defines both the mode and the address byte.  
Table 144. MOSI and MISO byte order  
Line  
Byte 0  
address 0  
X[1]  
Byte 1  
data 0  
X[1]  
Byte 2  
data 1  
X[1]  
To  
...  
Byte n  
data n 1  
X[1]  
Byte n + 1  
data n  
X[1]  
MOSI  
MISO  
...  
[1] X = Do not care.  
Remark: The MSB must be sent first.  
10.2.3 SPI address byte  
The address byte has to meet the following format.  
The MSB of the first byte defines the mode used. To read data from the PN512 the MSB is  
set to logic 1. To write data to the PN512 the MSB must be set to logic 0. Bits 6 to 1 define  
the address and the LSB is set to logic 0.  
Table 145. Address byte 0 register; address MOSI  
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
1 = read  
0 = write  
address  
0
10.3 UART interface  
10.3.1 Connection to a host  
PN512  
RX  
TX  
RX  
TX  
DTRQ  
MX  
DTRQ  
MX  
001aan221  
Fig 14. UART connection to microcontrollers  
Remark: Signals DTRQ and MX can be disabled by clearing TestPinEnReg register’s  
RS232LineEn bit.  
10.3.2 Selectable UART transfer speeds  
The internal UART interface is compatible with an RS232 serial interface.  
The default transfer speed is 9.6 kBd. To change the transfer speed, the host controller  
must write a value for the new transfer speed to the SerialSpeedReg register. Bits  
BR_T0[2:0] and BR_T1[4:0] define the factors for setting the transfer speed in the  
SerialSpeedReg register.  
The BR_T0[2:0] and BR_T1[4:0] settings are described in Table 10. Examples of different  
transfer speeds and the relevant register settings are given in Table 11.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
71 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 146. BR_T0 and BR_T1 settings  
BR_Tn  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
BR_T0 factor  
BR_T1 range  
1
1
2
4
8
16  
32  
64  
1 to 32 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64 33 to 64  
Table 147. Selectable UART transfer speeds  
Transfer speed (kBd)  
SerialSpeedReg value  
Transfer speed accuracy (%)[1]  
Decimal  
250  
235  
218  
203  
171  
154  
122  
116  
90  
Hexadecimal  
FAh  
7.2  
0.25  
0.32  
9.6  
EBh  
14.4  
19.2  
38.4  
57.6  
115.2  
128  
DAh  
0.25  
0.32  
CBh  
ABh  
0.32  
9Ah  
0.25  
0.25  
0.06  
0.25  
0.25  
1.45  
7Ah  
74h  
230.4  
460.8  
921.6  
1228.8  
5Ah  
58  
3Ah  
28  
1Ch  
21  
15h  
0.32  
[1] The resulting transfer speed error is less than 1.5 % for all described transfer speeds.  
The selectable transfer speeds shown in Table 11 are calculated according to the  
following equations:  
If BR_T0[2:0] = 0:  
27.12 106  
BR_T0 + 1  
transfer speed =  
(1)  
(2)  
-------------------------------  
If BR_T0[2:0] > 0:  
27.12 106  
-----------------------------------  
transfer speed =  
BR_T1 + 33  
----------------------------------  
2BR_T0 1  
Remark: Transfer speeds above 1228.8 kBd are not supported.  
10.3.3 UART framing  
Table 148. UART framing  
Bit  
Length  
1-bit  
Value  
0
Start  
Data  
Stop  
8 bits  
1-bit  
data  
1
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
72 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Remark: The LSB for data and address bytes must be sent first. No parity bit is used  
during transmission.  
Read data: To read data using the UART interface, the flow shown in Table 149 must be  
used. The first byte sent defines both the mode and the address.  
Table 149. Read data byte order  
Pin  
Byte 0  
address  
-
Byte 1  
-
RX (pin 24)  
TX (pin 31)  
data 0  
ADDRESS  
RX  
SA  
A0  
A1  
A2  
A3  
A4  
A5  
(1)  
R/W SO  
DATA  
TX  
SA  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SO  
MX  
DTRQ  
001aak588  
(1) Reserved.  
Fig 15. UART read data timing diagram  
Write data: To write data to the PN512 using the UART interface, the structure shown in  
Table 150 must be used.  
The first byte sent defines both the mode and the address.  
Table 150. Write data byte order  
Pin  
Byte 0  
Byte 1  
RX (pin 24)  
TX (pin 31)  
address 0  
-
data 0  
address 0  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
73 of 136  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
ADDRESS  
DATA  
RX  
SA A0 A1 A2 A3 A4 A5  
(1) R/W SO  
SA D0 D1 D2 D3 D4 D5 D6 D7 SO  
ADDRESS  
TX  
SA A0 A1 A2 A3 A4 A5  
(1) R/W SO  
MX  
DTRQ  
001aak589  
(1) Reserved.  
Fig 16. UART write data timing diagram  
Remark: The data byte can be sent directly after the address byte on pin RX.  
Address byte: The address byte has to meet the following format:  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
The MSB of the first byte sets the mode used. To read data from the PN512, the MSB is  
set to logic 1. To write data to the PN512 the MSB is set to logic 0. Bit 6 is reserved for  
future use, and bits 5 to 0 define the address; see Table 151.  
Table 151. Address byte 0 register; address MOSI  
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
1 = read  
0 = write  
reserved  
address  
10.4 I2C Bus Interface  
An I2C-bus (Inter-IC) interface is supported to enable a low-cost, low pin count serial bus  
interface to the host. The I2C-bus interface is implemented according to  
NXP Semiconductors’ I2C-bus interface specification, rev. 2.1, January 2000. The  
interface can only act in Slave mode. Therefore the PN512 does not implement clock  
generation or access arbitration.  
PULL-UP  
NETWORK  
PULL-UP  
NETWORK  
PN512  
SDA  
SCL  
MICROCONTROLLER  
I2C  
EA  
CONFIGURATION  
WIRING  
ADR_[5:0]  
001aan222  
Fig 17. I2C-bus interface  
The PN512 can act either as a slave receiver or slave transmitter in Standard mode, Fast  
mode and High-speed mode.  
SDA is a bidirectional line connected to a positive supply voltage using a current source or  
a pull-up resistor. Both SDA and SCL lines are set HIGH when data is not transmitted. The  
PN512 has a 3-state output stage to perform the wired-AND function. Data on the I2C-bus  
can be transferred at data rates of up to 100 kBd in Standard mode, up to 400 kBd in Fast  
mode or up to 3.4 Mbit/s in High-speed mode.  
If the I2C-bus interface is selected, spike suppression is activated on lines SCL and SDA  
as defined in the I2C-bus interface specification.  
See Table 171 on page 117 for timing requirements.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
75 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
10.4.1 Data validity  
Data on the SDA line must be stable during the HIGH clock period. The HIGH or LOW  
state of the data line must only change when the clock signal on SCL is LOW.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mbc621  
Fig 18. Bit transfer on the I2C-bus  
10.4.2 START and STOP conditions  
To manage the data transfer on the I2C-bus, unique START (S) and STOP (P) conditions  
are defined.  
A START condition is defined with a HIGH-to-LOW transition on the SDA line while  
SCL is HIGH.  
A STOP condition is defined with a LOW-to-HIGH transition on the SDA line while  
SCL is HIGH.  
The I2C-bus master always generates the START and STOP conditions. The bus is busy  
after the START condition. The bus is free again a certain time after the STOP condition.  
The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition.  
The START (S) and repeated START (Sr) conditions are functionally identical. Therefore,  
S is used as a generic term to represent both the START (S) and repeated START (Sr)  
conditions.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 19. START and STOP conditions  
10.4.3 Byte format  
Each byte must be followed by an acknowledge bit. Data is transferred with the MSB first;  
see Figure 22. The number of transmitted bytes during one data transfer is unrestricted  
but must meet the read/write cycle format.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
76 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
10.4.4 Acknowledge  
An acknowledge must be sent at the end of one data byte. The acknowledge-related clock  
pulse is generated by the master. The transmitter of data, either master or slave, releases  
the SDA line (HIGH) during the acknowledge clock pulse. The receiver pulls down the  
SDA line during the acknowledge clock pulse so that it remains stable LOW during the  
HIGH period of this clock pulse.  
The master can then generate either a STOP (P) condition to stop the transfer or a  
repeated START (Sr) condition to start a new transfer.  
A master-receiver indicates the end of data to the slave-transmitter by not generating an  
acknowledge on the last byte that was clocked out by the slave. The slave-transmitter  
releases the data line to allow the master to generate a STOP (P) or repeated START (Sr)  
condition.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 20. Acknowledge on the I2C-bus  
P
SDA  
Sr  
acknowledgement  
signal from slave  
acknowledgement  
signal from receiver  
MSB  
byte complete,  
interrupt within slave  
clock line held LOW while  
interrupts are serviced  
S
or  
Sr  
Sr  
or  
P
SCL  
1
2
7
8
9
1
2
3 - 8  
9
ACK  
ACK  
START or  
repeated START  
condition  
STOP or  
repeated START  
condition  
msc608  
Fig 21. Data transfer on the I2C-bus  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
77 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
10.4.5 7-Bit addressing  
During the I2C-bus address procedure, the first byte after the START condition is used to  
determine which slave will be selected by the master.  
Several address numbers are reserved. During device configuration, the designer must  
ensure that collisions with these reserved addresses cannot occur. Check the I2C-bus  
specification for a complete list of reserved addresses.  
The I2C-bus address specification is dependent on the definition of pin EA. Immediately  
after releasing pin NRSTPD or after a power-on reset, the device defines the I2C-bus  
address according to pin EA.  
If pin EA is set LOW, the upper 4 bits of the device bus address are reserved by  
NXP Semiconductors and set to 0101b for all PN512 devices. The remaining 3 bits  
(ADR_0, ADR_1, ADR_2) of the slave address can be freely configured by the customer  
to prevent collisions with other I2C-bus devices.  
If pin EA is set HIGH, ADR_0 to ADR_5 can be completely specified at the external pins  
according to Table 141 on page 69. ADR_6 is always set to logic 0.  
In both modes, the external address coding is latched immediately after releasing the  
reset condition. Further changes at the used pins are not taken into consideration.  
Depending on the external wiring, the I2C-bus address pins can be used for test signal  
outputs.  
MSB  
bit 6  
LSB  
R/W  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
slave address  
001aak591  
Fig 22. First byte following the START procedure  
10.4.6 Register write access  
To write data from the host controller using the I2C-bus to a specific register in the PN512  
the following frame format must be used.  
The first byte of a frame indicates the device address according to the I2C-bus rules.  
The second byte indicates the register address followed by up to n-data bytes.  
In one frame all data bytes are written to the same register address. This enables fast  
FIFO buffer access. The Read/Write (R/W) bit is set to logic 0.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
78 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
10.4.7 Register read access  
To read out data from a specific register address in the PN512, the host controller must  
use the following procedure:  
Firstly, a write access to the specific register address must be performed as indicated  
in the frame that follows  
The first byte of a frame indicates the device address according to the I2C-bus rules  
The second byte indicates the register address. No data bytes are added  
The Read/Write bit is 0  
After the write access, read access can start. The host sends the device address of the  
PN512. In response, the PN512 sends the content of the read access register. In one  
frame all data bytes can be read from the same register address. This enables fast FIFO  
buffer access or register polling.  
The Read/Write (R/W) bit is set to logic 1.  
write cycle  
2
I C-BUS  
SLAVE ADDRESS  
[A7:A0]  
0
(W)  
JOINER REGISTER  
ADDRESS [A5:A0]  
DATA  
[7:0]  
S
A
0
0
A
[0:n]  
A
P
read cycle  
0
2
I C-BUS  
0
(W)  
JOINER REGISTER  
ADDRESS [A5:A0]  
SLAVE ADDRESS  
[A7:A0]  
S
A
0
A
P
optional, if the previous access was on the same register address  
[0:n]  
2
I C-BUS  
1
(R)  
DATA  
[7:0]  
SLAVE ADDRESS  
[A7:A0]  
S
A
[0:n]  
A
A
DATA  
[7:0]  
P
sent by master  
S
P
A
start condition  
stop condition  
acknowledge  
A
not acknowledge  
write cycle  
W
R
sent by slave  
read cycle  
001aak592  
Fig 23. Register read and write access  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
79 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
10.4.8 High-speed mode  
In High-speed mode (HS mode), the device can transfer information at data rates of up to  
3.4 Mbit/s, while remaining fully downward-compatible with Fast or Standard mode  
(F/S mode) for bidirectional communication in a mixed-speed bus system.  
10.4.9 High-speed transfer  
To achieve data rates of up to 3.4 Mbit/s the following improvements have been made to  
I2C-bus operation.  
The inputs of the device in HS mode incorporate spike suppression, a Schmitt trigger  
on the SDA and SCL inputs and different timing constants when compared to  
F/S mode  
The output buffers of the device in HS mode incorporate slope control of the falling  
edges of the SDA and SCL signals with different fall times compared to F/S mode  
10.4.10 Serial data transfer format in HS mode  
The HS mode serial data transfer format meets the Standard mode I2C-bus specification.  
HS mode can only start after all of the following conditions (all of which are in F/S mode):  
1. START condition (S)  
2. 8-bit master code (00001XXXb)  
3. Not-acknowledge bit (A)  
When HS mode starts, the active master sends a repeated START condition (Sr) followed  
by a 7-bit slave address with a R/W bit address and receives an acknowledge bit (A) from  
the selected PN512.  
Data transfer continues in HS mode after the next repeated START (Sr), only switching  
back to F/S mode after a STOP condition (P). To reduce the overhead of the master code,  
a master links a number of HS mode transfers, separated by repeated START conditions  
(Sr).  
HS mode (current-source for SCL HIGH enabled)  
F/S mode  
F/S mode  
S
MASTER CODE  
A
Sr SLAVE ADDRESS R/W  
A
DATA  
A/A  
P
(n-bytes + A)  
HS mode continues  
SLAVE ADDRESS  
Sr  
001aak749  
Fig 24. I2C-bus HS mode protocol switch  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
80 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
t
1
A
8-bit master code 0000 1xxx  
S
t
H
SDA high  
SCL high  
1
2 to 5  
6
7
8
9
F/S mode  
n + (8-bit data  
+
A/A)  
R/W  
A
7-bit SLA  
Sr  
Sr P  
SDA high  
SCL high  
1
2 to 5  
6
7
8
9
1
2 to 5  
6
7
8
9
If P then  
HS mode  
F/S mode  
If Sr (dotted lines)  
then HS mode  
t
H
t
FS  
= Master current source pull-up  
= Resistor pull-up  
msc618  
Fig 25. I2C-bus HS mode protocol frame  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
81 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
10.4.11 Switching between F/S mode and HS mode  
After reset and initialization, the PN512 is in Fast mode (which is in effect F/S mode as  
Fast mode is downward-compatible with Standard mode). The connected PN512  
recognizes the “S 00001XXX A” sequence and switches its internal circuitry from the Fast  
mode setting to the HS mode setting.  
The following actions are taken:  
1. Adapt the SDA and SCL input filters according to the spike suppression requirement  
in HS mode.  
2. Adapt the slope control of the SDA output stages.  
It is possible for system configurations that do not have other I2C-bus devices involved in  
the communication to switch to HS mode permanently. This is implemented by setting  
Status2Reg register’s I2CForceHS bit to logic 1. In permanent HS mode, the master code  
is not required to be sent. This is not defined in the specification and must only be used  
when no other devices are connected on the bus. In addition, spikes on the I2C-bus lines  
must be avoided because of the reduced spike suppression.  
10.4.12 PN512 at lower speed modes  
PN512 is fully downward-compatible and can be connected to an F/S mode I2C-bus  
system. The device stays in F/S mode and communicates at F/S mode speeds because a  
master code is not transmitted in this configuration.  
11. 8-bit parallel interface  
The PN512 supports two different types of 8-bit parallel interfaces, Intel and Motorola  
compatible modes.  
11.1 Overview of supported host controller interfaces  
The PN512 supports direct interfacing to various -Controllers. The following table shows  
the parallel interface types supported by the PN512.  
Table 152. Supported interface types  
Supported interface types Bus  
Separated Address and Multiplexed Address  
Data Bus  
and Data Bus  
NRD, NWR, NCS, ALE  
AD0 … AD7  
Separated Read and Write  
Strobes (INTEL compatible)  
control  
NRD, NWR, NCS  
A0 … A3 [..A5*]  
D0 … D7  
address  
data  
AD0 … AD7  
Multiplexed Read and Write control  
R/NW, NDS, NCS  
A0 … A3 [..A5*]  
D0 … D7  
R/NW, NDS, NCS, AS  
AD0 … AD7  
Strobe (Motorola compatible)  
address  
data  
AD0 … AD7  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
82 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
11.2 Separated Read/Write strobe  
non multiplexed  
address  
PN512  
PN512  
address bus  
ADDRESS  
DECODER  
ADDRESS  
DECODER  
NCS  
NCS  
low  
A5*  
A4*  
A3  
low  
address bus (A0...A3[A5*])  
data bus (D0...D7)  
low  
A0...A3[A5*]  
D0...D7  
high  
high  
high  
A2  
A1  
A0  
multiplexed address/data AD0...AD7)  
high  
D0...D7  
ALE  
address latch enable (ALE)  
not read strobe (NRD)  
not write (NWR)  
not data strobe (NRD)  
not write (NWR)  
ALE  
NRD  
NWR  
NRD  
NWR  
remark: *depending on the package type.  
001aan223  
Fig 26. Connection to host controller with separated Read/Write strobes  
For timing requirements refer to Section 26.2 “8-bit parallel interface timing”.  
11.3 Common Read/Write strobe  
non multiplexed  
address  
PN512  
PN512  
address bus  
ADDRESS  
DECODER  
ADDRESS  
DECODER  
NCS  
NCS  
low  
low  
low  
high  
high  
low  
A5*  
A4*  
A3  
address bus (A0...A3[A5*])  
