S56F8365W0MFGE [NXP]

Digital Signal Processor;
S56F8365W0MFGE
型号: S56F8365W0MFGE
厂家: NXP    NXP
描述:

Digital Signal Processor

外围集成电路
文件: 总180页 (文件大小:1733K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
56F8365/56F8165  
Data Sheet  
Technical Data  
56F8300  
16-bit Digital Signal Controllers  
MC56F8365  
Rev. 9  
02/2012  
freescale.com  
Document Revision History  
Version History  
Rev 0  
Description of Change  
Pre-release, Alpha customers only  
Rev 1.0  
Rev 2.0  
Initial Public Release  
Added output voltage maximum value and note to clarify in Table 10-1; also removed overall life  
expectancy note, since life expectancy is dependent on customer usage and must be  
determined by reliability engineering. Clarified value and unit measure for Maximum allowed PD  
in Table 10-3. Corrected note about average value for Flash Data Retention in Table 10-4.  
Added new RoHS-compliant orderable part numbers in Table 13-1.  
Rev 3.0  
Rev 4.0  
Corrected Data Flash on page 5  
Deleted RSTO from Pin Group 2 (listed after Table 10-1). Deleted formula for Max Ambient  
Operating Temperature (Automotive) and Max Ambient Operating Temperature (Industrial) in  
Table 10-4. Added RoHS-compliance and “pb-free” language to back cover.  
Rev 5.0  
Added information/corrected state during reset in Table 2-2. Clarified external reference crystal  
frequency for PLL in Table 10-14 by increasing maximum value to 8.4MHz.  
Rev 6.0  
Rev. 7  
Replaced “Tri-stated” with an explanation in State During Reset column in Table 2-2.  
• Added the following note to the description of the TMS signal in Table 2-2:  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
• Added the following note to the description of the TRST signal in Table 2-2:  
Note: For normal operation, connect TRST directly to VSS. If the design is to be used in a debugging  
environment, TRST may be tied to VSS through a 1K resistor.  
• Remove pullup comment from PWM pins in Table 2-2.  
• Add Figure 10-1 showing current voltage characteristics.  
Rev. 8  
• In Table 10-23, correct interpretation of Calibration Factors to be viewed as worst case  
factors.  
• Add to Table 10-23 the DC drift of ADC over temperature.  
• Removed “Preliminary” markings.  
Rev 8.1  
Please see http://www.freescale.com for the most current data sheet revision.  
56F8365 Technical Data, Rev. 9  
2
Freescale Semiconductor  
Table of Contents  
Part 1: Overview 5  
Part 8: General Purpose Input/Output (GPIO)  
133  
1.1. 56F8365/56F8165 Features 5  
1.2. Device Description 8  
1.3. Award-Winning Development Environment 10  
1.4. Architecture Block Diagram 10  
1.5. Product Documentation 13  
1.6. Data Sheet Conventions 14  
8.1. Introduction 133  
8.2. Memory Maps 133  
8.3. Configuration 133  
Part 9: Joint Test Action Group (JTAG) 138  
9.1. JTAG Information 138  
Part 2: Signal/Connection Descriptions 14  
2.1. Introduction 14  
Part 10: Specifications 138  
10.1. General Characteristics 138  
2.2. Signal Pins 18  
10.2. DC Electrical Characteristics 143  
10.3. AC Electrical Characteristics 148  
10.4. Flash Memory Characteristics 148  
10.5. External Clock Operation Timing 149  
10.6. Phase Locked Loop Timing 149  
10.7. Crystal Oscillator Timing 150  
10.8. Reset, Stop, Wait, Mode Select, and Interrupt  
Timing 150  
10.9. Serial Peripheral Interface (SPI) Timing 153  
10.10. Quad Timer Timing 157  
10.11. Quadrature Decoder Timing 157  
10.12. Serial Communication Interface (SCI) Timing 158  
10.13. Controller Area Network (CAN) Timing 159  
10.14. JTAG Timing 159  
Part 3: On-Chip Clock Synthesis (OCCS) 36  
3.1. Introduction 36  
3.2. External Clock Operation 36  
3.3. Registers 38  
Part 4: Memory Map 38  
4.1. Introduction 38  
4.2. Program Map 39  
4.3. Interrupt Vector Table 41  
4.4. Data Map 44  
4.5. Flash Memory Map 45  
4.6. EOnCE Memory Map 46  
4.7. Peripheral Memory Mapped Registers 47  
4.8. Factory Programmed Memory 79  
10.15. Analog-to-Digital Converter (ADC) Parameters  
161  
10.16. Equivalent Circuit for ADC Inputs 163  
10.17. Power Consumption 164  
Part 5: Interrupt Controller (ITCN) 79  
5.1. Introduction 79  
5.2. Features 79  
5.3. Functional Description 80  
5.4. Block Diagram 81  
5.5. Operating Modes 81  
5.6. Register Descriptions 82  
5.7. Resets 109  
Part 11: Packaging 166  
11.1. 56F8365 Package and Pin-Out Information 166  
11.2. 56F8165 Package and Pin-Out Information 169  
Part 12: Design Considerations 174  
12.1. Thermal Design Considerations 174  
12.2. Electrical Design Considerations 175  
12.3. Power Distribution and I/O Ring Implementation  
176  
Part 6: System Integration Module (SIM) 110  
6.1. Introduction 110  
6.2. Features 110  
6.3. Operating Modes 111  
6.4. Operating Mode Register 111  
6.5. Register Descriptions 112  
6.6. Clock Generation Overview 127  
6.7. Power-Down Modes Overview 127  
6.8. Stop and Wait Mode Disable Function 128  
6.9. Resets 128  
Part 13: Ordering Information 178  
Part 7: Security Features 129  
7.1. Operation with Security Enabled 129  
7.2. Flash Access Blocking Mechanisms 129  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
3
56F8365/56F8165 General Description  
Note: Features in italics are NOT available in the 56F8165 device.  
