PN5180A0XX [NXP]

High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes;
PN5180A0XX
型号: PN5180A0XX
厂家: NXP    NXP
描述:

High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes

文件: 总160页 (文件大小:1234K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting  
all NFC Forum modes  
Rev. 3.8 — 4 May 2021  
Product data sheet  
436538  
COMPANY PUBLIC  
1 Introduction  
This document describes the functionality and electrical specification of the high-power  
NFC IC PN5180A0HN/C3, PN5180A0ET/C3 with firmware versions equal or higher than  
FW3.A and PN5180A0HN/C4, PN5180A0ET/C4 with firmware versions equal or higher  
than FW4.1.  
The package description of the PN5180A0ET/C3 and PN5180A0ET/C4 is described in  
an addendum to this document.  
Additional documents supporting a design-in of the PN5180 are available from NXP, this  
additional design-in information is not part of this document.  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
2 General description  
As a highly integrated high performance full NFC Forum-compliant frontend IC for  
contactless communication at 13.56 MHz, this frontend IC utilizes an outstanding  
modulation and demodulation concept completely integrated for different kinds of  
contactless communication methods and protocols.  
The PN5180 ensures maximum interoperability for next generation of NFC enabled  
mobile phones. The PN5180 is optimized for point of sales terminal applications and  
implements a high-power NFC frontend functionality which allows to achieve EMV  
compliance on RF level without additional external active components.  
The PN5180 frontend IC supports the following RF operating modes:  
Reader/Writer mode supporting ISO/IEC 14443 type A up to 848 kBit/s  
Reader/Writer communication mode for MIFARE Classic contactless IC  
Reader/Writer mode supporting ISO/IEC 14443 type B up to 848 kBit/s  
Reader/Writer mode supporting JIS X 6319-4 (comparable with FeliCa scheme)  
Supports reading of all NFC tag types (type 1, type 2, type 3, type 4A and type 4B)  
Reader/Writer mode supporting ISO/IEC 15693  
Reader/Writer mode supporting ISO/IEC 18000-3 Mode 3  
ISO/IEC 18092 (NFC-IP1)  
ISO/IEC 21481 (NFC-IP-2)  
ISO/IEC 14443 type A Card emulation up to 848 kBit/s  
One host interface based on SPI is implemented:  
SPI interface with data rates up to 7 Mbit/s with MOSI, MISO, NSS and SCK signals  
Interrupt request line to inform host controller on events  
EEPROM configurable pull-up resistor on SPI MISO line  
Busy line to indicate to host availability of data for reading  
The PN5180 supports highly innovative and unique features which do not require any  
host controller interaction. These unique features include Dynamic Power Control (DPC),  
Adaptive Waveform Control (AWC), Adaptive Receiver Control (ARC), and fully automatic  
EMD error handling. The independency of real-time host controller interactions makes  
this product the best choice for systems which operate a pre-emptive multitasking OS like  
Linux or Android.  
As new power-saving feature the PN5180 allows using a general-purpose output to  
control an external LDO or DC-DC during Low-Power Card Detection. One general-  
purpose output is used to wake up an LDO or DC-DC from power-saving mode before  
the RF field for an LPCD polling cycle is switched on.  
The PN5180 supports an external silicon system-power-on switch by using the energy  
of the RF field generated by an NFC phone to switch on the system, like it is generated  
during the NFC polling loop. This unique and new Zero-Power-Wake-up feature allows  
designing systems with a power consumption close to zero during standby.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
2 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
3 Features and benefits  
Transmitter current up to 250 mA  
Dynamic Power Control (DPC) for optimized RF performance, even under detuned  
antenna conditions  
Adaptive Waveform Control (AWC) automatically adjusts the transmitter modulation for  
RF compliancy  
Adaptive Receiver Control (ARC) automatically adjusts the receiver parameters for  
always reliable communication  
Includes NXP ISO/IEC14443-A and Innovatron ISO/IEC14443-B intellectual property  
licensing rights  
Full compliancy with all standards relevant to NFC, contactless operation and EMVCo  
3.0  
Active load modulation supports smaller antenna in Card Emulation Mode  
Automatic EMD handling performed without host interaction relaxes the timing  
requirements on the Host Controller  
Low-power card detection (LPCD) minimizes current consumption during polling  
Automatic support of system LDO or system DC-DC power-down mode during LPCD  
Zero-Power-Wake-up  
Small, industry-standard packages  
NFC Cockpit: PC-based support tool for fast configuration of register settings  
Development kit with 32-bit NXP LPC1769 MCU and antenna  
NFC Reader Library with source code ready for EMVCo 3.0 L1 and NFC Forum  
compliance  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
3 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
4 Applications  
Payment  
Physical-access  
eGov  
Industrial  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
4 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
5 Quick reference data  
Table 1.ꢀQuick reference data  
Symbol Parameter  
Conditions  
Min  
2.7  
1.65  
2.7  
2.7  
-
Typ  
3.3  
1.8  
3.3  
5.0  
10  
Max  
5.5  
1.95  
3.6  
5.5  
-
Unit  
V
VDD(VBAT) supply voltage on pin VBAT  
VDD(PVDD) supply voltage on pin PVDD  
-
1.8 V supply  
3.3 V supply  
-
V
V
VDD(TVDD) supply voltage on pin TVDD  
V
Ipd  
power-down current  
VDD(TVDD) = VDD(PVDD)  
=VDD(VDD) 3.0 V; hard  
power-down; pin RESET_N  
set LOW, Tamb = 25 °C  
μA  
Istb  
standby current  
Tamb = 25 °C  
-
-
15  
180  
-
-
μA  
mA  
mA  
°C  
IDD(TVDD)  
supply current on pin TVDD  
-
250  
300  
+85  
limiting value  
-
Tamb  
ambient temperature  
storage temperature  
in still air with exposed  
pins soldered on a 4 layer  
JEDEC PCB  
-30  
+25  
Tstg  
no supply voltage applied  
-55  
+25  
+150  
°C  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
5 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
6 Firmware versions  
Firmware versions covered by this data sheet:  
Version 3.A (obsolete):  
Supports EMVCo2.6 and more ARC Parameters  
By Default the EEPROM LPCD_REFERENCE_VALUE is set to 8  
By Default the EEPROM LPCD Selection is set to AUTO CALIBRATION.  
Bit Field [1:0] 00 - Auto Calibration 01 - Self-Calibration 10 & 11 - RFU.  
ARC Parameters supported: MIN_LEVELP, MINLEVEL, RX_HPCF and RX_GAIN  
Version 3.C:  
Supports EMVCo2.6 and replaces the version 3.A.  
This version allows updating Firmware versions with lower version numbers after  
installing this firmware 3.C  
Version 4.0:  
Supports EMVCo2.6. and EMVCo 3.0 This version is available on the hardware  
PN5180A0HN/C3 and PN5180A0ET/C3.  
This is the firmware version available on the product PN5180A0HN/C3 (HVQFN  
package) and PN5180A0ET/C3 (BGA package). This version is functionally compliant  
to the FW3.A  
This firmware does not allow the installation of any lower firmware version than 4.x. For  
example, installation of FW 3.x is not possible once this firmware is installed.  
Version 4.1:  
Supports EMVCo2.6 and EMVCo3.0. This version is available as firmware and on the  
hardware PN5180A0HN/C4 and PN5180A0ET/C4.  
This is the firmware version available on the product PN5180A0HN/C4 (HVQFN  
package) and PN5180A0ET/C4 (BGA package). This version is functionally compliant  
to the FW4.1  
This firmware does not allow the installation of any lower firmware version than 4.x. For  
example, installation of FW 3.x is not possible on this product version.  
NXP recommends using this firmware version for new designs.  
This firmware release is a software upgrade of existing PN5180 products. All hardware  
versions of the PN5180A0HN can be updated using this firmware version. Once  
installed, it is not possible to install a firmware version lower than 4.0.  
The firmware supports advanced FeliCa EMD handling using a new  
FELICA_EMD_CONTROL register. It is recommended to initialize this register for  
FeliCa reader mode with a value of 00FF0019h.  
The firmware allows circumventing communication issues with legacy Type-B cards  
via EEPROM configuration. It allows enabling/disabling an extra modulation pulse after  
every DPC gear switch from lower to higher gear number (higher to lower power level).  
This extra modulation pulse with the same modulation index as in the normal PCD  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
6 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
to PICC communication can trigger and properly reset the Type B PICC UART and  
improve the communication for some type of cards.”  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
7 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
7 Ordering information  
Table 2.ꢀOrdering information  
Type number  
Package  
Name  
Description  
Version  
PN5180A0HN/C3E  
HVQFN40  
Firmware version 4.0. Plastic thermal enhanced very thin quad  
flat package; no leads;  
SOT618-1  
40 terminals + 1 central ground; body 6 x 6 x 1.0 mm; delivered  
in one tray, bakable, MSL=3. Minimum order quantity = 490 pcs  
PN5180A0HN/C3Y  
HVQFN40  
Firmware version 4.0. Plastic thermal enhanced very thin quad  
flat package; no leads;  
SOT618-1  
40 terminals + 1 central ground; body 6 x 6 x 1.0 mm; delivered  
on reel 13", MSL = 3. Minimum order quantity = 4000 pcs  
PN5180A0ET/C3QL  
PN5180A0ET/C3J  
PN5180A0HN/C4E  
TFBGA64  
TFBGA64  
HVQFN40  
Firmware version 4.0. Plastic thin fine-pitch ball grid array  
package; 64 balls, delivered in one tray, MSL = 1. Minimum  
order quantity = 490 pcs  
SOT1336-1  
SOT1336-1  
SOT618-1  
Firmware version 4.0. Plastic thin fine-pitch ball grid array  
package; 64 balls, delivered on reel 13", MSL = 1. Minimum  
order quantity = 4000 pcs  
Firmware version 4.1. Plastic thermal enhanced very thin quad  
flat package; no leads;  
40 terminals + 1 central ground; body 6 x 6 x 1.0 mm; delivered  
in one tray, bakable, MSL=3. Minimum order quantity = 490 pcs  
PN5180A0HN/C4Y  
HVQFN40  
Firmware version 4.1. Plastic thermal enhanced very thin quad  
flat package; no leads;  
SOT618-1  
40 terminals + 1 central ground; body 6 x 6 x 1.0 mm; delivered  
on reel 13", MSL = 3. Minimum order quantity = 4000 pcs  
PN5180A0ET/C4QL  
PN5180A0ET/C4J  
TFBGA64  
TFBGA64  
Firmware version 4.1. Plastic thin fine-pitch ball grid array  
package; 64 balls, delivered in one tray, MSL = 1. Minimum  
order quantity = 490 pcs  
SOT1336-1  
SOT1336-1  
Firmware version 4.1. Plastic thin fine-pitch ball grid array  
package; 64 balls, delivered on reel 13", MSL = 1. Minimum  
order quantity = 4000 pcs  
The PN5180 is not available with other pre-installed firmware versions than listed above.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
8 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
8 Marking  
Table 3.ꢀMarking code HVQFN40  
Type number  
Marking code  
PN5180A0HN This product is released  
for sale (volume production).  
Line A:  
"PN5180A"  
Line B1:  
Line B2:  
6 characters: Diffusion Batch ID; example: "HHR275"  
Assembly sequence ID; example: ".1 04"  
Line C: Release for sale products does 8 characters: diffusion and assembly location, date  
not show any X or Y, instead position 8 code, product version (indicated by mask version),  
is left blank  
product life cycle status. This line includes the following  
elements at 8 positions:  
1. Diffusion center code  
2. Assembly center code  
3. RHF-2006 indicator  
4. Year code (Y) 1)  
5. Week code (W) 2)  
6. Week code (W) 2)  
7. Mask layout version  
8. (Product life cycle status release for sale): blank  
example: "NSD620C "  
Note that the Firmware of the product PN5180 can be updated. Due to the update  
capability, the marking of the package does not allow identifying the installed version of  
the actual programmed firmware. The firmware version can be retrieved from address  
0x12 in EEPROM.  
8.1 Package marking drawing  
Terminal 1 index area  
A :7  
B1 : 6  
B2 : 6  
C : 8  
0
5
aaa-007965  
Figure 1.ꢀ Marking PN5180 in HVQFN40  
The Marking of the TFBGA version can be found in the data sheet addendum which is  
available through the NXP DocStore.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
9 / 160  
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
9 Block diagram  
CLK1  
CLK2  
AUX1  
AUX2  
SYSTEM  
CLOCK  
DEBUG  
INTERFACE  
PVDD  
VBAT  
1.8 V  
VDD  
VSS  
VOLTAGE  
REGULATOR  
DVDD  
DIGITAL  
PROCESSING  
MOSI  
MISO  
AVDD  
TX1  
SCK  
NSS  
TRANSMITTER  
RECEIVER  
BUSY  
IRQ  
TX2  
TVSS  
ANALOG  
PROCESSING  
RESET_N  
GPO  
RXP  
VMID  
RXN  
aaa-023610  
PVSS DVSS  
AVSS  
Figure 2.ꢀ PN5180 Block diagram  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
10 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
10 Pinning information  
terminal 1  
index area  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
NSS  
AUX2/DWL_REQ  
MOSI  
DVDD  
VDD  
3
AVDD  
VSS  
4
PVSS  
5
MISO  
VBAT  
VDHF  
ANT2  
ANT1  
TVDD  
TX1  
PN5180  
6
PVDD  
7
SCK  
central heatsink  
connect to GND  
8
BUSY  
9
VSS  
10  
RESET_N  
aaa-024663  
Transparent top view  
Figure 3.ꢀ Pin configuration for HVQFN40 (SOT618-1)  
10.1 Pin description  
Table 4.ꢀPin description HVQFN40  
Symbol  
Pin  
1
Type  
I
Description  
NSS  
SPI NSS  
AUX2 /DWL_  
REQ  
2
I/O  
Analog test bus or Download request  
MOSI  
PVSS  
MISO  
PVDD  
SCK  
3
I
SPI MOSI  
4
supply  
Pad ground  
5
O
SPI MISO  
6
supply  
Pad supply voltage  
7
I
SPI Clock  
BUSY  
VSS  
8
O
Busy signal  
9
supply  
Ground  
RESET_N  
n.c.  
10  
11  
12  
13  
I
RESET, Low active  
-
leave unconnected, do not ground  
Supply Connection, all VBAT mandatory to be connected  
Supply Connection, all VBAT mandatory to be connected  
leave unconnected, do not ground / use as 3.3 V LDO output  
Receiver Input  
VBAT  
VBAT  
supply  
supply  
nc / LDO_OUT 14  
O
RXN  
RXP  
VMID  
TX2  
15  
16  
17  
18  
I
I
Receiver Input  
supply  
O
Stabilizing capacitor connection output  
Antenna driver output 2  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
11 / 160  
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 4.ꢀPin description HVQFN40...continued  
Symbol  
TVSS  
n.c.  
Pin  
19  
20  
21  
22  
23  
Type  
Description  
supply  
Antenna driver ground  
leave unconnected, do not ground  
Antenna driver output 1  
Antenna driver supply  
-
TX1  
O
TVDD  
ANT1  
supply  
I
Antenna connection 1 for load modulation in card emulation  
mode (only in case of PLM)  
ANT2  
24  
I
Antenna connection 2 for load modulation in card emulation  
mode (only in case of PLM)  
VDHF  
VBAT  
VSS  
AVDD  
VDD  
DVDD  
n.c.  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
supply  
Stabilizing capacitor connection output  
Supply Connection, all VBAT mandatory to be connected  
Ground  
supply  
supply  
supply  
Analog VDD supply voltage input (1.8 V), connected to VDD  
VDD output (1.8 V)  
supply  
supply  
Digital supply voltage input (1.8 V), connected to VDD  
leave unconnected, do not ground  
leave unconnected, do not ground  
leave unconnected, do not ground  
leave unconnected, do not ground  
leave unconnected, do not ground  
-
-
-
-
-
I
n.c.  
n.c.  
n.c.  
n.c.  
CLK1  
Clock input for crystal. This pin is also used as input for an  
external generated accurate clock (8 MHz, 12 MHz, 16 MHz,  
24 MHz, other clock frequencies not supported)  
CLK2  
GPO1  
IRQ  
37  
38  
39  
40  
O
O
O
O
Clock output (amplifier inverted signal output) for crystal  
(double function pin) GPO1, Digital output 1  
Interrupt request output, active level configurable  
Analog/Digital Test signal  
AUX1  
The central heat sink of the HVQFN40 package shall be connected to GND.  
The pinning of the TFBGA version can be found in the data sheet addendum which is  
available through the NXP DocStore.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
12 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
11 Functional description  
11.1 Introduction  
The PN5180 is a High-Power NFC frontend. It implements the RF functionality like an  
antenna driving and receiver circuitry and all the low-level functionality to realize an  
NFC Forum-compliant reader. The PN5180 connects to a host microcontroller with  
a SPI interface for configuration, NFC data exchange and high-level NFC protocol  
implementation.  
The PN5180 allows different supply voltages for NFC drivers, internal supply and host  
interface providing a maximum of flexibility.  
The chip supply voltage and the NFC driver voltage can be chosen independently from  
each other.  
The PN5180 uses an external 27.12 MHz crystal as clock source for generating the RF  
field and its internal digital logic. In addition, an internal PLL allows using an accurate  
external clock source of either 8, 12, 16, 24 MHz. This saves the 27.12 MHz crystal  
in systems which implement one of the mentioned clock frequencies (e.g. for USB or  
system clock).  
Two types of memory are implemented in the PN5180: RAM and EEPROM.  
Internal registers of the PN5180 state machine store configuration data. The internal  
registers are reset to initial default values. In case of a Power-On, a low level on the pin  
RESET_N (Hardware triggered reset), a SOFT_RESET (Software triggered reset) by  
writing a "1" to the SYSTEM_CONFIG register (address 0000h), bit 8 and after leaving  
the standby mode.  
The RF configuration for dedicated RF protocols is defined by EEPROM data which  
is copied by a command issued from the host microcontroller - LOAD_RF_CONFIG-  
into the registers of the PN5180. The PN5180 is initialized with EEPROM data for the  
LOAD_RF_CONFIG command which has been tested to work well for one typical  
antenna. For customer-specific antenna sizes and dedicated antenna environment  
conditions like metal or ferrite, the pre-defined EEPROM settings can be modified by the  
user. This allows users to achieve the maximum RF performance from a given antenna  
design. It is mandatory to use the command LOAD_RF_CONFIG for the selection of a  
specific RF protocol.  
The command LOAD_RF_CONFIG initializes the registers faster compared to individual  
register writes.  
11.2 Power-up and Clock  
11.2.1 Power Management Unit  
11.2.1.1 Supply Connections and Power-up  
The Power Management Unit of the PN5180 generates internal supplies required for  
operation.  
The following pins are used to supply the IC:  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
13 / 160  
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
PVDD - supply voltage for the SPI interface and control connections  
VBAT - Supply Voltage input  
TVDD - Transmitter supply  
AVDD - Analog supply input, connected to VDD  
DVDD - Digital supply input, connected to VDD  
VDD - 1.8 V output, to be connected to AVDD and DVDD  
Decoupling capacitors shall be placed as close as possible to the pins of the package.  
Any additional filtering/damping of the transmitter supply, e.g. by ferrite beads, might  
have an impact on the analog RF signal quality and shall be monitored carefully.  
Power-up sequence of the PN5180  
First ramp VBAT, PVDD can immediately follow, latest 2 ms after VBAT reaches 1.8 V.  
There is no timing dependency on TVDD, only that TVDD shall rise at the same time or  
later than VBAT.  
VBAT must have an equal or higher level than PVDD  
TVDD has no other relationship to VBAT or PVDD  
voltage  
VBAT  
PVDD  
1.8 V  
time  
max  
aaa-020676  
Figure 4.ꢀ Power-up voltages  
After power-up, the PN5180 is indicating the ability to receive command from a host  
microcontroller by an IDLE IRQ.  
There are configurations in EEPROM, which allow to specify the behavior of the PN5180  
after start-up. LPCD (Low-power card detection) and DPC (dynamic power control) are  
functionalities which are configurable in EEPROM.  
The PN5180 supports full FNC functionality, this means Reader/Writer, Card and Peer to  
Peer mode. The default configuration of the PN5180 after power-up is the card mode to  
allow a collision avoidance with another RF field.  
11.2.1.2 Power-down / Reset  
A power-down is enabled by a LOW level on pin RESET_N. This low level sets the  
internal voltage regulators for the analog and digital core supply as well as the oscillator  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
14 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
in a low-power state. All digital input buffers are separated from the input pads and  
clamped internally (except pin RESET_N itself and the driver of the transmitter TX1,  
TX2). IRQ, BUSY, AUX1, AUX2 have an internal pull-down resistor which is activated on  
RESET_N ==0. All other output pins are switched to high impedance.  
To leave the power-down mode, the level at the pin RESET_N has to be set to HIGH.  
This high level starts the internal start-up sequence from Power-Down.  
After setting the pin RESET_N to high and starting the chip from Power-Down, all  
registers are set to default state (chip reset).  
The Power-down does not change any data in EEprom memory.  
Setting all registers to default state can be achieved either by toggling the pin RESET_N  
or by writing a "1" into the SYSTEM_CONFIG register (0000h) bit8, SOFT_RESET. In  
contrast to a LOW level on pin RESET_N, a soft reset does not set the chip into a low-  
power state.  
11.2.1.3 Standby  
The standby mode is entered immediately after sending the instruction SWITCH_MODE  
with standby command. All internal current sinks are set to low-power state.  
In opposition to the power-down mode, the digital input buffers are not separated by the  
input pads and keep their functionality. The digital output pins do not change their state.  
During standby mode, all registers values, the buffer content and the configuration  
itself are not kept, exceptions are the registers with addresses 05h(PADCONFIG),  
07h(PADOUT) 25h (TEMP_CONTROL). To leave the standby mode, various possibilities  
do exist. The conditions for wake-up are configured in the register STBY_CFG.  
Wake-up via Timer  
Wake-up via RF level detector  
Low Level on RESET_N  
PVDD disappears  
Any host communication (data is not validated) triggers the internal start-up sequence.  
The reader IC is in operation mode when the internal start-up sequence is finalized, and  
is indicating this by an IDLE IRQ.  
11.2.1.4 Temperature Sensor  
The PN5180 implements a configurable temperature sensor. The temperature sensor is  
configurable by the TEMP_CONTROL register (25h).  
The Temperature Sensor supports temperature settings for 85 °C, 115 °C, 125 °C and  
135 °C.  
In case the sensed device temperature is higher than configured, a TEMPSENS_ERROR  
IRQ is raised. In case of an TEMPSENS_ERROR, the Firmware is switching off the  
RF Field. Additionally host can set the device into standby as response to the raised  
IRQ. In case the sensed device temperature is higher than the configured, FW is  
automatically switching off the RF field in-order to protect the TX drivers and sets the  
TEMPSENS_ERROR_IRQ_STAT in the IRQ_STATUS register to 1.  
The host can either poll on the TEMPSENS_ERROR_IRQ_STAT or enable the bit  
TEMPSENS_ERROR_IRQ_EN in IRQ_ENABLE register to get an interrupt on the IRQ  
pin.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
15 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
In addition, the host can set the device into standby based on the  
TEMPSENS_ERROR_IRQ_STAT.  
This feature is enabled by default. Only the interrupt can be enabled / disabled via the  
IRQ_ENABLE register  
11.2.2 Reset and start-up time  
A constant low level of at least 10 μs at the RESET_N pin starts the internal reset  
procedure.  
When the PN5180 has finished the start_up, a IDLE_IRQ is raised and the IC is ready to  
receive commands on the host interface.  
11.2.3 Clock concept  
The PN5180 is supplied by an 27.12 MHz crystal for operation. In addition, the internal  
PLL uses an accurate external clock source of either 8, 12, 16, 24 MHz instead of the  
crystal.  
The clock applied to the PN5180 provides a time basis for the RF encoder and decoder.  
The stability of the clock frequency, is an important factor for correct operation. To obtain  
optimum performance, clock jitter must be reduced as much as possible. Optimum  
performance is best achieved using the internal oscillator buffer with the recommended  
circuitry.  
In card emulation mode, the clock is also required.  
If an external clock source of 27.12 MHz is used instead of a crystal, the clock signal  
must be applied to pin CLK1. In this case, special care must be taken with the clock duty  
cycle and clock jitter (see Table 141).  
The crystal is a component which is impacting the overall performance of the system.  
A high-quality component is recommended here. The resistor RD1 reduces the start-up  
time of the crystal. A short start-up time is especially desired in case the Low-Power card  
detection is used. The values of these resistors depend on the crystal which is used.  
PN5180  
CLK1  
CLK2  
VSS  
R
D1  
R
D1  
crystal  
CL1  
CL1  
aaa-020196  
Figure 5.ꢀ Connection of crystal  
11.3 Timer and Interrupt system  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
16 / 160  
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
11.3.1 General Purpose Timer  
The Timers are used to measure certain intervals between certain configurable events of  
the receiver, transmitter and other RF-events. The timer signals its expiration by raising a  
flag and the value of the timer may be accessed via the register-set.  
Three general-purpose timers T0, T1, and T2 running with the PN5180 clock with  
several start conditions, stop conditions, time resolutions, and maximal timer periods are  
implemented.  
For automatic timeout handling during MIFARE Classic Authentication Timer2 is blocked  
during this operation.  
In case EMVCo EMD handling is enabled (EMD_CONTROL register (address 0028h), bit  
EMD_ENABLE) Timer1 is automatically restarted when an EMD event occurs.  
Timers T0 to T2 has a resolution of 20 bits and may be operated at clock frequencies  
derived from the 13.56 MHz system clock. Several start events can be configured: start  
now, start on external RF-field on/off and start on Rx (receive)/Tx (transmit) started/  
ended. The timers allow reload of the counter value. At expiration of the timers, a flag is  
raised and an IRQ is triggered.  
The clock may be divided by a prescaler for frequencies of:  
6.78 MHz  
3.39 MHz  
1.70 MHz  
848 kHz  
424 kHz  
212 kHz  
106 kHz  
53 kHz  
11.3.2 Interrupt System  
11.3.2.1 IRQ PIN  
The IRQ_ENABLE configures, which of the interrupts are routed to the IRQ pin of the  
PN5180. All of the interrupts can be enabled and disabled independent from each other.  
The IRQ on the pin can either be cleared by writing to the IRQ_CLEAR register or by  
reading the IRQ_STATUS register (EEPROM configuration). If not all enabled IRQ’s are  
cleared, the IRQ pin remains active.  
The polarity of the external IRQ signal is configured by EEPROM in IRQ_PIN_CONFIG  
(01Ah).  
11.3.2.2 IRQ_STATUS Register  
The IRQ_STATUS register contains the status flags. The status flags cannot be disabled.  
Status Flag can either be cleared by writing to the IRQ_CLEAR register or when the  
IRQ_STATUS register is read (EEPROM configuration)  
The PN5180 indicates certain events by setting bits in the register  
GENERAL_IRQ_STATUS and additionally, if activated, on the pin IRQ.  
LPCD_IRQ, GENERAL_ERROR_IRQ and HV_ERROR_IRQ are non-maskable  
interrupts.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
17 / 160  
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
11.4 SPI Host Interface  
The following description of the SPI host interface is valid for the NFC operation mode.  
The Secure Firmware Download mode uses a different physical host interface handling.  
Details are described in chapter 12.  
11.4.1 Physical Host Interface  
The interface of the PN5180 to a host microcontroller is based on a SPI interface,  
extended by signal line BUSY. The maximum SPI speed is 7 Mbit/s and fixed to CPOL  
= 0 and CPHA = 0. Only a half-duplex data transfer is supported. There is no chaining  
allowed, meaning that the whole instruction has to be sent or the whole receive buffer  
has to be read out. The whole transmit buffer shall be written at once as well. No NSS  
assertion is allowed during data transfer.  
As the MISO line is per default high-ohmic in case of NSS high, an internal pull-up  
resistor can be enabled via EEPROM.  
The BUSY signal is used to indicate that the PN5180 is not able to send or receive data  
over the SPI interface.  
The host interface is designed to support the typical interface supply voltages of 1.8 V  
and 3.3 V of CPUs. A dedicated supply input which defines the host interface supply  
voltage independent from other supplies is available (PVDD). Only a voltage of 1.8 V or  
3.3 V is supported, but no voltage in the range of 1.95 V to 2.7 V.  
Master In Slave Out (MISO)  
The MISO line is configured as an output in a slave device. It is used to transfer data  
from the slave to the master, with the most significant bit sent first. The MISO signal is  
put into 3-state mode when NSS is high.  
Master Out Slave In (MOSI)  
The MOSI line is configured as an input in a slave device. It is used to transfer data from  
the master to a slave, with the most significant bit sent first.  
Serial Clock (SCK)  
The serial clock is used to synchronize data movement both in and out of the device  
through its MOSI and MISO lines.  
Not Slave Select (NSS)  
The slave select input (NSS) line is used to select a slave device. It shall be set to low  
before any data transaction starts and must stay low during the transaction.  
Busy  
During frame reception, the BUSY line goes ACTIVE and goes to IDLE when  
PN5180 is able to receive a new frame or data is available (depending if SET or  
GET frame is issued). If there is a parameter error, the IRQ is set to ACTIVE and a  
GENERAL_ERROR_IRQ is set.  
Both master and slave devices must operate with the same timing. The master device  
always places data on the MOSI line a half cycle before the clock edge SCK, in order for  
the slave device to latch the data.  
The BUSY line is used to indicate that the system is processing data and cannot receive  
any data from a host. The system handles the busy signal different for normal mode and  
debug mode (test bus enabled). In the sequence below, step 3 is optional for the normal  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
18 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
mode, but mandatory for debug mode enabled. Recommendation for the BUSY line  
handling by the host:  
1. Assert NSS to Low  
2. Perform Data Exchange  
3. Wait until BUSY is high (optional if test bus is not enabled)  
4. Deassert NSS  
5. Wait until BUSY is low  
In order to write data to or read data from the PN5180, "dummy reads" shall be  
performed. The Figure 8 and Figure 9 are illustrating the usage of this "dummy reads" on  
the SPI interface.  
The host interface must use the following sequence as long as the test bus is enabled:  
1. Assert NSS to Low  
2. Perform Data Exchange  
3. Wait until BUSY is high  
4. Deassert NSS  
5. Wait until BUSY is low  
Set_Reg  
FF  
Get_Reg  
FF  
FF (data ignored)  
Rsp Get_Reg  
MOSI  
MISO  
NSS  
BUSY (idle low)  
aaa-033861  
Figure 6.ꢀ Read RX of SPI data using BUSY line  
Set_Reg  
FF  
Get_Reg  
FF  
FF (data ignored)  
Rsp Get_Reg  
MOSI  
MISO  
NSS  
BUSY (idle low)  
aaa-011438  
Figure 7.ꢀRead RX of SPI data using BUSY line with test bus enabled  
Host TX  
Host RX  
BUSY  
SET instruction  
0xFF...  
SET instruction  
0xFF...  
aaa-018979  
Figure 8.ꢀ Writing data to the PN5180  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
19 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Host TX  
Host RX  
BUSY  
GET instruction  
0xFF...  
ignored  
Response of GET instruction  
aaa-018980  
Figure 9.ꢀ Reading data from the PN5180  
11.4.2 Timing Specification SPI  
The timing condition for SPI interface is as follows:  
t
t
t
t
SCKL  
NSSH  
SCKL  
SCKH  
SCK  
t
h(SCKL-Q)  
t
su(D-SCKH)  
t
h(SCKH-D)  
MOSI  
MISO  
MSB  
MSB  
LSB  
LSB  
t
(SCKL-NSSH)  
NSS  
aaa-016093  
Figure 10.ꢀ Connection to host with SPI  
Remark: To send more bytes in one data stream, the NSS signal must be LOW during  
the send process. To send more than one data stream, the NSS signal must be HIGH  
between each data stream. Any data available to be read from the SPI interface is  
indicated by the BUSY signal de-asserted.  
11.4.3 Logical Host Interface  
11.4.3.1 Host Interface Command  
A Host Interface Command consists of either 1 or 2 SPI frames depending whether the  
host wants to write or read data from the PN5180. An SPI Frame consists of multiple  
bytes.  
The protocol used between the host and the PN5180 uses 1 byte indicating the  
instruction code and additional bytes for the payload (instruction-specific data). The  
actual payload size depends on the instruction used. The minimum length of the payload  
is 1 byte. This provides a constant offset at which message data begins.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
20 / 160  
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Byte 1  
Byte 2  
Byte N  
lnstruction  
Payload 1  
Payload N  
......  
- Size of payload depends on Instruction  
- Minimum payload is 1 byte  
aaa-023432  
Figure 11.ꢀ Instruction Payload  
All commands are packed into one SPI Frame. An SPI Frame consists of multiple bytes.  
No NSS toggles allowed during sending of an SPI frame.  
For all 4 byte command parameter transfers (e.g. register values), the payload  
parameters passed follow the little endian approach (Least Significant Byte first).  
Direct Instructions are built of a command code (1 Byte) and the instruction parameters  
(max. 260 bytes). The actual payload size depends on the instruction used.  
Responses to direct instructions contain only a payload field (no header). All instructions  
are bound to conditions. If at least one of the conditions is not fulfilled, an exception is  
raised.  
Byte 1  
Byte 2  
Byte N  
Payload 1  
Payload 2  
Payload N  
aaa-023431  
......  
Figure 12.ꢀ Instruction Response  
In case of an exception, the IRQ line of PN5180 is asserted and corresponding interrupt  
status register contain information on the exception.  
11.4.3.2 Transmission Buffer  
Two buffers are implemented in the PN5180. The transmission buffer has a buffer size of  
260 bytes, the reception buffer has a size of 508 bytes. Both memories buffer the input  
and output data streams between the host and the internal state machine / contactless  
UART of the PN5180. Thus, it is possible to handle data streams with lengths of up  
to 260 bytes for transmission and up to 508 bytes for reception without taking timing  
constraints into account.  
11.4.3.3 Host Interface Command List  
Table 5.ꢀ1-Byte Direct Commands and Direct Command Codes  
Command  
Command Description  
code  
WRITE_REGISTER  
0x00  
0x01  
0x02  
0x03  
Write one 32bit register value  
WRITE_REGISTER_OR_MASK  
WRITE_REGISTER_AND_MASK  
WRITE_REGISTER_MULTIPLE  
Sets one 32bit register value using a 32 bit OR mask  
Sets one 32bit register value using a 32 bit AND mask  
Processes an array of register addresses in random order and  
performs the defined action on these addresses.  
READ_REGISTER  
0x04  
Reads one 32bit register value  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
21 / 160  
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 5.ꢀ1-Byte Direct Commands and Direct Command Codes...continued  
Command  
Command Description  
code  
READ_REGISTER_MULTIPLE  
WRITE_EEPROM  
READ_EEPROM  
0x05  
0x06  
0x07  
Reads from an array of max.18 register addresses in random  
order  
Processes an array of EEPROM addresses in random order and  
writes the value to these addresses  
Processes an array of EEPROM addresses from a start address  
and reads the values from these addresses  
WRITE_TX_DATA  
SEND_DATA  
0x08  
0x09  
This instruction is used to write data into the transmission buffer  
This instruction is used to write data into the transmission buffer,  
the START_SEND bit is automatically set.  
READ_DATA  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
This instruction is used to read data from reception buffer, after  
successful reception.  
SWITCH_MODE  
This instruction is used to switch the mode. It is only possible to  
switch from NormalMode to standby, LPCD or Autocoll.  
MIFARE_AUTHENTICATE  
EPC_INVENTORY  
This instruction is used to perform a MIFARE Classic  
Authentication on an activated card.  
This instruction is used to perform an inventory of ISO18000-3M3  
tags.  
EPC_RESUME_INVENTORY  
This instruction is used to resume the inventory algorithm in case  
it is paused.  
EPC_RETRIEVE_INVENTORY_  
RESULT_SIZE  
This instruction is used to retrieve the size of the inventory result.  
EPC_RETRIEVE_INVENTORY_RESULT 0x10  
This instruction is used to retrieve the result of a preceding EPC_  
INVENTORY or EPC_RESUME_INVENTORY instruction.  
LOAD_RF_CONFIG  
0x11  
0x12  
0x13  
0x14  
This instruction is used to load the RF configuration from  
EEPROM into the configuration registers.  
UPDATE_RF_CONFIG  
RETRIEVE_RF_CONFIG_SIZE  
RETRIEVE_RF_CONFIG  
This instruction is used to update the RF configuration within  
EEPROM.  
This instruction is used to retrieve the number of registers for a  
selected RF configuration  
This instruction is used to read out an RF configuration. The  
register address-value-pairs are available in the response  
-
0x15  
0x16  
0x17  
0x18  
0x19  
RFU  
RF_ON  
This instruction switch on the RF Field  
This instruction switch off the RF Field  
Enables the Digital test bus  
Enables the Analog test bus  
RF_OFF  
CONFIGURE_TESTBUS_DIGITAL  
CONFIGURE_TESTBUS_ANALOG  
The following direct instructions are supported on the Host Interface: Detail Description of  
the instruction.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
22 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
WRITE_REGISTER - 0x00  
Table 6.ꢀWRITE_REGISTER  
Payload  
Length  
(byte)  
Value/Description  
Command code  
Parameter  
1
1
4
-
0x00  
Register address  
Register content  
-
Response  
Description:  
This command is used to write a 32-bit value (little endian) to a configuration register.  
Condition:  
The address of the register must exist. If the condition is not fulfilled, an exception is  
raised.  
WRITE_REGISTER_OR_MASK - 0x01  
Table 7.ꢀWRITE_REGISTER  
Payload  
Length  
(byte)  
Value/Description  
Command code  
Parameter  
1
1
4
-
0x01  
Register address  
OR_MASK  
-
Response  
Description:  
This command modifies the content of a register using a logical OR operation. The  
content of the register is read and a logical OR operation is performed with the provided  
mask. The modified content is written back to the register.  
Condition:  
The address of the register must exist. If the condition is not fulfilled, an exception is  
raised.  
WRITE _REGISTER_AND_MASK - 0x02  
Table 8.ꢀWRITE_REGISTER_AND_MAKSK  
Payload  
Length Value/Description  
(byte)  
Command code  
Parameter  
1
1
4
-
0x02  
Register address  
AND_MASK  
-
Response  
Description:  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
23 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
This command modifies the content of a register using a logical AND operation. The  
content of the register is read and a logical AND operation is performed with the provided  
mask. The modified content is written back to the register.  
Condition:  
The address of the register must exist. If the condition is not fulfilled, an exception is  
raised.  
WRITE_REGISTER_MULTIPLE - 0x03  
Table 9.ꢀWRITE_REGISTER_MULTIPLE  
Payload  
Length Value/Description  
(byte)  
Command code  
Parameter  
1
0x03  
5...210 Array of up to 42 elements {address, action, content}  
1 byte Register address  
1 byte Action  
4 bytes Register content  
Response  
-
-
Description:  
This instruction allows processing actions on multiple addresses with a single command.  
Input parameter is an array of register addresses, actions, and values (little endian). The  
command processes this array, register addresses are allowed to be in random order.  
For each address, an individual ACTION can be defined.  
Parameter value is either the REGISTER_DATA, the OR MASK or the AND_MASK.  
ACTION that can be defined individually for each register address:  
0x01 WRITE_REGISTER  
0x02 WRITE_REGISTER_OR_MASK  
0x03 WRITE_REGISTER_AND_MASK  
Note: In case of an exception, the operation is not rolled-back, i.e. registers which have  
been modified until exception occurs remain in modified state. Host has to take proper  
actions to recover to a defined state.  
Write Multiple Registers:  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
Byte 6  
Byte 7  
Command:  
0x03  
Register  
address  
WRITE_REGISTER:  
0x01  
Register  
content  
Register  
content  
Register  
content  
Register  
content  
....  
LSB  
MSB  
aaa-023442  
Figure 13.ꢀ Write_Register_Multiple  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
24 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Modifying Multiple Registers with OR mask:  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
MASK  
LSB  
Byte 5  
MASK  
Byte 6  
MASK  
Byte 7  
MASK  
MSB  
WRITE_REGISTER:  
_OR_MASK:  
0x02  
Command:  
0x03  
Register  
address  
....  
aaa-024843  
Figure 14.ꢀ WRITE_REGISTER_OR_MASK  
Modifying Multiple Registers with AND mask:  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
MASK  
LSB  
Byte 5  
MASK  
Byte 6  
MASK  
Byte 7  
WRITE_REGISTER:  
_AND_MASK:  
0x03  
Command:  
0x03  
Register  
address  
MASK  
MSB  
....  
aaa-024844  
Figure 15.ꢀ WRITE_REGISTER_AND_MASK  
Condition:  
The address of the registers must exist. If the condition is not fulfilled, an exception is  
raised.  
READ_REGISTER - 0x04  
Table 10.ꢀREAD_REGISTER  
Payload  
Length  
(byte)  
Value/Description  
Command code  
Parameter  
1
1
4
0x04  
Register address  
Register content  
Response  
Description:  
This command is used to read the content of a configuration register. The content of the  
register is returned in the 4 byte response.  
Condition:  
The address of the register must exist. If the condition is not fulfilled, an exception is  
raised.  
READ_REGISTER_MULTIPLE -0x05  
Table 11.ꢀREAD_REGISTER_MULTIPLE  
Payload  
Length  
(byte)  
Value/Description  
Command code  
Parameter  
1
0x05  
1..18  
Array of up to 18 elements {Register address}  
1 byte Register address  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
25 / 160  
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 11.ꢀREAD_REGISTER_MULTIPLE...continued  
Payload  
Length  
(byte)  
Value/Description  
Response  
4..72  
Array of up to 18 4-byte elements {Register content}  
4..72  
byte  
Register content: n*4-Byte (32-bit) register data  
Description:  
This command is used to read up to 18 configuration registers at once. The addresses  
are allowed to be in random order. The result (data of each register) is provided in the  
response to the command. Only the register values are included in the response. The  
order of the register contents within the response corresponds to the order of the register  
addresses within the command parameter.  
Condition:  
The address of the register must exist. The size of ‘Register Address’ array must be in  
the range from 1 – 18, inclusive. If the condition is not fulfilled, an exception is raised.  
WRITE_EEPROM -0x06  
Table 12.ꢀWRITE_EEPROM  
Payload  
length  
(byte)  
Value/Description  
Command code  
Parameter  
1
1
0x06  
Address in EEPROM from which write operation starts  
{EEPROM Address}  
1..255  
-
Array of up to 255 elements {EEPROM content}  
1 byte EEPROM content  
-
Response  
Description:  
This command is used to write up to 255 bytes to the EEPROM. The field ‘EEPROM  
content’ contains the data to be written to EEPROM starting at the address given by byte  
‘EEPROM Address’. The data is written in sequential order.  
Condition:  
The EEPROM Address field must be in the range from 0 – 254, inclusive. The number of  
bytes within ‘Values’ field must be in the range from 1 – 255, inclusive. If the condition is  
not fulfilled, an exception is raised.  
READ_EEPROM - 0x07  
Table 13.ꢀREAD_EEPROM  
Payload  
Length  
(byte)  
Value/Description  
Command code  
Parameter  
1
1
0x07  
Address in EEPROM from which read operation starts  
(EEPROM Address)  
1
Number of bytes to read from EEPROM  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
26 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 13.ꢀREAD_EEPROM...continued  
Payload  
Length  
(byte)  
Value/Description  
Response  
1..255  
Array of up to 255 elements {EEPROM content}  
1 byte  
EEPROM content  
Description:  
This command is used to read data from EEPROM memory area. The field 'Address"  
indicates the start address of the read operation. The field Length indicates the number  
of bytes to read. The response contains the data read from EEPROM (content of the  
EEPROM); The data is read in sequentially increasing order starting with the given  
address.  
Condition:  
EEPROM Address must be in the range from 0 to 254, inclusive. Read operation must  
not go beyond EEPROM address 254. If the condition is not fulfilled, an exception is  
raised.  
WRITE_DATA - 0x08  
Table 14.ꢀWRITE_DATA  
Payload  
Length  
(byte)  
Value/Description  
Command code  
Parameter  
1
0x08  
1..260  
Array of up to 260 bytes {Transmit data}  
1 byte Transmit data: Data written into the transmit buffer  
-
Response  
-
Description:  
This command is used to write data into the RF transmission buffer. The size of this  
buffer is 260 bytes. After this instruction has been executed, an RF transmission can be  
started by configuring the corresponding registers.  
Condition:  
The number of bytes within the ‘Tx Data’ field must be in the range from 1 to 260,  
inclusive. The command must not be called during an ongoing RF transmission. If the  
condition is not fulfilled, an exception is raised.  
SEND_DATA - 0x09  
Table 15.ꢀSEND_DATA  
Payload  
Length  
(byte)  
Value/Description  
Command code  
Parameter  
1
0x09  
1
Number of valid bits in last Byte  
Array of up to 260 elements {Transmit data}  
1 byte Transmit data  
-
1...260  
Response  
-
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
27 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Description:  
This command writes data to the RF transmission buffer and starts the RF transmission.  
The parameter ‘Number of valid bits in last Byte’ indicates the exact number of bits to be  
transmitted for the last byte (for non-byte aligned frames).  
Precondition: Host shall configure the Transceiver by setting the register  
SYSTEM_CONFIG.COMMAND to 0x3 before using the SEND_DATA command, as  
the command SEND_DATA is only writing data to the transmission buffer and starts the  
transmission but does not perform any configuration.  
Table 16.ꢀCoding of ‘valid bits in last byte’  
Number/Parameter  
Functionality  
0
All bits of last byte are transmitted  
Number of bits within last byte to be transmitted.  
1-7  
Note: When the command terminates, the transmission might still be ongoing, i.e. the  
command starts the transmission but does not wait for the end of transmission.  
Condition:  
The size of ‘Tx Data’ field must be in the range from 0 to 260, inclusive (the 0 byte length  
allows a symbol only transmission when the TX_DATA_ENABLE is cleared).‘Number of  
valid bits in last Byte’ field must be in the range from 0 to 7. The command must not be  
called during an ongoing RF transmission. Transceiver must be in ‘WaitTransmit’ state  
with ‘Transceive’ command set. If the condition is not fulfilled, an exception is raised.  
READ_DATA - 0x0A  
Table 17.ꢀREAD_DATA  
Payload  
Length  
(byte)  
Value/Description  
Command code  
Parameter  
1
0x0A  
1
x00  
Response  
1...508  
Array of up to 508 elements {Receive data}  
1 byte Receive data: data which had been received during last  
successful RF reception  
Description:  
This command reads data from the RF reception buffer, after a successful reception.  
The RX_STATUS register contains the information to verify if the reception had been  
successful. The data is available within the response of the command. The host controls  
the number of bytes to be read via the SPI interface.  
Condition:  
The RF data had been successfully received. In case the instruction is executed without  
preceding an RF data reception, no exception is raised but the data read back from the  
reception buffer is invalid. If the condition is not fulfilled, an exception is raised.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
28 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
SWITCH_MODE - 0x0B  
Table 18.ꢀSWITCH_MODE  
Payload  
Length  
(byte)  
Value/Description  
Command code  
Parameter  
1
0x0B  
1
Mode  
1...n  
Array of ‘n’ elements {Mode parameter}  
1 byte Mode parameter: Number of total bytes depends on  
selected mode  
Return value  
-
-
Description:  
This instruction is used to switch the mode. It is only possible to switch from normal mode  
to Standby, LPCD or Autocoll mode. Switching back to normal mode is not possible using  
this instruction. The modes Standby, LPCD and Autocoll terminate on specific conditions.  
Once a configured mode (Standby, LPCD, Autocoll) terminates, normal mode is entered  
again.  
To force an exit from Standby, LPCD or Autocoll mode to normal mode, the host  
controller has to reset the PN5180.  
Condition:  
Parameter ‘mode’ has to be in the range from 0 to– 2, inclusive. Dependent on the  
selected mode, different parameters have to be passed:  
In case parameter ‘mode’ is set to 0 (Standby):  
Field ‘wake-up Control’ must contain a bit mask indicating the enabled wake-up sources  
and if GPO shall be toggled. Field ‘wake-up Counter Value’ must contain the value used  
for the wake-up counter (= time PN5180 remains in standby). The value shall be in the  
range from 1 – 2690, inclusive.  
Table 19.ꢀStandby configuration  
Parameter  
Length (byte) Value/Description  
Wake-up Control  
1
Bit mask controlling the wake-up source to be  
used and GPO handling.  
Wake-up Counter Value  
2
Used value for wake-up counter in msecs.  
Maximum supported value is 2690  
Table 20.ꢀStandby wake-up counter configuration  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b1  
0
0
0
0
0
0
RFU  
X
Wake-up on external RF field, if bit is set to  
1b.  
X
Wake-up on wake-up counter expires, if bit is  
set to 1b.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
29 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
The field has to be present, even if wake-up counter is not defined as wake-up source. In  
this case, the field ‘wake-up Counter value’ is ignored. No instructions must be sent while  
being in this mode. Termination is indicated using an interrupt.  
In case parameter ‘mode’ is set to 1 (LPCD):  
Field ‘wake-up Counter Value’ () defines the period between two LPCD attempts (=time  
PN5180 remains in standby) as has to be in the range from 1 to 2690, inclusive. No  
instructions must be sent while being in this mode. Termination is indicated using an  
interrupt.  
Table 21.ꢀLPCD wake-up counter configuration  
Parameter  
Length (bytes) Value/Description  
Wake-up Counter Value  
2 Used value for wake-up counter in msecs.  
Maximum supported value is 2690.  
In case field ‘Mode’ is set to 2 (Autocoll):  
Field ‘RF Technologies’ must contain a bit mask indicating the RF Technologies to  
support during Autocoll, according to Field ‘Autocoll Mode’ must be in the range from  