Data bus (D0...D7)  
A0...A3[A5*]  
D0...D7  
A2  
A1  
A0  
multiplexed address/data AD0...AD7)  
high  
D0...D7  
ALE  
address strobe (AS)  
not data strobe (NDS)  
read not write (RD/NWR)  
ALE  
NRD  
NWR  
not data strobe (NDS)  
read not write (RD/NWR)  
NRD  
NWR  
remark: *depending on the package type.  
001aan224  
Fig 27. Connection to host controller with common Read/Write strobes  
For timing requirements refer to Section 26.2 “8-bit parallel interface timing”  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
83 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
12. Analog interface and contactless UART  
12.1 General  
The integrated contactless UART supports the external host online with framing and error  
checking of the protocol requirements up to 848 kBd. An external circuit can be connected  
to the communication interface pins MFIN and MFOUT to modulate and demodulate the  
data.  
The contactless UART handles the protocol requirements for the communication  
protocols in cooperation with the host. Protocol handling generates bit and byte-oriented  
framing. In addition, it handles error detection such as parity and CRC, based on the  
various supported contactless communication protocols.  
Remark: The size and tuning of the antenna and the power supply voltage have an  
important impact on the achievable operating distance.  
12.2 TX driver  
The signal on pins TX1 and TX2 is the 13.56 MHz energy carrier modulated by an  
envelope signal. It can be used to drive an antenna directly using a few passive  
components for matching and filtering; see Section 15 on page 96. The signal on pins TX1  
and TX2 can be configured using the TxControlReg register; see Section 9.2.2.5 on  
page 40.  
The modulation index can be set by adjusting the impedance of the drivers. The  
impedance of the p-driver can be configured using registers CWGsPReg and  
ModGsPReg. The impedance of the n-driver can be configured using the GsNReg  
register. The modulation index also depends on the antenna design and tuning.  
The TxModeReg and TxSelReg registers control the data rate and framing during  
transmission and the antenna driver setting to support the different requirements at the  
different modes and transfer speeds.  
Table 153. Register and bit settings controlling the signal on pin TX1  
Bit  
Tx1RFEn Force  
100ASK  
Bit  
Bit  
Bit  
Envelope Pin  
TX1  
GSPMos  
GSNMos  
Remarks  
InvTx1RFOn InvTx1RFOff  
0
X[1]  
X[1]  
0
X[1]  
X[1]  
X[1]  
X[1]  
CWGsNOff CWGsNOff not specified if RF is  
switched off  
1
0
0
1
0
1
0
1
0
1
RF  
RF  
RF  
RF  
0
pMod  
pCW  
pMod  
pCW  
pMod  
nMod  
nCW  
nMod  
nCW  
nMod  
nCW  
100 % ASK: pin TX1  
pulled to logic 0,  
independent of the  
InvTx1RFOff bit  
1
1
X[1]  
X[1]  
RF_n pCW  
[1] X = Do not care.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
84 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 154. Register and bit settings controlling the signal on pin TX2  
Bit  
Tx1RFEn Force  
100ASK  
Bit  
Bit  
Bit  
Bit  
En-  
Pin  
GSPMos  
GSNMos  
Remarks  
Tx2CW InvTx2RFOn InvTx2RFOff velope TX2  
0
X[1]  
X[1]  
X[1]  
X[1]  
X[1]  
X[1]  
CWGsNOff CWGsNOff not specified if  
RF is switched  
off  
1
0
0
0
1
X[1]  
X[1]  
0
RF  
RF  
pMod  
pCW  
nMod  
nCW  
nMod  
nCW  
nCW  
nCW  
-
1
0
RF_n pMod  
RF_n pCW  
1
1
0
0
1
X[1]  
X[1]  
X[1]  
X[1]  
RF  
pCW  
conductance  
always CW for  
the Tx2CW bit  
RF_n pCW  
1
0
1
X[1]  
X[1]  
0
0
pMod  
pCW  
pMod  
nMod  
nCW  
nMod  
nCW  
nCW  
nCW  
100 % ASK: pin  
TX2 pulled  
to logic 0  
(independent of  
the  
InvTx2RFOn/In  
vTx2RFOff bits)  
1
RF  
0
0
1
RF_n pCW  
RF pCW  
RF_n pCW  
1
0
1
X[1]  
X[1]  
X[1]  
X[1]  
[1] X = Do not care.  
The following abbreviations have been used in Table 153 and Table 154:  
RF: 13.56 MHz clock derived from 27.12 MHz quartz crystal oscillator divided by 2  
RF_n: inverted 13.56 MHz clock  
GSPMos: conductance, configuration of the PMOS array  
GSNMos: conductance, configuration of the NMOS array  
pCW: PMOS conductance value for continuous wave defined by the CWGsPReg  
register  
pMod: PMOS conductance value for modulation defined by the ModGsPReg register  
nCW: NMOS conductance value for continuous wave defined by the GsNReg  
register’s CWGsN[3:0] bits  
nMod: NMOS conductance value for modulation defined by the GsNReg register’s  
ModGsN[3:0] bits  
X = do not care.  
Remark: If only one driver is switched on, the values for CWGsPReg, ModGsPReg and  
GsNReg registers are used for both drivers.  
12.3 RF level detector  
The RF level detector is integrated to fulfill NFCIP1 protocol requirements (e.g. RF  
collision avoidance). Furthermore the RF level detector can be used to wake up the  
PN512 and to generate an interrupt.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
85 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
The sensitivity of the RF level detector is adjustable in a 4-bit range using the bits RFLevel  
in register RFCfgReg. The sensitivity itself depends on the antenna configuration and  
tuning.  
Possible sensitivity levels at the RX pin are listed in the Table 154.  
Table 155. Setting of the bits RFlevel in register RFCfgReg (RFLevel amplifier deactivated)  
V~Rx [Vpp]  
~2  
RFLevel  
1111  
~1.4  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
~0.99  
~0.69  
~0.49  
~0.35  
~0.24  
~0.17  
~0.12  
~0.083  
~0.058  
~0.041  
~0.029  
~0.020  
~0.014  
~0.010  
To increase the sensitivity of the RF level detector an amplifier can be activated by setting  
the bit RFLevelAmp in register RFCfgReg to 1.  
Remark: During soft Power-down mode the RF level detector amplifier is automatically  
switched off to ensure that the power consumption is less than 10 A at 3 V.  
Remark: With typical antennas lower sensitivity levels can provoke misleading results  
because of intrinsic noise in the environment.  
Note: It is recommended to use the bit RFLevelAmp only with higher RF level settings.  
12.4 Data mode detector  
The Data mode detector gives the possibility to detect received signals according to the  
ISO/IEC 14443A/MIFARE, FeliCa or NFCIP-1 schemes at the standard transfer speeds  
for 106 kbit, 212 kbit and 424 kbit in order to prepare the internal receiver in a fast and  
convenient way for further data processing.  
The Data mode detector can only be activated by the AutoColl command. The mode  
detector resets, when no external RF field is detected by the RF level detector. The Data  
mode detector could be switched off during the AutoColl command by setting bit  
ModeDetOff in register ModeReg to 1.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
86 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
HOST INTERFACES  
REGISTERS  
REGISTERSETTING  
FOR THE  
DETECTED MODE  
NFC @ 106 kbit/s  
NFC @ 212 kbit/s  
NFC @ 424 kbit/s  
DATA MODE DETECTOR  
RECEIVER  
I/Q DEMODULATOR  
PN512  
RX  
001aan225  
Fig 28. Data mode detector  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
87 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
12.5 Serial data switch  
Two main blocks are implemented in the PN512. The digital block comprises the state  
machines, encoder/decoder logic. The analog block comprises the modulator and  
antenna drivers, the receiver and amplifiers. The interface between these two blocks can  
be configured in the way, that the interfacing signals may be routed to the pins SIGIN and  
SIGOUT. SIGIN is capable of processing digital NFC signals on transfer speeds above  
424 kbit. The SIGOUT pin can provide a digital signal that can be used with an additional  
external circuit to generate transfer speeds above 424 kbit (including 106, 212 and  
424 kbit). Furthermore SIGOUT and SIGIN can be used to enable the S2C interface in the  
card SAM mode to emulate a card functionality with the PN512 and a secure IC. A secure  
IC can be the SmartMX smart card controller IC.  
This topology allows the analog block of the PN512 to be connected to the digital block of  
another device.  
The serial signal switch is controlled by the TxSelReg and RxSelReg registers.  
Figure 29 shows the serial data switch for TX1 and TX2.  
DriverSel[1:0]  
3-state  
1
00  
01  
10  
11  
envelope  
INTERNAL  
CODER  
INVERT IF  
InvMod = 1  
to driver TX1 and TX2  
0 = impedance = modulated  
1 = impedance = CW  
INVERT IF  
PolMFin = 0  
MFIN  
001aak593  
Fig 29. Serial data switch for TX1 and TX2  
12.6 S2C interface support  
The S2C provides the possibility to directly connect a secure IC to the PN512 in order act  
as a contactless smart card IC via the PN512. The interfacing signals can be routed to the  
pins SIGIN and SIGOUT. SIGIN can receive either a digital FeliCa or digitized  
ISO/IEC 14443A signal sent by the secure IC. The SIGOUT pin can provide a digital  
signal and a clock to communicate to the secure IC. A secure IC can be the smart card IC  
provided by NXP Semiconductors.  
The PN512 has an extra supply pin (SVDD and PVSS as Ground line) for the SIGIN and  
SIGOUT pads.  
Figure 31 outlines possible ways of communications via the PN512 to the secure IC.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
88 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
HOST CONTROLLER  
PN512  
1. secure access  
module (SAM) mode  
2
SPI, I C, SERIAL UART  
FIFO AND STATE MACHINE  
SERIAL SIGNAL SWITCH  
CONTACTLESS UART  
SIGOUT  
SIGIN  
SECURE CORE IC  
2. contactless  
card mode  
001aan226  
Fig 30. Communication flows using the S2C interface  
Configured in the Secure Access Mode the host controller can directly communicate to  
the Secure IC via SIGIN/SIGOUT. In this mode the PN512 generates the RF clock and  
performs the communication on the SIGOUT line. To enable the Secure Access module  
mode the clock has to be derived by the internal oscillator of the PN512, see bits  
SAMClockSel in register TestSel1Reg.  
Configured in Contactless Card mode the secure IC can act as contactless smart card IC  
via the PN512. In this mode the signal on the SIGOUT line is provided by the external RF  
field of the external reader/writer. To enable the Contactless Card mode the clock derived  
by the external RF field has to be used.  
The configuration of the S2C interface differs for the FeliCa and MIFARE scheme as  
outlined in the following chapters.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
89 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
12.6.1 Signal shape for Felica S2C interface support  
The FeliCa secure IC is connected to the PN512 via the pins SIGOUT and SIGIN.  
The signal at SIGOUT contains the information of the 13.56 MHz clock and the digitized  
demodulated signal. The clock and the demodulated signal is combined by using the  
logical function exclusive or.  
To ensure that this signal is free of spikes, the demodulated signal is digitally filtered first.  
The time delay for that digital filtering is in the range of one bit length. The demodulated  
signal changes only at a positive edge of the clock.  
The register TxSelReg controls the setting at SIGOUT.  
clock  
signal on  
SIGIN  
signal on  
antenna  
001aan227  
Fig 31. Signal shape for SIGOUT in FeliCa card SAM mode  
The answer of the FeliCa SAM is transferred from SIGIN directly to the antenna driver.  
The modulation is done according to the register settings of the antenna drivers.  
The clock is switched to AUX1 or AUX2 (see AnalogSelAux).  
Note: A HIGH signal on AUX1 and AUX2 has the same level as AVDD. A HIGH signal at  
SIGOUT has the same level as SVDD. Alternatively it is possible to use pin D0 as clock  
output if a serial interface is used. The HIGH level at D0 is the same as PVDD.  
clock  
demodulated  
signal  
signal on  
SIGOUT  
001aan228  
Fig 32. Signal shape for SIGIN in SAM mode  
Note: The signal on the antenna is shown in principle only. In reality the waveform is  
sinusoidal.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
90 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
12.6.2 Waveform shape for ISO/IEC 14443A and MIFARE S2C support  
The secure IC, e.g. the SmartMX is connected to the PN512 via the pins SIGOUT and  
SIGIN.  
The waveform shape at SIGOUT is a digital 13.56 MHz Miller coded signal with levels  
between PVSS and PVDD derived out of the external 13.56 MHz carrier signal in case of  
the Contactless Card mode or internally generated in terms of Secure Access mode.  
The register TxSelReg controls the setting at SIGOUT.  
Note: The clock settings for the Secure Access mode and the Contactless Card mode  
differ, refer to the description of the bits SAMClockSel in register TestSel1Reg.  
0
1
0
0
1
bit  
value RF  
signal on  
antenna  
1
0
signal on  
SIGOUT  
001aan229  
Fig 33. Signal shape for SIGOUT in MIFARE Card SAM mode  
The signal at SIGIN is a digital Manchester coded signal according to the requirements of  
the ISO/IEC 14443A with the subcarrier frequency of 847.5 kHz generated by the secure  
IC.  
bit  
value  
0
1
0
0
1
signal on  
antenna  
1
0
signal on  
SIGIN  
001aan230  
Fig 34. Signal shape for SIGIN in MIFARE Card SAM mode  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
91 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
12.7 Hardware support for FeliCa and NFC polling  
12.7.1 Polling sequence functionality for initiator  
1. Timer: The PN512 has a timer, which can be programmed in a way that it generates  
an interrupt at the end of each timeslot, or if required an interrupt is generated at the  
end of the last timeslot.  
2. The receiver can be configured in a way to receive continuously. In this mode it can  
receive any number of packets. The receiver is ready to receive the next packet  
directly after the last packet has been received. This mode is active by setting the bit  
RxMultiple in register RxModeReg to 1 and has to be stopped by software.  
3. The internal UART adds one byte to the end of every received packet, before it is  
transferred into the FIFO-buffer. This byte indicates if the received byte packet is  
correct (see register ErrReg). The first byte of each packet contains the length byte of  
the packet.  
4. The length of one packet is 18 or 20 bytes (+ 1 byte Error-Info). The FIFO has a  
length of 64 bytes. This means three packets can be stored in the FIFO at the same  
time. If more than three packets are expected, the host controller has to empty the  
FIFO, before the FIFO is filled completely. In case of a FIFO-overflow data is lost (See  
bit BufferOvfl in register ErrorReg).  
12.7.2 Polling sequence functionality for target  
1. The host controller has to configure the PN512 with the correct polling response  
parameters for the polling command.  
2. To activate the automatic polling in Target mode, the AutoColl Command has to be  
activated.  
3. The PN512 receives the polling command send out by an initiator and answers with  
the polling response. The timeslot is selected automatically (The timeslot itself is  
randomly generated, but in the range 0 to TSN, which is defined by the Polling  
command). The PN512 compares the system code, stored in byte 17 and 18 of the  
Config Command with the system code received by the polling command of an  
initiator. If the system code is equal, the PN512 answers according to the configured  
polling response. The system code FF (hex) acts as a wildcard for the system code  
bytes, i.e. a target of a system code 1234 (hex) answers to the polling command with  
one of the following system codes 1234 (hex), 12FF (hex), FF34 (hex) or FFFF (hex).  
If the system code does not match no answer is sent back by the PN512.  
If a valid command is received by the PN512, which is not a Polling command, no  
answer is sent back and the command AutoColl is stopped. The received packet is  
stored in the FIFO.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
92 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
12.7.3 Additional hardware support for FeliCa and NFC  
Additionally to the polling sequence support for the Felica mode, the PN512 supports the  
check of the Len-byte.  
The received Len-byte in accordance to the registers FelNFC1Reg and FelNFC2Reg:  
DataLenMin in register FelNFC1Reg defines the minimum length of the accepted packet  
length. This register is six bit long. Each bit represents a length of four bytes.  
DataLenMax in register FelNFC2Reg defines the maximum length of the accepted  
package. This register is six bit long. Each bit represents a length of four bytes. If set to  
logic 1 this limit is ignored. If the length is not in the supposed range, the packet is not  
transferred to the FIFO and receiving is kept active.  
Example 1:  
DataLenMin = 4  
The length shall be greater or equal 16.  
DataLenMax = 5  
The length shall be smaller than 20. Valid area: 16, 17, 18, 19  
Example 2:  
DataLenMin = 9  
The length shall be greater or equal 36.  
DataLenMax = 0  
The length shall be smaller than 256. Valid area: 36 to 255  
12.7.4 CRC coprocessor  
The following CRC coprocessor parameters can be configured:  
The CRC preset value can be either 0000h, 6363h, A671h or FFFFh depending on  
the ModeReg register’s CRCPreset[1:0] bits setting  
The CRC polynomial for the 16-bit CRC is fixed to x16 + x12 + x5 + 1  
The CRCResultReg register indicates the result of the CRC calculation. This register  
is split into two 8-bit registers representing the higher and lower bytes.  
The ModeReg register’s MSBFirst bit indicates that data will be loaded with the MSB  
first.  
Table 156. CRC coprocessor parameters  
Parameter  
Value  
CRC register length  
CRC algorithm  
CRC preset value  
16-bit CRC  
algorithm according to ISO/IEC 14443 A and ITU-T  
0000h, 6363h, A671h or FFFFh depending on the setting of the  
ModeReg register’s CRCPreset[1:0] bits  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
93 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
13. FIFO buffer  
An 8 64 bit FIFO buffer is used in the PN512. It buffers the input and output data stream  
between the host and the PN512’s internal state machine. This makes it possible to  
manage data streams up to 64 bytes long without the need to take timing constraints into  
account.  
13.1 Accessing the FIFO buffer  
The FIFO buffer input and output data bus is connected to the FIFODataReg register.  
Writing to this register stores one byte in the FIFO buffer and increments the internal FIFO  