• Up to 60 MIPS at 60MHz core frequency  
• DSP and MCU functionality in a unified,  
C-efficient architecture  
• 512KB Program Flash  
• 4KB Program RAM  
• 32KB Data Flash  
• 32KB Data RAM  
• 32KB Boot Flash  
Up to two 6-channel PWM modules  
• Four 4-channel, 12-bit ADCs  
Temperature Sensor  
Up to two Quadrature Decoders  
• Up to two FlexCAN modules  
• Optional On-Chip Regulator  
• Two Serial Communication Interfaces (SCIs)  
• Up to two Serial Peripheral Interface (SPIs)  
• Up to four general-purpose Quad Timers  
• Computer Operating Properly (COP)/Watchdog  
• JTAG/Enhanced On-Chip Emulation (OnCE™) for unobtrusive, real-time debugging  
• Up to 49 GPIO lines  
• 128-pin LQFP Package  
56F8365 Technical Data, Rev. 9  
4
Freescale Semiconductor  
56F8365/56F8165 Features  
OCR_DIS  
RSTO  
RESET  
V
V
V
V
V
V
SSA  
PP  
CAP  
DD  
SS  
DDA  
5
2
4
7
5
2
JTAG/  
EOnCE  
Port  
6
6
Digital Reg  
Analog Reg  
PWM Outputs  
PWMA  
Low Voltage  
Supervisor  
Current Sense Inputs  
or GPIOC  
16-Bit  
56800E Core  
3
4
Fault Inputs  
Data ALU  
Program Controller  
and Hardware  
Looping Unit  
Address  
Generation  
Unit  
Bit  
Manipulation  
Unit  
16 x 16 + 36 -> 36-Bit MAC  
Three 16-bit Input Registers  
Four 36-bit Accumulators  
PWM Outputs  
PWMB  
Current Sense Inputs  
or GPIOD  
3
4
PAB  
PDB  
Fault Inputs  
CDBR  
CDBW  
4
AD0  
ADCA  
AD1  
4
5
4
R/W Control  
Memory  
XDB2  
XAB1  
XAB2  
VREF  
6
Program Memory  
256K x 16 Flash  
2K x 16 RAM  
* External  
Address Bus  
Switch  
A8-13 or GPIOA0-5  
GPIOB0-4 or A16-20  
AD0  
ADCB  
5
PAB  
4
AD1  
Boot ROM  
16K x 16 Flash  
System Bus  
Control  
PDB  
Temp_Sense  
* External  
Data  
Bus Switch  
CDBR  
CDBW  
Data Memory  
16K x 16 Flash  
16K x 16 RAM  
D7-10 or GPIOF0-3  
GPIOD2-5 or CS4-7  
Quadrature  
Decoder 0 or  
Quad  
4
4
4
Timer A or  
GPIOC  
* Bus  
Control  
Quadrature  
Decoder 1 or  
Quad  
Timer B or  
SP1I or  
IPBus Bridge (IPBB)  
4
GPIO or  
EMI CS or  
FlexCAN2  
GPIOD0 (CS2 or CAN2_TX)  
GPIOD1 (CS3 or CAN2_RX)  
Peripheral  
Device Selects  
RW  
IPAB IPWDB  
IPRDB  
Control  
GPIOC  
Decoding  
* EMI not functional in  
this package; use as  
GPIO pins  
Quad Timer  
C or GPIOE  
Peripherals  
2
Clock  
resets  
PLL  
O
Quad Timer  
D or GPIOE  
4
System  
P
O
R
SCI1 or  
SPI0 or  
GPIOE  
SCI0 or  
GPIOE  
Interrupt  
Controller  
COP/  
Watchdog  
Integration  
XTAL  
Clock  
2
FlexCAN  
GPIOD  
S
Module  
Generator  
EXTAL  
C
2
4
2
CLKO  
IRQA IRQB  
CLKMODE  
56F8365/56F8165 Block Diagram  
Part 1 Overview  
1.1 56F8365/56F8165 Features  
1.1.1  
Core  
Efficient 16-bit 56800E family controller engine with dual Harvard architecture  
Up to 60 Million Instructions Per Second (MIPS) at 60MHz core frequency  
Single-cycle 16 16-bit parallel Multiplier-Accumulator (MAC)  
Four 36-bit accumulators, including extension bits  
Arithmetic and logic multi-bit shifter  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three internal address buses  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
5
Four internal data buses  
Instruction set supports both DSP and controller functions  
Controller-style addressing modes and instructions for compact code  
Efficient C compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/EOnCE debug programming interface  
1.1.2  
Differences Between Devices  
Table 1-1 outlines the key differences between the 56F8365 and 56F8165 devices.  
Table 1-1 Device Differences  
Feature  
56F8365  
56F8165  
Guaranteed Speed  
Program RAM  
Data Flash  
60MHz/60 MIPS  
40MHz/40MIPS  
Not Available  
Not Available  
1 x 6  
4KB  
32KB  
2 x 6  
2
PWM  
CAN  
Not Available  
2
Quad Timer  
4
Quadrature Decoder  
Temperature Sensor  
2 x 4  
1
1 x 4  
Not Available  
1.1.3  
Memory  
Note: Features in italics are NOT available in the 56F8165 device.  
Harvard architecture permits as many as three simultaneous accesses to program and data memory  
Flash security protection feature  
On-chip memory, including a low-cost, high-volume Flash solution  
— 512KB of Program Flash  
— 4KB of Program RAM  
— 32KB of Data Flash  
— 32KB of Data RAM  
— 32KB of Boot Flash  
EEPROM emulation capability  
1.1.4  
Peripheral Circuits  
Note: Features in italics are NOT available in the 56F8165 device.  
