PN7362AUHN [NXP]

RISC MICROCONTROLLER;
PN7362AUHN
型号: PN7362AUHN
厂家: NXP    NXP
描述:

RISC MICROCONTROLLER

文件: 总72页 (文件大小:577K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PN736X  
NFC Cortex-M0 microcontroller  
Rev. 3.2 — 13 December 2016  
406332  
Product data sheet  
COMPANY PUBLIC  
1. General description  
The PN736X family is a family of 32-bit ARM Cortex-M0-based NFC microcontrollers  
offering high performance and low power consumption. It has a simple instruction set and  
memory addressing along with a reduced code size compared to existing architectures.  
PN736Xoffers an all in one solution, with features such as NFC, microcontroller, and  
software in a single chip. It operates at CPU frequencies of up to 20 MHz. It is part of the  
PN7462AU product family which offers a common set of features, library and tools.  
The peripheral complement of the PN736X microcontroller includes 160/80 kB of flash  
memory, 12 kB of SRAM data memory and 4 kB EEPROM. It also includes one host  
interface with either high-speed mode I2C-bus, SPI, USB or high-speed UART, and two  
master interfaces, SPI and Fast-mode Plus I2C-bus. Four general-purpose counter/timers,  
a random number generator, one CRC coprocessor and up to 21 general-purpose I/O  
pins are also available.  
The PN736X NFC microcontroller offer a one chip solution to build contactless  
applications. It is equipped with a highly integrated high-power output NFC-IC for  
contactless communication at 13.56 MHz enabling EMV-compliance on RF level, without  
additional external active components.  
PN736X supports the following operating modes:  
ISO/IEC 14443-A and B, MIFARE  
JIS X 6319-4 (comparable with FeliCa scheme)  
ISO/IEC 15693, ICODE, ISO/IEC 18000-3 mode 3  
NFC protocols - tag reader/writer, P2P  
ISO/IEC 14443- type A card emulation  
EMVCo compliance  
2. Features and benefits  
2.1 Integrated contactless interface frontend  
High RF output power frontend IC for transfer speed up to 848 kbit/s  
NFC IP1 and NFC IP2 support  
Full NFC tag support (type 1, type 2, type 3, type 4A and type 4B)  
P2P active and passive, target and initiator  
Card emulation ISO14443 type A  
ISO/IEC 14443 type A and type B  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
MIFARE classic card  
ISO/IEC 15693, and ISO/IEC 18000-3 mode 3  
Low-power card detection  
Dynamic Power Control (DPC) support  
Compliance with EMV contactless protocol specification  
Compliance with NFC standards  
2.2 Cortex-M0 microcontroller  
Processor core  
ARM Cortex: 32-bit M0 processor  
Built-in Nested Vectored Interrupt Controller (NVIC)  
Non-maskable interrupt  
24-bit system tick timer  
Running frequency of up to 20 MHz  
Clock management to enable low power consumption  
Memory  
Flash: 160 (PN7362) / 80 kB (PN7360)  
SRAM: 12 kB  
EEPROM: 4 kB  
40 kB boot ROM included, including USB mass storage primary boot loader for  
code download  
Debug option  
Serial Wire Debug (SWD) interface  
Peripherals  
Host interface:  
USB 2.0 full speed with USB 3.0 hub connection capability  
HSUART for serial communication, supporting standards speeds from 9600 bauds  
to 115200 bauds, and faster speed up to 1.288 Mbit/s  
SPI with half-duplex and full duplex capability with speeds up to 7 Mbit/s  
I2C supporting standard mode, fast mode and high-speed mode with multiple  
address support  
Master interface:  
SPI with half-duplex capability from 1 Mbit/s to 6.78 Mbit/s  
I2C supporting standard mode, fast mode, fast mode plus and clock stretching  
Up to 21 General-Purpose I/O (GPIO) with configurable pull-up/pull-down resistors  
GPIO1 to GPIO12 can be used as edge and level sensitive interrupt sources  
Power  
Two reduced power modes: standby mode and hard power-down mode  
Supports suspend mode for USB host interface  
Processor wake-up from hard power-down mode, standby mode, suspend mode  
via host interface, GPIOs, RF field detection  
Integrated PMU to adjust internal regulators automatically, to minimize the power  
consumption during all possible power modes  
Power-on reset  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
2 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
RF supply: external, or using an integrated LDO (TX LDO, configurable with 3 V,  
3.3 V, 3.6 V, 4.5 V, and 4.75 V)  
Pad voltage supply: external 3.3 V or 1.8 V, or using an integrated LDO (3.3 V  
supply)  
Timers  
Four general-purpose timers  
Programmable Watchdog Timer (WDT)  
CRC coprocessor  
Random number generator  
Clocks  
Crystal oscillator at 27.12 MHz  
Dedicated PLL at 48 MHz for the USB  
Integrated HFO 20 MHz and LFO 365 kHz  
General  
HVQFN64 package  
Temperature range: 40 C to +85 C  
3. Applications  
Physical access control  
Gaming  
USB NFC reader, including dual interface smart card readers  
Home banking, payment readers EMVCo compliant  
High integration devices  
NFC applications  
4. Quick reference data  
Table 1.  
Quick reference data  
Operating range: 40 C to +85 C unless specified; contactless interface: internal LDO not used  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDP(VBUS)  
power supply voltage card emulation, passive target  
2.3  
-
5.5  
V
on pin VBUS  
(PLM)  
all RF modes  
all RF modes  
2.7  
3
-
5.5  
V
V
V
V
-
5.5  
VDD(PVDD)  
PVDD supply voltage 1.8 V  
3.3 V  
1.65  
3
1.8  
3.3  
1.95  
3.6  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
3 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 1.  
Quick reference data …continued  
Operating range: 40 C to +85 C unless specified; contactless interface: internal LDO not used  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IDDP(VBUS)  
power supply current in hard power-down mode;  
-
12  
18  
A  
on pin VBUS  
T = 25 C; VDDP(VBUS) = 5.5 V;  
RST_N = 0  
stand by mode; T = 25 C;  
VDDP(VBUS) = 3.3 V; external  
PVDD LDO used  
-
-
-
-
18  
55  
120  
-
-
A  
A  
A  
mA  
stand by mode; T = 25 C;  
-
VDDP(VBUS) = 5.5 V; internal  
PVDD LDO used  
suspend mode, USB interface;  
250  
250  
VDDP(VBUS) = 5.5 V; external  
PVDD supply; T = 25 C  
IDD(TVDD)  
TVDD supply current on pin TVDD_IN; maximum  
supported current by the  
contactless interface  
Pmax  
Tamb  
maximum power  
dissipation  
-
-
-
1050  
+85  
mW  
ambient temperature JEDEC PCB  
40  
C  
5. Ordering information  
The PN736X family includes the following products:  
PN7362AU: Full memory available, no contact interface  
PN7360AU: Memory limited to 80 kB, and no contact interface.  
The table below lists the ordering information for these two products.  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
PN7360AUHN  
PN7362AUHN  
HVQFN64  
plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; SOT804-4  
body 9 9 0.85 mm  
HVQFN64  
plastic thermal enhanced very thin quad flat package; no leads; 64 terminals; SOT804-4  
body 9 9 0.85 mm  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
4 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
6. Block diagram  
$50ꢀ&257(;ꢁ0ꢂ  
65$0  
ꢃꢄꢁN%  
((3520  
ꢅꢁN%  
520  
ꢅꢂꢁN%  
6:'  
)/$6+  
ꢃꢆꢂꢁꢇꢁꢈꢂꢁN%  
&2'(ꢁ3$7&+  
V\VWHP  
EXV  
VODYH  
VODYH  
VODYH  
$+%ꢁ/,7(  
PDVWHU VODYH  
PDVWHU  
PDVWHU  
32:(5ꢉꢁ&/2&.  
$1'ꢁ5(6(7  
86%  
*3,2  
;7$/  
&/2&.ꢁ*(1(5$7256  
+)2  
/)2  
,ꢄ&  
63,  
86%ꢁ3//  
308  
+68  
+267ꢁ,17(5)$&(6  
0$,1ꢁ/'2  
7;ꢁ/'2  
39''ꢁ/'2  
&/,)  
7(03(5$785(ꢁ6(1625  
63,ꢁ0$67(5  
7,0(56  
7,0(ꢁꢂꢉꢁꢃꢉꢁꢄꢉꢁꢊ  
:$7&+'2*  
,ꢄ&ꢁ0$67(5  
Oꢇ2ꢁ8$57  
,62ꢋꢈꢃꢆꢁ8$57  
51*  
&5&  
DDDꢀꢁꢂꢃꢄꢂꢃ  
Fig 1. Block diagram  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
5 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
7. Pinning information  
7.1 Pinning  
WHUPLQDOꢁꢃ  
LQGH[ꢁDUHD  
ꢅꢈ  
ꢅꢋ  
ꢅꢆ  
ꢅꢍ  
ꢅꢅ  
ꢅꢊ  
ꢅꢄ  
ꢅꢃ  
ꢅꢂ  
ꢊꢎ  
ꢊꢈ  
ꢊꢋ  
ꢊꢆ  
ꢊꢍ  
ꢊꢅ  
ꢊꢊ  
Oꢄ&0B6'$  
&/.B$8;  
,2B$8;  
,17B$8;  
QꢌFꢌ  
9%863  
QꢌFꢌ  
QꢌFꢌ  
*1'3  
39''B287  
9%86  
$7;B$  
$7;B%  
567B1  
;7$/ꢄ  
;7$/ꢃ  
9''  
$7;B&  
31ꢀꢁꢂ;$8  
$7;B'  
ꢃꢂ  
ꢃꢃ  
ꢃꢄ  
ꢃꢊ  
ꢃꢅ  
ꢃꢍ  
ꢃꢆ  
39''B,1  
'9''  
983B7;  
79''B287  
$17ꢄ  
':/B5(4  
,54  
*1'  
6:'&/.  
6:',2  
*3,2ꢃ  
$17ꢃ  
79''B,1  
7;ꢃ  
DDDꢀꢁꢂꢃꢄꢂꢅ  
7UDQVSDUHQWꢁWRSꢁYLHZ  
Fig 2. Pin configuration  
Important note: the inner leads below the package are internally connected to the PIN.  
Special care needs to be taken during the design so that no conductive part is present  
under these PINs, which could cause short cuts.  
7.2 Pin description  
Table 3.  
Pin description  
Pin  
Symbol  
Description  
I2CM_SDA  
CLK_AUX  
IO_AUX  
1
2
3
4
5
6
7
8
I2C-bus serial data I/O master/GPIO13  
auxiliary card contact clock/GPIO14  
auxiliary card contact I/O/GPIO15  
INT_AUX  
auxiliary card contact interrupt/GPIO16  
not connected  
ATX_A  
ATX_B  
ATX_C  
SPI slave select input (NSS_S)/I2C-bus serial clock input (SCL_S)/HSUART RX  
SPI slave data input (MOSI_S)/I2C-bus serial data I/O (SDA_S)/HSUART TX  
USB D+/SPI slave data output (MISO_S)/I2C-bus address bit0 input/HSUART RTS  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
6 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 3.  
Symbol  
ATX_D  
PVDD_IN  
DVDD  
DWL_REQ  
IRQ  
Pin description …continued  
Pin  
9
Description  
USB D-/SPI clock input (SCK_S)/I2C-bus address bit1 input/HSUART CTS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
pad supply voltage input  
digital core logic supply voltage input  
entering in download mode  
interrupt request output  
SWDCLK  
SWDIO  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
GPIO9  
GPIO10  
GPIO11  
GPIO12  
RXN  
SW serial debug line clock  
SW serial debug line input/output  
general-purpose I/O/SPI master select2 output  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
receiver input  
RXP  
receiver input  
VMID  
receiver reference voltage input  
antenna driver output  
TX2  
TVSS  
ground for antenna power supply  
antenna driver output  
TX1  
TVDD_IN  
ANT1  
antenna driver supply voltage input  
antenna connection for load modulation in card emulation and P2P passive target modes  
antenna connection for load modulation in card emulation and P2P passive target modes  
antenna driver supply, output of TX_LDO  
supply of the contactless TX_LDO  
1.8 V regulator output for digital blocks  
27.12 MHz clock input for crystal  
27.12 MHz clock input for crystal  
reset pin  
ANT2  
TVDD_OUT  
VUP_TX  
VDD  
XTAL1  
XTAL2  
RST_N  
VBUS  
main supply voltage input of microcontroller  
output of PVDD_LDO for pad voltage supply  
Ground  
PVDD_OUT  
GNDP  
-
not connected  
-
not connected  
VBUSP  
-
Connected to VBUS  
not connected  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
7 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 3.  
Pin description …continued  
Symbol  
Pin  
50  
Description  
-
not connected  
-
51  
not connected  
-
52  
not connected  
-
53  
not connected  
GNDC  
54  
connected to the ground  
not connected  
-
55  
-
56  
not connected  
-
57  
not connected  
USB_VBUS  
PVDD_M_IN  
SPIM_SSN  
SPI_SCLK  
SPIM_MOSI  
SPIM_MISO  
I2CM_SCL  
GND  
58  
used for USB VBUS detection  
pad supply voltage input for master interfaces  
SPI master select 1 output/GPIO17  
SPI master clock output/GPIO18  
SPI master data output/GPIO19  
SPI master data input/GPIO20  
I2C-bus serial clock output master/GPIO21  
Ground  
59  
60  
61  
62  
63  
64  
Die pad  
8. Functional description  
8.1 ARM Cortex-M0 microcontroller  
The PN736X is an ARM Cortex-M0-based 32-bit microcontroller, optimized for low-cost  
designs, high energy efficiency, and simple instruction set.  
The CPU operates on an internal clock, which can be configured to provide frequencies  
such as 20 MHz, 10 MHz, and 5 MHz.  
The peripheral complement of the PN736X includes a 160 kB flash memory, a 12 kB  
SRAM, and a 4 kB EEPROM. It also includes one configurable host interface (Fast-mode  
Plus and high-speed I2C, SPI, HSUART, and USB), two master interfaces (Fast-mode  
Plus I2C, SPI), 4 timers, 12 general-purpose I/O pins, and one 13.56 MHz contactless  
interface.  
8.2 Memories  
8.2.1 On-chip flash programming memory  
The PN736X contains160 / 80 kB on-chip flash program memory depending on the  
version. The flash can be programmed using In-System Programming (ISP) or  
In-Application Programming (IAP) via the on-chip boot loader software.  
The flash memory is divided into two instances of 80 kB each, with each sector consisting  
of individual pages of 64 bytes.  
8.2.1.1 Memory mapping  
The flash memory mapping is described in Figure 3.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
8 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
ꢂ[ꢂꢂꢄꢃꢁꢆ)))  
ꢂ[ꢂꢂꢄꢄꢁ$)))  
5(6(59('  
.%\WHV  
ꢂ[ꢂꢂꢄꢄꢁ$ꢋ))  
XVHU  
DSSOLFDWLRQ  
ꢈꢂ  
.%\WHV  
)/$6+  
XVHU  
DSSOLFDWLRQ  
ꢃꢍꢈ  
.%\WHV  
ꢂ[ꢂꢂꢄꢂꢁꢊꢂꢂꢂ  
ꢂ[ꢂꢂꢄꢂꢁꢊꢂꢂꢂ  
31ꢀꢁꢂꢃ  
31ꢀꢁꢂꢄ  
DDDꢀꢁꢂꢃꢄꢂꢄ  
Fig 3. Flash memory mapping  
8.2.2 EEPROM  
The PN736X embeds 4 kB of on-chip byte-erasable and byte-programmable EEPROM  
data memory.  
The EEPROM can be programmed using In-System Programming (ISP).  
8.2.2.1 Memory mapping  
ꢂ[ꢄꢂꢃ)))  
ꢊꢌꢍ  
.%\WHV  
XVHUꢁVSDFH  
ꢂ[ꢄꢂꢃꢄꢂꢂ  
ꢍꢃꢄ  
%\WHV  
5(6(59('  
ꢂ[ꢄꢂꢃꢂꢂꢂ  
DDDꢀꢁꢂꢆꢆꢂꢃ  
Fig 4. EEPROM memory mapping  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
9 of 72  
PN736X  
NXP Semiconductors  
8.2.3 SRAM  
NFC Cortex-M0 microcontroller  
The PN736X contains a total of 12 kB on-chip static RAM memory.  
8.2.3.1 Memory mapping  
The SRAM memory mapping is shown in Figure 5.  
5$0B6\VB(QGꢁ ꢁꢂ[ꢂꢂꢃꢂꢄ)))  
ꢄꢍꢆ  
%\WHV  
5$0B6<67(0  
5(6(59('  
5$0B6\VB6WDUWꢁ ꢁꢂ[ꢂꢂꢃꢂꢄ)ꢂꢂ  
ꢃꢄꢂꢂꢂ  
%\WHV  
5$0ꢁ86(5ꢁ5:  
5(6(59('  
5$0B8VHUB6WDUWꢁ ꢁꢂ[ꢂꢂꢃꢂꢂꢂꢄꢂ  
5$0B8VHUB52B6WDUWꢁ ꢁꢂ[ꢃꢂꢂꢂꢂꢂ  
ꢊꢄ  
%\WHV  
DDDꢀꢁꢂꢂꢄ  
Fig 5. SRAM memory mapping  
8.2.4 ROM  
The PN736X contains 40 kB of on-chip ROM memory. The on-chip ROM contains boot  
loader, USB mass storage primary download and the following Application Programming  
Interfaces (APIs):  
In-Application Programming (IAP) support for flash  
Lifecycle management of debug interface, code write protection of flash memory and  
USB mass storage primary download  
USB descriptor configuration  
Configuration of timeout and source of pad supply  
8.2.5 Memory map  
The PN736X incorporates several distinct memory regions. Figure 6 shows the PN736X  
memory map, from the user program perspective, following reset.  
The APB peripheral area is 512 kB in size, and is divided to allow up to 32 peripherals.  
Only peripherals from 0 to 15 are accessible. Each peripheral is allocated 16 kB, which  
simplifies the address decoding for the peripherals. APB memory map is described in  
Figure 7.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
10 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
ꢅꢁ*%  
ꢂ[))))ꢁ))))  
ꢅꢁ*%  
ꢂ[))))ꢁ))))  
5(6(59('  
5(6(59('  
35,9$7(ꢁ3(5,3+(5$/ꢁ%86  
5(6(59('  
ꢂ[(ꢂ))ꢁ))))  
ꢂ[(ꢂꢂꢂꢁꢂꢂꢂꢂ  
ꢂ[(ꢂ))ꢁ))))  
35,9$7(ꢁ3(5,3+(5$/ꢁ%86  
ꢂ[(ꢂꢂꢂꢁꢂꢂꢂꢂ  
5(6(59('  
ꢂ[ꢅꢂꢂꢋꢁ))))  
ꢂ[ꢅꢂꢂꢂꢁꢂꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢋꢁ))))  
$3%ꢁ3(5,3+(5$/  
$3%ꢁ3(5,3+(5$/  
5(6(59('  
ꢂ[ꢅꢂꢂꢂꢁꢂꢂꢂꢂ  
ꢃꢁ*%  
ꢃꢁ*%  
5(6(59('  
ꢂ[ꢂꢂꢄꢄꢁ$)))  
ꢂ[ꢂꢂꢄꢂꢁꢊꢂꢂꢂ  
ꢂ[ꢂꢂꢄꢄꢁ$)))  
ꢃꢆꢂꢁN%ꢁ)/$6+  
ꢈꢂꢁN%ꢁ)/$6+  
ꢂ[ꢂꢂꢄꢂꢁꢊꢂꢂꢂ  
5(6(59('  
5(6(59('  
ꢂ[ꢂꢂꢄꢂꢁꢃ)))  
ꢂ[ꢂꢂꢄꢂꢁꢃ)))  
ꢂ[ꢂꢂꢄꢂꢁꢃꢂꢂꢂ  
ꢅꢁN%ꢁ((3520  
ꢅꢁN%ꢁ((3520  
ꢂ[ꢂꢂꢄꢂꢁꢃꢂꢂꢂ  
((3520ꢁ5(*  
5(6(59('  
((3520ꢁ5(*  
ꢂ[ꢂꢂꢄꢂꢁꢂꢂꢂꢂ  
ꢂ[ꢂꢂꢄꢂꢁꢂꢂꢂꢂ  
ꢄꢁ0%  
ꢄꢁ0%  
5(6(59('  
ꢂ[ꢂꢂꢃꢂꢁꢄ)))  
ꢂ[ꢂꢂꢃꢂꢁꢂꢂꢂꢂ  
ꢂ[ꢂꢂꢃꢂꢁꢄ)))  
ꢃꢄꢁN%ꢁ65$0  
ꢃꢄꢁN%ꢁ65$0  
5(6(59('  
ꢂ[ꢂꢂꢃꢂꢁꢂꢂꢂꢂ  
ꢃꢁ0%  
ꢂꢁ0%  
ꢃꢁ0%  
ꢂꢁ0%  
5(6(59('  
ꢂ[ꢂꢂꢂꢂꢁꢎ)))  
ꢂ[ꢂꢂꢂꢂꢁꢂꢂꢂꢂ  
ꢂ[ꢂꢂꢂꢂꢁꢎ)))  
ꢅꢂꢁN%ꢁ520  
ꢅꢂꢁN%ꢁ520  
ꢂ[ꢂꢂꢂꢂꢁꢂꢂꢂꢂ  
31ꢀꢁꢂꢃ  
31ꢀꢁꢂꢄ  
DDDꢀꢁꢂꢃꢄꢂꢇ  
Fig 6. PN736X memory map  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
11 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
$3%ꢁ,'  
$3%ꢁ,)ꢁQDPH  
&RQQHFWHGꢁ,3  
ꢂ[ꢅꢂꢂꢅꢁꢈꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢅꢁꢂꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢊꢁ&ꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢊꢁꢈꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢊꢁꢅꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢊꢁꢂꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢄꢁ&ꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢄꢁꢈꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢄꢁꢅꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢄꢁꢂꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢃꢁ&ꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢃꢁꢈꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢃꢁꢅꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢃꢁꢂꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢂꢁ&ꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢂꢁꢈꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢂꢁꢅꢂꢂꢂ  
ꢂ[ꢅꢂꢂꢂꢁꢂꢂꢂꢂ  
DDDꢀꢁꢂꢆꢆꢂꢈ  
5HVHUYHG  
5HVHUYHG  
5HVHUYHG  
ꢃꢆꢁWRꢁꢊꢃ  
ꢃꢍ  
ꢃꢅ  
ꢃꢊ  
ꢃꢄ  
ꢃꢃ  
ꢃꢂ  
63,0$67(5B$3%  
,ꢄ&0$67(5B$3%  
63,ꢁ0DVWHUꢁ,)  
,ꢄ&ꢁ0DVWHUꢁ,)  
5HVHUYHG  
86%B$3%  
3&5B$3%  
+RVW,)ꢁꢏ86%ꢐꢁ,3  
3RZHU&ORFN5HVHW0RGXOHꢁ,3  
+RVW,)ꢁꢏ,ꢄ&ꢇ63,ꢇ+68ꢇ%XI0JWꢐꢁ,3  
7LPHUꢁ,3  
+267B$3%  
7,0(56B$3%  
51*B$3%  
51*ꢁ,3  
&78$57B$3%  
&/2&.*(1B$3%  
&5&B$3%  
&RQWDFWꢁ8$57ꢁ,3  
&ORFNꢁ*HQꢁPRGXOH  
&5&ꢁ,3  
308B$3%  
308ꢁPRGXOHV  
&/B$3%  
&RQWDFWOHVVꢁ,3  
5HVHUYHG  
Fig 7. APB memory map  
8.3 Nested Vectored Interrupt Controller (NVIC)  
Cortex-M0 includes a Nested Vectored Interrupt Controller (NVIC). The tight coupling to  
the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.  
8.3.1 NVIC features  
System exceptions and peripheral interrupts control  
Support 32 vectored interrupts  
Four interrupt priority levels with hardware priority level masking  
One Non-Maskable Interrupt (NMI) connected to the watchdog interrupt  
Software interrupt generation  
8.3.2 Interrupt sources  
The following table lists the interrupt sources available in the PN736X microcontroller.  
Table 4.  
Interrupt sources  
EIRQ# Source  
Description  
0
general-purpose timer 0/1/2/3 interrupt  
timer 0/1/2/3  
1
2
3
4
5
6
7
-
reserved  
CLIF  
contactless interface module interrupt  
EECTRL  
EEPROM controller  
-
reserved  
-
reserved  
host IF  
-
TX or RX buffer from I2C, SPI, HSU, or USB module  
reserved  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
12 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 4.  
Interrupt sources …continued  
EIRQ# Source  
Description  
8
9
-
reserved  
PMU  
power management unit (temperature sensor, over current, overload,  
and VBUS level)  
10  
11  
12  
SPI master  
I2C master  
PCR  
TX or RX buffer from SPI master module  
TX or RX buffer from I2C master module  
high temperature from temperature sensor 0 and 1; interrupt to CPU from  
PCR to indicate wake-up from suspend mode; out of standby; out of  
suspend; event on GPIOs configured as inputs  
13  
14  
PCR  
PCR  
interrupt common GPIO1 to GPIO12  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO1  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO2  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO3  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO4  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO5  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO6  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO7  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO8  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO9  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO10  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO11  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO12  
26  
-
reserved  
27  
-
reserved  
28  
-
reserved  
29  
-
reserved  
30  
-
reserved  
31  
-
reserved  
NMI[1]  
WDT  
watchdog interrupt is connected to the non-maskable interrupt pin  
[1] The NMI is not available on an external pin.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
