S32R274 [NXP]

Safety core: Power Architecture® e200Z4 32-bit CPU with checker core;
S32R274
型号: S32R274
厂家: NXP    NXP
描述:

Safety core: Power Architecture® e200Z4 32-bit CPU with checker core

文件: 总79页 (文件大小:3163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number S32R274  
Rev. 5, 04/2019  
NXP Semiconductors  
Data Sheet: Technical Data  
S32R274  
S32R274/S32R264 Series  
Data Sheet  
Supports S32R274K, S32R274J,  
S32R264K and S32R264J  
Features  
• Functional Safety  
– Enables up to ASIL-D applications  
– FCCU for fault collection and fault handling  
– MEMU for memory error management  
– Safe eDMA controller  
– Self-Test Control Unit (STCU2)  
– Error Injection Module (EIM)  
– On-chip voltage monitoring  
• On-chip modules available within the device include  
the following features:  
• Safety core: Power Architecture® e200Z4 32-bit CPU  
with checker core  
• Dual issue computation cores: Power Architecture®  
e200Z7 32-bit CPU  
– Clock Monitor Unit (CMU)  
• 2 MB on-chip code flash (FMC flash) with ECC  
• 1.5 MB on-chip SRAM with ECC  
• Security  
– Cryptographic Security Engine (CSE2)  
– Supports censorship and life-cycle management  
• RADAR processing  
– Signal Processing Toolbox (SPT) for RADAR signal  
processing acceleration  
– Cross Timing Engine (CTE) for precise timing  
generation and triggering  
– Waveform generation module (WGM) for chirp  
ramp generation  
– 4x 12-bit ΣΔ-ADC with 10 MSps  
– One DAC with 10 MSps  
• Timers  
– Two Periodic Interval Timers (PIT) with 32-bit  
counter resolution  
– Three System Timer Module (STM)  
– Three Software Watchdog Timers (SWT)  
– Two eTimer modules with 6 channels each  
– One FlexPWM module for 12 PWM signals  
• Communication Interfaces  
– MIPICSI2 interface to connect external ADCs  
– Two Serial Peripheral interface (SPI) modules  
– One LINFlexD module  
• Memory Protection  
– Each core memory protection unit provides 24  
entries  
– Two inter-IC communication interface (I2C)  
modules  
– Data and instruction bus system memory protection  
unit (SMPU) with 16 region descriptors each  
– Register protection  
– One dual-channel FlexRay module with 128  
message buffers  
– Three FlexCAN modules with configurable buffers -  
CAN FD optionally supported on 2 FlexCAN  
modules  
– One ENET MAC supporting MII/RMII/RGMII  
interface  
– ZipWire high-speed serial communication  
• Clock Generation  
– 40 MHz external crystal (XOSC)  
– 16 MHz Internal oscillator (IRCOSC)  
– Dual system PLL with one frequency modulated  
phase-locked loop (FMPLL)  
– Low-jitter PLL to ΣΔ-ADC and DAC clock  
generation (not supported on SC66760x devices)  
• Debug Functionality  
– 4-pin JTAG interface and Nexus/Aurora interface  
for serial high-speed tracing  
– e200Z7 core and e200Z4 core: Nexus development  
interface (NDI) per IEEE-ISTO 5001-2012 Class 3+  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Two analog-to-digital converters (SAR ADC)  
– Each ADC supports up to 16 input channels  
– Cross Trigger Unit (CTU)  
• On-chip voltage DC/DC regulator for core clock (VREG)  
• Two Temperature Sensors (TSENS)  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
2
NXP Semiconductors  
Table of Contents  
1
Introduction........................................................................................4  
8.4 Data retention vs program/erase cycles...................................40  
8.5 Flash memory AC timing specifications.................................40  
8.6 Flash memory read wait-state and address-pipeline control  
settings.....................................................................................41  
Communication modules................................................................... 42  
9.1 Ethernet switching specifications............................................42  
9.2 FlexRay timing parameters..................................................... 47  
9.3 LVDS Fast Asynchronous Transmission (LFAST) electrical  
characteristics..........................................................................50  
9.4 Serial Peripheral Interface (SPI) timing specifications...........54  
9.5 LINFlexD timing specifications..............................................59  
9.6 I2C timing .............................................................................. 59  
1.1 Family comparison..................................................................4  
1.2 Feature list...............................................................................5  
1.3 Block diagram......................................................................... 9  
Ordering parts.....................................................................................9  
2.1 Determining valid orderable parts...........................................9  
Part identification...............................................................................10  
3.1 Description.............................................................................. 10  
3.2 Fields....................................................................................... 10  
General............................................................................................... 11  
4.1 Absolute maximum ratings..................................................... 11  
4.2 Operating conditions............................................................... 13  
4.3 Supply current characteristics................................................. 15  
4.4 Voltage regulator electrical characteristics............................. 16  
4.5 Electromagnetic Compatibility (EMC) specifications............ 20  
4.6 Electrostatic discharge (ESD) characteristics......................... 20  
I/O Parameters....................................................................................21  
5.1 I/O pad DC electrical characteristics ......................................21  
5.2 I/O pad AC specifications....................................................... 22  
5.3 Aurora LVDS driver electrical characteristics........................23  
5.4 Reset pad electrical characteristics..........................................24  
Peripheral operating requirements and behaviours............................26  
6.1 Clocks and PLL Specifications............................................... 26  
Analog modules................................................................................. 29  
7.1 ADC electrical characteristics.................................................29  
7.2 Sigma Delta ADC electrical characteristics............................33  
7.3 DAC electrical specifications..................................................37  
Memory modules............................................................................... 38  
8.1 Flash memory program and erase specifications.................... 38  
8.2 Flash memory Array Integrity and Margin Read  
2
3
9
4
10 Debug modules...................................................................................60  
10.1 JTAG/CJTAG interface timing .............................................. 60  
10.2 Nexus Aurora debug port timing.............................................63  
11 WKUP/NMI timing specifications.....................................................64  
12 External interrupt timing (IRQ pin)................................................... 65  
13 Temperature sensor electrical characteristics.....................................65  
14 Radar module..................................................................................... 66  
14.1 MIPICSI2 D-PHY electrical and timing specifications.......... 66  
14.2 MIPICSI2 Disclaimer..............................................................69  
15 Thermal Specifications.......................................................................71  
15.1 Thermal characteristics........................................................... 71  
16 Packaging........................................................................................... 73  
17 Reset sequence................................................................................... 73  
17.1 Reset sequence duration..........................................................74  
17.2 Reset sequence description......................................................74  
18 Power sequencing requirements.........................................................76  
19 Pinouts................................................................................................77  
19.1 Package pinouts and signal descriptions................................. 77  
20 Revision History.................................................................................77  
5
6
7
8
specifications...........................................................................39  
8.3 Flash memory module life specifications................................39  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
3
Introduction  
1 Introduction  
1.1 Family comparison  
The following table provides a comparison of the devices: S32R274, S32R264, and  
MPC5775K . This information is intended to provide an understanding of the range of  
functionality offered by this family. For full details of all of the family derivatives please  
contact your marketing representative.  
Table 1. S32R274 and S32R264 Family Comparison  
Feature  
S32R274K  
S32R274J  
S32R264K  
e200z420 lock-step  
2x e200z7260  
S32R264J  
MPC5775K  
CPUs  
SIMD  
SPE2 + EFP2 (z7)  
Maximum  
Operating  
Frequency  
240 MHz (z7  
cores) / 180 MHz  
(z4)  
266 MHz (z7  
cores) / 133 MHz  
(z4)  
240 MHz (z7  
cores) / 180 MHz  
(z4)  
266 MHz (z7  
cores) / 133 MHz  
(z4)  
266 MHz (z7  
cores) / 133 MHz  
(z4)  
Flash  
EEPROM support  
RAM  
2 MB with ECC  
64 KB (emulation)  
1.5 MB with ECC  
end-to-end  
4 MB with ECC  
96 KB (emulation)  
ECC  
MPU  
Core MPU: 24 entries per core, System MPU: 2x16 entries  
safe eDMA with 32 channels, 64 triggers  
eDMA  
Control ADC  
2x 12-bit SAR ADC, 1 MSps input mux for 16 external channels  
4x 12-bit SAR  
ADC, 1 MSps, input  
mux for 37 external  
channels  
SD-ADC  
4 channels, 10 MSps  
8 channels, 10  
MSps  
SPT  
CTE  
1x  
1x  
1x  
WGM  
CTU  
1x  
1x  
2x  
4x  
SWT  
3x  
3x  
2x  
2x  
1x  
STM  
PIT  
CRC  
SEMA42  
LINFlexD  
CAN  
3x FlexCAN including 2x FlexCAN-FD  
4x FlexCAN + 1x  
MCAN-FD  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
4
NXP Semiconductors  
Introduction  
Table 1. S32R274 and S32R264 Family Comparison (continued)  
Feature  
SPI  
S32R274K  
S32R274J  
S32R264K  
S32R264J  
MPC5775K  
2x  
2x  
4x  
3x  
I2C  
Zipwire  
FlexRay  
Ethernet  
1x LFAST+SIPI, 320 MHz  
1x dual channel  
10/100 and >100 Mbps, RMII/MII/RGMII I/F, AVB support  
10/100 Mbps,  
RMII/MII I/F, AVB  
support  
FlexPWM  
eTimer  
1x, 12 PWM channels  
2x, 6 channels each  
2x, 12 PWM  
channels each  
3x, 6 channels  
each  
External ADC  
interface  
1x 4 lanes MIPICSI2 Rx, 1 Gbps/lane  
1x PDI (16-bit data,  
clock, sync)  
IRCOSC  
XOSC  
16 MHz  
40 MHz  
FMPLL  
dual system PLL, 1x FM modulated  
1
1
DAC  
1x 12-bit 10 MSps  
1x 12-bit 2 MSps  
SIUL2  
1x  
1x  
1x  
1x  
1x  
1x  
1x  
BAM  
INTC  
SSCM  
FCCU/FOSU  
MEMU  
STCU2  
CSE  
1x  
1x  
-
-
PASS/TDM  
MC_ME  
MC_CGM  
MC_RGM  
TSENS  
1x  
1x  
1x  
2x  
Debug  
JTAGC, JTAGM, CJTAG, with class3+ Nexus, Aurora only  
ISO26262 SEooC ASIL-B to ASIL-D  
-40 to 150˚C  
Safety level  
Temp. range (Tj)  
1. DAC is not supported in S32R264x devices. Hence, ignore its occurrences in this document for S32R264K and S32R264J.  
1.2 Feature list  
On-chip modules available within the device include the following features:  
• Safety core: Power Architecture® e200Z4 32-bit CPU with checker core  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
5
Introduction  
• 2 cycle delayed lockstep  
• Harvard architecture with 64-bit bus for data and instructions  
• Dual issue: up to two instructions per clock cycle  
• 8 KB instruction cache and 4 KB data cache  
• 64 KB data local memory  
• with background load/store: backdoor access  
• 0-wait state for all read and 32/64-bit write accesses  
• Low number of wait states for backdoor accesses  
• Support for decorated storage  
• Variable Length Encoding (VLE) compliant for higher code density  
• Single precision floating point operations  
• Computation cores: Power Architecture® e200Z7 32-bit CPU  
• Dual issue: up to two instructions per clock cycle  
• Harvard architecture with 64-bit bus for data instructions  
• 16 KB instruction cache and 16 KB data cache  
• 64 KB data local memory  
• with background load/store: backdoor access  
• 0-wait state for all read and 32/64-bit write accesses  
• Low number of wait states for backdoor accesses  
• Support for decorated storage  
• Using variable length encoding (VLE) for higher code density  
• 4-way integer processing unit (SPE2)  
• 2-way single-precision Floating Point Unit (EFPU2)  
• 2 MB on-chip code flash (FMC flash) with ECC  
• Three ports (one per CPU) shared between code and data flash with 4 × 256 bit  
buffer for code and data flash including prefetch functions  
• Data flash is part of the code flash module  
• Including 64 KB EEPROM emulation  
• 1.5 MB on-chip SRAM with ECC  
• Decorated memory controller to support atomic read-modify-write operations  
• Single- and double-bit error visibility is supported  
• Up to four ports (one per CPU and SPT) and up to 8 banks allow simultaneous  
accesses from different masters to different banks  
• RADAR processing  
• Signal Processing Toolbox (SPT) for RADAR signal processing acceleration  
• Cross Timing Engine (CTE) for precise timing generation and triggering  
• Waveform generation module (WGM) for chirp ramp generation  
• 4x 12-bit ΣΔ-ADC with 10 MSps (not supported on S32R264 devices)  
• One DAC with 10 MSps (not supported on S32R264 devices)  
• MIPICSI2 interface to connect external ADCs  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
6
NXP Semiconductors  
Introduction  
• Four data lanes, with up to 1 Gbps per lane and in total  
• One clock lane  
• Memory Protection  
• Each core memory protection unit provides 24 entries  
• Data and instruction bus system memory protection Unit (SMPU) with 16 region  
descriptors each  
• Register protection  
• Clock Generation  
• 40 MHz external crystal (XOSC)  
• 16 MHz Internal oscillator (IRCOSC)  
• Dual system PLL with one frequency modulated phase-locked loop (FMPLL)  
• Low-jitter PLL to ΣΔ-ADC and DAC clock generation  
• Functional Safety  
• Enables up to ASIL-D applications  
• End to end ECC ensuring full protection of all data accesses throughout the  
system, from each of the systems masters through the crossbar and into the  
memories and peripherals  
• FCCU for fault collection and fault handling  
• MEMU for memory error management  
• Safe eDMA controller  
• User selectable Memory BIST (MBIST) can be enabled to run out of various  
reset conditions or during runtime  
• Self-Test Control Unit (STCU2)  
• Error Injection Module (EIM)  
• On-chip voltage monitoring  
• Clock Monitor Unit (CMU) to support monitoring of critical clocks  
• Security  
• Cryptographic Security Engine (CSE2) enabling advanced security management  
• Supports censorship and life-cycle management via Password and Device  