0 to 2, inclusive. No instructions must be sent while being in this mode. Termination is  
indicated using an interrupt.  
Table 22.ꢀAutocoll wake-up counter configuration  
Parameter  
Length (bytes) Value/Description  
Wake-up Counter Value  
2 Used value for wake-up counter in msecs.  
Maximum supported value is 2690.  
Table 23.ꢀAutocoll parameter  
Parameter  
Length (bytes) Value/Description  
RF Technologies  
1
Bit mask indicating the RF technology to listen  
for during Autocoll  
Autocoll Mode  
1
0
Autonomous mode not used, i.e. Autocoll  
terminates when external RF field is not  
present.  
1
Autonomous mode used. When no RF  
field is present, Autocoll automatically  
enters standby mode. Once RF external  
RF field is detected, PN5180 enters again  
Autocoll mode.  
2
Same as 1 but without entering standby  
mode.  
Table 24.ꢀAutocoll bit mask indicating the RF technologies  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b1  
0
0
0
0
RFU  
X
If set, listening for NFC-F active is enabled  
If set, listening for NFC-A active is enabled  
X
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
30 / 160  
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 24.ꢀAutocoll bit mask indicating the RF technologies...continued  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b1  
X
If set, listening for NFC-F is enabled  
If set, listening for NFC-A s enabled  
X
MIFARE_AUTHENTICATE - 0x0C  
Table 25.ꢀMIFARE_AUTHENTICATE  
Payload  
Length  
(bytes)  
Value/Description  
Command code  
Parameter  
1
6
1
0x0C  
Key: Authentication key to be used  
Key type to be used:  
0x60 Key type A  
0x61 Key type B  
1
Block address: The address of the block for which the  
authentication has to be performed.  
4
1
UID of the card  
Return value  
Authentication Status  
Description:  
This command is used to perform a MIFARE Classic Authentication on an activated card.  
It takes the key, card UID and the key type to authenticate at a given block address. The  
response contains 1 byte indicating the authentication status.  
Condition:  
Field ‘Key’ must be 6 bytes long. Field ‘Key Type’ must contain the value 0x60 or 0x61.  
Block address may contain any address from 0x0 – 0xff, inclusive. Field ‘UID’ must  
be 4 bytes long and should contain the 4 byte UID of the card. An ISO/IEC 14443-3  
MIFARE Classic product-based card should be put into state ACTIVE or ACTIVE* prior to  
execution of this instruction.  
In case of an error related to the authentication, the return value ‘Authentication Status’ is  
set accordingly (see Table 25).  
Attention:  
Timer2 is not available during the MIFARE Classic Authentication  
If the condition is not fulfilled, an exception is raised.  
Table 26.ꢀAuthentication status return value  
Payload Field Length Value/Description  
(byte)  
Authentication  
Status  
1
0
1
2
Authentication successful.  
Authentication failed (permission denied).  
Timeout waiting for card response (card not present).  
3..FF RFU  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
31 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
EPC_INVENTORY - 0x0D  
Table 27.ꢀEPC_INVENTORY PARAMETERS  
Payload  
Length Value/Description  
(byte)  
Command code  
Parameter  
1
1
0x0D  
SelectCommandLength:  
0
No Select command is set prior to "BeginRound"  
command. 'Valid Bits in last Byte' field and 'Select"  
Command shall not be present  
1...39  
Length (n) of the 'Select" command  
0, 1  
Valid Bits in last Byte  
0
All bits of last byte of 'Select command' field are  
transmitted  
1..7  
Number of bits to be transmitted in the last byte of 'Select  
command' field.  
0..39  
Array of up to 39 elements {Select}  
1 byte Select: If present (dependent on the first parameter  
Select Command Length), this field contains the ‘Select’  
command (according to ISO18000-3) which is sent prior to  
a BeginRound command. CRC-16c shall not be included.  
3
1
BeginRound: Contains the BeginRound command (according to  
ISO18000-3). CRC-5 shall not be included.  
Timeslot behavior  
0
Response contains max. Number of time slots which may  
fit in response buffer.  
1
2
Response contains only one timeslot.  
Response contains only one timeslot. If timeslot contains  
valid card response, also the card handle is included.  
Response  
0
-
Description:  
This instruction is used to perform an inventory of ISO18000-3M3 tags. It implements  
an autonomous execution of several commands according to ISO18000-3M3 in order to  
guarantee the timings specified by this standard.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
32 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
EPC_INVENTORY  
received  
SelectCommand  
wait t4 time  
send_tx_buffer  
bit  
yes  
no  
BeginRound  
command  
EPC_RESUME_INVENTORY  
received  
Perform Card  
Check  
Send  
NextTimeSlot  
card detected  
no Card detected  
Correct PC/XPC received  
Store information in the  
RX buffer  
Card Check  
Error  
no  
Only one  
timeslot  
yes  
no  
no  
yes  
GetHandle  
Rx buffer full  
yes and correct  
PC/XPC received  
GetHandleFunction  
Set Rx_IRQ  
FINISH State  
aaa-017294  
Figure 16.ꢀ EPC GEN2 Inventory command  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
33 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
GetHandleFunction  
START  
GetHandleFunction EXIT  
Collision or Recepion  
Error  
ReqRN  
RX IRQ  
RX IRQ and error or Timer 1 lRQ  
RX IRQ and no error  
Handle  
GetHandleFunction EXIT  
Store handle, RX_IRQ  
aaa-017296  
Figure 17.ꢀ Get Handle  
If present in the payload of the instruction, a ‘Select' command is executed followed by a  
‘BeginRound’ command. If there is a valid response in the first-time slot (no timeout, no  
collision), the instruction sends an ACK and saves the received PC/XPC/UII. The device  
performs then an action according to the definitions of the field ‘Timeslot Processed  
Behavior’:  
If this field is set to ‘0’, a NextSlot command is issued to handle the next time slot. This  
is repeated until the internal buffer is full  
If this field is set to 1 the algorithm pauses  
If this field is set to 2 a Req_Rn command is issued if, and only if, there has been a  
valid tag response in this timeslot  
timeslot 0  
timeslot 1  
timeslot ...  
aaa-017297  
Figure 18.ꢀ Timeslot order EPC Gen2  
Condition:  
If the condition is not fulfilled, an exception is raised.  
EPC_RESUME_INVENTORY - 0x0E  
Table 28.ꢀEPC_RESUME_INVENTORY PARAMETERS  
Payload  
Length Value/Description  
(byte)  
Command code  
Parameter  
1
1
0
0x0E  
0x00  
-
Response  
Description:  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
34 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
This instruction is used to resume the inventory algorithm for the ISO18000-3M3  
Inventory in case it is paused. This instruction has to be repeatedly called, as long as  
'Response Size' field in EPC_RETRIEVE_INVENTORY_RESULT_SIZE is greater than 0.  
A typical sequence for a complete EPC GEN2 inventory retrieval is:  
1. Execute EPC_INVENTORY to start the inventory  
2. Execute EPC_RETRIEVE_INVENTORY_RESULT_SIZE  
3. If size is 0, inventory has finished.  
4. Otherwise, execute EPC_RETRIEVE_INVENTORY_RESULT  
5. Execute EPC_RESUME_INVENTORY and proceed with step 2.  
Condition:  
Field 'RFU' must be present and can be set to any value. If the condition is not fulfilled,  
an exception is raised.  
EPC_RETRIEVE_INVENTORY_RESULT_SIZE - 0x0F  
Table 29.ꢀEPC_RETRIEVE_INVENTORY_RESULT_SIZE PARAMETERS  
Payload  
length Value/Description  
(byte)  
Command code  
Parameter  
1
1
2
0x0F  
0x00  
Response  
Response size:  
If Response size == 0: Inventory has finished. If Response size  
== 1...512: Value indicates the length of the EPC_RETRIEVE_  
INVENTORY_RESULT response payload  
Description:  
This instruction is used to retrieve the size of the inventory result. The size is located  
in the response to this instruction and reflects the payload size of the response to the  
next execution of EPC_RETRIEVE_INVENTORY_RESULT. If the size is 0, then no more  
results are available which means inventory algorithm has finished.  
Condition:  
Field Parameter1 must be present. If the condition is not fulfilled, an exception is raised.  
EPC_RETRIEVE_INVENTORY_RESULT - 0x10  
Table 30.ꢀEPC_RETRIEVE_INVENTORY_RESULT PARAMETERS  
Payload  
Length Value/Description  
(byte)  
Command code  
Parameter  
1
1
2
0x10  
0x00  
Response  
Response size  
If Response size == 0: Inventory has finished. If Response size  
== 1...512: Value indicates the length of the EPC_RETRIEVE_  
INVENTORY_RESULT response payload  
Description:  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
35 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
This instruction is used to retrieve the result of a preceding or  
EPC_RESUME_INVENTORY instruction. The size of the payload  
within the response is determined by the ‘Response Size’ field of  
EPC_RETRIEVE_INVENTORY_RESULT_SIZE response. Depending on the ‘Timeslot  
Processed Behavior’ defined in that instruction, the result contains one or more time  
slot responses. Each timeslot response contains a status (field ‘Timeslot Status’) which  
indicates, that there has been a valid tag reply or a collision or no tag reply:  
0 - Tag response available, XPC/PC/UII embedded in the response within 'Tag reply'  
field  
1 - Tag response available and tag handle retrieved. XPC/PC/UII as well as tag  
handle available in the response within 'Tag reply' field and 'Tag Handle' field,  
respectively.  
2 - No tag replied, empty time slot  
3 - Collision, two or more tags replied in the same time slot  
Condition:  
Field 'RFU' must be present and can be set to any value. If the condition is not fulfilled,  
an exception is raised.  
LOAD_RF_CONFIG - 0x11  
Table 31.ꢀLOAD_RF_CONFIG PARAMETERS  
Payload  
length Value/Description  
(byte)  
Command code  
Parameter  
1
1
1
0
0x11  
Transmitter configuration byte  
Receiver configuration byte  
-
Response  
Description:  
This instruction is used to load the RF configuration from EEPROM into the configuration  
registers. The configuration refers to a unique combination of "mode" (target/initiator)  
and "baud rate". The configurations can be loaded separately for the receiver (Receiver  
configuration) and transmitter (Transmitter configuration).  
The PN5180 is pre-configured by EEPROM with settings for all supported protocols.  
The default EEPROM settings are considering typical antenna. It is possible for the  
user to modify the EEPROM content and by this adapt the default settings to individual  
antennas for optimum performance. The command UPDATE_RF_CONFIG is used  
for modification of the RF Configuration settings available in the EEPROM. There is  
no possibility to update the EEPROM data directly, updates have to make use of the  
UPDATE_RF_CONFIG command.  
Note that the command LOAD_RF_CONFIG configures parameters which are  
not accessible by registers, and configures additional parameters depending  
on the protocol setting (e.g. the waveshaping AWC). It is required to execute the  
command LOAD_RF_CONFIG for a specific protocol first, before any register  
settings for this protocol are changed.  
The parameter 0xFF has to be used if the corresponding configuration shall not be  
changed.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
36 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
UPDATE_RF_CONFIG  
LOAD_RF_CONFIG  
PN5180 EEPROM  
PN5180 REGISTERS  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
A106  
A212  
TX_UNDERSHOOT_  
CONFIG  
TX_OVERSHOOT_CON  
FIG  
RF_CONTROL_TX  
ANT_CONTROL  
NFC-GTM  
aaa-023693  
1. UPDATE_RF_CONFIG allows updating the EEPROM content defining all protocol-specific  
configurations. For each protocol, a user-defined configuration can be defined.  
2. LOAD_RF_CONFIG allows loading a protocol-specific configuration from EEPROM to  
registers as actual RF configuration.  
Figure 19.ꢀ LoadRFConfig  
Condition:  
Parameter 'Transmitter Configuration' must be in the range from 0x0 - 0x1C, inclusive. If  
the transmitter parameter is 0xFF, transmitter configuration is not changed.  
Field 'Receiver Configuration' must be in the range from 0x80 - 0x9C, inclusive. If the  
receiver parameter is 0xFF, the receiver configuration is not changed. If the condition is  
not fulfilled, an exception is raised.  
The transmitter and receiver configuration shall always be configured for the same  
transmission/reception speed. No error is returned in case this condition is not taken into  
account.  
Table 32.ꢀLOAD_RF_CONFIG: Selection of protocol register settings  
Transmitter: RF Protocol  
configuration  
byte (hex)  
Speed (kbit/ Receiver: RF Protocol  
Speed  
(kbit/s)  
s)  
configuration  
byte (hex)  
00  
01  
02  
03  
04  
05  
06  
07  
ISO 14443-A / NFC PI-106  
106  
212  
424  
848  
106  
212  
424  
848  
80  
81  
82  
83  
84  
85  
86  
87  
ISO 14443-A / NFC PI-106  
ISO 14443-A  
106  
212  
424  
848  
106  
212  
424  
848  
ISO 14443-A  
ISO 14443-A  
ISO 14443-A  
ISO 14443-B  
ISO 14443-B  
ISO 14443-B  
ISO 14443-B  
ISO 14443-A  
ISO 14443-A  
ISO 14443-B  
ISO 14443-B  
ISO 14443-B  
ISO 14443-B  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
37 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 32.ꢀLOAD_RF_CONFIG: Selection of protocol register settings...continued  
Transmitter: RF Protocol  
configuration  
byte (hex)  
Speed (kbit/ Receiver: RF Protocol  
Speed  
(kbit/s)  
s)  
configuration  
byte (hex)  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
FeliCa / NFC PI 212  
212  
424  
106  
212  
424  
26  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
FeliCa / NFC PI 212  
FeliCa / NFC PI 212  
NFC-Active Initiator  
NFC-Active Initiator  
NFC-Active Initiator  
ISO 15693  
212  
424  
106  
212  
424  
26  
FeliCa / NFC PI 424  
NFC-Active Initiator  
NFC-Active Initiator  
NFC-Active Initiator  
ISO 15693 ASK100  
ISO 15693 ASK10  
26  
ISO 15693  
53  
ISO 18003M3 Manch. 424_4 Tari=18.88  
ISO 18003M3 Manch. 424_2 Tari=9.44  
ISO 18003M3 Manch. 848_4 Tari=18.88  
ISO 18003M3 Manch. 848_2 Tari=9.44  
ISO 18003M3 Manch. 424_4 106  
ISO 18003M3 Manch. 424_4  
ISO 18003M3 Manch. 424_2  
ISO 18003M3 Manch. 848_4  
ISO 18003M3 Manch. 848_2  
ISO 14443-A PICC  
ISO 14443-A PICC  
ISO 14443-A PICC  
ISO 14443-A PICC  
NFC Passive Target  
NFC Passive Target  
ISO 14443-A  
106  
212  
212  
424  
106  
212  
424  
848  
212  
424  
106  
212  
424  
ALL  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
ISO 14443-A PICC  
ISO 14443-A PICC  
ISO 14443-A PICC  
NFC Passive Target  
NFC Passive Target  
NFC Active Target 106  
NFC Active Target 212  
NFC Active Target 424  
GTM  
212  
424  
848  
212  
424  
106  
212  
424  
ALL  
ISO 14443-A  
ISO 14443-A  
GTM  
UPDATE_RF_CONFIG - 0x12  
Table 33.ꢀUPDATE_RF_CONFIG PARAMETERS  
Payload  
length (byte)  
1 0x12  
Value/Description  
Command  
code  
Parameter  
6...252 Array of up to 42 elements {RF configuration byte, Register Address,  
Register value}  
1 byte  
1 byte  
4 bytes  
-
RF Configuration byte: RF configuration for which the  
register has to be changed.  
Register Address: Register Address within the given RF  
technology.  
Register value: Value which has to be written into the  
register.  
Response  
-
Description:  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
38 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
This instruction is used to update the RF configuration within the EEPROM. The  
command allows updating dedicated EEPROM addresses, in case the complete set does  
not require to be updated.  
The payload parameters passed following the little endian approach (Least Significant  
Byte first).  
Condition:  
The size of the array of ‘Configuration data’ must be in the range from 1 – 42, inclusive.  
The array data elements must contain a set of ‘RF Configuration byte’, ‘Register Address’  
and ‘Value’. The field ‘RF Configuration byte’ must be in the range from 0x00 – 0x1C  
or 0x80-0x9C, inclusive. The address within field ‘Register Address’ must exist within  
the respective RF configuration. The ‘Register Value’ contains a value which will be  
written into the given register and must be 4 bytes long. If the condition is not fulfilled, an  
exception is raised.  
RETRIEVE_RF_CONFIG_SIZE - 0x13  
Table 34.ꢀRETRIEVE_RF_CONFIG_SIZE PARAMETERS  
Payload  
length Value/Description  
(byte)  
Command code  
Parameter  
1
1
0x13  
RF configuration ID: RF configuration for which the number of  
registers has to be retrieved.  
Response  
1
Number of registers for the selected "RF configuration ID"  
Description:  
This command is used to retrieve the size (number of 32-bit registers) of a given RF  
configuration. The size is available in the response to this instruction.  
Condition:  
The field 'RF configuration ID' must be in the range from 0x00 - 0x1C or 0x80-0x9C,  
inclusive. If the condition is not fulfilled, an exception is raised.  
RETRIEVE_RF_CONFIG - 0x14  
Table 35.ꢀRETRIEVE_RF_CONFIG PARAMETERS  
Payload  
length (byte)  
Value/Description  
Command  
code  
1
0x14  
Parameter  
1
RF configuration ID: RF configuration for which the number of 32-bit  
registers has to be retrieved.  
Response  
0...39  
Array of up to 39 elements {RegisterAddress, RegisterContent}  
1 byte  
RegisterAddress: Address of the register to read  
4 bytes RegisterContent: Data of register addressed by this element  
Description:  
This command is used to read an RF configuration. The register content available  
in the response. In order to know how many pairs are to be expected, the command  
RETRIEVE_RF_CONFIGURATION_SIZE has to be executed first.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
39 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
The payload parameters passed following the little endian approach (Least Significant  
Byte first).  
Condition:  
The field 'RF configuration ID' must be in the range from 0x00-0x1C or 0x80-0x9C,  
inclusive. If the condition is not fulfilled, an exception is raised.  
COMMAND RFU - 0x15  
Table 36.ꢀRFU  
Payload  
length (byte)  
Value/Description  
Command  
code  
1
0x15  
RFU  
Parameter  
Response  
-
-
Description:  
This command is reserved for future use.  
RF_ON - 0x16  
Table 37.ꢀRF_ON  
Payload  
length Value/Description  
(byte)  
Command code  
Parameter  
1
1
0x16  
Bit0 == 1: disable collision avoidance according to ISO18092 Bit1 ==  
1: Use Active Communication mode according to ISO18092  
Response  
-
-
Description:  
This command is used to switch on the internal RF field. If enabled the TX_RFON_IRQ is  
set after the field is switched on.  
RF_OFF - 0x17  
Table 38.ꢀRF_OFF  
Payload  
length Value/Description  
(byte)  
Command code  
Parameter  
1
1
-
0x17  
dummy byte, any value accepted  
-
Response  
Description:  
This command is used to switch off the internal RF field. If enabled, the TX_RFOFF_IRQ  
is set after the field is switched off.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
40 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
CONFIGURE_TESTBUS_DIGITAL - 0x18  
Table 39.ꢀCONFIGURE_TESTBUS_DIGITAL  
Payload  
length Value/Description  
(byte)  
Command code  
Parameter  
1
0x18  
1
Signal Bank  
1*n  
TB_POS: Pad Location (bits 4:7) and digital test signal definition (bits  
0:3) n can have a value between 1 and 4  
Response  
-
-
Description:  
This command defines the type of digital test signals and their output pins on the chip.  
The test bus must be enabled in the EEPROM settings (EEPROM address: 0x17,  
TESTBUS_ENABLE) before any signal will appear on the output pins.  
There are several signal banks which can be selected, defined by the first Parameter  
"Signal Bank".  
The second parameter, TB_POS, is defining the type of digital signal in the lower nibble  
(bits 0:3) of the parameter byte, and the output pin in the upper nibble (bits 4:7). All digital  
output pins are able to provide a digital output signal at the same time.  
Sending 1- to 4-times the TB_POS configuration byte allows configuring  
TB_POS byte (Pad location for signal output) has to be configured in the following way:  
Table 40.ꢀTB_POS  
BitPos  
Value  
0..7h  
8h  
Description  
0_3  
Signal Selection of the Signal Bank  
13 MHz RF clock  
9h..Fh RFU  
4:7  
0h  
1h  
2h  
3h  
IRQ pin (B2 on TFBGA64 -39 on HVQFN40)  
AUX1 pin (B1 on TFBGA64 - 40 on HVQFN40)  
AUX2 pin (C1 on TFBGA64 - 02 on HVQFN40)  
GPO1 pin (B3 on TFBGA64 - 38 on HVQFN40)  
4h..Fh RFU  
The digital debug output is configured by the command  
CONFIGURE_TESTBUS_DIGITAL. Two parameters are passed within this command.  
The first parameter (1 byte) defines the test signal group. Out of this test signal group,  
one signal can be selected for output on a pin of the PN5180 (4 bits).  
The signal type of the chosen test signal group is selected by the low-nibble of parameter  
2. A value of 8 on this position selects the 13.56 MHz clock to be put out on the selected  
pin.  
The high nibble of parameter 2 (1 byte) selects the output pin for the selected test signal.  
The following parameter groups are possible:  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
41 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 41.ꢀDebug Signal Group Selection  
Command parameter Debug Signal Group  
(hex)  
01  
1B  
1D  
30  
58  
70  
73  
Clock signal group  
Transmitter encoder group  
Timer group  
Card mode protocol group  
Transceive group  
Receiver data transfer group  
Receiver error group  
The second parameter defines the pin which is used for output of the test signal in the  
high nibble, and the signal from one of the Debug Signal groups that are put out in the  
low nibble.  
Table 42.ꢀClock Signal Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
8
7
6
5
4
3
2
1
0
13.56 MHz clock is put out  
CLIF clock reset  
Signal indicating the PLL is locked  
Signal indicating an external Field is present  
20 MHz clock from the high frequency oscillator  
27.12 MHz clock from the PLL  
27.12 MHz clock from the RF clock recovery  
Multiplexed 27.12 MHz clock  
Multiplexed 13.56 MHz clock  
Table 43.ꢀTransmitter Encoder Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
8
RFU  
13.56 MHz clock is put out  
RFU  
7..2  
1
Output TX envelope  
Tx-IRQ  
0
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
42 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 44.ꢀTimer Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
8
13.56 MHz clock is put out  
Running flag of timer T0  
Expiration flag of timer T0  
Running flag of timer T1  
Expiration flag of timer T1  
Running flag of timer T2  
Expiration flag of timer T2  
RFU  
7
6
5
4
3
2
1..0  
Table 45.ꢀCard mode Protocol Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
8
7
6
5
4
3
2
1
0
13.56 MHz Clock is put out  
Synchronized clock-fail signal  
Flag indicating that ISO/IEC14443-Type A (Miller) was detected  
Flag indicating that FeliCa 212 kBd (Manchester) was detected  
Flag indicating that FeliCa 424 kBd (Manchester) was detected  
Flag indicating that ISO/IEC14443-Type B (NRZ) was detected  
Flag indicating that the EOF was detected  
CM data signal (Miller / Manchester / NRZ)  
Signal indicating that the current data is valid  
Table 46.ꢀTransceive Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
8
7
6
5
4
3
2
13.56 MHz clock is put out  
Signal indicating that the tx prefetch was completed  
Signal initiating a tx prefetch at the BufferManager  
Start of transmission signal to TxEncoder  
enable reception signal to RxDecoder  
indicator that the waiting time was already expired  
Transceive state2  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
43 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 46.ꢀTransceive Group...continued  
Value low nibble  
(HEX)  
Debug Function  
1
0
Transceive state1  
Transceive state0  
Table 47.ꢀReceiver Data Transfer Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
8
7
6
5
4
3
2
1
0
13.56 MHz clock is put out  
Signal from SigPro indicating a collision  
Signal from SigPro indicating end of data  
Signal from SigPro indicating that data is valid  
Signal from SigPro indicating received data  
Status signal set by rx_start, ends when RX is completely over  
Status signal indicating actual reception of data  
Reset signal for receiver chain (at start of RX)  
Internal RxDec bitclk  
Table 48.ꢀReceiver Error Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
8
13.56 MHz clock is put out  
7
Combination of data/protocol error and collision  
Set if RxMultiple is set, and the LEN byte indicates more than 28 bytes  
RFU  
6
5..3  
2
Set if a collision has been detected  
Protocol error flag  
1
0
Data integrity error flag (Parity, CRC (Collision))  
CONFIGURE_TESTBUS_ANALOG - 0x19  
Table 49.ꢀCONFIGURE_TESTBUS_ANALOG  
Payload  
Length Value/Description  
(byte)  
Command code  
Parameter  
1
1
0x19  
Defines test signal to be provided on AUX2, the analog test signal  
type is defined by value (see table 49.)  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
44 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 49.ꢀCONFIGURE_TESTBUS_ANALOG...continued  
Payload  
Length Value/Description  
(byte)  
1
Defines test signal to be provided on AUX1, the analog test signal  
type is defined by value (see table 49.)  
Description:  
This command enables the Analog test bus.  
The command uses two parameters (each with length of 1 byte) for definition of the  
analog test signal type.  
The test bus must be enabled in the EEPROM settings (EEPROM address: 0x17,  
TESTBUS_ENABLE) before any signal will appear on the output pins.  
Please note "that waiting until BUSY is high" is required by the host as described in  
chapter 11.4.1.  
Table 50.ꢀANALOG TEST SIGNALS  
Signal Name  
Parameter  
Description  
DAC_VALUE_OUT  
ADC_DATA_Q  
ADC_DATA_I  
0h  
1h  
2h  
3h  
4h  
5h  
Analog output of value defined in register DAC_VALUE  
Receiver Q-channel signal;  
Receiver I-channel signal;  
ADC_DATA_QS  
ADC_DATA_IS  
AUTO_MIN_LEVEL  
Filtered Q-Channel Signal (rect-filter)  
Filtered I-Channel Signal (rect-filter)  
Defines threshold for bit detection during start bit (adjusted by minlevel register  
setting), after start bit detection autominlevel is 50% of the signal strength  
(nonlinear reduction of the correlation result)  
CORR_FILT  
CORR  
6h  
7h  
Filtered correlation result; bit detected if above autominlevel  
Correlation result, used to adjust autominlevel (start bit  
detection)  
RFU  
8h  
9h  
-
BPSK_SUM  
Result of correlation for BPSK (if above threshold (adjusted by MIN_LEVELP  
register) a phase shift is detected)  
DPRESENT_SUM  
Ah  
Correlation value for subcarrier detection (if above threshold (adjusted by  
minlevel register setting) subcarrier is present); only valid for if BPSK enabled; it  
is derived by a linear reduction of dpresent_sum_raw  
11.5 Memories  
11.5.1 Overview  
The PN5180 implements two different memories: EEPROM and RAM.  
At start-up, all registers are initialized with default values. For the registers defining  
the RF functionality, the default values are not set to execute any contactless  
communication.  
The registers defining the RF functionality are initialized by using the instruction  
LOAD_RF_CONFIGURATION.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
45 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Using the instruction LOAD_RF_CONFIGURATION, the initialization of the registers  
which define the RF behavior of the IC performs an automatic copy of a predefined  
EEPROM area (read/write EEPROM section1 and section2, register reset) into the  
registers defining the RF behavior.  
11.5.2 EEPROM  
The EEPROM memory maintains its content during Power-OFF, whereas the RAM  
(Buffers) does not keep any data stored in this volatile memory.  
The EEPROM address range is from 0x00 to 0xFF.  
The EEPROM contains information about Die Identifier, Firmware Version, System  
configuration and RF settings for fast configuration.  
Table 51.ꢀEEPROM Addresses  
EEPROM Field / Value  
Address  
Access Size  
(bytes)  
Bits  
Comments  
(HEX)  
0x00  
Die identifier  
R
R
16  
-
Each die has a unique Identifier. This entry  
can be treated as 16 byte unique random  
number.  
0x10  
Product Version  
2
2
15-0 Product Version (Major version, minor version)  
- this indicates the original Firmware version  
as loaded into the PN5180 during production.  
A secure firmware update does not change  
the content of these EEPROM addresses.  
0x12  
Firmware Version  
R
15-0 Firmware Versions (major version, minor  
version):  
FW 3.A  
EEPROM address 0x12: 0x0A  
EEPROM address 0x13: 0x03  
FW 4.0  
EEPROM address 0x12: 0x00  
EEPROM address 0x13: 0x04  
FW 4.1  
EEPROM address 0x12: 0x01  
EEPROM address 0x13: 0x04  
0x14  
EEPROM Version  
R
2
15-0 EEPROM Version Number (default  
initialization values, e.g. for Load_RF_Config,  
register reset values, default DPC settings)  
For PN5180A0HN/C1 and PN5180A0HN/C2:  
Version is: 00 93  
0x16  
0x17  
IDLE_IRQ_AFTER_BOOT  
TESTBUS_ENABLE  
RW  
RW  
1
1
7-0  
7-0  
This enables the IDLE IRQ to be set after the  
boot has finished  
If bit 7 is set, the test bus functionality is  
enabled.  
0x18  
0x1A  
XTAL_BOOT_TIME  
IRQ_PIN_CONFIG  
RW  
RW  
2
1
15-0 XTAL boot time in us  
7-0  
Configures the state (active high/low) and  
clearing conditions for the IRQ pin  
0
Cleared: IRQ active low  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
46 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 51.ꢀEEPROM Addresses...continued  
EEPROM Field / Value  
Address  
Access Size  
(bytes)  
Bits  
Comments  
(HEX)  
Set: IRQ active high  
1
Cleared: Use IRQ_CLEAR to clear IRQ pin  
Set: Auto Clear on Read of IRQ_STATUS  
0x1B  
MISO_PULLUP_ENABLE  
RW  
1
7-0  
2-0  
Configures the pullup resistor for the SPI  
MISO  
000b - no pulldown  
001b - no pullup  
010b - pulldown  
011b - pullup  
7-3  
04h - FFh RFU  
0x1C  
PLL_DEFAULT_SETTING  
R/W  
8
PLL configuration of clock input frequency  
in case a 13.56 MHz Crystal is not used.  
The PLL setting needs to be written as two  
4-byte words to the memory, little endian.  
This means that the e.g the value for 8 MHz  
(03A3531002A12210) shall be written as  
follows to the EPROM (ascending addresses  
starting at 0x1C):  
10 53 A3 0310 22 A1 02  
8 MHz: 03A35310 - 02A12210  
12 MHz: 02A38288 - 02E10190  
16 MHz: 02E2B1D8 - 02D11150  
24 MHz: 02D35138 - 02E0E158 (default)  
0x24  
PLL_DEFAULT_SETTING_ALM  
R/W  
8
-
PLL configuration for the Active Load  
Modulation  
0x2c  
0x30  
PLL_LOCK_SETTING  
CLOCK_CONFIG  
R/W  
RW  
4
1
31-0 Lock Settings for the PLL - do not change  
Configures the source of the clock, either  
27.12 MHz crystal or external clock with PLL  
refactoring  
7-3  
2-0  
RFU  
000b: External clock source(8 MHz, 12 MHz,  
16 MHz, 24 MHz. Default 24 MHz);  
001b: RFU;  
010b: RFU;  
011b: XTAL;  
100b-111b: RFU  
0x31  
RFU  
RW  
1
7-0  
-
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
47 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 51.ꢀEEPROM Addresses...continued  
EEPROM Field / Value  
Address  
Access Size  
(bytes)  
Bits  
Comments  
(HEX)  
0x32  
MFC_AUTH_TIMEOUT  
RW  
2
15-0 Timeout value used for each of the Auth1  
& Auth2 stages during MFC Authenticate  
(MIFARE Classic Authenticate). This is an  
unsigned 16-bit integer value in little endian  
order. The timebase for the timeout is 1.0  
microseconds. Example: The default value  
of 0x0, 0x5 refers actually to 0x500 (1280  
decimal) resulting in a timeout of 1.28 ms for  
each of the authentication stages.  
0x34  
LPCD_REFERENCE_ VALUE  
RW  
1
3-0  
LPCD Gear Number; defines the gear  
used for the LPCD in case of LPCD AUTO  
CALIBRATION  
7-4  
7-0  
7-0  
RFU  
-
0x35  
0x36  
RFU  
1
1
LPCD_FIELD_ON_TIME  
RW  
RW  
1 byte delay * 8 in microseconds settling time  
for AGC measurement  
0x37  
LPCD_THRESHOLD  
1
7-0  
1 byte AGC threshold value which is used to  
compare against the (Current AGC value –  
Reference AGC) during the Low-Power Card  
Detection phase  
0x38  
LPCD_REFVAL_GPO_  
CONTROL  
RW  
1
7-0  
1:0  
This byte in EEPROM is used to control the  
GPIO assertion during wake-up and LPCD  
card detect.  
LPCD Mode  
00b - LPCD AUTO CALIBRATION  
Performs one calibration with gear number as  
defined in EEPROM (LPCD_REFERENCE_  
VALUE, bit 3:0) and starts LPCD afterwards.  
01b - LPCD SELF CALIBRATION  
LPCD is started using the gear (AGC_GEAR)  
and AGC reference value (AGC_REF) as  
available in register ACG_REF_CONFIG  
10b - RFU  
11b - RFU  
2
3
GPO1 Control for external TVDD DC-DC  
0b - Disable Control of external TVDD DC-DC  
via GPO1  
1b - Enable Control of external TVDD DC-DC  
via GPO1  
GPO2 Control for external TVDD DC-DC  
during wake-up from standby  
0b - Disable Control of external TVDD DC-DC  
via GPO2 on LPCD Card Detect  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
48 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 51.ꢀEEPROM Addresses...continued  
EEPROM Field / Value  
Address  
Access Size  
(bytes)  
Bits  
Comments  
(HEX)  
1b - Enable Control of external TVDD DC-DC  
via GPO2 on LPCD Card Detect  
4
GPO1 Control for external TVDD DC-DC  
during wake-up from standby  
0b - Disable Control of external TVDD DC-DC  
via GPO1 on wake-up from standby  
1b - Enable Control of external TVDD DC-DC  
via GPO1 on wake-up from standby  
0x39  
0x3A  
LPCD_GPO_TOGGLE_  
BEFORE_FIELD_ON  
1
1
7-0  
7-0  
1 byte value defines the time between setting  
GPO until Field is switched on. The time can  
be configured in 8 bits in 5us steps  
LPCD_GPO_TOGGLE_AFTER_ RW  
FIELD_OFF  
1 byte value defines the time between  
Field Off and clear GPO. The time can be  
configured in 8 bits in 5us steps  
0x3B  
0x3C  
NFCLD_SENSITIVITY_VAL  
RW  
RW  
1
1
7-0  
7-0  
NFCLD Sensitivity value to be used during the  
RF On Field handling Procedure.  
FIELD_ON_CP_SETTLE_TIME  
Delay in 4us steps (range: 0 - 1020us) to wait  
during RF on for charge pumps to be settled,  
to avoid initial Tx driver overcurrent  
0x3D  
0x3F  
RFU  
RW  
RW  
2
1
15-0 RFU  
RF_DEBOUNCE_TIMEOUT  
7-0 Defines the delay time in steps of 10 µs  
between two samples of the external RF field  
detection. This time applies only in card mode.  
0x40  
0x42  
SENS_RES  
NFCID1  
RW  
RW  
2
3
15-0 Response to ReqA / ATQA in order byte 0,  
byte 1  
23-0 If Random UID is disabled (EEPROM address  
0x51), the content of these addresses is used  
to generate a Fixed UID. The order is byte 0,  
byte 1, byte 2; the first NFCID1 byte is fixed to  
08h, the check byte is calculated automatically  
0x45  
0x46  
SEL_RES  
RW  
1
7-0  
-
Response to Select  
FELICA_POLLING_RESPONSE RW  
18  
FeliCa Polling response (2 bytes (shall be 01h,  
FEh) + 6 bytes NFCID2 + 8 bytes Pad + 2  
bytes system code)  
0x51  
RandomUID_enable  
RW  
1
7-0  
Enables the use of a RandomUID in card  
modes. If enabled (EEPROM configuration,  
Address 0x51), a random UID is generated  
after each RF-off.  
0: Use UID stored in EEPROM 1: Randomly  
generate the UID  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
49 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 51.ꢀEEPROM Addresses...continued  
EEPROM Field / Value  
Address  
Access Size  
(bytes)  
Bits  
Comments  
(HEX)  
0x58  
RANDOM_UID_ENABLE  
RW  
1
7-0  
Enables the use of a RandomUID in card  
modes. If enabled (EEPROM configuration,  
Address 0x51), a random UID is generated  
after each RF-off.  
0: Use UID stored in EEPROM  
1: Randomly generate the UID  
0x59  
DPC_CONTROL  
RW  
1
7-0  
0
Enables DPC and configures DPC gears  
DPC_ENABLE cleared: OFF; set: ENABLE  
3-1  
GEAR_STEP_SIZE: binary definition of gear  
step size; position of Bit 1 is the LSB of gear  
step size  
7-4  
START_GEAR; binary definition of start  
gear, Position of bit 4 is the LSB of start gear  
number  
0x5A  
DPC_TIME  
RW  
2
15-0 Sets the value for the periodic regulation. Time  
base is 1/20 MHz. (Example: Value of 20000  
is equal to 1 ms)  
0x5C  
0x5D  
DPC_XI  
RW  
RW  
1
2
7-0  
Trim Value of the AGC value  
Settings for AGC control loop  
Duration  
AGC_CONTROL  
9-0  
10  
Duration enable  
12-11 Step size  
13  
Step size enable  
15-14 RFU  
0x5F  
DPC_THRSH_HIGH  
RW  
30  
-
Defines the AGC high threshold for each gear.  
DPC_AGC_GEAR_LUT_SIZE defines the  
number of gears. DPC_AGC_GEAR_LUT_  
SIZE can be 1..15. The threshold is defined  
by 2 bytes (bit0 located in the byte with lower  
address),  
0x7D  
0x7F  
0x80  
DPC_THRSH_LOW  
DPC_DEBUG  
RW  
RW  
RW  
2
1
1
15-0 RFU  
7-0  
7-0  
Enables the debug signals  
DPC_AGC_SHIFT_VALUE  
Shift Value for the AGC dynamic low adoption  
to prevent oscillation  
0x81  
0x82  
DPC_AGC_GEAR_LUT_ SIZE  
DPC_AGC_GEAR_LUT  
RW  
RW  
1
7-0  
-
Defines the number of gears for the lookup  
table (LUT, value can be between 1...15)  
15  
Defines the Gear Setting for each step size  
starting with Gear0 at lowest address up to 15  
gears. Each entry contains a definition for the  
DPC_CONFIG register content. Bits 8:11 are  
not taken into account.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
50 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 51.ꢀEEPROM Addresses...continued  
EEPROM Field / Value  
Address  
Access Size  
(bytes)  
Bits  
Comments  
(HEX)  
0x91  
DPC_GUARD_FAST_ MODE  
RW  
2
15-0 Guard time after AGC fast mode has been  
triggered. This happens in the following  
scenarios:  
- End of Receive  
- End of Transmit  
- After a gear switch  
Time base is 1/20 MHz (Example: Value of  
2000 is equal to 100 μs)  
0x93  
0x95  
DPC_GUARD_SOF_ DETECTED RW  
2
2
15-0 Guard time after SoF or SC detection. This is  
to avoid any DPC regulation between SoF/SC  
and actual begin of reception. Time base is  
1/20MHz (Example: Value of 2000 is equal to  
100 μs)  
DPC_GUARD_FIELD_ON  
RW  
15-0 Guard time after Gear Switch during FieldOn  
instruction. Time base is 1/20MHz (Example:  
Value of 2000 is equal to 100 μs)  
0x97  
0x98  
PCD_AWC_DRC_LUT_SIZE  
PCD_AWC_DRC_LUT  
RW  
1
3:0  
7:4  
AWC Lookup table size in number of elements  
DRC lookup table size in number of elements  
R/W  
80  
Adaptive Waveshaping Control (AWC) and  
Adaptive Receiver Control (ARC) configuration  
dynamic 3:0  
7:4  
DPC Gear  
TAU_MOD_FALLING (Sign bit (MSB) + 3-bit  
value)  
11:8  
TAU_MOD_RISING (Sign bit (MSB)+ 3-bit  
value)  
15:12 RESIDUAL_CARRIER (Sign bit (MSB) + 3-bit  
value)  
28-16 Bitmask identifying technology and baud rate:  
bit 16#: 0000.0000.0000b - A106  
bit 17#: 0000.0000.0001b - A212  
bit 18#: 0000.0000.0010b - A424  
bit 19#: 0000.0000.0100b - A848  
bit 20#: 0000.0000.1000b - B106  
bit 21#: 0000.0001.0000b - B212  
bit 22#: 0000.0010.0000b - B424  
bit 23#: 0000.0100.0000b - B848  
bit 24#: 0000.1000.0000b -F212  
bit 25#: 0001.0000.0000 -F424  
bit 26#: 0010.0000.0000b - 15693 ASK 100  
bit 27#: 0100.0000.0000 - 15693 ASK 10  
bit 28#: 1000.0000.0000b - ISO18000 3M3  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
51 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 51.ꢀEEPROM Addresses...continued  
EEPROM Field / Value  
Address  
Access Size  
(bytes)  
Bits  
Comments  
(HEX)  
31-29 RFU  
Digital delay can be enabled in firmware by  
0xE8  
Misc_Config  
R/W  
1
setting Bit3 of bMisc_Config byte in EEPROM.  
The digital delay of highest baud rate for each  
technology is stored in DIGITAL_CONFIG  
location in EEPROM.  
The host software now does need not  
calculate the additional delay required for  
every technology baud-rate.  
0
DigitalDelayFWEnabled. 0: Disable digital  
delay in FW. 1: Enable digital delay.  
2-1  
3
Clif timer select 00b: timer0 -01b: timer1 -10b:  
timer2  
Enable/ Disable Internal regulated 3.3 V  
output (LDO_OUT)  
4
DPC_XI_RAM_CORRECTION Enable/Disable  
bit: If this bit is set, the trim value for the AGC  
is the sum of the trim value stored in EEPROM  
and in the SYSTEM_CONFIG register (bits  
19:12)  
7-5  
7-0  
RFU  
0xE9  
0xEA  
0xEB  
0xEC  
DigiDelay_A_848 RW  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
Base digiDelay in used for type A: 848 base,  
424 = base*2, 212 = Base*4, 106 = Base*8  
DigiDelay_B_848 RW  
7-0  
7-0  
7-0  
Base digiDelay in used for type B 848 base,  
424 = base*2, 212 = Base*4, 106 = Base*8  
DigiDelay_F_424 RW  
Base digiDelay in used for type F 424 base,  
212 = Base*2  
DigiDelay_15693 RW_FastHigh  
Base digiDelay in used for ISO15693 FAST_  
HIGH base, HIGH = base*2  
0xED  
0xEE  
0xEF  
0xF0  
DigiDelay_18000_2_848  
DigiDelay_18000_4_848  
RFU  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
7-0  
7-0  
7-0  
7-0  
Base digiDelay in used for type 18000_2_848  
Base digiDelay in used for type 18000_4_848  
-
TestbusMode  
1 = TESTBUS_MODE_ANALOG. 2 =  
TESTBUS_MODE_DIGITAL  
0xF1  
TbSelect  
R/W  
1
7-0  
NUM_VALID_DIGI_TBSELECT =  
{0x00,0x01,0x10,0x1B,0x1D,0x30,0x58,0x70,0x73,0xB9}  
NUM_VALID_ANA_DAC_SRC_CONFIG =  
{0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x09,  
0x0a}  
0xF2  
0xF3  
MapTb1_to_Tb0  
R/W  
R/W  
1
1
7-0  
7-0  
0: Map Tb0 to Tb1 (default)  
1: Map Tb1 to Tb0  
NumPadSignalMaps  
Number of Pad signal maps configured.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
52 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 51.ꢀEEPROM Addresses...continued  
EEPROM Field / Value  
Address  
Access Size  
(bytes)  
Bits  
Comments  
(HEX)  
0xF4  
PadSignalMap  
R/W  
4
7-0  
0xXY (X: Pad Location, Y: Test bus Bit  
position)  
X = Pad location  
0 - IRQ (PWR_REQ) pin  
1 - AUX2 (CLK_REQ) pin  
2 - DWL_REQ pin  
3 - AUX1 (TB6) pin  
4-15 - RFU  
Y = bit position of the test bus to be routed to  
the pad  
7..0 - bit7...bit0 on the test bus  
8 - 13 MHz clock is available  
0xF5-0xF7 RFU  
-
1
1
1
7-0  
7-0  
7-0  
RFU  
0xF8  
0xF9  
TbDac1  
TbDac2  
R/W  
R/W  
dac1 sources are routed to IRQ  
dac2 sources are routed to AUX2  
From firmware V4.1 onwards:  
0xFA  
Legacy_typeB_handling_enable  
R/W  
1
1
Enable/Disable handling of legacy Type B  
card: Enable: bit 0 is set, Disable: Bit 0 is  
cleared  
0xFB  
0xFC  
Legacy_typeB_handling_interval R/W  
1
1
1
1
Length of the added extra modulation pulse in  
micro seconds.  
DPC Config  
R/W  
-
1
Configuration to enable DPC based on  
required IRQ's  
0xFD-0xF RFU  
E
7-0  
RFU  
11.5.3 RAM  
The RAM is used as Input/Output buffer, and implements independent buffers for input  
and output. The buffers are able to improve the performance of a system with limited  
interface speed.  
11.5.4 Register  
Registers configure the PN5180 for a specific RF protocol and other functionality.  
Registers can be initialized using the host interface or by copying data from EEPROM to  
the register as done by the command LOAD_RF_CONFIG.  
It is mandatory to use the command LOAD_RF_CONFIG for selection of a specific RF  
protocol.  
11.6 Debug Signals  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
53 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
11.6.1 General functionality  
The debugging of the RF functionality of the PN5180 is supported by a configurable  
test signal output possibility. Up to 2 analog or up to 4 digital test signals can be routed  
to configurable output pins of the PN5180. Test signals can be either analog or digital  
signals. The analog test signals contain the digital data of the signal processing unit of  
the PN5180, converted to analog signals by two DAC’s to allow the inspection of these  
signals in real time.  
The test bus functionality as such must be enabled in the EEPROM settings (EEPROM  
address: 0x17, TESTBUS_ENABLE).  
Two commands exist for configuration of the digital and analog debug signal output,  
CONFIGURE_TESTBUS_DIGITAL and CONFIGURE_TESTBUS_ANALOG.  
11.6.2 Digital Debug Configuration  
The digital debug output is configured by the command  
CONFIGURE_TESTBUS_DIGITAL. Two parameters are passed within this command.  
The first parameter (1 byte) defines the test signal group. Out of this test signal group,  
one signal can be selected for output on a pin of the PN5180 (4 bits).  
The signal type of the chosen test signal group is selected by the low-nibble of parameter  
2. A value of 8 on this position selects the 13.56 MHz clock to be put out on the selected  
pin.  
The high nibble of parameter 2 (1 byte) selects the output pin for the selected test signal.  
The following parameter groups are possible:  
Table 52.ꢀDebug Signal Group Selection  
Command parameter Debug Signal Group  
(hex)  
01  
1B  
1D  
30  
58  
70  
73  
Clock signal group  
Transmitter encoder group  
Timer group  
Card mode protocol group  
Transceive group  
Receiver data transfer group  
Receiver error group  
The second parameter defines the pin which is used for output of the test signal in the  
high nibble. The signal from one of the Debug Signal groups that are put out in the low  
nibble.  
11.6.2.1 Debug signal groups  
Table 53.ꢀClock Signal Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
8
RFU  
13.56 MHz clock is put out  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
54 / 160  
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 53.ꢀClock Signal Group...continued  
Value low nibble  
(HEX)  
Debug Function  
7
6
5
4
3
2
1
0
CLIF clock reset  
Signal indicating the PLL is locked  
Signal indicating an external Field is present  
20 MHz clock from the high frequency oscillator  
27.12 MHz clock from the PLL  
27.12 MHz clock from the RF clock recovery  
Multiplexed 27.12 MHz clock  
Multiplexed 13.56 MHz clock  
Table 54.ꢀTransmitter Encoder Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
8
RFU  
13.56 MHz clock is put out  
RFU  
7..2  
1
Output TX envelope  
Tx-IRQ  
0
Table 55.ꢀTimer Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
8
13.56 MHz clock is put out  
Running flag of timer T0  
Expiration flag of timer T0  
Running flag of timer T1  
Expiration flag of timer T1  
Running flag of timer T2  
Expiration flag of timer T2  
RFU  
7
6
5
4
3
2
1..0  
Table 56.ꢀCard mode Protocol Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
55 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 56.ꢀCard mode Protocol Group...continued  
Value low nibble  
(HEX)  
Debug Function  
8
7
6
5
4
3
2
1
0
13.56 MHz Clock is put out  
Synchronized clock-fail signal  
Flag indicating that ISO/IEC14443-Type A (Miller) was detected  
Flag indicating that FeliCa 212 kBd (Manchester) was detected  
Flag indicating that FeliCa 424 kBd (Manchester) was detected  
Flag indicating that ISO/IEC14443-Type B (NRZ) was detected  
Flag indicating that the EOF was detected  
CM data signal (Miller / Manchester / NRZ)  
Signal indicating that the current data is valid  
Table 57.ꢀTransceive Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
8
7
6
5
4
3
2
1
0
13.56 MHz clock is put out  
Signal indicating that the tx prefetch was completed  
Signal initiating a tx prefetch at the BufferManager  
Start of transmission signal to TxEncoder  
enable reception signal to RxDecoder  
indicator that the waiting time was already expired  
Transceive state2  
Transceive state1  
Transceive state0  
Table 58.ꢀReceiver Data Transfer Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
8
7
6
5
4
3
2
13.56 MHz clock is put out  
Signal from SigPro indicating a collision  
Signal from SigPro indicating end of data  
Signal from SigPro indicating that data is valid  
Signal from SigPro indicating received data  
Status signal set by rx_start, ends when RX is completely over  
Status signal indicating actual reception of data  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
56 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 58.ꢀReceiver Data Transfer Group...continued  
Value low nibble  
(HEX)  
Debug Function  
1
0
Reset signal for receiver chain (at start of RX)  
Internal RxDec bitclk  
Table 59.ꢀReceiver Error Group  
Value low nibble  
(HEX)  
Debug Function  
9..15  
RFU  
8
13.56 MHz clock is put out  
7
Combination of data/protocol error and collision  
Set if RxMultiple is set, and the LEN byte indicates more than 28 bytes  
RFU  
6
5..3  
2
Set if a collision has been detected  
Protocol error flag  
1
0
Data integrity error flag (Parity, CRC (Collision))  
11.6.2.2 Digital Debug Output Pin Configuration  
Table 60.ꢀDebug Signal Output Pin Configuration  
Value high nibble  
(HEX)  
Debug Function (PIN)  
0
IRQ pin (B2 on TFBGA64 -39 on HVQFN40)  
GPO1 pin (B3 on TFBGA64 - 38 on HVQFN40)  
AUX2 pin (C1 on TFBGA64 - 02 on HVQFN40)  
AUX1 pin (B1 on TFBGA64 - 40 on HVQFN40)  
RFU  
1
2
3
all others  
The Digital Debug output pins are defined by the bits 4:7 in TB_POS  
11.6.3 Analog Debug Configuration  
For the output of an analog debug signal, two pins are available, AUX1 and AUX2.  
Internal digital signals are provided in real time on the analog output pins without the  
need of using a high-speed digital interface. Two provide this real-time debugging  
functionality, two internal DAC’s (Digital Analog Converter) convert internal digital signals  
of the PN5180 to analog analog signals and provide this signals on the output pins. Up to  
two analog output signals can be provided at the output pins AUX1, AUX2.  
The analog signals provided at the output pins are defined by two parameters of the  
command CONFIGURE_TESTBUS_ANALOG.  
11.7 AUX2 / DWL_REQ  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
57 / 160  
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
11.7.1 Firmware update  
The PN5180 offers the possibility to upgrade the internal Firmware.  
The pin AUX2/DWL_REQ is a double function pin. During start-up (time from power-up  
of the IC until IDLE IRQ is raised), the pin is used in input mode. If the polarity on this  
AUX2/DWL_REQ pin during start-up is high, the PN5180 enters the download mode.  
If the boot process is finished (indicated by the IDLE IRQ), the pin is switched to output  
mode and the pin can be used for general debug purpose.  
Recommended sequence is to set the RESET_N level to 0, set AUX2 pin level to 1 and  
release RESET_N to 1.  
Exiting the download mode is performed by setting the AUX2 pin to 0 and perform a reset  
of the PN5180.  
11.7.2 Firmware update command set  
The PN5180 uses a dedicated host interface command set for download of new  
firmware. The physical SPI host interface is used for download of a new firmware image.  
Security features are implemented to avoid intentional or unintentional modifications of  
the firmware image. The access to the IC is locked based on authentication mechanism  
to avoid unauthorized firmware downloads. The integrity of the firmware is ensured  
based on a secure hash algorithm,  
The Firmware image can be identified based on a version number, which contains major  
and minor number.  
For security reasons, the download of a smaller major version number than currently  
installed on the PN5180 is not possible.  
11.8 RF Functionality  
11.8.1 Supported RF Protocols  
11.8.1.1 Communication mode for ISO/IEC 14443 type A and for MIFARE Classic  
The physical level of the communication is shown in Figure 19.  
(1)  
ISO/IEC 14443 A  
ISO/IEC 14443 A CARD  
READER  
(2)  
001aam268  
Figure 20.ꢀ Read/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE  
Classic  
The physical parameters are described in Table 61.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
58 / 160  
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 61.ꢀCommunication overview for ISO/IEC 14443 type A and read/write mode for MIFARE Classic  
Communication  
direction  
Signal type  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
848 kbit/s  
Reader to card (send  
reader side  
100 % ASK  
100 % ASK  
100 % ASK  
100 % ASK  
data from the PN5180 modulation  
to a card) fc = 13.56  
bit encoding  
MHz  
modified Miller  
encoding  
modified Miller  
encoding  
modified Miller  
encoding  
modified Miller  
encoding  