Pulse Width Modulator module:  
56F8365 Technical Data, Rev. 9  
6
Freescale Semiconductor  
56F8365/56F8165 Features  
— In the 56F8365, two Pulse Width Modulator modules, each with six PWM outputs, three Current Sense  
inputs, and four Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned  
and edge-aligned modes  
— In the 56F8165, one Pulse Width Modulator module with six PWM outputs, three Current Sense inputs  
and three Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and  
edge-aligned modes  
Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with  
quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, channels  
2 and 3  
Quadrature Decoder:  
— In the 56F8365, two four-input Quadrature Decoders or two additional Quad Timers  
— In the 56F8165, one four-input Quadrature Decoder, which works in conjunction with Quad Timer A  
Temperature Sensor can be connected, on the board, to any of the ADC inputs to monitor the on-chip  
temperature  
Quad Timer:  
— In the 56F8365, four dedicated general-purpose Quad Timers totaling six dedicated pins: Timer C with  
two pins and Timer D with four pins  
— In the 56F8165, two Quad Timers; Timer A and Timer C both work in conjunction with GPIO  
Optional On-Chip Regulator  
Up to two FlexCAN (CAN Version 2.0 B-compliant) modules with 2-pin port for transmit and receive  
Two Serial Communication Interfaces (SCIs), each with two pins (or four additional GPIO lines)  
Up to two Serial Peripheral Interfaces (SPIs), both with configurable 4-pin port (or eight additional GPIO  
lines); SPI1 can also be used as Quadrature Decoder 1 or Quad Timer B  
Computer Operating Properly (COP)/Watchdog timer  
Two dedicated external interrupt pins  
49 General Purpose I/O (GPIO) pins; 28 pins dedicated to GPIO  
External reset input pin for hardware reset  
External reset output pin for system reset  
Integrated low-voltage interrupt module  
JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, processor speed-independent, real-time  
debugging  
Software-programmable, Phase Lock Loop (PLL)-based frequency synthesizer for the core clock  
1.1.5  
Energy Information  
Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs  
On-board 3.3V down to 2.6V voltage regulator for powering internal logic and memories; can be disabled  
On-chip regulators for digital and analog circuitry to lower cost and reduce noise  
Wait and Stop modes available  
ADC smart power management  
Each peripheral can be individually disabled to save power  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
7
1.2 Device Description  
The 56F8365 and 56F8165 are members of the 56800E core-based family of controllers. Each combines,  
on a single chip, the processing power of a Digital Signal Processor (DSP) and the functionality of a  
microcontroller with a flexible set of peripherals to create an extremely cost-effective solution. Because  
of their low cost, configuration flexibility, and compact program code, the 56F8365 and 56F8165 are  
well-suited for many applications. The devices include many peripherals that are especially useful for  
motion control, smart appliances, steppers, encoders, tachometers, limit switches, power supply and  
control, automotive control (56F8365 only), engine management, noise suppression, remote utility  
metering, industrial control for power, lighting, and automation applications.  
The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in  
parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and  
optimized instruction set allow straightforward generation of efficient, compact DSP and control code.  
The instruction set is also highly efficient for C/C++ Compilers to enable rapid development of optimized  
control applications.  
The 56F8365 and 56F8165 support program execution from internal memories. Two data operands can be  
accessed from the on-chip data RAM per instruction cycle. These devices also provide two external  
dedicated interrupt lines and up to 49 General Purpose Input/Output (GPIO) lines, depending on peripheral  
configuration.  
1.2.1  
56F8365 Features  
The 56F8365 controller includes 512KB of Program Flash and 32KB of Data Flash (each programmable  
through the JTAG port) with 4KB of Program RAM and 32KB of Data RAM. A total of 32KB of Boot  
Flash is incorporated for easy customer inclusion of field-programmable software routines that can be used  
to program the main Program and Data Flash memory areas. Both Program and Data Flash memories can  
be independently bulk erased or erased in pages. Program Flash page erase size is 1KB. Boot and Data  
Flash page erase size is 512 bytes. The Boot Flash memory can also be either bulk or page erased.  
A key application-specific feature of the 56F8365 is the inclusion of two Pulse Width Modulator (PWM)  
modules. These modules each incorporate three complementary, individually programmable PWM signal  
output pairs (each module is also capable of supporting six independent PWM functions, for a total of 12  
PWM outputs) to enhance motor control functionality. Complementary operation permits programmable  
dead time insertion, distortion correction via current sensing by software, and separate top and bottom  
output polarity control. The up-counter value is programmable to support a continuously variable PWM  
frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is  
supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors); both  
BDC and BLDC (Brush and Brushless DC motors); SRM and VRM (Switched and Variable Reluctance  
Motors); and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting  
with sufficient output drive capability to directly drive standard optoisolators. A “smoke-inhibit”,  
write-once protection feature for key parameters is also included. A patented PWM waveform distortion  
correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit  
integral reload rates to be programmable from 1 to 16. The PWM modules provide reference outputs to  
synchronize the Analog-to-Digital Converters through two channels of Quad Timer C.  
56F8365 Technical Data, Rev. 9  
8
Freescale Semiconductor  
Device Description  
The 56F8365 incorporates two Quadrature Decoders capable of capturing all four transitions on the  
two-phase inputs, permitting generation of a number proportional to actual position. Speed computation  
capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the  
Quadrature Decoder can be programmed with a time-out value to alert when no shaft motion is detected.  
Each input is filtered to ensure only true transitions are recorded.  
This controller also provides a full set of standard programmable peripherals that include two Serial  
Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and four Quad Timers. Any of  
these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required.  
Two Flex Controller Area Network (FlexCAN) interfaces (CAN Version 2.0 B-compliant) and an internal  
interrupt controller are also a part of the 56F8365.  
1.2.2  
56F8165 Features  
The 56F8165 hybrid controller includes 128KB of Program Flash, programmable through the JTAG port,  
and 8KB of Data RAM. A total of 8KB of Boot Flash is incorporated for easy customer inclusion of  
field-programmable software routines that can be used to program the main Program Flash memory area.  
The Program Flash memory can be independently bulk erased or erased in pages; Program Flash page  
erase size is 1KB. The Boot Flash page erase size is 512 bytes; Boot Flash memory can also be either bulk  
or page erased.  
A key application-specific feature of the 56F8165 is the inclusion of one Pulse Width Modulator (PWM)  
module. This module incorporates three complementary, individually programmable PWM signal output  
pairs and can also support six independent PWM functions to enhance motor control functionality.  
Complementary operation permits programmable dead time insertion, distortion correction via current  
sensing by software, and separate top and bottom output polarity control. The up-counter value is  
programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned  
synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of  
controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless  
DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWM  
incorporates fault protection and cycle-by-cycle current limiting with sufficient output drive capability to  
directly drive standard optoisolators. A “smoke-inhibit”, write-once protection feature for key parameters  
is also included. A patented PWM waveform distortion correction circuit is also provided. The PWM is  
double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1  
to 16. The PWM module provides reference outputs to synchronize the Analog-to-Digital Converters  
through two channels of Quad Timer C.  
The 56F8165 incorporates a Quadrature Decoder capable of capturing all four transitions on the two-phase  
inputs, permitting generation of a number proportional to actual position. Speed computation capabilities  
accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder  
can be programmed with a time-out value to alert when no shaft motion is detected. Each input is filtered  
to ensure only true transitions are recorded.  