Security (PASS) module  
• Diary control for tamper detection (TDM)  
• Support Modules  
• Global Interrupt controller (INTC) capable of routing interrupts to any CPU  
• Semaphore unit to manage access to shared resources  
• Two CRC computation units with four polynomials  
• 32-channel eDMA controller with multiple transfer request sources using  
DMAMUX  
• Boot Assist Module (BAM) supports internal flash programming via a serial link  
(LIN / CAN)  
• Timers  
• Two Periodic Interval Timers (PIT) with 32-bit counter resolution  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
7
Introduction  
• Three System Timer Module (STM)  
• Three Software Watchdog Timers (SWT)  
• Two eTimer modules with 6 channels each  
• One FlexPWM module for 12 PWM signals  
• Communication Interfaces  
• Two Serial Peripheral interface (SPI) module  
• Two inter-IC communication interface (I2C) modules  
• One LINFlexD module  
• One dual-channel FlexRay module with 128 message buffers  
• Three FlexCAN modules with configurable buffers  
• CAN FD optionally supported on 2 FlexCAN modules  
• One ENET MAC supporting MII/RMII/RGMII interface  
• Supports 10/100 Mbps (MII/RMII/RGMII) and >100 Mbps (RGMII)  
• Supports IEEE1588 timestamps and PTP  
• Zipwire high-speed serial communication  
• Supports LFAST and SIPI protocol  
• Fast interprocessor communication with 320 Mbps gross data rate  
• DMA based access to memory resources  
• Debug Functionality  
• 4-pin JTAG interface and Nexus/Aurora interface for serial high-speed tracing  
• e200Z7 core and e200Z4 core: Nexus development interface (NDI) per IEEE-  
ISTO 5001-2012 Class 3+  
• All platform bus masters except CSE can be monitored via Nexus/Aurora  
• Device/board boundary Scan testing supported with per Joint Test Action Group  
(JTAG) (IEEE 1149.1) and 1149.7 (cJTAG)  
• On-chip control for Nexus development interface by JTAGM module  
• Two analog-to-digital converters (SAR ADC)  
• Each ADC supports up to 16 input channels  
• Cross Trigger Unit to enable synchronization of ADC conversions with eTimer  
• On-chip voltage DC/DC regulator for core clock (VREG)  
• Two Temperature Sensors (TSENS)  
S32R264 feature changes with respect to S32R274 are as follows:  
• SD-ADC’s removed  
• DAC removed  
• SDPLL replaced with AFEPLL  
• Improved radiated emissions in the GLONASS band. Full EMC reports are available  
from NXP on request for both S32R264, and S32R274 to allow the customer to  
select the most suitable part for their usecase.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
8
NXP Semiconductors  
Ordering parts  
1.3 Block diagram  
4x analog  
4x lanes  
MII/RMII/  
RGMII  
CJTAG  
JTAGC  
NPC  
NAL  
NAP  
DTS  
FR  
diff. input  
+ clock  
Zipwire  
INTC  
PIT_1  
SWT_1  
STM_1  
PIT_0  
SWT_0  
STM_0  
4x  
MIPICSI2  
DMA  
SRAM  
(ECC)  
SWT_2  
STM_2  
SDADC  
Safety Lake  
Nexus3+  
Nexus3+  
Nexus3+  
e200z7260  
Core2  
e200z7260  
Core1  
E200z420  
e200z419  
Core0  
VLE  
Checker Core0  
Acquisition  
VLE  
SPE2  
FFT/  
Processing  
Sequencer  
VLE  
SPE2  
VFPU  
FPU  
VLE  
VFPU  
Delay/  
RCCU  
FPU  
64 KB  
DTCM  
Delay/  
RCCU  
64 KB  
DTCM  
Local  
SRAM  
(ECC)  
16 KB  
ICache  
64 KB  
DTCM  
16 KB  
16 KB  
16 KB  
Delay/  
RCCU  
DCache  
ICache  
DCache  
8 KB  
4 KB  
FastDMA  
e2eECC  
async  
ICache  
DCache  
Core MPU 24 Entries  
BIU e2eECC  
Core MPU 24 Entries  
BIU e2eECC  
Core MPU 24 Entries  
BIU e2eECC  
Core MPU 24 Entries  
Safety Lake  
Signal  
BIU e2eECC  
Processing  
Toolbox (SPT)  
e2eECC  
e2eECC  
e2eECC  
Nexus Data  
Trace  
Nexus Data  
Trace  
Nexus Data  
Trace  
DAC  
SD VREGs  
SDPLL  
CSE  
Data Crossbar Switch (AMBA 2.0 v6 AHB) 64 bit  
System memory Protection Unit SMPU_0  
Instr. Crossbar Switch (AMBA 2.0 v6 AHB) 64- bit  
System memory Protection Unit SMPU_1  
IRCOSC  
XOSC  
TSENS_0/1  
LVD  
Dual  
FMPLL  
VREG  
Triple  
Ported  
Flash Controller  
(PFLASH)  
Quad Ported  
SRAM Controller  
(PRAM)  
Cal  
AIPS-Lite_1  
e2eECC  
AIPS-Lite_0  
e2eECC  
e2eECC  
e2eECC  
2 MB Flash memory  
up to 64 KB DFlash  
ECC  
1.5 MB SRAM  
8 Banks  
ECC  
Figure 1. S32R274 block diagram  
NOTE  
S32R264 devices support AFE PLL while S32R274 devices  
support SDPLL.  
2 Ordering parts  
2.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to www.nxp.com and perform a part number search for the  
device number.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
9
Part identification  
3 Part identification  
3.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
3.2 Fields  
This section lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 2. Configuration  
257MAPBGA  
Configuration  
Performance  
Temperature  
FS32R274KSK2MMM  
FS32R274KCK2MMM  
FS32R274VBK2MMM  
FS32R274VCK2MMM  
FS32R274KSK2VMM  
FS32R274KCK2VMM  
FS32R274VBK2VMM  
FS32R274VCK2VMM  
FS32R274JSK2MMM  
FS32R264KBK0MMM  
FS32R264KCK0MMM  
FS32R264JBK0MMM  
FS32R264JCK0MMM  
S
C
B
C
S
C
B
C
S
B
C
B
C
K
K
V
V
K
K
V
V
J
M
M
M
M
V
V
V
V
M
M
M
M
M
K
K
J
J
Table 3. Configuration  
Configuration  
2 MB Flash  
1.5 MB RAM  
Yes  
CSE  
Yes  
No  
B or S  
C
Yes  
Yes  
Yes  
Table 4. Performance  
Perf (MHz)  
Z7  
Z7  
Z4  
Z4  
K
240  
240  
120  
120  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
10  
NXP Semiconductors  
General  
Table 4. Performance (continued)  
Perf (MHz)  
Z7  
Z7  
200  
266  
Z4  
Z4  
100  
133  
V
J
200  
266  
100  
133  
Table 5. Temperature values  
Temperature  
TA  
M
V
-40 oC to 125 oC  
-40 oC to 105 oC  
4 General  
4.1 Absolute maximum ratings  
NOTE  
Functional operating conditions appear in the DC electrical  
characteristics. Absolute maximum ratings are stress ratings  
only, and functional operation at the maximum values is not  
guaranteed.  
Stress beyond the listed maximum values may affect device  
reliability or cause permanent damage to the device.  
Table 6. Absolute maximum ratings  
Symbol  
VDD_HV_PMU  
VDD_HV_REG3V8  
VDD_HV_IO*  
Parameter  
Conditions  
Min  
–0.3  
–0.3  
–0.3  
Max  
Unit  
V
3.3 V PMU supply voltage  
REG3V8 Supply Voltage  
4.01, 2  
5.5  
3.631, 2  
V
3.3 V Input/Output Supply Voltage, LFAST IO  
Supply, RGMII IO Supply and PWM IO Supply  
V
VSS_HV_IOx  
VDD_HV_FLA  
VDD_HV_RAW  
VDD_HV_DAC  
VDD_LV_IO*  
VDD  
Input/output ground voltage  
3.3 V flash supply voltage  
AFE RAW supply voltage  
AFE DAC supply voltage  
Aurora supply voltage  
1.25 V core supply voltage3, 4, 5  
1.25 V core supply ground3, 4, 5  
Oscillator amplifier ground  
–0.1  
–0.3  
–0.1  
–0.1  
–0.3  
–0.3  
–0.3  
–0.1  
0.1  
3.631, 2  
4
V
V
V
V
V
V
V
V
4
1.5  
1.5  
0.3  
0.1  
VSS  
VSS_LV_OSC  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
11  
General  
Table 6. Absolute maximum ratings (continued)  
Symbol  
VDD_LV_PLL0  
Parameter  
Conditions  
Min  
–0.3  
–0.3  
–0.3  
–0.1  
Max  
1.5  
1.5  
5.5  
0.1  
Unit  
V
System PLL supply voltage  
VDD_LV_LFASTPLL LFAST PLL supply voltage  
V
VDD_HV_ADCREF0/1 ADC_0 and ADC_1 high reference voltage  
V
VSS_HV_ADCREF0/1 ADC_0 and ADC_1 ground and low reference  
voltage  
V
VDD_HV_ADC  
VSS_HV_ADC  
TVDD  
3.3 V ADC supply voltage  
–0.3  
–0.1  
4.0 1, 2  
0.1  
V
V
3.3 V ADC supply ground  
Supply ramp rate6  
0.00005  
-0.3  
0.1  
V/μs  
V
VIN_XOSC  
VINA  
Voltage on XOSC pins with respect to ground  
Voltage on SAR ADC analog pin with respect to  
1.47  
6.0  
–0.3  
V
ground (VSS_HV_ADCREFx  
)
VINA_SD  
Voltage on Sigma-Delta ADC analog pin with  
respect to ground7  
Powered up 8  
-0.3  
-0.3  
–0.3  
VDD_HV_RAW  
0.3  
+
V
Powered down  
1.47  
9
VIN  
Voltage on any digital pin with respect to  
Relative to  
VDD_HV_IOx  
VDD_HV_IOx + 0.3  
V
10  
ground (VSS_HV_IOx  
)
VDD_LV_DPHY  
VSS_LV_DPHY  
IINJPAD  
MIPICSI2 DPHY voltage supply3, 4, 5  
MIPICSI2 DPHY supply ground3, 4, 5  
–0.3  
–0.3  
–10  
1.5  
0.3  
1012  
V
V
Injected input current on any pin during  
overload condition11  
mA  
IINJSUM  
TSTG  
Absolute sum of all injected input currents  
during overload condition  
–50  
–55  
50  
mA  
°C  
Storage temperature  
150  
1. 5.3 V for 10 hours cumulative over lifetime of device; 3.3 V +10% for time remaining.  
2. Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.  
3. 1.45 V to 1.5 V allowed for 60 seconds cumulative time at maximum TJ = 150°C; remaining time as defined in note 5 and  
note 6.  
4. 1.375 V to 1.45 V allowed for 10 hours cumulative time at maximum TJ = 150°C; remaining time as defined in note 6.  
5. 1.32 V to 1.375 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.275 V at  
maximum TJ=150°C.  
6. TVDD is relevant for all external supplies.  
7. ADC inputs include an overvoltage detect function that detects any voltage higher than 1.2 V with respect to ground on  
either ADC input and open circuit (disconnect) the input in order to prevent damage to the ADC internal circuitry. The ADC  
input remains disconnected until the inputs return to the normal operating range.  
8. SDADC is powered up and overvoltage protection is ON.  
9. SDADC is powered up and overvoltage protection is OFF.  
10. Only when VDD_HV_IOx < 3.63 V.  
11. No input current injection circuitry on AFE pins.  
12. The maximum value of 10 mA applies to pulse injection only. DC current injection is limited to a maximum of 5 mA.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
12  
NXP Semiconductors  
General  
4.2 Operating conditions  
The following table describes the operating conditions for the device, and for which all  
specifications in the datasheet are valid, except where explicitly noted. The device  
operating conditions must not be exceeded, or the functionality of the device is not  
guaranteed.  
Table 7. Device operating conditions  
Symbol  
VDD_HV_PMU  
VDD_HV_REG3V8  
VDD  
Parameter  
Conditions  
Min  
3.132  
3.13  
1.192  
3.132  
Typ  
3.3  
Max1  
3.6  
Unit  
V
3.3V PMU Supply Voltage  
REG3V8 Supply Voltage  
Core Supply Voltage  
3.8  
5.5  
1.313  
V
1.25  
3.3  
V
VDD_HV_IO*  
Main GPIO 3V Supply  
Voltage, LFAST IO Supply,  
RGMII IO Supply, PWM IO  
Supply Voltage  
3.6  
V
4
VDD_LV_IO_*  
Aurora Supply Voltage  
1.19  
1.192  
1.19  
3.132  
3.132  
1.25  
1.31  
1.31  
1.31  
3.6  
V
V
V
V
V
VDD_LV_PLL0  
System PLL Supply Voltage  
VDD_LV_LFASTPLL LFAST PLL Supply Voltage  
5
VDD_HV_FLA  
Flash Supply Voltage  
3.3  
3.3  
VDD_HV_ADC  
VDD_HV_RAW  
VDD_HV_DAC  
SAR ADC Supply Voltage  
(HVD supervised)  
3.66  
3.3V AFE RAW Supply  
Voltage  
3.13  
3.13  
3.13  
3.3  
3.3  
3.3  
3.6  
3.6  
3.6  
V
3.3V AFE DAC Supply  
Voltage  
V
VDD_HV_ADCREF0/1 ADC_0 and ADC_1 high  
reference voltage  
V
V
VIN  
Voltage on digital pin with  
respect to ground (VSS_HV_IOx  
Differential  
VDD_HV_IOx  
+0.3  
)
VINSDPP  
Sigma-Delta ADC Input  
Voltage (peak-peak)7, 8  
1.2  
165  
40.25  
25  
V
VINSR  
Sigma-Delta ADC Input Slew  
Rate7  
V/μs  
kΩ  
RTRIM_TOL  
RTRIM_TEMPCO  
External Trim Resistor  
tolerance  
0.1%  
40.16  
40.2  
External Trim Resistor  
Temperature Coefficient  
ppm/°C  
V
9
VINA  
Voltage on SAR ADC analog  
pin with respect to ground  
VDD_HV_ADCRE  
Fx  
(VSS_HV_ADCREFx  
)
VDD_LV_DPHY  
MIPICSI2 DPHY voltage  
supply10  
1.19  
–40  
1.25  
1.31  
125  
V
, 11  
TA  
Ambient temperature at full  
performance 12  
°C  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
13  
General  
Table 7. Device operating conditions (continued)  
Symbol  
Parameter  
Conditions  
Min  
–40  
Typ  
Max1  
150  
Unit  
°C  
11  
TJ  
Junction temperature  
XOSC Crystal Frequency13  
FXTAL  
40  
MHz  
AFE Bypass Modes Only  
Single-Ended External Clock14  
EXTALclk  
Vinxoscjit  
Vinxoscclkvil  
Vinxoscclkvih  
tr/tf  
EXTAL external clock  
frequency  
40  
MHz  
ps  
V
EXTAL external clock Cycle to  
Cycle Jitter (RMS)  
0
2.515  
0.4  
1.23  
1
EXTAL external clock input  
low voltage  
EXTAL external clock input  
high voltage  
1
V
Rise/fall time of EXTAL  
external clock input  
ns  
%
tdc  
Duty Cycle of EXTAL external  
clock input  
47  
50  
40  
53  
Differential LVDS External Clock  
LVDSclk  
LVDS external clock  
frequency  
MHz  
V
LVDSVinxoscclk  
LVDS external clock input  
voltage  
0
1.36  
1.12  
LVDSVinxoscclk(p-p) LVDS external clock input  
voltage (peak-peak)  
Voltage driven,  
AC coupled  
0.45  
0.70  
3.5  
V
Differential  
LVDSIinxoscclk  
LVDS external clock input  
current  
Current driven,  
DC coupled.  
3.0  
4.0  
mA  
LVDSVinxoscjit  
tr /tf  
LVDS external clock Jitter  
(RMS) 15  
2.5  
1.5  
53  
ps  
ns  
%
Rise/fall time of LVDS  
external clock input  
20% - 80%  
tdcLVDS  
Duty Cycle of LVDS external  
clock input  
47  
50  
1. Full functionality cannot be guaranteed when voltages are out of the recommended operating conditions.  
2. Min voltage takes into account the LVD variation.  
3. Max voltage takes into account HVD variation.  
4. Aurora supply must connect to core supply voltage at board level.  
5. The ground connection for the VDD_HV_FLA is shared with VSS  
.
6. Supply range does not take into account HVD levels. Full range can be achieved after power-up, if HVD is disabled. See  
Voltage regulator electrical characteristics section for details.  
7. Around common mode voltage of 0.7 V. Input voltage cannot exceed 1.4 V prior to AFE start-up completion (VREF and  
VREGs on and LVDs cleared).  
8. SDADC input voltage full scale is 1.2 Vpp  
9. On channels shared between ADC0 and 1, VDD_HV_ADCREFx is the lower of VDD_HV_ADCREF0/1.  
10. VDD_LV_DPHY supply should be shorted to core supply voltage VDD on board. Refer to AN5251. Contact your NXP sales  
representative for details.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
14  
NXP Semiconductors  
General  
11. While determining if the operating temperature specifications are met, either the ambient temperature or junction  
temperature specification can be used. It is critical that the junction temperature specification is not exceeded under any  
condition.  
12. Full performance means full frequency.  
13. Recommended Crystal 40 MHz (ESR≤30 Ω), 8 pF load capacitance.  
14. External mode can be used as differential input with EXTAL and XTAL  
15. The number is 3.5 ps when SD-ADC and/or DAC is not used in the device.  
4.3 Supply current characteristics  
Current consumption data is given in the following table. These specifications are design  
targets and are subject to change per device characterization.  
Table 8. Current consumption characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
IDD_CORE  
Core current in run mode All cores at max frequency. 1.31 V. Tj = 150°C (240  
MHz)  
-
-
14801 mA  
16421  
All cores at max frequency. 1.31 V. Tj = 150°C (266  
MHz)  
IDD_HV_FLA  
Flash operating current  
Tj = 150°C. VDD_HV_FLA = 3.6 V  
-
-
32  
-
403  
60  
mA  
mA  
IDD_LV_AURORA Aurora operating current Tj = 150°C. VDD_LV_AURORA = 1.31 V. 4 TX lanes  
enabled.  
IDD_HV_ADC  
ADC operating current  
Tj = 150°C. VDD_HV_ADC = 3.6 V. 2 ADCs operating  
at 80 MHz.  
-
2
5
mA  
mA  
IDD_HV_ADCREF Reference current per  
ADC4  
Tj = 150°C. VDD_HV_ADCREFx = 3.6 V. ADC operating  
at 80 MHz.  
-
-
-
-
1.5  
0.75  
Reference current per  
temp sensor5  
IDD_HV_RAW  
IDD_HV_DAC  
IDD_HV_PMU  
IDD_LV_DPHY  
AFE SD and regulator  
operating current  
Tj = 150°C. VDD_HV_RAW = 3.6 V. SD-PLL, AFE  