bit rate [kbit/s]  
fc/128  
fc/64  
fc/32  
fc/16  
Card to reader  
(PN5180 receives data modulation  
card side  
subcarrier load  
modulation  
subcarrier load  
modulation  
subcarrier load  
modulation  
subcarrier load  
modulation  
from a card)  
subcarrier  
fc / 16  
fc / 16  
fc / 16  
fc / 16  
frequency  
bit encoding  
Manchester  
encoding  
BPSK  
BPSK  
BPSK  
The PN5180 connection to a host is required to manage the complete ISO/IEC 14443  
type A and MIFARE Classic communication protocol. Figure 20 shows the data coding  
and framing according to communication mode for ISO/IEC 14443 type A and for  
MIFARE Classic.  
ISO/IEC 14443 A framing at 106 kBd  
start  
8-bit data  
8-bit data  
8-bit data  
odd  
odd  
odd  
parity  
parity  
parity  
start bit is 1  
ISO/IEC 14443 A framing at 212 kBd, 424 kBd and 848 kBd  
start  
even  
parity  
8-bit data  
8-bit data  
8-bit data  
odd  
odd  
parity  
parity  
start bit is 0  
burst of 32  
subcarrier clocks  
even parity at the  
end of the frame  
001aak585  
Figure 21.ꢀ Data coding and framing according to ISO/IEC 14443 A card response  
The internal CRC coprocessor calculates the CRC value based on the selected protocol.  
In card mode for higher baud rates, the parity is automatically inverted as end of  
communication indicator. The selected protocol needs to be implemented on a host  
processor.  
11.8.1.2 ISO/IEC14443 B functionality  
The physical level of the communication is shown in Figure 21.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
59 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
(1)  
ISO/IEC 14443 B  
ISO/IEC 14443 B CARD  
READER  
(2)  
001aal997  
1. Reader to Card NRZ, transfer speed 106 kbit/s to 848 kbit/s  
2. Card to reader, Subcarrier Load Modulation Manchester Coded or BPSK, transfer speed 106  
kbit/s to 848 kbit/s  
Figure 22.ꢀ ISO/IEC 14443 B read/write mode communication diagram  
The physical parameters are described in Table 62.  
Table 62.ꢀCommunication overview for ISO/IEC 14443 B reader/writer  
Communication  
direction  
Signal type  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
848 kbit/s  
Reader to card (send  
reader side  
10 % ASK  
10 % ASK  
10 % ASK  
10 % ASK  
data from the PN5180 modulation  
to a card) fc = 13.56  
bit encoding  
MHz  
NRZ  
NRZ  
NRZ  
NRZ  
bit rate [kbit/s]  
128 / fc  
64 / fc  
32 / fc  
16 / fc  
Card to reader  
(PN5180 receives data modulation  
card side  
subcarrier load  
modulation  
subcarrier load  
modulation  
subcarrier load  
modulation  
subcarrier load  
modulation  
from a card)  
subcarrier  
fc / 16  
fc / 16  
fc / 16  
fc / 16  
frequency  
bit encoding  
BPSK  
BPSK  
BPSK  
BPSK  
The PN5180 requires the host to manage the ISO/IEC 14443 B protocol.  
11.8.1.3 FeliCa RF functionality  
The FeliCa mode is the general reader/writer to card communication scheme according  
to the FeliCa specification. The communication on a physical level is shown in Figure 22.  
1. PCD to PICC 8-30 % ASK  
Manchester Coded,  
baudrate 212 to 424 kbaud  
FeliCa CARD  
(PICC)  
FeliCa READER  
(PCD)  
2. PICC to PCD, > Load modulation  
Manchester Coded,  
baudrate 212 to 424 kbaud  
001aam271  
Figure 23.ꢀ FeliCa read/write communication diagram  
The physical parameters are described in Table 63.  
Table 63.ꢀCommunication for FeliCa reader/writer  
Communication  
direction  
Signal type  
Transfer speed FeliCa FeliCa higher transfer  
speeds  
212 kbit/s  
424 kbit/s  
Reader to card (send  
reader side  
8 % to 30 % ASK  
8 % to 30 % ASK  
data from the PN5180 to modulation  
a card) fc = 13.56 MHz  
bit encoding  
Manchester encoding  
Manchester encoding  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
60 / 160  
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 63.ꢀCommunication for FeliCa reader/writer...continued  
Communication  
direction  
Signal type  
Transfer speed FeliCa FeliCa higher transfer  
speeds  
212 kbit/s  
fc/64  
424 kbit/s  
fc/32  
bit rate  
Card to reader (PN5180 card side  
Load modulation,  
Load modulation,  
receives data from a  
card)  
modulation  
bit encoding  
Manchester encoding  
Manchester encoding  
The PN5180 needs to be connected to a host which implements the FeliCa protocol.  
Multiple reception cycles (RxMultiple)  
For FeliCa timeslot handling in PCD mode, PN5180 implements multiple reception  
cycles. The feature is enabled by setting the control bit RX_MULTIPLE_ENABLE in the  
register TRANSCEIVE_CONTROL in combination with the transceive state machine.  
Unlike for normal operation, the receiver is enabled again after a reception is finished.  
As there is only one receive buffer available, but several responses are expected,  
the buffer is split into sub buffers of 32 byte length. Hence, the maximum number of  
responses which can be handled is limited to 8. As the maximum length defined for a  
FeliCa response is 20 bytes, the buffer size defined does fulfill the requirements for that  
use-case. The first data frame received is copied onto buffer address 0. The subsequent  
frames are copied to the buffer address 32 * NumberOfReceivedFrames. The maximum  
number of data bytes allowed per frame is limited to 28.  
All bytes in the buffer between the payload and the status byte are uninitialized  
and therefore invalid. The firmware on the host shall not use these bytes. The last  
word of the sub buffer (position 28 to 31) contains a status word. The status word  
contains the number of received bytes (may vary from the FeliCa length in case of an  
error), the CLError flag indicating any error in the reception (which is a combination  
of 3 individual error flags DATA_INTEGRITY_ERROR || PROTOCOL_ERROR ||  
COLLISION_DETECTED) the individual error flags and the LenError flag indicating an  
incorrect length byte (either length byte is greater than 28 or the number of received  
bytes is shorter than indicated by the length byte). All unused bits (RFU) are masked to  
0.  
PayLoad  
XXX  
Status  
32 byte  
RFU  
[15:13]  
RFU  
[7:5]  
RFU [31:24]  
RFU [23:16]  
Len [4:0]  
4 byte  
aaa-009166  
Figure 24.ꢀ RxMultiple data format  
There are 4 different cases possible for a reception:  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
61 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
1. Correct reception - Data integrity is correct (no CRC error), and additionally the  
number of bytes received is equal to the length byte. Data is written to the buffer. No error  
set in status byte.  
2. Erroneous reception - Data is incorrect (data integrity error - CRC wrong) but frame  
length is correct. Data is written to buffer and the bits CLError and DataError in the status  
byte are set.  
3. Erroneous reception - the length byte received indicates a frame length greater than  
28. No data is copied to buffer but status byte with LenError bit set is written.  
4. Erroneous reception - the length byte is larger than the number of data bytes, which  
have been received. Data received is written to buffer and the ProtocolError bit in the  
status byte is set.  
For each reception, the RX_IRQ in the IRQ_STATUS is set. The host firmware can  
disable the IRQ and use a timer for timeout after the last timeslot to avoid excessive  
interaction with the hardware. At the end of the reception, additionally the bit field  
RX_NUM_FRAMES_RECEIVED in the register RX_STATUS is updated to indicate the  
number of received frames.  
After the reception of the eight frames (which is the maximum supported), a state  
change to next expected state is executed (WaitTransmit for transceive command).  
It is possible to issue the IDLE command in order to leave the RxMultiple cycle.  
Consequently the reception is stopped. Upon start of a new reception cycle, the flag  
RX_NUM_FRAMES_RECEIVED is cleared.  
The duration between deactivate and reactivate is at minimum 2 RF cycles and can last  
typically up to 2 μs.  
11.8.1.4 ISO/IEC15693 functionality  
The physical parameters are described below.  
Table 64.ꢀCommunication for ISO/IEC 15693 reader/writer "reader to card"  
Communication direction  
Signal type  
Transfer speed  
fc/512 kbit/s  
Reader to card (send data from  
the PN5180 to a card)  
reader side modulation 10 % to 30 % ASK 90 % to 100 %  
ASK  
bit encoding  
bit length  
1/4  
302.08 μs  
Table 65.ꢀCommunication for ISO/IEC 15693 reader/writer "card to reader"  
Communication Signal type Transfer speed  
direction  
6.62 kbit/s  
13.24 kbit/s  
not supported single  
subcarrier  
26.48 kbit/s  
52.96 kbit/s[1]  
Card to reader  
card side  
not supported  
single  
subcarrier  
load  
modulation  
ASK  
(PN5180 receives modulation  
data from a card)  
fc = 13.56 MHz  
load  
modulation  
ASK  
bit length  
(μs)  
-
-
37.76 (3.746) 18.88  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
62 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 65.ꢀCommunication for ISO/IEC 15693 reader/writer "card to reader"...continued  
Communication Signal type Transfer speed  
direction  
6.62 kbit/s  
13.24 kbit/s  
26.48 kbit/s  
52.96 kbit/s[1]  
bit encoding -  
-
Manchester  
coding  
Manchester  
coding  
subcarrier  
frequency  
[MHz]  
-
-
fc/32  
fc/32  
[1] Fast inventory (page) read command only (ICODE proprietary command).  
11.8.1.5 ISO/IEC18000-3 Mode 3 functionality  
The ISO/IEC 18000-3 mode 3 is not described in this document. For a detailed  
explanation of the protocol, refer to the ISO/IEC 18000-3 standard.  
The diagram below illustrates the card presence check:  
Rx IRQ and  
CardCheck entry  
no collision  
CRC16+CRC5  
RX IRQ  
and collision  
Timer 1 IRQ  
RX IRQ and error  
ACK  
WAIT T2  
RX IRQ and no error  
PC/XPC  
Timer 1 IRQ  
Timer 1 IRQ  
NACK  
CardCheck EXIT  
Card Detected - Store  
PC/XPC  
CardCheck EXIT  
ACK collison  
CardCheck EXIT  
ACK timeout  
CardCheck EXIT  
Collison Error  
CardCheck EXIT  
No Card detected  
aaa-017295  
Figure 25.ꢀ EPC_GEN2 Card presence check  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
63 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Tag response  
available  
NO TagHandle  
status  
0x00  
Tag Reply  
length  
Valid bits in  
last byte  
Tag Reply  
1 byte  
1 byte  
1 byte  
n bytes (defined in  
Tag Reply Length)  
Tag response  
available  
TagHandle  
available  
status  
0x01  
Tag Reply  
length  
Valid bits in  
last byte  
Tag Reply  
Tag handle  
2 bytes  
1 byte  
1 byte  
1 byte  
n bytes (defined in  
TagReply Length)  
status  
0x02  
No Tag replied  
1 byte  
Two or more tags  
replied  
status  
0x03  
1 byte  
possible timeslot answers  
aaa-017298  
Figure 26.ꢀ EPC GEN2 possible timeslot answers  
11.8.1.6 NFCIP-1 modes  
Overview  
The NFCIP-1 communication differentiates between an Active and a Passive  
Communication Mode.  
Active Communication mode means both the initiator and the target are using their own  
RF field to transmit data.  
Passive Communication mode means that the target answers to an initiator command  
in a load modulation scheme. The initiator is active in terms of generating the RF field.  
Initiator: Generates RF field at 13.56 MHz and starts the NFCIP-1 communication.  
Target: responds to initiator command either in a load modulation scheme in Passive  
Communication mode or using a self-generated and self-modulated RF field for Active  
Communication mode.  
In order, to support the NFCIP-1 standard the PN5180 supports the Active and Passive  
Communication mode at the transfer speeds 106 kbit/s, 212 kbit/s and 424 kbit/s as  
defined in the NFCIP-1 standard.  
Active communication mode  
Active communication mode means both the initiator and the target are using their own  
RF field to transmit data.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
64 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Initial command  
host  
host  
NFC INITIATOR  
NFC TARGET  
1. initiator starts communication at  
selected transfer speed  
powered to  
powered for  
generate RF field  
digital processing  
response  
host  
host  
NFC INITIATOR  
NFC TARGET  
2. target answers at  
the same transfer speed  
powered for digital  
processing  
powered to  
generate RF field  
001aan216  
Figure 27.ꢀ Active communication mode  
Table 66.ꢀCommunication overview for active communication mode  
Communication  
direction  
106 kbit/s  
212 kbit/s  
424 kbit/s  
Initiator → Target  
Target → Initiator  
According to ISO/IEC 14443  
A 100 % ASK, modified Miller  
Coded  
According to FeliCa, 8 % to 30 % ASK  
Manchester Coded  
A dedicated host controller firmware is required to handle the NFCIP-1 protocol. For this  
purpose, NXP offers an NFC Reader library (check the NXP website) which supports  
Reader/Writer, P2P and CardEmulation modes.  
Passive communication mode  
Passive communication mode means that the target answers to an initiator command in  
a load modulation scheme. The initiator is active (powered) to generate the RF field.  
1. initiator starts communication  
at selected transfer speed  
host  
host  
NFC INITIATOR  
NFC TARGET  
2. targets answers using  
load modulated data  
at the same transfer speed  
powered to  
powered for  
generate RF field  
digital processing  
001aan217  
Figure 28.ꢀ Passive communication mode  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
65 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 67.ꢀCommunication overview for passive communication mode  
Communication  
direction  
106 kbit/s  
212 kbit/s  
424 kbit/s  
Initiator → Target  
According to ISO/IEC 14443 According to FeliCa, 8 % to 30 % ASK  
A 100 % ASK, Modified  
Miller Coded  
Manchester Coded  
Target → Initiator  
According to ISO/IEC 14443 According to FeliCa, > 14 % ASK  
A @106 kbit modified Miller Manchester Coded  
Coded  
A dedicated host controller firmware is required to handle the NFCIP-1 protocol.  
Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard.  
NFCIP-1 protocol support  
The NFCIP-1 protocol is not described in this document. The PN5180 does not  
implement any of the high-level protocol functions. These higher-level protocol functions  
need to be provided by the host. For detailed explanation of the protocol, refer to the  
NFCIP-1 standard. However the datalink layer is according to the following policy:  
Speed shall not be changed while continuous data exchange in a transaction.  
Transaction includes initialization, anticollision methods and data exchange (in  
continuous way, meaning no interruption by another transaction).  
In order not to disturb current infrastructure based on 13.56 MHz, the following general  
rules to start an NFCIP-1 communication are defined:  
1. Per default, an NFCIP-1 device is in Target mode - meaning its RF field is switched  
off.  
2. The RF level detector is active.  
3. Only if it is required by the application the NFCIP-1 device shall switch to Initiator  
mode.  
4. An initiator shall only switch on its RF field if no external RF field is detected by the RF  
Level detector during a time of TIDT. (Details are specified in the ISO/IEC 18092)  
5. The initiator performs initialization according to the selected mode.  
11.8.1.7 ISO/IEC14443 A Card operation mode  
PN5180 can be configured to act as an ISO/IEC 14443 A compliant card.  
In this configuration, the PN5180 can generate an answer in a load modulation scheme  
according to the ISO/IEC 14443 A interface description.  
Note: PN5180 does not support a complete card protocol. This card protocol has to be  
handled by a connected host controller. Nevertheless, the layer3 type A activation is  
handled by the NFC frontend. The Card Activated IRQ shall be enabled and notifies if a  
card activation had been successfully performed.  
The supports ISO/IEC14443 A card mode for data rates 106 kbit/s, 212 kbit/s, 424 kbit/s  
and 848 kbit/s.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
66 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
last bit  
PCD  
PN5180 PICC  
Register TX WAIT PRESCALER  
TX bitpha  
se-1  
TXbit  
phase  
...  
...  
...  
...  
...  
...  
0x00 0x7F 0x7E  
0x00 0x7F 0x7E  
0x00  
0x7F 0x7E  
0x00  
TX wait counter  
0x09  
0x08  
0x07  
0x00  
register TX WAIT VAL  
tx_wait time  
TRANSCEIVE_CONTROL_REG.TX_BITPHASE is loaded in case last PCD bit is 0  
TRANSCEIVE_CONTROL_REG.TX_BITPHASE + TX_WAIT_PRESCALER/2 + 1 is loaded in case last PCD bit is 1  
TXbit  
phase  
aaa-020576  
Figure 29.ꢀ Target Mode case: Timer stop for started reception  
11.8.1.8 NFC Configuration  
The NFC protocol for the 106 kbit/s mode defines an additional Sync-Byte (0xF0 + parity)  
after the normal start bit had been transmitted. As this Sync-Byte includes a parity bit, it  
can be handled by a host firmware as a normal data byte.  
11.8.1.9 Mode Detector  
The Mode Detector is a functional block of the PN5180in PICC mode which senses  
for an RF field generated by another device. The mode detector allows distinguishing  
between type Aꢀand FeliCa target mode. Dependent on the recognized protocol  
generated by an initiator peer device the host is able to react. The PN5180 is able to  
emulate type A cards and peer to peer active target modes according to ISO/IEC18092.  
11.8.2 RF-field handling  
The NFC frontend supports generation of a RF-field dependent on external conditions  
like presence of another NFC device generating an RF field. A flexible mechanism to  
control the RF field is available.  
After power-up, the RF-field is off.  
The instruction RF_ON enables the generation of a RF-field. The NFC frontend can  
perform an initial RF collision avoidance according to ISO/IEC18092. Before enabling  
the RF-field, a field detection is automatically enabled for TIDT. In case an external field  
is detected, the field is not switched on and an RF_ACTIVE_ERROR_IRQ is raised. The  
cause for the error can be examined in the RF_STATUS.  
In order to switch off the RF-field generation, the RF_OFF instruction needs to be sent.  
Active Mode is supported by configuring the RF_ON instruction.  
11.8.3 Transmitter TX  
The transmitter is able to drive an antenna circuit connected to outputs TX1 and TX2 with  
a 13.56 MHz carrier signal. The signal delivered on pins TX1 and pin TX2 is the 13.56  
MHz carrier modulated by an envelope signal for energy and data transmission. It can  
be used to drive an antenna directly, using a few passive components for matching and  
filtering. For a differential antenna configuration, either TX1 or TX2 can be configured to  
put out an inverted clock. 100 % modulation and several levels of amplitude modulation  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
67 / 160  
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
on the carrier can be performed to support 13.56 MHz carrier-based RF-reader/writer  
protocols as defined by standards ISO/IEC14443 A and B, FeliCa and ISO/IEC 18092.  
TVDD  
envelope  
hs_gate  
M2  
clk_highside  
clk_lowside  
TX1  
TVDD  
ls_gate<14:0>  
M1<  
PRE-DRIVERS  
aaa-008643  
Figure 30.ꢀ PN5180 Output driver  
11.8.3.1 100 % Modulation  
There are 5 choices for the output stage behavior during 100 % modulation, and one  
setting for 10 % modulation. This modulation is controlled by TX_CLK_MODE_RM in  
RF_CONTROL_TX_CLK:  
Table 68.ꢀSettings for TX1 and TX2  
TX_CLK_MODE_RM  
(binary)  
Tx1 and TX2 output  
Remarks  
000  
High impedance  
The high impedance of the transmitters  
(field-off) is enabling the AGC and over-  
writing any AGC configuration done by the  
host. Before switching on the field again,  
the host has to take care to configure the  
ACG according to application requirements.  
001  
010  
110  
0
output pulled to 0 in any case  
output pulled to 1 in any case  
1
RF high side push  
Open-drain, only high side (push) MOS  
supplied with clock, clock polarity defined  
by TX2_INV_RM; low side MOS is off  
101  
111  
RF low side pull  
Open-drain, only low side (pull) MOS  
supplied with clock, clock polarity defined  
by TX1_INV_RM; high side MOS is off  
13.56 MHz clock derived push/pull Operation, clock polarity defined  
from 27.12 MHz quartz  
divided by 2  
by invtx; setting for 10 % modulation  
With the options "RF high side push" and "RF low side push", potentially faster fall times  
can be achieved for the antenna voltage amplitude at the beginning of a modulation.  
This basic behavior during modulation cannot be configured independently for TX1  
and TX2. The clock polarity of each Transmitter driver can be configured separately  
with TX1_INV_RM and TX2_INV_RM if the PN5180 operating in reader mode, or  
TX1_INV_CM and TX2_INV_CM if the PN5180 is operating in card emulation mode.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
68 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
11.8.3.2 10 % Amplitude Modulation  
For a targeted ASK 10 % amplitude modulation, the bits RF_CONTROL_TX_CLK  
in register TX_CLK_MODE_RM need to be set to value 0b111. Then the  
signal envelope does not influence the clock behavior thus resulting in an ASK  
modulation to a modulation index as defined by RF_CONTROL_TX in the bits  
TX_RESIDUAL_CARRIER. The residual carrier setting is used to adjust the modulation  
degree at the TX output. A control loop is implemented to keep the modulation degree as  
constant as possible.  
The settings and resulting typical residual carrier and modulation degree is given in table  
below:  
Table 69.ꢀModulation degree configuration  
TX_RESIDUAL_CARRIER  
register setting  
residual carrier nominal  
(%)  
modulation degree nominal (%)  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
16  
100  
98  
96  
94  
91  
89  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
72  
70  
68  
65  
60  
55  
45  
0
1.01  
2.04  
3.09  
4.71  
5.82  
6.95  
7.53  
8.11  
8.7  
9.29  
9.89  
10.5  
11.11  
11.73  
12.36  
12.99  
13.64  
14.29  
14.94  
16.28  
17.65  
19.05  
21.21  
25  
17  
18  
19  
20  
21  
22  
23  
24  
25  
29.03  
37.93  
26  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
69 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 69.ꢀModulation degree configuration...continued  
TX_RESIDUAL_CARRIER  
register setting  
residual carrier nominal  
(%)  
modulation degree nominal (%)  
27  
28  
29  
30  
31  
40  
35  
30  
25  
0
42.86  
48.15  
53.85  
60  
100  
11.8.3.3 TX Wait  
Tx_wait can be used for 2 different purposes:  
On the one hand, it can be used to prevent start of transmission before a certain period  
has expired - even if thePN5180 has already finished data processing and set the  
START_SEND bit. This behavior is intended for the reader mode to guarantee the PICC  
to PCD frame delay time (FDT).  
On the other hand, the tx_wait time can be used to start the transmission at an exactly  
defined time. For this purpose, data to be sent must be available and the START_SEND  
flag has to be set by FW before the period expires. In case the START_SEND bit is not  
set when tx_wait expires and MILLER_SYNC_ENABLE is set the transmission is started  
on the bit-grid.  
The guard time tx_wait is started after the end of a reception, no matter if the frame is  
correct or erroneous. The tx_wait guard time counter is not started in case the reception  
is restarted because of an EMD-event or in case the RX_MULTIPLE_ENABLE bit is set  
to 1.  
In case the register flag TX_WAIT_RFON_ENABLE is set to 1 the guard time counter is  
started when the devices own RF-Field is switched on.  
To start a transmission, it is always necessary for the firmware to set the START_SEND  
bit in the SYSTEM_CONFIG register or sending the instruction SEND_DATA.  
Having said that it is possible to disable the guard time tx_wait by setting the register  
TX_WAIT_CONFIG to 00h.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
70 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
11.8.3.4 Over- and Undershoot prevention  
clk13  
env_gen_outstream  
tx_outstream  
delay  
overshoot  
protection  
delay undershoot  
protection  
aaa-009147  
Example with overshoot pattern ‘1100’ (binary) with a length of four and undershoot pattern  
‘001’ (binary) with a length of three.  
Figure 31.ꢀ Overshoot/Undershoot prevention  
The over- and undershoot protection allows configurîng additional signals on the  
Transmitter output which allows to control the signal shaping of the antenna output.  
The registers TX_OVERSHOOT_CONFIG and TX_UNDERSHOOT_CONFIG  
are used to configure the over-and undershoot protection. Additionally, in register  
RF_CONTROL_TX_CLK (bit TX_CLK_MODE_OVUN_PREV) it is defined which  
TX clock mode for the period the overshoot/undershoot prevention is active, and  
RF_CONTROL_TX (bit TX_RESIDUAL_CARRIER_OV_PREV) defines the value for the  
residual carrier for the period the overshoot prevention pattern is active.  
11.8.4 Dynamic Power Control (DPC)  
The Dynamic Power Control allows adjusting the Transmitter output current dependent  
on the loading condition of the antenna.  
A lookup table is used to configure the output voltage and by this control the transmitter  
current. In addition to the control of the transmitter current, wave shaping settings can be  
controlled dependent on the selected protocol and the measured antenna load.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
71 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
DPC_AGC_GEAR_LUT  
PWR LUT  
ENTRY 1  
PWR LUT  
ENTRY 2  
PWR LUT  
ENTRY 3  
PWR LUT  
ENTRY 4  
DPC_THRSH_HIGH  
PWR LUT  
ENTRY 5  
AGC VALUE  
GEAR  
PWR LUT  
ENTRY X  
DPC_THRISH_LOW  
aaa-019796  
Figure 32.ꢀ AGC value defining the RF output power configuration  
AGC VALUE  
GEAR  
PCD_SHAPING_LUT  
SHAPING LUT  
ENTRY 1  
SHAPING LUT  
ENTRY 2  
CONFIGURED  
PROTOCOL  
SHAPING LUT  
ENTRY 2  
SHAPING LUT  
ENTRY Z  
aaa-023828  
Figure 33.ꢀ AGC value defining the waveshape configuration  
The PN5180 allows measuring periodically the RX voltage. The RX voltage is used as  
indicator for the actual antenna current. The voltage measurement is done with the help  
of the AGC. The time interval between two measurements can be configured with the  
OC_TIME byte in the EEPROM.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
72 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
DPC_AGC_GEAR_LUT  
PWR LUT  
ENTRY 1  
PWR LUT  
ENTRY 2  
PWR LUT  
ENTRY 3  
PWR LUT  
ENTRY 4  
DPC_THRSH_HIGH  
PWR LUT  
ENTRY 5  
AGC VALUE  
GEAR  
PWR LUT  
ENTRY X  
DPC_THRISH_LOW  
aaa-019796  
Figure 34.ꢀ Lookup tables for AGC value-dependent dynamic configuration  
The AGC value is compared to a maximum and minimum threshold value which is stored  
in EEPROM.  
If the AGC value is exceeding one of the thresholds, a new gear configuring another  
transmitter supply driver voltage will be activated. The number of gears - and by these  
transmitter supply voltage configurations - can be defined by the application, up to 15  
gears are available.  
TX_CW_TO_MAX_RM  
V
TVDD  
-150 mV  
-250 mV  
-500 mV  
-1.0 V  
00  
11  
00  
01  
10  
1
0
TX driver supply  
1
0
3.0 V  
2.75 V  
2.5 V  
2.0 V  
01  
10  
11  
TX_CW_AMP_REF2TVDD  
TX_CW_AMPLITUDE_RM <1:0>  
aaa-019385  
Figure 35.ꢀ Transmitter supply voltage configuration, VDD(TVDD) > 3.5 V  
11.8.5 Adaptive Waveform Control (AWC)  
Depending on the level of detected detuning of the antenna, RF wave shaping related  
register settings can be automatically updated. The shaping related register settings  
are stored in a lookup table located in EEPROM, and selected dependent on the actual  
gear. The gear numbers must be provided as part of the lookup table entries and need  
to be provided in ascending order in the EEPROM. Each lookup table entry allows  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
73 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
configuring not only a dedicated wave shaping configuration for the corresponding gear.  
But in additionally it is possible to configure for this gear the wave shaping configuration  
dependent on the different protocols.  
Each lookup table item contains a bitmask of technology and baud rate (in order  
to use an entry for multiple technologies and baudrates), the DPC Gear and a  
relative value (change compared to actual setting of register RF_CONTROL_TX) for  
TAU_MODE_FALLING, TAU_MODE_RISING and TX_RESIDUAL_CARRIER.  
Table 70.ꢀWave shaping lookup table  
Bit position Function of each DWORD  
30:31  
16:29  
RFU  
From FW 3.A onwards  
Bitmask identifying technology and baud rate  
0001h A 106  
0002h A 212  
0004h A 424  
0008h A 848  
0010h B 106  
0020h B 212  
0040h B 424  
0080h B 848  
0100h F 212  
0200h F424  
0400h ISO/IEC 15693 ASK10  
0800h ISO/IEC 15693 ASK100  
1000h ISO/IEC 18000m3_TARI_18_88 µs  
2000h ISO/IEC 18000m3_TARI_9_44 µs  
15:12  
11:8  
7:4  
RESIDUAL_CARRIER (Sign bit (MSB) + 3-bit value) 0: Add value to current  
residual carrier configuration, 1; subtract value from current residual carrier  
configuration  
TAU_MOD_RISING (Sign bit (MSB) + 3-bit value) 0: Add value to current TAU_  
MOD_RISING configuration, 1; subtract value from current TAU_MOD_RISING  
configuration  
TAU_MOD_FALLING (Sign bit (MSB) + 3-bit value) 0: Add value to current TAU_  
MOD_FALLING configuration, 1; subtract value from current TAU_MOD_FALLING  
configuration  
3:0  
DPC Gear  
If there is a gear switch, a EEPROM lookup is performed if the current gear (at current  
protocol and baud rate) has an assigned wave shaping configuration. In case of an  
execution of a LoadProtocol command, this lookup will be performed (example: switching  
from baud rate A106 to A424) as well. The change from the wave shaping configuration  
as configured by LOAD_RF_CONFIG is relative, which means that bits are added or  
subtracted from the existing configuration. For an increasing gear value, the defined  
change is cumulative.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
74 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
AGC_CONFIG register  
AGC_INPUT_SEL  
AGC_CONFIG register  
AGC_VREF_SEL  
AGC_CONFIG register  
RM_VALUE  
RF_STATUS register  
AGC_VALUE  
CONTROLLER  
AGC_CONFIG register  
CM_VALUE  
AGC config value  
last AGC value  
to signal processing  
RX input  
AGC_CONFIG register  
AGC_MODE_SEL  
internal register  
DIVIDER_VALUE  
UPDATE  
AGC_CONFIG register  
AGC_ENABLE_CONTROL  
value  
fix mode  
control mode  
AGC_CONFIG register  
AGC_LOAD  
AGC_CONFIG register  
AGC_TIME_CONSTANT  
trim  
value  
EEPROM: 0x5C  
DPC_XI  
aaa-023926  
Figure 36.ꢀ DPC, AGC and AWC configuration  
11.8.6 Adaptive Receiver Control (ARC)  
(Available from Firmware 2.6 onwards) Depending on the level of detected detuning  
of the antenna, receiver-related register settings can be automatically updated. The  
registers which allow to be dynamically controlled are RX_GAIN and RX_HPCF.  
The size of the Lookup table for the ARC is done in the upper nibble of the entry  
PCD_SHAPING_LUT_SIZE (0x97). In case this entry is zero, the ARC is deactivated. In  
total 20 entries (20*1 DWORD = 80 bytes) + 1 byte for length (upper nibble for RX Gain,  
and lower nibble for PCD shaping) can be used for both PCD shaping (AWC) and RX  
Gain configuration (ARC) in the EEPROM.  
The ARC lookup table (configuration data) is added at the end of the AWC  
(waveshaping) lookup table. This provides maximum flexibility and allows do define  
different lookup table sizes for both AWC and ARC. Care must be taken if the size of the  
AWC table is changed, this results in invalid ARC data which might have been previously  
configured since the ARC table offset changes as a result of the changed AWC size.  
The ARC settings override the default RX_GAIN, RX_HPCF, MIN_LEVEL and  
MIN_LEVELP register configuration done by Load Protocol.  
In case of a gear switch, an EEPROM lookup is performed. If the current gear (at  
current protocol and baud rate) has an assigned RX_GAIN, RX_HPCF, MIN_LEVEL and  
MIN_LEVELP configuration, this value is used to update the current receiver register  
configuration.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
75 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 71.ꢀAdaptive Receiver Control lookup table  
Bit position  
Function of each DWORD  
16:31  
0001h  
0002h  
0004h  
0008h  
0010h  
0020h  
0040h  
0080h  
0100h  
0200h  
0400h  
0800h  
1000h  
2000h  
4000h  
8000h  
A 106  
A 212  
A 424  
A 848  
B 106  
B 212  
B 424  
B 848  
F 212  
F 424  
ISO/IEC 15693 ASK10_53  
ISO/IEC 15693 ASK100_26  
ISO/IEC 18000m3_Manch424_4  
ISO/IEC 18000m3_Manch424_2_212  
ISO/IEC 18000m3_Manch848_4_212  
ISO/IEC 18000m3_Manch848_2  
15:13  
12:10  
9:7  
MIN_LEVELP, 3 bits, relative value, defining a change of the SIGPRO_RM_  
CONFIG register; MIN_LEVELP value with a maximum range of +/-3. (Sign bit  
(MSB) + 3-bit value)  
MIN_LEVEL, 3 bits, relative value, defining a change of the SIGPRO_RM_  
CONFIG register; MIN_LEVEL value with a maximum range of +/-3. (Sign bit  
(MSB) + 3-bit value)  
RX_GAIN, 3 bits, relative value, defining a change of the RF_CONTROL_RX  
register; RX_GAIN value with a maximum range of +/-3. (Sign bit (MSB) + 3-bit  
value)  
6:4  
RX_HPCF, 3 bits, relative value, defining a change of the RF_CONTROL_RX  
register; RX_HPCF value with a maximum range of +/-3. (Sign bit (MSB) + 3-bit  
value)  
3:0  
DPC GEAR: the gear number, at which the related change shall apply.  
11.8.7 Transceive state machine  
The transceive command allow transmitting and the following expected receive data with  
a single command.  
The transceive state machine is used to trigger the reception and transmission of the RF  
data dependent on the conditions of the interface.  
The state machine for the command transceive is started when the SYSTEM_CONFIG  
command is set to transceive. The transceive command does not terminate  
automatically. In case of an error, the host can stop the transceive state machine by  
setting the SYSTEM_CONFIG.command to IDLE.  
START_SEND can either be triggered by writing to the SYSTEM_CONFIG register  
start_send or by using the command SET_INSTR_SEND_DATA.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
76 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
IDLE mode  
Command set to transceive  
no  
yes  
Initator  
yes  
WAIT_RECEIVE  
(start RX_WAIT  
timer)  
Tx_skip_send_  
enable*  
RX_wait timer elapsed  
no  
WAIT_FOR_DATA  
(check for  
WAIT_TRANSMIT  
(start TX_WAIT  
timer)  
reception)  
Tx-wait timer elapsed  
Reception  
done  
Reception started  
no  
RECEIVE  
(RF reception  
is started)  
START_SEND  
yes  
TRANSMIT  
(RF transmission  
is started)  
Transmission done  
Tx_frame_step_  
enable  
no  
yes  
All bytes  
transmitted  
aaa-020626  
no  
yes  
Figure 37.ꢀ Transceive state machine  
11.8.8 Autocoll (Card Emulation)  
The Autocoll state machine performs the time critical activation for Type-A PICC and for  
NFC-Forum Active and Passive Target activation (Card Emulation Mode).  
The PICC state machine supports three configurations:  
Autocoll mode0: Autocoll mode is left when no RF field is present  
Autocoll mode1: Autocoll mode is left when one technology is activated by an external  
reader. During RFoff, the chip enters standby mode automatically  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
77 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Autocoll mode2: Autocoll mode is left when one technology is activated by an external  
reader. During RFoff, the chip does not enter standby mode.  
At start-up, the Autocoll state machine automatically performs a LOAD_RF_CONFIG  
with the General Target Mode Settings. When a technology is detected during activation,  
the Autocoll state machine performs an additional LOAD_RF_CONFIG with the  
corresponding technology.  
The card configuration for the activation is stored in EEPROM. If RandomUID is enabled  
(EEPROM configuration, Address 0x51), a random UID is generated after each RF-off.  
For all active target modes, the own RF field is automatically switched on after the  
initiator has switched off its own filed.  
entry  
IDLE  
Frame received  
SensF received  
Frame received  
no  
no  
no  
and Passive  
ReqA/WupA  
yes  
and no error  
Target F enabled  
yes  
yes  
Active Mode  
enabled  
SC = 0xFFFF or  
EE-Value  
Passive Target A  
enabled?  
no  
no  
Yes and  
Autocoll_state_a** == HALT  
Any CL  
Error  
SensFReq  
received  
yes  
ISO14443-3A PICC  
state machine  
Send SensF  
response  
Yes and  
Autocoll_state_a** == IDLE  
any other frame  
received  
HALT  
READY*  
ACTIVE*  
READY  
ACTIVE  
Passive Target F212/424*  
IRQ line is asserted  
Load Protocol PICC-F212  
or PICC-F424 done  
RX_IRQ and  
Active Target A106/F212/F424*  
IRQ line is asserted  
Load Protocol AT106/AT212/  
AT424 done  
Passive Target A106  
IRQ line is asserted  
Load Protocol PICC-A106 done  
RX_IRQ and  
RX_IRQ is set  
CARD_ACTIVATED_IRQ are set  
CARD_ACTIVATED_IRQ are set  
*the determined baudrate can be found in the SIGPRO_CONFIG register  
** Autocoll_state_a is defined in the register SYSTEM_CONFIG  
aaa-020625  
Figure 38.ꢀ Autocall state machine  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
78 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
11.8.9 Receiver RX  
11.8.9.1 Reader Mode Receiver  
In Reader Mode, the response of the PICC device is coupled from the PCB antenna to  
the differential input RXP/RXN. The Reader Mode Receiver extracts this signal by first  
removing the carrier in passive mixers (direct conversion for I and Q), then filtering and  
amplifying the baseband signal, and finally converting to digital values with 2 separate  
ADCs for I and Q channel. Both the I and Q channels have a differential structure which  
improves the signal quality.  
The I/Q-Mixer mixes the differential input RF-signal down to the baseband. The mixer has  
a band with of 2 MHz.  
The down mixed differential RX input signals are passed to the BBA and band-pass  
filtered. In order to consider all the various protocols (Type A/B, FeliCa), the high-pass  
cut-off frequency of BBA can be configured between 45 kHz and 250 kHz in 4 different  
steps. The low-pass cut-off frequency is above 2 MHz.  
This band-passed signal is then further amplified with a gain factor which is configurable  
between 30 dB and 60 dB. The baseband amplifier (BBA)/ADC I- and Q- channel can be  
enabled separately. This is required for ADC-based CardMode functionality as only the I-  
channel is used in this case.  
The gain and high pass corner frequency of the BBA are not independent from each  
other:  
Table 72.ꢀTable 71.  
Gain setting  
HPCF setting HPCF (kHz)  
LPCF (MHz)  
Gain (sB20)  
Band width  
(MHz)  
Gain3  
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
39  
3.1  
3.2  
3.5  
4.1  
3.1  
3.3  
3.7  
4.3  
3.7  
4.0  
4.5  
5.5  
3.8  
4.1  
4.7  
5.7  
60  
59  
58  
56  
51  
51  
49  
47  
43  
42  
41  
39  
35  
34  
33  
31  
3.1  
3.1  
3.3  
3.8  
3.1  
3.2  
3.5  
4.0  
3.7  
3.9  
4.3  
5.2  
3.8  
4.0  
4.5  
5.4  
78  
144  
260  
42  
Gain2  
Gain1  
Gain0  
82  
150  
271  
41  
82  
151  
276  
42  
84  
154  
281  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
79 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
BBA  
RXP  
DATA  
I-CLK  
AGC  
MIX  
CLK  
V
MID  
Q-CLK  
BBA  
DATA  
RXN  
aaa-008644  
Figure 39.ꢀ PN5180 Receiver Block diagram  
11.8.9.2 Automatic Gain Control  
The Automatic Gain Control (AGC) of the receiver is used to control the amplitude of the  
received 13.56 MHz input sine-wave signal from the antenna (input pins RXP and RXN).  
It is desirable to achieve an input voltage in the range of 1.5 V to 1.65 V at the pins RXP,  
RXN. For symmetric antennas, the voltage levels are the same on the pins RXP, RXN.  
A voltage lower than 1.5 V lead to a reduced sensitivity of the receiver, a voltage level  
higher than 1.65 V could result in clipping of the received signal in the signal processing  
unit of the PN5180. Both conditions should be avoided for optimum performance of the  
IC. An antenna detuning caused by the presence of a card, or mobile phone will typically  
result in an RX input level which is outside the desired input voltage range. Here the AGC  
helps to simplify the design by keeping the RX voltage automatically within the range of  
1.5 V to 1.65 V even under dynamic changing antenna detuning conditions.  
Functional description:  
The peak of the input signal at RXP is regulated to be equal to a reference voltage  
(internally generated from the supply using a resistive divider). Two external resistors  
are connected to the RX inputs, the specific value of these resistors in a given design  
depends on the selected antenna and needs to be determined during development. This  
external resistor, together with an on-chip variable resistor connected to VMID, forms  
a resistive voltage divider for the signal processor input voltage. The resolution of the  
variable resistor is 10 bits.  
By varying the on-chip resistor, the amplitude of the input signal can be modified.  
The on-chip resistor value is increased or decreased depending on the output of the  
sampled comparator, until the peak of the input signal matches the reference voltage.  
The amplitude of the RX input is therefore automatically controlled by the AGC circuit.  
The internal amplitude controlling resistor in the AGC has a default value of 10 kOhm  
typ DC coupled. (i.e. when the resistor control bits in AGC_VALUE <9:0> are all 0, the  
resistance is 10 k). As the control bits are increased, resistors are switched in parallel to  
the 10k resistor thus lowering the combined resulting resistance value down to 20 Ohm  
DC coupled (AGC_VALUE <9:0>, all bits set to 1).  
Any RF-field-off is enabling the AGC, configuring the AGC for Card mode and is over-  
writing any AGC configuration done previously by the host.  
11.8.9.3 RX Wait  
The guard time rx_wait is started after the end of a transmission. If the register flag  
RX_WAIT_RFON_ENABLE is set to 1, the guard time is started when the device  
switches off its own RF-Field and an external RF-Field was detected.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
80 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
The guard time rx_wait can be disabled by setting the register RX_WAIT_VALUE to 00h  
meaning the receiver is immediately enabled.  
11.8.9.4 EMD Error handling  
EMVCo  
The PN5180 supports EMD handling according to the EMVCo standard. To support  
further extension the EMD block is configurable to allow adoption for further standard  
updates.  
The PN5180 supports automatically restart of the receiver and CLIF timer1 is restarted in  
case of an EMD event. The CLIF timer is selectable in the EMD_CONTROL register.  
An EMD event is generated:  
Independent of received number of bytes  
Any Residual bits and EMD_CONTROL.emd_transmission_error_above_noise = 0  
When the received number of bytes without CRC is <=  
EMD_CONTROL.emd_noise_bytes_threshold  
Independent of received number of bytes  
Any Residual bits and EMD_CONTROL.emd_transmission_error_above_noise = 0  
When the received number of bytes without CRC is <=  
EMD_CONTROL.emd_noise_bytes_threshold  
Missing CRC (1 byte frame) when  
EMD_CONTROL.emd_missing_crc_is_protocol_error_type_X = 0  
11.8.10 Low-Power Card Detection (LPCD)  
The low-power card detection is an energy-saving configuration option for the PN5180.  
A low frequency oscillator (LFO) is implemented to drive a wake-up counter, waking-up  
PN5180 from standby mode. This allows implementation of low-power card detection  
polling loop at application level.  
The SWITCH_MODE instruction allows entering the LPCD mode with a given standby  
duration value.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
81 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Switch_Mode FW  
Instruction  
(LPCD)  
Configured by host  
Configured by  
PN5180 FW  
Set  
Wakeup_ Conter =  
0x3FF  
Wakeup_counter  
<= 0 or > 0x3FF  
yes  
no  
LPCD_GPO_REFVA  
L_CONTROL[1:0] @  
EEPROM 0x38  
== 00 ...AUTO CALIBRATION  
== 01 ...SELF CALIBRATION  
Configure DPC Gear to =  
Configure DPC Gear to =  
LPCD_REFERENCE_VALUE @ 0x34  
LoadRfConfig TX: A106 RX: A106  
RF Field On  
AGC_REF_CONFIG (Register 0x26)[13:10]  
LoadRfConfig TX: A106 RX: A106  
RF Field On  
Read AGC_VALUE and used as reference  
(Reference AGC)  
Read AGC_VALUE and use as reference  
(Reference AGC)  
Enter Standby  
Wakeup from  
wakeup Counter  
Standby Mode Left  
SET IDLE_IRQ  
end state  
Any other  
Boot Reason  
Wake Up Counter  
no  
LoadRfConfig TX:  
A106 RX: A106  
RF Field On  
Measure AGC  
(Actual AGC)  
yes  
[Reference_AGC - Actual AGC]  
> AGC_LPCD_THRESHOLD @ EEPROM  
0x37  
yes  
SET LPCD_IRQ  
end state  
aaa-027488  
Figure 40.ꢀLPCD configuration  
Before entering the LPCD mode, an LPCD reference value needs to be determined.  
Three options do exist for generating this reference value.  
The LPCD works in two phases:  
First the standby phase is controlled by the wake-up counter (timing defined in the  
instruction), which defines the duration of the standby of the PN5180.  
Second phase is the detection-phase. The RF field is switched on for a defined time  
(EEPROM configuration) and then the AGC value is compared to a reference value.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
82 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
If the AGC value exceeds the reference value, a LPCD_IRQ is raised to the host. The  
register configurations done by the host are not restored after wake-up. command. The  
host has to configure the NFC frontend for a dedicated protocol operation to allow a  
polling for a card.  
If the AGC value does not exceed the limit of the reference value, no LPC_IRQ is  
raised and the IC is set to the first phase (standby mode) again.  
As an additional feature the GPO1 (general-purpose output) pin can be enabled to wake  
up an external DC-DC from power down for the TVDD supply. The GPO1 allows setting  
to high before the transmitter is switched on. This allows the wake-up of an external DC-  
DC from power down. The GPO1 can be set to low after the RF field is switched off to set  
an external DC-DC into power-down mode. The time of toggling the GPO in relation to  
the RF-on and RF-off timings can be configured in EEPROM addresses 0x39 and 0x3A.  
These two phases are executed in a loop until  
1. Card / metal is detected (LPCD_IRQ is raised).  
2. Reset occurs, which resets all the system configurations. The LPCD is also stopped in  
this case.  
3. NSS on Host IF  
4. RF Level Detected  
The behavior of the generated field is different dependent on the activation state of the  
DPC function:  
If the DPC feature is not active, the ISO/IEC14443 type A 106 kbit/s settings are used  
during the sensing time.  
If the DPC is active, the RF_ON command is executed. The RF field is switched on  
as soon as the timer configured by the SWITCH_MODE command elapses. The RF  
field is switched on for a duration as defined for an activated DPC. The timer for the  
LPCD_FIELD_ON_TIME starts to count as soon as the RF_ON command terminates.  
Table 73.ꢀLow-Power Card Detection: EEPROM configuration  
EEPROM Name  
address  
Bit  
value Description  
0x34  
0x36  
LPCD_REFERENCE_VALUE  
-
-
-
-
2 bytes: bit 15:4 RFU; bit 3:0 AGC gear  
LPCD_FIELD_ON_TIME  
1 byte: Defines the RF-ON time for the AGC measurement.  
The minimum RF-ON time depends on the antenna  
configuration and the connected matching network. It  
needs to be chosen in such a way that a stable condition  
for the AGC measurement is given at the end of the time.  
The byte defines the delay multiplied by 8 in microseconds.  
0x37  
0x38  
LPCD_THRESHOLD  
-
-
-
1 byte: Defines the AGC threshold value. This value is used  
to compare against the current AGC value during the low-  
power card detection phase. if the difference between AGC  
reference value and current AGC value is greater than  
LPCD_THRESHOLD, the IC wakes up from LPCD.  
from firmware version 3.A onwards -  
LPCD_REFVAL_GPO_CONTROL  
This byte in EEPROM is used to control the GPO assertion  
during wake-up and LPCD card detect.  
1:0  
-
Defines the source of the LPCD reference value  
00  
LPCD AUTO CALIBRATION  
Performs one calibration with gear number as defined in  
EEPROM (LPCD_REFERENCE_ VALUE, bit 3:0) and  
starts LPCD afterwards.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
83 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 73.ꢀLow-Power Card Detection: EEPROM configuration...continued  
EEPROM Name  
address  
Bit  
value Description  
01  
LPCD SELF CALIBRATION  
LPCD is started using the gear (AGC_GEAR) and AGC  
reference value (AGC_REF) as available in register ACG_  
REF_CONFIG  
10  
11  
-
RFU  
RFU  
2
3
4
Allows enabling a GPO output level change during wake-  
up from standby, before the RF field is switched on.  
This allows waking-up an external DC-DC supplying the  
transmitter (pin TVDD).  
0
1
-
Disable Control for external TVDD DC-DC via GPO1  
Enable Control for external TVDD DC-DC via GPO1  
GPO2 Control for external TVDD DC-DC during wake-up  
from standby  
0
1
-
Disable Control of external TVDD DC-DC via GPO2 on  
LPCD Card Detect  
Enable Control of external TVDD DC-DC via GPO2 on  
LPCD Card Detect  
GPO1 Control for external TVDD DC-DC during wake-up  
from standby  
0
1
-
Disable Control of external TVDD DC-DC via GPO1 on  
wake-up from standby  
Enable Control of external TVDD DC-DC via GPO1 on  
wake-up from standby  
0x39  
0x3A  
LPCD_GPO_TOGGLE_BEFORE_ -  
FIELD_ON  
1 byte: This value defines the time between setting  
GPO1 until field is switched on. The byte defines the time  
multiplied by 5 in microseconds.  
LPCD_GPO_TOGGLE_AFTER_  
FIELD_ON  
-
-
1 byte: This value defines the time between field off and  
clearing GPO1. The byte defines the time multiplied by 5 in  
microseconds.  
11.8.10.1 Check Card register  
The Check Card register at register 0x26 performs one LPCD cycle. This means, that  
only the second phase - the detection phase is executed.  
11.9 Register overview  
11.9.1 Register overview  
Table 74.ꢀRegister address overview  
Address (HEX) Address (decimal) Name  
0h  
1h  
0
1
SYSTEM_CONFIG  
IRQ_ENABLE  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
84 / 160  
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 74.ꢀRegister address overview...continued  
Address (HEX) Address (decimal) Name  
2h  
2
IRQ_STATUS  
3h  
3
IRQ_CLEAR  
4h  
4
TRANSCEIVER_CONFIG  
PADCONFIG  
5h  
5
6h  
6
RFU  
7h  
7
PADOUT  
8h  
8
TIMER0_STATUS  
TIMER1_STATUS  
TIMER2_STATUS  
TIMER0_RELOAD  
TIMER1_RELOAD  
TIMER2_RELOAD  
TIMER0_CONFIG  
TIMER1_CONFIG  
TIMER2_CONFIG  
RX_WAIT_CONFIG  
CRC_RX_CONFIG  
RX_STATUS  
9h  
9
Ah  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
Bh  
Ch  
Dh  
Eh  
Fh  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
TX_DATA_MOD  
TX_WAIT_CONFIG  
TX_CONFIG  
CRC_TX_CONFIG  
SIGPRO_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_STATUS  
AGC_CONFIG  
AGC_VALUE  
RF_CONTROL_TX  
RF_CONTROL_TX_CLK  
RF_CONTROL_RX  
LD_CONTROL  
SYSTEM_STATUS  
TEMP_CONTROL  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
85 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 74.ꢀRegister address overview...continued  
Address (HEX) Address (decimal) Name  
26h  
38  
AGC_REF_CONFIG  
27h  
39  
DPC_CONFIG  
28h  
40  
EMD_CONTROL  
29h  
41  
ANT_CONTROL  
2Ah-035h  
036h  
42-53  
54  
RFU  
TX_CONTROL  
037h-038h  
39h  
55-56  
57  
RFU  
SIGPRO_RM_CONFIG_EXTENSION  
RFU  
3A-42h  
43h  
58-66  
67  
FELICA_EMD_CONTROL (available From firmware V4.1  
onwards, otherwise RFU)  
44h-7Ah  
68-122  
RFU  
11.9.2 Register description  
The default setting of a bit within a register is indicated by the "*". Value indicates the  
allowed range for the bits of a symbol.  
Table 75.ꢀSYSTEM_CONFIG register (address 0000h) bit description  
Bit  
Symbol  
Access  
Value  
Description  
from FW 3.9 onwards  
31:20  