13 of 72  
PN736X  
NXP Semiconductors  
8.4 GPIOs  
NFC Cortex-M0 microcontroller  
The PN736X has 12 general-purpose I/O (GPIO) with configurable pull-up and pull-down  
resistors, plus nine additional GPIOs multiplexed with SPI master, I2C-bus master and  
AUX pins.  
Pins can be dynamically configured as inputs or outputs. GPIO read/write are made by the  
FW using dedicated registers that allow reading, setting or clearing inputs. The value of  
the output register can be read back, as well as the current state of the input pins.  
8.4.1 GPIO features  
Dynamic configuration as input or output  
3.3 V and 1.8 V signaling  
Programmable weak pull-up and weak pull-down  
Independent interrupts for GPIO1 to GPIO12  
Interrupts: edge or level sensitive  
GPIO1 to GPIO12 can be programmed as wake-up sources  
Programmable spike filter (3 ns)  
Programmable slew rate (3 ns and 10 ns)  
Hysteresis receiver with disable option  
8.4.2 GPIO configuration  
The GPIO configuration is done through the PCR module (power, clock, and reset).  
8.4.3 GPIO interrupts  
GPIO1 to GPIO12 can be programmed to generate an interrupt on a level, a rising or  
falling edge or both.  
8.5 CRC engine 16/32 bits  
The PN7362 has a configurable 16/32-bit parallel CRC coprocessor.  
The 16-bit CRC is compliant to X.25 (CRC-CCITT, ISO/IEC 13239) standard with a  
generator polynome of:  
gx= x16 + x12 + x5 + 1  
The 32-bit CRC is compliant to the ethernet/AAL5 (IEEE 802.3) standard with a generator  
polynome of:  
gx= x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1  
CRC calculation is performed in parallel, meaning that one CRC calculation is performed  
in one clock cycle. The standard CRC 32 polynome is compliant with FIPS140-2.  
Note: No final XOR calculation is performed.  
Following are the CRC engine features:  
Configurable CRC preset value  
Selectable LSB or MSB first  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
14 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
CRC 32 calculation based on 32-bit, 16-bit, and 8-bit words  
CRC16 calculation based on 32-bit, 16-bit, and 8-bit words  
Supports bit order reverse  
8.6 Random Number Generator (RNG)  
The PN736X integrates a random number generator. It consists of an analog True  
Random Number Generator (TRNG), and a digital Pseudo Random Number Generator  
(PRNG). The TRNG is used for loading a new seed in the PRNG.  
The random number generator features:  
8-bit random number  
Compliant with FIPS 140-2  
Compliant with BSI AIS20 and SP800-22  
8.7 Master interfaces  
2
8.7.1 I C master interface  
The PN736X contains one I2C master and one I2C slave controller. This chapter  
describes the master interface. For more information on the I2C slave controller, refer to  
Section 8.8.2.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line  
(SCL) and a Serial Data Line (SDA). Each device has a unique address. The device can  
operate either as a receive-only device (such as LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory).  
8.7.1.1 I2C features  
The I2C master interface supports the following features:  
Standard I2C compliant bus interface with open-drain pins  
Standard-mode, fast mode and fast mode plus (up to 1 Mbit/s).  
Support I2C master mode only.  
Programmable clocks allowing versatile rate control.  
Clock stretching  
7-bit and 10-bit I2C slave addressing  
LDM/STM instruction support  
Maximum data frame size up to 1024 bytes  
8.7.2 SPI interface  
The PN736X contains one SPI master controller and one SPI slave controller.  
The SPI master controller transmits the data from the system RAM to the SPI external  
slaves. Similarly, it receives data from the SPI external slaves and stores them into the  
system RAM. It can compute a CRC for received frames and automatically compute and  
append CRC for outgoing frames (optional feature).  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
15 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
8.7.2.1 SPI features  
The SPI master interface provides the following features:  
SPI master interface: synchronous, half-duplex  
Supports Motorola SPI frame formats only (SPI block guide V04.0114 (Freescale)  
specification)  
Maximum SPI data rate of 6.78 Mbit/s  
Multiple data rates such as 1, 1.51, 2.09, 2.47, 3.01, 4.52, 5.42 and 6.78 Mbit/s  
Up to two slaves select with selectable polarity  
Programmable clock polarity and phase  
Supports 8-bit transfers only  
Maximum frame size: 511 data bytes payload + 1 CRC byte  
Optional 1 byte CRC calculation on all data of TX and RX buffer  
AHB master interface for data transfer  
8.8 Host interfaces  
The PN736X embeds four different interfaces for host connection: USB, HSUART, I2C,  
and SPI.  
The four interfaces share the buffer manager and the pins; see Table 5.  
Table 5.  
Name  
Pin description for host interface  
SPI  
I2C  
USB  
HSU  
ATX_A  
SCL_S  
-
HSU_RX  
NSS_S  
MOSI_S  
MISO_S  
SCK_S  
ATX_B  
ATX_C  
ATX_D  
SDA_S  
-
HSU_TX  
I2C_ADR0  
I2C_ADR1  
DP  
DM  
HSU_RTS_N  
HSU_CTS_N  
The interface selection is done by configuring the Power Clock Reset (PCR) registers.  
Note: The host interface pins should not be kept floating.  
8.8.1 High-speed UART  
The PN736X has a high-speed UART which can operate in slave mode only.  
Following are the HSUART features:  
Standard bit-rates are 9600, 19200, 38400, 57600, 115200, and up to 1.288 Mbit/s  
Supports full duplex communication  
Supports only one operational mode: start bit, 8 data bits (LSB), and stop bits  
The number of “stop bits” programmable for RX and TX is 1 stop bit or 2 stop bits  
Configurable length of EOF (1-bit to 122-bits)  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
16 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 6.  
HSUART baudrates  
Bit rate (kBd)  
9.6  
19.2  
38.4  
57.6  
115.2  
230.4  
460.8  
921.6  
1288 K  
8.8.2 I2C host interface controller  
The PN736X contains one I2C master and one I2C slave controller. This section describes  
the slave interface used for host communication. For more information on the I2C master  
controller, refer to Section 8.7.1.  
The I2C-bus is bidirectional and uses only two wires: a Serial Clock Line (SCL) and a  
Serial Data Line (SDA). I2C standard mode (100 kbit/s), fast mode (400 kbit/s and up to 1  
Mbit/s), and high-speed mode (3.4 Mbit/s) are supported.  
8.8.2.1 I2C host interface features  
The PN736X I2C slave interface supports the following features:  
Support slave I2C bus  
Standard mode, fast mode (extended to 1 Mbit/s support), and high-speed modes  
Supports 7-bit addressing mode only  
Selection of the I2C address done by two pins  
It supports multiple addresses  
The upper bits of the I2C slave address are hard-coded. The value corresponds to  
the NXP identifier for I2C blocks. The value is 01010XXb.  
General call (software reset only)  
Software reset (in standard mode and fast mode only)  
Table 7.  
I2C_ADR1 I2C_ADR0 I2C address (R/W = 0, write)  
I2C interface addressing  
I2C address (R/W = 0, read)  
0
0
1
1
0
1
0
1
0 28  
0 29  
0 2A  
0 2B  
0 28  
029  
0 2A  
0 2B  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
17 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
8.8.3 SPI host/Slave interface  
The PN736X host interface can be used as SPI slave interface.  
The SPI slave controller operates on a four wire SSI: Master In Slave Out (MISO), Master  
Out Slave In (MOSI), Serial Clock (SCK), and Not Slave Select (NSS). The SPI slave  
select polarity is fixed to positive polarity.  
8.8.3.1 SPI host interface features  
The SPI host/slave interface has the following features:  
SPI speeds up to 7 Mbit/s  
Slave operation only  
8-bit data format only  
Programmable clock polarity and phase  
SPI slave select polarity selection fixed to positive polarity  
Half-duplex in HDLL mode  
Full-duplex in native mode  
If no data is available, the MISO line is kept idle by making all the bits high (0xFF).  
Toggling the NSS line indicates a new frame.  
Note: Programmable echo-back operation is not supported.  
Table 8.  
SPI configuration  
connection  
CPHA switch: Clock phase: Defines the sampling edge of MOSI data  
CPHA = 1: Data are sampled on MOSI on the even clock edges of SCK, after NSS goes low  
CPHA = 0: Data are sampled on MOSI on the odd clock edges of SCK, after NSS goes low  
CPOL switch: Clock polarity  
IFSEL1 = 0: The clock is idle low, and the first valid edge of SCK is a rising one  
IFSEL1 = 0: The clock is idle high, and the first valid edge of SCK is a falling one  
8.8.4 USB interface  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between a  
host and up to 127 peripherals. The host controller allocates the USB bandwidth to  
attached devices through a token-based protocol. The bus supports hot-plugging and  
dynamic configuration of devices. The host controller initiates all transactions. The  
PN736X USB interface consists of a full-speed device controller with on-chip PHY  
(physical layer) for device functions.  
8.8.4.1 Full speed USB device controller  
The PN736X embeds a USB device peripheral, compliant with USB 2.0 specification, full  
speed. It is interoperable with USB 3.0 host devices.  
The device controller enables 12 Mbit/s data exchange with a USB host controller. It  
consists of a register interface, serial interface engine, and endpoint buffer memory. The  
serial interface engine decodes the USB data stream and writes data to the appropriate  
endpoint buffer.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
18 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
The status of a completed USB transfer or error condition is indicated via status registers.  
If enabled, an interrupt is generated.  
Following are the USB interface features:  
Fully compliant with USB 2.0 specification (full speed)  
Dedicated USB PLL available  
Supports 14 physical (7 logical) endpoints including one control endpoint  
Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types  
Single or double buffering allowed  
Support wake-up from suspend mode on USB activity and remote wake-up  
Soft-connect supported  
8.9 I/O auxiliary - ISO/IEC 7816 UART - connecting an external TDA  
To address applications where ISO/IEC 7816 interface is needed, the PN736X integrates  
the possibility to connect contact slot extender like TDA8026, TDA8020 or TDA8035, and  
to drive it thanks to its integrated ISO/IEC7816 UART.  
The following pins are available:  
INT_AUX  
CLK_AUX  
IO_AUX  
For more details about the connection, refer to the slot extender documentation.  
The integrated ISO/IEC 7816 UART has APB access for automatic convention  
processing, variable baud rate through frequency or division ratio programming, error  
management at character level for T = 0 and extra guard time register.  
FIFO 1 character to 32 characters in both reception and transmission mode  
Parity error counter in reception mode and transmission mode with automatic  
retransmission  
Card clock stop (at HIGH or LOW level)  
Automatic activation and deactivation sequence through a sequencer  
Supports the asynchronous protocols T=0 and T=1 in accordance with ISO/IEC 7816  
and EMV  
Versatile 24-bit timeout counter for Answer To Reset (ATR) and waiting times  
processing  
Specific Elementary Time Unit (ETU) counter for Block Guard Time (BGT); 22 ETU in  
T=1 and 16 ETU in T=0  
Supports synchronous cards  
8.10 Contactless interface - 13.56 MHz  
The PN736X embeds a high power 13.56 MHz RF frontend. The RF interface implements  
the RF functionality like antenna driving, the receiver circuitry, and all the low-level  
functionalities. It helps to realize an NFC forum or an EMVCo compliant reader.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
19 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
The PN736X allows different voltages for the RF drivers. For information related to the RF  
interface supply, refer Section 8.15.  
The PN736X uses an external oscillator, at 27.12 MHz. It is a clock source for generating  
RF field and its internal operation.  
Key features of the RF interface are:  
ISO/IEC 14443 type A & B compliant  
MIFARE functionality, including MIFARE classic encryption in read/write mode  
ISO/IEC 15693 compliant  
NFC Forum - NFCIP-1 & NFCIP-2 compliant  
P2P, active and passive mode  
reading of NFC forum tag types 1, 2, 3, 4, and 5  
FeliCa  
ISO/IEC 18000-3 mode 3  
EMVCo contactless 2.3.1 and 2.5  
RF level can be achieved without the need of booster circuitry (for some antenna  
topologies the EMV RF-level compliance might physically not be achievable)  
Card mode - enabling the emulation of an ISO/IEC 14443 type A card  
Supports Passive Load Modulation (PLM) and Active Load Modulation (ALM)  
Low Power Card Detection (LPCD)  
Adjustable RX-voltage level  
A minimum voltage of 2.3 V helps to use card emulation, and P2P passive target  
functionality in passive load modulation.  
A voltage above 2.7 V enables all contactless functionalities.  
8.10.1 RF functionality  
8.10.1.1 ISO/IEC14443 A/MIFARE functionality  
The physical level of the communication is shown in Figure 8.  
ꢏꢃꢐ  
,62ꢇ,(&ꢁꢃꢅꢅꢅꢊꢁ$  
,62ꢇ,(&ꢁꢃꢅꢅꢅꢊꢁ$ꢁ&$5'  
5($'(5  
ꢏꢄꢐ  
ꢁꢁꢆDDPꢂꢄꢇ  
(1) Reader to Card: 100 % ASK; modified miller coded; transfer speed 106 kbit/s to 848 kbit/s  
(2) Card to Reader: Subcarrier load modulation Manchester coded or BPSK, transfer speed 106 kbit/s  
to 848 kbit/s  
Fig 8. ISO/IEC 14443 A/MIFARE read/write mode communication diagram  
The physical parameters are described in Table 9.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
20 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 9.  
Communication overview for ISO/IEC 14443 A/MIFARE reader/writer  
Communication  
direction  
Signal type  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
848 kbit/s  
reader to card (send  
reader side  
100 % ASK  
100 % ASK  
100 % ASK  
100 % ASK  
data from the PN736X modulation  
to a card)  
fc = 13.56 MHz  
bit encoding  
modified miller  
encoding  
modified miller  
encoding  
modified miller  
encoding  
modified miller  
encoding  
bit rate (kbit/s)  
fc / 128  
fc / 64  
fc / 32  
fc / 16  
card to reader (PN736X card side  
sub carrier load  
modulation  
sub carrier load  
modulation  
sub carrier load  
modulation  
sub carrier load  
modulation  
receives data from a  
card)  
modulation  
subcarrier  
frequency  
fc / 16  
fc / 16  
fc / 16  
fc / 16  
bit encoding  
Manchester  
encoding  
BPSK  
BPSK  
BPSK  
Figure 9 shows the data coding and framing according to ISO/IEC 14443 A/MIFARE.  
,62ꢇ,(&ꢁꢃꢅꢅꢅꢊꢁ$ꢁIUDPLQJꢁDWꢁꢃꢂꢆꢁN%G  
VWDUW  
ꢈꢀELWꢁGDWD  
ꢈꢀELWꢁGDWD  
ꢈꢀELWꢁGDWD  
RGGꢁ  
SDULW\  
RGGꢁ  
SDULW\  
RGGꢁ  
SDULW\  
VWDUWꢁELWꢁLVꢁꢃ  
,62ꢇ,(&ꢁꢃꢅꢅꢅꢊꢁ$ꢁIUDPLQJꢁDWꢁꢄꢃꢄꢁN%GꢉꢁꢅꢄꢅꢁN%GꢁDQGꢁꢈꢅꢈꢁN%G  
VWDUW  
HYHQꢁ  
SDULW\  
ꢈꢀELWꢁGDWD  
ꢈꢀELWꢁGDWD  
ꢈꢀELWꢁGDWD  
RGGꢁ  
SDULW\  
RGGꢁ  
SDULW\  
VWDUWꢁELWꢁLVꢁꢂ  
EXUVWꢁRIꢁꢊꢄꢁ  
VXEFDUULHUꢁFORFNV  
HYHQꢁSDULW\ꢁDWꢁWKHꢁ  
HQGꢁRIꢁWKHꢁIUDPH  
ꢁꢁꢆDDNꢃꢇꢃ  
Fig 9. Data coding and framing according to ISO/IEC 14443 A card response  
The internal CRC coprocessor calculates the CRC value based on the selected protocol.  
In card mode for higher baudrates, the parity is automatically inverted as end of  
communication indicator.  
8.10.1.2 ISO/IEC14443 B functionality  
The physical level of the communication is shown in Figure 10.  
ꢏꢃꢐ  
,62ꢇ,(&ꢁꢃꢅꢅꢅꢊꢁ%  
,62ꢇ,(&ꢁꢃꢅꢅꢅꢊꢁ%ꢁ&$5'  
5($'(5  
ꢏꢄꢐ  
ꢁꢁꢆDDOꢅꢅꢈ  
(1) Reader to Card: NRZ; transfer speed 106 kbit/s to 848 kbit/s  
(2) Card to reader: Subcarrier load modulation Manchester coded or BPSK, transfer speed 106 kbit/s to 848 kbit/s  
Fig 10. ISO/IEC 14443 B read/write mode communication diagram  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
21 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
The physical parameters are described in Table 10.  
Table 10. Communication overview for ISO/IEC 14443 B reader/writer  
Communication  
direction  
Signal type  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
848 kbit/s  
reader to card (send  
reader side  
10 % ASK  
10 % ASK  
10 % ASK  
10 % ASK  
data from the PN736X modulation  
to a card)  
fc = 13.56 MHz  
bit encoding  
NRZ  
NRZ  
64/fc  
NRZ  
32/fc  
NRZ  
16/fc  
bit rate [kbit/s]  
128/fc  
card to reader (PN736X card side  
sub carrier load  
modulation  
sub carrier load  
modulation  
sub carrier load  
modulation  
sub carrier load  
modulation  
receives data from a  
card)  
modulation  
sub carrier  
frequency  
fc / 16  
fc / 16  
fc / 16  
fc / 16  
bit encoding  
BPSK  
BPSK  
BPSK  
BPSK  
8.10.1.3 FeliCa functionality  
The FeliCa mode is a general reader/writer to card communication scheme, according to  
the FeliCa specification. The communication on a physical level is shown in Figure 11.  
ꢃꢌꢁ3&'ꢁWRꢁ3,&&ꢁꢈꢀꢊꢂꢁꢑꢁ$6.  
0DQFKHVWHUꢁ&RGHGꢉ  
)HOL&Dꢁ&$5'  
ꢏ3,&&ꢐ  
)HOL&Dꢁ5($'(5  
ꢏ3&'ꢐ  
EDXGUDWHꢁꢄꢃꢄꢁWRꢁꢅꢄꢅꢁNEDXG  
ꢄꢌꢁ3,&&ꢁWRꢁ3&'ꢉꢁ!ꢁ/RDGꢁPRGXODWLRQ  
0DQFKHVWHUꢁ&RGHGꢉ  
EDXGUDWHꢁꢄꢃꢄꢁWRꢁꢅꢄꢅꢁNEDXG  
ꢁꢁꢆDDPꢂꢈꢆ  
Fig 11. FeliCa read/write communication diagram  
The physical parameters are described in Table 11.  
Table 11. Communication overview for FeliCa reader/writer  
Communication direction  
Signal type  
Transfer speed FeliCa  
FeliCa higher transfer  
speeds  
212 kbit/s  
424 kbit/s  
reader to card (send data  
from the PN736X to a card)  
fc = 13.56 MHz  
reader side modulation  
bit encoding  
8 % to 30 % ASK  
Manchester encoding  
fc / 64  
8 % to 30 % ASK  
Manchester encoding  
fc / 32  
bit rate  
card to reader (PN736X  
receives data from a card)  
card side modulation  
bit encoding  
load modulation  
Manchester encoding  
load modulation  
Manchester encoding  
Note: The PN736X does not manage FeliCa security aspects.  
PN736X supports FeliCa multiple reception cycles.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
22 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
3D\/RDG  
ꢊꢄꢁE\WH  
;;;  
6WDWXV  
5)8  
>ꢃꢍꢒꢃꢊ@  
5)8  
5)8ꢁ>ꢊꢃꢒꢄꢅ@  
5)8ꢁ>ꢄꢊꢒꢃꢆ@  
/HQꢁ>ꢅꢒꢂ@  
>ꢋꢒꢍ@  
ꢅꢁE\WH  
DDDꢀꢁꢂꢆꢂꢃꢉ  
Fig 12. Multiple reception cycles - data format  
8.10.1.4 ISO/IEC 15693 functionality  
The physical level of the communication is shown in Figure 13.  
ꢏꢃꢐ  
,62ꢁꢇꢁ,(&ꢁꢃꢍꢆꢎꢊ  
5($'(5  
,62ꢁꢇꢁ,(&ꢁꢃꢍꢆꢎꢊ  
&$5'  
ꢏꢄꢐ  
DDDꢀꢁꢂꢆꢆꢉꢇ  
(1) Reader to Card: 1/256 and 1/4 encoding  
(2) Card to Reader: Manchester coding  
Fig 13. ISO/IEC 15693 read/write mode communication diagram  
The physical parameters are described in Table 12.  
Table 12. Communication overview for ISO/IEC 15693 reader to label  
Communication direction  
Signal type  
Transfer speed  
fc / 8192 kbit/s  
fc / 512 kbit/s  
reader to label (send data  
from the PN736X to a card)  
reader side modulation  
10 % to 30 % ASK or  
100 % ASK  
10 % to 30 % ASK or 90 % to  
100 % ASK  
bit encoding  
bit length  
1/256  
1/4  
4.833 s  
302.08 s  
Table 13. Communication overview for ISO/IEC 15693 label to reader  
Communication  
direction  
Signal type  
Transfer speed  
6.62 kbit/s  
13.24 kbit/s[1]  
26.48 kbit/s  
52.96 kbit/s  
label to reader  
card side  
modulation  
not supported  
not supported  
single (dual) sub  
carrier load  
modulation ASK  
single sub carrier  
load modulation ASK  
(PN736X receives  
data from a card) fc  
= 13.56 MHz  
bit length (s)  
-
-
-
-
-
-
37.76  
18.88  
bit encoding  
Manchester coding  
fc / 32  
Manchester coding  
fc / 32  
subcarrier  
frequency (MHz)  
[1] Fast inventory (page) read command only (ICODE proprietary command).  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
23 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
SXOVHꢁ  
PRGXODWHGꢁ  
FDUULHU  
aꢎꢌꢅꢅꢁ—V  
aꢃꢈꢌꢈꢈꢁ—V  
      