buffer write pointer. Reading from this register shows the FIFO buffer contents stored in  
the FIFO buffer read pointer and decrements the FIFO buffer read pointer. The distance  
between the write and read pointer can be obtained by reading the FIFOLevelReg  
register.  
When the microcontroller starts a command, the PN512 can, while the command is in  
progress, access the FIFO buffer according to that command. Only one FIFO buffer has  
been implemented which can be used for input and output. The microcontroller must  
ensure that there are not any unintentional FIFO buffer accesses.  
13.2 Controlling the FIFO buffer  
The FIFO buffer pointers can be reset by setting FIFOLevelReg register’s FlushBuffer bit  
to logic 1. Consequently, the FIFOLevel[6:0] bits are all set to logic 0 and the ErrorReg  
register’s BufferOvfl bit is cleared. The bytes stored in the FIFO buffer are no longer  
accessible allowing the FIFO buffer to be filled with another 64 bytes.  
13.3 FIFO buffer status information  
The host can get the following FIFO buffer status information:  
Number of bytes stored in the FIFO buffer: FIFOLevelReg register’s FIFOLevel[6:0]  
FIFO buffer almost full warning: Status1Reg register’s HiAlert bit  
FIFO buffer almost empty warning: Status1Reg register’s LoAlert bit  
FIFO buffer overflow warning: ErrorReg register’s BufferOvfl bit. The BufferOvfl bit  
can only be cleared by setting the FIFOLevelReg register’s FlushBuffer bit.  
The PN512 can generate an interrupt signal when:  
ComIEnReg register’s LoAlertIEn bit is set to logic 1. It activates pin IRQ when  
Status1Reg register’s LoAlert bit changes to logic 1.  
ComIEnReg register’s HiAlertIEn bit is set to logic 1. It activates pin IRQ when  
Status1Reg register’s HiAlert bit changes to logic 1.  
If the maximum number of WaterLevel bytes (as set in the WaterLevelReg register) or less  
are stored in the FIFO buffer, the HiAlert bit is set to logic 1. It is generated according to  
Equation 3:  
HiAlert = 64 FIFOLength  WaterLevel  
(3)  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
94 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
If the number of WaterLevel bytes (as set in the WaterLevelReg register) or less are  
stored in the FIFO buffer, the LoAlert bit is set to logic 1. It is generated according to  
Equation 4:  
LoAlert = FIFOLength WaterLevel  
(4)  
14. Interrupt request system  
The PN512 indicates certain events by setting the Status1Reg register’s IRq bit and, if  
activated, by pin IRQ. The signal on pin IRQ can be used to interrupt the host using its  
interrupt handling capabilities. This allows the implementation of efficient host software.  
14.1 Interrupt sources overview  
Table 157 shows the available interrupt bits, the corresponding source and the condition  
for its activation. The ComIrqReg register’s TimerIRq interrupt bit indicates an interrupt set  
by the timer unit which is set when the timer decrements from 1 to 0.  
The ComIrqReg register’s TxIRq bit indicates that the transmitter has finished. If the state  
changes from sending data to transmitting the end of the frame pattern, the transmitter  
unit automatically sets the interrupt bit. The CRC coprocessor sets the DivIrqReg  
register’s CRCIRq bit after processing all the FIFO buffer data which is indicated by  
CRCReady bit = 1.  
The ComIrqReg register’s RxIRq bit indicates an interrupt when the end of the received  
data is detected. The ComIrqReg register’s IdleIRq bit is set if a command finishes and  
the Command[3:0] value in the CommandReg register changes to idle (see Table 158 on  
page 101).  
The ComIrqReg register’s HiAlertIRq bit is set to logic 1 when the Status1Reg register’s  
HiAlert bit is set to logic 1 which means that the FIFO buffer has reached the level  
indicated by the WaterLevel[5:0] bits.  
The ComIrqReg register’s LoAlertIRq bit is set to logic 1 when the Status1Reg register’s  
LoAlert bit is set to logic 1 which means that the FIFO buffer has reached the level  
indicated by the WaterLevel[5:0] bits.  
The ComIrqReg register’s ErrIRq bit indicates an error detected by the contactless UART  
during send or receive. This is indicated when any bit is set to logic 1 in register ErrorReg.  
Table 157. Interrupt sources  
Interrupt flag Interrupt source  
Trigger action  
TimerIRq  
TxIRq  
timer unit  
the timer counts from 1 to 0  
a transmitted data stream ends  
all data from the FIFO buffer has been processed  
a received data stream ends  
command execution finishes  
the FIFO buffer is almost full  
the FIFO buffer is almost empty  
an error is detected  
transmitter  
CRCIRq  
RxIRq  
CRC coprocessor  
receiver  
IdleIRq  
ComIrqReg register  
FIFO buffer  
HiAlertIRq  
LoAlertIRq  
ErrIRq  
FIFO buffer  
contactless UART  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
95 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
15. Timer unit  
A timer unit is implemented in the PN512. The external host controller may use this timer  
to manage timing relevant tasks. The timer unit may be used in one of the following  
configurations:  
Time-out counter  
Watch-dog counter  
Stop watch  
Programmable one-shot  
Periodical trigger  
The timer unit can be used to measure the time interval between two events or to indicate  
that a specific event occurred after a specific time. The timer can be triggered by events  
which will be explained in the following, but the timer itself does not influence any internal  
event (e.g. A time-out during data reception does not influence the reception process  
automatically). Furthermore, several timer related bits are set and these bits can be used  
to generate an interrupt.  
Timer  
The timer has an input clock of 13.56 MHz (derived from the 27.12 MHz quartz). The timer  
consists of two stages: 1 prescaler and 1 counter.  
The prescaler is a 12-bit counter. The reload value for TPrescaler can be defined between  
0 and 4095 in register TModeReg and TPrescalerReg.  
The reload value for the counter is defined by 16 bits in a range of 0 to 65535 in the  
register TReloadReg.  
The current value of the timer is indicated by the register TCounterValReg.  
If the counter reaches 0 an interrupt will be generated automatically indicated by setting  
the TimerIRq bit in the register CommonIRqReg. If enabled, this event can be indicated on  
the IRQ line. The bit TimerIRq can be set and reset by the host controller. Depending on  
the configuration the timer will stop at 0 or restart with the value from register  
TReloadReg.  
The status of the timer is indicated by bit TRunning in register Status1Reg.  
The timer can be manually started by TStartNow in register ControlReg or manually  
stopped by TStopNow in register ControlReg.  
Furthermore the timer can be activated automatically by setting the bit TAuto in the  
register TModeReg to fulfill dedicated protocol requirements automatically.  
The time delay of a timer stage is the reload value +1.  
The definition of total time is: t = ((TPrescaler*2+1)*TReload+1)/13.56MHz or if  
TPrescaleEven bit is set: t = ((TPrescaler*2+2)*TReload+1)/13.56MHz  
Maximum time: TPrescaler = 4095,TReloadVal = 65535  
=> (2*4095 +2)*65536/13.56 MHz = 39.59 s  
Example:  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
96 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
To indicate 25 us it is required to count 339 clock cycles. This means the value for  
TPrescaler has to be set to TPrescaler = 169.The timer has now an input clock of 25 us.  
The timer can count up to 65535 timeslots of each 25 s. For the behaviour in version  
1.0, see Section 21 “Errata sheet” on page 109.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
97 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
16. Power reduction modes  
16.1 Hard power-down  
Hard power-down is enabled when pin NRSTPD is LOW. This turns off all internal current  
sinks including the oscillator. All digital input buffers are separated from the input pins and  
clamped internally (except pin NRSTPD). The output pins are frozen at either a HIGH or  
LOW level.  
16.2 Soft power-down mode  
Soft Power-down mode is entered immediately after the CommandReg register’s  
PowerDown bit is set to logic 1. All internal current sinks are switched off, including the  
oscillator buffer. However, the digital input buffers are not separated from the input pins  
and keep their functionality. The digital output pins do not change their state.  
During soft power-down, all register values, the FIFO buffer content and the configuration  
keep their current contents.  
After setting the PowerDown bit to logic 0, it takes 1024 clocks until the Soft power-down  
mode is exited indicated by the PowerDown bit. Setting it to logic 0 does not immediately  
clear it. It is cleared automatically by the PN512 when Soft power-down mode is exited.  
Remark: If the internal oscillator is used, you must take into account that it is supplied by  
pin AVDD and it will take a certain time (tosc) until the oscillator is stable and the clock  
cycles can be detected by the internal logic. It is recommended for the serial UART, to first  
send the value 55h to the PN512. The oscillator must be stable for further access to the  
registers. To ensure this, perform a read access to address 0 until the PN512 answers to  
the last read command with the register content of address 0. This indicates that the  
PN512 is ready.  
16.3 Transmitter power-down mode  
The Transmitter Power-down mode switches off the internal antenna drivers thereby,  
turning off the RF field. Transmitter power-down mode is entered by setting either the  
TxControlReg register’s Tx1RFEn bit or Tx2RFEn bit to logic 0.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
98 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
17. Oscillator circuitry  
PN512  
OSCOUT  
OSCIN  
27.12 MHz  
001aan231  
Fig 35. Quartz crystal connection  
The clock applied to the PN512 provides a time basis for the synchronous system’s  
encoder and decoder. The stability of the clock frequency, therefore, is an important factor  
for correct operation. To obtain optimum performance, clock jitter must be reduced as  
much as possible. This is best achieved using the internal oscillator buffer with the  
recommended circuitry.  
If an external clock source is used, the clock signal must be applied to pin OSCIN. In this  
case, special care must be taken with the clock duty cycle and clock jitter and the clock  
quality must be verified.  
18. Reset and oscillator start-up time  
18.1 Reset timing requirements  
The reset signal is filtered by a hysteresis circuit and a spike filter before it enters the  
digital circuit. The spike filter rejects signals shorter than 10 ns. In order to perform a reset,  
the signal must be LOW for at least 100 ns.  
18.2 Oscillator start-up time  
If the PN512 has been set to a Power-down mode or is powered by a VDDX supply, the  
start-up time for the PN512 depends on the oscillator used and is shown in Figure 36.  
The time (tstartup) is the start-up time of the crystal oscillator circuit. The crystal oscillator  
start-up time is defined by the crystal.  
The time (td) is the internal delay time of the PN512 when the clock signal is stable before  
the PN512 can be addressed.  
The delay time is calculated by:  
1024  
27 s  
td  
=
= 37.74 s  
(5)  
-------------  
The time (tosc) is the sum of td and tstartup  
.
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
99 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
device activation  
oscillator  
clock stable  
clock ready  
t
startup  
t
d
t
osc  
t
001aak596  
Fig 36. Oscillator start-up time  
19. PN512 command set  
The PN512 operation is determined by a state machine capable of performing a set of  
commands. A command is executed by writing a command code (see Table 158) to the  
CommandReg register.  
Arguments and/or data necessary to process a command are exchanged via the FIFO  
buffer.  
19.1 General description  
The PN512 operation is determined by a state machine capable of performing a set of  
commands. A command is executed by writing a command code (see Table 158) to the  
CommandReg register.  
Arguments and/or data necessary to process a command are exchanged via the FIFO  
buffer.  
19.2 General behavior  
Each command that needs a data bit stream (or data byte stream) as an input  
immediately processes any data in the FIFO buffer. An exception to this rule is the  
Transceive command. Using this command, transmission is started with the  
BitFramingReg register’s StartSend bit.  
Each command that needs a certain number of arguments, starts processing only  
when it has received the correct number of arguments from the FIFO buffer.  
The FIFO buffer is not automatically cleared when commands start. This makes it  
possible to write command arguments and/or the data bytes to the FIFO buffer and  
then start the command.  
Each command can be interrupted by the host writing a new command code to the  
CommandReg register, for example, the Idle command.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
100 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
19.3 PN512 command overview  
Table 158. Command overview  
Command  
Command Action  
code  
0000  
0001  
Idle  
no action, cancels current command execution  
Configure  
Configures the PN512 for FeliCa, MIFARE and NFCIP-1  
communication  
Generate RandomID 0010  
generates a 10-byte random ID number  
activates the CRC coprocessor or performs a self test  
transmits data from the FIFO buffer  
CalcCRC  
0011  
0100  
0111  
Transmit  
NoCmdChange  
no command change, can be used to modify the  
CommandReg register bits without affecting the command,  
for example, the PowerDown bit  
Receive  
1000  
1100  
activates the receiver circuits  
Transceive  
transmits data from FIFO buffer to antenna and automatically  
activates the receiver after transmission  
AutoColl  
1101  
Handles FeliCa polling (Card Operation mode only) and  
MIFARE anticollision (Card Operation mode only)  
MFAuthent  
SoftReset  
1110  
1111  
performs the MIFARE standard authentication as a reader  
resets the PN512  
19.3.1 PN512 command descriptions  
19.3.1.1 Idle  
Places the PN512 in Idle mode. The Idle command also terminates itself.  
19.3.1.2 Config command  
To use the automatic MIFARE Anticollision, FeliCa Polling and NFCID3 the data used for  
these transactions has to be stored internally. All the following data have to be written to  
the FIFO in this order:  
SENS_RES (2 bytes); in order byte 0, byte 1  
NFCID1 (3 Bytes); in order byte 0, byte 1, byte 2; the first NFCID1 byte is fixed to 08h and  
the check byte is calculated automatically.  
SEL_RES (1 Byte)  
polling response (2 bytes (shall be 01h, FEh) + 6 bytes NFCID2 + 8 bytes Pad + 2 bytes  
system code)  
NFCID3 (1 byte)  
In total 25 bytes are transferred into an internal buffer.  
The complete NFCID3 is 10 bytes long and consists of the 3 NFCID1 bytes, the 6 NFCID2  
bytes and the one NFCID3 byte which are listed above.  
To read out this configuration the command Config with an empty FIFO-buffer has to be  
started. In this case the 25 bytes are transferred from the internal buffer to the FIFO.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
101 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
The PN512 has to be configured after each power up, before using the automatic  
Anticollision/Polling function (AutoColl command). During a hard power down (reset pin)  
this configuration remains unchanged.  
This command terminates automatically when finished and the active command is idle.  
19.3.1.3 Generate RandomID  
This command generates a 10-byte random number which is initially stored in the internal  
buffer. This then overwrites the 10 bytes in the internal 25-byte buffer. This command  
automatically terminates when finished and the PN512 returns to Idle mode.  
19.3.1.4 CalcCRC  
The FIFO buffer content is transferred to the CRC coprocessor and the CRC calculation is  
started. The calculation result is stored in the CRCResultReg register. The CRC  
calculation is not limited to a dedicated number of bytes. The calculation is not stopped  
when the FIFO buffer is empty during the data stream. The next byte written to the FIFO  
buffer is added to the calculation.  
The CRC preset value is controlled by the ModeReg register’s CRCPreset[1:0] bits. The  
value is loaded in to the CRC coprocessor when the command starts.  
This command must be terminated by writing a command to the CommandReg register,  
such as, the Idle command.  
If the AutoTestReg register’s SelfTest[3:0] bits are set correctly, the PN512 enters Self  
Test mode. Starting the CalcCRC command initiates a digital self test. The result of the  
self test is written to the FIFO buffer.  
19.3.1.5 Transmit  
The FIFO buffer content is immediately transmitted after starting this command. Before  
transmitting the FIFO buffer content, all relevant registers must be set for data  
transmission.  
This command automatically terminates when the FIFO buffer is empty. It can be  
terminated by another command written to the CommandReg register.  
19.3.1.6 NoCmdChange  
This command does not influence any running command in the CommandReg register. It  
can be used to manipulate any bit except the CommandReg register Command[3:0] bits,  
for example, the RcvOff bit or the PowerDown bit.  
19.3.1.7 Receive  
The PN512 activates the receiver path and waits for a data stream to be received. The  
correct settings must be chosen before starting this command.  
This command automatically terminates when the data stream ends. This is indicated  
either by the end of frame pattern or by the length byte depending on the selected frame  
type and speed.  
Remark: If the RxModeReg register’s RxMultiple bit is set to logic 1, the Receive  
command will not automatically terminate. It must be terminated by starting another  
command in the CommandReg register.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
102 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
19.3.1.8 Transceive  
This command continuously repeats the transmission of data from the FIFO buffer and the  
reception of data from the RF field. The first action is transmit and after transmission the  
command is changed to receive a data stream.  