19:12  
RFU  
R
0*,1  
0*,1  
Reserved  
DPC_XI_RAM_CORRECTION  
R/W  
Correction value for DPC_XI value stored  
in EEPROM. Resulting AGC value will be:  
ActualAGCvalue +DPC_XI EEPROM + DPC_XI  
RAM_CORRECTION (values are ranging from  
-127 ...+127, sign bit is MSB)  
8
SOFT_RESET  
W
0*,1  
performs a reset of the device by writing a "1" into  
this register.  
7
6
RFU  
R/W  
R/W  
0*,1  
0*,1  
RFU  
MFC_CRYPTO_ON  
If set to 1, the mfc-crypto is enabled for end-/de-  
cryption  
5
PRBS_TYPE  
R/W  
0*,1  
Defines the PRBS type; If set to 1, PRBS15 is  
selected, default value 0 selects PRBS9  
4
3
RFU  
R/W  
R/W  
0*,1  
0*,1  
RFU  
START_SEND  
If set to 1, this triggers the data transmission  
according to the transceive state machine  
0:2  
COMMAND  
R/W  
001*  
000  
001  
These bits define the command for the transceive  
state machine  
IDLE/StopCom Command; stops all ongoing  
communication and set the CLIF to IDLE mode  
RFU  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
86 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 75.ꢀSYSTEM_CONFIG register (address 0000h) bit description...continued  
Bit  
Symbol  
Access  
Value  
010  
Description  
RFU  
011  
Transceive command; initiates a transceive cycle.  
Note: Depending on the value of the Initiator bit, a  
transmission is started or the receiver is enabled  
Note: The transceive command does not finish  
automatically. It stays in the transceive cycle until  
stopped via the IDLE/StopCom command  
100  
101  
KeepCommand command; This command does not  
change the content of the command register and  
might be used in case other bits in the register are to  
be changed  
LoopBack command; This command is for test  
purposes only. It starts a transmission and at the  
same time enables the receiver.  
110  
111  
PRBS command, performs an endless transmission  
of PRBS data  
RFU  
Table 76.ꢀIRQ_ENABLE register (address 0001h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:17  
19  
RFU  
R
R
R
0*, 1  
-
LPCD_IRQ_STAT  
HV_ERROR_IRQ_STAT  
1
1
Low-Power Card Detection IRQ, fixed always to 1  
18  
EEPROM Failure during Programming IRQ, fixed  
always to 1  
17  
16  
GENERAL_ERROR_IRQ_STAT  
TEMPSENS_ERROR_IRQ_EN  
R
1
General Error IRQ - fixed always to 1  
R/W  
0*, 1  
Enable IRQ propagation to the pin for the  
TempSensor  
15  
14  
RX_SC_DET_IRQ_EN  
RX_SOF_DET_IRQ_EN  
R/W  
R/W  
0*, 1  
0*, 1  
Enable IRQ propagation to the pin for the RX  
Subcarrier Detection  
Enable IRQ propagation to the pin for the RX SOF  
Detection  
13  
12  
11  
10  
TIMER2_IRQ_EN  
R/W  
R/W  
R/W  
R/W  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
Enable IRQ propagation to the pin for the Timer2  
Enable IRQ propagation to the pin for the Timer1  
Enable IRQ propagation to the pin for the Timer0  
TIMER1_IRQ_EN  
TIMER0_IRQ_EN  
RF_ACTIVE_ERROR_IRQ_EN  
Enable IRQ propagation to the pin for the RF active  
error  
9
8
7
TX_RFON_IRQ_EN  
TX_RFOFF_IRQ_EN  
RFON_DET_IRQ_EN  
R/W  
R/W  
R/W  
0*, 1  
0*, 1  
0*, 1  
Enable IRQ propagation to the pin for the RF Field  
ON in PCD  
Enable IRQ propagation to the pin for the RF Field  
OFF in PCD  
Enable IRQ propagation to the pin for the RF Field  
ON detection  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
87 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 76.ꢀIRQ_ENABLE register (address 0001h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
6
RFOFF_DET_IRQ_EN  
R/W  
R/W  
R/W  
R/W  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
Enable IRQ propagation to the pin for the RF Field  
OFF detection  
5
4
3
STATE_CHANGE_IRQ_EN  
CARD_ACTIVATED_IRQ_EN  
MODE_DETECTED_IRQ_EN  
Enable IRQ propagation to the pin for the State  
Change in the transceive state machine  
Enable IRQ propagation to the pin when PN5180 is  
activated as a Card  
Enable IRQ propagation to the pin when PN5180 is  
detecting an external modulation scheme  
2
1
IDLE_IRQ_EN  
TX_IRQ_EN  
R/W  
R/W  
0*, 1  
0*, 1  
Enable IRQ propagation to the pin for the IDLE mode  
Enable IRQ propagation to the pin for End of RF  
transmission  
0
RX_IRQ_EN  
R/W  
0*, 1  
Enable IRQ propagation to the pin for End of RF  
reception  
Table 77.ꢀIRQ_STATUS register (address 0002h) bit description  
Bit  
31:20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Symbol  
Access Value  
Description  
RFU  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
-
LPCD_IRQ_STAT  
Low-Power Card Detection IRQ  
EEPROM Failure during Programming IRQ  
General Error IRQ  
HV_ERROR_IRQ_STAT  
GENERAL_ERROR_IRQ_STAT  
TEMPSENS_ERROR_IRQ_STAT  
RX_SC_DET_IRQ_STAT  
RX_SOF_DET_IRQ_STAT  
TIMER2_IRQ_STAT  
Temperature Sensor IRQ  
RX Subcarrier Detection IRQ  
RX SOF Detection IRQ  
Timer2 IRQ  
TIMER1_IRQ_STAT  
Timer1 IRQ  
TIMER0_IRQ_STAT  
Timer0 IRQ  
RF_ACTIVE_ERROR_IRQ_STAT  
TX_RFON_IRQ_STAT  
TX_RFOFF_IRQ_STAT  
RFON_DET_IRQ_STAT  
RFOFF_DET_IRQ_STAT  
STATE_CHANGE_IRQ_STAT  
CARD_ACTIVATED_IRQ_STAT  
MODE_DETECTED_IRQ_STAT  
IDLE_IRQ_STAT  
RF active error IRQ  
RF Field ON in PCD IRQ  
RF Field OFF in PCD IRQ  
RF Field ON detection IRQ  
RF Field OFF detection IRQ  
State Change in the transceive state machine IRQ  
Activated as a Card IRQ  
External modulation scheme detection IRQ  
IDLE IRQ  
8
7
6
5
4
3
2
1
TX_IRQ_STAT  
End of RF transmission IRQ  
End of RF reception IRQ  
0
RX_IRQ_STAT  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
88 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 78.ꢀIRQ_CLEAR register (address 0003h) bit description  
Bit  
31:20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Symbol  
Access Value  
Description  
RFU  
R
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
-
LPCD_IRQ_CLR  
HV_ERROR_IRQ_CLR  
GENERAL_ERROR_IRQ_CLR  
R/W  
R/W  
R/W  
Clear Low-Power Card Detection IRQ  
Clear EEPROM Failure during Programming IRQ  
Clear General Error IRQ  
Clear Temperature Sensor IRQ  
Clear RX Subcarrier Detection IRQ  
Clear RX SOF Detection IRQ  
Clear Timer2 IRQ  
TEMPSENS_ERROR_IRQ_CLR R/W  
RX_SC_DET_IRQ_CLR  
RX_SOF_DET_IRQ_CLR  
TIMER2_IRQ_CLR  
R/W  
R/W  
R/W  
R/W  
R/W  
TIMER1_IRQ_CLR  
Clear Timer1 IRQ  
TIMER0_IRQ_CLR  
Clear Timer0 IRQ  
RF_ACTIVE_ERROR_IRQ_CLR R/W  
Clear RF active error IRQ  
Clear RF Field ON in PCD IRQ  
Clear RF Field OFF in PCD IRQ  
Clear RF Field ON detection IRQ  
Clear RF Field OFF detection IRQ  
TX_RFON_IRQ_CLR  
R/W  
R/W  
R/W  
R/W  
R/W  
8
TX_RFOFF_IRQ_CLR  
RFON_DET_IRQ_CLR  
RFOFF_DET_IRQ_CLR  
STATE_CHANGE_IRQ_CLR  
7
6
5
Clear State Change in the transceive state machine  
IRQ  
4
3
2
1
0
CARD_ACTIVATED_IRQ_CLR  
MODE_DETECTED_IRQ_CLR  
IDLE_IRQ_CLR  
R/W  
R/W  
R/W  
R/W  
R/W  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
Clear Activated as a Card IRQ  
Clear External modulation scheme detection IRQ  
Clear IDLE IRQ  
TX_IRQ_CLR  
Clear End of RF transmission IRQ  
Clear End of RF reception IRQ  
RX_IRQ_CLR  
Table 79.ꢀTRANSCEIVE_CONTROL register (address 0004h) bit description  
Bit  
Symbol  
Access Value  
R/W  
Description  
9:4  
STATE_TRIGGER_SELECT  
000000* Register to select the state to trigger the STATE_  
CHANGE_IRQ flag. Each bit of the bit field enables  
one state - several states are possible. Note: If all bits  
are 0 no IRQ is triggered.  
xxxxx1  
xxxx1x  
xxx1xx  
xx1xxx  
x1xxxx  
1xxxxx  
IDLE state enabled to trigger IRQ  
WaitTransmit state enabled to trigger IRQ  
Transmitting state enabled to trigger IRQ  
WaitReceive state enabled to trigger IRQ  
WaitForData state enabled to trigger IRQ  
Receiving state enabled to trigger IRQ  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
89 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 79.ꢀTRANSCEIVE_CONTROL register (address 0004h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
3
TX_SKIP_SEND_ENABLE  
R/W  
0*, 1  
If set, not transmission is started after tx_wait is  
expired and START_SEND was set Note: The bit  
is cleared by HW when the WaitReceive state is  
entered.  
2
1
TX_FRAMESTEP_ENABLE  
RX_MULTIPLE_ENABLE  
R/W  
0*, 1  
If set, at every start of transmission; each byte of  
data is sent in a separate frame. SOF and EOF are  
appended to the data byte according to the framing  
settings. After one byte is transmitted; the TxEncoder  
waits for a new start trigger to continue with the next  
byte.  
R/W  
R/W  
0*, 1  
If set, the receiver is reactivated after the end of  
a reception. A status byte is written to the RAM  
containing all relevant status information of the frame.  
Note: Data in RAM is word aligned therefore empty  
bytes of a data Word in RAM are padded with 0x00  
bytes. SW has to calculate the correct address for the  
following frame.  
0
INITIATOR  
0*, 1  
If set, the CLIF is configured for initiator mode.  
Depending on this setting, the behavior of the  
transceive command is different  
Table 80.ꢀPADCONFIG register (address 0005h) bit description  
Bit  
Symbol  
Access  
Value  
Description  
7
EN_SLEW_RATE_CONTROL  
R/W  
0*, 1  
Enables slew rate control of digital pads: The Rise/  
Fall Time can be adjusted by the slew rate control.  
The slew reate value 0 is for slow slew rate with a  
value between 2-10ns (depending on load, cap)  
and the value 1 is for fast slew with a value between  
1-3ns (also depending on load, cap….)  
6
5
4
3
2
1
0
GPO7_DIR  
GPO6_DIR  
GPO5_DIR  
GPO4_DIR  
GPO3_DIR  
GPO2_DIR  
GPO1_DIR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
Enables the output driver of GPO7. The GPO is only  
available for the package TFBGA64  
Enables the output driver of GPO6. The GPO is only  
available for the package TFBGA64  
Enables the output driver of GPO5. The GPO is only  
available for the package TFBGA64  
Enables the output driver of GPO4. The GPO is only  
available for the package TFBGA64  
Enables the output driver of GPO3. The GPO is only  
available for the package TFBGA64  
Enables the output driver of GPO2. The GPO is only  
available for the package TFBGA64  
Enables the output driver of GPO1. The GPO is only  
available for the package TFBGA64 and HVQFN40  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
90 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 81.ꢀPAD_OUT register (address 0007h) bit description  
Bit  
Symbol  
Access Value  
Description  
6
GPO7_OUT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
0*, 1  
Output value of GPO7. The GPO is only available for  
the package TFBGA64  
5
4
3
2
1
0
GPO6_OUT  
GPO5_OUT  
GPO4_OUT  
GPO3_OUT  
GPO2_OUT  
GPO1_OUT  
Output value of GPO6. The GPO is only available for  
the package TFBGA64  
Output value of GPO5. The GPO is only available for  
the package TFBGA64  
Output value of GPO4. The GPO is only available for  
the package TFBGA64  
Output value of GPO3. The GPO is only available for  
the package TFBGA64  
Output value of GPO2. The GPO is only available for  
the package TFBGA64  
Output value of GPO1. The GPO is only available for  
the package TFBGA64 and HVQFN40  
Table 82.ꢀTIMER0_STATUS register (address 0008h) bit description  
Bit  
20  
Symbol  
Access Value  
Description  
T0_RUNNING  
T0_VALUE  
R
R
0*, 1  
Indicates that timer T0 is running (busy)  
19:0  
00000h* - Value of 20bit counter in timer T0  
FFFFFh  
Table 83.ꢀTIMER1_STATUS register (address 0009h) bit description  
Bit  
20  
Symbol  
Access Value  
Description  
T1_RUNNING  
T1_VALUE  
R
R
0*, 1  
Indicates that timer T1 is running (busy)  
19:0  
00000h* - Value of 20bit counter in timer T1  
FFFFFh  
Table 84.ꢀTIMER2_STATUS register (address 000Ah) bit description  
Bit  
20  
Symbol  
Access Value  
Description  
T2_RUNNING  
T2_VALUE  
R
R
0*, 1  
Indicates that timer T2 is running (busy)  
19:0  
00000h* - Value of 20bit counter in timer T2  
FFFFFh  
Table 85.ꢀTIMER0_RELOAD register (address 000Bh) bit description  
Bit  
Symbol  
Access Value  
Description  
32:20  
19:0  
-
RFU  
T0_RELOAD_VALUE  
R/W  
00000h* - Reload value of the timer T0.  
FFFFFh  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
91 / 160  
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 86.ꢀTIMER1_RELOAD register (address 000Ch) bit description  
Bit  
Symbol  
Access Value  
Description  
32:20  
19:0  
-
RFU  
T1_RELOAD_VALUE  
R/W  
00000h* - Reload value of the timer T1.  
FFFFFh  
Table 87.ꢀTIMER2_RELOAD register (address 000Dh) bit description  
Bit  
Symbol  
Access Value  
Description  
32:20  
19:0  
-
RFU  
T2_RELOAD_VALUE  
R/W  
00000h* - Reload value of the timer T2.  
FFFFFh  
Table 88.ꢀTIMER0_CONFIG register (address 000Eh) bit description  
Bit  
Symbol  
Access Value  
Description  
20  
T0_STOP_ON_RX_STARTED  
R/W  
0*  
T0_STOP_EVENT: If set; the timer T0 is stopped  
when a data reception begins and the first 4 bits had  
been received. The additional delay of the timer is  
protocol-dependent and listed in the appendix.  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
T0_STOP_ON_TX_STARTED  
T0_STOP_ON_RF_ON_EXT  
T0_STOP_ON_RF_OFF_EXT  
T0_STOP_ON_RF_ON_INT  
T0_STOP_ON_RF_OFF_INT  
T0_START_ON_RX_STARTED  
T0_START_ON_RX_ENDED  
T0_START_ON_TX_STARTED  
T0_START_ON_TX_ENDED  
T0_START_ON_RF_ON_EXT  
T0_START_ON_RF_OFF_EXT  
T0_START_ON_RF_ON_INT  
T0_START_ON_RF_OFF_INT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
T0_STOP_EVENT: If set; the timer T0 is stopped  
when a data transmission begins.  
T0_STOP_EVENT: If set; the timer T0 is stopped  
when the external RF field is detected.  
T0_STOP_EVENT: If set; the timer T0 is stopped  
when the external RF field vanishes.  
T0_STOP_EVENT: If set; the timer T0 is stopped  
when the internal RF field is turned on.  
T0_STOP_EVENT: If set; the timer T0 is stopped  
when the internal RF field is turned off.  
T0_START_EVENT: If set; the timer T0 is started  
when a data reception begins (first bit is received).  
T0_START_EVENT: If set; the timer T0 is started  
when a data reception ends.  
T0_START_EVENT: If set; the timer T0 is started  
when a data transmission begins.  
T0_START_EVENT: If set; the timer T0 is started  
when a data transmission ends.  
T0_START_EVENT: If set; the timer T0 is started  
when the external RF field is detected.  
T0_START_EVENT: If set; the timer T0 is started  
when the external RF field is not detected anymore.  
8
T0_START_EVENT: If set; the timer T0 is started  
when an internal RF field is turned on.  
7
T0_START_EVENT: If set; the timer T0 is started  
when an internal RF field is turned off.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
92 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 88.ꢀTIMER0_CONFIG register (address 000Eh) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
6
T0_START_NOW  
R/W  
0*  
T0_START_EVENT: If set; the timer T0 is started  
immediately.  
5:3  
T0_PRESCALE_SEL  
R/W  
000b*  
Controls frequency/period of the timer T0 when the  
prescaler is activated in T0_MODE_SEL:  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
0*  
6.78 MHz counter  
3.39 MHz counter  
1.70 MHz counter  
848 kHz counter  
424 kHz counter  
212 kHz counter  
106 kHz counter  
53 kHz counter  
2
T0_MODE_SEL  
R/W  
Configuration of the timer T0 clock. 0b* Prescaler is  
disabled: the timer frequency matches CLIF clock  
frequency (13.56 MHz). 1b Prescaler is enabled:  
the timer operates on the prescaler signal frequency  
(chosen by T0_PRESCALE_SEL).  
1
0
T0_RELOAD_ENABLE  
T0_ENABLE  
R/W  
R/W  
0*  
0*  
If set to 0; the timer T0 stops on expiration. 0* After  
expiration the timer T0 stops counting; i.e.; remain  
zero; reset value. 1 After expiration the timer T0  
reloads its preset value and continues counting down.  
Enables the timer T0  
Table 89.ꢀTIMER1_CONFIG register (address 000Fh) bit description  
Bit  
Symbol  
Access Value  
Description  
20  
T1_STOP_ON_RX_STARTED  
R/W  
0*  
T1_STOP_EVENT: If set; the timer T1 is stopped  
when a data reception begins and the first 4 bits had  
been received. The additional delay of the timer is  
protocol-dependent and listed in the appendix.  
19  
T1_STOP_ON_TX_STARTED  
T1_STOP_ON_RF_ON_EXT  
T1_STOP_ON_RF_OFF_EXT  
T1_STOP_ON_RF_ON_INT  
T1_STOP_ON_RF_OFF_INT  
T1_START_ON_RX_STARTED  
T1_START_ON_RX_ENDED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
T1_STOP_EVENT: If set; the timer T1 is stopped  
when a data transmission begins.  
18  
T1_STOP_EVENT: If set; the timer T1 is stopped  
when the external RF field is detected.  
17  
T1_STOP_EVENT: If set; the timer T1 is stopped  
when the external RF field vanishes.  
16  
T1_STOP_EVENT: If set; the timer T1 is stopped  
when the internal RF field is turned on.  
15  
T1_STOP_EVENT: If set; the timer T1 is stopped  
when the internal RF field is turned off.  
14  
T1_START_EVENT: If set; the timer T1 is started  
when a data reception begins (first bit is received).  
13  
T1_START_EVENT: If set; the timer T1 is started  
when a data reception ends.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
93 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 89.ꢀTIMER1_CONFIG register (address 000Fh) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
12  
T1_START_ON_TX_STARTED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0*  
T1_START_EVENT: If set; the timer T1 is started  
when a data transmission begins.  
11  
10  
9
T1_START_ON_TX_ENDED  
T1_START_ON_RF_ON_EXT  
T1_START_ON_RF_OFF_EXT  
T1_START_ON_RF_ON_INT  
T1_START_ON_RF_OFF_INT  
T1_START_NOW  
0*  
T1_START_EVENT: If set; the timer T1 is started  
when a data transmission ends.  
0*  
T1_START_EVENT: If set; the timer T1 is started  
when the external RF field is detected.  
0*  
T1_START_EVENT: If set; the timer T1 is started  
when the external RF field is not detected anymore.  
8
0*  
T1_START_EVENT: If set; the timer T1 is started  
when an internal RF field is turned on.  
7
0*  
T1_START_EVENT: If set; the timer T1 is started  
when an internal RF field is turned off.  
6
0*  
T1_START_EVENT: If set; the timer T1 is started  
immediately.  
5:3  
T1_PRESCALE_SEL  
000b*  
Controls frequency/period of the timer T1 when the  
prescaler is activated in T1_MODE_SEL:  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
0*  
6.78 MHz counter  
3.39 MHz counter  
1.70 MHz counter  
848 kHz counter  
424 kHz counter  
212 kHz counter  
106 kHz counter  
53 kHz counter  
2
T1_MODE_SEL  
R/W  
Configuration of the timer T1 clock. 0b* Prescaler is  
disabled: the timer frequency matches CLIF clock  
frequency (13.56 MHz). 1b Prescaler is enabled:  
the timer operates on the prescaler signal frequency  
(chosen by T1_PRESCALE_SEL).  
1
0
T1_RELOAD_ENABLE  
T1_ENABLE  
R/W  
R/W  
0*  
0*  
If set to 0; the timer T1 stops on expiration. 0* After  
expiration the timer T1 stops counting; i.e.; remain  
zero; reset value. 1 After expiration the timer T1  
reloads its preset value and continues counting down.  
Enables the timer T1  
Table 90.ꢀTIMER2_CONFIG register (address 0010h) bit description  
Bit  
Symbol  
Access Value  
Description  
20  
T2_STOP_ON_RX_STARTED  
R/W  
0*  
T2_STOP_EVENT: If set; the timer T2 is stopped  
when a data reception begins and the first 4 bits had  
been received. The additional delay of the timer is  
protocol-dependent and listed in the appendix.  
19  
T2_STOP_ON_TX_STARTED  
R/W  
0*  
T2_STOP_EVENT: If set; the timer T2 is stopped  
when a data transmission begins.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
94 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 90.ꢀTIMER2_CONFIG register (address 0010h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
18  
T2_STOP_ON_RF_ON_EXT  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0*  
T2_STOP_EVENT: If set; the timer T2 is stopped  
when the external RF field is detected.  
17  
16  
15  
14  
13  
12  
11  
10  
9
T2_STOP_ON_RF_OFF_EXT  
T2_STOP_ON_RF_ON_INT  
T2_STOP_ON_RF_OFF_INT  
T2_START_ON_RX_STARTED  
T2_START_ON_RX_ENDED  
T2_START_ON_TX_STARTED  
T2_START_ON_TX_ENDED  
T2_START_ON_RF_ON_EXT  
T2_START_ON_RF_OFF_EXT  
T2_START_ON_RF_ON_INT  
T2_START_ON_RF_OFF_INT  
T2_START_NOW  
0*  
T2_STOP_EVENT: If set; the timer T2 is stopped  
when the external RF field vanishes.  
0*  
T2_STOP_EVENT: If set; the timer T2 is stopped  
when the internal RF field is turned on.  
0*  
T2_STOP_EVENT: If set; the timer T2 is stopped  
when the internal RF field is turned off.  
0*  
T2_START_EVENT: If set; the timer T2 is started  
when a data reception begins (first bit is received).  
0*  
T2_START_EVENT: If set; the timer T2 is started  
when a data reception ends.  
0*  
T2_START_EVENT: If set; the timer T2 is started  
when a data transmission begins.  
0*  
T2_START_EVENT: If set; the timer T2 is started  
when a data transmission ends.  
0*  
T2_START_EVENT: If set; the timer T2T2 is started  
when the external RF field is detected.  
0*  
T2_START_EVENT: If set; the timer T2 is started  
when the external RF field is not detected anymore.  
8
0*  
T2_START_EVENT: If set; the timer T2 is started  
when an internal RF field is turned on.  
7
0*  
T2_START_EVENT: If set; the timer T2 is started  
when an internal RF field is turned off.  
6
0*  
T2_START_EVENT: If set; the timer T2 is started  
immediately.  
5:3  
T2_PRESCALE_SEL  
000b*  
Controls frequency/period of the timer T2 when the  
prescaler is activated in T2_MODE_SEL:  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
0*  
6.78 MHz counter  
3.39 MHz counter  
1.70 MHz counter  
848 kHz counter  
424 kHz counter  
212 kHz counter  
106 kHz counter  
53 kHz counter  
2
T2_MODE_SEL  
R/W  
Configuration of the timer T2 clock. 0b* Prescaler is  
disabled: the timer frequency matches CLIF clock  
frequency (13.56 MHz). 1b Prescaler is enabled:  
the timer operates on the prescaler signal frequency  
(chosen by T2_PRESCALE_SEL).  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
95 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 90.ꢀTIMER2_CONFIG register (address 0010h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
1
T2_RELOAD_ENABLE  
R/W  
0*  
If set to 0; the timer T2 stops on expiration. 0* After  
expiration the timer T2 stops counting; i.e.; remain  
zero; reset value. 1 After expiration the timer T2  
reloads its preset value and continues counting down.  
0
T2_ENABLE  
R/W  
0*  
Enables the timer T2  
Table 91.ꢀRX_WAIT_CONFIG (address 0011h) bit description  
Bit  
Symbol  
Access  
Value  
Description  
27:8  
RX_WAIT_VALUE  
R/W  
0*  
Defines the rx_wait timer reload value. Note: If set  
to 00000h, the rx_wait guard time is disabled. For I-  
CODE ILT-M the recommended setting at MAN2-848  
(212 Kbps) is 0xA0.  
7:0  
RX_WAIT_PRESCALER  
R/W  
0*  
Defines the prescaler reload value for the rx_wait  
timer.  
For correct DPC operation, it is required to set the  
prescaler to 0x7F  
For type A communication, the prescaler has to be  
set to 0x7F as well.  
Table 92.ꢀCRC_RX_CONFIG (address 0012h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:16  
RX_CRC_PRESET_VALUE  
R/W  
0*-FFFFh Arbitrary preset value for the Rx-Encoder CRC  
calculation.  
15:12  
11  
RFU  
R
0
Reserved  
RX_PARITY_TYPE  
R/W  
0*  
Defines which type of the parity-bit is used Note:  
This bit is set by the mod-detector if automatic mode  
detection is enabled and ISO14443A communication  
is detected. 0 Even parity calculation is used 1 Odd  
parity calculation is used  
10  
RX_PARITY_ENABLE  
R/W  
0*  
If set to 1; a parity-bit for each byte is expected;  
will be extracted from data stream and checked  
for correctness. In case the parity-bit is incorrect;  
the RX_DATA_INTEGRITY_ERROR flag is set.  
Nevertheless the reception is continued. Note: This  
bit is set by the mod-detector if automatic mode  
detection is enabled and ISO14443A communication  
is detected.  
9
VALUES_AFTER_COLLISION  
RX_BIT_ALIGN  
R/W  
R/W  
0*  
0*  
This bit defined the value of bits received after a  
collision occurred. 0* All received bits after a collision  
will be cleared. 1 All received bits after a collision  
keep their value.  
8:6  
RxAlign defines the bit position within the byte for the  
first bit received. Further received bits are stored at  
the following bit positions.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
96 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 92.ꢀCRC_RX_CONFIG (address 0012h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
5:3  
RX_CRC_PRESET_SEL  
R/W  
000b*  
Preset values of the CRC register for the Rx-Decoder.  
For a CRC calculation using 5bits, only the LSByte is  
used.  
000b*  
001b  
0000h, reset value. This configuration is set by the  
Mode detector for FeliCa.  
6363h, this configuration is set by the Mode detector  
for ISO14443 type A.  
010b  
011b  
A671h  
FFFFh, this configuration is set by the Mode detector  
for ISO14443 type B.  
100b  
101b  
110b  
111b  
0012h  
E012h  
RFU  
Use arbitrary preset value RX_CRC_PRESET_  
VALUE  
2
1
RX_CRC_TYPE  
RX_CRC_INV  
R/W  
R/W  
0*  
Controls the type of CRC calculation for the Rx-  
Decoder  
0
16-bit CRC calculation, reset value  
5-bit CRC calculation  
1
0*  
Controls the comparison of the CRC checksum for  
the Rx-Decoder  
0*  
1
Not inverted CRC value. This bit is cleared by the  
Mode detector for ISO14443 type A and FeliCa.  
Inverted CRC value: F0B8h, this bit is set by the  
Mode detector for ISO14443 type B.  
0
RX_CRC_ENABLE  
R/W  
0*  
If set; the Rx-Decoder checks the CRC for  
correctness. Note: This bit is set by the Mode  
Detector when ISO14443 type B or FeliCa (212 kbit/s  
or 424 kbit/s) is detected.  
Table 93.ꢀRX_STATUS register (address 0013h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:26  
25:19  
RFU  
R
R
0
Reserved  
RX_COLL_POS  
0*  
These bits show the bit position of the first detected  
collision in a received frame (only data bits are  
interpreted).  
Note: These bits contain information for the bit  
position of the first detected collision in passive  
communication mode at 106 kbit/s, communication  
mode for ISO/IEC 14443 type A and for MIFARE  
Classic or ISO/IEC15693 mode. Precondition: The  
CollPosValid bit is set.  
Note: If RX_ALIGN is set to a value different to 0, this  
value is included in the RX_COLL_POS.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
97 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 93.ꢀRX_STATUS register (address 0013h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
18  
RX_COLLISION_DETECTED  
R
0*  
This flag is set to 1, when a collision has occurred.  
The position of the first collision is shown in the  
register RX_COLLPOS  
17  
RX_PROTOCOL_ERROR  
R
0*  
This flag is set to 1, when a protocol error has  
occurred. A protocol error can be a wrong stop bit, a  
missing or wrong ISO/IEC14443 B EOF or SOF or a  
wrong number of received data bytes.  
Note: When a protocol error is detected, data  
reception is stopped.  
Note: The flag is automatically cleared at start of next  
reception.  
16  
RX_DATA_INTEGRITY_ERROR  
R
0*  
This flag is set to 1, if a data integrity error has been  
detected. Possible caused can be a wrong parity or a  
wrong CRC.  
Note: On a data integrity error, the reception is  
continued  
Note: The flag is automatically cleared at start of next  
reception.  
Note: If a reversed parity bit is a stop criteria, the flag  
is not set to 1 if there is a wrong parity.  
15:13  
12:9  
RX_NUM_LAST_BITS  
R
R
0*  
0*  
Defines the number of valid bits of the last data byte  
received in bit-oriented communications. If zero the  
whole byte is valid.  
RX_NUM_FRAMES_RECEIVED  
Indicates the number of frames received. The value is  
updated when the RxIRQ is raised.  
Note: This bit field is only valid when the RxMultiple is  
active (bit RX_MULTIPLE_ENABLE set)  
8:0  
RX_NUM_BYTES_RECEIVED  
R
0*  
Indicates the number of bytes received. The value is  
valid when the RxIRQ is raised until the receiver is  
enabled again.  
Table 94.ꢀTX_UNDERSHOOT_CONFIG register (address 0014h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:16  
TX_UNDERSHOOT_PATTERN  
Undershoot pattern which is transmitted after each  
falling edge.  
15:5  
4:1  
RESERVED  
-
TX_UNDERSHOOT_PATTERN_  
LEN  
Defines length of the undershoot prevention pattern  
(value +1). The pattern is applied starting from the  
LSB of the defined pattern; all other bits are ignored.  
0
TX_UNDERSHOOT_PROT_  
ENABLE  
If set to 1; the undershoot protection is enabled  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
98 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 95.ꢀTX_OVERSHOOT_CONFIG register (address 0015h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:16  
TX_OVERSHOOT_PATTERN  
R/W  
0* -  
FFFFh  
Overshoot pattern which is transmitted after each  
rising edge.  
15:5  
4:1  
RFU  
R
0
Reserved  
TX_OVERSHOOT_PATTERN _ R/W  
LEN  
0*-Fh  
Defines length of the overshoot prevention pattern  
(value +1). The pattern is applied starting from the  
MSB of the defined pattern, all other bits are ignored.  
0
TX_OVERSHOOT_PROT _  
ENABLE  
R/W  
0*, 1  
If set to 1, the overshoot protection is enabled.  
Table 96.ꢀTX_DATA_MOD register (address 0016h) bit description  
Bit  
Symbol  
Access Value  
Description  
15:8  
TX_DATA_MOD_WIDTH  
R/W  
0*-FFh  
Specifies the length of a pulse for sending data with  
miller pulse modulation enabled. The length is given  
by the number of carrier clocks + 1.  
7:0  
TX_BITPHASE  
R/W  
0* - FFh Defines the number of 13.56 MHz cycles used for  
adjustment of TX_WAIT to meet the FDT. This is  
done by using this value as first counter initialization  
value instead of TX_WAIT_PRESCALER.  
These bits of TX_BITPHASE, together with TX_  
WAIT_VALUE and TX_WAIT_PRESCALER are  
defining the number of carrier frequency clocks which  
are added to the waiting period before transmitting  
data in all communication modes. TX_BITPHASE  
is used to adjust the TX bit synchronization during  
passive NFCIP-1 communication mode at 106 kbit  
and in ISO/IEC 14443 type A.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
99 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 97.ꢀTX_WAIT_CONFIG register (address 0017h) bit description  
Bit  
Symbol  
Access Value  
Description  
27:8  
TX_WAIT_VALUE  
D
0* -  
Defines the tx_wait timer value.  
FFFFFh  
The values TX_WAIT_VALUE and TX_WAIT_  
PRESCALER are the initial counter values of two  
independent counters. The counter linked to TX_  
WAIT_PRESCALER is decremented at every 13.56  
MHz clock.  
As soon as the counter TX_WAIT_PRESCALER  
overflows (transition from 00h to FFh), the counter  
linked to TX_WAIT is decremented. At the same  
time, the counter linked to TX_WAIT_PRESCALER is  
reloaded with the TX_WAIT_PRESCALER value.  
The first initial TX_WAIT_PRESCALER counter value  
is always using the data defined in TX_BITPHASE  
(in case of PICC operation). All other subsequent  
counter reload values are taken from TX_WAIT_  
PRESCALER.  
Note: If set to 00000h the tx_wait guard time is  
disabled  
Note: This bit is set by HW a protocol is detected in  
automatic mode detector.  
7:0  
TX_WAIT_PRESCALER  
D
0* - FFh Defines the prescaler reload value for the tx_wait  
timer.  
Note: This bit is set by HW a protocol is detected in  
automatic mode detector.  
For correct DPC operation, it is required to set the  
prescaler to 0x7F For type A communication, the  
prescaler has to be set to 0x7F as well.  
Table 98.ꢀTX_CONFIG register (address 0018h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:14  
13  
RFU  
R
0
0
Reserved  
TX_PARITY_LAST_INV_  
ENABLE  
R/W  
If set to 1; the parity bit of last sent data byte is  
inverted  
12  
11  
TX_PARITY_TYPE  
R/W  
R/W  
0
0
Defines the type of the parity bit 0 Even Parity is  
calculated 1 Odd parity is calculated  
TX_PARITY_ENABLE  
If set to 1; a parity bit is calculated and appended to  
each byte transmitted. If the Transmission Of Data  
Is Enabled and TX_NUM_BYTES_2_SEND is zero;  
then a NO_DATA_ERROR occurs.  
10  
TX_DATA_ENABLE  
TX_STOP_SYMBOL  
R/W  
R/W  
0
0
If set to 1; transmission of data is enabled otherwise  
only symbols are transmitted.  
9:8  
Defines which pattern symbol is sent as frame stop-  
symbol 00b No symbol is sent 01b Symbol1 is sent  
10b Symbol2 is sent 11b Symbol3 is sent  
7:6  
TX_START_SYMBOL  
R/W  
0
Defines which symbol pattern is sent as frame start-  
symbol 00b No symbol pattern is sent 01b Symbol0 is  
sent 10b Symbol1 is sent 11b Symbol2 is sent.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
100 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 98.ꢀTX_CONFIG register (address 0018h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
5:3  
TX_LAST_BITS  
R/W  
0
Defines how many bits of the last data byte to be  
sent. If set to 000b all bits of the last data byte are  
sent. Note: Bits are skipped at the end of the byte  
2:0  
TX_FIRST_BITS  
R/W  
0
Defines how many bits of the first data byte to be  
sent. If set to 000b all bits of the last data byte are  
sent. Note: Bits are skipped at the beginning of the  
byte  
Table 99.ꢀCRC_TX_CONFIG (address 0019h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:16  
TX_CRC_PRESET_VALUE  
R/W  
0*-FFFFh Arbitrary preset value for the Tx-Encoder CRC  
calculation.  
15:7  
6
RFU  
R
0
0
Reserved  
TX_CRC_BYTE2_ENABLE  
R/W  
If set; the CRC is calculated from the second byte  
onwards (intended for HID). This option is used in the  
Tx-Encoder.  
5:3  
TX_CRC_PRESET_SEL  
R/W  
000-101b Preset values of the CRC register for the Tx-Encoder.  
For a CRC calculation using 5 bits, only the LSByte is  
used.  
000b*  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
0000h, reset value  
6363h  
A671h  
FFFFh  
0012h  
E012h  
RFU  
Use arbitrary preset value TX_CRC_PRESET_  
VALUE  
2
1
0
TX_CRC_TYPE  
TX_CRC_INV  
R/W  
R/W  
R/W  
0, 1  
Controls the type of CRC calculation for the Tx-  
Encoder  
0*  
16-bit CRC calculation, reset value  
5-bit CRC calculation  
1
0, 1  
Controls the sending of an inverted CRC value by the  
Tx-Encoder  
0*  
Not inverted CRC checksum, reset value  
Inverted CRC checksum  
1
TX_CRC_ENABLE  
0*, 1  
If set to one, the Tx-Encoder computes and transmits  
a CRC.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
101 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 100.ꢀSIGPRO_CONFIG register (address 001Ah) bit description  
Bit  
Symbol  
RFU  
Access Value  
Description  
31:2  
2:0  
R
D
0
Reserved  
BAUDRATE  
000*-111 Defines the baud rate of the receiving signal. The  
MSB is only relevant for reader mode.  
Note: These bits are set by the mode-detector  
if automatic mode detector is enabled and the  
communication mode is detected.  
000*  
001  
010  
011  
100  
Reserved  
Reserved  
Reserved  
Reserved  
106 kBd This configuration is set by the Mode  
detector for ISO/IEC14443 type A and B.  
101  
110  
111  
212 kBd This configuration is set by the Mode  
detector for FeliCa 212 kBd.  
424 kBd This configuration is set by the Mode  
detector for FeliCa 424 kBd.  
848 kBd  
Table 101.ꢀSIGPRO_CM_CONFIG register (address 001Bh) bit description  
Bit  
Symbol  
Access Value  
Description  
31  
RFU  
R
0
Reserved  
30:29  
RX_FRAMING  
Defines the framing in card mode. These bits are set  
by the Mode detector if automatic mode detection is  
enabled and the communication mode is detected.  
00b: ISO/IEC 14443 type A  
01b: ISO/IEC 18092 (NFC - with Sync-byte 0xF0)  
28:26  
EDGE_DETECT_TAP_SEL  
Selects the number of taps of the edge-detector filter.  
000b: Edge detector filter with 4 taps  
001b: Edge detector filter with 6 taps  
010b: Edge detector filter with 8 taps  
011b: Edge detector filter with 8 taps  
100b: Edge detector filter with 16 taps  
101b: Edge detector filter with 18 taps  
110b: Edge detector filter with 24 taps  
111b: Edge detector filter with 32 taps  
25:13  
12:0  
EDGE_DETECT_TH  
BIT_DETECT_TH  
Threshold for the edge decision block of the  
ADCBCM.  
Threshold for the "bit" decision block of the ADCBCM.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
102 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 102.ꢀSIGPRO_RM_CONFIG register (address 001Ch) bit description  
Bit  
Symbol  
Access Value  
Description  
31:24  
23:21  
RFU  
R
0
Reserved  
BPSK_IQ_MODE  
R/W  
000*-111 Defines signal processing of I- and Q-channel  
000*  
Both channels (I and Q) are used for signal  
processing  
001  
Use only I channel  
Use only Q channel  
RFU  
010  
011  
100  
Use the strongest channel  
Use the first channel  
RFU  
101  
110-111  
0*-1  
0-1*  
20  
19  
BPSK_FILT6  
R/W  
R/W  
Reserved for test  
RESYNC_EQ_ON  
Resynchronization during the SOF for an equal  
correlation value is done (default = activated).  
18  
17  
CORR_RESET_ON  
VALID_FILT_OFF  
R/W  
R/W  
0
The correlator is reset at a reset (default = activated).  
0*-1  
Disables a special filter in BPSK mode. If set to 0, the  
correlation of 0110 is filtered with the correlation of  
1110 and 0111. Otherwise the demodulation is done  
using the correlation with 0110  
16  
DATA_BEFORE_MIN  
MIN_LEVEL  
R/W  
R/W  
0
Data is received even before the first minimum at the  
SOF (default: = deactivated).  
15:12  
0*-Fh  
Defines the minimum level (threshold value) for the  
subcarrier detector unit. Note: The MinLevel should  
be higher than the noise level in the system. The  
values in the look-up table are not absolute values.  
The values for MIN_LEVEL vary +/- 3 (1 sign bit and  
2 bits for value) to allow an increase/decrease of the  
actual lookup table value.  
Note: Used for BPSK and Manchester with Subcarrier  
communication types as MinLevel  
11:8  
MIN_LEVELP  
R/W  
0*-Fh  
Defines the minimum level (threshold value) for  
the phase-shift detector unit. Used for BPSK  
communication. The values in the look-up table are  
not absolute values.  
The values in the ARC look-up table (LUT) are  
not absolute, but relative values. The values for  
MIN_LEVELP in the ARC LUT can define a change  
(increase or decrease) of the actual register value of  
up to +/- 3 digits, using 1 sign bit (MSbit) and 2 bits  
for value.  
Note: Used for BPSK with Subcarrier communication  
types as MinLevel  
7
USE_SMALL_EVAL  
R
0
Defines the length of the evaluation period for the  
correlator for Manchester subcarrier communication  
types.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
103 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 102.ꢀSIGPRO_RM_CONFIG register (address 001Ch) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
6:5  
COLL_LEVEL  
R/W  
00*-11  
Defines how strong a signal must be interpreted as  
a collision for Manchester subcarrier communication  
types.  
00*  
01  
10  
11  
>12.5 %  
>25 %  
>50 %  
No Collision  
4
3
2
PRE_FILTER  
RECT_FILTER  
SYNC_HIGH  
R/W  
R/W  
R/W  
If set to 1 four samples are combined to one data.  
(average)  
0
If set to one; the ADC-values are changed to a more  
rectangular waveshape.  
0*-1  
Defines if the bit grid is fixed at maximum (1) or at a  
minimum(0) value of the correlation.  
1
0
FSK  
R
0
If set to 1; the demodulation scheme is FSK.  
If set to 1, the demodulation scheme is BPSK.  
BPSK  
R/W  
0*  
Table 103.ꢀRF_STATUS register (address 001Dh) bit description  
Bit  
Symbol  
Access Value  
Description  
31:27  
26:24  
RFU  
R
R
0
-
TRANSCEIVE_STATE  
0*  
Holds the command bits 0* IDLE state 1 WaitTransmit  
state 2 Transmitting state 3 WaitReceive state 4  
WaitForData state 5 Receiving state 6 LoopBack  
state 7 reserved  
23:20  
19  
DPC_CURRENT_GEAR  
DPLL_ENABLE  
R
R
0*  
0*  
Current Gear of the DPC  
This bit indicates that the DPLL Controller has  
enabled the DPLL (RF on, RF frequency ok, PLL  
locked)  
18  
CRC_OK  
R
0
This bit indicates the status of the actual CRC  
calculation. If 1 the CRC is correct; meaning the  
CRC register has the value 0 or the residue value if  
inverted CRC is used. Note: This flag should only be  
evaluated at the end of a communication.  
17  
TX_RF_STATUS  
R
R
R
0
If set to 1 this bit indicates that the drivers are turned  
on; meaning an RF-Field is created by the device  
itself.  
16  
RF_DET_STATUS  
0
If set to 1 this bit indicates that an external RF-Field  
is detected by the RF-level detectors (after digital  
filtering)  
15:13  
RF_ACTIVE_ERROR_CAUSE  
0 - 5  
This status flag indicates the cause of an NFC-Active  
error.  
Note: These bits are only valid when the RF_  
ACTIVE_ERROR_IRQ is raised and is cleared as  
soon as the bit TX_RF_ENABLE is set to 1.  
0*  
No Error; reset value  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
104 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 103.ꢀRF_STATUS register (address 001Dh) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
1
2
3
4
External field was detected on within TIDT timing  
External field was detected on within TADT timing  
No external field was detected within TADT timings  
Peer did switch off RF-Field but no Rx event was  
raised (no data received)  
5 - 7  
Reserved  
12  
11  
RX_ENABLE  
TX_ACTIVE  
RX_ACTIVE  
AGC_VALUE  
This bit indicates if the RxDecoder is enabled. If 1 the  
RxDecoder was enabled by the Transceive Unit and  
is now ready for data reception  
This bit indicates activity of the TxEncoder. If 1 a  
transmission is ongoing, otherwise the TxEncoder is  
in idle state.  
10  
9:0  
This bit indicates activity of the RxDecoder. If 1 a data  
reception is ongoing; otherwise the RxDecoder is in  
idle state.  
R
0*-3FFh Current value of the AGC  
0h*  
Most sensitive: largest Rx-resistor, i.e., none of the  
switchable resistors are added in parallel  
3FFh  
Most robust: smallest Rx-resistor, i.e., all switchable  
resistors are added in parallel  
Table 104.ꢀAGC_CONFIG register (address 001Eh) bit description  
Bit  
Symbol  
Access Value  
Description  
31:16  
15:14  
RFU  
R
0*  
Reserved  
AGC_VREF_SEL  
R/W  
10*  
Select the set value for the AGC control:_  
00b: 1.15 V  
01b: 1.40 V  
10b: 1.50 V  
11b: RFU  
13:4  
3
AGC_TIME_CONSTANT  
AGC_INPUT_SEL  
R/W  
R/W  
1000000 Time constant for the AGC update. An AGC period is  
000*  
given by (AGC_TIME_CONSTANT+1) * 13.56 MHz.  
The minimum allowed value for the AGC_TIME_  
CONSTANT is 4.  
0*  
Selects the AGC value to be loaded into the AGC and  
the data source for fix-mode operation:  
0b: AGC_VALUE.AGC_CM_VALUE  
1b: AGC_VALUE.AGC.RM_VALUE  
2
AGC_LOAD  
W
0*  
If set; the RX divider setting is loaded from AGC_  
VALUE. AGC_INPUT_SEL defines the source of the  
data. This bit is automatically cleared.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
105 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 104.ꢀAGC_CONFIG register (address 001Eh) bit description...continued  
Bit  
Symbol  
Access Value  
R/W 1*  
Description  
1
AGC_MODE_SEL  
Selects the fix AGC value:  
0b: Rx-divider is set according to AGC_VALUE  
dependent on bit AGC_INPUT_SEL  
1b: The last RX divider setting before AGC  
control operation had been deactivated is used  
(AGC_ENABLE_CONTROL=0, last RX divider  
setting is frozen).  
This bit is not causing any loading of new Rx-  
divider data. Set the bit AGC_LOAD for updating  
the RX divider with a new value.  
0
AGC_ENABLE_CONTROL  
R/W  
1*  
0b: Fix mode operation. The RX divider is  
fixed to one value. The value is defined by  
AGC_MODE_SEL  
1b: AGC control operation enabled  
Table 105.ꢀAGC_VALUE register (address 001Fh) bit description  
Bit  
Symbol  
Access Value  
Description  
31:20  
19:10  
0:9  
RFU  
R
0
0
0
Reserved  
AGC_RM_VALUE  
AGC_CM_VALUE  
R/W  
R/W  
Static AGC value used for reader mode  
Static AGC value used for card mode  
Table 106.ꢀRF_CONTROL_TX register (address 0020h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:27  
26  
RFU  
R
0
Reserved  
TX_ALM_TYPE_SELECT  
R/W  
0*  
0 ... Both drivers used for ALM 1 ... Single driver used  
for ALM  
25:24  
23:19  
TX_CW_AMPLITUDE_ALM_CM R/W  
0*  
0*  
set amplitude of unmodulated carrier at card mode  
TX_RESIDUAL_CARRIER_OV_ R/W  
PREV  
Defines the value for the residual carrier for the  
period the overshoot prevention pattern is active.  
18  
TX_CW_TO_MAX_ALM_CM  
R/W  
0*  
TX HI output is the maximum voltage obtainable from  
charge pump (CM setting); if set to 1 -> TX_CW_  
AMPLITUDE_CM is overruled.  
17:13  
12  
TX_RESIDUAL_CARRIER  
TX_BYPASS_SC_SHAPING  
R/W  
R/W  
0*  
0*  
set residual carrier (0=100 %, 1F = 0 %)  
Bypasses switched capacitor TX shaping of the  
Transmitter Signal and disables the shaping control  
for the rising edge.  
So this bit must be 0, if the TAU_MOD_RISING  
settings shall apply.  
The rising edge provides the fastest risetime, if TX_  
SET_BYPASS_SC_SHAPING = 1 (TAU_MOD_  
RISING does not matter).  
11:8  
TX_SLEW_SHUNTREG  
R/W  
0*  
Set slew rate for shunt regulator. Set slew rate for Tx  
Shaping shunt regulator (0= slowest slew rate, 0xF =  
fastest slew rate) for both the falling and rising edge.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
106 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 106.ꢀRF_CONTROL_TX register (address 0020h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
7:4  
TX_TAU_MOD_FALLING  
R/W  
0*  
Transmitter TAU setting for falling edge of modulation  
shape. In AnalogControl module, the output signal  
is switched with the tx_envelope. Only valid is TX_  
SINGLE_CP_MODE is set  
3:0  
TX_TAU_MOD_RISING  
R/W  
0*  
Transmitter TAU setting for rising edge of modulation  
shape. In Analog Control module, the output signal  
is switched with the tx_envelope. Only valid is TX_  
SINGLE_CP_MODE is set  
Table 107.ꢀRF_CONTROL_TX_CLK register (address 0021h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:19  
18  
RFU  
R
0*  
0*  
Reserved  
TX_ALM_ENABLE  
R/W  
If set to 1 ALM (active load modulation) is used for  
transmission in card mode  
17:14  
13:11  
RFU  
R
RFU  
DPLL_CLOCK_CONFIG_ALM  
R/W  
0*  
Configures the phase difference in integer multiples  
of 45° steps between the recovered and the  
transmitted RF clock  
10:8  
7
TX_CLK_MODE_OVUN_PREV  
TX2_INV_RM  
R/W  
R/W  
0*  
0*  
Defines the TX clock mode for the period the  
overshoot/undershoot prevention is active  
If 1 -> TX2 output is inverted (clk_13m56_n is used);  
0 -> clk_13m56 is used, this setting is active in reader  
mode only  
6
TX2_INV_CM  
R/W  
R/W  
R/W  
R/W  
0*  
0*  
0*  
0*  
If 1 -> TX2 output is inverted (clk_13m56_n is used);  
0 -> clk_13m56 is used, this setting is active in card  
emulation mode only  
5
TX1_INV_RM  
If 1 -> TX1 output is inverted (clk_13m56_n is used);  
0 -> clk_13m56 is used, this setting is active in reader  
mode only  
4
TX1_INV_CM  
If 1 -> TX1 output is inverted (clk_13m56_n is used);  
0 -> clk_13m56 is used, this setting is active in card  
emulation mode only  
3:1  
TX_CLK_MODE_RM  
TX clock mode: Allows to configure the transmitter for  
1. High impedance (RF-OFF)  
2. RF high side push  
3. RF low side pull  
4. 13.56 MHz clock derived from 27.12 MHz quartz  
divided by 2. See table 68: Settings for TX1 and TX2  
0
CLOCK_ENABLE_DPLL  
R/W  
0*  
Enables the DPLL  
Table 108.ꢀRF_CONTROL_RX register (address 0022h) bit description  
Bit  
Symbol  
Access Value  
0*  
Description  
31:8  
RFU  
R
Reserved  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
107 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 108.ꢀRF_CONTROL_RX register (address 0022h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
7:6  
CM_MILLER_SENS  
R/W  
Configuration bits for reference level of Miller  
demodulator  
5:4  
3:2  
1:0  
RX_ MIXER_CONTROL  
RX_HPCF  
R/W  
R/W  
Mixer Control Enable 00, 11 … power down both  
mixer 01… reader mode mixer 10… card mode mixer,  
High Pass Corner Frequency: 00->45 kHz, 01-> 85  
kHz, 10->150 kHz, 11->250 kHz  
RX_GAIN  
R/W  
0h*-3h  
Gain Adjustment BBA: 00->33 dB, 01->40 dB, 10->  
50 dB, 11->57 dB  
Table 109.ꢀLD_CONTROL register (address 0023h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:15  
14  
RFU  
R
0*  
0*  
0*  
Reserved  
CM_PD_NFC_DET  
RFDET_SOURCE_SEL  
R/W  
R/W  
Power Down NFC level detector  
13:12  
Selects the source for RF-Field detection; 0* -> NFC-  
Level detector indication signal is used; 1 -> RF-Level  
detector indication signal is used 2; -> NFC- and RF-  
Level detector indication signal is used 3; -> Override  
- RF-Field detected is emulated  
11:8  
7:4  
CM_RFL_NFC  
RFLD_REF_LO  
RFLD_REF_HI  
R/W  
R/W  
R/W  
0*  
0*  
0*  
Programming of detection level  
Higher Reference Value for RF Level Detector  
Lower Reference Value for RF Level Detector  
3:0  
Table 110.ꢀSYSTEM_STATUS register (address 0024h) bit description  
Bit  
31:10  
9
Symbol  
Access Value  
Description  
RFU  
R
R
0
Reserved  
LDO_TVDD_OK  
0*  
If set, bit indicates that LDO voltage is available on  
output pin LDO_OUT  
8
7
6
5
4
3
2
1
0
PARAMETER_ERROR  
SYNTAX_ERROR  
SEMANTIC_ERROR  
STBY_PREVENT_RFLD  
BOOT_TEMP  
R
R
R
R
R
R
R
R
R
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
0*  
Parameter Error on Host Communication  
Syntax Error on Host Communication  
Semantic Error on Host Communication  
Entry of STBY mode prevented due to existing RFLD  
Boot Reason Temp Sensor  
BOOT_SOFT_RESET  
BOOT_WUC  
Boot Reason due to SOFT RESET  
Boot Reason wake-up Counter  
BOOT_RFLD  
Boot Reason RF Level Detector  
BOOT_POR  
Boot Reason "Power on" or pin RESET_N set to  
HIGH  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
108 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 111.ꢀTEMP_CONTROL register (address 0025h) bit description  
Bit  
31:4  
3
Symbol  
Access Value  
Description  
RFU  
R
0
Reserved  
TEMP_ENABLE_HYST  
TEMP_ENABLE  
TEMP_DELTA  
R/W  
R/W  
R/W  
0*  
0*  
0*  
Enable hystereses of Temperature Sensor  
Enable Temp Sensor  
2
0:1  
selects temperature value:  
00b: 85 deg  
01b: 115 deg  
10b: 125 deg  
11b: 135 deg  
Table 112.ꢀAGC_REF_CONFIG register (address 0026h) bit description  
Bit  
Symbol  
RFU  
Access Value  
Description  
31:14  
13:10  
R
0
0
RFU  
AGC_GEAR  
R/W  
Gear number used during LPCD Self-Calibration.  
Either written by the use or derived from an automatic  
DPC cycle during reading of this register  
9:0  
AGC_VALUE  
R/W  
0
AGC reference value used during the LPCD self-  
calibration. This value is derived automatically when  
reading or writing this register.  
Writing data to these bits has no functional effect.  
Reading from this register:  
Reading from this register - without prior writing - starts an LPCD calibration. The  
calibration is executed using the gear which is resulting from the actual DPC setting  
under the actual antenna detuning condition. AGC_GEAR is used in the LPCD self-  
calibration.  
Reading from this register - without prior writing - delivers in addition to the AGC_GEAR  
value the AGC_VALUE. The AGC_VALUE is used in the LPCD self-calibration.  
Writing to this register:  
Writing data to this register is required before starting the LPCD in Self-calibration mode.  
Either the previously read AGC_GEAR or a user-defined gear can be chosen. The  
previously read AGC_VALUE has to be written in any case.  
Writing data to this register defines the values for AGC_GEAR without taking the  
actual detuning condition into account. The value of AGC_GEAR to perform an LPCD  
calibration which derives the AGC_VALUE. This AGC_VALUE and the AGC_GEAR are  
used in the LPCD self-calibration.  
Self-calibration mode  
Self-calibration mode always requires a Read AGC_REF_CONFIG, followed by a write  
AGC_REF_CONFIG, using the previously read AGC_VALUE.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
109 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 113.ꢀDPC_CONFIG register (address 0027h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:20  
19:16  
15:12  
11:8  
7:4  
RFU  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RW  
R
0
0
0
0
0
0
0
0
TX_GSN_CW_CM  
GSN value for continuous wave in Card Mode  
GSN value for modulation in Card Mode  
GSN value for modulation in Reader Mode  
GSN value for continuous wave in Reader Mode  