regulators and 4 SD enabled.  
-
-
-
-
706  
10  
2
75  
15  
10  
mA  
mA  
mA  
mA  
AFE DAC operating  
current  
Tj = 150°C. VDD_HV_DAC = 3.6 V. DAC enabled.  
PMU operating current  
Tj = 150°C. VDD_HV_PMU = 3.6 V. Internal  
regulation enabled.  
MIPICSI2 DPHY  
operating current in HS-  
RX mode  
Tj = 150°C, VDD_LV_DPHY =1.31 V  
14.9 23.2  
1. Strong dependence on use case, cache usage.  
2. Measured during flash read.  
3. Peak Flash current measured during read while write (RWW) operation.  
4. ADC0 and 1 on ADCREF0/1.  
5. Temp sensor current when PMC_CTL_TD[TSx_AOUT_EN] = 1. TS0 on ADCREF0/1.  
6. Typical number is approximately 10 mA per each SD-ADC enabled, 12 mA for SD-PLL and 15 mA for the AFE regulators.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
15  
General  
4.4 Voltage regulator electrical characteristics  
Table 9. Voltage regulator electrical specifications  
Symbol  
POR-R  
Parameter  
Conditions  
Min  
0.97  
Typ  
1.02  
Max  
1.06  
Unit  
V
1.25 V VDD core POR release  
1.25 V VDD core POR engage  
POR-E  
0.93  
0.98  
1.02  
V
LVD12R  
Low-Voltage Detection 1.25 V release (Core  
VDD supply, and PLL0/1 supply LVDs)  
Untrimmed  
Trimmed  
Untrimmed  
Trimmed  
Trimmed  
1.122  
1.142  
1.102  
1.122  
1.33  
1.157  
1.157  
1.137  
1.137  
1.35  
1.192  
1.172  
1.172  
1.152  
1.37  
V
LVD12R-trim  
LVD12E  
V
Low-Voltage Detection 1.25 V engage (Core  
VDD supply and PLL0/1 supply LVDs)  
V
LVD12E-trim  
HVD12R-trim  
V
High-Voltage Detection 1.25 V release  
(Core VDD)  
V
HVD12E-trim  
High-Voltage Detection 1.25 V engage  
(Core VDD supply)  
Trimmed  
1.36  
1.130  
1.111  
2.54  
1.38  
1.157  
1.137  
2.645  
2.60  
1.40  
1.184  
1.163  
2.735  
2.695  
V
V
V
V
V
LVD_MIPI12R-trim  
LVD_MIPI12E-trim  
Low-Voltage Detection 1.25V release  
(MIPICSI2 DPHY supply)  
Low-Voltage Detection 1.25V engage  
(MIPICSI2 DPHY supply)  
POR-R-  
VDD_HV_PMU  
3.3 V PMU supply voltage POR release  
threshold  
POR-E-  
VDD_HV_PMU  
3.3 V PMU supply voltage POR engage  
threshold  
2.50  
LVD33R  
LVD33R-trim  
LVD33E  
3.3V Low-Voltage Detection Release  
Threshold (PMC, FLASH, IO, ADC)  
Untrimmed  
Trimmed  
2.90  
3.00  
2.86  
2.96  
3.45  
3.47  
3.51  
3.51  
2.75  
3.02  
3.05  
2.98  
3.01  
3.61  
3.53  
3.65  
3.57  
2.90  
3.13  
3.10  
3.09  
3.06  
3.75  
3.58  
3.79  
3.62  
3.05  
V
V
V
V
V
V
V
V
V
3.3V Low-Voltage Detection Engage  
Threshold (PMC, FLASH, IO, ADC)  
Untrimmed  
Trimmed  
LVD33E-trim  
HVD33R  
3.3V High-Voltage Detection Release  
Threshold (ADC)  
Untrimmed  
Trimmed  
HVD33R-trim  
HVD33E  
3.3V High-Voltage Detection Engage  
Threshold (ADC)  
Untrimmed  
Trimmed  
HVD33E-trim  
UVL30R  
SMPS under-voltage lockout release  
threshold  
Untrimmed  
UVL25E  
SMPS under-voltage lockout engage  
threshold  
2.40  
2.0  
5
2.55  
3.5  
7
2.7  
5
V
DGLITCHE  
DGLITCHR  
Voltage Detector Deglitcher Filter Time -  
Engage  
µs  
µs  
Voltage Detector Deglitcher Filter Time -  
Release  
12  
RSTDGLTC  
RSTPUP  
VREG_POR_B Input Deglitch Filter Time  
VREG_POR_B Pin Pull-up Resistance  
VREG_SEL Pin Pull-up Resistance  
Internal switched regulator output voltage 1 Load Current from 10 1.19  
mA to 1.8 A  
200  
37  
320  
75  
500  
150  
150  
1.35  
ns  
kΩ  
kΩ  
V
REGENPUP  
VSMPS  
37  
75  
1.255  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
16  
NXP Semiconductors  
General  
Table 9. Voltage regulator electrical specifications (continued)  
Symbol  
Parameter  
Conditions  
Min  
0.65  
0.93  
Typ  
1.00  
1.00  
7.5  
15  
Max  
1.35  
1.07  
Unit  
MHz  
MHz  
%
FSMPS  
Internal switched regulator operating  
frequency without modulation  
Untrimmed  
Trimmed  
FSMPS-M7.5  
FSMPS-M15  
FSMPS-M30  
VREGSWPUP  
Internal switched regulator frequency  
modulation  
%
30  
%
Internal switched regulator gate-driver pull-  
up resistance2  
VREF_BG_T  
PMC bandgap reference voltage for  
SARADC  
Trimmed  
1.20  
1.22  
1.237  
V
V
Vih (VREG_POR_B)  
VREG_POR_B pin High Voltage level  
0.7 x  
VDD_H  
V_PMU  
VDD_H  
V_PMU  
+ 0.3  
Vil (VREG_POR_B)  
LVDAFER  
VREG_POR_B pin Low Voltage level  
-0.3  
2.75  
2.68  
0.3 x  
VDD_H  
V_PMU  
V
V
V
Low Voltage Detection 3.3V Release (AFE  
VDD_HV_DAC and VDD_HV_RAW  
supplies)  
2.80  
2.77  
2.90  
2.86  
LVDAFEE  
Low Voltage Detection 3.3V Engage (AFE  
VDD_HV_DAC and VDD_HV_RAW  
supplies)  
1. Min/Max includes transient load conditions. Steady state voltage is within the core supply operating specifications.  
2. There is a strong pull up from VREG_SWP to VDD_HV_REG3V8 which is connected when SMPS is disabled. The pullup  
has resistance less than 1 Kohm, therefore VREG_SWP should not be connected to ground if unused.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
17  
General  
Figure 2. SMPS External Components Configuration  
Table 10. SMPS External Components  
Ref  
M1  
L1  
Description  
SI3443, 2SQ2315  
2.2 uH 3A < 100 mΩ series resistance (Ex. Bourns SRU8043-2R2Y)  
SS8P3L 8A Schottcky Diode  
D1  
R1  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
24 kΩ  
10 μF Ceramic  
100 nF Ceramic  
100 nF Ceramic (place close to inductor)  
10 uF Ceramic (place close to inductor)  
1 nF Ceramic  
4 x 100 nF + 4 x 10nF Ceramic (place close to MCU supply pins)  
4 x 10 μF Ceramic (place close to MCU supply pins)  
100 nF Ceramic  
1 μF Ceramic (Unless C1 is really close to the pin)  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
18  
NXP Semiconductors  
General  
Figure 3. Radar AFE External Components Configuration  
Table 11. Radar AFE External Components  
Component Component  
Value  
Tolerance  
Placement  
Priority of  
Placement Special notes  
Priority of  
larger cap. 1 smaller cap1  
C1  
C2  
0.47 μF  
0.1 μF  
1.0 μF  
1.0 μF  
0.1 μF  
1.0 μF  
0.1 μF  
1.0 μF  
0.1 μF  
1.0 μF  
0.1 μF  
1.0 μF  
0.1 μF  
1.0 μF  
0.1 μF  
1.0 μF  
0.1μF  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
35%  
3
7
1
C3  
4
C4  
2
C5  
8
C6  
6
C7  
6
C8  
5
C9  
4
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
2
5
3
10  
9
8
7
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
19  
General  
Table 11. Radar AFE External Components (continued)  
Component Component  
Value  
Tolerance  
Placement  
Priority of  
Placement Special notes  
Priority of  
larger cap. 1 smaller cap1  
C18  
C19  
10 μF  
1
X7R type  
220 nF  
Sigma Delta ADC input capacitor. See Figure  
9
C20  
220 nF  
Sigma Delta ADC input capacitor. See Figure  
9
R1  
R2  
40.2 kΩ  
300 Ω  
0.1%  
tempco = 25ppm/C  
DAC Rl See Table 27  
DAC Rl See Table 27  
R3  
300 Ω  
Crystal  
40MHz  
Connected between XOSC_EXTAL/  
XOSC_XTAL, ESR ≤ 30Ω  
1. All Radar AFE external bypass capacitors should be placed as close as possible to the associated package pin. As shown  
in Radar AFE External Components Configuration figure, most pins have two values of bypass capacitor. Greater than 0.1  
μF is referred to as the larger cap. 0.1 μF is referred to as the smaller cap.  
4.5 Electromagnetic Compatibility (EMC) specifications  
EMC measurements to IC-level IEC standards are available from NXP on request.  
4.6 Electrostatic discharge (ESD) characteristics  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This  
test conforms to the AEC-Q100-002/-003/-011 standard.  
NOTE  
A device will be defined as a failure if after exposure to ESD  
pulses the device no longer meets the device specification  
requirements. Complete DC parametric and functional testing  
shall be performed per applicable device specification at room  
temperature followed by hot temperature, unless specified  
otherwise in the device specification.  
Table 12. ESD ratings  
No.  
Symbol  
Parameter  
Electrostatic discharge  
(Human Body Model)  
Conditions1  
Class  
Max value2  
Unit  
1
VESD(HBM)  
TA = 25 °C  
H1C  
2000  
V
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
20  
NXP Semiconductors  
I/O Parameters  
Table 12. ESD ratings (continued)  
No.  
Symbol  
Parameter  
Conditions1  
Class  
Max value2  
Unit  
conforming to AEC-  
Q100-002  
2
VESD(CDM)  
Electrostatic discharge  
(Charged Device Model)  
TA = 25 °C  
C3A  
5003  
V
conforming to AEC-  
Q100-011  
750 (corners)  
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.  
2. Data based on characterization results, not tested in production.  
3. 500 V for non-AFE pins, 250 V for AFE pins.  
5 I/O Parameters  
5.1 I/O pad DC electrical characteristics  
NMI, TCK, TMS, JCOMP are treated as GPIO.  
Table 13. I/O pad DC electrical specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Vih_hys  
Vil_hys  
Vih  
CMOS Input Buffer High Voltage (with hysteresis  
enabled)  
0.65*VDD_HV_IO VDD_HV_IO + 0.3  
V
V
V
V
CMOS Input Buffer Low Voltage (with hysteresis  
enabled)  
-0.3  
0.35*VDD_HV_IO  
CMOS Input Buffer High Voltage (with hysteresis  
disabled)  
0.55 * VDD_HV_IO VDD_HV_IO + 0.3  
Vil  
CMOS Input Buffer Low Voltage (with hysteresis  
disabled)  
-0.3  
0.40 * VDD_HV_IO  
Vhys  
CMOS Input Buffer Hysteresis  
0.1 * VDD_HV_IO  
2
VDD_HV_ADCREFx  
+ 0.3  
V
V
VihTTL  
TTL Input high level voltage (All SAR_ADC input pins)  
VilTTL  
VhystTTL  
Pull_Ioh  
Pull_Iol  
Iinact_d  
Voh  
TTL Input low level voltage (All SAR_ADC input pins)  
TTL Input hysteresis voltage (All SAR_ADC input pins)  
Weak Pullup Current1  
-0.3  
0.56  
V
V
0.3  
10  
55  
µA  
µA  
µA  
V
Weak Pulldown Current2  
10  
55  
Digital Pad Input Leakage Current (weak pull inactive)  
Output High Voltage3  
-2.5  
2.5  
0.8 * VDD_HV_IO  
Vol  
Output Low Voltage4  
18  
0.2 * VDD_HV_IO  
V
Ioh_f  
Full drive Ioh5 (ipp_sre[1:0] = 11)  
Full drive Iol5 (ipp_sre[1:0] = 11)  
Half drive Ioh5 (ipp_sre[1:0] = 10)  
Half drive Iol5 (ipp_sre[1:0] = 10)  
70  
120  
35  
mA  
mA  
mA  
mA  
Iol_f  
21  
Ioh_h  
Iol_h  
9
10.5  
60  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
21  
I/O Parameters  
1. Measured when pad = 0 V  
2. Measured when pad = VDD_HV_IO  
3. Measured when pad is sourcing 2 mA  
4. Measured when pad is sinking 2 mA  
5. Ioh/Iol is derived from spice simulations. These values are NOT guaranteed by test.  
5.1.1 RGMII pad DC electrical characteristics  
Table 14. RGMII pad DC electrical specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Vih  
CMOS Input Buffer High Voltage  
CMOS Input Buffer Low Voltage  
Weak Pullup Current1  
0.65 x VDD_HV_IO  
VDD_HV_IO + 0.3  
V
Vil  
-0.3  
10  
0.35 x VDD_HV_IO  
V
Pull_Ioh  
Pull_Iol  
Iinact_d  
55  
55  
µA  
µA  
µA  
Weak Pulldown Current2  
10  
Digital Pad Input Leakage Current (weak pull  
inactive)  
-2.5  
2.5  
Voh  
Vol  
Output High Voltage3  
Output Low Voltage4  
Full drive Ioh5  
0.8 x VDD_HV_IO  
V
V
8
0.2 * VDD_HV_IO  
Ioh_f  
Iol_f  
26  
24  
mA  
mA  
Full drive Iol6  
8
1. Measured when pad = 0 V  
2. Measured when pad = VDD_HV_IO  
3. Measured when pad is sourcing 2 mA  
4. Measured when pad is sinking 2 mA  
5. Ioh_f value is measured with 0.8*VDDE applied to the pad.  
6. Iol_f is measured when 0.2*VDDE is applied to the pad.  
5.2 I/O pad AC specifications  
AC Parameters are specified over the full operating junction temperature range of -40°C  
to +150°C and for the full operating range of the VDD_HV_IO supply defined in Table 7.  
Table 15. Functional Pad electrical characteristics  
Symbol  
Prop. Delay (ns)1  
Rise/Fall Edge (ns)2  
Drive Load (pF)  
SIUL2_MSCR[SRC  
]
L>H/H>L  
Min  
2.5/2.5  
6.4/5  
Max  
8.25/7.5  
19.5/19.5  
8/8  
Min  
Max  
3/3  
MSB,LSB  
pad_sr_hv  
(output)  
0.7/0.6  
2.5/2.0  
0.4/0.3  
1.0/0.8  
6.5/3.0  
50  
200  
25  
11  
12/12  
3.5/3.5  
6.5/6.5  
25/21  
2.2/2.5  
2.9/3.5  
11/8  
10  
12.5/11  
35/31  
50  
200  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
22  
NXP Semiconductors  
I/O Parameters  
Table 15. Functional Pad electrical characteristics (continued)  
Symbol  
Prop. Delay (ns)1  
Rise/Fall Edge (ns)2  
Drive Load (pF)  
SIUL2_MSCR[SRC  
]
L>H/H>L  
Min  
8.3/9.6  
13.5/15  
13/13  
Max  
45/45  
65/65  
75/75  
100/100  
2/2  
Min  
4/3.5  
Max  
25/25  
30/30  
40/40  
51/51  
0.5/0.5  
MSB,LSB  
50  
200  
50  
013  
6.3/6.2  
6.8/6  
003  
NA  
21/22  
11/11  
200  
0.5  
pad_sr_hv  
(input)4  
1. As measured from 50% of core side input to Voh/Vol of the output  
2. Measured from 20% - 80% of output voltage swing  
3. Slew rate control modes  
4. Input slope = 2ns  
NOTE  
Data based on characterization results, not tested in production.  
Table 16. Functional Pad AC Specifications  
Symbol  
Parameter  
Value  
Typ  
4.7  
Unit  
Min  
Max  
pad_sr_hv(Cp)  
Parasitic Input Pin Capacitance  
4.5  
5.0  
pF  
5.3 Aurora LVDS driver electrical characteristics  
NOTE  
The Aurora interface is AC coupled, so there is no common-  
mode voltage specification.  
Table 17. Aurora LVDS driver electrical characteristics  
Symbol  
Parameter1  
Value  
Typ  
Unit  
Min  
Max  
FTXRX  
Data rate  
1.15  
Gbps  
Transmitter Specifications  
Vdiffout  
Differential output voltage swing (terminated)  
Rise/Fall time (10% - 90% of swing)  
+/- 400  
60  
+/- 600  
+/- 800  
+/- 800  
mV  
ps  
Trise/Tfall  
Receiver Specifications  
Vdiffin  
Differential voltage  
+/- 100  
mV  
Termination  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
23  
I/O Parameters  
Symbol  
Table 17. Aurora LVDS driver electrical characteristics (continued)  
Parameter1  
Value  
Typ  
Unit  
Min  
Max  
101  
1
RV_L  
CP  
Terminating Resistance (external)  
Parasitic Capacitance (pad + bondwire + pin)  
Parasitic Inductance  
99  
100  
Ohms  
pF  
LP  
7
nH  
STARTUP  
TSTRT_BIAS  
TSTRT_TX  
Bias startup time  
Transmitter startup time2  
Receiver startup time2  
Receiver o/p duty cycle  
30  
5
5
µs  
µs  
µs  
%
TSTRT_RX  
LVDS_RXOUT3  
5
70  
1. Conditions for these values are VDD_LV_IO_AURORA = 1.19V to 1.32V, TJ = –40 / 150 °C  
2. Startup time is defined as the time taken by LVDS current reference block for settling bias current after its pwr_down  
(power down) has been deasserted. LVDS functionality is guaranteed only after the startup time.  
3. Receiver o/p duty cycle is measured with 1.25 Gbps, 50% duty cycle, max 1 ns rise/fall time, 100 mV voltage swing signal  
applied at the receiver input.  
5.4 Reset pad electrical characteristics  
The device implements a dedicated bidirectional RESET_B pin.  
V
DD_HV_IOx  
V
DDMIN  
RESET_B  
V
IH  
V
IL  
device reset forced by RESET_B  
device start-up phase  
Figure 4. Start-up reset requirements  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
24  
NXP Semiconductors  
I/O Parameters  
VRESET_B  
hw_rst  
‘1’  
V
DD_HV_IO  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 5. Noise filtering on reset signal  
Table 18. RESET_B electrical characteristics  
Symbol  
Parameter  
Conditions1  
Value  
Unit  
Min  
Typ  
Max  
VIH  
Input high level TTL (Schmitt Trigger)  
2.0  
VDD_HV_IOx  
0.4  
+
V
VIL  
Input low level TTL (Schmitt Trigger)  
Input hysteresis TTL (Schmitt Trigger)  
Strong pull-down current  
–0.4  
300  
0.2  
0.56  
V
2
VHYS  
mV  
mA  
IOL_R  
Device under power-on reset  
VDD_HV_IO = 1.2 V  
VOL = 0.35 x VDD_HV_IO  
Device under power-on reset  
VDD_HV_IO=3.0 V  
VOL = 0.35 x VDD_HV_IO  
15  
mA  
WFRST  
RESET_B input filtered pulse  
500  
ns  
ns  
µA  
WNFRST  
RESET_B input not filtered pulse  
2400  
30  