Each transmit process must be started by setting the BitFramingReg register’s StartSend  
bit to logic 1. This command must be cleared by writing any command to the  
CommandReg register.  
Remark: If the RxModeReg register’s RxMultiple bit is set to logic 1, the Transceive  
command never leaves the receive state because this state cannot be cancelled  
automatically.  
19.3.1.9 AutoColl  
This command automatically handles the MIFARE activation and the FeliCa polling in the  
Card Operation mode. The bit Initiator in the register ControlReg has to be set to logic 0  
for correct operation. During this command also the mode detector is active if not  
deactivated by setting the bit ModeDetOff in the ModeReg register. After the mode  
detector detects a mode, all the mode dependent registers are set according to the  
received data. In case of no external RF field the command resets the internal state  
machine and returns to the initial state but it will not be terminated. When the command  
terminates the transceive command gets active.  
During protocol processing the IRQ bits are not supported. Only the last received frame  
will serve the IRQ’s. The treatment of the TxCRCEn and RxCRCEn bits is different to the  
protocol. During ISO/IEC 14443A activation the enable bits are defined by the command  
AutoColl. The changes cannot be observed at the register TXModeReg and RXModeReg.  
After the Transceive command is active, the value of the register bit is relevant.  
The FIFO will also receive the two CRC check bytes of the last command even if they  
already checked and correct, if the state machine (Anticollision and Select routine) has to  
not been executed and 106 kbit is detected.  
During Felica activation the register bit is always relevant and is not overruled by the  
command settings. This command can be cleared by software by writing any other  
command to the CommandReg register, e.g. the idle command. Writing the same content  
again to the CommandReg register resets the state machine.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
103 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
MODE  
detection  
RXF  
raming  
00  
10  
NFCIP-1 106 kB aud  
ISO14443-3  
NPCIP-1 > 106 kB aud  
FELICA  
J
MFHalted = 1  
N
REQA,  
AC,  
nAC,  
SELECT,  
nSELECT,  
HLTA  
AC  
nAC  
SELECT  
nSELECT  
HLTA  
polling,  
polling response  
HALT  
IDLE  
MODEO  
REQA,  
WUPA,  
nAC,  
nSELECT,  
HLTA,  
error  
REQA,  
WUPA,  
nAC,  
nSELECT,  
HLTA,  
WUPA  
REQA, WUPA  
REQA,  
WUPA,  
AC,  
REQA,  
WUPA,  
AC,  
error  
nAC,  
SELECT,  
nSELECT,  
error  
SELECT,  
nSELECT,  
error  
READY*  
SELECT  
READY  
AC  
AC  
SELECT  
ACTIVE*  
ACTIVE  
HLTA  
next frame  
received  
next frame  
received  
next frame  
received  
TRANSCEIVE  
wait for  
transmit  
aaa-001826  
Fig 37. Autocoll Command  
NFCIP-1 106 kbps Passive Communication mode:  
The MIFARE anticollision is finished and the command has automatically changed to  
Transceive. The FIFO contains the ATR_REQ frame including the start byte F0h. The bit  
TargetActivated in the Status2Reg register is set to logic 1.  
NFCIP-1 212/424 kbps Passive Communication mode:  
The FeliCa polling command is finished and the command has automatically changed to  
Transceive. The FIFO contains the ATR_REQ. The bit TargetActivated in the Status2Reg  
register is set to logic 1.  
NFCIP-1 106/212/424 kbps Active Communication mode:  
This command is changing the automatically to the command Transceive. The FIFO  
contains the ATR REQ The bit TargetActivated in the Status2Reg register is set to logic 0.  
For 106 kbps only, the first byte in the FIFO indicates the start byte F0h and the CRC is  
added to the FIFO.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
104 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
MIFARE (Card Operation mode):  
The MIFARE anticollision is finished and the command has automatically changed to  
transceive. The FIFO contains the first command after the Select. The bit TargetActivated  
in the Status2Reg register is set to logic 1.  
Felica (Card Operation mode):  
The FeliCa polling command is finished and the command has automatically changed to  
transceive. The FIFO contains the first command followed after the Poling by the FeliCa  
protocol. The bit TargetActivated in the Status2Reg register is set to logic 1.  
19.3.1.10 MFAuthent  
This command manages MIFARE authentication to enable a secure communication to  
any MIFARE Mini, MIFARE 1K and MIFARE 4K card. The following data is written to the  
FIFO buffer before the command can be activated:  
Authentication command code (60h, 61h)  
Block address  
Sector key byte 0  
Sector key byte 1  
Sector key byte 2  
Sector key byte 3  
Sector key byte 4  
Sector key byte 5  
Card serial number byte 0  
Card serial number byte 1  
Card serial number byte 2  
Card serial number byte 3  
In total 12 bytes are written to the FIFO.  
Remark: When the MFAuthent command is active all access to the FIFO buffer is  
blocked. However, if there is access to the FIFO buffer, the ErrorReg register’s WrErr bit is  
set.  
This command automatically terminates when the MIFARE card is authenticated and the  
Status2Reg register’s MFCrypto1On bit is set to logic 1.  
This command does not terminate automatically if the card does not answer, so the timer  
must be initialized to automatic mode. In this case, in addition to the IdleIRq bit, the  
TimerIRq bit can be used as the termination criteria. During authentication processing, the  
RxIRq bit and TxIRq bit are blocked. The Crypto1On bit is only valid after termination of  
the MFAuthent command, either after processing the protocol or writing Idle to the  
CommandReg register.  
If an error occurs during authentication, the ErrorReg register’s ProtocolErr bit is set to  
logic 1 and the Status2Reg register’s Crypto1On bit is set to logic 0.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
105 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
19.3.1.11 SoftReset  
This command performs a reset of the device. The configuration data of the internal buffer  
remains unchanged. All registers are set to the reset values. This command automatically  
terminates when finished.  
Remark: The SerialSpeedReg register is reset and therefore the serial data rate is set to  
9.6 kBd.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
106 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
20. Testsignals  
20.1 Selftest  
The PN512 has the capability to perform a digital selftest. To start the selftest the following  
procedure has to be performed:  
1. Perform a soft reset.  
2. Clear the internal buffer by writing 25 bytes of 00h and perform the Config Command.  
3. Enable the Selftest by writing the value 09h to the register AutoTestReg.  
4. Write 00h to the FIFO.  
5. Start the Selftest with the CalcCRC Command.  
6. The Selftest will be performed.  
7. When the Selftest is finished, the FIFO contains the following bytes:  
Version 1.0 has a different Selftest answer, explained in Section 21.  
Correct answer for VersionReg equal to 82h:  
00h, EBh, 66h, BAh, 57h, BFh, 23h, 95h, D0h, E3h, 0Dh, 3Dh, 27h, 89h, 5Ch, DEh,  
9Dh, 3Bh, A7h, 00h, 21h, 5Bh, 89h, 82h, 51h, 3Ah, EBh, 02h, 0Ch, A5h, 00h,  
49h, 7Ch, 84h, 4Dh, B3h, CCh, D2h, 1Bh, 81h, 5Dh, 48h, 76h, D5h, 71h, 61h,  
21h, A9h, 86h, 96h, 83h, 38h, CFh, 9Dh, 5Bh, 6Dh, DCh, 15h, BAh, 3Eh, 7Dh,  
95h, 3Bh, 2Fh  
20.2 Testbus  
The testbus is implemented for production test purposes. The following configuration can  
be used to improve the design of a system using the PN512. The testbus allows to route  
internal signals to the digital interface. The testbus signals are selected by accessing  
TestBusSel in register TestSel2Reg.  
Table 159. Testsignal routing (TestSel2Reg = 07h)  
Pins  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Testsignal  
sdata  
scoll  
svalid  
sover  
RCV_reset  
RFon,  
filtered  
Envelope  
Table 160. Description of Testsignals  
Pins  
D6  
Testsignal  
sdata  
Description  
shows the actual received data stream.  
D5  
scoll  
shows if in the actual bit a collision has been detected (106 kbit only)  
shows if sdata and scoll are valid  
D4  
svalid  
D3  
sover  
shows that the receiver has detected a stop condition  
(ISO/IEC 14443A/ MIFARE mode only).  
D2  
D1  
D0  
RCV_reset  
shows if the receiver is reset  
RFon, filtered shows the value of the internal RF level detector  
Envelope shows the output of the internal coder  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
107 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 161. Testsignal routing (TestSel2Reg = 0Dh)  
Pins  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Testsignal clkstable  
clk27/8  
clk27rf/8 clkrf13rf/4  
clk27  
clk27rf  
clk13rf  
Table 162. Description of Testsignals  
Pins  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Testsignal  
clkstable  
clk27/8  
clk27rf/8  
clkrf13/4  
clk27  
Description  
shows if the oscillator delivers a stable signal.  
shows the output signal of the oscillator divided by 8  
shows the clk27rf signal divided by 8  
shows the clk13rf divided by 4.  
shows the output signal of the oscillator  
shows the RF clock multiplied by 2.  
shows the RF clock of 13.56 MHz  
clk27rf  
clk13rf  
Table 163. Testsignal routing (TestSel2Reg = 19h)  
Pins  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Testsignal  
-
TRunning  
-
-
-
-
-
Table 164. Description of Testsignals  
Pins  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Testsignal  
Description  
-
-
TRunning  
TRunning stops 1 clockcycle after TimerIRQ is raised  
-
-
-
-
-
-
-
-
-
-
20.3 Testsignals at pin AUX  
Table 165. Testsignals description  
SelAux  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
Description for Aux1 / Aux2  
Tristate  
DAC: register TestDAC 1/2  
DAC: testsignal corr1  
DAC: testsignal corr2  
DAC: testsignal MinLevel  
DAC: ADC_I  
DAC: ADC_Q  
DAC: testsignal ADC_I combined with ADC_Q  
Testsignal for production test  
SAM clock  
High  
low  
TxActive  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
108 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 165. Testsignals description  
SelAux  
1101  
Description for Aux1 / Aux2  
RxActive  
1110  
Subcarrier detected  
TstBusBit  
1111  
Each signal can be switched to pin AUX1 or AUX2 by setting SelAux1 or SelAux2 in the  
register AnalogTestReg.  
Note: The DAC has a current output, it is recommended to use a 1 kpull-down  
resistance at pins AUX1/AUX2.  
20.4 PRBS  
Enables the PRBS9 or PRBS15 sequence according to ITU-TO150. To start the  
transmission of the defined datastream the command send has to be activated. The  
preamble/Sync byte/start bit/parity bit are generated automatically depending on the  
selected mode.  
Note: All relevant register to transmit data have to be configured before entering PRBS  
mode according ITU-TO150.  
21. Errata sheet  
This data sheet is describing the functionality for version 2.0 and the industrial version.  
This chapter lists all differences from version 1.0 to version 2.0:  
The value of the version in Section 9.2.4.8 is set to80h.  
The behaviour ‘RFU’ for the register is undefined.  
The answer to the Selftest (see Section 20.1) for version 1.0 (VersionReg equal to 80h):  
00h, AAh, E3h, 29h, 0Ch, 10h, 29zhh, 6Bh,  
76h, 8Dh, AFh, 4Bh, A2h, DAh, 76h, 99h  
C7h, 5Eh, 24h, 69h, D2h, BAh, FAh, BCh  
3Eh, DAh, 96h, B5h, F5h, 94h, B0h, 3Ah  
4Eh, C3h, 9Dh, 94h, 76h, 4Ch, EAh, 5Eh  
38h, 10h, 8Fh, 2Dh, 21h, 4Bh, 52h, BFh  
4Eh, C3h, 9Dh, 94h, 76h, 4Ch, EAh, 5Eh  
38h, 10h, 8Fh, 2Dh, 21h, 4Bh, 52h, BFh  
FBh, F4h, 19h, 94h, 82h, 5Ah, 72h, 9Dh  
BAh, 0Dh, 1Fh, 17h, 56h, 22h, B9h, 08h  
Only the default setting for the prescaler (see Section 15 “Timer unit” on page 96): t =  
((TPreScaler*2+1)*TReload+1)/13,56 MHz is supported. As such only the formula fTimer  
13,56 MHz/(2*PreScaler+1) is applicable for the TPrescalerHigh in Table 100 “Description  
of TModeReg bits” on page 57 and TPrescalerLo in Table 101 “TPrescalerReg register  
(address 2Bh); reset value: 00h, 00000000b” on page 58. As there is no option for the  
prescaler available, also the TPrescalEven is not available Section 9.2.2.10 on page 45.  
This bit is set to ‘RFU’.  
=
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
109 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Especially when using time slot protocols, it is needed that the error flag is copied into the  
status information of the frame. When using the RxMultiple feature (see Section 9.2.2.4  
on page 39) within version 1.0 the protocol error flag is not included in the status  
information for the frame. In addition the CRCOk is copied instead of the CRCErr. This  
can be a problem in frames without length information e.g. ISO/IEC 14443-B.  
The version 1.0 does not accept a Type B EOF if there is no 1 bit after the series of 0 bits,  
as such the configuration within Section 9.2.2.15 “TypeBReg” on page 50 bit 4 for  
RxEOFReq does not exist. In addition the IC only has the possibility to select the  
minimum or maximum timings for SOF/EOF generation defined in ISO/IEC14443B. As  
such the configuration possible in version 2.0 through the EOFSOFAdjust bit (see Section  
9.2.4.7 “AutoTestReg” on page 64) does not exist and the configuration is limited to only  
setting minimum and maximum length according ISO/IEC 14443-B, see Section 9.2.2.15  
“TypeBReg” on page 50, bit 4.  
22. Application design-in information  
The figure below shows a typical circuit diagram, using a complementary antenna  
connection to the PN512.  
The antenna tuning and RF part matching is described in the application note “NFC  
Transmission Module Antenna and RF Design Guide”.  
supply  
DVDD  
AVDD  
TVDD  
RX  
C
RX  
DVDD  
PVDD  
SVDD  
R
1
R
2
VMID  
C
vmid  
NRSTPD  
interface  
C
1
R
Q
L
0
TX1  
PN512  
antenna  
Lant  
HOST  
CONTROLLER  
C
C
C
C
0
2
TVSS  
IRQ  
0
2
C
1
R
Q
L
0
TX2  
AVSS  
DVSS  
OSCIN  
OSCOUT  
27.12 MHz  
001aan232  
Fig 38. Typical circuit diagram  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
110 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
23. Limiting values  
Table 166. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDDA  
Parameter  
Conditions  
Min  
Max  
+4.0  
+4.0  
+4.0  
+4.0  
+4.0  
Unit  
V
analog supply voltage  
digital supply voltage  
0.5  
0.5  
0.5  
0.5  
0.5  
VDDD  
V
VDD(PVDD) PVDD supply voltage  
VDD(TVDD) TVDD supply voltage  
VDD(SVDD) SVDD supply voltage  
V
V
V
VI  
input voltage  
all input pins except pins SIGIN and  
RX  
VSS(PVSS) 0.5 VDD(PVDD) + 0.5  
V
pin MFIN  
VSS(PVSS) 0.5 VDD(SVDD) + 0.5  
V
Ptot  
total power dissipation  
junction temperature  
per package; and VDDD in shortcut  
mode  
-
200  
mW  
Tj  
-
-
125  
C  
VESD  
electrostatic discharge  
voltage  
HBM; 1500 , 100 pF;  
JESD22-A114-B  
2000  
V
MM; 0.75 H, 200 pF;  
-
200  
V
JESD22-A114-A  
Charged device model;  
JESD22-C101-A  
on all pins  
-
-
200  
500  
V
V
on all pins except SVDD in  
TFBGA64 package  
Industrial version:  
VESD electrostatic discharge  
voltage  
HBM; 1500 , 100 pF;  
JESD22-A114-B  
-
-
2000  
200  
V
V
MM; 0.75 H, 200 pF;  
JESD22-A114-A  
Charged device model;  
AEC-Q100-011  
on all pins  
-
-
200  
500  
V
V
on all pins except SVDD  
24. Recommended operating conditions  
Table 167. Operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
[1][2]  
[1][2]  
[1][2]  
VDDA  
analog supply voltage  
VDD(PVDD) VDDA = VDDD = VDD(TVDD)  
;
2.5  
-
-
-
3.6  
3.6  
3.6  
V
V
V
VSSA = VSSD = VSS(PVSS) = VSS(TVSS) = 0 V  
VDD(PVDD) VDDA = VDDD = VDD(TVDD)  
VSSA = VSSD = VSS(PVSS) = VSS(TVSS) = 0 V  
VDD(PVDD) VDDA = VDDD = VDD(TVDD)  
digital supply voltage  
;
2.5  
2.5  
VDDD  
VDD(TVDD) TVDD supply voltage  
;
VSSA = VSSD = VSS(PVSS) = VSS(TVSS) = 0 V  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
111 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 167. Operating conditions …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
[3]  
VDD(PVDD) PVDD supply voltage  
VDD(PVDD) VDDA = VDDD = VDD(TVDD)  
;
1.6  
-
3.6  
V
VSSA = VSSD = VSS(PVSS) = VSS(TVSS) = 0 V  
VSSA = VSSD = VSS(PVSS) = VSS(TVSS) = 0 V  
HVQFN32, HVQFN40, TFBGA64  
VDD(SVDD) SVDD supply voltage  
1.6  
-
-
3.6  
V
Tamb  
Industrial version:  
Tamb ambient temperature  
ambient temperature  
30  
+85  
C  
HVQFN32  
40  
-
+90  
C  
[1] Supply voltages below 3 V reduce the performance (the achievable operating distance).  
[2] VDDA, VDDD and VDD(TVDD) must always be the same voltage.  
[3] VDD(PVDD) must always be the same or lower voltage than VDDD  
25. Thermal characteristics  
Table 168. Thermal characteristics  
.
Symbol  
Parameter  
Conditions  
Package  
HVQFN32  
HVQFN40  
TFBGA64  
Typ  
Unit  
K/W  
K/W  
K/W  
Rthj-a  
Thermal resistance from  
junction to ambient  
In still air with exposed pad  
soldered on a 4 layer Jedec PCB  
In still air  
40  
35  
<tbd>  
26. Characteristics  
Table 169. Characteristics  
Symbol Parameter  
Input characteristics  
Conditions  
Min  
Typ  
Max  
Unit  
Pins A0, A1 and NRSTPD  
ILI  
input leakage current  
HIGH-level input voltage  
LOW-level input voltage  
1  
-
-
-
+1  
A  
V
VIH  
0.7VDD(PVDD)  
-
-
VIL  
0.3VDD(PVDD)  
V
Pin SIGIN  
ILI  
input leakage current  
HIGH-level input voltage  
LOW-level input voltage  
1  
-
-
-
+1  
A  
V
VIH  
0.7VDD(SVDD)  
-
-
VIL  
0.3VDD(SVDD)  
V
Pin ALE  
ILI  
input leakage current  
HIGH-level input voltage  
LOW-level input voltage  
1  
-
-
-
+1  
A  
V
VIH  
0.7VDD(PVDD)  
-
-
VIL  
0.3VDD(PVDD)  
V
Pin RX[1]  
Vi  
input voltage  
1  
-
VDDA +1  
-
V
Ci  
input capacitance  
VDDA = 3 V; receiver active;  
VRX(p-p) = 1 V; 1.5 V (DC)  
offset  
-
10  
pF  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
112 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 169. Characteristics …continued  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Ri  
input resistance  
VDDA = 3 V; receiver active;  
VRX(p-p) = 1 V; 1.5 V (DC)  
offset  
-
350  
-
Input voltage range; see Figure 39  
Vi(p-p)(min) minimum peak-to-peak input Manchester encoded;  
voltage DDA = 3 V  
Vi(p-p)(max) maximum peak-to-peak input Manchester encoded;  
-
-
100  
4
-
-
mV  
V
V
voltage  
VDDA = 3 V  
Input sensitivity; see Figure 39  
Vmod  
modulation voltage  
minimum Manchester  
encoded; VDDA = 3 V;  
RxGain[2:0] = 111b (48 dB)  
-
5
-
mV  