Maximum output voltage on TX driver  
set amplitude of unmodulated carrier at reader mode  
TX_GSN_MOD_CM  
TX_GSN_MOD_RM  
TX_GSN_CW_RM  
3
TX_CW_TO_MAX_RM  
TX_CW_AMPLITUDE_RM  
TX_CW_AMP_REF2TVDD  
2:1  
0
If set to 1 the reference of the unmodulated carrier is  
defined relative to TVDD  
Table 114.ꢀEMD_CONTROL register (address 0028h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:10  
9:8  
RFU  
R
0
0
Reserved  
EMD_TRANSMISSION_TIMER_ R/W  
USED  
Timer used for RF communication. 00 Timer0, 01  
Timer1, 10 Timer 2, 11 RFU  
7
EMD_MISSING_CRC_IS_  
PROTOCOL_ERROR_TYPE_B  
R/W  
R/W  
R/W  
0
0
0
RFU  
6
EMD_MISSING_CRC_IS_  
PROTOCOL_ERROR_TYPE_A  
RFU  
5:2  
EMD_NOISE_BYTES_  
THRESHOLD  
Defines the threshold under which transmission  
errors are treated as noise. Note: CRC bytes are  
NOT included/counted!  
1
0
EMD_TRANSMISSION_  
ERROR_ABOVE_NOISE_  
THRESHOLD_IS_NO_EMD  
R/W  
0
Transmission errors with received byte length >=  
EMD_NOISE_BYTES_THRESHOLD is never treated  
as EMD (EMVCo 2.5 standard). All transmission with  
number of received bytes < 4 bytes are treated as  
EMD noise (ignored).  
For transmission errors >= 4 bytes the host is notified.  
EMD_ENABLE  
R/W  
0
Enable EMD handling  
Recommended EMD_CONTROL register value for EMVCo 2.6 compliancy; 0x187  
Recommended timer for all EMVCo compliant EMD error handlings: Timer 1  
Table 115.ꢀANT_CONTROL register (address 0029h) bit description  
Bit  
31:8  
7
Symbol  
Access Value  
Description  
RFU  
R
0
0
Reserved  
ANT_INVERT_ON_TXACTIVE  
R/W  
If set to 1, the ANT short interface in card mode  
is inverted when tx_active is asserted (i.e. while  
transmission). Note: this bit is only valid in card mode.  
Note: if it ANT_ALM_AUTO_SWITCH_ENABLE is set  
this setting is ignored  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
110 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 115.ꢀANT_CONTROL register (address 0029h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
6
ANT_ALM_AUTO_SWITCH_  
ENABLE  
R/W  
0
If set to 1, the ANT setting for ALM is switched  
automatically by HW. By default for ALM the ANT_  
short and ANT_mod uses the same settings as for  
PLM.  
5
ANT_ALM_FW_RESET  
ANT_SHORT_SELECT_RM  
ANT_SHORT_SELECT  
R/W  
R/W  
R/W  
0
0
0
If set to 1 the ANT setting for ALM is reset to its initial  
receive configuration  
4
Selects the control of the ANT modulation interface in  
reader mode  
3:2  
Selects the control of the ANT short interface in card  
mode for PLM; in reader mode and ALM the analog  
control signals are switched by digital logic. 00b  
Constant 0 (ANT open) 01b Constant 1 (ANT short)  
10b TxEnvelope used (idle = 1, modulation = 0) 11b  
Inverted TxEnvelope used (idle = 0, modulation = 1)  
1:0  
ANT_MOD_SELECT  
R/W  
0
Selects the control of the ANT modulation interface  
in card mode for PLM; in reader mode and ALM  
the analog control signals are switched by digital  
logic. 00b Constant 0 (No modulation on ANT mod)  
01b Constant 1 (modulation on ANT mod) 10b  
TxEnvelope used (idle = 1, modulation = 0) 11b  
Inverted TxEnvelope used (idle = 0, modulation = 1)  
Table 116.ꢀTX_CONTROL register (address 0036h) bit description  
Bit  
31:2  
1
Symbol  
Access Value  
Description  
RFU  
RW  
RW  
0
0
-
TX_CM_GSN_TXACTIVE  
If set, CM GSN value is switched with tx_active  
instead of envelope  
0
TX_INVERT  
RW  
0
If this bit is set, the resulting signal is inverted  
Table 117.ꢀSIGPRO_RM_CONFIG_EXTENSION register (address 0039h) bit description  
Bit  
Symbol  
Access Value  
Description  
31:16  
SYNC_VAL  
R/W  
R/W  
R/W  
0*  
0*  
0*  
Defines the Sync Pattern; which is expected to be  
sent as preamble before the actual data.  
15:12  
11  
SYNC_LEN  
Defines how many Bits of Sync_Val are valid.  
Example: 0 configures 1 Bit to be valid.  
SYNC_NEGEDGE  
Defines a SOF with no min or max in correlation. The  
bit grid will be defined by the negative edge (EPC;  
UID).  
10  
LAST_SYNC_HALF  
R/W  
0*  
The last Bit of the Sync code has only half of the  
length compared to all other bits (EPC V2).  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
111 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 117.ꢀSIGPRO_RM_CONFIG_EXTENSION register (address 0039h) bit description...continued  
Bit  
Symbol  
Access Value  
Description  
9:8  
SYNC_TYPE  
R/W  
0*  
Set to 0 all 16 bits of SyncVal are interpreted as bits.  
Set to 1 a nipple of bits is interpreted as one bit in  
following way:{data; coll} data=zero or one; coll=1  
means a collision on this bit. Note: if Coll=1 the vale  
of data is ignored. Set to 2 the synchronization is  
done at every start bit of each byte (TypeB)  
7:0  
RFU  
R/W  
0*  
-
Sync pattern is fixed to B24D and it is configurable via the  
SIGPRO_RM_CONFIG_EXTENSION, bits 16:31 (16 bits).  
At LoadRfConfig for FeliCa Reader (212 / 424 kbit/s), the value SYNC_ VAL is set to  
0xB24D. This value can be modified by writing to the bit field Sync_Val (16:31). This is  
required after each LoadRfConfig command. SYNC_LEN = 0xF (1111b).  
Table 118.ꢀFELICA_EMD_CONTROL register (address 0043h) bit description (only available from firmware V4.1  
onwards)  
Bit  
Symbol  
Access Value  
Description  
31:24  
FELICA_EMD_RC_BYTE_  
VALUE  
R/W  
00*-FF  
Response Code (RC) byte definition of the FeliCa  
response frame. All received data, which does not  
start with the RC, is treated as EMD, if the FELICA_  
EMD_RC_CHECK_ENABLE is set.  
23:16  
15:8  
FELICA_EMD_LENGTH_BYTE_ R/W  
MAX  
00*-FF  
Maximum allowed length of FeliCa response. The  
received length byte of the FeliCa response must  
indicate a length (length byte info) which is less  
or equal to FELICA_EMD_LENGTH_BYTE_MAX.  
Otherwise the received data is treated as EMD, if the  
FELICA_EMD_LEN_CHECK_ENABLE is set.  
FELICA_EMD_LENGTH_BYTE_ R/W  
MIN  
00*-FF  
Minimum allowed length of FeliCa response. The  
received length byte of the FeliCa response must  
indicate a length (length byte info) which is greater  
or equal to FELICA_EMD_LENGTHBYTE_MIN.  
Otherwise the received data is treated as EMD, if the  
FELICA_EMD_LEN_CHECK_ENABLE is set.  
7:5  
4
RFU  
R/W  
R/W  
000*  
0*,1  
RFU, must be 000b  
FELICA_EMD_INTEGRITY_  
ERR_CHECK_ ENABLE  
Enable FeliCa EMD integrity error check. If set, a  
response with integrity error is treated as EMD.  
3
2
FELICA_EMD_PROTOCOL_  
ERR_CHECK_ ENABLE  
R/W  
R/W  
0*,1  
0*,1  
Enable FeliCa EMD protocol error check.  
If set, a response with protocol error is treated as  
EMD.  
FELICA_EMD_RC_CHECK_  
ENABLE  
Enable RC check.  
If set, the Response Code (RC) of the received data  
is checked.  
If not set, any RC is accepted. This bit has only an  
effect, if FELICA_EMD_ENABLE is set.  
1
FELICA_EMD_LEN_CHECK_  
ENABLE  
R/W  
0*,1  
Enable length check.  
If set, the length byte of the received data is checked.  
If not set, any length is accepted. This bit has only an  
effect, if FELICA_EMD_ENABLE is set.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
112 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 118.ꢀFELICA_EMD_CONTROL register (address 0043h) bit description (only available from firmware V4.1  
onwards) ...continued  
Bit  
Symbol  
Access Value  
R/W 0*, 1  
Description  
0
FELICA_EMD_ENABLE  
Enable FeliCa EMD handling.  
If not set, all other settings in the FELICA_EMD_  
CONTROL register are ignored.  
Reset value of the FELICA_EMD_CONTROL register is 00000000h. For best FeliCa  
performance, it is recommended to initialize this register in FeliCa reader mode with a  
value of 00FF0019h.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
113 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
12 Secure Firmware Update  
12.1 General functionality  
The PN5180 supports a secure update of the implemented firmware. The secure  
firmware download mode is using a dedicated command set and framing which is  
different from the standard host interface commands used for NFC operation of the  
device.  
In Secure Firmware update mode, the PN5180 requires a dedicated physical handling of  
the SPI interface lines and the BUSY line.  
The secure firmware download mode is entered by setting the DWL_REQ pin to high  
during startup of the device. This pin can be used for any other functionality after startup,  
the level of this pin has no impact on the download functionality after startup during  
standard NFC operation.  
The firmware binary file which is used to update the PN5180 is protected with a  
signature. This prevents a download of any other software which is not signed by NXP.  
An anti-tearing function is implemented in order to detect supply voltage removal or  
memory fault.  
During the secure firmware download, the normal mode NFC operation is not available  
and only the command set defined for the secure firmware download is valid.  
In case of any failure or exception during the download, the PN5180 remains in the  
secure firmware download mode until a full firmware update sequence has been  
performed successfully.  
Updating the firmware of the PN5180 programs the memories for user EEPROM  
and RF configuration with default values. Any previous user configuration will be  
overwritten. The user has to take care to restore the data of these memories after a  
secure firmware update.  
The PN5180 can be used for firmware update as follows:  
1. Set DWL_REQ pin to high  
2. Reset  
3. The PN1580 boots in download mode  
4. Download new firmware version  
5. Execute the check integrity command to verify the successful update (The  
CheckIntegrity command cannot be called while a download session is open)  
6. Reset the PN5180  
7. The device starts in NFC operation mode  
12.1.1 Physical Host Interface during Secure Firmware Download  
In Secure Firmware update mode, the PN5180 is using a different physical host interface  
signaling than in NFC operation mode.  
The BUSY line is used in a different way than for NFC operation mode, and the data is  
packed in frames protected by a CRC16 checksum.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
114 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
In Secure Firmware Download mode, the single frame read as well as the split frame  
read (split read can be multiple SPI frames - meaning multiple NSS assertions & de-  
assertions) is supported.  
SPI write is always a single frame as the length is composed by the host and known to  
the host.  
SPI read can be single frame or multiple (split) frames:  
single frame read, if the length is already known to the host  
split frame read, if the length is not known to the host.  
nss  
mosi  
0x7f  
header opcode  
payload  
crc16  
miso  
BUSY  
aaa-024800  
Figure 41.ꢀ Example SPI WRITE data send in single frame (single NSS assertion/deassertion)  
nss  
mosi  
miso  
0xff  
0xff  
header  
stat  
payload  
crc16  
BUSY  
aaa-024799  
Figure 42.ꢀ Example SPI READ data retrieved in two frames (two NSS assertion/deassertions)  
A complete frame transmitted in Secure Firmware Update mode consists of  
For the WRITE:  
1. 1 byte direction (0x7F)  
2. 2 byte header (chunk bit + length of (Payload + command))  
3. 1 byte command  
4. (LENGTH-1) byte payload (the LENGTH in the header includes the 1 byte command,  
therefore the length of the payload needs to be reduced by 1)  
5. 2 byte CRC16 (is not included in the header length number)  
NSS  
SCK  
MOSI  
Transfer Direction HDLL Header HDLL Header HDLL OpCode HDLL Payld  
HDLL Payld  
Byte n  
HDLL  
CRC2  
HDLL  
CRC1  
Det. = 0XXXXXXXb  
Byte 0  
Byte 1  
Byte 0  
MISO  
BUSY  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
aaa-024811  
Figure 43.ꢀ Secure Firmware Download: SPI Write (byte level information)  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
115 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
For the READ:  
1. 1 byte direction (0xFF)  
2. 2 byte header (chunk bit + length of (Payload + status))  
3. 1 byte status  
4. (LENGTH-1) byte payload (the LENGTH in the header includes the 1 byte status,  
therefore the length of the payload needs to be reduced by 1)  
5. 2 byte CRC16 (is not included in the header length number)  
NSS  
SCK  
MOSI  
Transfer Direction  
Det. = 0xFF  
dummy  
dummy  
dummy  
dummy  
dummy  
dummy  
dummy  
MISO  
BUSY  
0xFF  
HDLL Header HDLL Header HDLL OpCode HDLL Payld  
Byte 0 Byte 1 Byte 0  
HDLL Payld  
Byte n  
HDLL  
CRC2  
HDLL  
CRC1  
PN5180 requests  
a transfer  
All data has been  
read, IRQ is reset  
aaa-024814  
Figure 44.ꢀ Secure Firmware Download: SPI Read (byte level information)  
12.2 Download protection  
Data of the PN5180 like firmware version numbers, are protected against any tearing  
attempt.  
The PN5180 uses a chained hash approach having the first command hash protected  
with an RSA signature. The chained hash sequence binds each frame with the next one  
comparable to an S/KEY mechanism. Hence authenticity of the downloaded code can  
be ensured due to secrecy of the RSA private key. Any firmware which is not issued and  
signed by NXP, is rejected by the security system of the PN5180 and cannot be loaded  
into the memory of the device.  
The security system of the PN5180 assures that no firmware data can be overwritten  
without verifying the authenticity and integrity of the new data beforehand.  
During the secure firmware download, a new firmware version number is sent. The  
firmware version number is composed of a major and a minor number:  
1. Major number: 8 bit (MSB)  
2. Minor number: 8 bit (LSB)  
The PN5180 checks if the new major version number is equal or higher than the current  
one. In case the major version number of the new firmware to be installed is smaller  
than the already installed version number of the firmware, the secure firmware update is  
rejected. Downgrading major firmware versions is therefore not possible. Upgrading and  
therefore increasing major firmware versions is always possible.  
An integrity check command is available which can be executed by the host immediately  
after a firmware update to check if the update had been successful.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
116 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
The major and minor firmware version numbers can be read out at any time using the  
host interface and commands in NFC mode to identify exactly which firmware is installed  
on a dedicated hardware. It is not required to enter the secure firmware download mode  
to retrieve this firmware version information.  
An already started firmware download may be interrupted for any of the following  
reasons:  
Reset (hard or soft)  
Failure of the Signature verification of the first secure write command  
Hash chain is broken during the download between two consecutive secure write  
commands  
Protocol error in framing  
Address mismatch  
Critical memory failure  
The PN5180 provides comprehensive mechanisms to recover from all these conditions.  
12.3 Commands  
12.3.1 Frame format  
All messages transmitted between the host and the PN5180 always have the following  
frame format: Header - Frame - CRC  
Header  
Frame  
Payload  
n bytes  
End  
RFU  
Chunk  
Length  
OpCode  
CRC16  
15-11  
bit  
10  
bit  
9-0  
bit  
First byte  
15-0  
bit  
aaa-024736  
Figure 45.ꢀ Framing for Secure Firmware Download  
Header (2 bytes)  
RFU (bit 11..15)  
Chunk flag used for fragmentation (bit 10)  
length of the frame (bit 0..9 bit)  
Frame ( (n+1) byte)  
Command (1 byte)  
Payload of the command: (n-byte)  
CRC (2 bytes)  
The CRC16 is compliant to X.25 (CRC-CCITT, ISO/IEC13239) standard with  
polynomial x^16 + x^12 + x^5 +1 and preload value 0xFFFF.  
The payload of one command consists of  
Memory block address: 3 bytes Memory block size: 2 bytes  
Memory data block: 512 bytes maximum  
Hash of the next frame: 32 bytes  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
117 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
The first write command used for a secure firmware download includes the version  
number, and a hash value over the following command and the RSA signature. Every  
following command includes the actual data block to be updated and the hash value over  
the following command and data. The last command does not contain any hash value.  
The Payload including command can be split into chunks which allows the transfer of  
large payloads.  
6 bits  
10 bits  
1 byte  
n bytes  
2 bytes  
CRC16  
DL command  
Host side  
000000b Length OpCode  
Payload  
Encapsulated  
transport  
000001b Length Chunk 1 CRC16  
000001b Length Chunk 2 CRC16  
000000b Length Chunk 3 CRC16  
aaa-024735  
Figure 46.ꢀ Splitting commands by chunks  
12.3.2 Command Code Overview  
The following commands are supported in Secure Firmware Download Mode  
Table 119.ꢀSecure Firmware Download Commands  
Command  
Command  
code (hex)  
Description  
RESET  
F0  
F1  
This command resets the IC  
GET_VERSION  
This command provides the IC version and firmware version  
Writes chunks of data to the IC  
The command returns the die Identifier  
RFU  
SECURE_WRITE C0  
GET_DIE_ID  
-
F4  
all other  
The Firmware Download Mode uses a data structure which consists of header (indicating  
the packet length), frame (opcode/command-code and payload) and end (CRC16).  
Refer to the related application note for a description how the firmware update files for  
new firmware versions (*.SFWU binary files) are internally organized and how to use  
the secure firmware download commands for downloading of the *.SFWU data to the  
PN5180.  
Header  
Frame  
End  
5-bit  
RFU  
1
-bit  
10-bit  
8-bit  
(L-1) Bytes  
Payload  
16-bit  
M
S
B
L
S
B
Ch  
unk  
Packet Length (L)  
Byte 1  
Op Code  
Byte 2  
CRC16  
Byte 0  
Byte 3 ... Byte [1+L]  
Byte [2+L]  
Byte [3+L]  
aaa-024807  
MSB  
LSB  
Figure 47.ꢀ Secure Firmware Download command and data structure  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
118 / 160  
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
12.3.3 Command Code Response  
A response message is always a multiple of 4 bytes. The first byte of the response is  
used to indicate the status of the last executed command.  
Table 120.ꢀSecure Firmware Command Status Return Codes  
Command  
Command  
code (hex)  
Description  
OK  
00  
command processed properly  
ERROR  
01-FF  
any response different from 0x00 indicates an error  
12.3.4 Command Code Description  
12.3.4.1 RESET  
Command code: 0xF0  
Frame format exchange:  
Host -> PN5180 [0x00 0x04 0xF0 0x00 0x00 0x00 0x18 0x5B]  
Host <- PN5180 [0x00 0x04 STAT 0x00 0x00 0x00 CRC16]  
The reset prevents the PN5180 from sending the OK return code. Only error codes are  
sent. STAT is the status return code.  
12.3.4.2 GET_VERSION  
Command code: 0xF1  
Frame format exchange:  
Host -> PN5180 [0x00 0x04 0xF1 0x00 0x00 0x00 0x6E 0xEF]  
Host <- PN5180 [0x00 0x0A STAT MD FM1V FM2V CRC16]  
The payload of the GetVersion command response is:  
Table 121.ꢀSecure Firmware update: GetVersion command response  
Field  
size  
Description  
(Byte)  
STAT  
MD  
1
6
1
1
Status return code  
Manufacturer Data  
FM1V  
FM2V  
Firmware major version  
Firmware minor version  
12.3.4.3 SECURE_WRITE  
Command code: 0xC0  
The secure write function differs between first, middle and last write frames.  
To ease the usage of the download, the Firmware binaries provided by NXP are already  
prepared in such a way that only the CRC16 needs to be added. All other data can be  
packed in the Frames without further need of, e.g., HASH calculations. The provided  
binaries include the command code as well. The first 3 bytes of each data block to be  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
119 / 160  
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
transferred always contain the 2-byte length information and the one-byte command code  
0xC0  
Host -> PN5180 [Data CRC16]  
Host <- PN5180 [0x00 0x04 STAT 0x00 0x00 0x00 CRC16]  
Table 122.ꢀSecure Firmware update: First Secure Write Command response  
Field  
size (Byte)  
Description  
STAT  
1
Status return code  
12.3.4.4 GET_DIE_ID  
Command code: 0xF4  
This command returns the die Identifier (Unique chip serial number):  
Host -> PN5180 [0x00 0x04 0xF4 0x00 0x00 0x00 0xD2 0xAA]  
Host <- PN5180 [0x00 0x14 STAT 0x00 0x00 0x00 ID0 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9  
ID10 ID11 ID12 ID13 ID14 ID15 ID16 CRC16]  
12.3.5 Error handling  
If the last firmware download was not completed without error, the PN5180 responds to  
all commands with an answer 0x2A. No additional parameters are transmitted. In this  
error case, a new firmware download is required.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
120 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
13 Limiting values  
Stress above one or more of the limiting values may cause permanent damage to the  
device.  
Table 123.ꢀLimiting Values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD(PVDD)  
VDD(TVDD)  
VESD  
Parameter  
Conditions  
Min  
Max  
3.6  
Unit  
V
supply voltage on pin PVDD  
supply voltage on pin TVDD  
electrostatic discharge voltage  
-
-
-
-
-
5.5  
V
Human Body Model (HBM);  
1500 Ω, 100 pF; ANSI/ESDA/  
JEDEC JS-001  
1500  
V
Tstg  
Ptot  
storage temperature  
total power dissipation  
no supply voltage applied  
-55  
-
+150  
1125  
°C  
in still air with exposed pins  
soldered on a 4 layer JEDEC  
PCB  
mW  
IDD(TVDD)  
supply current on pin TVDD  
-
300  
100  
mA  
mA  
IOUT(LDO_OUT) output current of pin LDO_OUT  
V(OUT)LDO_OUT=3.3 V, IDD(TVDD) 0.0  
= 250 mA  
Tj  
junction temperature  
-
-
150  
°C  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
121 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
14 Recommended operating conditions  
Exposure of the device to other conditions than specified in the recommended operating  
conditions section for extended periods may affect device reliability.  
Electrical parameters (minimum, typical and maximum) of the device are guaranteed only  
when it is used within the recommended operating conditions.  
Table 124.ꢀRecommended Operating Conditions  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
VDD(VBAT)  
supply voltage on pin  
VBAT  
-
2.7  
3.3  
5.5  
V
VDD(PVDD)  
supply voltage on pin  
PVDD  
1.8 V supply  
3.3 V supply  
-
1.65  
2.7  
1.8  
3.3  
5.0  
1.95  
3.6  
V
V
V
VDD(TVDD)  
IDD(TVDD)  
supply voltage on pin  
TVDD  
2.7  
5.5  
supply current on pin  
TVDD  
in still air with exposed  
pins soldered on a 4  
layer JEDEC PCB  
-
180  
250 mA  
VOUT(LDO_OUT) output voltage of pin  
LDO_OUT  
I(OUT)LDO_OUT  
0...100mA  
=
3.2  
3.3  
3.6  
V
Tamb  
ambient temperature  
in still air with exposed -30  
pins soldered on a 4  
+25  
+85 °C  
layer JEDEC PCB  
The system design shall consider that maximum supply voltages are not exceeded  
during power-on of the system.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
122 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
15 Thermal characteristics  
Table 125.ꢀThermal characteristics HVQFN40 package  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Rth(j-a)  
thermal resistance from junction to in free air with exposed 40  
K/W  
ambient  
pad soldered on a 4  
layer JEDEC PCB,  
package HVQFN40  
Table 126.ꢀThermal characteristics TFBGA64 package  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Rth(j-a)  
thermal resistance from junction to in free air with exposed 66  
K/W  
ambient  
pad soldered on a 4  
layer JEDEC PCB,  
package HVQFN40  
Table 127.ꢀJunction Temperature  
Symbol  
Parameter  
Conditions  
Max  
Unit  
Tj  
junction temperature  
-
125  
°C  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
123 / 160  
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
16 Characteristics  
Table 128.ꢀCurrent consumption  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IDD(PVDD) supply current on  
pin PVDD  
VDD(PVDD) = 3.3 V  
-
20  
-
mA  
IDD(VBAT) supply current on  
pin VBAT  
VDD(VBAT) = 3.3 V max current includes  
current of all GPO’s  
-
-
-
20  
-
mA  
μA  
Ipd  
power-down current VDD(TVDD) = VDD(PVDD) =VDD(VDD)  
3.0 V; hard power-down; pin RESET_N set  
LOW, Tamb = 25 °C  
10  
Istb  
standby current  
Tamb = 25 °C  
-
15  
-
μA  
Table 129.ꢀReset pin RESET_N  
Symbol  
t(reset)  
VIH  
Parameter  
Conditions  
Min  
10  
Typ  
Max  
Unit  
μs  
reset time  
-
-
-
HIGH-level input voltage  
VDD(PVDD)<=  
VDD(VBAT)  
1.1  
VDD(PVDD)V  
VIL  
IIH  
IIL  
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
input capacitance  
0
-
-
0.4  
V
VI = VDD(VBAT)  
VI = 0 V  
-
1
-
mA  
mA  
pF  
-1  
-
-
Ci  
5
-
Table 130.ꢀInput Pin (AUX2) / DWL_REQ  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIH  
HIGH-level input voltage  
VDD(PVDD)<= 0.65 x  
-
VDD(PVDD)V  
VDD(VBAT)  
PVDD  
VIL  
IIH  
IIL  
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
load capacitance  
-
0
-
-
0.4  
1
V
VI = VDD(VBAT)  
-
mA  
mA  
pF  
μs  
VI = 0 V  
-
-1  
-
-
-
Ci  
5
-
-
t(RESET_N-AUX2/ time from RESET_N high to -  
0
50  
AUX2 /DWL_REQ high  
DWL_REQ)  
Table 131.ꢀoutput Pin AUX2 / (DWL_REQ)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
HIGH-level output voltage  
VDD(PVDD)= 1.8 V  
VDD(PVDD)= 3.0 V  
VDD(PVDD)= 1.8 V  
VDD(PVDD)= 3.0 V  
0.65 x PVDD  
-
-
-
-
VDD(PVDD)  
VDD(PVDD)  
0.4  
V
V
V
V
2.0  
0
VOL  
LOW-level output voltage  
0
0.8  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
124 / 160  
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 131.ꢀoutput Pin AUX2 / (DWL_REQ)...continued  
Symbol  
IOH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
mA  
pF  
HIGH-level output current  
load capacitance  
VI = VDD(VBAT)  
-
-
-
-
3
-
Ci  
5
Table 132.ꢀGPO pin characteristics  
Symbol  
Vi(p-p)  
IOH  
Parameter  
Conditions  
-
Min  
Typ  
Max  
Unit  
peak-to-peak input voltage  
HIGH-level output current  
LOW-level input current  
-
-
-
-
-
-
VDD(PVDD)V  
VDD(PVDD) = 3.3 V  
VDD(PVDD) = 3.3 V  
3
3
mA  
mA  
IIL  
Table 133.ꢀCLK1, CLK2 pin characteristics  
Symbol  
Vi(p-p)  
IIH  
Parameter  
Conditions  
Min Typ  
Max  
Unit  
peak-to-peak input voltage  
HIGH-level input current  
LOW-level input current  
duty cycle  
-
0.2  
-
-
1.65  
V
VI= 1.65 V  
VI = 0 V  
-
-
1
-
μA  
μA  
%
IIL  
1
-
δ
35  
-
-
65  
-
Ci(CLK1)  
input capacitance on pin CLK1 VDD = 1.8 V,  
VDC = 0.65 V,  
2
pF  
VAC = 0.9 V (p-p)  
Ci(CLK2)  
input capacitance on pin CLK2 VDD = 1.8 V,  
-
2
-
pF  
VDC = 0.65 V,  
VAC = 0.9 V (p-p)  
Table 134.ꢀOutput pin characteristics IRQ  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
HIGH-level output voltage  
IOH < 3 mA  
VDD(PVDD)  
-0.4  
-
VDD(PVDD)V  
VOL  
CL  
tf  
LOW-level output voltage  
load capacitance  
fall time  
IOL < 3 mA  
0
-
-
-
-
-
0.4  
20  
3
V
-
pF  
ns  
ns  
MΩ  
CL = 12 pF max  
CL = 12 pF max  
1
tr  
rise time  
1
3
Rpd  
pull-down resistance  
0.4  
0.7  
Table 135.ꢀInput pins SCLK, MOSI, NSS  
Symbol  
Parameter  
Conditions Min  
Typ  
Max  
VDD(PVDD)  
Unit  
VIH  
HIGH-level input voltage  
0.65 x  
VDD(PVDD)  
-
V
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
125 / 160  
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 135.ꢀInput pins SCLK, MOSI, NSS...continued  
Symbol  
Parameter  
Conditions Min  
Typ  
Max  
Unit  
VIL  
LOW-level input voltage  
0
-
0.35 x  
V
VDD(PVDD)  
Ci  
IIH  
IIL  
input capacitance  
-
5
-
-
pF  
HIGH-level input current  
LOW-level input current  
VI = PVDD  
VI = 0 V  
-
-
1
1
mA  
mA  
-
Table 136.ꢀOutput pin MISO  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
HIGH-level output voltage  
IOH < 3 mA  
VDD(PVDD)  
-0.4  
-
VDD(PVDD)  
V
VOL  
CL  
tf  
LOW-level output voltage  
load capacitance  
fall time  
IOL < 3 mA  
0
-
-
-
-
-
0.4  
20  
3
V
pF  
ns  
ns  
CL = 12 pF max  
CL = 12 pF max  
1
1
tr  
rise time  
3
Table 137.ꢀTiming conditions SPI  
Symbol  
tSCKL  
Parameter  
Min  
72  
72  
25  
25  
-
Typ  
Max  
Unit  
ns  
SCK LOW time  
SCK HIGH time  
-
-
-
-
-
-
-
-
tSCKH  
-
ns  
th(SCKH-D)  
tsu(D-SCKH)  
th(SCKL-Q)  
t(SCKL-NSSH)  
tNSSH  
SCK HIGH to data input hold time  
data input to SCK HIGH set-up time  
SCK LOW to data output hold time  
SCK LOW to NSS HIGH time  
NSS HIGH time  
-
ns  
-
ns  
25  
-
ns  
0
ns  
72  
-
ns  
Table 138.ꢀOutput pins ANT1 and ANT2  
Symbol  
Parameter  
Conditions  
Min  
Typ  
10  
Max  
Unit  
Zì(diff)  
differential impedance  
from ANT1 to ANT2  
Low impedance -  
configuration  
17  
Ω
Vi(start)(lim)(ANT1) limiter start input voltage I=10 mA  
on ANT1  
-
3.3  
3.3  
-
-
V
V
Vi(start)(lim)(ANT2) limiter start input voltage I=10 mA  
on ANT2  
-
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
126 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 139.ꢀInput pins RXp and RXn  
Symbol  
Vi(dyn)  
Ci  
Parameter  
Conditions  
Min  
Typ  
Max  
1.8  
-
Unit  
V
dynamic input voltage  
input capacitance  
-
-
-
12  
-
pF  
kΩ  
Zi  
input impedance from RXN, Reader, Card  
RXP pins to VMID and P2P modes  
0
15  
Table 140.ꢀOutput pins TX1 and TX2  
Symbol  
Parameter  
Conditions  
VDD(TVDD)=5 V  
Min  
Typ  
Max  
Unit  
VOH  
HIGH-level output  
voltage  
-
VDD(TVDD)  
-150 mV  
VDD(TVDD)V  
VOL  
LOW-level output  
voltage  
VDD(TVDD)=5 V  
0
200  
-
mV  
Table 141.ꢀStart-up time  
Symbol  
Parameter  
Conditions Min  
Typ Max  
Unit  
tboot  
start-up time[1]  
RESET_N = 2.3  
High  
2.5  
dependent on  
ms  
configuration of  
XTAL_BOOT_  
TIME in EEPROM  
[1] (PN5180 ready to receive commands on the host interface). The PN5180 indicates the ability to receive commands from  
a host by raising an IDLE IRQ.  
Table 142.ꢀCrystal requirements for ISO/IEC14443 compliant operation  
Symbol  
fxtal  
Parameter  
Conditions  
Min  
Typ  
-
Max  
+100  
100  
-
Unit  
ppm  
Ω
crystal frequency  
-
-
-
-
-100  
ESR  
CL  
equivalent series resistance  
load capacitance  
-
-
-
50  
10  
-
pF  
Pxtal  
crystal power dissipation  
100  
μW  
Table 143.ꢀReference input frequency requirements for 8 MHz, 12 MHz, 16 MHz and 24  
MHz  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
φn  
phase noise  
Input noise  
floor at 50  
kHz offset  
-
-
-140  
dBc/Hz  
Vi(p-p)  
Vi(p-p)  
fi(ref)acc  
peak-to-peak input voltage  
peak-to-peak input voltage  
sinus signal  
0.2  
0
-
1.8  
V
square signal  
-
1.8  
-
1.98  
+100  
V
reference input frequency  
accuracy  
-100  
ppm  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
127 / 160  
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
17 Application information  
C3  
C4  
C5  
C6  
C7  
30  
29  
28  
25  
26  
12  
13  
22  
SCLK  
MOSI  
7
ANT1  
23  
3
R_RXP  
L1  
MISO  
RXP  
TX1  
5
16  
21  
17  
18  
15  
24  
C_MOD1  
RA1  
C_RXP  
NSS  
C_S1  
C_S2  
1
from host  
microcontroller  
IRQ  
C
MID  
C_EMC_1  
C_EMC_2  
C_P1  
C_P2  
39  
8
VMID  
TX2  
antenna  
BUSY  
L2  
RA2  
RESET_N  
AUX2/DWL_REQ  
10  
2
C_RXN  
R_RXN  
RXN  
ANT2  
GPO1  
C_MOD2  
PVDD  
PVSS  
AUX1  
from microcontroller supply  
testpad  
6
4
optional output  
3.3 V / 100 mA output  
38  
14  
31-35  
20  
11  
40  
27  
9
n.c. / LDO_OUT  
C8  
36  
37  
19  
n.c.  
R1  
R2  
Q1  
27.12 MHz  
1
4
C1  
C2  
aaa-020597  
Figure 48.ꢀ Application diagram with minimum components (HVQFN40)  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
128 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
17.1 Typical component values  
The following component values are typical values for a design. Refer to the Application  
note "PN5180 Antenna Design Guide" how to determine the values listed to be  
dependent on antenna design.  
Table 144.ꢀTable 140.  
Component  
Value  
15 pF  
1 nF  
C1, C2  
C3  
C4  
2.2 μF  
470 nF  
100 nF  
C5  
C6  
C7  
6.8 μF, additional blocking capacitors 100 nF might be required  
dependent on PCB layout and supply characteristics  
C8  
10 μF (only required in case 3.3 V regulated output is used)  
L1, L2  
470 nH  
C_EMC_1, C_EMC_2  
C_RCXP, C_RXN  
R_RXP, R_RXN  
C_MOD  
220 pF  
1 nF  
Dependent on antenna design  
82 pF  
C_S1, C_S2, C_P1, C_P2  
Dependent on antenna design  
17.2 Power supply of a microcontroller by the PN5180 / LDO_OUT  
The PN5180 is able to provide a regulated 3.3 V voltage with currents of up to 100 mA.  
This regulated voltage is available on pin LDO_OUT.  
The PN5180 needs to be configured properly to enable the output of the regulated 3.3 V  
Voltage output.  
The output of the 3.3 V can be enabled either by a register configuration after boot or by  
EEPROM configuration at startup:  
Register: SYSTEM_CONFIG.LDO_ENABLE (bit 11)  
EEPROM Address 0xE8, Misc_Config (bit 3) - if set the 3.3 V output is enabled.  
The supply voltage will be available during Idle mode.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
129 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
no  
Boot process  
Boot due to  
NRESET or POR  
Boot due  
Autocoll  
Boot due to  
LPCD  
no  
no  
yes  
yes  
no  
yes  
Card  
activated  
Detuning  
detected  
TXLDO started  
dependent from  
EEPROM  
yes  
configuration  
IDLE IRQ set /  
System Ready  
aaa-026602  
Figure 49.ꢀ Conditions for external 3.3 V supply voltage  
17.3 Zero Power wake-up  
The PN5180 allows using the energy of an external reader RF field to provide an output  
voltage on the pin VDHF, even if the chip is not otherwise supplied with power. This  
voltage generated from the external RF field allows triggering a silicon main switch to  
supply the chip. Any NFC mobile phone polling for cards is generating periodically such  
an RF field which can be used to toggle this silicon main switch.  
No configuration of registers is required to use this functionality.  
This feature allows developing systems with a power consumption close to zero during  
power-off.  
17.4 LPCD while using an external DC-DC  
As power-saving feature the PN5180 allows using a general-purpose output to control an  
external DC-DC during Low-Power Card Detection.  
A system might use a DC-DC for supply of the transmitters from a battery is in low-power  
card detection mode. Typically, the DC-DC will be permanently active resulting in a high  
average current consumption. There is no way to use a power-saving feature of a DC-  
DC, because the time of RF-on of a low-power card detection cycle is not known to the  
DC-DC.  
The solution is now to use a GPO to wake up the DC-DC from power down before the RF  
of a low-power card detection cycle is switched on. The DC-DC needs to be woken up  
sufficiently early to allow a settling of the supplied output.  
The sequence will be as follows:  
1. The GPO wakes up the DC-DC  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
130 / 160  
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
2. The PN5180 switches on the RF (low-power card detection cycle)  
3. If no card had been detected, the RF is switched off  
4. The GPO sets the DC-DC in power-saving mode  
The GPO function as such can be enabled by the EEPROM register:  
LPCD_REFVAL_GPO_CONTROL.  
The time between trigger of the DC-DC and RF-OFF is configured by the EEPROM  
register: LPCD_GPO_TOGGLE_AFTER_FIELD_OFF  
The time between trigger of the DC-DC and RF-ON is configured by the EEPROM  
register: LPCD_GPO_TOGGLE_BEFORE_FIELD_ON  
This functionality allows implementing power efficient LPCD function even in case of a  
required DC-DC.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
131 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
18 Packaging information  
Moisture Sensitivity Level (MSL) evaluation has been performed according to SNW-  
FQ-225B rev.04/07/07 (JEDEC J-STD-020C).  
MSL for the HVQFN40 package is level 3 which means 260 °C convection reflow  
temperature.  
1-week out-of-pack floor life at maximum ambient temperature 30°C/ 60 % RH  
(Relative Humidity) to limit possible moisture intrusion.  
When used in production, stored under nitrogen conditions for not more than 8 days  
MSL for the TFBGA64 package is level 1:  
No dry pack is required.  
No out-of-pack floor live spec. required.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
132 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
19 Handling information  
CAUTION  
This device is sensitive to ElectroStatic Discharge (ESD). Observe  
precautions for handling electrostatic sensitive devices.  
Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5,  
JESD625-A or equivalent standards.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
133 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
20 Package outline  
HVQFN40: plastic thermal enhanced very thin quad flat package; no leads;  
40 terminals; body 6 x 6 x 0.85 mm  
SOT618-1  
B
A
D
terminal 1  
index area  
A
A
1
E
c
detail X  
e
1
C
v
C
C
A B  
e
b
1/2 e  
y
y
C
1
w
11  
20  
L
21  
10  
e
E
e
2
h
1/2 e  
1
30  
terminal 1  
index area  
40  
31  
X
D
h
0
2.5  
5 mm  
v
scale  
Dimensions (mm are the original dimensions)  
(1) (1)  
(1)  
E
Unit  
A
A
b
c
D
D
E
e
e
e
L
w
y
y
1
1
h
h
1
2
max 1.00 0.05 0.30 0.2 6.1 4.25 6.1 4.25 0.5 4.5 4.5 0.5 0.1 0.05 0.05 0.1  
mm nom 0.85 0.02 0.21  
min 0.80 0.00 0.18  
6.0 4.10 6.0 4.10  
5.9 3.95 5.9 3.95  
0.4  
0.3  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
sot618-1_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
02-10-22  
13-11-05  
SOT618-1  
MO-220  
Figure 50.ꢀPackage outline SOT618-1  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
134 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
TFBGA64: plastic thin fine-pitch ball grid array package; 64 balls  
SOT1336-1  
D
B
A
ball A1  
index area  
A
2
A
E
A
1
detail X  
e
1
C
1/2 e  
Ø v  
Ø w  
C
C
A B  
e
y
1
y
b
C
H
G
F
e
E
D
C
B
A
e
2
1/2 e  
1
2
3
4
5
6
7
8
ball A1  
index area  
X
0
5 mm  
scale  
v
Dimensions (mm are the original dimensions)  
Unit  
max 1.15 0.35 0.80 0.45 5.6 5.6  
A
A
A
b
D
E
e
e
1
e
2
w
y
y
1
1
2
mm nom 1.00 0.30 0.70 0.40 5.5 5.5 0.65 4.55 4.55 0.15 0.08 0.1 0.1  
min 0.90 0.25 0.65 0.35 5.4 5.4  
sot1336-1_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
- - -  
JEITA  
12-06-19  
12-08-28  
SOT1336-1  
Figure 51.ꢀPackage outline SOT1336-1  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
135 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
21 Appendix  
21.1 Timer Delay for start of reception measurement  
These timer values are automatically set by Firmware. No special timer setting is  
required by the user.  
21.2 Default protocol settings for LOAD_RF_CONFIG, Transmitter  
21.2.1 ISO/IEC 14443 A-106  
Table 145.ꢀISO/IEC 14443 A-106  
Register name  
Initialization value  
0x74  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x2350  
0x17  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0xDBCF43  
0x10  
ANT_CONTROL  
21.2.2 ISO/IEC 14443 A-212  
Table 146.ꢀISO/IEC 14443 A-212  
Register name  
Initialization value  
0x82  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x2350  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x17  
0x0  
0xDBCF043  
0x10  
ANT_CONTROL  
21.2.3 ISO/IEC 14443 A-424  
Table 147.ꢀISO/IEC 14443 A-424  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x82  
0x650  
0x5  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0xDBCF43  
0x10  
ANT_CONTROL  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
136 / 160  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
21.2.4 ISO/IEC 14443 A-848  
Table 148.ꢀISO/IEC 14443 A-848  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x82  
0x150  
0x1  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0xF9EF45  
0x10  
ANT_CONTROL  
21.2.5 ISO/IEC 14443 B-106  
Table 149.ꢀISO/IEC 14443 B-106  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x8E  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x0  
0x3A4756  
0x10  
ANT_CONTROL  
21.2.6 ISO/IEC 14443 B-212  
Table 150.ꢀISO/IEC 14443 B-212  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x8E  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x0  
0x39C746  
0x10  
ANT_CONTROL  
21.2.7 ISO/IEC 14443 B-424  
Table 151.ꢀISO/IEC 14443 B-424  
Register name  
Initialization value  
0x78E  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x1FE0013  
0x71CF54  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
137 / 160  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 151.ꢀISO/IEC 14443 B-424...continued  
Register name  
Initialization value  
ANT_CONTROL  
0x10  
21.2.8 ISO/IEC 14443 B-848  
Table 152.ꢀISO/IEC 14443 B-848  
Register name  
Initialization value  
0x78E  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x7E000D  
0x69AF32  
0x10  
ANT_CONTROL  
21.2.9 FeliCa-212  
Table 153.ꢀFeliCa-212  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x8E  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x0  
0x39E744  
0x10  
ANT_CONTROL  
21.2.10 FeliCa-424  
Table 154.ꢀFeliCa-424  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x8E  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x0  
0x39EF33  
0x10  
ANT_CONTROL  
21.2.11 NFC active initiator A-106  
Table 155.ꢀNFC active initiator A-106  
Register name  
Initialization value  
0x8782  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x2350  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
138 / 160  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 155.ꢀNFC active initiator A-106...continued  
Register name  
Initialization value  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x17  
0x0  
0xDBCF43  
0x10  
ANT_CONTROL  
21.2.12 NFC active initiator A-212  
Table 156.ꢀNFC active initiator A-212  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x808E  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x0  
0x39E744  
0x10  
ANT_CONTROL  
21.2.13 NFC active initiator A-424  
Table 157.ꢀNFC active initiator A-424  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x808E  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x0  
0x39EF33  
0x10  
ANT_CONTROL  
21.2.14 ISO/IEC15693-26  
Table 158.ꢀISO/IEC15693-26  
Register name  
Initialization value  
0x782  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0xF000001F  
0x0  
0xDBC745  
0x10  
ANT_CONTROL  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
139 / 160  
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
21.2.15 ISO/IEC15693-53  
Table 159.ꢀISO/IEC15693-53  
Register name  
Initialization value  
0x8E  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0xFF000F  
0x0  
0x3A4F44  
0x10  
ANT_CONTROL  
21.2.16 ISO/IEC18003M3 - TARI=18.88 μs  
Table 160.ꢀISO/IEC18003M3 - TARI=18.88us  
Register name  
Initialization value  
0x8E  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0xFF000F  
0x0  
0x3A2734  
0x10  
ANT_CONTROL  
21.2.17 ISO/IEC18003M3 - TARI=9.44 μs  
Table 161.ꢀISO/IEC18003M3 - TARI=9.44 μs  
Register name  
Initialization value  
0x8E  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0xFF000F  
0x0  
0x3A4734  
0x10  
ANT_CONTROL  
21.2.18 PICC ISO/IEC14443-A 106  
Table 162.ꢀPICC ISO/IEC14443-A 106  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x8000  
0x72  
0x0  
RF_CONTROL_TX  
ANT_CONTROL  
0xC  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
140 / 160  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
21.2.19 PICC ISO/IEC14443-A 212  
Table 163.ꢀPICC ISO/IEC14443-A 212  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x8000  
0x72  
0x0  
RF_CONTROL_TX  
ANT_CONTROL  
0xC  
21.2.20 PICC ISO/IEC14443-A 424  
Table 164.ꢀPICC ISO/IEC14443-A 424  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x8000  
0x72  
0x0  
RF_CONTROL_TX  
ANT_CONTROL  
0xC  
21.2.21 PICC ISO/IEC14443-A 848  
Table 165.ꢀPICC ISO/IEC14443-A 848  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x8000  
0x72  
0x0  
RF_CONTROL_TX  
ANT_CONTROL  
0xC  
21.2.22 NFC passive target 212  
Table 166.ꢀNFC passive target 212  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x8000  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x0  
0x0  
ANT_CONTROL  
0xC  
21.2.23 NFC passive target 424  
Table 167.ꢀNFC passive target 424  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
0x8000  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
141 / 160  
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 167.ꢀNFC passive target 424...continued  
Register name  
Initialization value  
TX_DATA_MOD  
0x0  
0x0  
0x0  
0x0  
0xC  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
ANT_CONTROL  
21.2.24 NFC active target 106  
Table 168.ꢀNFC active target 106  
Register name  
Initialization value  
0x8782  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x2350  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x17  
0x0  
0xDBCF43  
0x10  
ANT_CONTROL  
21.2.25 NFC active target 212  
Table 169.ꢀNFC active target 212  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x0808E  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x0  
0x39E744  
0x10  
ANT_CONTROL  
21.2.26 NFC active target 424  
Table 170.ꢀNFC active target 424  
Register name  
Initialization value  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x808E  
0x0  
TX_UNDERSHOOT_CONFIG  
TX_OVERSHOOT_CONFIG  
RF_CONTROL_TX  
0x0  
0x0  
0x39EF33  
0x10  
ANT_CONTROL  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
142 / 160  
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
21.2.27 NFC general target mode - all data rates  
Table 171.ꢀNFC general target mode - all data rates  
Register name  
Initialization value  
0x8000  
RF_CONTROL_TX_CLK  
TX_DATA_MOD  
0x72  
21.3 Default protocol settings for LOAD_RF_CONFIG, Receiver  
21.3.1 ISO/IEC 14443 A-106  
Table 172.ꢀISO/IEC 14443 A-106  
Register name  
Initialization value  
0x801F0  
0x804B  
AGC_VALUE  
AGC_CONFIG  
ANA_RX_POWER_CONTROL_RFU  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x200  
0x0  
0x430DC  
0x1E  
21.3.2 ISO/IEC 14443 A-212  
Table 173.ꢀISO/IEC 14443 A-212  
Register name  
Initialization value  
0x0x801F0801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0x430DC  
0x1E  
21.3.3 ISO/IEC 14443 A-424  
Table 174.ꢀISO/IEC 14443 A-424  
Register name  
Initialization value  
0x801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0x192905  
0x16  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
143 / 160  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
21.3.4 ISO/IEC 14443 A-848  
Table 175.ꢀISO/IEC 14443 A-848  
Register name  
Initialization value  
0x801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0xF2505  
0x11  
21.3.5 ISO/IEC 14443 B-106  
Table 176.ꢀISO/IEC 14443 B-106  
Register name  
Initialization value  
0x801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0x1F2415  
0x16  
21.3.6 ISO/IEC 14443 B-212  
Table 177.ꢀISO/IEC 14443 B-212  
Register name  
Initialization value  
0x801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0x192805  
0x16  
21.3.7 ISO/IEC 14443 B-424  
Table 178.ꢀISO/IEC 14443 B-424  
Register name  
Initialization value  
0x801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0x192A05  
0x16  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
144 / 160  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
21.3.8 ISO/IEC 14443 B-848  
Table 179.ꢀISO/IEC 14443 B-848  
Register name  
Initialization value  
0x801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0xF2505  
0x1A  
21.3.9 FeliCa 212  
Table 180.ꢀFeliCa 212  
Register name  
Initialization value  
0x801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0xF2605  
0x11  
21.3.10 FeliCa 424  
Table 181.ꢀFeliCa 424  
Register name  
Initialization value  
0x801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0x2605  
0x15  
21.3.11 NFC Active Initiator 106  
Table 182.ꢀNFC Active Initiator 106  
Register name  
Initialization value  
AGC_VALUE  
0xC0150  
0xA00B  
0x1  
AGC_CONFIG  
RX_RFU  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x0  
0x23  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
145 / 160  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
21.3.12 NFC Active Initiator 212  
Table 183.ꢀNFC Active Initiator 212  
Register name  
Initialization value  
0xC0150  
AGC_VALUE  
AGC_CONFIG  
0xA00B  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x50010060  
0x23  
21.3.13 NFC Active Initiator 424  
Table 184.ꢀNFC Active Initiator 424  
Register name  
Initialization value  
0xC0150  
AGC_VALUE  
AGC_CONFIG  
0xA00B  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x50010060  
0x23  
21.3.14 ISO/IEC 15693-26  
Table 185.ꢀISO/IEC 15693-26  
Register name  
Initialization value  
0x801F0  
0x804B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0x4010  
0x1A  
21.3.15 ISO/IEC 15693-53  
Table 186.ꢀISO/IEC 15693-53  
Register name  
Initialization value  
0x801F0  
0x804B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0xC4010  
0x1A  
21.3.16 ISO 18003M3- Tari 18.88  
Table 187.ꢀISO 18003M3- Tari 18.88  
Register name  
Initialization value  
AGC_VALUE  
0x801F0  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
146 / 160  
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 187.ꢀISO 18003M3- Tari 18.88...continued  
Register name  
Initialization value  
AGC_CONFIG  
0x860B  
0x0  
SIGPRO_CM_CONFIG  
SIGPRO_CM_CONFIG_RFU  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0x8014  
0x1A  
21.3.17 ISO 18003M3- Tari 9.44 848_2  
Table 188.ꢀISO 18003M3- Tari 9.44 848_2  
Register name  
Initialization value  
0x801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
SIGPRO_CM_CONFIG2_RFU  
0x0  
0xC6014  
0x1  
21.3.18 ISO 18003M3- Tari 9.44 -848_4  
Table 189.ꢀISO18003M3- Tari 9.44 -848_4  
Register name  
Initialization value  
0x801F0  
0x860B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
SIGPRO_RM_CONFIG  
RF_CONTROL_RX  
0x0  
0xC8094  
0x1F  
21.3.19 ISO 14443A-PICC 106  
Table 190.ꢀISO 14443A-PICC 106  
Register name  
Initialization value  
0xA003  
AGC_CONFIG  
RX_RFU  
0x1  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x1000801C  
0x23  
21.3.20 ISO 14443A-PICC 212  
Table 191.ꢀISO 14443A-PICC 212  
Register name  
Initialization value  
0xA003  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
0x1C0600E0  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
147 / 160  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Table 191.ꢀISO 14443A-PICC 212...continued  
Register name  
Initialization value  
RF_CONTROL_RX  
0xE3  
21.3.21 ISO 14443A-PICC 424  
Table 192.ꢀISO 14443A-PICC 424  
Register name  
Initialization value  
0xA003  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x14040040  
0x23  
21.3.22 ISO 14443A-PICC 848  
Table 193.ꢀISO 14443A-PICC 848  
Register name  
Initialization value  
0xA003  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x8030040  
0x2F  
21.3.23 NFC-Passive target -212  
Table 194.ꢀNFC-Passive target -212  
Register name  
Initialization value  
0xA003  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x50010060  
0x23  
21.3.24 NFC-Passive target -424  
Table 195.ꢀNFC-Passive target -424  
Register name  
Initialization value  
0xA003  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x50010060  
0x23  
21.3.25 NFC-active target - 106  
Table 196.ꢀNFC-active target - 106  
Register name  
Initialization value  
0xC0150  
0xA00B  
AGC_VALUE  
AGC_CONFIG  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x0  
0x23  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
148 / 160  
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
21.3.26 NFC-active target - 212  
Table 197.ꢀNFC-active target - 212  
Register name  
Initialization value  
0xC0150  
AGC_VALUE  
AGC_CONFIG  
0xA00B  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x50010060  
0x23  
21.3.27 NFC-active target - 424  
Table 198.ꢀNFC-active target - 424  
Register name  
Initialization value  
0xC0150  
AGC_VALUE  
AGC_CONFIG  
0xA00B  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x50010060  
0x23  
21.3.28 NFC-General target mode - all data rates  
Table 199.ꢀNFC-General target mode - all data rates  
Register name  
Initialization value  
0xC0150  
AGC_VALUE  
AGC_CONFIG  
0xA003  
SIGPRO_CM_CONFIG  
RF_CONTROL_RX  
0x10010060  
0x23  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
149 / 160  
 