|IWPD  
|
Weak pull-down current absolute value VIN = VDD_HV_IOx  
100  
1. VDD_HV_IOx = 3.3 V -5%,+10%, TJ = –40 / 150°C, unless otherwise specified.  
2. Data based on characterization results, not tested in production.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
25  
Peripheral operating requirements and behaviours  
6 Peripheral operating requirements and behaviours  
6.1 Clocks and PLL Specifications  
6.1.1 40 MHz Oscillator (XOSC) electrical characteristics  
The device provides an oscillator/resonator driver.  
NOTE  
XTAL/EXTAL must not be directly used to drive external  
circuits.  
Table 19. XOSC electrical characteristics  
Symbol  
XOSCfout  
tstab  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
MHz  
ms  
Oscillator frequency  
Oscillator start-up time  
40  
2
tjitcc  
Cycle to cycle jitter (peak –  
peak)  
2.51  
ps  
Output Duty Cycle  
Input Capacitance 2  
45  
3.0  
75  
50  
4.0  
100  
55  
5.0  
125  
%
pF  
Cin  
Extal and Xtal each  
RinLVDS  
LVDS bypass mode input  
termination3  
Between Extal and Xtal  
ohm  
VCMLVDS  
LVDS Common Mode  
Voltage  
Vdda/2  
0.60  
0.70  
0.80  
V
1. The number is 3.5 ps when SD-ADC and/or DAC is not used in the device.  
2. When using a 40 MHz crystal, the recommended load capacitance is 8 pF. Need quiet ground connection on the board  
and external crystal/load capacitor placement as close to the Extal and Xtal pins as possible to allow good jitter  
performance.  
3. The termination resistance is only active when the AFE is powered (VDD_HV_RAW, VDD_HV_DAC and the AFE  
regulators are powered up) and the XOSC is powered down (default case once device is out of reset) or the XOSC is  
configured in differential bypass mode.  
6.1.2 FMPLL electrical characteristics  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
26  
NXP Semiconductors  
Clocks and PLL Specifications  
PLL_0_PHI0  
IRCOSC  
XOSC  
PLL_0  
PLL_0_PHI1  
PLL_1_PHI0  
PLL_1  
Figure 6. PLL integration  
Table 20. PLL0 electrical characteristics  
Symbol  
fPLL0IN  
Parameter  
PLL0 input clock2, 3  
Conditions1  
Min  
14  
Typ  
Max  
44  
Unit  
MHz  
%
PLL0IN  
PLL0 input clock duty cycle2  
PLL0 VCO frequency  
PLL0 output clock PHI0  
PLL0 output clock PHI1  
PLL0 lock time  
40  
60  
fPLL0VCO  
fPLL0PHI0  
fPLL0PHI1  
tPLL0LOCK  
PLL0LTJ  
600  
4.76  
20  
1250  
6254  
156  
100  
1
MHz  
MHz  
MHz  
µs  
PLL0 long term jitter fPLL0IN = 8 MHz  
(resonator)5  
fPLL0PHI0 = 40 MHz, 1 μs  
fPLL0PHI0 = 40 MHz, 13 μs  
ns  
1
ns  
IPLL0  
PLL0 consumption  
5
mA  
1. VDD_LV_PLL0 =1.25 V 5%, TJ = -40 / 150 °C unless otherwise specified.  
2. PLL0IN clock retrieved directly from either IRCOSC or external XOSC clock.  
3. fPLL0IN frequency must be scaled down using PLLDIG_PLL0DV[PREDIV] to ensure the reference clock to the PLL analog  
loop is in the range 8 MHz-20 MHz  
4. The maximum clock outputs are limited by the design clock frequency requirements as per recommended operating  
conditions.  
5. VDD_LV_PLL0 noise due to application in the range VDD_LV_PLL0 = 1.25 V 5%, with frequency below PLL bandwidth (40 KHz)  
will be filtered.  
Table 21. FMPLL1 electrical characteristics  
Symbol  
fPLL1IN  
Parameter  
PLL1 input clock2  
PLL1 input clock duty cycle2  
PLL1 VCO frequency  
PLL1 output clock PHI0  
PLL1 lock time  
Conditions1  
Min  
38  
Typ  
Max  
78  
Unit  
MHz  
%
PLL1IN  
35  
65  
fPLL1VCO  
fPLL1PHI0  
tPLL1LOCK  
fPLL1MOD  
|δPLL1MOD  
600  
4.76  
1250  
625  
100  
250  
2
MHz  
MHz  
µs  
PLL1 modulation frequency  
kHz  
%
|
PLL1 modulation depth (when  
enabled)  
Center spread  
Down spread  
0.25  
0.5  
4
%
IPLL1  
PLL1 consumption  
6
mA  
1. VDD_LV_PLL0 = 1.25 V 5%, TJ = -40 / 150°C unless otherwise specified.  
2. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
27  
Clocks and PLL Specifications  
6.1.3 16 MHz Internal RC Oscillator (IRCOSC) electrical specifications  
Table 22. Internal RC Oscillator electrical specifications  
Symbol  
FTarget  
Parameter  
IRC target frequency  
Conditions  
Min  
Typ  
16  
Max  
24  
8
Unit  
MHz  
MHz  
%
Funtrimmed  
δFvar  
IRC frequency (untrimmed)  
IRC trimmed frequency variation 1  
Startup time  
9.6  
-8  
Tstartup  
5
µs  
1. The typical user trim step size (δfTRIM) is 0.3% of current frequency for application of positive trim and 0.26% of current  
frequency for application of negative trim, based on characterization results.  
6.1.4 320 MHz AFE PLL electrical characteristics  
Table 23. 320 MHz AFE PLL parameters  
Symbol  
PLLfout  
Parameter  
Output Frequency  
Conditions  
Min  
Typ  
320  
Max  
Unit  
MHz  
PLLfin  
tcal  
Input Frequency  
Calibration Time 1  
40  
MHz  
µs  
LW64 = 1  
LW64 = 0  
after calibration  
150  
500  
75  
tlock  
tjitcck  
Lock Time  
48  
50  
µs  
ps  
%
Cycle to cycle jitter (peak – peak)  
Output duty cycle  
10  
52  
1. The LW64 bit sets the wait time before the PLL frequency is measured after each calibration step to allow for stabilization.  
If LW64 is '0', wait time of 256 reference clock cycles is used. If LW64 is'1', wait time of 64 reference clock cycles is used.  
6.1.5 LFAST PLL electrical characteristics  
The specifications in the following table apply to the interprocessor bus LFAST interface.  
Table 24. LFAST PLL electrical characteristics  
Symbol  
fRF_REF  
ERRREF  
DCREF  
fVCO  
Parameter  
Condition  
Min  
10  
–1  
45  
Typ  
Max  
26  
1
Unit  
MHz  
%
PLL reference clock frequency  
PLL reference clock frequency error  
PLL reference clock duty cycle  
PLL VCO frequency  
6401  
55  
%
MHz  
μs  
tLOCK  
PLL phase lock2  
40  
300  
ΔPERREF  
Input reference clock jitter (peak to peak) Single period, fRF_REF  
10 MHz  
=
ps  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
28  
NXP Semiconductors  
Analog modules  
Table 24. LFAST PLL electrical characteristics  
(continued)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Long term, fRF_REF = 10 –500  
MHz  
500  
ΔPEREYE  
Output Eye Jitter (peak to peak)3  
Random Jitter (Rj)  
84  
80  
101  
96  
ps  
ps  
Deterministic Jitter (Dj)  
Total Jitter @BER 10-9  
1.09  
1.31  
bits  
per  
second  
IVDD_LV_LFASTPLL  
VDD_LV_LFASTPLL Supply Current  
Normal Mode  
Peak  
6
7
10  
11  
27  
mA  
mA  
μA  
Power Down  
0.5  
1. The 640 MHz frequency is achieved with a 10 MHz or 20 MHz reference clock. With a 26 MHz reference, the VCO  
frequency is 624 MHz.  
2. The time from the PLL enable bit register write to the start of phase locks is maximum 2 clock cycles of the peripheral  
bridge clock that is connected to the PLL on the device.  
3. Measured at the transmitter output across a 100 Ω termination resistor on a device evaluation board.  
7 Analog modules  
7.1 ADC electrical characteristics  
The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-  
Digital Converter.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
29  
Analog modules  
Offset Error OSE Gain Error GE  
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
1 LSB ideal =(VrefH-VrefL)/ 4096 =  
3.3V/ 4096 = 0.806 mV  
Total Unadjusted Error  
TUE = +/- 6 LSB = +/- 4.84mV  
code out7  
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer  
curve  
(5)  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
4089 4090 4091 4092 4093 4094 4095  
Vin(A) (LSBideal  
)
Offset Error OSE  
Figure 7. ADC characteristics and error definitions  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
30  
NXP Semiconductors  
Analog modules  
7.1.1 Input equivalent circuit  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
S
F
L
SW1  
AD  
C
V
C
C
P1  
C
S
A
F
P2  
R
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
S
F
F
L
R
C
R
R
R
C
C
SW1  
AD  
P
Pin Capacitance (two contributions, C and C  
Sampling Capacitance  
)
P1  
P2  
S
Figure 8. Input equivalent circuit  
Table 25. ADC conversion characteristics  
Symbol  
Parameter  
Conditions1  
Min  
Typ  
Max  
Unit  
fCK  
ADC Clock frequency (depends on  
ADC configuration) (The duty cycle  
depends on AD_CK2 frequency.)  
20  
80  
80  
MHz  
fs  
Sampling frequency  
Sample time3  
1.00 MHz  
tsample  
80 MHz@ 200 ohm source  
impedance  
275  
ns  
tsampleC  
TsampleS  
TsampleBG  
TsampleTS  
tconv  
SAR selftest C-algorithm sample time  
SAR selftest S-algorithm sample time  
Bandgap sample time  
300  
1
3
5
ns  
µs  
1.87  
3.18  
650  
µs  
Temperature sensor sample time  
Conversion time4  
µs  
80 MHz  
ns  
, 5  
CS  
ADC input sampling capacitance  
ADC input pin capacitance 1  
ADC input pin capacitance 2  
Internal resistance of analog source  
Internal resistance of analog source  
Integral non-linearity  
pF  
5
CP1  
5
pF  
5
CP2  
0.8  
875  
825  
2
pF  
5
RSW1  
VREF range = 3.0 to 3.6 V  
Ω
5
RAD  
Ω
INL  
DNL  
OFS  
GNE  
–2  
LSB  
LSB  
LSB  
LSB  
Differential non-linearity6  
–1  
1
Offset error  
–4  
4
Gain error  
–4  
4
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
31  
Analog modules  
Symbol  
Table 25. ADC conversion characteristics (continued)  
Parameter  
Conditions1  
Min  
–6  
Typ  
Max  
6
Unit  
LSB  
LSB  
TUEIS1WINJ Total unadjusted error for IS1WINJ  
TUEIS1WWINJ Total unadjusted error for IS1WWINJ  
IS1WINJ (pad (single ADC channel)  
–6  
6
going to one  
nA  
Max leakage  
150 °C  
150 °C  
250  
38  
ADC)  
Max positive/negative injection  
–3  
mA  
IS1WWINJ (double ADC channel)  
(pad going to  
two ADCs)  
nA  
mA  
dB  
Max leakage  
Max positive/negative injection 7  
300  
3.6  
|Vref_ad0 - Vref_ad1| < 150 mV  
3.3 V reference voltage  
@ 50 KHz  
–3.6  
67  
SNR  
THD  
Signal-to-noise ratio  
Total harmonic distortion  
Signal-to-noise and distortion  
Effective number of bits  
65  
dB  
SINAD  
ENOB  
Fin < 50 KHz  
6.02 x ENOB + 1.76  
10.5  
dB  
Fin < 50 KHz  
bits  
1. VDD_HV_ADC = 3.3 V -5%,+10%, TJ = –40 to +150°C, unless otherwise specified and analog input voltage from VAGND to  
VDD_HV_ADCREFx  
.
2. AD_CK clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.  
3. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the  
sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample  
clock tsample depend on programming.  
4. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to  
load the result register with the conversion result.  
5. SeeInput equivalent circuit figure.  
6. No missing codes.  
7. ADC specifications are met only if injection is within these specified limits  
8. Max injection current for all ADC IOs is 10 mA  
NOTE  
The ADC performance specifications are not guaranteed if two  
ADCs simultaneously sample the same shared channel. Aurora  
interface along with SAR-ADC would degrade SAR-ADC  
performance. General Purpose Input (GPI) functionality should  
not be used on any of the SAR-ADC channels when SARADC  
is functional.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
32  
NXP Semiconductors  
Analog modules  
7.2 Sigma Delta ADC electrical characteristics  
Figure 9. ADC input equivalent circuit  
Table 26. Sigma Delta ADC Parameters  
Symbol  
SPSSDA  
LSDA  
Parameter  
Sample Rate  
Latency  
Condition  
Min  
Typ  
10  
Max Unit  
After Decimation Filtering  
10  
MS/S  
µs  
@ 10 MS/s, full step input to 50% output.  
Decimation filter delay not included  
0.1  
RTSDA  
Recovery Time  
After overload condition  
0.5  
µs  
, 1  
SNRSDA_MM_ON  
Signal-to-Noise Ratio Input Frequency Range and integration  
Mismatch Shaper on bandwidth are from 20 KHz to 5 MHz (using  
full-bandwidth decimation filter coefficients).  
Production test frequencies 449 KHz and 4  
MHz. Production test amplitude is -6 dBFS =  
0.6 Vpp.  
63  
67  
dBFS  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
33  
Analog modules  
Symbol  
Table 26. Sigma Delta ADC Parameters (continued)  
Parameter  
Condition  
Min  
Typ  
Max Unit  
Characterized under the following conditions:  
• 0.6 Vpp (i.e. -6 dBFS) input signals  
applied at the following frequencies one  
at a time: 20.77 KHz, 317.7 KHz, 857.7  
KHz, 1.411 MHz, 2.95 MHz, 3.897  
MHz, and 4.997 MHz and the SNR in  
dBFS is then calculated.  
• SNR at 5 MHz will be reduced by 5 dB  
due to decimation filter roll off.  
• The SNR is specified to be 67 dBFS  
typical for input frequencies between 20  
KHz and 4 MHz. Mismatch shaper on.  
1
SNRSDA_MM_OFF  
Signal-to-Noise Ratio Input Frequency Range and integration  
Mismatch Shaper off bandwidth are from 20 KHz to 5 MHz. (using  
full-bandwidth decimation filter coefficients).  
Production test frequencies 449 KHz and 4  
MHz. Production test amplitude is -6 dBFS =  
0.6 Vpp.  
65  
67  
dBFS  
dBFS  
dBFS  
Characterized under the following conditions:  
• 0.6 Vpp (i.e. -6dBFS) input signals  
applied at the following frequencies one  
at a time: 20.77 KHz, 317.7 KHz, 857.7  
KHz, 1.411 MHz, 2.95 MHz, 3.897  
MHz, and 4.997 MHz and the SNR in  
dBFS is then calculated.  
• SNR at 5 MHz will be reduced by 5 dB  
due to decimation filter roll off.  
• The SNR is specified to be 67 dBFS  
typical for input frequencies between 20  
KHz and 4 MHz. Mismatch shaper off.  
1
SNDRSDA_MM_ON Signal-to-Noise-and- Input Frequency Range and integration  
Distortion Ratio bandwidth are from 20 KHz to 5 MHz. (using  
62  
64  
Mismatch Shaper on full-bandwidth decimation filter coefficients).  
Production test frequencies 449 KHz and 4  
MHz. Production test amplitude is -6 dBFS =  
0.6 Vpp.  
Characterized under the following conditions:  
• 0.6 Vpp (i.e. -6 dBFS) input signals  
applied at the following frequencies one  
at a time: 20.77 KHz, 317.7 KHz, 857.7  
KHz, 1.411 MHz, 2.95 MHz, 3.897  
MHz, and 4.997 MHz and the SNDR in  
dBFS is then calculated.  
• SNR at 5 MHz will be reduced by 5 dB  
due to decimation filter roll off.  
• The SNR is specified to be 64 dBFS  
typical for input frequencies between 20  
KHz and 4 MHz. Mismatch shaper on.  
1
SNDRSDA_MM_OFF Signal-to-Noise-and- Input Frequency Range and integration  
Distortion Ratio bandwidth are from 20 KHz to 5 MHz. (using  
60  
62  
Mismatch Shaper off full-bandwidth decimation filter coefficients)  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
34  
NXP Semiconductors  
Analog modules  
Max Unit  
Table 26. Sigma Delta ADC Parameters (continued)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Production test frequencies 449 KHz and 4  
MHz. Production test amplitude is -6 dBFS =  
0.6Vpp.  
Characterized under the following conditions:  
• 0.6 Vpp (i.e. -6 dBFS) input signals  
applied at the following frequencies  
applied one at a time: 20.77 KHz, 317.7  
KHz, 857.7 KHz, 1.411 MHz, 2.95 MHz,  
3.897 MHz, and 4.997 MHz and the  
SNDR in dBFS is then calculated.  
• SNR at 5 MHz will be reduced by 5 dB  
due to decimation filter roll off.  
• The SNR is specified to be 62 dBFS  
typical for input frequencies between 20  
KHz and 4 MHz. Mismatch shaper off.  
IFDRSDA  
Interference Free  
Dynamic Range  
20 ms integration, ADC inputs tied together at 90  
the package pin. One side of the AC coupling  
capacitors associated with each input should  
remain connected to the ADC input and the  
other side of the capacitor should connected  
to ground.  
dBFS  
dBc  
IMDSDA_MM_ON  
Intermodulation  
Input Frequency Range and integration  
62  
Distortion Mismatch bandwidth are from 20 KHz to 5 MHz (using  
Shaper on  
full-bandwidth decimation filter coefficients).  