This controller also provides a full set of standard programmable peripherals that include two Serial  
Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and two Quad Timers. Any of  
these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. An  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
9
internal interrupt controller is also a part of the 56F8165.  
1.3 Award-Winning Development Environment  
TM  
Processor Expert  
(PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, PE, CodeWarrior and EVMs create a complete, scalable  
tools solution for easy, fast, and efficient development.  
1.4 Architecture Block Diagram  
Note: Features in italics are NOT available in the 56F8165 device and are shaded in the following figures.  
The 56F8365/56F8165 architecture is shown in Figure 1-1 and Figure 1-2. Figure 1-1 illustrates how the  
56800E system buses communicate with internal memories and the IPBus Bridge. Table 1-2 lists the  
internal buses in the 56800E architecture and provides a brief description of their function. Figure 1-2  
shows the peripherals and control blocks connected to the IPBus Bridge. The figures do not show the  
on-board regulator and power and ground signals. They also do not show the multiplexing between  
peripherals or the dedicated GPIOs. Please see Part 2, Signal/Connection Descriptions, to see which  
signals are multiplexed with those of other peripherals.  
Also shown in Figure 1-2 are connections between the PWM, Timer C and ADC blocks. These  
connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions. The  
Timer C channel indicated can generate periodic start (SYNC) signals to the ADC to start its conversions.  
In another operating mode, the PWM load interrupt (SYNC output) signal is routed internally to the Timer  
C input channel as indicated. The timer can then be used to introduce a controllable delay before  
generating its output signal. The timer output then triggers the ADC. To fully understand this interaction,  
please see the 56F8300 Peripheral User Manual for clarification on the operation of all three of these  
peripherals.  
56F8365 Technical Data, Rev. 9  
10  
Freescale Semiconductor  
Architecture Block Diagram  
5
JTAG / EOnCE  
Boot  
Flash  
pdb_m[15:0]  
pab[20:0]  
Program  
Flash  
Program  
RAM  
cdbw[31:0]  
56800E  
EMI*  
11  
4
Address  
CHIP  
TAP  
Data  
Controller  
6
Control  
TAP  
Linking  
Module  
Data RAM  
xab1[23:0]  
xab2[23:0]  
Data  
Flash  
External  
JTAG  
Port  
cdbr_m[31:0]  
xdb2_m[15:0]  
To Flash  
Control Logic  
IPBus  
Bridge  
Flash  
Memory  
Module  
NOT available on the 56F8165 device.  
* EMI not functional in this package; since only part of  
the address/data bus is bonded out, use as GPIO pins  
IPBus  
Figure 1-1 System Bus Interfaces  
Note:  
Note:  
Flash memories are encapsulated within the Flash Memory (FM) Module. Flash control is  
accomplished by the I/O to the FM over the peripheral bus, while reads and writes are completed  
between the core and the Flash memories.  
The primary data RAM port is 32 bits wide. Other data ports are 16 bits.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
11  
To/From IPBus Bridge  
Interrupt  
CLKGEN  
Controller  
(OSC/PLL)  
Low Voltage Interrupt  
POR and LVI  
Timer A  
System POR  
RESET  
4
Quadrature Decoder 0  
Timer D  
SIM  
4
COP Reset  
COP  
Timer B  
2
2
FlexCAN  
FlexCAN2  
4
Quadrature Decoder 1  
SPI1  
13  
PWMA  
SYNC Output  
13  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
PWMB  
SYNC Output  
ch2i  
ch3i  
2
Timer C  
ch3i  
ch2i  
8
ADCB  
4
SPI0  
SCI0  
8
ADCA  
2
1
TEMP_SENSE  
2
SCI1  
Note: ADC A and ADC B use the same voltage  
reference circuit with VREFH, VREFP, VREFMID  
VREFN, and VREFLO pins.  
IPBus  
,
NOT available on the 56F8165 device.  
56F8365 Technical Data, Rev. 9  
12  
Freescale Semiconductor  
Product Documentation  
Figure 1-2 Peripheral Subsystem  
Table 1-2 Bus Signal Names  
Name  
Function  
Program Memory Interface  
pdb_m[15:0]  
cdbw[15:0]  
Program data bus for instruction word fetches or read operations.  
Primary core data bus used for program memory writes. (Only these 16 bits of the cdbw[31:0] bus  
are used for writes to program memory.)  
pab[20:0]  
Program memory address bus. Data is returned on pdb_m bus.  
Primary Data Memory Interface Bus  
cdbr_m[31:0] Primary core data bus for memory reads. Addressed via xab1 bus.  
cdbw[31:0]  
xab1[23:0]  
Primary core data bus for memory writes. Addressed via xab1 bus.  
Primary data address bus. Capable of addressing bytes1, words, and long data types. Data is written  
on cdbw and returned on cdbr_m. Also used to access memory-mapped I/O.  
Secondary Data Memory Interface  
xdb2_m[15:0] Secondary data bus used for secondary data address bus xab2 in the dual memory reads.  
xab2[23:0]  
Secondary data address bus used for the second of two simultaneous accesses. Capable of  
addressing only words. Data is returned on xdb2_m.  
Peripheral Interface Bus  
IPBus [15:0]  
Peripheral bus accesses all on-chip peripherals registers. This bus operates at the same clock rate  
as the Primary Data Memory and therefore generates no delays when accessing the processor.  
Write data is obtained from cdbw. Read data is provided to cdbr_m.  
1. Byte accesses can only occur in the bottom half of the memory address space. The MSB of the address will be forced  
to 0.  
1.5 Product Documentation  
The documents listed in Table 1-3 are required for a complete description and proper design with the  
56F8365/56F8165 devices.. Documentation is available from local Freescale distributors, Freescale  
semiconductor sales offices, Freescale Literature Distribution Centers, or online at  
http://www.freescale.com.  