 
 
 
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
22 Abbreviations  
Table 200.ꢀAbbreviations  
Acronym  
ADC  
Description  
Analog-to-Digital Converter  
ALM  
Active Load modulation: modulation type in card emulation mode, allows  
achieving a larger communication distance between reader-card than PLM -  
passive modulation  
AWC  
BPSK  
BBA  
CRC  
DPC  
EGT  
EMC  
EMD  
EOF  
ETU  
HBM  
LFO  
Adaptive Waveform Control  
Binary Phase Shift Keying  
Base Band Amplifier  
Cyclic Redundancy Check  
Dynamic Power Control  
Extra Guard Time  
ElectroMagnetic Compatibility  
ElectroMagnetic Disturbance  
End Of Frame  
Elementary Time Unit  
Human Body Model  
Low Frequency Oscillator  
Low-Power Card Detection  
Least Significant Bit  
LPCD  
LSB  
MISO  
MOSI  
MSB  
NRZ  
NSS  
PCD  
PLL  
Master In Slave Out  
Master Out Slave In  
Most Significant Bit  
Not Return to Zero  
Not Slave Select  
Proximity Coupling Device  
Phase-Locked Loop  
PLM  
Passive Load Modulation: modulation type in card emulation mode, resistive  
load modulation as used by contactless smartcards which are powered by the  
energy of the RF-field  
RZ  
Return To Zero  
RX  
Receiver  
SOF  
SPI  
SW  
TX  
Start Of Frame  
Serial Peripheral Interface  
Software  
Transmitter  
UART  
UID  
Universal Asynchronous Receiver Transmitter  
Unique Identification  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
150 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
23 References  
1. ISO/IEC 14443 - parts 2: 2001 COR 1 2007 (01/11/2007), part 3: 2001 COR 1 2006  
(01/09/2006) and part 4: 2nd edition 2008 (15/07/2008)  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
151 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
24 Revision history  
Table 201.ꢀRevision history  
Document ID  
Release date  
Data sheet status  
Supersedes  
PN5180A0xx/C3,C4 v. 3.8  
Modifications:  
20210504  
Product data sheet  
PN5180A0xx/C3,C4 v. 3.7  
Table 112 "AGC_REF_CONFIG register (address 0026h) bit description": description  
updated  
PN5180A0xx/C3,C4 v. 3.7  
Modifications:  
20210203  
Product data sheet  
PN5180A0xx/C3 v. 3.6  
Section 12.2 "Download protection": updated  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
PN5180A0xx/C3,C4 v. 3.6  
Modifications:  
20200602  
Product data sheet  
PN5180A0xx/C3 v. 3.5  
Description for firmware versions updated  
Table 2 "Ordering information": PN5180A0ET/C4 and PN5180A0HN/C4 added  
In Table 51 "EEPROM Addresses": each setting is 4 bits, 1 sign bit and 3 value bits.  
Wrong entry of 2 bit value had been corrected to 3-bit value.  
PN5180A0xx/C3 v. 3.5  
PN5180A0xx/C3 v. 3.4  
PN5180A0xx/C3 v. 3.3  
PN5180A0xx/C3 v. 3.2  
PN5180A0xx/C3 v. 3.1  
PN5180A0xx/C3 v. 3.0  
20191211  
20180507  
20180419  
20171220  
20170731  
20170718  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
PN5180A0xx/C3 v. 3.4  
PN5180A0xx/C3 v. 3.2  
PN5180A0xx/C3 v. 3.2  
PN5180A0xx/C3 v. 3.1  
PN5180A0xx/C3 v. 3.0  
-
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
152 / 160  
 