Characterized under the following conditions:  
• Two distinct sets of signal pairs at the  
specified frequencies and at an  
amplitude of -8 dBFs (i.e. 0.23886  
Vpeak = 0.47772 Vpp differential) are  
applied one signal pair at a time.  
• Signal pair #1 is f1 = 1 MHz and f2 =  
1.1 MHz and signal pair #2 is f1 =  
390.625 KHz and f2 = 546.875 KHz.  
• All inter modulation products are  
checked. Mismatch Shaper on.  
IMDSDA_MM_OFF  
Intermodulation  
Input Frequency Range and integration  
55  
dBc  
Distortion Mismatch bandwidth are from 20 KHz to 5 MHz (using  
Shaper off  
full-bandwidth decimation filter coefficients).  
Characterized under the following conditions:  
• Two distinct sets of signal pairs at the  
specified frequencies and at an  
amplitude of -8 dBFs (i.e. 0.23886  
Vpeak = 0.47772 Vpp differential) are  
applied one signal pair at a time.  
• Signal pair #1 is f1 = 1 MHz and f2 =  
1.1 MHz and signal pair #2 is f1 =  
390.625 KHz and f2 = 546.875 KHz.  
• All inter modulation products are  
checked. Mismatch Shaper off.  
GM  
OE  
Gain Mismatching  
Input Offset Error  
(ADCx to ADCy)  
-3.5  
-25  
3.5  
25  
%
mV  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
35  
Analog modules  
Table 26. Sigma Delta ADC Parameters (continued)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max Unit  
OEV  
Offset Variation  
t = 50 ms, T = constant, data averaged in 1  
ms increments  
-0.07  
0.07  
mV  
Vcm  
Common Mode  
Voltage2  
SDADC switched on  
vdda/2 –  
30 mV  
V
xtalk  
Crosstalk (from any Processing a full scale signal.  
-40  
dB  
ADC to the other  
ADCs)  
Zin  
Input Impedance  
Maximum input impedance occurs for input  
7.3  
33.5  
kΩ  
signals at 20 KHz and minimum input  
impedance occurs at input frequencies  
greater than 1 MHz3  
Rcm  
Resistance from  
each SDADC input to  
Vcm (see Figure 9)  
-
27.3  
9.0  
32.2  
37.0  
12.5  
kΩ  
kΩ  
R_SDADC  
Resistance from  
each SDADC input  
pin to differential  
amplifier input (see  
Figure 9)  
-
10.75  
C_SDADC  
SDADC integrator  
capacitors (see  
Figure 9)  
-
0.636  
2.0  
0.684  
3.9  
0.732  
4.9  
pF  
pF  
Cin parasitic  
parasitic input  
-
capacitance from  
ADC input to ground  
DT  
AA  
Analog Delay  
Variation  
(ADCx to ADCy)  
2
1
3
ns  
dB  
dB  
Alias Suppression  
ADC input frequency between 315 and 325  
MHz  
50  
0
STFoob  
ADC out of band  
Signal Transfer  
Function peaking  
Out of band Signal Transfer function peaking  
from 20 MHz to 40 MHz  
PR  
passband ripple  
From 20 KHz to 4 MHz (default decimation  
filter coefficients must be used)  
-0.5  
0.0  
0.5  
dB  
dB  
OOBA4  
Out Of Band  
Attenuation  
Default decimation filter coefficients must be  
used  
-4.5  
-10  
-20  
-40  
-60  
5 MHz  
6 MHz  
7 MHz  
10 MHz  
15 MHz  
1. Derate specification by 2 dBFS for Tj less than 0°C.  
2. vdda is an internally regulated and trimmed 1.45V 10mV voltage.  
3. The input structure of the ADC is an active RC integrator which has a frequency dependent input impedance as indicated  
in ADC input equivalent circuit.  
4. All attenuation values are relative to 0 dB in the ADC passband.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
36  
NXP Semiconductors  
Analog modules  
7.3 DAC electrical specifications  
NOTE  
• All data is measured in single ended mode. Differential  
mode is guaranteed by design.  
• Specifications guaranteed only if factory trims are not  
overridden.  
Table 27. DAC parameters  
Symbol  
NBIT  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Bits  
Base bits  
PWM bits  
12  
Bits  
4
(extra  
lsb's)  
SPSDAC  
Sample rate  
Linearity1  
10  
MSam  
ples/s  
DNL  
Vout  
Iout  
-24  
1.2  
4.0  
4
LSB  
V
Output Voltage1, 2, 3  
Single-Ended, Rl = 300 Ω  
1.35  
4.5  
Full-Scale Output Current  
DAC full-scale adjust bits set to  
01 or 10  
mA  
NDAC  
DAC output noise 1, 4  
Static Offset Error1, 2  
nV/  
sqrt(Hz  
)
@250 kHz  
@100 kHz  
@10 kHz  
@1 kHz  
20  
30  
65  
170  
SOE  
Single-Ended  
60  
75  
0
100  
30  
mV  
Differential with the full-scale  
adjust bits set to either 01 or 10  
-30  
TOE  
tDV  
Transient Offset Error1, 2, 5  
After low-pass filter and  
averaging  
0.05  
LSB  
ns  
Transient Time Delay Variation 1, 2, 6  
LSB step  
MSB step  
1
10  
Oc  
Output compliance  
single-ended, only the DNL  
0
1.35  
V
specification is guaranteed. The  
TOE and Tdv may be degraded.  
tempco  
PSRR  
Temperature coefficient  
–1  
30  
1.0  
LSB/K  
2
Power Supply Rejection Ratio7  
Freq < 250 KHz  
dB  
1. DAC linearity, output swing, noise, TOE, and Tdv specifications are all based upon a 300 Ω DAC output load resistor and  
assume that the full-scale adjust bits are set to either 01 or 10. These specifications will NOT be met for other DAC output  
load resistor values.  
2. Once all of the LVDs have cleared and the DAC is powered on, a one-time wait time of 300 ms is required before the DAC  
output signal is valid.  
3. The full-scale DAC output is trimmed to 1.30 V 10 mV with all DAC inputs set to 1 including both full-scale adjust bits.  
4. Rl = 300 Ω, 10uF capacitor between Vdd_HV_DAC and DAC_C, ideal supply  
5. Difference between ideal and real (Va+Vb/2), for all base and PWM LSBs  
6. Falling edge to falling edge or rising edge to rising edge. Any transition DACn -> DACn + 1  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
37  
Memory modules  
7. DAC PSRR is 30 dB minimum for DAC output levels of 1/3 of full-scale or less. DAC PSRR is 24 dB minimum with the  
DAC output at full-scale.  
8 Memory modules  
8.1 Flash memory program and erase specifications  
NOTE  
All timing, voltage, and current numbers specified in this  
section are defined for a single embedded flash memory within  
an SoC, and represent average currents for given supplies and  
operations.  
Table 28 shows the estimated Program/Erase times.  
Table 28. Flash memory program and erase specifications  
Symbol  
Characteristic1  
Typ2  
Factory  
Field Update  
Unit  
Programming3, 4  
Initial  
Max  
Initial  
Max, Full  
Temp  
Typical  
End of  
Life5  
Lifetime Max6  
20°C ≤TA -40°C ≤TJ -40°C ≤TJ ≤ 1,000 ≤ 250,000  
≤30°C ≤150°C ≤150°C cycles cycles  
tdwpgm  
Doubleword (64 bits) program time 43  
100 150 55 500  
μs  
tppgm  
Page (256 bits) program time  
73  
200  
800  
300  
108  
396  
500  
μs  
μs  
tqppgm  
Quad-page (1024 bits) program  
time  
268  
1,200  
2,000  
t16kers  
16 KB Block erase time  
16 KB Block program time  
32 KB Block erase time  
32 KB Block program time  
64 KB Block erase time  
64 KB Block program time  
256 KB Block erase time  
256 KB Block program time  
168  
34  
290  
45  
320  
50  
250  
40  
1,000  
1,000  
1,200  
1,200  
1,600  
1,600  
4,000  
4,000  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
t16kpgm  
t32kers  
t32kpgm  
t64kers  
217  
69  
360  
100  
490  
180  
1,520  
720  
390  
110  
590  
210  
2,030  
880  
310  
90  
315  
138  
884  
552  
420  
170  
1,080  
650  
t64kpgm  
t256kers  
t256kpgm  
1. Program times are actual hardware programming times and do not include software overhead. Block program times  
assume quad-page programming.  
2. Typical program and erase times represent the median performance and assume nominal supply values and operation at  
25 °C. Typical program and erase times may be used for throughput calculations.  
3. Conditions: ≤ 150 cycles, nominal voltage.  
4. Plant Programing times provide guidance for timeout limits used in the factory.  
5. Typical End of Life program and erase times represent the median performance and assume nominal supply values.  
Typical End of Life program and erase values may be used for throughput calculations.  
6. Conditions: -40°C ≤ TJ ≤ 150°C, full spec voltage.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
38  
NXP Semiconductors  
Memory modules  
8.2 Flash memory Array Integrity and Margin Read specifications  
Table 29. Flash memory Array Integrity and Margin Read specifications  
Symbol  
Characteristic  
Min  
Typical  
Max1  
Units  
2
tai16kseq  
Array Integrity time for sequential sequence on 16 KB block.  
512 x  
Tperiod x  
Nread  
tai32kseq  
Array Integrity time for sequential sequence on 32 KB block.  
Array Integrity time for sequential sequence on 64 KB block.  
Array Integrity time for sequential sequence on 256 KB block.  
1024 x  
Tperiod x  
Nread  
tai64kseq  
2048 x  
Tperiod x  
Nread  
8192 x  
Tperiod x  
Nread  
tai256kseq  
tmr16kseq  
tmr32kseq  
tmr64kseq  
tmr256kseq  
Margin Read time for sequential sequence on 16 KB block.  
Margin Read time for sequential sequence on 32 KB block.  
Margin Read time for sequential sequence on 64 KB block.  
Margin Read time for sequential sequence on 256 KB block.  
73.81  
128.43  
237.65  
893.01  
110.7  
192.6  
μs  
μs  
μs  
μs  
356.5  
1,339.5  
1. Array Integrity times need to be calculated and is dependent on system frequency and number of clocks per read. The  
equation presented require Tperiod (which is the unit accurate period, thus for 200 MHz, Tperiod would equal 5e-9) and  
Nread (which is the number of clocks required for read, including pipeline contribution. Thus for a read setup that requires  
6 clocks to read with no pipeline, Nread would equal 6. For a read setup that requires 6 clocks to read, and has the  
address pipeline set to 2, Nread would equal 4 (or 6 - 2).)  
2. The units for Array Integrity are determined by the period of the system clock. If unit accurate period is used in the  
equation, the results of the equation are also unit accurate.  
8.3 Flash memory module life specifications  
Table 30. Flash memory module life specifications  
Symbol  
Characteristic  
Conditions  
Min  
Typical  
Units  
P/E  
Array P/E  
cycles  
Number of program/erase cycles per block  
for 16 KB, 32 KB and 64 KB blocks.1  
250,000  
cycles  
Number of program/erase cycles per block  
for 256 KB blocks.2  
1,000  
250,000  
P/E  
cycles  
Data  
retention  
Minimum data retention.  
Blocks with 0 - 1,000 P/E 50  
cycles.  
Years  
Years  
Years  
Blocks with 100,000 P/E  
cycles.  
20  
Blocks with 250,000 P/E  
cycles.  
10  
1. Program and erase supported across standard temperature specs.  
2. Program and erase supported across standard temperature specs.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
39  
Memory modules  
8.4 Data retention vs program/erase cycles  
Graphically, Data Retention versus Program/Erase Cycles can be represented by the  
following figure. The spec window represents qualified limits. The extrapolated dotted  
line demonstrates technology capability, however is beyond the qualification limits.  
8.5 Flash memory AC timing specifications  
Table 31. Flash memory AC timing specifications  
Symbol  
Characteristic  
Min  
Typical  
Max  
Units  
tpsus  
Time from setting the MCR-PSUS bit until MCR-DONE bit is set  
to a 1.  
9.4  
11.5  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tesus  
Time from setting the MCR-ESUS bit until MCR-DONE bit is set  
to a 1.  
16  
20.8  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
40  
NXP Semiconductors  
Memory modules  
Table 31. Flash memory AC timing specifications (continued)  
Symbol  
Characteristic  
Min  
Typical  
Max  
Units  
tres  
Time from clearing the MCR-ESUS or PSUS bit with EHV = 1  
until DONE goes low.  
100  
ns  
tdone  
Time from 0 to 1 transition on the MCR-EHV bit initiating a  
program/erase until the MCR-DONE bit is cleared.  
5
ns  
μs  
tdones  
Time from 1 to 0 transition on the MCR-EHV bit aborting a  
program/erase until the MCR-DONE bit is set to a 1.  
16  
20.8  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
tdrcv  
Time to recover once exiting low power mode.  
16  
45  
μs  
plus seven  
system  
clock  
plus seven  
system  
clock  
periods.  
periods  
taistart  
Time from 0 to 1 transition of UT0-AIE initiating a Margin Read  
or Array Integrity until the UT0-AID bit is cleared. This time also  
applies to the resuming from a suspend or breakpoint by  
clearing AISUS or clearing NAIBP  
5
ns  
ns  
taistop  
Time from 1 to 0 transition of UT0-AIE initiating an Array  
Integrity abort until the UT0-AID bit is set. This time also applies  
to the UT0-AISUS to UT0-AID setting in the event of a Array  
Integrity suspend request.  
80  
plus fifteen  
system  
clock  
periods  
tmrstop  
Time from 1 to 0 transition of UT0-AIE initiating a Margin Read  
abort until the UT0-AID bit is set. This time also applies to the  
UT0-AISUS to UT0-AID setting in the event of a Margin Read  
suspend request.  
10.36  
20.42  
μs  
plus four  
system  
clock  
plus four  
system  
clock  
periods  
periods  
8.6 Flash memory read wait-state and address-pipeline control  
settings  
The following table describes the recommended settings of the Flash Memory  
Controller's PFCR1,2,3[RWSC] and PCRC1,2,3[APC] fields at various operating  
frequencies, based on specified intrinsic flash memory access timed of the Flash memory.  
Table 32. Flash read wait state and address pipeline control guidelines  
Operating Frequency (fsys = SYS_CLK)  
RWSC  
APC  
Flash read latency on  
min-cache miss (# of  
fcpu clock periods)  
Flash read latency  
on mini-cache hit (#  
of fcpu clock  
periods)  
0 MHz < fsys <= 33 MHz  
0
0
3
1
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
41  
Communication modules  
Table 32. Flash read wait state and address pipeline control guidelines (continued)  
Operating Frequency (fsys = SYS_CLK)  
RWSC  
APC  
Flash read latency on  
min-cache miss (# of  
fcpu clock periods)  
Flash read latency  
on mini-cache hit (#  
of fcpu clock  
periods)  
33 MHz < fsys <= 100 MHz  
100 MHz < fsys <= 120 MHz  
2
3
1
1
5
6
1
1
9 Communication modules  
9.1 Ethernet switching specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
9.1.1 MII signal switching specifications  
The following timing specs meet the requirements for MII style interfaces for a range of  
transceiver devices.  
• Measurements are with input transition of 1 ns and output load of 25 pF.  
Table 33. MII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
MHz  
RXCLK frequency  
RXCLK pulse width high  
MII1  
35%  
65%  
RXCLK  
period  
RXCLK  
period  
ns  
MII2  
RXCLK pulse width low  
35%  
65%  
MII3  
MII4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
5
5
ns  
25  
MHz  
MII5  
TXCLK pulse width high  
35%  
65%  
TXCLK  
period  
TXCLK  
period  
ns  
MII6  
TXCLK pulse width low  
35%  
65%  
MII7  
MII8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
2
25  
ns  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
42  
NXP Semiconductors  
Communication modules  
MII6  
MII5  
MII7  
TXCLK (input)  
TXD[n:0]  
TXEN  
MII8  
Valid data  
Valid data  
Valid data  
TXER  
Figure 10. MII transmit signal timing diagram  
MII2  
MII1  
RXCLK (input)  
RXD[n:0]  
RXDV  
MII3  
MII4  
Valid data  
Valid data  
Valid data  
RXER  
Figure 11. MII receive signal timing diagram  
9.1.2 RMII signal switching specifications  
The following timing specs meet the requirements for RMII style interfaces for a range of  
transceiver devices.  
• Measurements are with input transition of 1 ns and output load of 25 pF.  
Table 34. RMII signal switching specifications  
Num  
Description  