Pin OSCIN  
ILI  
input leakage current  
HIGH-level input voltage  
LOW-level input voltage  
input capacitance  
1  
-
+1  
A  
V
VIH  
VIL  
Ci  
0.7VDDA  
-
-
-
-
-
0.3VDDA  
-
V
VDDA = 2.8 V; DC = 0.65 V;  
AC = 1 V (p-p)  
2
pF  
Input/output characteristics  
pins D1, D2, D3, D4, D5, D6 and D7  
ILI  
input leakage current  
1  
-
-
-
-
+1  
A  
V
VIH  
VIL  
VOH  
HIGH-level input voltage  
LOW-level input voltage  
HIGH-level output voltage  
0.7VDD(PVDD)  
-
-
0.3VDD(PVDD)  
VDD(PVDD)  
V
VDD(PVDD) = 3 V; IO = 4 mA  
VDD(PVDD) = 3 V; IO = 4 mA  
VDD(PVDD)  
0.4  
V
VOL  
LOW-level output voltage  
VSS(PVSS)  
-
VSS(PVSS)  
0.4  
+
V
IOH  
IOL  
HIGH-level output current  
LOW-level output current  
VDD(PVDD) = 3 V  
VDD(PVDD) = 3 V  
-
-
-
-
4
4
mA  
mA  
Output characteristics  
Pin SIGOUT  
VOH  
HIGH-level output voltage  
VDD(SVDD) = 3 V; IO = 4 mA  
VDD(SVDD) = 3 V; IO = 4 mA  
VDD(SVDD)  
0.4  
-
-
VDD(SVDD)  
V
V
VOL  
LOW-level output voltage  
VSS(PVSS)  
VSS(PVSS)  
0.4  
+
IOL  
LOW-level output current  
HIGH-level output current  
VDD(SVDD) = 3 V  
VDD(SVDD) = 3 V  
-
-
-
-
4
4
mA  
mA  
IOH  
Pin IRQ  
VOH  
HIGH-level output voltage  
LOW-level output voltage  
VDD(PVDD) = 3 V; IO = 4 mA  
VDD(PVDD) = 3 V; IO = 4 mA  
VDD(PVDD)  
0.4  
-
-
VDD(PVDD)  
V
V
VOL  
VSS(PVSS)  
VSS(PVSS)  
0.4  
+
IOL  
IOH  
LOW-level output current  
HIGH-level output current  
VDD(PVDD) = 3 V  
VDD(PVDD) = 3 V  
-
-
-
-
4
4
mA  
mA  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
113 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 169. Characteristics …continued  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Pins AUX1 and AUX2  
VOH  
VOL  
HIGH-level output voltage  
LOW-level output voltage  
VDDD = 3 V; IO = 4 mA  
VDDD = 3 V; IO = 4 mA  
VDDD 0.4  
-
-
VDDD  
V
V
VSS(PVSS)  
VSS(PVSS)  
0.4  
+
IOL  
IOH  
LOW-level output current  
HIGH-level output current  
VDDD = 3 V  
VDDD = 3 V  
-
-
-
-
4
4
mA  
mA  
Pins TX1 and TX2  
VOL LOW-level output voltage  
VDD(TVDD) = 3 V;  
-
-
-
-
-
-
-
-
-
-
-
-
0.15  
V
V
V
V
V
V
V
V
I
DD(TVDD) = 32 mA;  
CWGsP[5:0] = 0Fh  
VDD(TVDD) = 3 V;  
IDD(TVDD) = 80 mA;  
CWGsP[5:0] = 0Fh  
0.4  
VDD(TVDD) = 2.5 V;  
0.24  
IDD(TVDD) = 32 mA;  
CWGsP[5:0] = 0Fh  
VDD(TVDD) = 2.5 V;  
0.64  
IDD(TVDD) = 80 mA;  
CWGsP[5:0] = 0Fh  
VOH  
HIGH-level output voltage  
VDD(TVDD) = 3 V;  
IDD(TVDD) = 32 mA;  
CWGsP[5:0] = 3Fh  
VDD(TVDD)  
0.15  
-
-
-
-
V
DD(TVDD) = 3 V;  
VDD(TVDD)  
0.4  
IDD(TVDD) = 80 mA;  
CWGsP[5:0] = 3Fh  
V
DD(TVDD) = 2.5 V;  
VDD(TVDD)  
0.24  
IDD(TVDD) = 32 mA;  
CWGsP[5:0] = 3Fh  
V
DD(TVDD) = 2.5 V;  
VDD(TVDD)  
0.64  
IDD(TVDD) = 80 mA;  
CWGsP[5:0] = 3Fh  
Industrial version:  
VOL LOW-level output voltage  
VDD(TVDD) = 2.5 V;  
IDD(TVDD) = 32 mA;  
CWGsP[5:0] = 3Fh  
-
-
-
-
-
-
0.18  
V
V
V
V
VDD(TVDD) = 2.5 V;  
0.44  
I
DD(TVDD) = 80 mA;  
CWGsP[5:0] = 3Fh  
VOH  
HIGH-level output voltage  
VDD(TVDD) = 3 V;  
IDD(TVDD) = 32 mA;  
CWGsP[5:0] = 3Fh  
VDD(TVDD)  
0.18  
-
-
VDD(TVDD) = 3 V;  
IDD(TVDD) = 80 mA;  
CWGsP[5:0] = 3Fh  
VDD(TVDD)  
0.44  
Output resistance for TX1/TX2,  
Industrial Version:  
ROP,01H  
High level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsP = 01h  
-
123  
180  
261  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
114 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 169. Characteristics …continued  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ROP,02H  
ROP,04H  
ROP,08H  
ROP,10H  
ROP,20H  
ROP,3FH  
RON,10H  
RON,20H  
RON,40H  
RON,80H  
RON,F0H  
High level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsP = 02h  
-
-
-
-
-
-
-
-
-
-
-
61  
90  
131  
High level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsP = 04h  
30  
15  
7.5  
4.2  
2
46  
23  
12  
6
68  
35  
19  
9
High level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsP = 08h  
High level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsP = 10h  
High level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsP = 20h  
High level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsP = 3Fh  
3
5
Low level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsN = 10h  
30  
15  
7.5  
4.2  
2
46  
23  
12  
6
68  
35  
19  
9
Low level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsN = 20h  
Low level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsN = 40h  
Low level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsN = 80h  
Low level output resistance TVDD = 3 V, VTX = TVDD  
100 mV, CWGsN = F0h  
3
5
Current consumption  
Ipd  
power-down current  
VDDA = VDDD = VDD(TVDD) =  
VDD(PVDD) = 3 V  
[2]  
[2]  
hard power-down; pin  
NRSTPD set LOW  
-
-
-
-
5
A  
A  
soft power-down; RF  
level detector on  
10  
[3]  
[4][5][6]  
[7]  
IDD(PVDD) PVDD supply current  
IDD(TVDD) TVDD supply current  
IDD(SVDD) SVDD supply current  
pin PVDD  
-
-
-
-
-
-
40  
100  
4
mA  
mA  
mA  
mA  
mA  
pin TVDD; continuous wave  
pin SVDD  
60  
-
IDDD  
IDDA  
digital supply current  
analog supply current  
pin DVDD; VDDD = 3 V  
6.5  
7
9
pin AVDD; VDDA = 3 V,  
CommandReg register’s  
RcvOff bit = 0  
10  
pin AVDD; receiver  
switched off; VDDA = 3 V,  
CommandReg register’s  
RcvOff bit = 1  
-
-
3
5
mA  
mA  
Industrial version:  
IDDD  
digital supply current  
pin DVDD; VDDD = 3 V  
6.5  
9,5  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
115 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 169. Characteristics …continued  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Ipd  
power-down current  
VDDA = VDDD = VDD(TVDD)  
VDD(PVDD) = 3 V  
=
[2]  
[2]  
hard power-down; pin  
NRSTPD set LOW  
-
-
-
-
15  
30  
A  
A  
soft power-down; RF  
level detector on  
Clock frequency  
fclk  
clk  
tjit  
clock frequency  
-
27.12  
-
MHz  
%
clock duty cycle  
jitter time  
40  
-
50  
-
60  
10  
RMS  
ps  
Crystal oscillator  
VOH  
VOL  
Ci  
HIGH-level output voltage  
pin OSCOUT  
pin OSCOUT  
pin OSCOUT  
pin OSCIN  
-
-
-
-
1.1  
0.2  
2
-
-
-
-
V
LOW-level output voltage  
input capacitance  
V
pF  
pF  
2
Typical input requirements  
fxtal  
crystal frequency  
-
-
-
-
27.12  
-
-
MHz  
ESR  
CL  
equivalent series resistance  
load capacitance  
100  
-
10  
pF  
Pxtal  
crystal power dissipation  
50  
100  
W  
[1] The voltage on pin RX is clamped by internal diodes to pins AVSS and AVDD.  
[2] pd is the total current for all supplies.  
[3] IDD(PVDD) depends on the overall load at the digital pins.  
I
[4] IDD(TVDD) depends on VDD(TVDD) and the external circuit connected to pins TX1 and TX2.  
[5] During typical circuit operation, the overall current is below 100 mA.  
[6] Typical value using a complementary driver configuration and an antenna matched to 40 between pins TX1 and TX2 at 13.56 MHz.  
[7]  
IDD(SVDD) depends on the load at pin MFOUT.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
116 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
V
mod  
V
V
i(p-p)(min)  
i(p-p)(max)  
VMID  
13.56 MHz  
carrier  
0 V  
001aak012  
Fig 39. Pin RX input voltage range  
26.1 Timing characteristics  
Table 170. SPI timing characteristics  
Symbol  
tWL  
Parameter  
Conditions  
line SCK  
Min  
Typ  
Max  
Unit  
ns  
pulse width LOW  
pulse width HIGH  
50  
50  
25  
-
-
-
-
-
-
tWH  
line SCK  
ns  
th(SCKH-D)  
SCK HIGH to data input SCK to changing  
hold time MOSI  
ns  
tsu(D-SCKH) data input to SCK HIGH changing MOSI to  
set-up time SCK  
25  
-
-
-
-
-
ns  
ns  
ns  
th(SCKL-Q)  
SCK LOW to data output SCK to changing  
hold time MISO  
25  
-
t(SCKL-NSSH) SCK LOW to NSS HIGH  
time  
0
Table 171. I2C-bus timing in Fast mode  
Symbol Parameter  
Conditions  
Fast mode High-speed Unit  
mode  
Min Max Min Max  
fSCL  
SCL clock frequency  
0
400  
-
0
3400 kHz  
tHD;STA  
hold time (repeated) START  
condition  
after this period,  
the first clock pulse  
is generated  
600  
160  
-
ns  
tSU;STA  
set-up time for a repeated  
START condition  
600  
-
160  
-
ns  
tSU;STO set-up time for STOP condition  
600  
1300  
600  
0
-
160  
160  
60  
-
ns  
ns  
ns  
ns  
tLOW  
tHIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
-
-
-
-
tHD;DAT data hold time  
900  
0
70  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
117 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 171. I2C-bus timing in Fast mode …continued  
Symbol Parameter  
Conditions  
Fast mode High-speed Unit  
mode  
Min Max Min Max  
tSU;DAT  
data set-up time  
100  
20  
-
10  
-
ns  
ns  
ns  
ns  
tr  
tf  
tr  
rise time  
fall time  
rise time  
SCL signal  
SCL signal  
300 10  
300 10  
300 10  
40  
40  
80  
20  
SDA and SCL  
signals  
20  
tf  
fall time  
SDA and SCL  
signals  
20  
300 10  
80  
-
ns  
tBUF  
bus free time between a STOP  
and START condition  
1.3  
-
1.3  
s  
t
t
t
t
SCKL  
SCKL  
SCKH  
SHDX  
SCK  
t
SLDX  
t
t
DXSH  
DXSH  
MOSI  
MISO  
NSS  
MSB  
MSB  
LSB  
LSB  
t
SLNH  
001aaj634  
Remark: The signal NSS must be LOW to be able to send several bytes in one data stream.  
To send more than one data stream NSS must be set HIGH between the data streams.  
Fig 40. Timing diagram for SPI  
SDA  
t
t
t
t
r
f
SU;DAT  
SP  
t
t
t
t
BUF  
LOW  
f
HD;STA  
SCL  
t
t
t
SU;STO  
r
HIGH  
t
t
SU;STA  
HD;STA  
t
HD;DAT  
S
Sr  
P
S
001aaj635  
Fig 41. Timing for Fast and Standard mode devices on the I2C-bus  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
118 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
26.2 8-bit parallel interface timing  
26.2.1 AC symbols  
Each timing symbol has five characters. The first character is always 't' for time. The other  
characters indicate the name of a signal or the logic state of that signal (depending on  
position):  
Table 172. AC symbols  
Designation  
Signal  
Designation  
Logic Level  
HIGH  
A
D
W
R
L
address  
H
L
data  
LOW  
NWR or nWait  
Z
X
V
N
high impedance  
any level or data  
any valid signal or data  
NSS  
NRD or R/NW or nWrite  
ALE or AS  
C
S
NCS  
NDS or nDStrb and nAStrb, SCK  
Example: tAVLL = time for address valid to ALE low  
26.2.2 AC operating specification  
26.2.2.1 Bus timing for separated Read/Write strobe  
Table 173. Timing specification for separated Read/Write strobe  
Symbol Parameter  
Min  
10  
5
Max Unit  
tLHLL  
ALE pulse width  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVLL  
Multiplexed Address Bus valid to ALE low (Address Set Up Time)  
-
tLLAX  
Multiplexed Address Bus valid after ALE low (Address Hold Time) 5  
-
tLLWL  
tCLWL  
tWHCH  
tRLDV  
tRHDZ  
tDVWH  
tWHDX  
tWLWH  
tAVWL  
tWHAX  
tWHWL  
ALE low to NWR, NRD low  
10  
-
NCS low to NRD, NWR low  
0
-
NRD, NWR high to NCS high  
0
-
NRD low to DATA valid  
-
35  
10  
-
NRD high to DATA high impedance  
DATA valid to NWR high  
-
5
DATA hold after NWR high (Data Hold Time)  
NRD, NWR pulse width  
5
-
40  
30  
5
-
Separated Address Bus valid to NRD, NWR low (Set Up Time)  
Separated Address Bus valid after NWR high (Hold Time)  
period between sequenced read/write accesses  
-
-
40  
-
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
119 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
t
LHLL  
ALE  
t
WHCH  
t
CLWL  
NCS  
t
LLWL  
t
t
t
WHWL  
WHWL  
WLWH  
NWR  
NRD  
t
t
t
WLDV  
AVLL  
LLAX  
t
WHDX  
t
t
RHDZ  
RLDV  
D0...D7  
A0...A3  
D0...D7  
multiplexed  
addressbus  
A0...A3  
t
WHAX  
t
AVWL  
SEPARATED ADDRESSBUS A0...A3  
001aan233  
Fig 42. Timing diagram for separated Read/Write strobe  
Remark: For separated address and data bus the signal ALE is not relevant and the  
multiplexed addresses on the data bus don’t care.  
For the multiplexed address and data bus the address lines A0 to A3 have to be  
connected as described in chapter Automatic host controller Interface Type Detection.  
26.2.2.2 Bus timing for common Read/Write strobe  
Table 174. Timing specification for common Read/Write strobe  
Symbol  
tLHLL  
Parameter  
Min  
Max Unit  
AS pulse width  
10  
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAVLL  
Multiplexed Address Bus valid to AS low (Address Set Up Time) 5  
Multiplexed Address Bus valid after AS low (Address Hold Time) 5  
-
tLLAX  
-
tLLSL  
AS low to NDS low  
10  
-
tCLSL  
tSHCH  
tSLDV,R  
tSHDZ  
tDVSH  
tSHDX  
tSHRX  
tSLSH  
tAVSL  
NCS low to NDS low  
0
0
-
NDS high to NCS high  
-
NDS low to DATA valid (for read cycle)  
NDS low to DATA high impedance (read cycle)  
DATA valid to NDS high (for write cycle)  
DATA hold after NDS high (write cycle, Hold Time)  
R/NW hold after NDS high  
-
35  
10  
-
-
5
5
-
5
-
NDS pulse width  
40  
30  
5
-
Separated Address Bus valid to NDS low (Hold Time)  
Separated Address Bus valid after NDS high (Set Up Time)  
-
tSHAX  
-
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
120 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
t
LHLL  
ALE  
t
SHCH  
t
CLSL  
NCS  
t
t
RVSL  
SHRX  
R/NW  
t
LLSL  
t
t
t
SHSL  
SHSL  
SLSH  
NDS  
t
SLDV, R  
t
t
SLDV, W  
LLAX  
t
t
SHDX  
SHDZ  
t
AVLL  
D0...D7  
D0...D7  
multiplexed  
addressbus  
A0...A3  
t
SHAX  
t
AVSL  
SEPARATED ADDRESSBUS A0...A3  
A0...A3  
001aan234  
Fig 43. Timing diagram for common Read/Write strobe  
Remark: For separated address and data bus the signal ALE is not relevant and the  
multiplexed addresses on the data bus don’t care. For the multiplexed address and data  
bus the address lines A0 to A3 have to be connected as described in Automatic  
-Controller Interface Type Detection.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
121 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
27. Package information  
The PN512 can be delivered in 3 different packages.  
Table 175. Package information  
Package  
HVQFN32  
HVQFN40  
TFBGA64  
Remarks  
8-bit parallel interface not supported  
Supports the 8-bit parallel interface  
Ball grid array facilitating development of an PCI compliant device  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
122 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
28. Package outline  
HVQFN32: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
SOT617-1  
B
A
D
terminal 1  
index area  
A
A
1
E
c
detail X  
C
e
1
y
y
e
1/2 e  
v
M
M
b
C
C
A B  
C
1
w
9
16  
L
17  
8
e
e
E
h
2
1/2 e  
1
24  
terminal 1  
index area  
32  
25  
X
D
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
b
c
E
e
e
e
2
y
D
D
E
L
v
w
y
1
1
h
1
h
max.  
0.05 0.30  
0.00 0.18  
5.1  
4.9  
3.25  
2.95  
5.1  
4.9  
3.25  
2.95  
0.5  
0.3  
mm  
0.05 0.1  
1
0.2  
0.5  
3.5  
3.5  
0.1  
0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-08-08  
02-10-18  
SOT617-1  
- - -  
MO-220  
- - -  
Fig 44. Package outline package version (HVQFN32)  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
123 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
HVQFN40: plastic thermal enhanced very thin quad flat package; no leads;  
40 terminals; body 6 x 6 x 0.85 mm  
SOT618-1  
D
B
A
terminal 1  
index area  
A
A
E
1
c
detail X  
C
e
1
y
1
y
1/2 e  
e
v
M
M
C
b
C
C
A
B
11  
20  
w
L
21  
10  
e
e
E
h
2
1/2 e  
1
30  
terminal 1  
index area  
40  
31  
D
X
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
(1)  
(1)  
UNIT  
A
1
b
c
E
e
e
1
e
2
y
D
D
E
L
v
w
y
1
h
h
max.  
0.05 0.30  
0.00 0.18  
6.1  
5.9  
4.25  
3.95  
6.1  
5.9  
4.25  
3.95  
0.5  
0.3  
mm  
0.05 0.1  
1
0.2  
0.5  
4.5  
4.5  
0.1  
0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-08-08  
02-10-22  
SOT618-1  
- - -  
MO-220  
- - -  
Fig 45. Package outline package version (HVQFN40)  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
124 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
TFBGA64: plastic thin fine-pitch ball grid array package; 64 balls  
SOT1336-1  
D
B
A
ball A1  
index area  
A
2
A
E
A
1
detail X  
e
1
C
1/2 e  
Ø v  
Ø w  
C A  
C
B
y
1
y
e
b
C
H
G
F
e
E
D
C
B
A
e
2
1/2 e  
1
2
3
4
5
6
7
8
ball A1  
index area  
X
0
5 mm  
scale  
Dimensions (mm are the original dimensions)  
Unit  
A
A
1
A
2
b
D
E
e
e
1
e
2
v
w
y
y
1
max 1.15 0.35 0.80 0.45 5.6 5.6  
mm nom 1.00 0.30 0.70 0.40 5.5 5.5 0.65 4.55 4.55 0.15 0.08 0.1 0.1  
0.90 0.25 0.65 0.35 5.4 5.4  
min  
sot1336-1_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
- - -  
JEITA  
12-06-19  
12-08-28  
SOT1336-1  
Fig 46. Package outline package version (TFBGA64)  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
125 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
29. Abbreviations  
Table 176. Abbreviations  
Acronym  
ADC  
ASK  
BPSK  
CRC  
CW  
Description  
Analog-to-Digital Converter  
Amplitude Shift keying  
Binary Phase Shift Keying  
Cyclic Redundancy Check  
Continuous Wave  
DAC  
EOF  
HBM  
I2C  
Digital-to-Analog Converter  
End of frame  
Human Body Model  
Inter-integrated Circuit  
Least Significant Bit  
Master In Slave Out  
Machine Model  
LSB  
MISO  
MM  
MOSI  
MSB  
NSS  
PCB  
PLL  
Master Out Slave In  
Most Significant Bit  
Not Slave Select  
Printed-Circuit Board  
Phase-Locked Loop  
Pseudo-Random Bit Sequence  
Receiver  
PRBS  
RX  
SOF  
SPI  
Start Of Frame  
Serial Peripheral Interface  
Transmitter  
TX  
UART  
Universal Asynchronous Receiver Transmitter  
30. Glossary  
Modulation index — Defined as the voltage ratio (Vmax Vmin) / (Vmax + Vmin).  
Load modulation index — Defined as the voltage ratio for the card  
(Vmax Vmin) / (Vmax + Vmin) measured at the card’s coil.  
Initiator — Generates RF field at 13.56 MHz and starts the NFCIP-1 communication.  
Target — Responds to command either using load modulation scheme (RF field  
generated by Initiator) or using modulation of self generated RF field (no RF field  
generated by initiator).  
31. References  
[1] Application note — NFC Transmission Module Antenna and RF Design Guide  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
126 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
32. Revision history  
Table 177. Revision history  
Document ID  
PN512 v.4.4  
Modifications:  
Release date  
20130730  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PN512 v.4.3  
Value added in Table 166 “Limiting values”  
Change of descriptive title  
PN512 v.4.3  
20130507  
Product data sheet  
-
PN512 v.4.2  
Modifications:  
New type PN5120A0ET/C2 added  
Table 72 “Description of MifNFCReg bits”: description of TxWait updated  
Table 153 “Register and bit settings controlling the signal on pin TX1” and Table 153 “Register  
and bit settings controlling the signal on pin TX1”: updated  
Table 166 “Limiting values”: VESD values added  