     
     
     
aꢅꢉꢈꢊꢊꢁPV  
ꢁꢁꢆDDPꢂꢈꢂ  
Fig 14. Data coding according to ISO/IEC 15693 standard mode reader to label  
8.10.1.5 ISO/IEC18000-3 mode 3 functionality  
The ISO/IEC 18000-3 mode 3 is not described in this document. For a detailed  
explanation of the protocol, refer to the ISO/IEC 18000-3 standard.  
PN736X supports the following features:  
TARI = 9.44 s or 18.88 s  
Downlink: Four subcarrier pulse Manchester and two subcarrier pulse Manchester  
Subcarrier: 423 kHz (fc / 32) with DR = 0 kHz and 847 kHz (fc / 16) with DR = 1  
8.10.1.6 NFCIP-1 modes  
The NFCIP-1 communication differentiates between an active and a passive  
communication mode.  
In active communication mode, both initiator and target use their own RF field to  
transmit data  
In passive communication mode, the target answers to an initiator command in a load  
modulation scheme. The initiator is active in terms of generating the RF field  
The initiator generates RF field at 13.56 MHz and starts the NFCIP-1 communication  
In passive communication mode, the target responds to initiator command in load  
modulation scheme. In active communication mode, it uses a self-generated and  
self-modulated RF field.  
PN736X supports NFCIP-1 standard. PN736X supports active and passive  
communication mode at transfer speeds of 106 kbit/s, 212 kbit/s, and 424 kbit/s, as  
defined in the NFCIP-1 standard.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
24 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
,QLWLDOꢁFRPPDQG  
KRVW  
KRVW  
1)&ꢁ,1,7,$725  
1)&ꢁ7$5*(7  
ꢃꢌꢁLQLWLDWRUꢁVWDUWVꢁFRPPXQLFDWLRQꢁDWꢁ  
ꢁꢁꢁꢁVHOHFWHGꢁWUDQVIHUꢁVSHHG  
SRZHUHGꢁWRꢁ  
JHQHUDWHꢁ5)ꢁILHOG  
SRZHUHGꢁIRUꢁ  
GLJLWDOꢁSURFHVVLQJ  
UHVSRQVH  
KRVW  
KRVW  
1)&ꢁ,1,7,$725  
1)&ꢁ7$5*(7  
ꢄꢌꢁWDUJHWꢁDQVZHUVꢁDWꢁꢁ  
ꢁꢁꢁꢁWKHꢁVDPHꢁWUDQVIHUꢁVSHHG  
SRZHUHGꢁIRUꢁGLJLWDOꢁꢁ  
ꢁSURFHVVLQJ  
SRZHUHGꢁWRꢁ  
JHQHUDWHꢁ5)ꢁILHOG  
ꢁꢁꢆDDQꢂꢆꢄ  
Fig 15. Active communication mode  
Table 14. Communication overview for active communication mode  
Communication  
direction  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
initiator to target  
target to initiator  
according to ISO/IEC 14443 A  
100 % ASK, modified  
miller coded  
according to  
FeliCa, 8-30 %  
ASK Manchester  
coded  
according to  
FeliCa, 8-30 %  
ASK Manchester  
coded  
Note: Transfer speeds above 424 kbit/s are not defined in the NFCIP-1 standard.  
ꢃꢌꢁLQLWLDWRUꢁVWDUWVꢁFRPPXQLFDWLRQꢁ  
DWꢁVHOHFWHGꢁWUDQVIHUꢁVSHHG  
KRVW  
KRVW  
1)&ꢁ,1,7,$725  
1)&ꢁ7$5*(7  
ꢄꢌꢁWDUJHWVꢁDQVZHUVꢁXVLQJꢁꢁ  
ꢁꢁꢁꢁORDGꢁPRGXODWHGꢁGDWDꢁ  
ꢁꢁꢁꢁDWꢁWKHꢁꢁVDPHꢁWUDQVIHUꢁVSHHG  
SRZHUHGꢁWRꢁ  
JHQHUDWHꢁ5)ꢁILHOG  
SRZHUHGꢁIRUꢁ  
GLJLWDOꢁSURFHVVLQJ  
ꢁꢁꢆDDQꢂꢆꢈ  
Fig 16. Passive communication mode  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
25 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 15. Communication overview for passive communication mode  
Communication  
direction  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
initiator to target  
according to  
according to FeliCa,  
8-30 % ASK  
Manchester coded  
according to FeliCa,  
8-30 % ASK  
Manchester coded  
ISO/IEC 14443 A  
100 % ASK, modified  
miller coded  
target to initiator  
according to  
according to FeliCa, > according to FeliCa, >  
12 % ASK Manchester 12 % ASK Manchester  
ISO/IEC 14443 A  
@106 kB modified  
miller coded  
coded  
coded  
The NFCIP-1 protocol is managed in the PN736X customer application firmware.  
Note: Transfer speeds above 424 kbit/s are not defined in the NFCIP-1 standard.  
ISO/IEC14443 A card operation mode: PN736X can be addressed as a ISO/IEC 14443  
A card. It means that PN736X can generate an answer in a load modulation scheme  
according to the ISO/IEC 14443 A interface description.  
Note: PN736X components do not support a complete card protocol. The PN736X  
customer application firmware handles it.  
The following table describes the physical layer of a ISO/IEC14443 A card mode:  
Table 16. ISO/IEC14443 A card operation mode  
Communication direction  
ISO/IEC 14443 A (transfer speed: 106 kbit per second)  
reader/writer to PN736X  
modulation on reader side  
bit coding  
100 % ASK  
modified miller  
128/fc  
bit length  
PN736X to reader/writer  
modulation on PN736X side sub carrier load modulation  
subcarrier frequency  
bit coding  
fc / 16  
Manchester coding  
NFCIP-1 framing and coding: The NFCIP-1 framing and coding in active and passive  
communication mode is defined in the NFCIP-1 standard.  
PN736X supports the following data rates:  
Table 17. Framing and coding overview  
Transfer speed  
106 kbit/s  
Framing and coding  
according to the ISO/IEC 14443 A/MIFARE scheme  
according to the FeliCa scheme  
according to the FeliCa scheme  
212 kbit/s  
424 kbit/s  
NFCIP-1 protocol support: The NFCIP-1 protocol is not elaborated in this document.  
The PN736X component does not implement any of the high-level protocol functions.  
These high-level protocol functions are implemented in the microcontroller. For detailed  
explanation of the protocol, refer to the NFCIP-1 standard. However, the datalink layer is  
according to the following policy:  
Speed shall not be changed while there is continuous data exchange in a transaction.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
26 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Transaction includes initialization, anticollision methods, and data exchange (in a  
continuous way means no interruption by another transaction).  
In order not to disturb current infrastructure based on 13.56 MHz, the following general  
rules to start NFCIP-1 communication are defined:  
1. By default, NFCIP-1 device is in target mode. It means that its RF field is switched off.  
2. The RF level detector is active.  
3. Only if the application requires, the NFCIP-1 device switches to initiator mode.  
4. An initiator shall only switch on its RF field if the RF level detector does not detect  
external RF field during a time of TIDT  
.
5. The initiator performs initialization according to the selected mode.  
8.10.2 Contactless interface  
8.10.2.1 Transmitter (TX)  
The transmitter is able to drive an antenna circuit connected to outputs TX1 and TX2 with  
a 13.56 MHz carrier signal. The signal delivered on pins TX1 and pin TX2 is a 13.56 MHz  
carrier, modulated by an envelope signal for energy and data transmission. It can be used  
to drive an antenna directly, using a few passive components for matching and filtering.  
For a differential antenna configuration, either TX1 or TX2 can be configured to put out an  
inverted clock.  
100 % modulation and several levels of amplitude modulation on the carrier can be  
performed to support 13.56 MHz carrier-based RF-reader/writer protocols. The standards  
ISO/IEC14443 A and B, FeliCa and ISO/IEC18092 define the protocols.  
The PN736X embeds an overshoot and undershoot protection. It is used to configure  
additional signals on the transmitter output, for controlling the signal shape at the antenna  
output.  
79''  
0ꢄ  
HQYHORSH  
KVBJDWH  
FONBKLJKVLGH  
FONBORZVLGH  
7;ꢃ  
79''  
OVBJDWHꢓꢃꢅꢒꢂ!  
0ꢃꢓ  
35(ꢀ'5,9(56  
DDDꢀꢁꢂꢆꢂꢃꢊ  
Fig 17. PN736X output driver  
8.10.2.2 Receiver (RX)  
In reader mode, the response of the PICC device is coupled from the PCB antenna to the  
differential input RXP/RXN. The reader mode receiver extracts this signal by first  
removing the carrier in passive mixers (direct conversion for I and Q). It then filters and  
amplifies the baseband signal before converting to digital values. The conversion to digital  
values is done with two separate ADCs, for I and Q channels. Both I and Q channels have  
a differential structure, which improves the signal quality.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
27 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
The I/Q mixer mixes the differential input RF-signal down to the baseband. The mixer has  
a bandwidth of 2 MHz.  
The down-mixed differential RX input signals are passed to the BBA and a band-pass  
filter. For considering all the protocols (type A/B, FeliCa), the high-pass cut-off frequency  
of BBA is configured between 45 kHz and 250 kHz. The configuration is done in four  
different steps. The low-pass cut-off frequency is greater than 2 MHz.  
The output of band-pass filter is further amplified with a gain factor which is configurable  
between 30 dB and 60 dB. The baseband amplifier (BBA)/ADC I-channel and Q-channel  
can be enabled separately. It is required for ADC-based card mode functionality as only  
the I-channel is used in this case.  
%%$  
5;3  
'$7$  
,ꢀ&/.  
$*&  
0,;  
&/.  
90,'  
4ꢀ&/.  
%%$  
'$7$  
5;1  
DDDꢀꢁꢂꢆꢉꢇꢇ  
Fig 18. Receiver block diagram  
VMID: A resistive divider between AVDD and GND generates VMID. The resistive divider  
is connected to the VMID pin. An external blocking capacitor of typical value 100 nF is  
connected.  
Automatic Gain Control (AGC): The contactless interface AGC is used to control the  
amplitude of 13.56 MHz sine-wave input signal received. The signal is received at the  
antenna connected between the pins RXP and RXN. A comparator is used to compare  
the peak value of the input signal with a reference voltage.  
A voltage divider circuit is used to generate the reference voltage. An external resistor  
(typically 3.3 k) is connected to the RX input, which forms a voltage divider with an  
on-chip variable resistor. The voltage divider circuit so formed has a 10-bit resolution.  
Note: The comparator monitors the RXP signal only.  
By varying the on-chip resistor, the amplitude of the input signal can be modified. The  
value of on-chip resistor is increased or decreased, depending on the output of the  
sampled comparator. The on-chip resistor value is adjusted until the peak of the input  
signal matches the reference voltage. Thus, the AGC circuit automatically controls the  
amplitude of the RX input.  
The internal amplitude controlling resistor in the AGC has a default value of 10 K. It  
means that, when the resistor control bits in AGC_VALUE_REG <9:0> are all 0, the  
resistance is 10 K. As the control bits are increased, resistors are switched in parallel to  
the 10 Kresistor. It lowers the resultant resistance value to 5 k(AGC_VALUE_REG  
<9:0>, all bits set to 1).  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
28 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Mode detector: The mode detector is a functional block of the PN736X which senses for  
an RF field generated by another device. The mode detector facilitates to distinguish  
between type A and FeliCa target mode. The host responds depending on the recognized  
protocol generated by an initiator peer device.  
Note: The PN736X emulates type A cards and peer-to-peer active target modes  
according to ISO / IEC18092.  
8.10.3 Low-Power Card Detection (LPCD)  
The low-power card detection is an energy saving feature of the PN736X. It detects the  
presence of a card without starting a communication. Communication requires more  
energy to power the card and takes time, increasing the energy consumption.  
It is based on antenna detuning detection. When a card comes close to the reader, it  
affects the antenna tuning, which is detected by PN736X.  
The sensitivity can be varied for adjusting to various environment and applications  
constraints.  
Remark: Reader antenna detuning may have multiple sources such as cards and metal  
near the antenna. Hence it is important to adjust the sensitivity with care to optimize the  
detection and power consumption. As the generated field is limited, distance for card  
detection might be reduced compared to normal reader operation. Performances depend  
on the antenna and the sensitivity used.  
8.10.4 Active Load Modulation (ALM)  
When PN736X is used in card emulation mode or P2P passive target mode, it modulates  
the field emitted by the external reader or NFC passive initiator.  
ꢏꢃꢐ  
31ꢀꢅꢂꢄ$8  
&$5'ꢁ7<3(ꢁ$ꢁ(08/$7,21  
ꢏꢄꢐ  
25  
3ꢄ3ꢁ3$66,9(ꢁ7$5*(7  
DDDꢀꢁꢂꢆꢆꢉꢅ  
(1) Type A reader or NFC passive initiator generate the RF and sends commands  
(2) PN736X modulates the field of reader for sending its answer  
Fig 19. Communication in card emulation of NFC passive target  
To modulate the field, PN736X offers two possibilities:  
Passive Load Modulation (PLM): The PN736X modifies the antenna characteristics,  
which are detected by the reader through antenna coupling.  
Active Load Modulation (ALM): The PN736X generates a small field, in phase  
opposition with the field emitted by the reader. This modulation is detected by the  
reader reception stage.  
The modulation type to use depends on the external reader and the antenna of PN736X  
and the application.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
29 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
8.10.5 Dynamic Power Control (DPC)  
The PN736X supports the Dynamic Power Control (DPC) feature.  
A lookup table is used to configure the output voltage and to control the transmitter  
current. In addition to the control of the transmitter current, wave shaping settings can be  
controlled as well, depending on the selected protocol and the measured antenna load.  
8.10.5.1 RF output control  
The DPC controls the RF output current and output voltage depending on the loading  
condition of the antenna.  
8.10.5.2 Adaptive Waveform Control (AWC)  
The DPC includes the Adaptive Waveform Control (AWC) feature.  
Depending on the level of detected detuning on the antenna, RF wave shaping related  
register settings can be automatically updated, according to the selected protocol. A  
lookup table is used to configure the modulation index, the rise time and the fall time.  
8.11 Timers  
The PN736X includes two 12-bit general-purpose timers (on LFO clock domain) with  
match capabilities. It also includes two 32-bit general-purpose timers (on HFO clock  
domain) and a Watchdog Timer (WDT).  
The timers and WDT can be configured through software via a 32-bit APB slave interface.  
Table 18. Timer characteristics  
Name  
Clock  
source  
Frequency Counter  
length  
Resolution Maximum  
delay  
Chaining  
Timer 0  
Timer 1  
Timer 2  
Timer 3  
Watchdog  
LFO/2  
LFO/2  
HFO  
182.5 kHz  
182.5 kHz  
20 MHz  
12 bit  
12 bit  
32 bit  
32 bit  
10 bit  
300 s  
300 s  
50 ns  
1.2 s  
1.2 s  
214 s  
214 s  
22 s  
No  
Yes  
No  
No  
No  
HFO  
20 MHz  
50 ns  
LFO/128  
2.85 kHz  
21.5 ms  
8.11.1 Features of timer 0 and timer 1  
12-bit counters  
One match register per timer, no capture registers and capture trigger pins are  
needed  
One common output line gathering the four timers (Timer 0, Timer 1, Timer 2, and  
Timer 3)  
Interrupts  
Timer 0 and timer 1 can be concatenated (multiplied)  
Timer 0 and timer 1 have two count modes: single-shot or free-running  
Timer 0 and timer 1 timeout interrupts can be individually masked  
Timer 0 and timer 1 clock source is LFO clock (LFO/2 = 182.5 kHz)  
Remark: The timers are dedicated for RF communication.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
30 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
8.11.2 Features of timer 2 and timer 3  
32-bit counters  
1 match register per timer, no capture registers and capture trigger pins are needed  
1 common output line gathering four timers (Timer 0, Timer 1, Timer 2, and Timer 3)  
Interrupts  
Timer 2 and timer 3 have two count modes: single-shot and free-running  
Timer 2 and timer 3 timeout interrupts can be individually masked  
Timer 2 and timer 3 clock source is the system clock  
8.12 System tick timer  
The PN736X microcontroller includes a system tick timer (SYSTICK) that generates a  
dedicated SYSTICK exception at a fixed time interval (10 ms).  
8.13 Watchdog timer  
If the microcontroller enters an erroneous state, the watchdog timer resets the  
microcontroller. When the watchdog timer is enabled, if the user program fails to “feed”  
(reload) the watchdog timer within a predetermined time, it generates a system reset.  
The watchdog timer can be enabled through software. If there is a watchdog timeout  
leading to a system reset, the timer is disabled automatically.  
10-bit counter  
Based on a 2.85 kHz clock  
Triggers an interrupt when a predefined counter value is reached  
Connected to the ARM subsystem NMI (non-maskable interrupt)  
If the watchdog timer is not periodically loaded, it resets PN736X  
8.14 Clocks  
The PN736X clocks are based on the following clock sources:  
27.12 MHz external quartz  
27.12 MHz crystal oscillator  
Internal oscillator: 20 MHz High Frequency Oscillator (HFO)  
Internal oscillator: 365 kHz Low Frequency Oscillator (LFO)  
Internal PLL at 48 MHz for the USB interface  
Figure 20 indicates the clocks used by each IP.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
31 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
FOLIBSOOBLQBVHO  
3//ꢁ,ꢇ3  
%8))(5  
;7$/ꢃ  
GNBLQSXWBEXIIHU  
ꢂꢂ  
ꢂꢃ  
ꢃꢂ  
ꢃꢃ  
FONB[WDO  
WLHꢁCꢂꢔꢔ  
WLHꢁCꢂꢔꢔ  
SOOBE\SDVV  
SOOBFONRXW  
SOOBFONLQ  
&/,)ꢁ3//  
ꢃꢂ  
ꢂꢂ  
SOOBFONRXWꢄ  
&/,)B',*  
SOOBFONRXWꢄ  
SOOBFONLQ  
3//B,1387B%8))(5B%<3$66  
;7$/B6(/B(;7(51$/B&/2&.  
ꢃꢃ  
&/,)B3//B5()B&/.B6(/(&7>ꢃꢒꢂ@  
FONBSOOBꢄꢋPꢃꢄ  
&/,)B$1$  
3&5  
;7$/ꢄ  
FONB[WDO  
ꢂꢃ  
;7$/  
FONBSOOBꢄꢋPꢃꢄ  
XVEBSOOBFONLQ  
FONBLSBꢄꢋPꢃꢄ  
&/,)B3//B&/2&.B6(/(&7>ꢃꢒꢂ@  
XVEBSOOBLQBVHO  
WLHꢁCꢂꢔꢔ  
3&5B&/.B&)*ꢄꢌ(;7B&/.B6(/  
ꢃꢃ  
WLHꢁCꢂꢔꢔ  
FONB[WDO  
ꢃꢂ XVEBSOOBFONLQ  
FONBXVEBꢅꢈꢁ0+]  
86%ꢁ3//  
ꢂꢂ  
ꢂꢃ  
ꢂꢂ  
WLHꢁCꢂꢔꢔ  
FONBLQSXWBEXIIHU  
ꢃꢂ  
ꢂꢃ  
ꢃꢃ  
XVEBSOOBFONRXWBGLYꢄ  
ꢇꢄ  
WLHꢁCꢂꢔꢔ  
86%B3//B5()B&/.B6(/(&7>ꢃꢒꢂ@  
86%B3//B&/.287B6(/(&7>ꢃꢒꢂ@  
XVEBSOOBFONRXW  
DDDꢀꢁꢂꢆꢂꢊꢇ  
Fig 20. Clocks and IP overview  