Min.  
Max.  
50  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
MHz  
RMII1  
35%  
65%  
RMII_CLK  
period  
RMII2  
RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RMII7  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN invalid  
4
2
4
ns  
ns  
ns  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
43  
Communication modules  
Table 34. RMII signal switching specifications  
(continued)  
Num  
Description  
RMII_CLK to TXD[1:0], TXEN valid  
Min.  
Max.  
Unit  
RMII8  
15  
ns  
RMII2  
RMII1  
RMII7  
RMII_CLK (input)  
RMII8  
Valid data  
TXD[n:0]  
TXER  
Valid data  
Figure 12. RMII transmit signal timing diagram  
RMII2  
RMII1  
RMII_CLK (input)  
RXD[n:0]  
RMII3  
RMII4  
Valid data  
Valid data  
Valid data  
CRS_DV  
RXER  
Figure 13. RMII receive signal timing diagram  
9.1.3 RGMII signal switching specifications  
The RGMII interface works at 3.3 V compatible levels as mentioned in RGMII pad DC  
electrical characteristics.  
The following timing specs meet the requirements for RGMII style interfaces for a range  
of transceiver devices.  
• Measurements are with input transition of 0.750 ns and output load of 10 pF.  
Table 35. RGMII signal switching specifications  
Symbol Description  
Min  
48  
Typ  
Max  
52  
Unit  
%
Notes  
Input Duty cycle (Clock from external PHY)  
Clock cycle duration  
Tcyc  
7.2  
-500  
1
8.0  
0
8.8  
500  
2.6  
ns  
1
2
2
TskewT Data to clock output skew at transmitter  
TskewR Data to clock input skew at receiver  
ps  
1.8  
ns  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
44  
NXP Semiconductors  
Communication modules  
Table 35. RGMII signal switching specifications  
(continued)  
Symbol Description  
Min  
45  
Typ  
50  
Max  
55  
Unit  
%
Notes  
Duty_G Duty cycle for Gigabit  
Duty_T Duty cycle for 10/100T  
3
3
40  
50  
60  
%
Tr/Tf  
Rise/fall time (20–80%)  
1.5  
ns  
1. For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns 40 ns and 40 ns 4 ns respectively.  
2. For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an  
additional trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100  
the Max value is unspecified.  
3. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as  
long as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed  
transitioned between.  
TXC (at transmitter)  
TskewT  
TXD[8:5]  
TXD[7:4]  
TXD[3:0]  
TXD[n:0]  
TXD[4]  
TXEN  
TXD[9]  
TXERR  
TX_CTL  
TskewR  
TXC (at receiver)  
Figure 14. RGMII transmit signal timing diagram  
RXC (at transmitter)  
TskewT  
RXD[8:5]  
RXD[7:4]  
RXD[n:0]  
RXD[3:0]  
RXD[4]  
RXDV  
RXD[9]  
RXERR  
RX_CTL  
TskewR  
RXC (at receiver)  
Figure 15. RGMII receive signal timing diagram  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
45  
Communication modules  
9.1.4 MII/RMII Serial Management channel timing (MDC/MDIO)  
The MDC/MDIO interface works at 3.3V compatible levels as mentioned in CMOS input  
(vih/vil/voh/vol/)values in I/O pad DC electrical characteristics .  
Ethernet works with maximum frequency of MDC at 2.5 MHz. Output pads configured  
with SRC=11. MDIO pin must have external pull-up. Measurements are with input  
transition of 1.0 ns and output load of 50 pF.  
Table 36. Ethernet MDIO timing table  
Num  
Description  
Min.  
Max.  
2.5  
Unit  
MHz  
ns  
MDC00 MDC clock frequency  
MDC10 MDC falling edge to MDIO  
output invalid (minimum  
propagation delay)  
(-0.8 +  
(ENET_MSCR[HOLDTIME]  
+1)*(PBRIDGE_n_CLK period in  
ns))  
MDC11 MDC falling edge to MDIO  
output valid (maximum  
(13 + (ENET_MSCR[HOLDTIME]  
+1)*(PBRIDGE_n_CLK period in  
ns))  
ns  
propagation delay)  
MDC12 MDIO (input) to MDC rising  
edge setup  
13  
0
ns  
ns  
MDC13 MDIO (input) to MDC rising  
edge hold  
MDC14 MDC pulse width high  
MDC15 MDC pulse width low  
40%  
40%  
60%  
60%  
MDC Period  
MDC Period  
MDC14  
MDC15  
MDC (output)  
MDC10  
MDC11  
MDIO (output)  
MDIO (input)  
MDC12  
MDC13  
Figure 16. RMII/MII serial management channel timing diagram  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
46  
NXP Semiconductors  
Communication modules  
9.2 FlexRay timing parameters  
This section provides the FlexRay interface timing characteristics for the input and output  
signals. These numbers are recommended per the FlexRay Electrical Physical Layer  
Specification, Version 3.0.1, and subject to change per the final timing analysis of the  
device.  
9.2.1 TxEN  
TxEN  
80 %  
20 %  
dCCTxEN  
dCCTxEN  
FALL  
RISE  
Figure 17. FlexRay TxEN signal  
Table 37. TxEN output characteristics1  
Name  
Description  
Min  
Max  
Unit  
ns  
dCCTxENRISE25  
dCCTxENFALL25  
dCCTxEN01  
Rise time of TxEN signal at CC  
Fall time of TxEN signal at CC  
9
9
ns  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, rising edge  
25  
ns  
dCCTxEN10  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, falling edge  
25  
ns  
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, +10%, TJ = –40 °C / 150 °C, TxEN pin load maximum 25 pF.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
47  
Communication modules  
PE_Clk  
TxEN  
dCCTxEN  
dCCTxEN  
10  
01  
Figure 18. FlexRay TxEN signal propagation delays  
9.2.2 TxD  
TxD  
dCCTxD  
50%  
80 %  
50 %  
20 %  
dCCTxD  
dCCTxD  
RISE  
FALL  
Figure 19. FlexRay TxD signal  
• Measurements are with output load of 25 pF and pad configured as SRE =11.  
Table 38. TxD output characteristics  
Name  
Description1  
Min  
Max  
Unit  
dCCTxAsym  
Asymmetry of sending CC @ 25 pF load  
–2.45  
2.45  
ns  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
48  
NXP Semiconductors  
Communication modules  
Table 38. TxD output characteristics (continued)  
Name  
Description1  
Min  
Max  
Unit  
(=dCCTxD50% - 100 ns)  
dCCTxDRISE25+dCCTx Sum of Rise and Fall time of TxD signal at the output  
DFALL25  
9
ns  
ns  
ns  
dCCTxD01  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, rising edge  
25  
25  
dCCTxD10  
Sum of delay between Clk to Q of the last FF and the final  
output buffer, falling edge  
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, +10%, TJ = –40 °C / 150°C, TxD pin load maximum 25 pF  
PE_Clk*  
TxD  
dCCTxD  
10  
dCCTxD  
01  
*FlexRay Protocol Engine Clock  
Figure 20. FlexRay TxD signal propagation delays  
9.2.3 RxD  
Table 39. RxD input characteristic  
Name  
Description1  
Min  
Max  
7
Unit  
C_CCRxD  
uCCLogic_1  
uCCLogic_0  
dCCRxD01  
Input capacitance on RxD pin  
Threshold for detecting logic high  
Threshold for detecting logic low  
pF  
%
35  
30  
70  
65  
10  
%
Sum of delay from actual input to the D  
input of the first FF, rising edge  
ns  
dCCRxD10  
Sum of delay from actual input to the D  
input of the first FF, falling edge  
10  
ns  
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, +10%, TJ = –40 / 150 °C  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
49  
Communication modules  
9.2.4 Receiver asymmetry  
Table 40. Receiver asymmetry  
Name  
Description  
Min  
–31.5  
–30.5  
Max  
+44.0  
+43.0  
Unit  
ns  
dCCRxAsymAccept15  
dCCRxAsymAccept25  
Acceptance of asymmetry at receiving CC with 15 pF load (*)  
Acceptance of asymmetry at receiving CC with 25 pF load (*)  
ns  
9.3 LVDS Fast Asynchronous Transmission (LFAST) electrical  
characteristics  
The following table provides output driver characteristics for LFAST I/Os.  
Table 41. LFAST output buffer electrical characteristics  
Symbol  
Parameter  
Conditions1  
Value  
Typ  
Unit  
Min  
Max  
|ΔVO_L  
|
Absolute value for differential output —  
voltage swing (terminated)  
100  
200  
285  
mV  
VICOM_L  
Ttr_L  
Common mode voltage  
1.08  
0.2  
1.2  
1.32  
1.5  
V
Transition time output pin LVDS  
configuration  
ns  
1. VDD_HV_IOx = 3.3 V (–5%, +10%), TJ = –40 / 150 °C, unless otherwise specified.  
NOTE  
Fast IOs must be specified only as fast (and not as high  
current). See GPIO DC electrical specification.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
50  
NXP Semiconductors  
Communication modules  
9.3.1 LFAST interface timing diagrams  
Figure 21. LFAST timing definition  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
51  
Communication modules  
H
lfast_pwr_down  
L
Tsu  
Differential TX  
Data Lines  
pad_p/pad_n  
Data Valid  
Figure 22. Power-down exit time  
V
IH  
Differential TX  
Data Lines  
90%  
10%  
pad_p/pad_n  
V
IL  
Tfall  
Trise  
Figure 23. Rise/fall time  
9.3.2 LFAST interface electrical characteristics  
NOTE  
While LFAST is operating and 'Ready' (nex_rdy_b) signal is  
used by the debugger on PAD_132, the recommended SRE  
settings are ‘00' and ‘01'. TCK should be used with low  
frequency (preferably less than 10 MHz).  
Table 42. LFAST electrical characteristics  
Symbol  
Parameter  
Conditions1  
Value  
Typ  
Unit  
Min  
Max  
Typ+0.1%  
3
Data Rate  
DATARATE  
TSTRT_BIAS  
Data rate  
312/320  
0.5  
Mbps  
µs  
STARTUP  
Bias startup time2  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
52  
NXP Semiconductors  
Communication modules  
Table 42. LFAST electrical characteristics  
(continued)  
Symbol  
Parameter  
Conditions1  
Value  
Typ  
0.2  
Unit  
Min  
Max  
TPD2NM_TX  
Transmitter startup time  
(power down to normal  
mode)3  
2
µs  
µs  
ns  
ns  
TSM2NM_TX  
TPD2NM_RX  
TPD2SM_RX  
Transmitter startup time  
(sleep mode to normal  
mode)4  
Receiver startup time5  
(Power down to Normal  
mode)  
Receiver startup time4  
(Power down to Sleep  
mode)  
0.2  
20  
20  
0.5  
40  
50  
TRANSMITTER  
VOS_DRF  
Common mode voltage  
1.08  
100  
1.32  
285  
V
|ΔVOD_DRF  
|
Differential output voltage  
swing (terminated)  
200  
mV  
TTR_DRF  
Rise/Fall time (10% - 90% of  
swing)  
0.26  
1.5  
ns  
ROUT_DRF  
COUT_DRF  
Terminating resistance  
Capacitance6  
67  
198  
5
Ω
pF  
RECEIVER  
VICOM_DRF  
|DVI_DRF  
Common mode voltage  
Differential input voltage  
Input hysteresis  
0.157  
100  
25  
1.68  
V
|
mV  
mV  
Ω
VHYS_DRF  
RIN_DRF  
CIN_DRF  
LIN_DRF  
Terminating resistance  
Capacitance9  
Parasitic Inductance10  
80  
115  
3.5  
5
150  
6
pF  
nH  
10  
TRANSMISSION LINE CHARACTERISTICS (PCB Track)  
Z0  
Transmission line  
characteristic impedance  
47.5  
50  
52.5  
105  
Ω
Ω
ZDIFF  
Transmission line differential  
impedance  
95  
100  
1. VDD_VH_IOx = 3.3 V -5%,+10%, TJ = –40 / 150 °C, unless otherwise specified  
2. Startup time is defined as the time taken by LFAST current reference block for settling bias current after its pwr_down  
(power down) has been deasserted. LFAST functionality is guaranteed only after the startup time.  
3. Startup time is defined as the time taken by LFAST transmitter for settling after its pwr_down (power down) has been  
deasserted. Here it is assumed that current reference is already stable. LFAST functionality is guaranteed only after the  
startup time.  
4. Startup time is defined as the time taken by LFAST transmitter for settling after its pwr_down (power down) has been  
deasserted. Here it is assumed that current reference is already stable. LFAST functionality is guaranteed only after the  
startup time.  
5. Startup time is defined as the time taken by LFAST receiver for settling after its pwr_down (power down) has been  
deasserted. Here it is assumed that current reference is already stable. LFAST functionality is guaranteed only after the  
startup time.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
53  
Communication modules  
6. Total lumped capacitance including silicon, package pin and bond wire. Application board simulation is needed to verify  
LFAST template compliancy.  
7. Absolute min = 0.15 V – (285 mV / 2) = 0 V  
8. Absolute max = 1.6 V + (285 mV / 2) = 1.743 V  
9. Total capacitance including silicon, package pin and bond wire  
10. Total inductance including silicon, package pin and bond wire  
9.4 Serial Peripheral Interface (SPI) timing specifications  
The following table describes the SPI electrical characteristics.  
MTEF=1 Mode timing values given below are only applicable when external SPI is in  
classic mode. Slave mode timing values given below are applicable when device is in  
MTFE=0.  
• Measurements are with maximum output load of 50 pF, input transition of 1 ns and  
pad configured as SRE = 11.  
Table 43. SPI timing  
No. Symbol  
Parameter  
Conditions  
Master (MTFE = 0)  
Master (MTFE = 1)  
Slave (MTFE = 0)  
Slave Receive Only mode1  
Master  
Min  
50  
Max  
Unit  
1
tSCK  
SPI cycle time  
ns  
50  
50  
16  
2
3
4
tCSC  
tASC  
tSDC  
PCS to SCK delay  
After SCK delay  
SCK duty cycle  
63.82  
68.83  
tSCK/2 – 1  
ns  
ns  
ns  
ns  
ns  
Master  
Master4  
Slave5  
tSCK/2 + 1  
Slave Receive only mode6  
tSCK/2 –  
0.750  
tSCK/2 +  
0.750  
5
6
7
8
9
tA  
Slave access time  
Slave SOUT disable time  
PCSx to PCSS time  
SS active to SOUT valid  
13 7  
13 8  
15  
2
25  
25  
ns  
ns  
ns  
ns  
ns  
tDIS  
SS inactive to SOUT High-Z or invalid  
tPCSC  
tPASC  
tSUI  
PCSS to PCSx time  
Data setup time for inputs  
Master (MTFE = 0)  
Slave  
Slave Receive Mode  
Master (MTFE = 1, CPHA = 0)9  
2
15-N x SPI  
IPG clock  
period10  
Master (MTFE = 1, CPHA = 1)  
Master (MTFE = 0)  
Slave  
15  
–2  
4
10  
tHI  
Data hold time for inputs  
ns  
Slave Receive Mode  
4
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
54  
NXP Semiconductors  
Communication modules  
Table 43. SPI timing (continued)  
No. Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master (MTFE = 1, CPHA = 0)9  
-2 + N x SPI  
IPG clock  
period 10  
Master (MTFE = 1, CPHA = 1)  
–2  
7 11  
23  
11  
12  
tSUO  
Data valid (after SCK edge)  
Data hold time for outputs  
Master (MTFE = 0)  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)12  
7 + SPI IPG  
Clock Period  
Master (MTFE = 1, CPHA = 1)  
Master (MTFE = 0)  
–4 11  
3.8  
7
tHO  
ns  
Slave  
Master (MTFE = 1, CPHA = 0) 12  
-4 + SPI IPG  
Clock Period  
Master (MTFE = 1, CPHA = 1)  
–4  
1. Slave Receive Only mode can operate at a maximum frequency of 60 MHz. In this mode, the SPI can receive data on SIN,  
but no valid data is transmitted on SOUT.  
2. For SPI_CTARn[PCSSCK] - 'PCS to SCK Delay Prescaler' configuration is '3' (01h) and SPI_CTARn[CSSCK] - 'PCS to  
SCK Delay Scaler' configuration is '2' (0000h).  
3. For SPI_CTARn[PASC] - 'After SCK Delay Prescaler' configuration is '3' (01h) and SPI_CTARn[ASC] - 'After SCK Delay  
Scaler' configuration is '2' (0000h).  
4. The numbers are valid when SPI is configured for 50/50. Refer the Reference manual for the mapping of the duty cycle to  
each configuration. A change in duty cycle changes the parameter here. For example, a configuration providing duty cycle  
of 33/66 at SPI translates to min tSCK/3 - 1.5 ns and max tSCK/3 + 1.5 ns.  
5. The slave mode parameters (tSUI, tHI, tSUO and tHO) assume 50% duty cycle on SCK input. Any change in SCK duty cycle  
input must be taken care during the board design or by the master timing.  
6. The slave receive only mode parameters (tSUI and tHI) assume 50% duty cycle on SCK input. Any change in SCK duty  
cycle input must be taken care during the board design or by the master timing. However, there is additional restriction in  
the slave receive only mode that the duty cycle at the slave input should not go below tsdc(min) corresponding to the  
tsdc(min) for the slave receive mode.  