PN512 v.4.2  
20120828  
Product data sheet  
-
PN512 v.4.1  
Modifications:  
Table 123 “AutoTestReg register (address 36h); reset value: 40h, 01000000b”: description of  
bits 4 and 5 corrected  
PN512 v.4.1  
Modifications:  
PN512 v.4.0  
Modifications:  
PN512 v.3.9  
Modifications:  
20120821  
Product data sheet  
-
PN512 v.4.0  
PN512 v.3.9  
PN512 v.3.8  
Table 124 “Description of bits”: description of bits 4 and 5 corrected  
20120712  
Section 33.4 “Licenses”: updated  
20120201 Product data sheet  
Product data sheet  
-
-
Adding information on the different version in General description.  
Adding Section 21 “Errata sheet” on page 109 for explanation of differences between 1.0 and  
2.0.  
Adding ordering information for version 1.0 and industrial version in Table 2 “Ordering  
information” on page 5  
Adding the limitations and characteristics for the industrial version, see Table 1 “Quick  
reference data” on page 4, Table 166 “Limiting values” on page 111, Table 1 “Quick reference  
data” on page 4  
Referring to the Section 21 “Errata sheet” on page 109 within the following sections: Section  
9.2.2.4 “RxModeReg” on page 39, Section 9.2.2.10 “DemodReg” on page 45, Section 9.2.2.15  
“TypeBReg” on page 50, Section 9.2.3.10 “TMode Register, TPrescaler Register” on page 57,  
Section 9.2.4.7 “AutoTestReg” on page 64, Section 9.2.4.8 “VersionReg” on page 64, Section  
9.1.1 “Register bit behavior” on page 23, Section 15 “Timer unit” on page 96, Section 20  
Testsignals” on page 107;  
Update of command ‘Mem’ to ‘Configure’ and ‘RFU’ to ‘Autocoll’ in Table 158 “Command  
overview” on page 101.  
Change of ‘Mem’ to ‘Configure’ in ‘Mem’ in Section 19.3.1.2 “Config command” on page 101  
Adding Autocoll in Section 19.3.1.9 “AutoColl” on page 103  
PN512 v.3.8  
Modifications:  
111310  
20111025  
Product data sheet  
-
PN512 v.3.7  
Table 168 “Characteristics”: unit of Pxtal corrected  
June 2005  
Objective data sheet  
-
Modifications:  
Initial version  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
127 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
33. Legal information  
33.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
33.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
33.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
128 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
33.4 Licenses  
Purchase of NXP ICs with ISO/IEC 14443 type B functionality  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
This NXP Semiconductors IC is ISO/IEC 14443 Type B  
software enabled and is licensed under Innovatron’s  
Contactless Card patents license for ISO/IEC 14443 B.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
The license includes the right to use the IC in systems  
and/or end-user equipment.  
RATP/Innovatron  
Technology  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Purchase of NXP ICs with NFC technology  
Purchase of an NXP Semiconductors IC that complies with one of the Near  
Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481  
does not convey an implied license under any patent right infringed by  
implementation of any of those standards.  
33.5 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
MIFARE — is a trademark of NXP B.V.  
34. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
129 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
35. Tables  
Table 1. Quick reference data . . . . . . . . . . . . . . . . . . . . .4  
Table 2. Ordering information . . . . . . . . . . . . . . . . . . . . .5  
Table 3. Pin description HVQFN32 . . . . . . . . . . . . . . . .10  
Table 4. Pin description HVQFN40 . . . . . . . . . . . . . . . .11  
Table 5. Pin description TFBGA64. . . . . . . . . . . . . . . . .12  
Table 6. Communication overview for  
Table 41. ControlReg register (address 0Ch); reset value:  
00h, 00000000b. . . . . . . . . . . . . . . . . . . . . . . . 33  
Table 42. Description of ControlReg bits . . . . . . . . . . . . 33  
Table 43. BitFramingReg register (address 0Dh); reset  
value: 00h, 00000000b . . . . . . . . . . . . . . . . . . 34  
Table 44. Description of BitFramingReg bits . . . . . . . . . . 34  
Table 45. CollReg register (address 0Eh); reset value: XXh,  
101XXXXXb. . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
ISO/IEC 14443 A/MIFARE reader/writer . . . . .14  
Table 7. Communication overview for FeliCa  
reader/writer . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Table 46. Description of CollReg bits. . . . . . . . . . . . . . . . 35  
Table 47. PageReg register (address 10h); reset value: 00h,  
00000000b. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Table 48. Description of PageReg bits . . . . . . . . . . . . . . 36  
Table 49. ModeReg register (address 11h); reset value:  
3Bh, 00111011b . . . . . . . . . . . . . . . . . . . . . . . . 37  
Table 8. FeliCa framing and coding . . . . . . . . . . . . . . . .16  
Table 9. Start value for the CRC Polynomial: (00h), (00h)16  
Table 10. Communication overview for Active  
communication mode . . . . . . . . . . . . . . . . . . . .18  
Table 11. Communication overview for Passive  
communication mode . . . . . . . . . . . . . . . . . . . .19  
Table 50. Description of ModeReg bits . . . . . . . . . . . . . . 37  
Table 51. TxModeReg register (address 12h); reset value:  
00h, 00000000b. . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 52. Description of TxModeReg bits . . . . . . . . . . . . 38  
Table 53. RxModeReg register (address 13h); reset value:  
00h, 00000000b. . . . . . . . . . . . . . . . . . . . . . . . 39  
Table 54. Description of RxModeReg bits . . . . . . . . . . . . 39  
Table 55. TxControlReg register (address 14h); reset value:  
80h, 10000000b. . . . . . . . . . . . . . . . . . . . . . . . 40  
Table 56. Description of TxControlReg bits . . . . . . . . . . . 40  
Table 57. TxAutoReg register (address 15h); reset value:  
00h, 00000000b. . . . . . . . . . . . . . . . . . . . . . . . 41  
Table 58. Description of TxAutoReg bits . . . . . . . . . . . . . 41  
Table 59. TxSelReg register (address 16h); reset value:  
10h, 00010000b. . . . . . . . . . . . . . . . . . . . . . . . 42  
Table 60. Description of TxSelReg bits . . . . . . . . . . . . . . 42  
Table 61. RxSelReg register (address 17h); reset value:  
84h, 10000100b. . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 62. Description of RxSelReg bits . . . . . . . . . . . . . . 44  
Table 63. RxThresholdReg register (address 18h); reset  
value: 84h, 10000100b . . . . . . . . . . . . . . . . . . 44  
Table 64. Description of RxThresholdReg bits . . . . . . . . 44  
Table 65. DemodReg register (address 19h); reset value:  
4Dh, 01001101b. . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 66. Description of DemodReg bits . . . . . . . . . . . . . 45  
Table 67. FelNFC1Reg register (address 1Ah); reset value:  
00h, 00000000b. . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 68. Description of FelNFC1Reg bits . . . . . . . . . . . 46  
Table 69. FelNFC2Reg register (address1Bh); reset value:  
00h, 00000000b. . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 70. Description of FelNFC2Reg bits . . . . . . . . . . . 47  
Table 71. MifNFCReg register (address 1Ch); reset value:  
62h, 01100010b . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 72. Description of MifNFCReg bits. . . . . . . . . . . . . 48  
Table 73. ManualRCVReg register (address 1Dh); reset  
value: 00h, 00000000b . . . . . . . . . . . . . . . . . . 49  
Table 74. Description of ManualRCVReg bits . . . . . . . . . 49  
Table 75. TypeBReg register (address 1Eh); reset value:  
00h, 00000000b. . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 76. Description of TypeBReg bits. . . . . . . . . . . . . . 50  
Table 77. SerialSpeedReg register (address 1Fh); reset  
value: EBh, 11101011b . . . . . . . . . . . . . . . . . . 51  
Table 12. Framing and coding overview. . . . . . . . . . . . . .20  
Table 13. MIFARE Card operation mode . . . . . . . . . . . . .20  
Table 14. FeliCa Card operation mode . . . . . . . . . . . . . .21  
Table 15. PN512 registers overview . . . . . . . . . . . . . . . .21  
Table 16. Behavior of register bits and its designation. . .23  
Table 17. PageReg register (address 00h); reset value: 00h,  
0000000b . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Table 18. Description of PageReg bits . . . . . . . . . . . . . . .24  
Table 19. CommandReg register (address 01h); reset  
value: 20h, 00100000b. . . . . . . . . . . . . . . . . . .24  
Table 20. Description of CommandReg bits. . . . . . . . . . .24  
Table 21. CommIEnReg register (address 02h); reset value:  
80h, 10000000b . . . . . . . . . . . . . . . . . . . . . . . .25  
Table 22. Description of CommIEnReg bits . . . . . . . . . . .25  
Table 23. DivIEnReg register (address 03h); reset value:  
00h, 00000000b . . . . . . . . . . . . . . . . . . . . . . . .26  
Table 24. Description of DivIEnReg bits. . . . . . . . . . . . . .26  
Table 25. CommIRqReg register (address 04h); reset value:  
14h, 00010100b . . . . . . . . . . . . . . . . . . . . . . . .27  
Table 26. Description of CommIRqReg bits . . . . . . . . . . .27  
Table 27. DivIRqReg register (address 05h); reset value:  
XXh, 000X00XXb . . . . . . . . . . . . . . . . . . . . . . .28  
Table 28. Description of DivIRqReg bits . . . . . . . . . . . . .28  
Table 29. ErrorReg register (address 06h); reset value: 00h,  
00000000b . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Table 30. Description of ErrorReg bits . . . . . . . . . . . . . . .29  
Table 31. Status1Reg register (address 07h); reset value:  
XXh, X100X01Xb . . . . . . . . . . . . . . . . . . . . . . .30  
Table 32. Description of Status1Reg bits . . . . . . . . . . . . .30  
Table 33. Status2Reg register (address 08h); reset value:  
00h, 00000000b . . . . . . . . . . . . . . . . . . . . . . . .31  
Table 34. Description of Status2Reg bits . . . . . . . . . . . . .31  
Table 35. FIFODataReg register (address 09h); reset value:  
XXh, XXXXXXXXb . . . . . . . . . . . . . . . . . . . . . .32  
Table 36. Description of FIFODataReg bits . . . . . . . . . . .32  
Table 37. FIFOLevelReg register (address 0Ah); reset  
value: 00h, 00000000b. . . . . . . . . . . . . . . . . . .32  
Table 38. Description of FIFOLevelReg bits. . . . . . . . . . .32  
Table 39. WaterLevelReg register (address 0Bh); reset  
value: 08h, 00001000b. . . . . . . . . . . . . . . . . . .33  
Table 40. Description of WaterLevelReg bits . . . . . . . . . .33  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
130 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 78. Description of SerialSpeedReg bits . . . . . . . . .51  
Table 79. PageReg register (address 20h); reset value: 00h,  
00000000b . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Table 80. Description of PageReg bits . . . . . . . . . . . . . . .52  
Table 81. CRCResultReg register (address 21h); reset  
value: FFh, 11111111b. . . . . . . . . . . . . . . . . . . .52  
Table 82. Description of CRCResultReg bits . . . . . . . . . .52  
Table 83. CRCResultReg register (address 22h); reset  
value: FFh, 11111111b. . . . . . . . . . . . . . . . . . . .52  
Table 84. Description of CRCResultReg bits . . . . . . . . . .52  
Table 85. GsNOffReg register (address 23h); reset value:  
88h, 10001000b . . . . . . . . . . . . . . . . . . . . . . . .53  
Table 86. Description of GsNOffReg bits . . . . . . . . . . . . .53  
Table 87. ModWidthReg register (address 24h); reset value:  
26h, 00100110b . . . . . . . . . . . . . . . . . . . . . . . .54  
Table 88. Description of ModWidthReg bits . . . . . . . . . . .54  
Table 89. TxBitPhaseReg register (address 25h); reset  
value: 87h, 10000111b . . . . . . . . . . . . . . . . . . .54  
Table 90. Description of TxBitPhaseReg bits . . . . . . . . . .54  
Table 91. RFCfgReg register (address 26h); reset value:  
48h, 01001000b . . . . . . . . . . . . . . . . . . . . . . . .55  
Table 92. Description of RFCfgReg bits . . . . . . . . . . . . .55  
Table 93. GsNOnReg register (address 27h); reset value:  
88h, 10001000b . . . . . . . . . . . . . . . . . . . . . . . .56  
Table 94. Description of GsNOnReg bits . . . . . . . . . . . . .56  
Table 95. CWGsPReg register (address 28h); reset value:  
20h, 00100000b . . . . . . . . . . . . . . . . . . . . . . . .56  
Table 96. Description of CWGsPReg bits. . . . . . . . . . . . .56  
Table 97. ModGsPReg register (address 29h); reset value:  
20h, 00100000b . . . . . . . . . . . . . . . . . . . . . . . .57  
Table 98. Description of ModGsPReg bits . . . . . . . . . . . .57  
Table 99. TModeReg register (address 2Ah); reset value:  
00h, 00000000b . . . . . . . . . . . . . . . . . . . . . . . .57  
Table 100. Description of TModeReg bits . . . . . . . . . . . . .57  
Table 101. TPrescalerReg register (address 2Bh); reset  
value: 00h, 00000000b. . . . . . . . . . . . . . . . . . .58  
Table 102. Description of TPrescalerReg bits . . . . . . . . . .58  
Table 103. TReloadReg (Higher bits) register (address 2Ch);  
reset value: 00h, 00000000b . . . . . . . . . . . . . .59  
Table 104. Description of the higher TReloadReg bits . . .59  
Table 105. TReloadReg (Lower bits) register (address 2Dh);  
reset value: 00h, 00000000b . . . . . . . . . . . . . .59  
Table 106. Description of lower TReloadReg bits . . . . . . .59  
Table 107. TCounterValReg (Higher bits) register (address  
2Eh); reset value: XXh, XXXXXXXXb . . . . . . .60  
Table 108. Description of the higher TCounterValReg bits 60  
Table 109. TCounterValReg (Lower bits) register (address  
2Fh); reset value: XXh, XXXXXXXXb. . . . . . . .60  
Table 117. TestPinEnReg register (address 33h); reset  
value: 80h, 10000000b . . . . . . . . . . . . . . . . . . 63  
Table 118. Description of TestPinEnReg bits . . . . . . . . . . 63  
Table 119. TestPinValueReg register (address 34h); reset  
value: 00h, 00000000b . . . . . . . . . . . . . . . . . . 63  
Table 120. Description of TestPinValueReg bits . . . . . . . . 63  
Table 121. TestBusReg register (address 35h); reset value:  
XXh, XXXXXXXXb. . . . . . . . . . . . . . . . . . . . . . 64  
Table 122. Description of TestBusReg bits . . . . . . . . . . . . 64  
Table 123. AutoTestReg register (address 36h); reset value:  
40h, 01000000b. . . . . . . . . . . . . . . . . . . . . . . . 64  
Table 124. Description of bits . . . . . . . . . . . . . . . . . . . . . . 64  
Table 125. VersionReg register (address 37h); reset value:  
XXh, XXXXXXXXb. . . . . . . . . . . . . . . . . . . . . . 65  
Table 126. Description of VersionReg bits . . . . . . . . . . . . 65  
Table 127. AnalogTestReg register (address 38h); reset  
value: 00h, 00000000b . . . . . . . . . . . . . . . . . . 66  
Table 128. Description of AnalogTestReg bits . . . . . . . . . 66  
Table 129. TestDAC1Reg register (address 39h); reset  
value: XXh, 00XXXXXXb . . . . . . . . . . . . . . . . . 67  
Table 130. Description of TestDAC1Reg bits . . . . . . . . . . 67  
Table 131. TestDAC2Reg register (address 3Ah); reset  
value: XXh, 00XXXXXXb . . . . . . . . . . . . . . . . . 67  
Table 132. Description ofTestDAC2Reg bits. . . . . . . . . . . 67  
Table 133. TestADCReg register (address 3Bh); reset value:  
XXh, XXXXXXXXb. . . . . . . . . . . . . . . . . . . . . . 67  
Table 134. Description of TestADCReg bits . . . . . . . . . . . 67  
Table 135. RFTReg register (address 3Ch); reset value:  
FFh, 11111111b . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 136. Description of RFTReg bits . . . . . . . . . . . . . . . 68  
Table 137. RFTReg register (address 3Dh, 3Fh); reset value:  
00h, 00000000b. . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 138. Description of RFTReg bits . . . . . . . . . . . . . . . 68  
Table 139. RFTReg register (address 3Eh); reset value:  
03h, 00000011b . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 140. Description of RFTReg bits . . . . . . . . . . . . . . . 68  
Table 141. Connection protocol for detecting different  
interface types . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 142. Connection scheme for detecting the different  
interface types . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Table 143. MOSI and MISO byte order . . . . . . . . . . . . . . 70  
Table 144. MOSI and MISO byte order . . . . . . . . . . . . . . 71  
Table 145. Address byte 0 register; address MOSI . . . . . 71  
Table 146. BR_T0 and BR_T1 settings . . . . . . . . . . . . . . 72  
Table 147. Selectable UART transfer speeds . . . . . . . . . 72  
Table 148. UART framing . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Table 149. Read data byte order . . . . . . . . . . . . . . . . . . . 73  
Table 150. Write data byte order . . . . . . . . . . . . . . . . . . . 73  
Table 151. Address byte 0 register; address MOSI . . . . . 75  
Table 152. Supported interface types . . . . . . . . . . . . . . . . 82  
Table 153. Register and bit settings controlling the signal on  
pin TX1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Table 110. Description of lower TCounterValReg bits . . . .60  
Table 111. PageReg register (address 30h); reset value: 00h,  
00000000b . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Table 112. Description of PageReg bits. . . . . . . . . . . . . . .61  
Table 113. TestSel1Reg register (address 31h); reset value:  
00h, 00000000b . . . . . . . . . . . . . . . . . . . . . . . .62  
Table 154. Register and bit settings controlling the signal on  
pin TX2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Table 114. Description of TestSel1Reg bits . . . . . . . . . . . .62  
Table 115. TestSel2Reg register (address 32h); reset value:  
00h, 00000000b . . . . . . . . . . . . . . . . . . . . . . . .62  
Table 155. Setting of the bits RFlevel in register RFCfgReg  
(RFLevel amplifier deactivated) . . . . . . . . . . . . 86  
Table 156. CRC coprocessor parameters . . . . . . . . . . . . 93  
Table 157. Interrupt sources . . . . . . . . . . . . . . . . . . . . . . 95  
Table 116. Description of TestSel2Reg bits . . . . . . . . . . . .62  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
131 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
Table 158. Command overview . . . . . . . . . . . . . . . . . . .101  
Table 159. Testsignal routing (TestSel2Reg = 07h). . . . .107  
Table 160. Description of Testsignals . . . . . . . . . . . . . . .107  