8.14.1 Quartz oscillator (27.12 MHz)  
The 27.12 MHz quartz oscillator is used as a reference for all operations where the  
stability of the clock frequency is important for reliability. It includes contactless interface,  
SPI and I2C master interfaces, USB PLL for the USB interface, and HSUART.  
Regular and low-power crystals can be used. Figure 21 shows the circuit for generating  
stable clock frequency. The quartz and trimming capacitors are off-chip.  
31ꢀꢅꢂꢄ$8  
;7$/ꢃ  
;7$/ꢄ  
FU\VWDO  
ꢄꢋꢌꢃꢄꢁ0+]  
&
&
DDDꢀꢁꢂꢆꢆꢊꢁ  
Fig 21. Crystal oscillator connection  
Table 19 describes the levels of accuracy and stability required on the crystal.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
32 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 19. Crystal requirements  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fxtal  
crystal frequency  
ISO/IEC and FCC  
compliancy  
27.12  
MHz  
[1]  
fxtal  
ESR  
CL  
crystal frequency accuracy  
equivalent series resistance  
load capacitance  
50  
+50  
100  
ppm  
50  
10  
pF  
Pdrive  
drive power  
100  
W  
[1] This requirement is according to FCC regulations requirements. The frequency should be +/14 kHz to  
meet ISO/IEC 14443 and ISO/IEC 18092.  
8.14.2 USB PLL  
The PN736X integrates a dedicated PLL to generate a low-noise 48 MHz clock, by using  
the 27.12 MHz from the external crystal. The 48 MHz clock generated is used as the USB  
main clock.  
Following are the USB PLL features:  
Low-skew, peak-to-peak cycle-to-cycle jitter, 48 MHz output clock  
Low power in active mode, low power-down current  
On-chip loop filter, external RC components not needed  
8.14.3 High Frequency Oscillator (HFO)  
The PN736X has an internal low-power High Frequency Oscillator (HFO) that generates a  
20 MHz clock. The HFO is used to generate the system clock. The system clock default  
value is 20 MHz, and it can be configured to 10 MHz and 5 MHz for reducing power  
consumption.  
8.14.4 Low Frequency Oscillator (LFO)  
The PN736X has an internal low-power Low Frequency Oscillator (LFO) that generates a  
365 kHz clock. The LFO is used by EEPROM, POR sequencer, contactless interface,  
timers, and watchdog.  
8.14.5 Clock configuration and clock gating  
In order to reduce the overall power consumption, the PN736X facilitates adjustment of  
system clock. It integrates clock gating mechanisms.  
The system clock can be configured to the following values: 20 MHz, 10 MHz, and 5 MHz.  
The clock of the following blocks can be activated or deactivated, depending on the  
peripherals used:  
Contactless interface  
Host interfaces  
I2C master interface  
SPI master interface  
CRC engine  
Timers  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
33 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Random generator  
System clock  
EEPROM  
Flash memory  
8.15 Power management  
8.15.1 Power supply sources  
The PN736X is powered using the following supply inputs:  
VBUS: main supply voltage for internal analog modules, digital logic and memories  
TVDD_IN: supply for the contactless interface  
PVDD_IN: pad voltage reference and supply of the host interface (HSU, USB, I2C,  
and SPI) and the GPIOs  
PVDD_M_IN: pad voltage reference and supply for the master interface (SPI and I2C)  
DVDD: supply for the internal digital blocks  
8.15.2 PN736X Power Management Unit (PMU)  
The integrated Power Management Unit (PMU) provides supply for internal analog  
modules, internal digital logic and memories, pads. It also provides supply voltages for the  
contactless interface.  
It automatically adjusts internal regulators to minimize power consumption during all  
possible power states.  
The power management unit embeds a mechanism to prevent the IC from overheat,  
overconsumption, or overloading the DC-to-DC converter:  
TXLDO 5 V monitoring  
Temperature sensor  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
34 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
'9''  
'LJLWDOꢁORJLFꢁDQGꢁPHPRULHV  
LQWHUQDOꢁDQDORJꢁEORFNV  
PDQGDWRU\  
9''  
0,/'2  
9%86  
39''B/'2  
39''B287  
RSWLRQDO  
39''B,1  
SDGꢁVXSSO\  
39''B0B,1  
PDVWHUꢁLQWHUIDFHꢁSDGV  
7;B/'2  
983B7;  
79''B287  
79''B,1  
5)ꢁWUDQVPLWWHU  
DDDꢀꢁꢂꢃꢄꢂꢈ  
Fig 22. PN736X LDOs and power pins overview  
PN736X embeds five Low Drop-Out regulators (LDO) for ensuring the stability of power  
supply, while the application is running.  
MLDO (main LDO): It provides1.8 V supply for internal analog, digital and memory  
modules  
TXLDO: This LDO can be used to supply the RF transmitter  
PVDD_LDO: PVDD_LDO provides 3.3 V that can be used for all pads supply  
Some are used while some are optional, like the TX_LDO which is proposed for the RF  
interface. It is up to the application designer to decide whether LDOs should be used.  
8.15.2.1 Main LDO  
The Main LDO (MLDO) provides a 1.8 V supply for all internal, digital and memory  
modules. It takes input from VBUS. MLDO includes a current limiter that avoids damage  
to the output transistors.  
Output supply is available on VDD pin which must be connected externally to the DVDD  
pin.  
Following are the main LDO features:  
Main Low-Drop-Out (MLDO) voltage regulator powered by VBUS (external supply)  
Current limiter to avoid damaging the output transistors  
8.15.2.2 PVDD_LDO  
The PVDD_LDO provides 3.3 V supply, that can be used for all digital pads. It may also be  
used to provide 3.3 V power to external components, avoiding an external LDO. It is  
supplied by VBUS, and requires a minimum voltage of 4 V to be functional. It delivers a  
maximum of 30 mA.  
The output pin for PVDD_LDO is PVDD_OUT.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
35 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
PVDD_LDO is used to provide the necessary supply to PVDD_IN and PVDD_M_IN (pad  
supply for master interfaces).  
When an external supply is used, PVDD_OUT must be connected to the ground. When  
the LDO output is connected to the ground, the PN736X chip switches off the  
PVDD_LDO.  
The PVDD_LDO has a low-power mode, which is used automatically by the PN736X  
when the chip is in standby mode or suspend mode. It facilitates supply to HOST pads  
and GPIOS, and to detect wake-up signals coming from these interfaces.  
Following are the PVDD_LDO features:  
Low-Drop-Out voltage regulator powered by VDDP(VBUS) (external supply)  
Supports soft-start mode to limit inrush current during the initial charge of the external  
capacitance when the LDO is powered up  
Current limiter to avoid damaging the output transistors  
Note: When PVDD_LDO is used, there must not be any load current drawn from  
PVDD_LDO during the soft start of the PVDD_LDO.  
8.15.2.3 TXLDO  
The PN736X consists of an internal transmitter supply LDO. The TXLDO can be used to  
maintain a constant output voltage for the RF interface.  
The TXLDO is designed to protect the chip from voltage ripple introduced by the power  
supply on the pin VUP_TX. It is powered through the pin VUP_TX.  
The programmable output voltages are: 3.0 V, 3.3 V, 3.6 V, 4.5 V, and 4.75 V.  
For a given output voltage, VUP_TX shall always be higher than 0.3 V. In other words, to  
supply a 3 V output, the minimum voltage to be applied on VUP_TX is 3.3 V. If the voltage  
is not sufficient, then the voltage at the pin TVDD_OUT follows the voltage at the pin  
VUP_TX, lowered of 0.3 V.  
When it is not used, TVDD_OUT shall be connected to TVDD_IN, and TX_LDO shall be  
turned off.  
Following are the TXLDO features:  
Low-Drop-Out (TXLDO) voltage regulator  
Current load up to 180 mA  
Supports soft-start mode to limit inrush current during the initial charge of the external  
capacitance  
Current limiter to avoid damaging the output transistors  
8.15.3 Power modes  
The PN736X offers four different power modes, that enable the user to optimize its energy  
consumption. They are:  
Hard power-down mode  
Standby mode  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
36 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
USB suspend mode  
Active mode  
8.15.3.1 Active mode  
In active mode, all functionalities are available and all IPs can be accessed. It is possible  
to configure the various clocks (IP clock, system clock) using register settings so that chip  
consumption is reduced. If IPs are not used, they can be disabled.  
8.15.3.2 Standby mode  
In standby mode, only a reduced part of the digital and the analog is active. It reduces the  
chip power consumption. The possible wake-up sources are still powered.  
The LFO clock is used to lower the energy needs.  
Active part in standby mode: Main LDO is active, in a low-power mode, plus all  
configured wake-up sources.  
Depending on the application requirements, it is possible to configure PVDD_LDO in  
active mode, low-power mode or shut down mode when PN736X is going to standby  
mode. PVDD_LDO is active in a low-power mode by default.  
Entering in standby mode: The application code triggers standby mode.  
The PN736X has two internal temperature sensors. If these sensors detect an overheat,  
the PN736X is put into standby mode by the application firmware. The chip leaves the  
standby mode when both temperature sensors indicate that the temperature has come  
below the configured limit.  
Limitations: Standby mode is not possible in the following cases:  
A host communication is in progress  
A wake-up condition is fulfilled. For example, external RF field presence is a wake-up  
source, and PN736X detects a field  
The RF field detector is a possible wake-up source, and the RF field detector is  
disabled  
PVDD is not present  
8.15.3.3 Suspend mode  
In suspend mode, clock sources are stopped except LFO. It reduces the chip power  
consumption.  
Entering in suspend mode: An interrupt indicates to the application firmware when no  
activity has been detected on the USB port for more that 3 ms. The application code  
triggers the suspend mode.  
Limitations: Suspend mode is prevented in the following cases:  
A host communication is in progress  
A wake-up condition is fulfilled. For example, external RF field presence is a wake-up  
source, and PN736X detects a field  
The RF field detector is a possible wake-up source, and the RF field detector is  
disabled  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
37 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
No voltage at pin PVDD  
8.15.3.4 Wake-up from standby mode and suspend mode  
PN736X can be woken-up from standby mode, and suspend mode, using the following  
means:  
Host Interface: SPI, HSUART, I2C, and USB if already selected before standby mode  
(SPI, HSUART, and I2C) or suspend mode (USB).  
RF field detection (presence of a reader or an NFC device in reader mode or P2P  
initiator)  
GPIO  
Interrupt generated on the auxiliary UART interface, through the interrupt pin  
Wake-up counter, for example to timely check for the presence of any contactless  
card  
Current overconsumption on the PVDD_OUT, voltage above 5 V on TVDD_IN  
Temperature sensor: When the PN736X goes in to standby mode because of  
over-heating, and when the temperature goes below the sensor configured value,  
PN736X wakes-up automatically. Each temperature sensor can be configured  
separately.  
It is possible to configure the sources as enabled or disabled.  
8.15.3.5 Hard Power-Down (HPD) mode  
The PN736X Hard Power-Down (HPD), reduces the chip power consumption, by  
powering down most of the chip blocks. All clocks and LDOs are turned off, except the  
main LDO which is set in low-power mode.  
Entering in HPD mode: If the RST_N pin is set to low, the PN736X enters in to Hard  
Power Down (HPD) mode. It also enters in to HPD mode if the VDDP(VBUS) goes below the  
critical voltage necessary for the chip to work (2.3 V) and the auto HPD feature is enabled.  
Exiting the HPD mode: The PN736X leaves the HPD mode, when both RST_N pin is set  
to high level and the VDDP(VBUS) voltage is above 2.3 V.  
8.15.4 Voltage monitoring  
The voltage monitoring mode detects whether the voltage is within the operational  
conditions to enable a proper operation of the RF interface. The following power supplies  
are monitored: VBUS (two voltage monitors), VBUS_P (one voltage monitor).  
Section 9.1.2 discusses about the minimum voltages necessary for contactless interface  
operation.  
Table 20. Threshold configuration for voltage monitor  
Voltage monitor  
VBUSMON1  
VBUSMON2  
VBUSP  
Threshold 1  
2.3 V  
Threshold 2  
2.7 V  
Threshold 3  
n.a.[1]  
n.a.[1]  
2.7 V  
4.0 V  
2.7 V  
3.0 V  
3.9 V  
[1] n.a. means not applicable.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
38 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
8.15.4.1 VBUS monitor  
The PN736X includes up to two levels (2.3 V or 2.7 V) for monitoring the voltage on the  
VBUS pin. If this voltage falls below one of the selected levels, the BOD asserts an  
interrupt signal to the PCR. This signal may be enabled for interrupt in the interrupt enable  
register in the PCR, to cause a CPU interrupt. Alternatively, software can monitor the  
signal by reading a dedicated status register. Two threshold levels (2.3 V or 2.7 V) can be  
selected to cause a forced Hard Power-Down (HPD) of chip.  
8.15.4.2 VBUSP monitor  
The PN736X includes three levels (2.7 V, 3.0 V, and 3.9 V) for monitoring the voltage on  
the VBUSP pin.  
8.15.4.3 PVDD LDO supply monitor  
The PN736X includes up to two levels (VBUSMON2: 2.7 V or 4.0 V) for monitoring the  
voltage on the PVDD LDO input supply. If supply voltage is 4.0 V or above, PVDD LDO  
can be enabled. The software has to check whether the voltage is sufficient before  
enabling the LDO.  
8.15.5 Temperature sensor  
The PN736X power management unit provides temperature sensors, associated to the  
TX_LDO. It detects problems that would result in high power consumption and heating,  
which could damage the chip and the user device.  
Triggering levels are configurable. Following temperatures can be chosen: 135 C,  
130 C, 125 C, and 120 C. By default, the temperature sensor is set to 120 C.  
When one of the temperature sensors detects an increase in temperature above the  
configured level, an interrupt is generated. The application can then decide to go into  
standby or suspend mode. The PN registers indicate which temperature sensor  
generated the interrupt.  
When the temperature goes below the configured threshold temperature, PN736X wakes  
up automatically.  
8.16 System control  
8.16.1 Reset  
PN736X has six possible sources for reset. The list of sources is described in Table 21.  
Table 21. Reset sources  
Source  
Description  
software - PCR  
software - ARM  
I2C interface  
watchdog  
soft reset from the PCR peripheral  
software reset form the ARM processor  
I2C Standard 3.0 defines a method to reset the chip via an I2C command[1]  
reset the chip if the watchdog threshold is not periodically reloaded  
power-on reset sequence; if the voltage is above 2.3 V, reset the chip  
VBUS voltage  
[1] This feature can be disabled.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
39 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
The watchdog reset, I2C reset and soft resets from PCR and ARM processor resets the  
chip except the PCR and the ARM debug interface. The Power-On Reset (POR) resets  
the complete chip including the PCR and ARM debug interface.  
Upon reset, the processor executes the first instruction at address 0, which is initially the  
reset vector mapped from the boot block. At that point, all the processor and peripheral  
registers are initialized to predetermined values.  
8.16.2 Brown-Out Detection (BOD)  
The PN736X includes up to two levels for monitoring the voltage on the VBUS pin. If this  
voltage falls below one of the selected voltages (2.3 V or 2.7 V), the BOD asserts an  
interrupt signal to the PCR. This signal can be enabled for interrupt in the interrupt enable  
register in the PCR, to cause a CPU interrupt. Alternatively, software can monitor the  
signal by reading a dedicated status register. Two threshold levels (2.3 V and 2.7 V) can  
be selected to cause a forced Hard Power-Down (HPD) of the chip.  
8.16.3 APB interface and AHB-Lite  
All APB peripherals are connected to one APB bus.  
The AHB-Lite connects the AHB masters. The AHB masters include the CPU bus of the  
ARM Cortex-M0, host interface, contactless interface, SPI interface to the flash memory. It  
also includes EEPROM memory, SRAM, ROM, and AHB to APB bridge.  
8.16.4 External interrupts  
PN736X enables the use of 12 GPIOs as edge or level sensitive inputs (GPIO1 to  
GPIO12).  
8.17 SWD debug interface  
The Cortex-M0 processor-based devices use serial wire ARM CoreSightTM Debug  
technology. The PN736X is configured to support four break points and two watch points.  
The SWD interface can be disabled for having code (or data) read/write access  
protection. A dedicated SWD disable bit is available in the protected area of the EEPROM  
memory. Once the SWD interface is disabled, it is not possible to enable it anymore.  
8.17.1 SWD interface features  
Run control of the processor allowing to start and stop programs  
Single step one source or assembler line  
Set breakpoints while the processor is running  
Read/write memory contents and peripheral registers on-the-fly  
“Printf” like debug messages through the SWD interface  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
40 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
9. Application design-in information  
9.1 Power supply connection  
The following table indicates the power sources for all the PN736X power inputs.  