7. In the master mode, this is governed by tPCSSCK. Refer the SPI chapter in the Reference Manual for details. The minimum  
spec is valid only for SPI_CTARn[PCSSCK]= '0b01' (PCS to SCK delay prescalar of 3) or higher.  
8. In the master mode, this is governed by tPASC. Refer the SPI chapter in the Reference Manual for details. The minimum  
spec is valid only for SPI_CTARn[PASC]= '0b01' (after SCK delay prescalar of 3) or higher.  
9. For SPI_CTARn[BR] - 'Baud Rate Scaler' configuration is >= 4.  
10. N = Configured sampling point value in MTFE=1 Mode.  
11. Same value is applicable for PCS timing in continuous SCK mode.  
12. SPI_MCR[SMPL_PT] should be set to 1.  
NOTE  
For numbers shown in the following figures, see Table 43.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
55  
Communication modules  
2
3
PCSx  
1
4
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Figure 24. SPI classic SPI timing — master, CPHA = 0  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL=1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Figure 25. SPI classic SPI timing — master, CPHA = 1  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
56  
NXP Semiconductors  
Communication modules  
3
2
SS  
1
4
SCK Input  
(CPOL=0)  
4
SCK Input  
(CPOL=1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Figure 26. SPI classic SPI timing — slave, CPHA = 0  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 27. SPI classic SPI timing — slave, CPHA = 1  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
57  
Communication modules  
3
PCSx  
4
1
2
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Figure 28. SPI modified transfer format timing — master, CPHA = 0  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 29. SPI modified transfer format timing — master, CPHA = 1  
8
7
PCSS  
PCSx  
Figure 30. SPI PCS strobe (PCSS) timing  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
58  
NXP Semiconductors  
Communication modules  
9.5 LINFlexD timing specifications  
The maximum bit rate is 1.875 MBit/s.  
9.6 I2C timing  
Table 44. I2C SCL and SDA input timing specifications  
Number  
Symbol  
Parameter  
Value  
Unit  
Min  
2
Max  
1
2
3
4
5
6
I_tHD:STA  
Start Condition hold time  
Clock low time  
-
-
-
-
-
-
Peripheral clock  
I_t_LOW  
8
I_tHD:DAT  
I_tHIGH  
Data hold time  
2
Clock high time  
4
I_tSU:DAT  
I_tSU:STA  
Data setup time  
4
Start condition setup time (for repeated  
start condition only)  
2
7
I_tSU:STOP  
Stop condition setup time  
2
-
Table 45. I2C SCL and SDA output timing specifications  
Number  
Symbol  
Parameter  
Value  
Unit  
Min  
6
Max  
1
2
3
4
5
6
O_tHD:STA  
O_t_LOW  
Start condition hold time1  
Clock low time1  
Data hold time1  
Clock high time1  
Data setup time1  
-
-
-
-
-
-
10  
7
O_tHD:DAT  
O_t_HIGH  
O_tSU:DAT  
O_tSU:STA  
Peripheral clock  
10  
2
Start condition setup time (for  
repeated start condition only)1  
20  
7
8
9
O_tSU:STOP  
O_tr  
Stop condition setup time1  
SCL/SDA rise time2  
SCL/SDA fall time1  
10  
-
-
99.6  
99.6  
ns  
O_tf  
-
1. Programming IBFD (I2C Bus Frequency Divider Register) with the maximum frequency results in the minimum output  
timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period.  
The actual position is affected by the prescale and division values programmed in IBDR (I2C Bus Data I/O Register).  
2. Serial data (SDA) and Serial clock (SCL) reaches peak level depending upon the external signal capacitance and pull up  
resistor values as SDA and SCL are open-drain type outputs which are only actively driven low by the I2C module.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
59  
Debug modules  
Figure 31. I2C input/output timing  
10 Debug modules  
10.1 JTAG/CJTAG interface timing  
The following table lists JTAGC/CJTAG electrical characteristics.  
• Measurements are with input transition of 1 ns, output load of 50 pF and pads  
configured with SRE=11.  
Table 46. JTAG/CJTAG pin AC electrical characteristics 1  
#
Symbol  
Characteristic  
Min  
36  
50  
40  
5
Max  
Unit  
2
1
tJCYC  
TCK Cycle Time (JTAG)  
TCK Cycle Time (CJTAG)  
TCK Clock Pulse Width  
TCK Rise and Fall Times (40% - 70%)  
ns  
2
3
tJDC  
60  
3
%
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTCKRISE  
4
tTMSS, tTDIS TMS, TDI Data Setup Time  
5
tTMSH, tTDIH TMS, TDI Data Hold Time  
5
154  
6
tTDOV  
tTDOI  
TCK Low to TDO/TMS Data Valid 3  
TCK Low to TDO/TMS Data Invalid3  
TCK Low to TDO/TMS High Impedance3  
JCOMP Assertion Time  
0
7
8
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
100  
40  
22  
9
10  
11  
12  
JCOMP Setup Time to TCK Low  
TCK Falling Edge to Output Valid  
6005  
tBSDVZ  
TCK Falling Edge to Output Valid out of High  
Impedance  
600  
13  
14  
tBSDHZ  
tBSDST  
TCK Falling Edge to Output High Impedance  
Boundary Scan Input Valid to TCK Rising Edge  
600  
ns  
ns  
15  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
60  
NXP Semiconductors  
Debug modules  
Table 46. JTAG/CJTAG pin AC electrical characteristics 1 (continued)  
#
Symbol  
Characteristic  
Min  
Max  
Unit  
15  
tBSDHT  
TCK Rising Edge to Boundary Scan Input Invalid  
15  
ns  
1. These specifications apply to JTAG boundary scan only.  
2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions.  
Refer to pad specification for allowed transition frequency.  
3. TMS timing is applicable only in CJTAG mode  
4. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.  
5. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.  
TCK  
2
3
2
1
3
Figure 32. JTAG test clock input timing  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
61  
Debug modules  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 33. JTAG test access port timing  
TCK  
10  
JCOMP  
9
Figure 34. JTAG JCOMP timing  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
62  
NXP Semiconductors  
Debug modules  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 35. JTAG boundary scan timing  
10.2 Nexus Aurora debug port timing  
Table 47. Nexus Aurora debug port timing  
#
1
Symbol  
tREFCLK  
tMCYC  
tRCDC  
JRC  
Characteristic  
Min  
625  
Max  
1250  
400  
55  
Unit  
MHz  
ps  
Reference clock frequency  
Reference Clock rise/fall time  
Reference Clock Duty Cycle  
Reference Clock jitter  
Reference Clock Stability  
Bit Error Rate  
1a  
2
45  
%
3
40  
ps  
4
tSTABILITY  
BER  
50  
10-12  
PPM  
5
6
tEVTIPW  
JD  
EVTI Pulse Width  
4.0  
tTCYC  
OUI  
OUI  
7
Transmit lane Deterministic Jitter  
Transmit lane Total Jitter  
0.17  
0.35  
8
JT  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
63  
WKUP/NMI timing specifications  
Table 47. Nexus Aurora debug port timing (continued)  
#
9
Symbol  
SO  
Characteristic  
Min  
Max  
20  
Unit  
ps  
Differential output skew  
Lane to lane output skew  
Aurora lane Unit Interval  
10  
11  
SMO  
1000  
800  
ps  
OUI  
800  
ps  
1
2
2
CLOCKREF  
Zero Crossover  
CLOCKREF  
-
+
8
8
8
Tx Data  
-
Ideal Zero Crossover  
Tx Data  
+
Tx Data [n]  
Zero Crossover  
Tx Data [n+1]  
Zero Crossover  
Tx Data [m]  
Zero Crossover  
9
9
Figure 36. Nexus Aurora timings  
11 WKUP/NMI timing specifications  
Table 48. WKUP/NMI glitch filter  
Symbol  
WFNMI  
Parameter  
Min  
Typ  
Max  
20  
Unit  
ns  
NMI pulse width that is rejected  
NMI pulse width that is passed  
WNFNMI  
400  
ns  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
64  
NXP Semiconductors  
External interrupt timing (IRQ pin)  
12 External interrupt timing (IRQ pin)  
Table 49. External interrupt timing  
No.  
1
Symbol  
tIPWL  
Parameter  
Conditions  
Min  
3
Max  
Unit  
tCYC  
tCYC  
tCYC  
IRQ pulse width low  
IRQ pulse width high  
IRQ edge to edge time1  
2
tIPWH  
3
3
tICYC  
6
1. Applies when IRQ pins are configured for rising edge or falling edge events, but not both  
NOTE  
tCYC is equivalent to TCK (prescaled filter clock period)  
which is the IRC clock prescaled to the Interrupt Filter Clock  
Prescaler (IFCP) value. TCK = T(IRC) x (IFCP + 1) where  
T(IRC) is the internal oscillator period. Refer SIUL2 chapter of  
the device reference manual for details.  
IRQ  
1
2
3
Figure 37. External interrupt timing  
13 Temperature sensor electrical characteristics  
The following table describes the temperature sensor electrical characteristics.  
Table 50. Temperature sensor electrical characteristics  
Symbol  
Parameter  
Temperature monitoring range  
Sensitivity  
Conditions  
Min  
-40  
Typ  
Max  
150  
Unit  
°C  
TSENS  
TACC  
5.18  
mV/°C  
°C  
Accuracy  
TJ = -40 to 150°C  
5
5
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
65  
Radar module  
14 Radar module  
14.1 MIPICSI2 D-PHY electrical and timing specifications  
This section describes MIPICSI21 D-PHY electrical specifications, compliant with  
MIPICSI2 version 1.1, D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes).  
REXT  
15 kΩ  
(+/-1%)  
Figure 38. MIPICSI2 circuit  
Table 51. Calibrator specifications  
Symbol  
Parameters  
Min  
Typ  
Max  
Unit  
REXT  
External reference resistor, 1% accuracy (or better), for auto  
calibration  
-
15  
-
kΩ  
Tcal  
Time from when PD signal goes low to when CALCOMPL goes high  
-
2
2.5  
μs  
14.1.1 Electrical and timing information  
Table 52. Electrical and timing information  
Symbol  
Parameters  
Min  
Typ  
Max  
Unit  
HS Line Receiver DC Specifications  
VIDTH  
Differential input high voltage threshold  
-
-70  
-
-
-
-
-
-
-
70  
-
mV  
mV  
mV  
mV  
mV  
mV  
VIDTL  
Differential input low voltage threshold  
Single ended input high voltage  
Single ended input low voltage  
Input common mode voltage  
VIHHS  
460  
-
VILHS  
-40  
70  
-
VCMRXDC  
VTERM-EN  
330  
450  
Single-ended threshold for HS termination  
enable  
ZID  
Differential input impedance  
80  
-
-
125  
550  
ohm  
mV  
LP Line Receiver DC Specifications  
VILLP  
Input low voltage  
-
Table continues on the next page...  
1. All rights reserved. This material is reprinted with the permission of the MIPI Alliance, Inc. No part(s) of this document may  
be disclosed, reproduced or used for any purpose other than as needed to support the use of the products of NXP  
Semiconductors.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
66  
NXP Semiconductors  
Radar module  
Table 52. Electrical and timing information (continued)  
Symbol  
VIHLP  
VHYST  
Parameters  
Min  
880  
25  
Typ  
Max  
Unit  
mV  
mV  
Input high voltage  
Input hysteresis  
-
-
-
-
14.1.2 D-PHY signaling levels  
The signal levels are different for differential HS mode and single-ended LP mode. The  
figure below shows both the HS and LP signal levels on the left and right sides,  
respectively. The HS signaling levels are below the LP low-level input threshold such  
that LP receiver always detects low on HS signals.  
Figure 39. D-PHY signaling levels  
14.1.3 D-PHY switching characteristics  
Table 53. D-PHY switching characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HS Line Receiver AC Specifications  
-
Maximum serial data rate  
On DATAP/N inputs. 80  
Ohm<= RL <= 125 Ohm  
80  
-
1000  
Mbps  
Table continues on the next page...  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
67  
Radar module  
Table 53. D-PHY switching characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
100  
Unit  
ΔVCMRX(HF)  
Common mode interference beyond  
450 MHz  
-
-
-
-
mVpp  
ΔVCMRX(LF)  
Common mode interference between  
50 MHz and 450 MHz  
-50  
-
50  
60  
mVpp  
pF  
CCM  
Common mode termination  
LP Line Receiver AC Specification  
eSPIKE  
T MIN  
VINT  
Input pulse rejection  
-
-
-
-
-
300  
Vps  
ns  
Minimum pulse response  
20  
-
-
Pk-to-Pk interference voltage  
Interference frequency  
200  
-
mV  
MHz  
fINT  
450  
14.1.4 Low-power receiver timing  
Figure 40. Input Glitch Rejection of Low-Power Receivers  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
68  
NXP Semiconductors  
Radar module  
14.1.5 Data to clock timing  
Figure 41. Definition  
Table 54. Data to clock timing specifications  
Symbol  
TCLKP  
Parameter  
Min  
Typ  
Max  
Unit  
MHz  
Clock Period  
40  
-
-
-
-
500  
UIINST  
TSETUP  
THOLD  
UI Instantaneuous  
1
12.5  
ns  
Data to Clock Setup Time  
Clock to Data Hold Time  
0.15  
0.15  
-
-
UIINST  
UIINST  
14.2 MIPICSI2 Disclaimer  
The material contained herein is not a license, either expressly or impliedly, to any IPR  
owned or controlled by any of the authors or developers of this material or MIPI®. The  
material contained herein is provided on an “AS IS” basis and to the maximum extent  
permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS,  
and the authors and developers of this material and MIPI hereby disclaim all other  
warranties and conditions, either express, implied or statutory, including, but not limited  
to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a  
particular purpose, of accuracy or completeness of responses, of results, of workmanlike  
effort, of lack of viruses, and of lack of negligence.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
69  
Radar module  
All materials contained herein are protected by copyright laws, and may not be  
reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise  
exploited in any manner without the express prior written permission of MIPI Alliance.  
MIPI, MIPI Alliance and the dotted rainbow arch and all related trademarks, trade names,  
and other intellectual property are the exclusive property of MIPI Alliance and cannot be  
used without its express prior written permission.  
ALSO, THERE IS NO WARRANTY OF CONDITION OF TITLE, QUIET  
ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR  
NON-INFRINGEMENT WITH REGARD TO THIS MATERIAL OR THE CONTENTS  
OF THIS DOCUMENT. IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF  
THIS MATERIAL OR THE CONTENTS OF THIS DOCUMENT OR MIPI BE  
LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE  
GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY  
INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES  
WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE,  
ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT,  
SPECIFICATION OR DOCUMENT RELATING TO THIS MATERIAL, WHETHER  
OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF  
SUCH DAMAGES.  
Without limiting the generality of this Disclaimer stated above, the user of the contents of  
this Document is further notified that MIPI: (a) does not evaluate, test or verify the  
accuracy, soundness or credibility of the contents of this Document; (b) does not monitor  
or enforce compliance with the contents of this Document; and (c) does not certify, test,  
or in any manner investigate products or services or any claims of compliance with the  
contents of this Document. The use or implementation of the contents of this Document  
may involve or require the use of intellectual property rights ("IPR") including (but not  
limited to) patents, patent applications, or copyrights owned by one or more parties,  
whether or not Members of MIPI. MIPI does not make any search or investigation for  
IPR, nor does MIPI require or request the disclosure of any IPR or claims of IPR as  
respects the contents of this Document or otherwise.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
70  
NXP Semiconductors  