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
25 Legal information  
25.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary [short] data sheet  
Product [short] data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
[1] Please consult the most recently issued document before initiating or completing a design.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple  
devices. The latest product status information is available on the Internet at URL http://www.nxp.com.  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
25.2 Definitions  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — A draft status on a document indicates that the content is still  
under internal review and subject to formal approval, which may result  
in modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included in a draft version of a document and shall have no  
liability for the consequences of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the  
relevant full data sheet, which is available on request via the local NXP  
Semiconductors sales office. In case of any inconsistency or conflict with the  
short data sheet, the full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes  
no representation or warranty that such applications will be suitable  
for the specified use without further testing or modification. Customers  
are responsible for the design and operation of their applications and  
products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications  
and products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with  
their applications and products. NXP Semiconductors does not accept any  
liability related to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications or products, or  
the application or use by customer’s third party customer(s). Customer is  
responsible for doing all necessary testing for the customer’s applications  
and products using NXP Semiconductors products in order to avoid a  
default of the applications and the products or of the application or use by  
customer’s third party customer(s). NXP does not accept any liability in this  
respect.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product  
is deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
25.3 Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, NXP Semiconductors does not  
give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability  
for the consequences of use of such information. NXP Semiconductors  
takes no responsibility for the content in this document if provided by an  
information source outside of NXP Semiconductors. In no event shall NXP  
Semiconductors be liable for any indirect, incidental, punitive, special or  
consequential damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the removal or replacement  
of any products or rework charges) whether or not such damages are based  
on tort (including negligence), warranty, breach of contract or any other  
legal theory. Notwithstanding any damages that customer might incur for  
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative  
liability towards customer for the products described herein shall be limited  
in accordance with the Terms and conditions of commercial sale of NXP  
Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Right to make changes — NXP Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
153 / 160  
 