Table 1-3 Chip Documentation  
Topic  
DSP56800E  
Description  
Order Number  
DSP56800EERM  
Detailed description of the 56800E family architecture,  
16-bit controller core processor, and the instruction set  
Reference Manual  
56F8300 Peripheral  
User Manual  
Detailed description of peripherals of the 56F8300  
family of devices  
MC56F8300UM  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
13  
Table 1-3 Chip Documentation  
Topic  
Description  
Order Number  
MC56F83xxBLUM  
56F8300 SCI/CAN  
Bootloader User  
Manual  
Detailed description of the SCI/CAN Bootloaders  
56F8300 family of devices  
56F8365/56F8165  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
device specific peripheral information and package  
descriptions (this document)  
MC56F8365  
Errata  
Details any chip issues that might be present  
MC56F8365E  
MC56F8165E  
1.6 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for V , V , V , and V are defined by individual product specifications.  
IL  
OL  
IH  
OH  
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F8365 and 56F8165 are organized into functional groups, as detailed  
in Table 2-1 and as illustrated in Figure 2-1. In Table 2-2, each table row describes the signal or signals  
present on a pin.  
56F8365 Technical Data, Rev. 9  
14  
Freescale Semiconductor  
Introduction  
Table 2-1 Functional Group Pin Allocations  
Number of Pins in Package  
Functional Group  
56F8365  
56F8165  
Power (VDD or VDDA  
)
9
9
Power Option Control  
Ground (VSS or VSSA  
1
6
1
6
)
Supply Capacitors1 & VPP  
6
6
PLL and Clock  
4
6
4
6
Bus Control  
Interrupt and Program Control  
Pulse Width Modulator (PWM) Ports  
Serial Peripheral Interface (SPI) Port 0  
Serial Peripheral Interface (SPI) Port 1  
4
4
26  
4
13  
4
4
4
Quadrature Decoder Port 02  
4
Quadrature Decoder Port 13  
Serial Communications Interface (SCI) Ports  
CAN Ports  
4
4
2
4
21  
4
Analog-to-Digital Converter (ADC) Ports  
Timer Module Ports  
21  
6
JTAG/Enhanced On-Chip Emulation (EOnCE)  
Temperature Sense  
5
5
1
28  
Dedicated GPIO ( Address Bus = 11; Data Bus = 44)  
28  
1. If the on-chip regulator is disabled, the V  
pins serve as 2.5V V  
power inputs  
DD_CORE  
CAP  
2. Alternately, can function as Quad Timer pins or GPIO  
3. Pins in this section can function as Quad Timer, SPI 1, orGPIO  
4. EMI not functional in these packages; use as GPIO pins.  
Note: See Table 1-1 for 56F8165 functional differences.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
15  
V
Power  
Power  
Quadrature  
Decoder 0  
or Quad  
Timer A or  
GPIO  
DD_IO  
PHASEA0 (TA0, GPIOC4)  
PHASEB0(TA1, GPIOC5 )  
INDEX0 (TA2, GPIOC6)  
HOME0 (TA3, GPIOC7)  
1
1
1
1
7
1
1
5
1
V
DDA_OSC_PLL  
VDDA_ADC  
Power  
VSS  
Ground  
Ground  
VSSA_ADC  
56F8365  
SCLK0 (GPIOE4)  
MOSI0 (GPIOE5)  
MISO0 (GPIOE6)  
SS0 (GPIOE7)  
1
1
1
1
OCR_DIS  
1
SPI0 or  
GPIO  
Other  
Supply  
Ports  
V
CAP1 - VCAP  
VPP1 & VPP  
4
2
4
2
Quadrature  
Decoder 1 or  
Quad Timer B  
or SPI1 or  
GPIO  
PHASEA1 (TB0, SCLK1, GPIOC0)  
PHASEB1 (TB1, MOSI1, GPIOC1)  
INDEX1 (TB2, MISO1, GPIOC2)  
HOME1 (TB3, SS1, GPIOC3)  
1
1
1
1
CLKMODE  
1
PLL  
and  
Clock  
EXTAL  
XTAL  
1
1
1
CLKO  
PWMA0 - 5  
6
3
4
*External  
Address  
Bus  
A8 - A13 (GPIOA0 - 5)  
GPIOB0-4 (A16 - 20)  
ISA0 - 2 (GPIOC8 - 10)  
FAULTA0 - 3  
PWMA  
6
5
or GPIO  
PWMB0 - 5  
6
3
4
*External  
Data Bus  
D7 - D10 (GPIOF0 - 3)  
ISB0 - 2 (GPIOD10 - 12)  
4
PWMB  
FAULTB0 - 3  
ANA0 - 7  
VREF  
GPIOD0 (CS2, CAN2_TX)  
GPIOD1 (CS3, CAN2_RX)  
GPIOD2 - 5 (CS4 - 7)  
ADCA  
ADCB  
8
1
1
*External  
Bus  
Control  
5
8
ANB0 - 7  
4
Temperature  
Sensor  
TEMP_SENSE  
1
CAN_RX  
CAN_TX  
1
1
CAN  
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
SCI0 or  
GPIOE  
1
1
Quad  
TC0 - 1 (GPIOE8 - 9)  
2
4
Timer C  
and D or  
GPIO  
TXD1 (GPIOD6)  
RXD1 (GPIOD7)  
SCI1 or  
GPIO  
1
1
TD0 - 3 (GPIOE10 - 13)  
TCK  
TMS  
TDI  
1
IRQA  
1
1
1
1
JTAG/  
EOnCE  
Port  
1
1
Interrupt/  
Program  
Control  
IRQB  
RESET  
RSTO  
TDO  
TRST  
1
1
* EMI not functional in this package; use as GPIO pins  
1
Figure 2-1 56F8365 Signals Identified by Functional Group (128-Pin LQFP)  
1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.  