Thermal Specifications  
15 Thermal Specifications  
15.1 Thermal characteristics  
Table 55. 257MAPBGA package thermal characteristics  
Symbol  
Parameter  
Conditions  
257MAPBGA  
Unit  
RθJA  
Thermal resistance, junction-to-ambient natural  
convection 1, 2  
Single layer board - 1s  
Four layer board - 2s2p3  
41.8  
22.3  
29.8  
17.7  
7.6  
°C/W  
RθJMA  
Thermal resistance, junction-to-ambient forced  
convection at 200 ft/min1, 3  
Single layer board - 1s  
°C/W  
Four layer board - 2s2p  
RθJB  
RθJC  
ΨJT  
Thermal resistance junction-to-board4  
Thermal resistance junction-to-case5  
Junction-to-package-top natural convection6  
°C/W  
°C/W  
°C/W  
5.2  
0.2  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification  
for the specified package. Board temperature is measured on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2.  
15.1.1 General notes for specifications at maximum junction  
temperature  
An estimation of the chip junction temperature, TJ, can be obtained from this equation:  
TJ = TA + (RθJA × PD)  
TJ = TBRD + (RθJB × PD)  
where:  
• TA = ambient temperature for the package (°C)  
• RθJA = junction to ambient thermal resistance (°C/W)  
• RθJB = junction to board thermal resistance (°C/W)  
• TθBRD = average board temperature just outside the package periphery (°C)  
• PD = power dissipation in the package (W)  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
71  
Thermal Specifications  
The junction to ambient thermal resistance is an industry standard parameter that  
provides a quick and easy estimation of thermal performance. However, junction to board  
thermal resistance is more appropriate for tight enclosure spaces where board temperature  
should be used as reference temperature. Using 2s2p board with natural convection  
conditions, junction temperature is found to be less than 150°C . There are two  
parameters in common usage: the value determined on a single layer board and the value  
obtained on a board with two inner planes. For packages such as PBGA, these values can  
significantly differ. For customer board design with different number of layers and  
copper percentage content, these values must be appropriately interpolated in order to  
evaluate junction temperature. In general, the value obtained on a single layer board is  
appropriate for the tightly packed printed circuit board. The value obtained on the board  
with the internal planes is usually appropriate if the board has low power dissipation and  
the components are well separated.  
When a heat sink is used, the thermal resistance is expressed in the following equation as  
the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:  
RθJA = RθJC + RθCA  
where:  
• RθJA = junction to ambient thermal resistance (°C/W)  
• RθJC = junction to case thermal resistance (°C/W)  
• RθCA = case to ambient thermal resistance (°C/W)  
RθJC is device related and cannot be influenced by the user. The user controls the thermal  
environment to change the case to ambient thermal resistance, RθCA. For instance, the  
user can change the size of the heat sink, the air flow around the device, the interface  
material, the mounting arrangement on printed circuit board, or change the thermal  
dissipation on the printed circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks  
are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the  
junction temperature with a measurement of the temperature at the top center of the  
package case using this equation:  
TJ = TT + (ΨJT × PD)  
where:  
• TT = thermocouple temperature on top of the package (°C)  
ΨJT = thermal characterization parameter (°C/W)  
• PD = power dissipation in the package (W)  
The thermal characterization parameter is measured per JESD51-2 specification using a  
40 gauge type T thermocouple epoxied to the top center of the package case. The  
thermocouple should be positioned so that the thermocouple junction rests on the  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
72  
NXP Semiconductors  
Packaging  
package. A small amount of epoxy is placed over the thermocouple junction and over  
about 1 mm of wire extending from the junction. The thermocouple wire is placed flat  
against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
15.1.2 References  
Semiconductor Equipment and Materials International; 3081 Zanker Road; San Jose, CA  
95134 USA; (408) 943-6900  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global  
Engineering Documents at 800-854-7179 or 303-397-7956.  
JEDEC specifications are available on the Web at http://www.jedec.org.  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA  
Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San  
Diego, 1998, pp. 47–54.  
2. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-  
Cooled Applications,” Electronic Packaging and Production, pp. 53–58, March 1998.  
3. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board  
Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of  
SemiTherm, San Diego, 1999, pp. 212–220.  
16 Packaging  
The S32R274 is offered in the following package types.  
If you want the drawing for this package  
Then use this document number  
257-ball MAPBGA  
98ASA00081D  
NOTE  
For detailed information regarding package drawings, refer to  
www.nxp.com.  
17 Reset sequence  
This section describes different reset sequences and details the duration for which the  
device remains in reset condition in each of those conditions.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
73  
Reset sequence  
17.1 Reset sequence duration  
Table 57 specifies the minimum and the maximum reset sequence duration for the five  
different reset sequences described in Reset sequence description.  
Table 57. RESET sequences  
No. Symbol  
Parameter  
TReset  
Typ Max1  
502  
Unit  
Min  
15  
1
2
3
4
5
TDRB  
TDR  
Destructive Reset Sequence, BIST enabled  
Destructive Reset Sequence, BIST disabled  
ms  
µs  
ms  
µs  
µs  
400  
15  
2000  
50  
TERLB External Reset Sequence Long, BIST enabled  
TFRL  
TFRS  
Functional Reset Sequence Long, BIST disabled  
Functional Reset Sequence Short3  
400  
1
2000  
500  
1. The maximum value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET  
by an external reset generator.  
2. Max time is based on STCU BIST configuration execution time + max RESET time (TDR). For default STCU BIST  
configuration execution time, refer to EB834. Contact your NXP sales representative for details.  
3. BIST is not executed on short functional reset  
17.2 Reset sequence description  
The figures in this section show the internal states of the device during the five different  
reset sequences. The doted lines in the figures indicate the starting point and the end point  
for which the duration is specified in Table 57.  
With the beginning of DRUN mode, the first instruction is fetched and executed. At this  
point, application execution starts and the internal reset sequence is finished.  
The SMPS self test is always triggered during Phase3 after a destructive reset so that  
duration is included into Phase3 below.  
In external regulation mode, the VREG_POR_B pin should be de-asserted only when all  
the design supplies are in operating range. Deassertion of VREG_POR_B pin triggers the  
start of reset sequence in internal as well as external regulation modes.  
The following figures show the internal states of the device during the execution of the  
reset sequence and the possible states of the RESET_B signal pin.  
NOTE  
RESET_B is a bidirectional pin. The voltage level on this pin  
can either be driven low by an external reset generator or by the  
device internal reset circuitry. A high level on this pin can only  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
74  
NXP Semiconductors  
Reset sequence  
be generated by an external pullup resistor which is strong  
enough to overdrive the weak internal pulldown resistor. The  
rising edge on RESET_B in the following figures indicates the  
time when the device stops driving it low. The reset sequence  
durations given in Table 57 are applicable only if the internal  
reset sequence is not prolonged by an external reset generator  
keeping RESET_B asserted low beyond the last Phase3.  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE0  
PHASE1,2  
PHASE3  
BIST  
PHASE1,2  
PHASE3  
DRUN  
Establish  
IRC and  
PWR  
Flash  
Init  
Flash  
Init  
Device  
Config  
Self  
Test  
Setup  
Device  
config  
Application  
execution  
MBIST  
LBIST  
TDRB, min < TRESET < TDRB, max  
Figure 42. Destructive reset sequence, BIST enabled  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE0  
PHASE1,2  
PHASE3  
DRUN  
Establish  
IRC and  
PWR  
Flash  
Init  
Device  
Config  
Application  
Execution  
TDR, min < TRESET < TDR, max  
Figure 43. Destructive reset sequence, BIST disabled  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE1,2  
PHASE3  
BIST  
PHASE1,2  
PHASE3  
DRUN  
Flash  
Init  
Flash  
Init  
Device  
Config  
Self  
Test  
Setup  
Device  
config  
Application  
execution  
MBIST  
LBIST  
TERLB, min < TRESET < TERLB, max  
Figure 44. External reset sequence long, BIST enabled  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
75  
Power sequencing requirements  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE1,2  
PHASE3  
DRUN  
Flash  
Init  
Device  
config  
Application  
execution  
TFRL, min < TRESET < TFRL, max  
Figure 45. Functional reset sequence long  
Reset Sequence Trigger  
Reset Sequence Start Condition  
RESET_B  
PHASE3  
DRUN  
Application  
Execution  
TFRS, min < TRESET < TFRS, max  
Figure 46. Functional reset sequence short  
The reset sequences shown in Figure 45 and Figure 46 are triggered by functional reset  
events. RESET is driven low during these two reset sequences only if the corresponding  
functional reset source (which triggered the reset sequence) was enabled to drive  
RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE  
register in the device reference manual for more information.  
18 Power sequencing requirements  
The device does not require any specific power sequencing as far as user follows  
recommendations in this section.  
Either ramp VDD_HV_IO and VDD_HV_PMU together or ramp V DD_HV_IO before  
VDD_HV_PMU such that the two supplies always maintain 100 mV or less difference, when  
using internal regulation mode. VDD_LV_DPHY and VDD_LV_CORE are to be driven from  
same source. VDD_HV_IO, VDD_HV_IO_RGMII, VDD_HV_IO_PWM and VDD_HV_IO_LFAST  
supplies should be treated as a single supply from board perspective.  
As mentioned in the previous section, it is expected that the external ASIC which powers  
up the device in external regulation mode deasserts VREG_POR_B pin only when all the  
power supplies to the design are in operating range.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
76  
NXP Semiconductors  
Pinouts  
It should be noted that LVD and HVD detectors on VDD supply are disabled by default  
in external regulation mode for preventing a conflict with external regulator operation but  
they can be enabled by software once design is powered up.  
While designing the system, it is important to ensure that AFE supplies are powered up  
before data is sent on its input pads.  
19 Pinouts  
19.1 Package pinouts and signal descriptions  
For package pinouts and signal descriptions, refer to the Reference Manual.  
20 Revision History  
Table 58. Revision History  
Revision  
Date  
Description  
Rev 4  
May, 2018  
• Removed section "4.1 Introduction".  
• Removed section "3.2 Format".  
• In Fields, removed figure "Commercial product code structure".  
• In Nexus Aurora debug port timing, added tEVTIPW row.  
• In Ethernet switching specifications changed the following:  
• Updated the figure RMII/MII serial management channel timing diagram.  
• In Ethernet MDIO timing table changed MDC10 Min value and MDC11 Max value.  
• Extensively updated Table 32.  
• In Table 7, changed Vinxoscclkvih Max value from 1.2 to 1.23.  
• In Table 25, added rows for the symbols tsampleC, tsampleS,tsampleBG, and tsampleTS  
• In Table 6, changed VINA maximum value to 6.0.  
.
• Added the following footnotes in Absolute maximum ratings :  
• The maximum value limits of injection current and input voltage both must be  
followed together for proper device operation.  
• The maximum value of 10 mA applies to pulse injection only. DC current injection is  
limited to a maximum of 5 mA.  
• In Table 7, changed VINA maximum value to VDD_HV_ADCREFx  
• In Table 2 :  
.
• Changed part from FS32R274KBK2MMM to FS32R274KSK2MMM and changed  
configuration from "B" to "S"  
• Changed part from FS32R274KBK2VMM to FS32R274KSK2VMM and changed  
configuration from "B" to "S"  
• Added "B or S" to Table 3  
Rev 5  
Rev 5  
July 03,  
2018  
• In Table 6, Removed footnote on IINJPAD.  
April 30,  
2019  
• In Table 1, added information for 266 MHz frequency parts .  
• In Table 2, added the rows for "FS32R274JSK2MMM", "FS32R264KBK0MMM",  
"FS32R264KCK0MMM", "FS32R264JBK0MMM" and "FS32R264JCK0MMM".  
• Added the feature changes for S32R264 with respect to S32R274 in Feature list.  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
NXP Semiconductors  
77  
Revision History  
Revision  
Table 58. Revision History  
Date  
Description  
• In Table 4, added the row for 266MHz frequency performance.  
• In Table 8, added the Conditions and Max value in IDD_CORE for 266 MHz frequency.  
• Added note "S32R264 devices support AFE PLL while S32R274 devices support SDPLL",  
in Block diagram.  
• In Operating conditions, changed the footnote from "Full performance means Core0  
running @ 120 MHz, Core1/2 running @ 240 MHz, SPT running @ 200 MHz, rich set of  
peripherals used" to "Full performance means full frequency".  
S32R274/S32R264 Series Data Sheet, Rev. 5, 04/2019  
78  
NXP Semiconductors  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including “typicals,” must be validated for each customer application  
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS  
are trademarks of NXP B.V. All other product or service names are the property of their respective  
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,  
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of  
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered  
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the  
Power and Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2019 NXP B.V.  
Document Number S32R274  
Revision 5, 04/2019  

相关型号:

S32R274J

Safety core: Power Architecture® e200Z4 32-bit CPU with checker core
NXP

S32R274K

Safety core: Power Architecture® e200Z4 32-bit CPU with checker core
NXP

S32S20A

Mains Power Connector,
ALTECH

S32S55A

Mains Power Connector,
ALTECH

S32S75A

Mains Power Connector,
ALTECH

S32T

Medium/High Capacity Standard Size Toggles
NKK

S32V232

ARM Cortex-M4, 32-bit CPU 16 KB/16 KB I-/D- L1 Cache
NXP

S32V232BL

ARM Cortex-M4, 32-bit CPU 16 KB/16 KB I-/D- L1 Cache
NXP

S32V232BM

ARM Cortex-M4, 32-bit CPU 16 KB/16 KB I-/D- L1 Cache
NXP

S32V232CK

ARM Cortex-M4, 32-bit CPU 16 KB/16 KB I-/D- L1 Cache
NXP

S32V234

ARM Cortex-M4, 32-bit CPU 16 KB/16 KB I-/D- L1 Cache
NXP

S32V234CK

ARM Cortex-M4, 32-bit CPU 16 KB/16 KB I-/D- L1 Cache
NXP