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
No offer to sell or license — Nothing in this document may be interpreted  
for compliance with all legal, regulatory, and security related requirements  
concerning its products, regardless of any information or support that may  
be provided by NXP. NXP has a Product Security Incident Response Team  
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,  
reporting, and solution release to security vulnerabilities of NXP products.  
or construed as an offer to sell products that is open for acceptance or  
the grant, conveyance or implication of any license under any copyrights,  
patents or other industrial or intellectual property rights.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
25.4 Licenses  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Purchase of NXP ICs with ISO/IEC 14443 type B functionality  
This NXP Semiconductors IC is ISO/IEC  
14443 Type B software enabled and is  
licensed under Innovatron’s Contactless  
Card patents license for ISO/IEC 14443 B.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor  
tested in accordance with automotive testing or application requirements.  
NXP Semiconductors accepts no liability for inclusion and/or use of non-  
automotive qualified products in automotive equipment or applications. In  
the event that customer uses the product for design-in and use in automotive  
applications to automotive specifications and standards, customer (a) shall  
use the product without NXP Semiconductors’ warranty of the product for  
such automotive applications, use and specifications, and (b) whenever  
customer uses the product for automotive applications beyond NXP  
Semiconductors’ specifications such use shall be solely at customer’s own  
risk, and (c) customer fully indemnifies NXP Semiconductors for any liability,  
damages or failed product claims resulting from customer design and use  
of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
The license includes the right to use the IC  
in systems and/or end-user equipment.  
RATP/Innovatron  
Technology  
Purchase of NXP ICs with NFC technology  
Purchase of an NXP Semiconductors IC that complies with one of the  
Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/  
IEC 21481 does not convey an implied license under any patent right  
infringed by implementation of any of those standards. Purchase of NXP  
Semiconductors IC does not include a license to any NXP patent (or other  
IP right) covering combinations of those products with other products,  
whether hardware or software.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
25.5 Trademarks  
Security — Customer understands that all NXP products may be subject  
to unidentified or documented vulnerabilities. Customer is responsible  
for the design and operation of its applications and products throughout  
their lifecycles to reduce the effect of these vulnerabilities on customer’s  
applications and products. Customer’s responsibility also extends to other  
open and/or proprietary technologies supported by NXP products for use  
in customer’s applications. NXP accepts no liability for any vulnerability.  
Customer should regularly check security updates from NXP and follow up  
appropriately. Customer shall select products with security features that best  
meet rules, regulations, and standards of the intended application and make  
the ultimate design decisions regarding its products and is solely responsible  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
MIFARE — is a trademark of NXP B.V.  
ICODE and I-CODE — are trademarks of NXP B.V.  
MIFARE Classic — is a trademark of NXP B.V.  
NXP — wordmark and logo are trademarks of NXP B.V.  
FeliCa — is a trademark of Sony Corporation.  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
154 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Tables  
Tab. 1.  
Tab. 2.  
Tab. 3.  
Tab. 4.  
Tab. 5.  
Quick reference data .........................................5  
Tab. 50. ANALOG TEST SIGNALS .............................. 45  
Tab. 51. EEPROM Addresses .......................................46  
Tab. 52. Debug Signal Group Selection ........................54  
Tab. 53. Clock Signal Group .........................................54  
Tab. 54. Transmitter Encoder Group .............................55  
Tab. 55. Timer Group .................................................... 55  
Tab. 56. Card mode Protocol Group ............................. 55  
Tab. 57. Transceive Group ............................................56  
Tab. 58. Receiver Data Transfer Group ........................ 56  
Tab. 59. Receiver Error Group ......................................57  
Tab. 60. Debug Signal Output Pin Configuration ...........57  
Tab. 61. Communication overview for ISO/IEC  
14443 type A and read/write mode for  
MIFARE Classic .............................................. 59  
Tab. 62. Communication overview for ISO/IEC  
14443 B reader/writer ......................................60  
Tab. 63. Communication for FeliCa reader/writer ..........60  
Tab. 64. Communication for ISO/IEC 15693 reader/  
writer "reader to card" ..................................... 62  
Tab. 65. Communication for ISO/IEC 15693 reader/  
writer "card to reader" ..................................... 62  
Tab. 66. Communication overview for active  
Ordering information ..........................................8  
Marking code HVQFN40 ...................................9  
Pin description HVQFN40 ............................... 11  
1-Byte Direct Commands and Direct  
Command Codes ............................................ 21  
WRITE_REGISTER .........................................23  
WRITE_REGISTER .........................................23  
WRITE_REGISTER_AND_MAKSK .................23  
WRITE_REGISTER_MULTIPLE ..................... 24  
Tab. 6.  
Tab. 7.  
Tab. 8.  
Tab. 9.  
Tab. 10. READ_REGISTER .......................................... 25  
Tab. 11. READ_REGISTER_MULTIPLE .......................25  
Tab. 12. WRITE_EEPROM ........................................... 26  
Tab. 13. READ_EEPROM .............................................26  
Tab. 14. WRITE_DATA ..................................................27  
Tab. 15. SEND_DATA ....................................................27  
Tab. 16. Coding of ‘valid bits in last byte’ ......................28  
Tab. 17. READ_DATA ....................................................28  
Tab. 18. SWITCH_MODE ..............................................29  
Tab. 19. Standby configuration ......................................29  
Tab. 20. Standby wake-up counter configuration .......... 29  
Tab. 21. LPCD wake-up counter configuration ..............30  
Tab. 22. Autocoll wake-up counter configuration ...........30  
Tab. 23. Autocoll parameter .......................................... 30  
Tab. 24. Autocoll bit mask indicating the RF  
communication mode ...................................... 65  
Tab. 67. Communication overview for passive  
communication mode ...................................... 66  
Tab. 68. Settings for TX1 and TX2 ............................... 68  
Tab. 69. Modulation degree configuration .....................69  
Tab. 70. Wave shaping lookup table .............................74  
Tab. 71. Adaptive Receiver Control lookup table .......... 76  
Tab. 72. Table 71. ..........................................................79  
Tab. 73. Low-Power Card Detection: EEPROM  
configuration ....................................................83  
Tab. 74. Register address overview ..............................84  
Tab. 75. SYSTEM_CONFIG register (address  
0000h) bit description ......................................86  
Tab. 76. IRQ_ENABLE register (address 0001h) bit  
description ....................................................... 87  
Tab. 77. IRQ_STATUS register (address 0002h) bit  
description ....................................................... 88  
Tab. 78. IRQ_CLEAR register (address 0003h) bit  
description ....................................................... 89  
Tab. 79. TRANSCEIVE_CONTROL register  
(address 0004h) bit description .......................89  
Tab. 80. PADCONFIG register (address 0005h) bit  
description ....................................................... 90  
Tab. 81. PAD_OUT register (address 0007h) bit  
description ....................................................... 91  
Tab. 82. TIMER0_STATUS register (address 0008h)  
bit description ..................................................91  
Tab. 83. TIMER1_STATUS register (address 0009h)  
bit description ..................................................91  
Tab. 84. TIMER2_STATUS register (address 000Ah)  
bit description ..................................................91  
Tab. 85. TIMER0_RELOAD register (address  
technologies .................................................... 30  
Tab. 25. MIFARE_AUTHENTICATE ..............................31  
Tab. 26. Authentication status return value ...................31  
Tab. 27. EPC_INVENTORY PARAMETERS .................32  
Tab. 28. EPC_RESUME_INVENTORY  
PARAMETERS ................................................ 34  
Tab. 29. EPC_RETRIEVE_INVENTORY_RESULT_  
SIZE PARAMETERS .......................................35  
Tab. 30. EPC_RETRIEVE_INVENTORY_RESULT  
PARAMETERS ................................................ 35  
Tab. 31. LOAD_RF_CONFIG PARAMETERS ...............36  
Tab. 32. LOAD_RF_CONFIG: Selection of protocol  
register settings ...............................................37  
Tab. 33. UPDATE_RF_CONFIG PARAMETERS .......... 38  
Tab. 34. RETRIEVE_RF_CONFIG_SIZE  
PARAMETERS ................................................ 39  
Tab. 35. RETRIEVE_RF_CONFIG PARAMETERS ...... 39  
Tab. 36. RFU ................................................................. 40  
Tab. 37. RF_ON ............................................................ 40  
Tab. 38. RF_OFF ...........................................................40  
Tab. 39. CONFIGURE_TESTBUS_DIGITAL .................41  
Tab. 40. TB_POS .......................................................... 41  
Tab. 41. Debug Signal Group Selection ........................42  
Tab. 42. Clock Signal Group .........................................42  
Tab. 43. Transmitter Encoder Group .............................42  
Tab. 44. Timer Group .................................................... 43  
Tab. 45. Card mode Protocol Group ............................. 43  
Tab. 46. Transceive Group ............................................43  
Tab. 47. Receiver Data Transfer Group ........................ 44  
Tab. 48. Receiver Error Group ......................................44  
Tab. 49. CONFIGURE_TESTBUS_ANALOG ................44  
000Bh) bit description ..................................... 91  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
155 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Tab. 86. TIMER1_RELOAD register (address  
Tab. 115. ANT_CONTROL register (address 0029h)  
bit description ................................................110  
000Ch) bit description ..................................... 92  
Tab. 87. TIMER2_RELOAD register (address  
000Dh) bit description ..................................... 92  
Tab. 88. TIMER0_CONFIG register (address  
000Eh) bit description ..................................... 92  
Tab. 89. TIMER1_CONFIG register (address  
000Fh) bit description ......................................93  
Tab. 90. TIMER2_CONFIG register (address 0010h)  
bit description ..................................................94  
Tab. 91. RX_WAIT_CONFIG (address 0011h) bit  
description ....................................................... 96  
Tab. 92. CRC_RX_CONFIG (address 0012h) bit  
description ....................................................... 96  
Tab. 93. RX_STATUS register (address 0013h) bit  
description ....................................................... 97  
Tab. 94. TX_UNDERSHOOT_CONFIG register  
(address 0014h) bit description .......................98  
Tab. 95. TX_OVERSHOOT_CONFIG register  
(address 0015h) bit description .......................99  
Tab. 96. TX_DATA_MOD register (address 0016h)  
bit description ..................................................99  
Tab. 97. TX_WAIT_CONFIG register (address  
0017h) bit description ....................................100  
Tab. 98. TX_CONFIG register (address 0018h) bit  
description ..................................................... 100  
Tab. 99. CRC_TX_CONFIG (address 0019h) bit  
description ..................................................... 101  
Tab. 100. SIGPRO_CONFIG register (address  
001Ah) bit description ................................... 102  
Tab. 101. SIGPRO_CM_CONFIG register (address  
001Bh) bit description ................................... 102  
Tab. 102. SIGPRO_RM_CONFIG register (address  
001Ch) bit description ................................... 103  
Tab. 103. RF_STATUS register (address 001Dh) bit  
description ..................................................... 104  
Tab. 104. AGC_CONFIG register (address 001Eh) bit  
description ..................................................... 105  
Tab. 105. AGC_VALUE register (address 001Fh) bit  
description ..................................................... 106  
Tab. 106. RF_CONTROL_TX register (address  
0020h) bit description ....................................106  
Tab. 107. RF_CONTROL_TX_CLK register (address  
0021h) bit description ....................................107  
Tab. 108. RF_CONTROL_RX register (address  
0022h) bit description ....................................107  
Tab. 109. LD_CONTROL register (address 0023h) bit  
description ..................................................... 108  
Tab. 110. SYSTEM_STATUS register (address  
0024h) bit description ....................................108  
Tab. 111. TEMP_CONTROL register (address  
0025h) bit description ....................................109  
Tab. 112. AGC_REF_CONFIG register (address  
0026h) bit description ....................................109  
Tab. 113. DPC_CONFIG register (address 0027h) bit  
description ..................................................... 110  
Tab. 114. EMD_CONTROL register (address 0028h)  
bit description ................................................110  
Tab. 116. TX_CONTROL register (address 0036h) bit  
description ..................................................... 111  
Tab. 117. SIGPRO_RM_CONFIG_EXTENSION  
register (address 0039h) bit description ........ 111  
Tab. 118. FELICA_EMD_CONTROL register  
(address 0043h) bit description (only  
available from firmware V4.1 onwards) ......... 112  
Tab. 119. Secure Firmware Download Commands .......118  
Tab. 120. Secure Firmware Command Status Return  
Codes ............................................................ 119  
Tab. 121. Secure Firmware update: GetVersion  
command response .......................................119  
Tab. 122. Secure Firmware update: First Secure  
Write Command response .............................120  
Tab. 123. Limiting Values .............................................. 121  
Tab. 124. Recommended Operating Conditions ........... 122  
Tab. 125. Thermal characteristics HVQFN40 package . 123  
Tab. 126. Thermal characteristics TFBGA64 package ..123  
Tab. 127. Junction Temperature ....................................123  
Tab. 128. Current consumption .....................................124  
Tab. 129. Reset pin RESET_N ..................................... 124  
Tab. 130. Input Pin (AUX2) / DWL_REQ .......................124  
Tab. 131. output Pin AUX2 / (DWL_REQ) .....................124  
Tab. 132. GPO pin characteristics ................................ 125  
Tab. 133. CLK1, CLK2 pin characteristics .....................125  
Tab. 134. Output pin characteristics IRQ ...................... 125  
Tab. 135. Input pins SCLK, MOSI, NSS ........................125  
Tab. 136. Output pin MISO ........................................... 126  
Tab. 137. Timing conditions SPI ................................... 126  
Tab. 138. Output pins ANT1 and ANT2 ........................ 126  
Tab. 139. Input pins RXp and RXn ............................... 127  
Tab. 140. Output pins TX1 and TX2 ............................. 127  
Tab. 141. Start-up time ..................................................127  
Tab. 142. Crystal requirements for ISO/IEC14443  
compliant operation .......................................127  
Tab. 143. Reference input frequency requirements for  
8 MHz, 12 MHz, 16 MHz and 24 MHz ...........127  
Tab. 144. Table 140. ......................................................129  
Tab. 145. ISO/IEC 14443 A-106 ................................... 136  
Tab. 146. ISO/IEC 14443 A-212 ................................... 136  
Tab. 147. ISO/IEC 14443 A-424 ................................... 136  
Tab. 148. ISO/IEC 14443 A-848 ................................... 137  
Tab. 149. ISO/IEC 14443 B-106 ................................... 137  
Tab. 150. ISO/IEC 14443 B-212 ................................... 137  
Tab. 151. ISO/IEC 14443 B-424 ................................... 137  
Tab. 152. ISO/IEC 14443 B-848 ................................... 138  
Tab. 153. FeliCa-212 .....................................................138  
Tab. 154. FeliCa-424 .....................................................138  
Tab. 155. NFC active initiator A-106 ............................. 138  
Tab. 156. NFC active initiator A-212 ............................. 139  
Tab. 157. NFC active initiator A-424 ............................. 139  
Tab. 158. ISO/IEC15693-26 .......................................... 139  
Tab. 159. ISO/IEC15693-53 .......................................... 140  
Tab. 160. ISO/IEC18003M3 - TARI=18.88us ................ 140  
Tab. 161. ISO/IEC18003M3 - TARI=9.44 μs ................. 140  
Tab. 162. PICC ISO/IEC14443-A 106 ...........................140  
Tab. 163. PICC ISO/IEC14443-A 212 ...........................141  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
156 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Tab. 164. PICC ISO/IEC14443-A 424 ...........................141  
Tab. 183. NFC Active Initiator 212 ................................146  
Tab. 184. NFC Active Initiator 424 ................................146  
Tab. 185. ISO/IEC 15693-26 .........................................146  
Tab. 186. ISO/IEC 15693-53 .........................................146  
Tab. 187. ISO 18003M3- Tari 18.88 ..............................146  
Tab. 188. ISO 18003M3- Tari 9.44 848_2 .....................147  
Tab. 189. ISO18003M3- Tari 9.44 -848_4 .....................147  
Tab. 190. ISO 14443A-PICC 106 ..................................147  
Tab. 191. ISO 14443A-PICC 212 ..................................147  
Tab. 192. ISO 14443A-PICC 424 ..................................148  
Tab. 193. ISO 14443A-PICC 848 ..................................148  
Tab. 194. NFC-Passive target -212 ...............................148  
Tab. 195. NFC-Passive target -424 ...............................148  
Tab. 196. NFC-active target - 106 .................................148  
Tab. 197. NFC-active target - 212 .................................149  
Tab. 198. NFC-active target - 424 .................................149  
Tab. 199. NFC-General target mode - all data rates ..... 149  
Tab. 200. Abbreviations .................................................150  
Tab. 201. Revision history .............................................152  
Tab. 165. PICC ISO/IEC14443-A 848 ...........................141  
Tab. 166. NFC passive target 212 ................................ 141  
Tab. 167. NFC passive target 424 ................................ 141  
Tab. 168. NFC active target 106 ...................................142  
Tab. 169. NFC active target 212 ...................................142  
Tab. 170. NFC active target 424 ...................................142  
Tab. 171. NFC general target mode - all data rates ...... 143  
Tab. 172. ISO/IEC 14443 A-106 ................................... 143  
Tab. 173. ISO/IEC 14443 A-212 ................................... 143  
Tab. 174. ISO/IEC 14443 A-424 ................................... 143  
Tab. 175. ISO/IEC 14443 A-848 ................................... 144  
Tab. 176. ISO/IEC 14443 B-106 ................................... 144  
Tab. 177. ISO/IEC 14443 B-212 ................................... 144  
Tab. 178. ISO/IEC 14443 B-424 ................................... 144  
Tab. 179. ISO/IEC 14443 B-848 ................................... 145  
Tab. 180. FeliCa 212 .....................................................145  
Tab. 181. FeliCa 424 .....................................................145  
Tab. 182. NFC Active Initiator 106 ................................145  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
157 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Figures  
Fig. 1.  
Fig. 2.  
Fig. 3.  
Marking PN5180 in HVQFN40 ..........................9  
PN5180 Block diagram ................................... 10  
Pin configuration for HVQFN40  
Fig. 29. Target Mode case: Timer stop for started  
reception ..........................................................67  
Fig. 30. PN5180 Output driver ..................................... 68  
Fig. 31. Overshoot/Undershoot prevention ...................71  
Fig. 32. AGC value defining the RF output power  
configuration ....................................................72  
Fig. 33. AGC value defining the waveshape  
(SOT618-1) ......................................................11  
Power-up voltages ...........................................14  
Connection of crystal ...................................... 16  
Read RX of SPI data using BUSY line ............19  
Read RX of SPI data using BUSY line with  
test bus enabled ..............................................19  
Writing data to the PN5180 .............................19  
Reading data from the PN5180 .......................20  
Fig. 4.  
Fig. 5.  
Fig. 6.  
Fig. 7.  
configuration ....................................................72  
Fig. 34. Lookup tables for AGC value-dependent  
dynamic configuration ..................................... 73  
Fig. 35. Transmitter supply voltage configuration,  
VDD(TVDD) > 3.5 V ........................................73  
Fig. 36. DPC, AGC and AWC configuration ................. 75  
Fig. 37. Transceive state machine ............................... 77  
Fig. 38. Autocall state machine ....................................78  
Fig. 39. PN5180 Receiver Block diagram .................... 80  
Fig. 40. LPCD configuration ......................................... 82  
Fig. 41. Example SPI WRITE data send in single  
frame (single NSS assertion/deassertion) ..... 115  
Fig. 42. Example SPI READ data retrieved in two  
frames (two NSS assertion/deassertions) ..... 115  
Fig. 43. Secure Firmware Download: SPI Write  
(byte level information) ..................................115  
Fig. 44. Secure Firmware Download: SPI Read  
(byte level information) ..................................116  
Fig. 45. Framing for Secure Firmware Download .......117  
Fig. 46. Splitting commands by chunks ......................118  
Fig. 47. Secure Firmware Download command and  
data structure ................................................ 118  
Fig. 48. Application diagram with minimum  
Fig. 8.  
Fig. 9.  
Fig. 10. Connection to host with SPI ............................20  
Fig. 11. Instruction Payload ..........................................21  
Fig. 12. Instruction Response .......................................21  
Fig. 13. Write_Register_Multiple ...................................24  
Fig. 14. WRITE_REGISTER_OR_MASK ..................... 25  
Fig. 15. WRITE_REGISTER_AND_MASK ...................25  
Fig. 16. EPC GEN2 Inventory command ......................33  
Fig. 17. Get Handle ......................................................34  
Fig. 18. Timeslot order EPC Gen2 ...............................34  
Fig. 19. LoadRFConfig ................................................. 37  
Fig. 20. Read/write mode for ISO/IEC 14443 type A  
and read/write mode for MIFARE Classic ........58  
Fig. 21. Data coding and framing according to ISO/  
IEC 14443 A card response ............................59  
Fig. 22. ISO/IEC 14443 B read/write mode  
communication diagram .................................. 60  
Fig. 23. FeliCa read/write communication diagram ...... 60  
Fig. 24. RxMultiple data format .................................... 61  
Fig. 25. EPC_GEN2 Card presence check .................. 63  
Fig. 26. EPC GEN2 possible timeslot answers ............ 64  
Fig. 27. Active communication mode ........................... 65  
Fig. 28. Passive communication mode .........................65  
components (HVQFN40) ...............................128  
Fig. 49. Conditions for external 3.3 V supply voltage . 130  
Fig. 50. Package outline SOT618-1 ........................... 134  
Fig. 51. Package outline SOT1336-1 ......................... 135  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
158 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
Contents  
1
2
3
4
5
6
7
8
Introduction ......................................................... 1  
General description ............................................ 2  
11.8.1.6 NFCIP-1 modes ...............................................64  
11.8.1.7 ISO/IEC14443 A Card operation mode ............66  
11.8.1.8 NFC Configuration ...........................................67  
11.8.1.9 Mode Detector .................................................67  
Features and benefits .........................................3  
Applications .........................................................4  
Quick reference data .......................................... 5  
Firmware versions .............................................. 6  
Ordering information .......................................... 8  
Marking .................................................................9  
Package marking drawing ................................. 9  
Block diagram ................................................... 10  
Pinning information .......................................... 11  
Pin description .................................................11  
Functional description ......................................13  
Introduction ...................................................... 13  
Power-up and Clock ........................................ 13  
Power Management Unit .................................13  
11.8.2  
11.8.3  
RF-field handling ............................................. 67  
Transmitter TX .................................................67  
11.8.3.1 100 % Modulation ............................................68  
11.8.3.2 10 % Amplitude Modulation .............................69  
11.8.3.3 TX Wait ............................................................70  
11.8.3.4 Over- and Undershoot prevention ................... 71  
8.1  
9
10  
10.1  
11  
11.1  
11.2  
11.2.1  
11.8.4  
11.8.5  
11.8.6  
11.8.7  
11.8.8  
11.8.9  
Dynamic Power Control (DPC) ........................71  
Adaptive Waveform Control (AWC) ................. 73  
Adaptive Receiver Control (ARC) ....................75  
Transceive state machine ................................76  
Autocoll (Card Emulation) ................................77  
Receiver RX .................................................... 79  
11.2.1.1 Supply Connections and Power-up ................. 13  
11.2.1.2 Power-down / Reset ........................................ 14  
11.2.1.3 Standby ............................................................15  
11.2.1.4 Temperature Sensor ........................................ 15  
11.8.9.1 Reader Mode Receiver ....................................79  
11.8.9.2 Automatic Gain Control ................................... 80  
11.8.9.3 RX Wait ........................................................... 80  
11.8.9.4 EMD Error handling .........................................81  
11.8.10 Low-Power Card Detection (LPCD) .................81  
11.8.10.1 Check Card register ........................................ 84  
11.2.2  
11.2.3  
11.3  
11.3.1  
11.3.2  
Reset and start-up time ...................................16  
Clock concept ..................................................16  
Timer and Interrupt system ..............................16  
General Purpose Timer ................................... 17  
Interrupt System .............................................. 17  
11.9  
Register overview ............................................ 84  
Register overview ............................................ 84  
Register description .........................................86  
Secure Firmware Update ................................114  
General functionality ......................................114  
Physical Host Interface during Secure  
11.9.1  
11.9.2  
12  
12.1  
12.1.1  
11.3.2.1 IRQ PIN ........................................................... 17  
11.3.2.2 IRQ_STATUS Register .................................... 17  
11.4  
SPI Host Interface ........................................... 18  
Physical Host Interface ....................................18  
Timing Specification SPI ..................................20  
Logical Host Interface ......................................20  
11.4.1  
11.4.2  
11.4.3  
Firmware Download .......................................114  
Download protection ......................................116  
Commands .....................................................117  
Frame format ................................................. 117  
Command Code Overview .............................118  
Command Code Response ........................... 119  
Command Code Description ..........................119  
12.2  
12.3  
12.3.1  
12.3.2  
12.3.3  
12.3.4  
11.4.3.1 Host Interface Command .................................20  
11.4.3.2 Transmission Buffer .........................................21  
11.4.3.3 Host Interface Command List ..........................21  
11.5  
Memories ......................................................... 45  
Overview ..........................................................45  
EEPROM ......................................................... 46  
RAM .................................................................53  
Register ............................................................53  
Debug Signals ................................................. 53  
General functionality ........................................54  
Digital Debug Configuration .............................54  
11.5.1  
11.5.2  
11.5.3  
11.5.4  
11.6  
12.3.4.1 RESET ...........................................................119  
12.3.4.2 GET_VERSION ............................................. 119  
12.3.4.3 SECURE_WRITE .......................................... 119  
12.3.4.4 GET_DIE_ID ..................................................120  
12.3.5  
13  
14  
15  
16  
17  
17.1  
17.2  
Error handling ................................................ 120  
Limiting values ................................................121  
Recommended operating conditions ............ 122  
Thermal characteristics ..................................123  
Characteristics ................................................ 124  
Application information ..................................128  
Typical component values ............................. 129  
Power supply of a microcontroller by the  
11.6.1  
11.6.2  
11.6.2.1 Debug signal groups ....................................... 54  
11.6.2.2 Digital Debug Output Pin Configuration ...........57  
11.6.3  
11.7  
11.7.1  
11.7.2  
11.8  
Analog Debug Configuration ............................57  
AUX2 / DWL_REQ ...........................................57  
Firmware update ..............................................58  
Firmware update command set ....................... 58  
RF Functionality ...............................................58  
Supported RF Protocols .................................. 58  
PN5180 / LDO_OUT ......................................129  
Zero Power wake-up ..................................... 130  
LPCD while using an external DC-DC ........... 130  
Packaging information ................................... 132  
Handling information ...................................... 133  
Package outline ...............................................134  
Appendix ..........................................................136  
Timer Delay for start of reception  
17.3  
17.4  
18  
19  
20  
11.8.1  
11.8.1.1 Communication mode for ISO/IEC 14443  
type A and for MIFARE Classic .......................58  
11.8.1.2 ISO/IEC14443 B functionality .......................... 59  
11.8.1.3 FeliCa RF functionality .................................... 60  
11.8.1.4 ISO/IEC15693 functionality ..............................62  
11.8.1.5 ISO/IEC18000-3 Mode 3 functionality ..............63  
21  
21.1  
measurement .................................................136  
PN5180A0xx_C3_C4  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.8 — 4 May 2021  
436538  
159 / 160  
NXP Semiconductors  
PN5180A0xx/C3,C4  
High-performance multiprotocol full NFC frontend, supporting all NFC Forum modes  
21.2  
Default protocol settings for LOAD_RF_  
21.3.26 NFC-active target - 212 .................................149  
21.3.27 NFC-active target - 424 .................................149  
21.3.28 NFC-General target mode - all data rates ......149  
CONFIG, Transmitter .....................................136  
ISO/IEC 14443 A-106 ....................................136  
ISO/IEC 14443 A-212 ....................................136  
ISO/IEC 14443 A-424 ....................................136  
ISO/IEC 14443 A-848 ....................................137  
ISO/IEC 14443 B-106 ....................................137  
ISO/IEC 14443 B-212 ....................................137  
ISO/IEC 14443 B-424 ....................................137  
ISO/IEC 14443 B-848 ....................................138  
FeliCa-212 ..................................................... 138  
21.2.1  
21.2.2  
21.2.3  
21.2.4  
21.2.5  
21.2.6  
21.2.7  
21.2.8  
21.2.9  
22  
23  
24  
25  
Abbreviations .................................................. 150  
References .......................................................151  
Revision history .............................................. 152  
Legal information ............................................153  
21.2.10 FeliCa-424 ..................................................... 138  
21.2.11 NFC active initiator A-106 ..............................138  
21.2.12 NFC active initiator A-212 ..............................139  
21.2.13 NFC active initiator A-424 ..............................139  
21.2.14 ISO/IEC15693-26 ...........................................139  
21.2.15 ISO/IEC15693-53 ...........................................140  
21.2.16 ISO/IEC18003M3 - TARI=18.88 μs ................140  
21.2.17 ISO/IEC18003M3 - TARI=9.44 μs ..................140  
21.2.18 PICC ISO/IEC14443-A 106 ........................... 140  
21.2.19 PICC ISO/IEC14443-A 212 ........................... 141  
21.2.20 PICC ISO/IEC14443-A 424 ........................... 141  
21.2.21 PICC ISO/IEC14443-A 848 ........................... 141  
21.2.22 NFC passive target 212 .................................141  
21.2.23 NFC passive target 424 .................................141  
21.2.24 NFC active target 106 ................................... 142  
21.2.25 NFC active target 212 ................................... 142  
21.2.26 NFC active target 424 ................................... 142  
21.2.27 NFC general target mode - all data rates .......143  
21.3  
Default protocol settings for LOAD_RF_  
CONFIG, Receiver .........................................143  
ISO/IEC 14443 A-106 ....................................143  
ISO/IEC 14443 A-212 ....................................143  
ISO/IEC 14443 A-424 ....................................143  
ISO/IEC 14443 A-848 ....................................144  
ISO/IEC 14443 B-106 ....................................144  
ISO/IEC 14443 B-212 ....................................144  
ISO/IEC 14443 B-424 ....................................144  
ISO/IEC 14443 B-848 ....................................145  
FeliCa 212 ..................................................... 145  
21.3.1  
21.3.2  
21.3.3  
21.3.4  
21.3.5  
21.3.6  
21.3.7  
21.3.8  
21.3.9  
21.3.10 FeliCa 424 ..................................................... 145  
21.3.11 NFC Active Initiator 106 ................................ 145  
21.3.12 NFC Active Initiator 212 ................................ 146  
21.3.13 NFC Active Initiator 424 ................................ 146  
21.3.14 ISO/IEC 15693-26 ......................................... 146  
21.3.15 ISO/IEC 15693-53 ......................................... 146  
21.3.16 ISO 18003M3- Tari 18.88 .............................. 146  
21.3.17 ISO 18003M3- Tari 9.44 848_2 ..................... 147  
21.3.18 ISO 18003M3- Tari 9.44 -848_4 .................... 147  
21.3.19 ISO 14443A-PICC 106 .................................. 147  
21.3.20 ISO 14443A-PICC 212 .................................. 147  
21.3.21 ISO 14443A-PICC 424 .................................. 148  
21.3.22 ISO 14443A-PICC 848 .................................. 148  
21.3.23 NFC-Passive target -212 ............................... 148  
21.3.24 NFC-Passive target -424 ............................... 148  
21.3.25 NFC-active target - 106 .................................148  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section 'Legal information'.  
© NXP B.V. 2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 4 May 2021  
Document identifier: PN5180A0xx_C3_C4  
Document number: 436538  

相关型号:

PN5190

NFC frontend
NXP

PN5190B1EV/C121E

NFC frontend
NXP

PN5190B1EV/C121Y

NFC frontend
NXP

PN5190B1HN/C121E

NFC frontend
NXP

PN5190B1HN/C121Y

NFC frontend
NXP

PN5249

TRANSISTOR | BJT | NPN | 50V V(BR)CEO | 100MA I(C) | TO-92
ETC

PN5249A

TRANSISTOR | BJT | NPN | 50V V(BR)CEO | 100MA I(C) | TO-92
ETC

PN5304

Wide Band Low Power Amplifier, 5MHz Min, 200MHz Max, SM-11, 4 PIN
APITECH

PN531

レC based Transmission module
NXP

PN5320A3HN/C101

IC SPECIALTY TELECOM CIRCUIT, PQCC40, 6 X 6 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT618-1, VQFN-40, Telecom IC:Other
NXP

PN5320A3HN/C1XX

SPECIALTY TELECOM CIRCUIT, PQCC40, 6 X 6 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT618-1, HVQFN-40
NXP

PN5321A3HN/C101

IC SPECIALTY TELECOM CIRCUIT, PQCC40, 6 X 6 MM, 0.85 MM HEIGHT, PLASTIC, MO-220, SOT618-1, VQFN-40, Telecom IC:Other
NXP