Table 22. Power supply connection  
Power inputs Power sources  
Comment  
VBUS  
external source  
chosen according to the expected performances  
(RF power when TX_LDO is used, global power  
consumption)  
VBUSP  
external source; connected to  
VBUS  
VBUSP is connected to VBUS, with the addition  
of a decoupling capacitor  
TVDD_IN  
PVDD_IN  
external supply or using the  
TX_LDO  
external supply can be used (up to 5.5 V) to  
increase RF power  
external supply or using  
PVDD_LDO  
PVDD_LDO can be used, when VDDP(VBUS) >  
4 V. It makes a regulated 3.3 V supply available  
to GPIO and host interface pads, without the  
addition of an external LDO  
for 1.8 V, external supply is used  
PVDD_M_IN external supply or using  
PVDD_LDO  
PVDD_LDO can be used, when VDDP(VBUS) >  
4 V. It makes a regulated 3.3 V supply available  
to GPIO and host interface pads, without the  
addition of an external LDO  
external supply is used for 1.8 V  
DVDD  
connected to the VDD output  
VDD provides 1.8 V stabilized supply, out of the  
MAIN_LDO  
[1] When external supply and PVDD_OUT are not used, PVDD_OUT must be connected to the ground, with a  
ground resistance of less than 10 .  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
41 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
9.1.1 Powering up the microcontroller  
ꢏꢃꢐ  
9%86  
9
''3ꢏ9%86ꢐ  
''3ꢏ9%86ꢐ  
*1'  
9%863  
,
ꢃꢁ—)  
7966  
*1'&  
*1'3  
31ꢀꢅꢂꢄ$8  
9''  
'9''  
ꢃꢁ—)  
ꢏꢄꢐ  
ꢏꢊꢐ  
9%86  
9%86  
9
9
''3ꢏ9%86ꢐ  
''3ꢏ9%86ꢐ  
,
''3ꢏ9%86ꢐ  
9%863  
9%863  
,
''3ꢏ9%86ꢐ  
ꢃꢁ—)  
ꢃꢁ—)  
39''B287  
39''B287  
31ꢀꢅꢂꢄ$8  
31ꢀꢅꢂꢄ$8  
39''B,1  
39''B,1  
ꢃꢁ—)  
H[WHUQDOꢁVXSSO\  
39''B0B,1  
39''B0B,1  
ꢃꢁ—)  
DDDꢀꢁꢂꢃꢄꢉꢁ  
(1) Powering up the microcontroller and the digital blocks (DVDD).  
(2) Two possibilities for powering the pad interfaces (PVDD_IN and PVDD_M_IN).  
Remark: The capacitance must be chosen so that the capacitance value is correct at 5 V  
Fig 23. Powering up the PN736X microcontroller  
The schematics in Figure 23 describe the power supply of the chip (VDDP(VBUS)), including  
the digital blocks supply (DVDD). It indicates two possibilities to supply the pads, using the  
internal LDO, or using an external supply. The internal LDO requires that VDDP(VBUS) > 4  
V. It avoids the requirement of a separate LDO when VDDP(VBUS) has a sufficient voltage.  
Power supply is available to pads through PVDD_IN (host interface). Similarly, power  
supply is available to master interface pads through PVDD_M_IN. When PVVD _LDO is  
used, maximum total current available from PVDD_OUT for the pads supply is 30 mA.  
When an external source is used for PVDD_IN and PVDD_M_IN, PVDD_OUT must be  
connected to the ground, with a ground resistance of less than 10 .  
9.1.2 Powering up the contactless interface  
Powering of contactless interface is done though TVDD_IN. Internal LDO (TXLDO) or  
external supply can be used.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
42 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
ꢏꢃꢐ  
ꢏꢄꢐ  
9%86  
9%86  
31ꢀꢅꢂꢄ$8  
31ꢀꢅꢂꢄ$8  
VXSSO\  
VXSSO\  
ꢅꢋꢂꢁQ)  
ꢅꢋꢂꢁQ)  
7;ꢄ  
7;ꢄ  
DQWHQQD  
VXSSO\  
DQWHQQD  
VXSSO\  
983B7;  
983B7;  
7;ꢃ  
7;ꢃ  
31ꢀꢅꢂꢄ$8  
31ꢀꢅꢂꢄ$8  
79''B287  
79''B,1  
79''B287  
79''B,1  
7966  
7966  
ꢆꢌꢈꢁ—)  
ꢆꢌꢈꢁ—)  
DDDꢀꢁꢂꢆꢆꢊꢉ  
The capacitance value must be chosen so that the capacitance value is correct at 5 V.  
(1) Using TXLDO  
(2) Without using TXLDO  
Fig 24. Powering up the contactless interface using a single power supply  
ꢏꢃꢐ  
ꢏꢄꢐ  
9%86  
9%86  
31ꢀꢅꢂꢄ$8  
31ꢀꢅꢂꢄ$8  
VXSSO\  
VXSSO\  
ꢅꢋꢂꢁQ)  
ꢅꢋꢂꢁQ)  
7;ꢄ  
7;ꢄ  
DQWHQQD  
VXSSO\  
DQWHQQD  
VXSSO\  
983B7;  
983B7;  
7;ꢃ  
7;ꢃ  
31ꢀꢅꢂꢄ$8ꢁ5)  
WUDQVPLWWHUꢁVXSSO\  
31ꢀꢅꢂꢄ$8  
31ꢀꢅꢂꢄ$8  
ꢃꢁ—)  
79''B287  
79''B,1  
79''B287  
79''B,1  
7966  
7966  
31ꢀꢅꢂꢄ$8ꢁ5)  
WUDQVPLWWHUꢁVXSSO\  
ꢆꢌꢈꢁ—)  
ꢆꢌꢈꢁ—)  
DDDꢀꢁꢂꢆꢆꢊꢊ  
The capacitance value must be chosen so that the capacitance value is correct at 5 V.  
(1) Using TXLDO.  
(2) Without using TXLDO.  
Fig 25. Powering up the contactless interface using an external RF transmitter supply  
Note: The TVDD_OUT pin must not be left floating. It should be at the same voltage as  
the TVDD_IN pin.  
The power design must be designed properly to be able to deliver a clean power supply  
voltage.  
In any case (external TVDD or internal TX_LDO internal supply), TVDD_IN supply must  
be stable before turning on the RF field. The capacitor shall be 6.8 F or higher  
(up to 10 F)  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
43 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Every noise level on top of the supply voltage can disturb the RF communication  
performance of the PN736X. Therefore, special attention must be paid to the filtering  
circuit.  
When powering up the device through the USB interface, TVDD capacitor value shall be  
chosen so that the maximum capacitance on VBUS remains as per the USB specification.  
9.2 Connecting the USB interface  
ꢏꢃꢐ  
&Sꢁ ꢁꢃꢂꢁQ)  
86%  
FRQQHFWRU  
5Vꢁ ꢁꢃꢁNȍ  
86%B9%86  
86%B'3  
31ꢀꢅꢂꢄ$8  
86%B'0  
DDDꢀꢁꢂꢆꢆꢊꢈ  
(1) Cp is optional.  
Fig 26. USB interface on a bus-powered device  
When the USB interface is not used, the USB_VBUS pin shall be connected to the  
ground.  
9.3 Connecting the RF interface  
&DQW  
$17ꢃ  
&ꢊ ꢃꢁQ)  
5;ꢃ  
5
&ꢃ  
/
7;ꢃ  
DQWHQQD  
DQWHQQD  
&ꢂ  
&ꢂ  
&ꢄ  
&ꢄ  
7966  
7;ꢄ  
31ꢀꢅꢂꢄ$8  
/
&ꢃ  
5
&ꢊ ꢃꢁQ)  
5;ꢄ  
&DQW  
$17ꢄ  
90,'  
& ꢃꢂꢂꢁQ)  
DDDꢀꢁꢂꢃꢁ  
Fig 27. RF interface - example of connection to an antenna  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
44 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
9.4 Unconnected I/Os  
When not used, the following pins need to be “not connected”:  
I2C Master interface: I2CM_SDA, I2CM_SCL  
SPI Master interface: SPIM_SSN, SPIM_SCLK, SPIM_MOSI, SPIM_MISO  
AUX interface: INT_AUX, IO_AUX, CLK_AUX  
Pads have to be configured in GPIO mode, pad input and out put driver need to be  
disabled.  
10. Limiting values  
Table 23. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VESD  
electrostatic discharge voltage  
Human Body Model (HBM)  
[1]  
[1]  
on all pins  
2  
+2  
kV  
Charged Device Model (CDM)  
on all pins  
1  
+1  
kV  
Tstg  
storage temperature  
non-operating  
55  
+150  
+125  
1050  
C  
Tj(max)  
Ptot  
maximum junction temperature  
total power dissipation  
-
-
C  
reader mode; VDDP(VBUS) = 5.5 V  
mW  
[1] EIA/JESD22-A114-D.  
Table 24. Limiting values for GPIO1 to GPIO12  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vi  
input voltage  
0.3  
4.2  
V
Table 25. Limiting values for I2C master pins (i2cm_sda, i2cm_scl)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vi  
input voltage  
0.3  
4.2  
V
Table 26. Limiting values for SPI master pins ( spim_nss, spim_miso, spim_mosi and spi_clk)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vi  
input voltage  
0.3  
4.2  
V
Table 27. Limiting values for host interfaces atx_a, atx_b, atx_c, atx_d in all configurations (USB, HSUART, SPI and  
I2C)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vi  
input voltage  
0.3  
4.2  
V
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
45 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 28. Limiting values for crystal oscillator  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIH  
high-level input voltage  
XTAL1, XTAL2  
0
2.2  
V
Table 29. Limiting values for power supply  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter Conditions  
Min  
0.3  
0.3  
Max  
6
Unit  
V
[1]  
[1]  
VDDP(VBUS) power supply voltage on pin VBUS  
VDDP(VBUSP) power supply voltage on pin VBUSP  
6
V
pin supply voltage for host interface and GPIOs (on pin PVDD_IN)  
[1]  
[1]  
VDD(PVDD)  
PVDD supply voltage  
on pin PVDD_IN; power supply  
for host interfaces and GPIOs  
0.3  
0.3  
4.2  
4.2  
V
V
pin supply voltage for master interfaces (on pin PVDD_M_IN)  
VDD(PVDD)  
PVDD supply voltage  
on pin PVDD_M_IN; power  
supply for master interfaces  
RF interface LDO (pin VUP_TX)  
VI(LDO) LDO input voltage  
RF transmitter (pin TVDD_IN)  
VDD(TVDD) TVDD supply voltage  
[1]  
[1]  
for RF interface LDO  
0.3  
0.3  
6
6
V
V
for RF interface transmitter  
[1] Maximum/minimum voltage above the maximum operating range and below ground that can be applied for a short time (< 10 ms) to a  
device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter life time of the device.  
Table 30. Limiting values for RF interface  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vi  
input voltage  
on pins RXN and RXP  
0
2.2  
V
[1] Maximum/minimum voltage above the maximum operating range and below ground that can be applied for a short time (< 10 ms) to a  
device without leading to irrecoverable failure. Failure includes the loss of reliability and shorter life time of the device.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
46 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
11. Recommended operating conditions  
Table 31. Operating conditions  
Symbol  
Tamb  
Parameter  
Conditions  
Min  
40  
2.3  
Typ  
25  
-
Max Unit  
ambient temperature  
JDEC PCB0.5  
85  
C  
VDDP(VBUS)  
power supply voltage on pin VBUS external PVDD supply, card  
5.5  
V
emulation and passive target  
(PLM)  
external PVDD supply, reader  
mode, NFC initiator and  
passive/active target mode (ALM  
and PLM)  
2.7  
4
-
-
5.5  
5.5  
V
V
internal PVDD_LDO supply,  
reader mode, NFC initiator and  
passive/active target mode (ALM  
and PLM)  
host interface and GPIOs pin power supply (pin PVDD_IN)  
VDD(PVDD)  
PVDD supply voltage  
for digital pins  
1.8 V pin supply  
1.65 1.8  
3.3  
1.95  
3.6  
V
V
3.3 V pin supply  
3
SPI master and I2C master interfaces pin power supply (on pin PVDD_M_IN)  
VDD(PVDD)  
PVDD supply voltage  
for master pins  
1.8 V pin supply  
3.3 V pin supply  
1.65 1.8  
1.95  
3.6  
V
V
3
3.3  
RF interface LDO (pin VUP_TX)  
VI(LDO) LDO input voltage  
TX_LDO supply for powering up  
RF interface  
3
5
5.5  
V
RF interface transmitter  
IDD(TVDD)  
TVDD supply current  
on pin TVDD_IN  
-
-
250  
mA  
12. Thermal characteristics  
Table 32. Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
40  
Unit  
K/W  
Rth(j-a)  
thermal resistance from junction to in free air with exposed pad soldered on a  
ambient  
four-layer JEDEC PCB  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
47 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
13. Characteristics  
13.1 Static characteristics  
Table 33. Static characteristics for RST_N input pin  
Data are given for Tamb = 40 C to +85 C; unless otherwise specified  
Symbol  
VIH  
Parameter  
Conditions  
Min  
1.1  
0
Typ  
Max  
Unit  
V
high-level input voltage  
low-level input voltage  
-
VDDP(VBUS)  
VIL  
-
0.4  
V
IIH  
high-level input current Vi = VDDP(VBUS)  
low-level input current Vi = 0 V  
input capacitance  
-
-
1
-
A  
A  
pF  
IIL  
1  
-
-
Cin  
5
-
Table 34. Static characteristics for IRQ input pin  
Data are given for Tamb = 40 C to +85 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
high-level output  
voltage  
IOH < 3 mA  
VPVDD_IN  
0.4  
-
VPVDD_IN  
V
VOL  
low-level output  
voltage  
IOL < 3 mA  
0
-
0.4  
V
CL  
load capacitance  
extra pull down  
-
-
-
20  
pF  
Rpull-down  
extra pull-down is  
activated in HDP  
0.45  
0.8  
M  
Table 35. Static characteristics for DWL_REQ  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIH  
high-level input voltage VVPVDD_IN= 1.8 V  
0.65   
-
-
V
VPVDD_IN  
VIL  
high-level input voltage VVPVDD_IN= 1.8 V  
-
-
0.35   
V
VPVDD_IN  
VIH  
VIL  
IIH  
high-level input voltage VVPVDD_IN = 3.3 V  
high-level input voltage VVPVDD_IN = 3.3 V  
high-level input current VI = PVDD_IN  
low-level input current VI = 0 V  
load capacitance  
2
-
-
-
V
-
0.8  
V
-
-
1
-
A  
A  
pF  
IIL  
1  
-
-
CL  
5
-
13.1.1 GPIO static characteristics  
Table 36. Static characteristics for GPIO1 to GPIO21  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
high-level output  
voltage  
IOH < 3 mA  
VPVDD_IN  
0.4  
-
VPVDD_IN  
V
VOL  
VIH  
low-level output  
voltage  
IOH < 3 mA  
0
2
-
0.4  
V
high-level input voltage VPVDD_IN = 3.3 V  
VPVDD_IN = 1.8 V  
-
-
-
-
V
V
0.65   
VPVDD_IN  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
48 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 36. Static characteristics for GPIO1 to GPIO21 …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
VIL  
low-level input voltage VPVDD_IN = 3.3 V  
VPVDD_IN = 1.8 V  
-
-
-
-
0.8  
0.35   
V
VPVDD_IN  
Vhys  
IOZ  
hysteresis voltage  
VPVDD_IN = 1.8 V and  
VPVDD_IN = 3.3 V  
0.1   
VPVDD_IN  
-
-
-
V
OFF-state output  
current  
VO = 0 V;  
-
1000  
nA  
VO = VPVDD_IN;on-chip  
pull-up/pull-down  
resistors disabled  
Rpd  
Rpu  
IOSH  
pull-down resistance  
pull-up resistance  
VPVDD_IN = 3.3 V  
VPVDD_IN = 1.8 V  
VPVDD_IN = 3.3 V  
VPVDD_IN = 1.8 V  
65  
65  
65  
65  
-
90  
90  
90  
90  
-
120  
120  
120  
120  
58  
k  
k  
k  
k  
mA  
short circuit current  
output high  
Drive high; cell  
connected to ground;  
VPVDD_IN = 3.3 V  
Drive low; cell  
connected to  
PVDD_IN;  
-
-
30  
mA  
VPVDD_IN = 1.8 V  
IOSL  
short circuit current  
output low  
VOH = VPVDD_IN = 3.3  
V
-
-
-
-
54  
37  
mA  
mA  
VOH = VPVDD_IN = 1.8  
V
IIL  
low-level input current VI = 0 V  
1  
-
-
-
-
-
µA  
µA  
mA  
IIH  
IOH  
high-level input current VI = VPVDD_IN  
1
3
high-level output  
current  
VOH = VPVDD_IN  
-
IOL  
low-level output  
current  
VOL = 0 V  
-
-
3
mA  
13.1.2 Static characteristics for I2C master  
Table 37. Static characteristics for I2CM_SDA, I2CM_SCL - S  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
high-level output  
voltage  
IOH < 3 mA  
0.7   
VPVDD_M_IN  
-
VPVDD_M_IN  
V
VOL  
low-level output  
voltage  
IOL < 3 mA  
0
-
0.4  
V
CL  
load capacitance  
-
-
-
10  
-
pF  
V
VIH  
High-level input  
voltage  
0.7   
VPVDD_M_IN  
VIL  
low-level input voltage  
-
-
0.3   
V
VPVDD_M_IN  
IIH  
IIL  
high-level input current VI = VPVDD_M_IN  
low-level input current VI = 0 V  
input capacitance  
-
-
1
-
A  
A  
pF  
1  
-
-
Cin  
5
-
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
49 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
13.1.3 Static characteristics for SPI master  
Table 38. Static characteristics for SPIM_MOSI  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level output voltage IOH < 3 mA  
VPVDD_M_IN0.4  
-
-
-
VPVDD_M_IN  
VOL  
low-level output voltage  
load Capacitance  
IOL< 3 mA  
0
-
0.4  
20  
V
CL  
pF  
Table 39. Static characteristics for SPIM_NSS  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level output voltage IOH < 3 mA  
VPVDD_M_IN 0.4  
-
-
-
VPVDD_M_IN  
VOL  
low-level output voltage  
load Capacitance  
IOL < 3 mA  
0
-
0.4  
20  
V
CL  
pF  
Table 40. Static characteristics for SPIM_MISO  
Symbol  
VIH  
VIL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level input voltage  
low-level input voltage  
high-level input voltage  
low-level input voltage  
high-level input current  
low-level input current  
input capacitance  
VPVDD_M_IN = 1.8 V  
VPVDD_M_IN = 1.8 V  
VPVDD_M_IN = 3.3 V  
VPVDD_M_IN = 3.3 V  
Vi = VPVDD_M_IN  
Vi = 0 V  
0.65 VPVDD_M_IN  
-
-
-
-
-
-
5
-
-
0.35 VPVDD_M_IN  
V
VIH  
VIL  
2
-
-
V
0.8  
V
IIH  
-
1
-
µA  
µA  
pF  
IIL  
1  
-
Cin  
-
Table 41. Static characteristics for SPI_SCLK  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level output voltage IOH < 3 mA  
VPVDD_M_IN 0.4  
-
-
-
VPVDD_M_IN  
VOL  
low-level output voltage  
load capacitance  
IOL < 3 mA  
0
-
0.4  
20  
V
CL  
pF  
13.1.4 Static characteristics for host interface  
Table 42. Static characteristics for ATX_ used as SPI_NSS, ATX_ used as I2CADR0, ATX_ used as SPI_SCK, ATX_  
used as SPI_MOSI  
Symbol  
VIH  
VIL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level input voltage  
low-level input voltage  
high-level input voltage  
low-level input voltage  
high-level input current  
low-level input current  
input capacitance  
VPVDD_IN = 1.8 V  
VPVDD_IN = 1.8 V  
VPVDD_IN = 3.3 V  
VPVDD_IN = 3.3 V  
Vi = VPVDD_IN  
Vi = 0 V  
0.65 VPVDD_M_IN  
-
-
-
-
-
-
5
-
-
0.35 VPVDD_M_IN  
V
VIH  
VIL  
2
-
-
V
0.8  
V
IIH  
-
1
-
µA  
µA  
pF  
IIL  
1  
-
Cin  
-
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
50 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 43. Static characteristics of ATX_ used as I2CSDA, ATX_ used as I2CSCL  
Symbol  
VOH  
VOL  
CL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level output voltage IOH < 3 mA  
0.7 VPVDD_IN  
-
-
-
-
-
-
-
5
VPVDD_IN  
low-level output voltage  
load capacitance  
IOL < 3 mA  
0
0.4  
V
-
10  
pF  
V
VIH  
high-level input voltage  
low-level input voltage  
high-level input current  
low-level input current  
Input capacitance  
0.7 VPVDD_IN  
-
VIL  
-
0.3 VPVDD_IN  
V
IIH  
Vi = VPVDD_IN  
Vi = 0 V  
-
1
-
A  
A  
pF  
IIL  
1  
-
Cin  
-
Table 44. Static characteristics of ATX_ used as SPIMISO  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
VPVDD_IN  
0.4  
Unit  
V
high-level output voltage IOH < 3 mA  
low-level output voltage IOL < 3 mA  
load capacitance  
VPVDD_IN 0.4  
-
-
-
VOL  
0
-
V
CL  
20  
pF  
Table 45. USB characteristics  
Data are given for Tamb = 40 C to +85 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
10  
4
Typ  
Max  
10  
Unit  
A  
V
IOZ  
OFF-state output current 0 V < Vi < 3.3 V  
-
-
VDDP(VBUS) power supply voltage on  
pin VBUS  
5.5  
VDI  
differential input  
sensitivity voltage  
(D+) (D)  
0.2  
0.8  
0.8  
-
-
-
-
V
V
V
VCM  
differential common  
mode voltage range  
includes VDI range  
2.5  
2
Vth(rs)se  
single-ended receiver  
switching threshold  
voltage  