Table 161. Testsignal routing (TestSel2Reg = 0Dh) . . . .108  
Table 162. Description of Testsignals . . . . . . . . . . . . . . .108  
Table 163. Testsignal routing (TestSel2Reg = 19h). . . . .108  
Table 164. Description of Testsignals . . . . . . . . . . . . . . .108  
Table 165. Testsignals description. . . . . . . . . . . . . . . . . .108  
Table 166. Limiting values . . . . . . . . . . . . . . . . . . . . . . . 111  
Table 167. Operating conditions . . . . . . . . . . . . . . . . . . . 111  
Table 168. Thermal characteristics . . . . . . . . . . . . . . . . . 112  
Table 169. Characteristics . . . . . . . . . . . . . . . . . . . . . . .112  
Table 170. SPI timing characteristics . . . . . . . . . . . . . . . 116  
Table 171. I2C-bus timing in Fast mode . . . . . . . . . . . . .117  
Table 172. AC symbols . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Table 173. Timing specification for separated Read/Write  
strobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119  
Table 174. Timing specification for common Read/Write  
strobe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Table 175. Package information . . . . . . . . . . . . . . . . . . .122  
Table 176. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . .126  
Table 177. Revision history . . . . . . . . . . . . . . . . . . . . . . .127  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
132 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
36. Figures  
Fig 1. Simplified block diagram of the PN512 . . . . . . . . .6  
Fig 2. Detailed block diagram of the PN512 . . . . . . . . . .7  
Fig 3. Pinning configuration HVQFN32 (SOT617-1) . . . .8  
Fig 4. Pinning configuration HVQFN40 (SOT618-1) . . . .8  
Fig 5. Pin configuration TFBGA64 (SOT1336-1) . . . . . . .9  
Fig 6. PN512 Read/Write mode. . . . . . . . . . . . . . . . . . .14  
Fig 7. ISO/IEC 14443 A/MIFARE Read/Write mode  
communication diagram. . . . . . . . . . . . . . . . . . . .14  
Fig 8. Data coding and framing according to  
ISO/IEC 14443 A . . . . . . . . . . . . . . . . . . . . . . . . .15  
Fig 9. FeliCa reader/writer communication diagram . . .16  
Fig 10. NFCIP-1 mode. . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Fig 11. Active communication mode . . . . . . . . . . . . . . . .18  
Fig 12. Passive communication mode. . . . . . . . . . . . . . .19  
Fig 13. SPI connection to host. . . . . . . . . . . . . . . . . . . . .70  
Fig 14. UART connection to microcontrollers . . . . . . . . .71  
Fig 15. UART read data timing diagram . . . . . . . . . . . . .73  
Fig 16. UART write data timing diagram . . . . . . . . . . . . .74  
Fig 17. I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . . . .75  
Fig 18. Bit transfer on the I2C-bus . . . . . . . . . . . . . . . . . .76  
Fig 19. START and STOP conditions . . . . . . . . . . . . . . .76  
Fig 20. Acknowledge on the I2C-bus . . . . . . . . . . . . . . . .77  
Fig 21. Data transfer on the I2C-bus . . . . . . . . . . . . . . . .77  
Fig 22. First byte following the START procedure . . . . . .78  
Fig 23. Register read and write access . . . . . . . . . . . . . .79  
Fig 24. I2C-bus HS mode protocol switch . . . . . . . . . . . .80  
Fig 25. I2C-bus HS mode protocol frame. . . . . . . . . . . . .81  
Fig 26. Connection to host controller with separated  
Read/Write strobes . . . . . . . . . . . . . . . . . . . . . . .83  
Fig 27. Connection to host controller with common  
Read/Write strobes . . . . . . . . . . . . . . . . . . . . . . .83  
Fig 28. Data mode detector . . . . . . . . . . . . . . . . . . . . . . .87  
Fig 29. Serial data switch for TX1 and TX2 . . . . . . . . . . .88  
Fig 30. Communication flows using the S2C interface. . .89  
Fig 31. Signal shape for SIGOUT in FeliCa card SAM  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Fig 32. Signal shape for SIGIN in SAM mode . . . . . . . . .90  
Fig 33. Signal shape for SIGOUT in MIFARE Card SAM  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Fig 34. Signal shape for SIGIN in MIFARE Card SAM  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Fig 35. Quartz crystal connection . . . . . . . . . . . . . . . . . .99  
Fig 36. Oscillator start-up time. . . . . . . . . . . . . . . . . . . .100  
Fig 37. Autocoll Command . . . . . . . . . . . . . . . . . . . . . .104  
Fig 38. Typical circuit diagram . . . . . . . . . . . . . . . . . . . .110  
Fig 39. Pin RX input voltage range . . . . . . . . . . . . . . . .116  
Fig 40. Timing diagram for SPI . . . . . . . . . . . . . . . . . . .118  
Fig 41. Timing for Fast and Standard mode devices  
on the I2C-bus . . . . . . . . . . . . . . . . . . . . . . . . . .118  
Fig 42. Timing diagram for separated Read/Write  
strobe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120  
Fig 43. Timing diagram for common Read/Write strobe 121  
Fig 44. Package outline package version (HVQFN32) .123  
Fig 45. Package outline package version (HVQFN40) .124  
Fig 46. Package outline package version (TFBGA64). .125  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
133 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
37. Contents  
1
1.1  
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
9.2.2.4  
9.2.2.5  
9.2.2.6  
9.2.2.7  
9.2.2.8  
9.2.2.9  
RxModeReg. . . . . . . . . . . . . . . . . . . . . . . . . . 38  
TxControlReg. . . . . . . . . . . . . . . . . . . . . . . . . 39  
TxAutoReg. . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
TxSelReg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
RxSelReg. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
RxThresholdReg . . . . . . . . . . . . . . . . . . . . . . 43  
Different available versions. . . . . . . . . . . . . . . . 1  
General description. . . . . . . . . . . . . . . . . . . . . . 1  
Features and benefits . . . . . . . . . . . . . . . . . . . . 3  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 4  
Ordering information. . . . . . . . . . . . . . . . . . . . . 5  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
4
5
9.2.2.10 DemodReg. . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
9.2.2.11 FelNFC1Reg . . . . . . . . . . . . . . . . . . . . . . . . . 45  
9.2.2.12 FelNFC2Reg . . . . . . . . . . . . . . . . . . . . . . . . . 46  
9.2.2.13 MifNFCReg . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
9.2.2.14 ManualRCVReg. . . . . . . . . . . . . . . . . . . . . . . 48  
9.2.2.15 TypeBReg . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
9.2.2.16 SerialSpeedReg. . . . . . . . . . . . . . . . . . . . . . . 49  
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 8  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 10  
8
8.1  
8.2  
8.3  
8.3.1  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
Functional description . . . . . . . . . . . . . . . . . . 13  
ISO/IEC 14443 A/MIFARE functionality . . . . . 13  
ISO/IEC 14443 B functionality . . . . . . . . . . . . 14  
FeliCa reader/writer functionality . . . . . . . . . . 15  
FeliCa framing and coding . . . . . . . . . . . . . . . 15  
NFCIP-1 mode . . . . . . . . . . . . . . . . . . . . . . . . 16  
Active communication mode . . . . . . . . . . . . . 17  
Passive communication mode . . . . . . . . . . . . 18  
NFCIP-1 framing and coding . . . . . . . . . . . . . 19  
NFCIP-1 protocol support. . . . . . . . . . . . . . . . 19  
MIFARE Card operation mode . . . . . . . . . . . . 19  
FeliCa Card operation mode . . . . . . . . . . . . . 20  
9.2.3  
Page 2: Configuration . . . . . . . . . . . . . . . . . . 51  
PageReg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
CRCResultReg . . . . . . . . . . . . . . . . . . . . . . . 51  
GsNOffReg . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
ModWidthReg . . . . . . . . . . . . . . . . . . . . . . . . 53  
TxBitPhaseReg . . . . . . . . . . . . . . . . . . . . . . . 53  
RFCfgReg . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
GsNOnReg . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
CWGsPReg . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ModGsPReg . . . . . . . . . . . . . . . . . . . . . . . . . 56  
9.2.3.1  
9.2.3.2  
9.2.3.3  
9.2.3.4  
9.2.3.5  
9.2.3.6  
9.2.3.7  
9.2.3.8  
9.2.3.9  
9.2.3.10 TMode Register, TPrescaler Register . . . . . . 56  
9.2.3.11 TReloadReg. . . . . . . . . . . . . . . . . . . . . . . . . . 58  
9.2.3.12 TCounterValReg . . . . . . . . . . . . . . . . . . . . . . 59  
9
9.1  
9.1.1  
9.2  
PN512 register SET . . . . . . . . . . . . . . . . . . . . . 20  
PN512 registers overview. . . . . . . . . . . . . . . . 20  
Register bit behavior. . . . . . . . . . . . . . . . . . . . 22  
Register description . . . . . . . . . . . . . . . . . . . . 23  
Page 0: Command and status . . . . . . . . . . . . 23  
PageReg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CommandReg . . . . . . . . . . . . . . . . . . . . . . . . 23  
CommIEnReg. . . . . . . . . . . . . . . . . . . . . . . . . 24  
DivIEnReg . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
CommIRqReg. . . . . . . . . . . . . . . . . . . . . . . . . 26  
DivIRqReg . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
ErrorReg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Status1Reg. . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Status2Reg. . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
9.2.4  
Page 3: Test. . . . . . . . . . . . . . . . . . . . . . . . . . 59  
PageReg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
TestSel1Reg. . . . . . . . . . . . . . . . . . . . . . . . . . 61  
TestSel2Reg. . . . . . . . . . . . . . . . . . . . . . . . . . 61  
TestPinEnReg . . . . . . . . . . . . . . . . . . . . . . . . 62  
TestPinValueReg . . . . . . . . . . . . . . . . . . . . . . 62  
TestBusReg . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
AutoTestReg . . . . . . . . . . . . . . . . . . . . . . . . . 63  
VersionReg . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
AnalogTestReg. . . . . . . . . . . . . . . . . . . . . . . . 65  
9.2.4.1  
9.2.4.2  
9.2.4.3  
9.2.4.4  
9.2.4.5  
9.2.4.6  
9.2.4.7  
9.2.4.8  
9.2.4.9  
9.2.1  
9.2.1.1  
9.2.1.2  
9.2.1.3  
9.2.1.4  
9.2.1.5  
9.2.1.6  
9.2.1.7  
9.2.1.8  
9.2.1.9  
9.2.4.10 TestDAC1Reg . . . . . . . . . . . . . . . . . . . . . . . . 66  
9.2.4.11 TestDAC2Reg . . . . . . . . . . . . . . . . . . . . . . . . 66  
9.2.4.12 TestADCReg . . . . . . . . . . . . . . . . . . . . . . . . . 66  
9.2.4.13 RFTReg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
9.2.1.10 FIFODataReg . . . . . . . . . . . . . . . . . . . . . . . . . 31  
9.2.1.11 FIFOLevelReg . . . . . . . . . . . . . . . . . . . . . . . . 31  
9.2.1.12 WaterLevelReg. . . . . . . . . . . . . . . . . . . . . . . . 32  
9.2.1.13 ControlReg . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
9.2.1.14 BitFramingReg . . . . . . . . . . . . . . . . . . . . . . . . 33  
9.2.1.15 CollReg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10  
10.1  
10.2  
10.2.1  
10.2.2  
10.2.3  
10.3  
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . 67  
Automatic microcontroller interface detection 67  
Serial Peripheral Interface . . . . . . . . . . . . . . . 69  
SPI read data. . . . . . . . . . . . . . . . . . . . . . . . . 69  
SPI write data. . . . . . . . . . . . . . . . . . . . . . . . . 69  
SPI address byte . . . . . . . . . . . . . . . . . . . . . . 70  
UART interface . . . . . . . . . . . . . . . . . . . . . . . 70  
Connection to a host . . . . . . . . . . . . . . . . . . . 70  
9.2.2  
Page 1: Communication . . . . . . . . . . . . . . . . . 35  
PageReg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
ModeReg . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
TxModeReg . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9.2.2.1  
9.2.2.2  
9.2.2.3  
10.3.1  
continued >>  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
134 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
10.3.2  
10.3.3  
10.4  
Selectable UART transfer speeds . . . . . . . . . 70  
18.1  
18.2  
Reset timing requirements . . . . . . . . . . . . . . . 98  
Oscillator start-up time. . . . . . . . . . . . . . . . . . 98  
UART framing. . . . . . . . . . . . . . . . . . . . . . . . . 71  
I2C Bus Interface . . . . . . . . . . . . . . . . . . . . . . 74  
Data validity . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
START and STOP conditions . . . . . . . . . . . . . 75  
Byte format . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 76  
7-Bit addressing . . . . . . . . . . . . . . . . . . . . . . . 77  
Register write access . . . . . . . . . . . . . . . . . . . 77  
Register read access . . . . . . . . . . . . . . . . . . . 78  
High-speed mode . . . . . . . . . . . . . . . . . . . . . . 79  
High-speed transfer . . . . . . . . . . . . . . . . . . . . 79  
19  
PN512 command set. . . . . . . . . . . . . . . . . . . . 99  
General description . . . . . . . . . . . . . . . . . . . . 99  
General behavior . . . . . . . . . . . . . . . . . . . . . . 99  
PN512 command overview . . . . . . . . . . . . . 100  
PN512 command descriptions. . . . . . . . . . . 100  
10.4.1  
10.4.2  
10.4.3  
10.4.4  
10.4.5  
10.4.6  
10.4.7  
10.4.8  
10.4.9  
19.1  
19.2  
19.3  
19.3.1  
19.3.1.1 Idle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
19.3.1.2 Config command . . . . . . . . . . . . . . . . . . . . . 100  
19.3.1.3 Generate RandomID . . . . . . . . . . . . . . . . . . 101  
19.3.1.4 CalcCRC . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
19.3.1.5 Transmit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
19.3.1.6 NoCmdChange . . . . . . . . . . . . . . . . . . . . . . 101  
19.3.1.7 Receive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
19.3.1.8 Transceive . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
19.3.1.9 AutoColl . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
19.3.1.10 MFAuthent . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
19.3.1.11 SoftReset . . . . . . . . . . . . . . . . . . . . . . . . . . . 105  
10.4.10 Serial data transfer format in HS mode . . . . . 79  
10.4.11 Switching between F/S mode and HS mode . 81  
10.4.12 PN512 at lower speed modes . . . . . . . . . . . . 81  
11  
11.1  
8-bit parallel interface . . . . . . . . . . . . . . . . . . . 81  
Overview of supported host controller  
interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
Separated Read/Write strobe . . . . . . . . . . . . . 82  
Common Read/Write strobe . . . . . . . . . . . . . . 82  
11.2  
11.3  
20  
Testsignals. . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Selftest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Testbus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Testsignals at pin AUX. . . . . . . . . . . . . . . . . 107  
PRBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
20.1  
20.2  
20.3  
20.4  
12  
Analog interface and contactless UART . . . . 83  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
TX driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
RF level detector . . . . . . . . . . . . . . . . . . . . . . 84  
Data mode detector . . . . . . . . . . . . . . . . . . . . 85  
Serial data switch . . . . . . . . . . . . . . . . . . . . . . 87  
S2C interface support . . . . . . . . . . . . . . . . . . . 87  
Signal shape for Felica S2C interface support 89  
Waveform shape for ISO/IEC 14443A and  
12.1  
12.2  
12.3  
12.4  
12.5  
12.6  
12.6.1  
12.6.2  
21  
22  
23  
24  
25  
Errata sheet . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Application design-in information. . . . . . . . 109  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 110  
Recommended operating conditions . . . . . . 110  
Thermal characteristics . . . . . . . . . . . . . . . . . 111  
MIFARE S2C support . . . . . . . . . . . . . . . . . . . 90  
Hardware support for FeliCa and NFC polling 91  
Polling sequence functionality for initiator. . . . 91  
Polling sequence functionality for target. . . . . 91  
Additional hardware support for FeliCa and  
26  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 111  
Timing characteristics . . . . . . . . . . . . . . . . . . 115  
8-bit parallel interface timing . . . . . . . . . . . . . 118  
AC symbols . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
AC operating specification . . . . . . . . . . . . . . . 118  
12.7  
26.1  
26.2  
26.2.1  
26.2.2  
12.7.1  
12.7.2  
12.7.3  
NFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
CRC coprocessor . . . . . . . . . . . . . . . . . . . . . . 92  
26.2.2.1 Bus timing for separated Read/Write strobe . 118  
26.2.2.2 Bus timing for common Read/Write strobe . . 119  
12.7.4  
13  
FIFO buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Accessing the FIFO buffer . . . . . . . . . . . . . . . 93  
Controlling the FIFO buffer . . . . . . . . . . . . . . . 93  
FIFO buffer status information . . . . . . . . . . . . 93  
27  
28  
29  
30  
31  
32  
Package information. . . . . . . . . . . . . . . . . . . 121  
Package outline. . . . . . . . . . . . . . . . . . . . . . . 122  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . 125  
Glossary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Revision history . . . . . . . . . . . . . . . . . . . . . . 126  
13.1  
13.2  
13.3  
14  
14.1  
15  
Interrupt request system. . . . . . . . . . . . . . . . . 94  
Interrupt sources overview . . . . . . . . . . . . . . . 94  
Timer unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
33  
Legal information . . . . . . . . . . . . . . . . . . . . . 127  
Data sheet status . . . . . . . . . . . . . . . . . . . . . 127  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Licenses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . 128  
16  
Power reduction modes . . . . . . . . . . . . . . . . . 97  
Hard power-down . . . . . . . . . . . . . . . . . . . . . . 97  
Soft power-down mode. . . . . . . . . . . . . . . . . . 97  
Transmitter power-down mode. . . . . . . . . . . . 97  
33.1  
33.2  
33.3  
33.4  
33.5  
16.1  
16.2  
16.3  
17  
18  
Oscillator circuitry. . . . . . . . . . . . . . . . . . . . . . 98  
Reset and oscillator start-up time . . . . . . . . . 98  
continued >>  
PN512  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.4 — 30 July 2013  
111344  
135 of 136  
PN512  
NXP Semiconductors  
Full NFC Forum Compliant Solution  
34  
35  
36  
37  
Contact information. . . . . . . . . . . . . . . . . . . . 128  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2013.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 30 July 2013  
111344  