56F8365 Technical Data, Rev. 9  
16  
Freescale Semiconductor  
Introduction  
Quadrature  
V
PHASEA0 (TA0, GPIOC4)  
PHASEB0(TA1, GPIOC5 )  
INDEX0 (TA2, GPIOC6)  
Power  
Power  
Power  
DD_IO  
1
1
1
7
1
1
5
1
Decoder 0  
or Quad  
Timer A or  
GPIO  
VDDA_ADC  
V
DDA_OSC_PLL  
VSS  
HOME0 (TA3, GPIOC7)  
Ground  
Ground  
1
VSSA_ADC  
56F8165  
OCR_DIS  
SCLK0 (GPIOE4)  
MOSI0 (GPIOE5)  
MISO0 (GPIOE6)  
1
1
1
SPI0 or  
GPIO  
Other  
Supply  
Ports  
V
CAP1 - VCAP  
VPP1 & VPP  
4
2
4
2
1
1
SS0 (GPIOE7)  
CLKMODE  
1
(SCLK1, GPIOC0)  
(MOSI1, GPIOC1)  
PLL  
and  
Clock  
EXTAL  
XTAL  
1
1
1
1
1
SPI1 or  
GPIO  
(MISO1, GPIOC2)  
(SS1,GPIOC3)  
CLKO  
1
1
A8 - A13 (GPIOA0 - 5)  
GPIOB0-4 (A16 - 20)  
6
5
*External  
Address  
Bus  
(GPIOC8 - 10)  
GPIO  
3
or GPIO  
PWMB0 - 5  
6
D7 - D10 (GPIOF0 - 3)  
GPIOD0 - 5 (CS2 - 7)  
*External  
Data Bus  
ISB0 - 2 (GPIOD10 - 12)  
PWMB  
4
6
3
4
FAULTB0-3  
ANA0 - 7  
VREF  
ADCA  
ADCB  
8
*External  
Bus  
Control  
5
8
ANB0 - 7  
TXD0 (GPIOE0)  
RXD0 (GPIOE1)  
SCI0 or  
GPIOE  
1
1
TXD1 (GPIOD6)  
RXD1 (GPIOD7)  
TC0 - 1 (GPIOE8 - 9)  
(GPIOE10 - 13)  
QUAD  
Timer C or  
GPIO  
SCI1 or  
GPIO  
1
1
2
4
TCK  
TMS  
TDI  
1
JTAG/  
EOnCE  
Port  
IRQA  
1
1
1
1
Interrupt/  
Program  
Control  
IRQB  
TDO  
1
1
RESET  
RSTO  
TRST  
1
1
* EMI not functional in this package; use as GPIO pins  
1
Figure 2-2 56F8165 Signals Identified by Functional Group (128-Pin LQFP)  
1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
17  
2.2 Signal Pins  
After reset, each pin is configured for its primary function (listed first). Any alternate functionality must  
be programmed.  
EMI is not functional in this package; since only part of the address/data bus is bonded out, use as GPIO  
pins.  
Note: Signals in italics are NOT available in the 56F8165 device.  
If the “State During Reset” lists more than one state for a pin, the first state is the actual reset state. Other  
states show the reset condition of the alternate function, which you get if the alternate pin function is  
selected without changing the configuration of the alternate peripheral. For example, the A8/GPIOA0 pin  
shows that it is tri-stated during reset. If the GPIOA_PER is changed to select the GPIO function of the  
pin, it will become an input if no other registers are changed.  
Table 2-2 Signal and Package Information for the 128-Pin LQFP  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDD_IO  
VDDA_ADC  
4
14  
25  
36  
62  
76  
112  
94  
Supply  
I/O Power — This pin supplies 3.3V power to the chip I/O  
interface and also the Processor core throught the on-chip voltage  
regulator, if it is enabled.  
Supply  
Supply  
ADC Power — This pin supplies 3.3V power to the ADC modules.  
It must be connected to a clean analog power supply.  
VDDA_OSC_  
72  
Oscillator and PLL Power — This pin supplies 3.3V power to the  
OSC and to the internal regulator that in turn supplies the Phase  
Locked Loop. It must be connected to a clean analog power  
supply.  
PLL  
56F8365 Technical Data, Rev. 9  
18  
Freescale Semiconductor  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
VSS  
VSS  
3
Supply  
Ground — These pins provide ground for chip logic and I/O  
drivers.  
21  
35  
59  
65  
95  
VSS  
VSS  
VSS  
VSSA_ADC  
Supply  
Input  
ADC Analog Ground — This pin supplies an analog ground to  
the ADC modules.  
OCR_DIS  
71  
Input  
On-Chip Regulator Disable —  
Tie this pin to VSS to enable the on-chip regulator  
Tie this pin to VDD to disable the on-chip regulator  
This pin is intended to be a static DC signal from power-up to  
shut down. Do not try to toggle this pin for power savings  
during operation.  
VCAP  
VCAP  
VCAP  
1
2
3
49  
122  
75  
Supply  
Supply  
VCAP1 - 4 — When OCR_DIS is tied to VSS (regulator enabled),  
connect each pin to a 2.2F or greater bypass capacitor in order  
to bypass the core logic voltage regulator, required for proper chip  
operation. When OCR_DIS is tied to VDD (regulator disabled),  
these pins become VDD_CORE and should be connected to a  
regulated 2.5V power supply.  
VCAP4  
13  
Note: This bypass is required even if the chip is powered  
with an external supply.  
V
PP1  
VPP  
CLKMODE  
119  
5
Input  
Input  
Input  
Input  
VPP1 - 2 — These pins should be left unconnected as an open  
circuit for normal functionality.  
2
79  
Clock Input Mode Selection — This input determines the  
function of the XTAL and EXTAL pins.  
1 = External clock input on XTAL is used to directly drive the input  
clock of the chip. The EXTAL pin should be grounded.  
0 = A crystal or ceramic resonator should be connected between  
XTAL and EXTAL.  
EXTAL  
74  
Input  
Input  
External Crystal Oscillator Input — This input can be  
connected to an 8MHz external crystal. Tie this pin low if XTAL is  
driven by an external clock source.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
19  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
XTAL  
73  
Input/  
Chip-driven Crystal Oscillator Output — This output connects the internal  
Output  
crystal oscillator output to an external crystal.  
If an external clock is used, XTAL must be used as the input and  
EXTAL connected to GND.  
The input clock can be selected to provide the clock directly to the  
core. This input clock can also be selected as the input clock for  
the on-chip PLL.  
CLKO  
6
Output  
In reset,  
output is  
disabled  
Clock Output — This pin outputs a buffered clock signal. Using  
the SIM CLKO Select Register (SIM_CLKOSR), this pin can be  
programmed as any of the following: disabled, CLK_MSTR  
(system clock), IPBus clock, oscillator output, prescaler clock and  
postscaler clock. Other signals are also available for test  
purposes.  
See Part 6.5.7 for details.  
A8  
15  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Address Bus — A8 - A13 specify six of the address lines for  
external program or data memory accesses. Depending upon the  
state of the DRV bit in the EMI bus control register (BCR), A8 -  
A13 and EMI control signals are tri-stated when the external bus  
is inactive.  