VOL  
low-level output voltage for low-speed or  
full-speed; RL of 1.5  
-
-
-
0.3  
V
V
kto 3.6 V  
VOH  
high-level output voltage driven; for low- speed  
or full-speed;  
2.8  
VPVDD_IN  
RL of 15 kto GND  
transceiver capacitance pin to GND  
Ctrans  
ZDRV  
-
15  
-
pF  
driver output impedance with 33 series  
28  
44  
2
for driver which is not  
resistor; steady state  
high-speed capable  
drive  
VCRS  
output signal crossover  
voltage  
1.3  
-
V
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
51 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 46. Static characteristics of HSU_TX and HSU RTS pin  
Data are given for Tamb = 40 C to +85 C; unless otherwise specified  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
VPVDD_IN  
0.4  
Unit  
V
high-level output voltage IOH < 3 mA  
low-level output voltage IOL < 3 mA  
load capacitance  
VPVDD_IN 0.4  
-
-
-
VOL  
0
-
V
CL  
20  
pF  
Table 47. Static characteristics of HSU_RX, HSU_CTS  
Data are given for Tamb = 40 C to +85 C; unless otherwise specified  
Symbol  
VIH  
VIL  
Parameter  
high-level input voltage VPVDD_M_IN = 1.8 V  
low-level input voltage VPVDD_M_IN = 1.8 V  
high-level input voltage VPVDD_M_IN = 3.3 V  
Conditions  
Min  
Typ  
Max  
Unit  
V
0.65 VPVDD_IN  
-
-
-
-
-
-
5
-
-
0.35 VPVDD_IN  
V
VIH  
VIL  
2
-
-
V
low-level input voltage  
high-level input current  
low-level input current  
load capacitance  
VPVDD_M_IN = 3.3 V  
0.8  
V
IIH  
-
1
-
A  
A  
pF  
IIL  
1  
-
CL  
-
13.1.5 Clock static characteristics  
Table 48. Static characteristics of XTAL pin (XTAL1, XTAL2)  
Tamb = 40 C to +85C  
Symbol  
Parameter[1]  
Conditions  
Min  
Typ[2] Max  
Unit  
Input clock characteristics on XTAL1 when using PLL  
Vi(p-p)  
peak-to-peak input  
voltage  
0.2  
-
1.65  
V
XTAL pin characteristics XTAL PLL input  
IIH  
high-level input current  
low-level input current  
input voltage  
Vi = VDD  
Vi = 0 V  
-
-
1
A  
A  
V
IIL  
1  
-
-
Vi  
-
-
VDD  
VAL  
Cin  
input voltage amplitude  
input capacitance  
200  
-
-
-
-
mV  
pF  
all power modes  
2
Pin characteristics for 27.12 MHz crystal oscillator  
Cin  
Cin  
input capacitance  
input capacitance  
pin XTAL1  
pin XTAL2  
-
-
2
2
-
-
pF  
pF  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C) with nominal supply voltages.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
52 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
13.1.6 Static characteristics - power supply  
Table 49. Static characteristics for power supply  
Data are given for Tamb = 40 C to +85 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
pin supply: PVDD_LDO  
VO(LDO)  
LDO output voltage  
VDDP(VBUS) >= 4.0 V, IPVDDOUT  
<= 30 mA  
3
-
3.3  
-
3.6  
30  
V
IDD(PVDD_OUT) maximum supply  
current  
for pin PVDD_OUT  
mA  
pin supply for host interface and GPIOs (on pin PVDD_IN)  
IDD(PVDD) PVDD supply current  
pin supply for master interfaces (on pin PVDD_M_IN)  
IDD(PVDD) PVDD supply current  
contactless interface: TX_LDO (pins VUP_TX, TVDD_OUT)  
-
-
-
-
25  
25  
mA  
mA  
VI(LDO)  
LDO input voltage  
3
-
-
-
5.5  
V
IL(LDO)(max)  
maximum LDO load  
current  
180  
mA  
VO(LDO)  
LDO output voltage  
DC output voltage (target: 3.0 V)  
5.5 V > VI(LDO) > 3.3 V  
2.8  
-
3
3.25  
-
V
DC output voltage (target: 3.0 V)  
3.3 V > VI(LDO) > 2.7 V  
VI(LDO)  
0.3  
V
DC output voltage (target: 3.3 V)  
5.5 V > VI(LDO) > 3.6 V  
3.1  
-
3.3  
3.55  
-
V
DC output voltage (target: 3.3 V)  
3.6 V > VI(LDO) > 2.7 V  
VI(LDO)  
0.3  
V
DC output voltage (target: 3.6 V)  
5.5 V > VI(LDO) > 3.9 V  
3.4  
-
3.6  
3.95  
-
V
DC output voltage (target: 3.6 V)  
3.9 V > VI(LDO) > 2.7 V  
VI(LDO)  
0.3  
V
DC output voltage (target: 4.5 V)  
5.5 V > VI(LDO) > 5.0 V  
4.3  
4.55  
-
4.5  
4.75  
-
4.9  
5.2  
180  
V
DC output voltage (target: 4.7 V)  
5.5 V > VI(LDO) > 5.0 V  
V
IO(LDO)  
LDO output current  
VI(LDO) = 5.5 V  
mA  
Contactless interface: RF transmitter (on pin TVDD_IN)  
IDD(TVDD)  
TVDD supply current  
maximum current supported by  
the RF transmitter  
-
-
250  
mA  
Table 50. Static characteristics for voltage monitors  
Tamb = 40 C to +85 C  
Symbol  
Parameter  
Conditions  
VBUS monitor;  
set to 2.3 V  
set to 2.7 V  
set to 4.0 V  
Min  
Typ  
Max  
Unit  
V(th)HL  
negative-going  
threshold voltage  
2.15  
2.6  
2.3  
2.45  
2.95  
3.9  
V
V
V
2.75  
3.8  
3.6  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
53 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 50. Static characteristics for voltage monitors  
Tamb = 40 C to +85 C  
Symbol  
Parameter  
Conditions  
VBUS monitor  
set to 2.3 V  
set to 2.7 V  
set to 4.0 V  
VBUSP monitor  
set to 2.7 V  
set to 3.0 V  
set to 3.9 V  
VBUSP monitor  
set to 2.7 V  
set to 3.0 V  
set to 3.9 V  
Min  
Typ  
Max  
Unit  
Vhys  
hysteresis voltage  
100  
100  
40  
150  
150  
80  
200  
200  
100  
mV  
mV  
mV  
V(th)HL  
negative-going  
threshold voltage  
2.45  
2.68  
3.7  
2.56  
2.825  
3.9  
2.65  
2.95  
4.1  
V
V
V
Vhys  
hysteresis voltage  
12  
14  
20  
25  
30  
35  
35  
40  
55  
mV  
mV  
mV  
13.1.7 Static characteristics for power modes  
Table 51. Static characteristics for power modes  
Tamb = 40 C to +85 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IDDP(VBUS) power supply current on  
pin VBUS  
active mode; VDDP(VBUS) = 5.5 V,  
external PVDD, external TVDD, all  
IP clocks disabled  
-
6.5  
-
mA  
code  
while(1){}  
executed from flash;  
active mode; VDDP(VBUS) = 5.5 V,  
external PVDD, external TVDD, all  
IP clocks enabled  
-
8.5  
-
mA  
code  
while(1){}  
executed from flash;  
suspend mode; VDDP(VBUS) = 5.5 V,  
external PVDD, T = 25 C  
-
-
120  
360  
250  
440  
A  
VBUS = 5.5 V, T = 25 °C, internal  
PVDD LDO, including D+ and D  
pull-up  
µA  
standby mode; VDDP(VBUS) = 3.3 V;  
external PVDD supply; Tamb = 25 C  
-
-
-
18  
55  
12  
-
A  
A  
A  
standby mode; VDDP(VBUS) = 5.5 V;  
Vinternal PVDD supply; Tamb = 25 C  
-
hard power down; VDDP(VBUS)  
=
18  
5.5 V; RST_N = 0 V; Tamb = 25C  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
54 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
13.1.8 Static characteristics RF interface  
Table 52. Static characteristics for RF interface  
Data are given for Tamb = 40 C to +85 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
pins ANT1 and ANT2  
Z
impedance  
between ANT1 and ANT2;  
low impedance  
-
10  
17  
pins RXN and RXP  
Vi(dyn)  
Cin  
dynamic input voltage  
on pins RXN and RXP  
on pins RXN and RXP  
-
-
VDD 0.05 V  
input pin capacitance  
impedance  
-
12  
-
-
pF  
Z
between pins RX to VMID;  
reader, card emulation and  
P2P modes  
0
15  
k  
Vdet  
detection voltage  
card emulation and target  
modes; configuration for  
19 mV threshold  
-
-
-
30  
-
mV(p-p)  
pins TX1 and TX2  
VOH  
high-level output voltage pins TX1 and TX2;  
VTVDD_IN  
mV  
TVDD_IN = 3.1 V and  
IOH = 30 mA  
150  
VOL  
ROL  
low-level output voltage pins TX1 and TX2;  
-
-
-
-
-
-
-
-
200  
80  
mV  
TVDD_IN = 3.1; ITX = 30 mA  
low-level output  
resistance  
VTX = VTVDD 100 mV;  
CWGsN = 01h  
VTX = VTVDD 100 mV;  
10  
CWGsN = 0Fh  
ROH  
high-level output  
resistance  
VTX = VTVDD 100 mV  
10  
13.2 Dynamic characteristics  
Table 53. Dynamic characteristics for IRQ input pin  
Data are given for Tamb = 40 C to +85 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tf  
fall time  
high speed; CL = 12 pF;  
VPVDD_IN = 3.3 V  
1
-
3.5  
ns  
high speed; CL = 12 pF;  
VPVDD_IN = 1.8 V  
1
3
2
-
-
-
3.5  
10  
10  
ns  
ns  
ns  
tf  
fall time  
slow speed; CL = 12 pF;  
VPVDD_IN = 3.3 V  
slow speed; CL = 12 pF;  
VPVDD_IN = 1.8 V  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
55 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 53. Dynamic characteristics for IRQ input pin …continued  
Data are given for Tamb = 40 C to +85 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tr  
rise time  
high speed: CL = 12 pF;  
VPVDD_IN = 3.3 V  
1
-
3.5  
ns  
high speed: CL = 12 pF;  
1
3
2
-
-
-
3.5  
10  
10  
ns  
ns  
ns  
VPVDD_IN = 1.8 V  
tr  
rise time  
slow speed: CL = 12 pF;  
VPVDD_IN = 3.3 V  
slow speed: CL = 12 pF;  
VPVDD_IN = 1.8 V  
13.2.1 Flash memory dynamic characteristics  
Table 54. Dynamic characteristics for flash memory  
Symbol  
tprog  
Parameter  
Conditions  
Min  
Typ  
-
Max  
Unit  
programming time  
endurance  
1 page (64 bytes); slow clock  
-
2.5  
ms  
NEndu  
tret  
200  
-
500  
20  
-
-
cycles  
years  
retention time  
13.2.2 EEPROM dynamic characteristics  
Table 55. Dynamic characteristics for EEPROM  
Symbol  
tprog  
Parameter  
Conditions  
Min  
Typ  
2.8  
500  
20  
Max  
Unit  
programming time  
endurance  
1 page (64 bytes)  
-
-
-
-
ms  
NEndu  
tret  
300  
-
Kcycles  
years  
retention time  
13.2.3 GPIO dynamic characteristics  
ꢈꢂꢁꢑ  
ꢍꢂꢁꢑ  
ꢈꢂꢁꢑ  
ꢍꢂꢁꢑ  
ꢄꢂꢁꢑ  
ꢄꢂꢁꢑ  
JQGH  
W
W
U
I
DDDꢀꢁꢂꢆꢆꢃꢆ  
Fig 28. Output timing measurement condition for GPIO  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
56 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 56. Dynamic characteristics for GPIO1 to GPIO21  
Tamb = 40 C to +85 C  
Symbol  
Parameter  
Conditions  
Min  
2.0  
1.0  
3.0  
1.0  
2.0  
1.0  
3.0  
1.0  
Max  
10.0  
3.5  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tr  
rise time  
CL = 12 pF; PVDD = 1.8 V; slow speed  
CL = 12 pF; PVDD = 1.8 V; fast speed  
CL = 12 pF; PVDD = 3.3 V; slow speed  
CL = 12 pF; PVDD = 3.3 V; fast speed  
CL = 12 pF; PVDD = 1.8 V; slow speed  
CL = 12 pF; PVDD = 1.8 V; fast speed  
CL = 12 pF; PVDD = 3.3 V; slow speed  
CL = 12 pF; PVDD = 3.3 V; fast speed  
10.0  
3.5  
tf  
fall time  
10.0  
3.5  
10.0  
3.5  
13.2.4 Dynamic characteristics for I2C master  
W
W
'$  
W
'$  
+'ꢕ'$7  
6'$  
6&/  
W
W
W
+,*+  
68ꢕ67$  
+'ꢕ67$  
W
68ꢕ'$7  
W
/2:  
DDDꢀꢁꢂꢆꢆꢃꢂ  
²
Fig 29. I C-bus pins clock timing  
Table 57. Timing specification for fast mode plus I2C  
Tamb = 40 C to +85 C  
Symbol  
fSCL  
Parameter  
Conditions  
Min  
0
Max  
Unit  
MHz  
ns  
SCL clock frequency  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
1
-
tSU;STA  
set-up time for a  
(repeated) START  
condition  
260  
tHD;STA  
tLOW  
hold time (repeated)  
START condition  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
260  
500  
260  
-
-
-
ns  
ns  
ns  
low period of the SCL  
clock  
tHIGH  
high period of the SCL  
clock  
tSU;DAT  
tHD;DAT  
tr(SDA)  
tf(SDA)  
Vhys  
data set-up time  
data hold time  
SDA rise time  
SDA fall time  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
50  
-
ns  
ns  
ns  
ns  
V
0
-
-
120  
120  
-
-
hysteresis of Schmitt  
trigger inputs  
0.1   
VPVDD_M_IN  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
57 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 58. Timing specification for fast mode I2C  
Tamb = 40 C to +85 C  
Symbol  
fSCL  
Parameter  
Conditions  
Min  
0
Max  
400  
-
Unit  
kHz  
ns  
SCL clock frequency  
fast mode; Cb < 400 pF  
tSU;STA  
set-up time for a (repeated) START fast mode; Cb < 400 pF  
condition  
600  
tHD;STA  
hold time (repeated) START  
condition  
fast mode; Cb < 400 pF  
600  
-
ns  
tLOW  
low period of the SCL clock  
high period of the SCL clock  
data set-up time  
fast mode; Cb < 400 pF  
fast mode; Cb < 400 pF  
fast mode; Cb < 400 pF  
fast mode; Cb < 400 pF  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
1.3  
600  
100  
0
-
s  
ns  
ns  
ns  
ns  
ns  
V
tHIGH  
-
tSU;DAT  
tHD;DAT  
tr(SDA)  
tf(SDA)  
Vhys  
-
data hold time  
900  
250  
250  
-
SDA rise time  
30  
SDA fall time  
30  
hysteresis of Schmitt trigger inputs fast mode; Cb < 400 pF  
0.1   
VPVDD_IN  
13.2.5 Dynamic characteristics for SPI  
7
F\ꢏFONꢐ  
6&.ꢁꢏ&32/ꢁ ꢁꢂꢐ  
6&.ꢁꢏ&32/ꢁ ꢁꢃꢐ  
026,  
W
W
Kꢏ4ꢐ  
Yꢏ4ꢐ  
'$7$ꢁ9$/,'  
'$7$ꢁ9$/,'  
&3+$ꢁ ꢁꢃ  
W
W
'+  
'6  
'$7$ꢁ9$/,'  
0,62  
'$7$ꢁ9$/,'  
W
W
Kꢏ4ꢐ  
Yꢏ4ꢐ  
'$7$ꢁ9$/,'  
'$7$ꢁ9$/,'  
W
026,  
0,62  
W
&3+$ꢁ ꢁꢂ  
'6  
'+  
'$7$ꢁ9$/,'  
'$7$ꢁ9$/,'  
ꢁꢁꢂDDHꢇꢂꢅ  
Fig 30. SPI master timing  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
58 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 59. Dynamic characteristics and Timing specification for SPI master interface  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fSCK  
SCK frequency  
0
6.78  
MHz  
controlled by the host  
tDS  
data set-up time  
data hold time  
25  
25  
-
-
ns  
ns  
ns  
tDH  
tv(Q)  
-
data output valid time  
25  
th(Q)  
data output hold time  
-
25  
ns  
Dynamic characteristics for SPI_SCLK, SPIM_NSS, SPIM_MOSI  
tf  
tr  
tf  
tr  
fall time  
rise time  
fall time  
rise time  
CL = 12 pF; high speed; VPVDD_IN = 3.3 V  
CL = 12 pF; slow speed; VPVDD_IN = 3.3 V  
CL = 12 pF; high speed; VPVDD_IN = 3.3 V  
CL = 12 pF; slow speed; VPVDD_IN = 3.3 V  
CL = 12 pF; high speed; VPVDD_IN = 1.8 V  
CL = 12 pF; slow speed; VPVDD_IN = 1.8 V  
CL = 12 pF; high speed; VPVDD_IN = 1.8 V  
CL = 12 pF; slow speed; VPVDD_IN = 1.8 V  
1
3
1
3
1
2
1
2
3.5  
10  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3.5  
10  
3.5  
10  
3.5  
10  
13.2.6 Dynamic characteristics of host interface  
W
W
'$  
W
'$  
+'ꢕ'$7  
6'$  
6&/  
W
W
W
+,*+  
68ꢕ67$  
+'ꢕ67$  
W
68ꢕ'$7  
W
/2:  
DDDꢀꢁꢂꢆꢆꢃꢉ  
Fig 31. I2C-bus pins clock timing  
Table 60. Timing specification for I2C high speed  
Tamb = 40 C to +85 C  
Symbol  
fscl  
Parameter  
Conditions  
high speed; Cb < 100 pF  
Min  
0
Max  
3.4  
-
Unit  
MHz  
ns  
clock frequency  
tSU;STA  
set-up time for a (repeated) high speed; Cb < 100 pF  
START condition  
160  
tHD;STA  
hold time (repeated) START high speed; Cb < 100 pF  
condition  
160  
-
ns  
tLOW  
low period of the SCL clock high speed; Cb < 100 pF  
high period of the SCL clock high speed; Cb < 100 pF  
160  
60  
10  
0
-
-
-
-
ns  
ns  
ns  
s  
tHIGH  
tSU;DAT  
tHD;DAT  
data set-up time  
data hold time  
high speed; Cb < 100 pF  
high speed; Cb < 100 pF  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
59 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 60. Timing specification for I2C high speed  
Tamb = 40 C to +85 C  
Symbol  
tr(SDA)  
tf(SDA)  
Vhys  
Parameter  
Conditions  
Min  
10  
Max  
80  
80  
-
Unit  
ns  
SDA rise time  
SDA fall time  
high speed; Cb < 100 pF  
high speed; Cb < 100 pF  
10  
ns  
hysteresis of Schmitt trigger high speed; Cb < 100 pF  
inputs  
0.1   
VPVDD_IN  
V
Table 61. Dynamic characteristics for the I2C slave interface: ATX_B used as I2C_SDA, ATX_A used as I2C_SCL  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tf  
fall time  
CL = 100 pF, Rpull-up = 2 K,  
standard and fast mode  
30  
-
250  
ns  
CL = 100 pF, Rpull-up = 1 K, high  
speed  
10  
30  
10  
-
-
-
80  
ns  
ns  
ns  
tr  
rise time  
CL = 100 pF, Rpull-up = 2 K,  
standard and fast mode  
250  
100  
CL = 100 pF, Rpull-up = 1 K, high  
speed  
7
F\ꢏFONꢐ  
6&.ꢁꢏ&32/ꢁ ꢁꢂꢐ  
6&.ꢁꢏ&32/ꢁ ꢁꢃꢐ  
W
W
'+  
'6  
026,  
0,62  
'$7$ꢁ9$/,'  
'$7$ꢁ9$/,'  
W
W
Kꢏ4ꢐ  
Yꢏ4ꢐ  
&3+$ꢁ ꢁꢃ  
'$7$ꢁ9$/,'  
'$7$ꢁ9$/,'  
W
W
'+  
'6  
026,  
0,62  
'$7$ꢁ9$/,'  
'$7$ꢁ9$/,'  
'$7$ꢁ9$/,'  
W
W
Kꢏ4ꢐ  
&3+$ꢁ ꢁꢂ  
Yꢏ4ꢐ  
'$7$ꢁ9$/,'  
ꢁꢁꢂDDHꢇꢉꢁ  
Fig 32. SPI slave timings  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
60 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 62. Dynamic characteristics for SPI slave interface  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fSCK  
SCK frequency  
0
7
MHz  
controlled by the host  
tDS  
data set-up time  
data hold time  
25  
25  
-
-
ns  
ns  
ns  
tDH  
tv(Q)  
-
data output valid time  
25  
th(Q)  
data output hold time  
-
25  
ns  
Table 63. Dynamic characteristics for SPI slave interface: ATX_C as SPI_MISO  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tf  
fall time  
CL = 12 pF; high speed;  
VPVDD_IN = 3.3 V  
1
-
-
-
-
-
-
-
-
3.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 12 pF; slow speed;  
VPVDD_IN = 3.3 V  
3
1
3
1
2
1
2
10  
tr  
tf  
tr  
rise time  
fall time  
rise time  
CL = 12 pF; high speed;  
VPVDD_IN = 3.3 V  
3.5  
10  
CL = 12 pF; slow speed;  
VPVDD_IN = 3.3 V  
CL = 12 pF; high speed;  
VPVDD_IN = 1.8 V  
3.5  
10  
CL = 12 pF; slow speed;  
VPVDD_IN = 1.8 V  
CL = 12 pF; high speed;  
VPVDD_IN = 1.8 V  
3.5  
10  
CL = 12 pF; slow speed;  
VPVDD_IN = 1.8 V  
Table 64. Dynamic characteristics for HSUART ATX_ as HSU_TX, ATX_ as HSU_RTS  
Symbol  
Parameter  
Conditions[1]  
Min  
1
Typ  
Max  
3.5  
10  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tf  
fall time  
high speed; VPVDD_IN = 3.3 V  
slow speed; VPVDD_IN = 3.3 V  
high speed; VPVDD_IN = 3.3 V  
slow speed; VPVDD_IN = 3.3 V  
high speed; VPVDD_IN = 1.8 V  
slow speed; VPVDD_IN = 1.8 V  
high speed; VPVDD_IN = 1.8 V  
slow speed; VPVDD_IN = 1.8 V  
-
-
-
-
-
-
-
-
3
tr  
tf  
tr  
rise time  
fall time  
rise time  
1
3.5  
10  
3
1
3.5  
10  
2
1
3.5  
10  
2
[1] CL=12 pF maximum.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
61 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 65. Dynamic characteristics for USB interface  
CL = 50 pF; Rpu = 1.5 kon D+ to VBUS  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
tr / tf  
Min  
Typ  
Max  
20  
Unit  
ns  
tr  
4
4
-
-
-
-
tf  
20  
ns  
tFRFM  
differential rise and fall time  
matching  
109  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
2  
-
-
-
2
V
tFEOPT  
tFDEOP  
T = 25 °C; see Figure 33  
175  
+5  
ns  
ns  
source jitter for differential transition T = 25 °C; see Figure 33  
to SE0 transition  
tJR1  
receiver jitter to next transition  
receiver jitter for paired transitions  
receiver SE0 interval of EOP  
T = 25 °C  
18.5  
9  
-
-
-
+18.5 ns  
tJR2  
10 % to 90 %; T = 25 °C  
+9  
-
ns  
ns  
tFEOPR  
must accept as EOP;  
see Figure 33  
82  