相关型号:

PN5124

Wide Band Low Power Amplifier, 20MHz Min, 200MHz Max, SM-11, 4 PIN
APITECH

PN5125

Narrow Band Medium Power Amplifier, 10MHz Min, 100MHz Max, SM-11, 4 PIN
APITECH

PN5127

Small Signal Transistors
CENTRAL

PN5127

Small Signal Bipolar Transistor, 0.1A I(C), 1-Element, NPN, Silicon, TO-92, PLASTIC, TO-92, 3 PIN
CDIL

PN5127

PN5127
TI

PN5127-18F

Small Signal Bipolar Transistor, 12V V(BR)CEO, 1-Element, NPN, Silicon, TO-92, TO-92-18F, 3 PIN
CENTRAL

PN5127-18FLEADFREE

Small Signal Bipolar Transistor, 12V V(BR)CEO, 1-Element, NPN, Silicon, TO-92, TO-92-18F, 3 PIN
CENTRAL

PN5127-18RLEADFREE

Small Signal Bipolar Transistor, 12V V(BR)CEO, 1-Element, NPN, Silicon, TO-92, TO-92-18R, 3 PIN
CENTRAL

PN5127-5F

Small Signal Bipolar Transistor, 12V V(BR)CEO, 1-Element, NPN, Silicon, TO-92, TO-92-5F, 3 PIN
CENTRAL

PN5127-5T

Small Signal Bipolar Transistor, 12V V(BR)CEO, 1-Element, NPN, Silicon, TO-92, TO-92-5T, 3 PIN
CENTRAL

PN5127APMLEADFREE

Small Signal Bipolar Transistor, 12V V(BR)CEO, 1-Element, NPN, Silicon, TO-92,
CENTRAL

PN5127APP

Small Signal Bipolar Transistor, 12V V(BR)CEO, 1-Element, NPN, Silicon, TO-92,
CENTRAL