(GPIOA0)  
Schmitt  
Input/  
Port A GPIO — These six GPIO pins can be individually  
programmed as input or output pins.  
A9  
(GPIOA1)  
16  
17  
18  
19  
20  
Output  
After reset, these pins default to address bus functionality and  
must be programmed as GPIO.  
A10  
(GPIOA2)  
To deactivate the internal pull-up resistor, clear the appropriate  
GPIO bit in the GPIOA_PUR register.  
A11  
(GPIOA3)  
Example: GPIOA0, clear bit 0 in the GPIOA_PUR register.  
A12  
(GPIOA4)  
Note: Primary function is not available in this package  
configuration; GPIO function must be used instead.  
A13  
(GPIOA5)  
56F8365 Technical Data, Rev. 9  
20  
Freescale Semiconductor  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
GPIOB0  
27  
Schmitt  
Input/  
Output  
Input,  
pull-up  
enabled  
Port B GPIO — These four GPIO pins can be individually  
programmed as an input or output pin.  
(A16)  
GPIOB1  
(A17)  
Output  
Address Bus — A16 - A19 specify four of the address lines for  
external program or data memory accesses. Depending upon the  
state of the DRV bit in the EMI bus control register (BCR), A16 -  
A19 and EMI control signals are tri-stated when the external bus  
is inactive.  
28  
29  
30  
31  
GPIOB2  
(A18)  
After reset, the default state is GPIO.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOB_PUR register.  
GPIOB3  
(A19)  
Example: GPIOB1, clear bit 1 in the GPIOB_PUR register.  
GPIOB4  
Schmitt  
Input/  
Output  
Input,  
pull-up  
enabled  
Port B GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
(A20)  
Output  
Address Bus — A20 specifies one of the address lines for  
external program or data memory accesses. Depending upon the  
state of the DRV bit in the EMI bus control register (BCR), A20  
and EMI control signals are tri-stated when the external bus is  
inactive.  
(prescaler_  
clock)  
Output  
Clock Output — can be used to monitor the prescaler_clock on  
GPIOB4.  
After reset, the default state is GPIO.  
This pin can also be used to view the prescaler_clock. In these  
cases, the GPIOB_PER can be used to disable the GPIO. The  
CLKOSR register in the SIM can then be used to choose between  
address and clock functions; see  
Part 6.5.7 for details  
To deactivate the internal pull-up resistor, clear bit 4 in the  
GPIOB_PUR register.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
21  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
D7  
22  
Input/  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Data Bus — D7 - D10 specify part of the data for external  
program or data memory accesses. Depending upon the state of  
the DRV bit in the SEMI bus control register (BCR), D7 - D10 are  
tri-stated when the external bus is inactive  
(GPIOF0)  
Input/  
Port F GPIO — These four GPIO pins can be individually  
Output  
programmed as input or output pins.  
D8  
(GPIOF1)  
23  
24  
26  
After reset, these pins default to Data Bus functionality and should  
be programmed as GPIO.  
D9  
(GPIOF2)  
To deactivate the internal pull-up resistor, clear the appropriate  
GPIO bit in the GPIOF_PUR register.  
D10  
(GPIOF3)  
Example: GPIOF0, clear bit 0 in the GPIOF_PUR register.  
Note: Primary function is not available in this package  
configuration; GPIO function must be used instead.  
GPIOD0  
(CS2)  
42  
Input/  
Output  
Input,  
pull-up  
enabled  
Port D GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
Output  
Chip Select — CS2 may be programmed within the EMI module  
to act as a chip select for specific areas of the external memory  
map. Depending upon the state of the DRV bit in the EMI Bus  
Control Register (BCR),CS2 is tri-stated when the external bus is  
inactive.  
(CAN2_TX)  
Open  
Drain  
FlexCAN2 Transmit Data — CAN output.  
Output  
At reset, this pin is configured as GPIO. This configuration can be  
changed by setting bit 0 in the GPIO_D_PER register, then  
change bit 4 in the SIM_GPS register to select the desired  
peripheral function.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOD_PUR register.  
56F8365 Technical Data, Rev. 9  
22  
Freescale Semiconductor  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
GPIOD1  
(CS3)  
43  
Schmitt  
Input/  
Output  
Input,  
pull-up  
enabled  
Port D GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
Output  
Chip Select — CS3 may be programmed within the EMI module  
to act as a chip select for specific areas of the external memory  
map.  
Depending upon the state of the DRV bit in the EMI Bus Control  
Register (BCR), CS3 is tri-stated when the external bus is  
inactive.  
(CAN2_RX)  
Schmitt  
Input  
FlexCAN2 Receive Data — This is the CAN input. This pin has  
an internal pull-up resistor.  
At reset, this pin is configured as GPIO. This configuration can be  
changed by setting bit 1 in the GPIO_D_PER register, then  
change bit 5 in the SIM_GPS register to select the desired  
peripheral function.  
To deactivate the internal pull-up resistor, clear bit 1 in the  
GPIOD_PUR register.  
GPIOD2  
(CS4)  
44  
Input/  
Output  
Input,  
pull-up  
enabled  
Port D GPIO — These four GPIO pins can be individually  
programmed as input or output pins.  
Output  
Chip Select — CS4 - CS7 may be programmed within the EMI  
module to act as chip selects for specific areas of the external  
memory map.  
GPIOD3  
(CS5)  
45  
46  
47  
Depending upon the state of the DRV bit in the EMI bus control  
register (BCR), CS4 - CS7 are tri-stated when the external bus is  
inactive  
GPIOD4  
(CS6)  
GPIOD5  
(CS7)  
After reset, these pins are configured as GPIO.  
To deactivate the internal pull-up resistor, clear the appropriate  
GPIO bit in the GPIOD_PUR register.  
Example: GPIOD2, clear bit 2 in the GPIOD_PUR register.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
23  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
TXD0  
7
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Transmit Data — SCI0 transmit data output  
(GPIOE0)  
Input/  
Output  
Port E GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOE_PUR register.  
RXD0  
8
Input  
Input,  
pull-up  
enabled  
Receive Data — SCI0 receive data input  
(GPIOE1)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 1 in the  
GPIOE_PUR register.  