7
3(5,2'  
FURVVRYHUꢁSRLQWꢁ  
H[WHQGHG  
FURVVRYHUꢁSRLQW  
GLIIHUHQWLDOꢁ  
GDWDꢁOLQHV  
VRXUFHꢁ(23ꢁZLGWKꢒꢁW  
)(237  
GLIIHUHQWLDOꢁGDWDꢁWRꢁꢁ  
6(ꢂꢇ(23ꢁVNHZꢁ  
Qꢁîꢁ7 ꢁꢖꢁW  
3(5,2' )'(23  
UHFHLYHUꢁ(23ꢁZLGWKꢒꢁW  
ꢉꢁW  
ꢁꢁꢂDDEꢃꢄꢆ  
(235ꢃ (235ꢄ  
Fig 33. USB interface differential data-to-EOP transition skew and EOP width  
13.2.7 Clock dynamic characteristics  
Table 66. Dynamic characteristics for internal oscillators  
Tamb = 40 C to +85 C  
Symbol  
low frequency oscillator  
Parameter[1]  
Conditions  
Min  
300  
18  
Typ[2] Max  
Unit  
kHz  
fosc(int)  
internal oscillator frequency  
VDDP(VBUS) = 3.3 V  
VDDP(VBUS) = 3.3 V  
365  
20  
400  
22  
high frequency oscillator  
fosc(int)  
internal oscillator frequency  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C) with nominal supply voltages.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
62 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Table 67. Dynamic characteristics for PLL  
Tamb = 40 C to +85C  
Symbol  
Parameter[1]  
Conditions  
Min  
Typ[2] Max  
Unit  
f  
frequency deviation  
deviation added to  
CLK_XTAL1 frequency on RF  
frequency generated using  
PLL  
50  
-
50  
ppm  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 C) with nominal supply voltages.  
13.2.8 Dynamic characteristics for power supply  
Table 68. Dynamic characteristics for power supply  
Symbol  
DC-to-DC internal oscillator  
fosc(int) internal oscillator frequency  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DC-to-DC converter  
-
3.39  
-
MHz  
13.2.9 Dynamic characteristics for boot and reset  
Table 69. Dynamic characteristics for boot and reset  
Symbol  
twL(RST_N) RST_N Low pulse width time  
tboot boot time  
Parameter  
Conditions  
Min  
10  
-
Typ  
Max  
-
Unit  
s  
-
-
external PVDD supply; supply  
is stable at reset  
320  
µs  
internal PVDD_LDO supply;  
supply is stable at reset  
-
-
2.2  
ms  
13.2.10 Dynamics characteristics for power mode  
Table 70. Power modes - wake-up timings  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
500  
150  
Unit  
s  
[1]  
[1]  
twake  
wake-up time  
standby mode  
suspend mode  
-
-
-
-
s  
[1] Wake-up timings are measured from the wake-up event to the point in which the user application code reads the first instruction.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
63 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
14. Marking  
Table 71. Marking codes  
Type number  
PN736X  
Line A  
Marking code  
PN7362AU-00  
Line B  
Diffusion Batch ID, Assembly Sequence ID  
Line C  
Characters: Diffusion and assembly location, date code, product version  
(indicated by mask version), product life cycle status. This line includes the  
following elements at 8 positions:  
1. Diffusion center code: Z  
2. Assembly center code: S  
3. RHF-2006 indicator: D “Dark Green”  
4. Year code (Y) 1  
5. Year code (Y) 2  
6. Week code (W) 1  
7. Week code (W) 2  
8. HW version  
Line D  
Line E  
Empty  
Empty  
14.1 Package marking drawing  
7HUPLQDOꢁꢃꢁLQGH[ꢁDUHD  
$
%
&
'
(
DDDꢀꢁꢂꢆꢂꢃꢃ  
Fig 34. Marking PN736X in HVQFN64  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
64 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
15. Package outline  
+94)1ꢂꢅꢆꢇSODVWLFꢇWKHUPDOꢇHQKDQFHGꢇYHU\ꢇWKLQꢇTXDGꢇIODWꢇSDFNDJHꢈꢇQRꢇOHDGVꢈꢇ  
ꢂꢅꢇWHUPLQDOVꢈꢇERG\ꢇꢉꢇ[ꢇꢉꢇ[ꢇꢃꢊꢋꢌꢇPP  
627ꢋꢃꢅꢍꢅ  
'
%
$
WHUPLQDOꢁꢃꢁ  
LQGH[ꢁDUHD  
(
$
$
F
GHWDLOꢁ;  
H
&
H
Y
Z
&
&
$ %  
ꢃꢇꢄꢁH  
E
/
\
\
&
/
ꢃꢋ  
ꢊꢄ  
ꢃꢆ  
ꢊꢊ  
(
W
H
(
V
(
H
K
ꢃꢇꢄꢁH  
ꢅꢈ  
;
WHUPLQDOꢁꢃꢁ  
LQGH[ꢁDUHD  
ꢆꢅ  
ꢅꢎ  
/
'
'
'
W
V
K
ꢄꢌꢍ  
ꢍꢁPP  
VFDOH  
'LPHQVLRQV  
8QLW  
ꢏꢃꢐ  
ꢏꢃꢐ  
$
$
E
F
'
'
K
'
V
'
W
(
(
(
(
H
H
H
/
/
/
Y
Z
\
\
K
V
W
PD[ꢁ ꢃꢌꢂꢂꢁ ꢂꢌꢂꢍꢁ ꢂꢌꢊꢂꢁ  
PP QRPꢁ ꢂꢌꢈꢍꢁ ꢂꢌꢂꢄꢁ ꢂꢌꢄꢃꢁ ꢂꢌꢄ ꢎꢌꢂꢁ ꢍꢌꢃꢂꢁ ꢂꢌꢃꢅꢁ ꢂꢌꢅꢍꢁ ꢎꢌꢂꢁ ꢍꢌꢃꢂꢁ ꢂꢌꢃꢅꢁ ꢂꢌꢅꢍꢁ ꢂꢌꢍ ꢋꢌꢍ ꢋꢌꢍ ꢂꢌꢅꢁ ꢂꢌꢄꢍ ꢂꢌꢄꢍ ꢂꢌꢃ ꢂꢌꢂꢍ ꢂꢌꢂꢍ ꢂꢌꢃ  
PLQ ꢂꢌꢈꢂ ꢂꢌꢂꢂ ꢂꢌꢃꢈ ꢈꢌꢎ ꢅꢌꢎꢍ ꢂꢌꢂꢎ ꢂꢌꢅꢂ ꢈꢌꢎ ꢅꢌꢎꢍ ꢂꢌꢂꢎ ꢂꢌꢅꢂ ꢂꢌꢊ  
ꢎꢌꢃꢁ ꢍꢌꢄꢍꢁ ꢂꢌꢃꢎꢁ ꢂꢌꢍꢂꢁ ꢎꢌꢃꢁ ꢍꢌꢄꢍꢁ ꢂꢌꢃꢎꢁ ꢂꢌꢍꢂꢁ  
ꢂꢌꢍꢁ  
1RWHꢁ  
ꢃꢌꢁ3ODVWLFꢁRUꢁPHWDOꢁSURWUXVLRQVꢁRIꢁꢂꢌꢂꢋꢍꢁPPꢁPD[LPXPꢁSHUꢁVLGHꢁDUHꢁQRWꢁLQFOXGHGꢌ  
VRWꢇꢁꢊꢀꢊBSR  
5HIHUHQFHV  
2XWOLQHꢁ  
YHUVLRQ  
(XURSHDQꢁ  
SURMHFWLRQ  
,VVXHꢁGDWH  
,(&  
ꢀꢁꢀꢁꢀ  
-('(&  
ꢀꢁꢀꢁꢀ  
-(,7$  
ꢀꢁꢀꢁꢀ  
ꢃꢂꢀꢂꢍꢀꢄꢆꢁ  
ꢃꢂꢀꢂꢍꢀꢄꢋ  
627ꢈꢂꢅꢀꢅ  
Fig 35. Package outline HVQFN64  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
65 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
)RRWSULQWꢇLQIRUPDWLRQꢇIRUꢇUHIORZꢇVROGHULQJꢇRIꢇ+94)1ꢂꢅꢇSDFNDJH  
627ꢋꢃꢅꢍꢅ  
+[  
*[  
'
3
ꢂꢌꢃꢂꢍ  
ꢂꢌꢃꢄꢍ  
&
‘ꢁꢂꢌꢊꢁGULOOHGꢁYLDVꢁꢏꢅꢃ[ꢐ  
63[  
63\  
+\ *\  
63\ꢁWRW  
6/\ %\ $\  
ꢂꢌꢂꢆꢍ  
ꢂꢌꢂꢆꢍ  
63[ꢁWRW  
ꢂꢌꢂꢆꢍ  
6/[  
%[  
ꢂꢌꢂꢆꢍ  
;
ꢂꢌꢄꢎ  
$[  
ꢂꢌꢄꢅ  
5HFRPPHQGHGꢁVWHQFLOꢁWKLFNQHVVꢒꢁꢂꢌꢃꢁPP  
GHWDLOꢁ;  
ꢂꢌꢈꢍ ꢂꢌꢎ  
VROGHUꢁODQG  
VROGHUꢁODQGꢁSOXVꢁVROGHUꢁSDVWH  
VROGHUꢁUHVLVWꢁRSHQLQJ  
RFFXSLHGꢁDUHD  
VROGHUꢁSDVWHꢁGHSRVLW  
'LPHQVLRQVꢁLQꢁPP  
$[  
ꢂꢌꢍꢂ ꢃꢂꢌꢂꢂ  
3
$\  
%[  
%\  
6/[  
6/\  
63[  
ꢂꢌꢋꢂ  
63\ 63[ꢁWRW 63\ꢁWRW  
ꢂꢌꢋꢂ ꢊꢌꢍꢂ ꢊꢌꢍꢂ  
&
'
*[  
*\  
+[  
+\  
ꢈꢌꢄꢂ  
ꢈꢌꢄꢂ  
ꢍꢌꢃꢂ  
ꢍꢌꢃꢂ  
ꢂꢌꢎꢂ  
ꢂꢌꢄꢎ  
ꢎꢌꢄꢍ  
ꢎꢌꢄꢍ ꢃꢂꢌꢄꢍ ꢃꢂꢌꢄꢍ  
ꢃꢂꢌꢂꢂ  
ꢃꢍꢀꢃꢄꢀꢃꢍ  
ꢃꢍꢀꢃꢄꢀꢄꢄ  
VRWꢇꢁꢊꢀꢊBIU  
,VVXHꢁGDWH  
Fig 36. Footprint information for reflow soldering of HVQFN64  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
66 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
16. Packing information  
Moisture Sensitivity Level (MSL) evaluation has been performed according to JEDEC  
J-STD-020C. MSL for this package is level 3 which means 260 C Pb-free convection  
reflow maximum temperature peak.  
Dry packing is required with following floor conditions: 168 hours out of bag floor life at  
maximum ambient temperature 30 C/60 % RH.  
For information on packing, refer to the PIP relating to this product at http://www.nxp.com.  
17. Abbreviations  
Table 72. Abbreviations  
Acronym  
ADC  
ALM  
ASK  
Description  
Analog to Digital Convertor  
Active Load Modulation  
Amplitude Shift Keying  
BPSK  
CLIF  
CRC  
DPC  
EEPROM  
GPIO  
I2C  
Binary Phase Shift Keying  
Contactless Interface  
Cyclic Redundancy Check  
Dynamic Power Control  
Electrically Erasable Programmable Read-Only Memory  
General-Purpose Input Output  
Inter-Interchanged Circuit  
Integrated Circuit  
IC  
IAP  
In-Application Programming  
In-System Programming  
Low DropOut  
ISP  
LDO  
LPCD  
NFC  
NRZ  
NVIC  
P2P  
Low-Power Card Detection  
Near Field Communication  
Non-Return to Zero  
Nested Vectored Interrupt Controller  
Peer-to-Peer  
PLL  
Phase-Locked Loop  
PLM  
SPI  
Passive Load Modulation  
Serial Peripheral Interface  
Serial Wire Debug  
SWD  
UART  
USB  
Universal Asynchronous Receiver Transmitter  
Universal Serial Bus  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
67 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
18. Revision history  
Table 73. Revision history  
Document ID  
PN736X v. 3.2  
Modifications:  
Release date  
20161213  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PN746X_736X v.3.1  
Product name title and Descriptive title updated  
Editorial changes  
PN746X_736X v.3.1  
Modifications:  
20160405  
Product data sheet  
-
-
PN746X_736X v.3.0  
Descriptive title updated  
Section 1 “General description”: updated  
PN746X_736X v.3.0  
20160330  
Product data sheet  
-
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
68 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
19. Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
19.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
69 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
19.4 Licenses  
Purchase of NXP ICs with NFC technology  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Purchase of an NXP Semiconductors IC that complies with one of the Near  
Field Communication (NFC) standards ISO/IEC 18092 and ISO/IEC 21481  
does not convey an implied license under any patent right infringed by  
implementation of any of those standards. Purchase of NXP  
Semiconductors IC does not include a license to any NXP patent (or other  
IP right) covering combinations of those products with other products,  
whether hardware or software.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
non-automotive qualified products in automotive equipment or applications.  
Purchase of NXP ICs with ISO/IEC 14443 type B functionality  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
This NXP Semiconductors IC is ISO/IEC 14443 Type B  
software enabled and is licensed under Innovatron’s  
Contactless Card patents license for ISO/IEC 14443 B.  
The license includes the right to use the IC in systems  
and/or end-user equipment.  
RATP/Innovatron  
Technology  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
19.5 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
MIFARE — is a trademark of NXP B.V.  
ICODE and I-CODE are trademarks of NXP B.V.  
20. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
70 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
21. Contents  
1
2
3
4
5
6
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.10.1.2 ISO/IEC14443 B functionality . . . . . . . . . . . . 21  
8.10.1.3 FeliCa functionality. . . . . . . . . . . . . . . . . . . . . 22  
8.10.1.4 ISO/IEC 15693 functionality. . . . . . . . . . . . . . 23  
8.10.1.5 ISO/IEC18000-3 mode 3 functionality . . . . . . 24  
8.10.1.6 NFCIP-1 modes . . . . . . . . . . . . . . . . . . . . . . . 24  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8.10.2  
Contactless interface . . . . . . . . . . . . . . . . . . . 27  
8.10.2.1 Transmitter (TX). . . . . . . . . . . . . . . . . . . . . . . 27  
8.10.2.2 Receiver (RX) . . . . . . . . . . . . . . . . . . . . . . . . 27  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8.10.3  
8.10.4  
8.10.5  
Low-Power Card Detection (LPCD). . . . . . . . 29  
Active Load Modulation (ALM). . . . . . . . . . . . 29  
Dynamic Power Control (DPC) . . . . . . . . . . . 30  
8
8.1  
8.2  
Functional description . . . . . . . . . . . . . . . . . . . 8  
ARM Cortex-M0 microcontroller . . . . . . . . . . . . 8  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
On-chip flash programming memory . . . . . . . . 8  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . 8  
EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . 9  
SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . 10  
ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Nested Vectored Interrupt Controller (NVIC) . 12  
NVIC features. . . . . . . . . . . . . . . . . . . . . . . . . 12  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 12  
GPIOs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
GPIO features. . . . . . . . . . . . . . . . . . . . . . . . . 14  
GPIO configuration. . . . . . . . . . . . . . . . . . . . . 14  
GPIO interrupts. . . . . . . . . . . . . . . . . . . . . . . . 14  
CRC engine 16/32 bits . . . . . . . . . . . . . . . . . . 14  
Random Number Generator (RNG) . . . . . . . . 15  
Master interfaces . . . . . . . . . . . . . . . . . . . . . . 15  
I2C master interface . . . . . . . . . . . . . . . . . . . . 15  
I2C features. . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
SPI interface. . . . . . . . . . . . . . . . . . . . . . . . . . 15  
SPI features . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Host interfaces . . . . . . . . . . . . . . . . . . . . . . . . 16  
High-speed UART. . . . . . . . . . . . . . . . . . . . . . 16  
I2C host interface controller . . . . . . . . . . . . . . 17  
I2C host interface features . . . . . . . . . . . . . . . 17  
SPI host/Slave interface . . . . . . . . . . . . . . . . . 18  
SPI host interface features . . . . . . . . . . . . . . . 18  
USB interface . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Full speed USB device controller . . . . . . . . . . 18  
I/O auxiliary - ISO/IEC 7816 UART - connecting  
an external TDA . . . . . . . . . . . . . . . . . . . . . . . 19  
Contactless interface - 13.56 MHz . . . . . . . . . 19  
RF functionality. . . . . . . . . . . . . . . . . . . . . . . . 20  
8.10.5.1 RF output control . . . . . . . . . . . . . . . . . . . . . . 30  
8.10.5.2 Adaptive Waveform Control (AWC) . . . . . . . . 30  
8.11  
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Features of timer 0 and timer 1 . . . . . . . . . . . 30  
Features of timer 2 and timer 3 . . . . . . . . . . . 31  
System tick timer . . . . . . . . . . . . . . . . . . . . . . 31  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . 31  
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Quartz oscillator (27.12 MHz) . . . . . . . . . . . . 32  
USB PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
High Frequency Oscillator (HFO). . . . . . . . . . 33  
Low Frequency Oscillator (LFO) . . . . . . . . . . 33  
Clock configuration and clock gating . . . . . . . 33  
Power management. . . . . . . . . . . . . . . . . . . . 34  
Power supply sources . . . . . . . . . . . . . . . . . . 34  
PN736X Power Management Unit (PMU) . . . 34  
8.2.1  
8.2.1.1  
8.2.2  
8.2.2.1  
8.2.3  
8.2.3.1  
8.2.4  
8.2.5  
8.3  
8.3.1  
8.3.2  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.5  
8.11.1  
8.11.2  
8.12  
8.13  
8.14  
8.14.1  
8.14.2  
8.14.3  
8.14.4  
8.14.5  
8.15  
8.15.1  
8.15.2  
8.15.2.1 Main LDO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.15.2.2 PVDD_LDO . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
8.15.2.3 TXLDO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.6  
8.7  
8.15.3  
Power modes. . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.15.3.1 Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
8.15.3.2 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . 37  
8.15.3.3 Suspend mode. . . . . . . . . . . . . . . . . . . . . . . . 37  
8.15.3.4 Wake-up from standby mode and suspend  
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
8.7.1  
8.7.1.1  
8.7.2  
8.7.2.1  
8.8  
8.8.1  
8.8.2  
8.8.2.1  
8.8.3  
8.8.3.1  
8.8.4  
8.8.4.1  
8.9  
8.15.3.5 Hard Power-Down (HPD) mode. . . . . . . . . . . 38  
8.15.4  
Voltage monitoring . . . . . . . . . . . . . . . . . . . . . 38  
8.15.4.1 VBUS monitor . . . . . . . . . . . . . . . . . . . . . . . . 39  
8.15.4.2 VBUSP monitor . . . . . . . . . . . . . . . . . . . . . . . 39  
8.15.4.3 PVDD LDO supply monitor . . . . . . . . . . . . . . 39  
8.15.5  
8.16  
Temperature sensor. . . . . . . . . . . . . . . . . . . . 39  
System control . . . . . . . . . . . . . . . . . . . . . . . . 39  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Brown-Out Detection (BOD) . . . . . . . . . . . . . 40  
APB interface and AHB-Lite. . . . . . . . . . . . . . 40  
External interrupts . . . . . . . . . . . . . . . . . . . . . 40  
SWD debug interface. . . . . . . . . . . . . . . . . . . 40  
8.16.1  
8.16.2  
8.16.3  
8.16.4  
8.17  
8.10  
8.10.1  
8.10.1.1 ISO/IEC14443 A/MIFARE functionality. . . . . . 20  
continued >>  
PN736X  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.2 — 13 December 2016  
71 of 72  
PN736X  
NXP Semiconductors  
NFC Cortex-M0 microcontroller  
8.17.1  
SWD interface features . . . . . . . . . . . . . . . . . 40  
9
Application design-in information . . . . . . . . . 41  
Power supply connection . . . . . . . . . . . . . . . . 41  
Powering up the microcontroller. . . . . . . . . . . 42  
Powering up the contactless interface . . . . . . 42  
Connecting the USB interface . . . . . . . . . . . . 44  
Connecting the RF interface. . . . . . . . . . . . . . 44  
Unconnected I/Os. . . . . . . . . . . . . . . . . . . . . . 45  
9.1  
9.1.1  
9.1.2  
9.2  
9.3  
9.4  
10  
11  
12  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 45  
Recommended operating conditions. . . . . . . 47  
Thermal characteristics . . . . . . . . . . . . . . . . . 47  
13  
13.1  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 48  
Static characteristics. . . . . . . . . . . . . . . . . . . . 48  
GPIO static characteristics . . . . . . . . . . . . . . . 48  
Static characteristics for I2C master . . . . . . . . 49  
Static characteristics for SPI master. . . . . . . . 50  
Static characteristics for host interface . . . . . . 50  
Clock static characteristics . . . . . . . . . . . . . . . 52  
Static characteristics - power supply. . . . . . . . 53  
Static characteristics for power modes . . . . . . 54  
Static characteristics RF interface . . . . . . . . . 55  
Dynamic characteristics . . . . . . . . . . . . . . . . . 55  
Flash memory dynamic characteristics. . . . . . 56  
EEPROM dynamic characteristics . . . . . . . . . 56  
GPIO dynamic characteristics . . . . . . . . . . . . 56  
Dynamic characteristics for I2C master . . . . . 57  
Dynamic characteristics for SPI . . . . . . . . . . . 58  
Dynamic characteristics of host interface. . . . 59  
Clock dynamic characteristics . . . . . . . . . . . . 62  
Dynamic characteristics for power supply . . . 63  
Dynamic characteristics for boot and reset. . . 63  
13.1.1  
13.1.2  
13.1.3  
13.1.4  
13.1.5  
13.1.6  
13.1.7  
13.1.8  
13.2  
13.2.1  
13.2.2  
13.2.3  
13.2.4  
13.2.5  
13.2.6  
13.2.7  
13.2.8  
13.2.9  
13.2.10 Dynamics characteristics for power mode . . . 63  
14  
14.1  
15  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Package marking drawing . . . . . . . . . . . . . . . 64  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 65  
Packing information . . . . . . . . . . . . . . . . . . . . 67  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 68  
16  
17  
18  
19  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 69  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 69  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
19.1  
19.2  
19.3  
19.4  
19.5  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 70  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2016.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 13 December 2016  
406332  

相关型号:

PN7362AUHN/C300E

PN7462AU - NFC Cortex-M0 microcontroller QFN 64-Pin
NXP

PN7362AUHN/C300Y

PN7462AU - NFC Cortex-M0 microcontroller QFN 64-Pin
NXP

PN7370

20 MHz - 250 MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER, SM-11, 4 PIN
APITECH

PN7371

Wide Band Low Power Amplifier, 5MHz Min, 250MHz Max, SM-11, 4 PIN
APITECH

PN7380

Wide Band Low Power Amplifier, 10MHz Min, 200MHz Max, SM-11, 4 PIN
APITECH

PN7381

Wide Band Low Power Amplifier, 20MHz Min, 250MHz Max, SM-11, 4 PIN
APITECH

PN7382

Wide Band Low Power Amplifier, 20MHz Min, 250MHz Max, SM-11, 4 PIN
APITECH

PN7462AUEV/C300E

RISC Microcontroller
NXP

PN7481

Wide Band Low Power Amplifier, 15MHz Min, 300MHz Max, SM-11, 4 PIN
APITECH

PN7487

10 MHz - 300 MHz RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER, SM-11, 4 PIN
APITECH

PN74AHC245QWRKSRQ1

汽车类具有三态输出的八路总线收发器 | RKS | 20 | -40 to 125
TI

PN75

SMD Power Inductors Unshielded
PREMO