TXD1  
40  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Transmit Data — SCI1 transmit data output  
(GPIOD6)  
Input/  
Output  
Port D GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
After reset, the default state is SCI output.  
To deactivate the internal pull-up resistor, clear bit 6 in the  
GPIOD_PUR register.  
RXD1  
41  
Input  
Input,  
pull-up  
enabled  
Receive Data — SCI1 receive data input  
(GPIOD7)  
Input/  
Port D GPIO — This GPIO pin can be individually programmed  
Output  
as an input or output pin.  
After reset, the default state is SCI input.  
To deactivate the internal pull-up resistor, clear bit 7 in the  
GPIOD_PUR register.  
TCK  
115  
Schmitt  
Input  
Input,  
pulled low  
internally  
Test Clock Input — This input pin provides a gated clock to  
synchronize the test logic and shift serial data to the  
JTAG/EOnCE port. The pin is connected internally to a pull-down  
resistor.  
56F8365 Technical Data, Rev. 9  
24  
Freescale Semiconductor  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
TMS  
116  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Mode Select Input — This input pin is used to sequence the  
JTAG TAP controller’s state machine. It is sampled on the rising  
edge of TCK and has an on-chip pull-up resistor.  
To deactivate the internal pull-up resistor, set the JTAG bit in the  
SIM_PUDR register.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
TDI  
117  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Data Input — This input pin provides a serial input data  
stream to the JTAG/EOnCE port. It is sampled on the rising edge  
of TCK and has an on-chip pull-up resistor.  
To deactivate the internal pull-up resistor, set the JTAG bit in the  
SIM_PUDR register.  
TDO  
118  
114  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
Test Data Output — This tri-stateable output pin provides a serial  
output data stream from the JTAG/EOnCE port. It is driven in the  
shift-IR and shift-DR controller states, and changes on the falling  
edge of TCK.  
TRST  
Schmitt  
Input  
Input,  
pulled high  
internally  
Test Reset — As an input, a low signal on this pin provides a  
reset signal to the JTAG TAP controller. To ensure complete  
hardware reset, TRST should be asserted whenever RESET is  
asserted. The only exception occurs in a debugging environment  
when a hardware device reset is required and the JTAG/EOnCE  
module must not be reset. In this case, assert RESET, but do not  
assert TRST.  
To deactivate the internal pull-up resistor, set the JTAG bit in the  
SIM_PUDR register.  
Note: For normal operation, connect TRST directly to VSS. If the  
design is to be used in a debugging environment, TRST may be tied to  
VSS through a 1K resistor.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
25  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
Phase A — Quadrature Decoder 0, PHASEA input  
TA0 — Timer A, Channel 0  
PHASEA0  
(TA0)  
127  
Schmitt  
Input  
Input,  
pull-up  
enabled  
Schmitt  
Input/  
Output  
(GPIOC4)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
Output  
After reset, the default state is PHASEA0.  
To deactivate the internal pull-up resistor, clear bit 4 of the  
GPIOC_PUR register.  
PHASEB0  
(TA1)  
128  
Schmitt  
Input  
Input,  
pull-up  
enabled  
Phase B — Quadrature Decoder 0, PHASEB input  
Schmitt  
Input/  
TA1 — Timer A, Channel 1  
Output  
(GPIOC5)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
Output  
After reset, the default state is PHASEB0.  
To deactivate the internal pull-up resistor, clear bit 5 of the  
GPIOC_PUR register.  
INDEX0  
(TA2)  
1
Schmitt  
Input  
Input,  
pull-up  
enabled  
Index — Quadrature Decoder 0, INDEX input  
Schmitt  
Input/  
TA2 — Timer A, Channel 2  
Output  
(GPIOC6)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
Output  
After reset, the default state is INDEX0.  
To deactivate the internal pull-up resistor, clear bit 6 of the  
GPIOC_PUR register.  
56F8365 Technical Data, Rev. 9  
26  
Freescale Semiconductor  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
Home — Quadrature Decoder 0, HOME input  
TA3 — Timer A, Channel 3  
HOME0  
(TA3)  
2
Schmitt  
Input  
Input,  
pull-up  
enabled  
Schmitt  
Input/  
Output  
(GPIOC7)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
Output  
After reset, the default state is HOME0.  
To deactivate the internal pull-up resistor, clear bit 7 of the  
GPIOC_PUR register.  
SCLK0  
124  
Schmitt  
Input/  
Output  
Input,  
pull-up  
enabled  
SPI 0 Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as  
the data clock input.  
(GPIOE4)  
Schmitt  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
an input or output pin.  
Output  
After reset, the default state is SCLK0.  
To deactivate the internal pull-up resistor, clear bit 4 in the  
GPIOE_PUR register.  
MOSI0  
126  
Input/  
Output  
In reset,  
output is  
disabled,  
pull-up is  
enabled  
SPI 0 Master Out/Slave In — This serial data pin is an output  
from a master device and an input to a slave device. The master  
device places data on the MOSI line a half-cycle before the clock  
edge the slave device uses to latch the data.  
(GPIOE5)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is MOSI0.  
To deactivate the internal pull-up resistor, clear bit 5 in the  
GPIOE_PUR register.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
27  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
MISO0  
125  
Input/  
Output  
Input,  
pull-up  
enabled  
SPI 0 Master In/Slave Out — This serial data pin is an input to a  
master device and an output from a slave device. The MISO line  
of a slave device is placed in the high-impedance state if the slave  
device is not selected. The slave device places data on the MISO  
line a half-cycle before the clock edge the master device uses to  
latch the data.  
(GPIOE6)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is MISO0.  
To deactivate the internal pull-up resistor, clear bit 6 in the  
GPIOE_PUR register.  
SS0  
123  
Input  
Input,  
pull-up  
enabled  
SPI 0 Slave Select — SS0 is used in slave mode to indicate to  
the SPI module that the current transfer is to be received.  
(GPIOE7)  
Input/  
Port E GPIO — This GPIO pin can be individually programmed as  
Output  
an input or output pin.  
After reset, the default state is SS0.  
To deactivate the internal pull-up resistor, clear bit 7 in the  
GPIOE_PUR register.  
PHASEA1  
9
Schmitt  
Input  
Input,  
pull-up  
enabled  
Phase A1 — Quadrature Decoder 1, PHASEA input for decoder  
1.  
(TB0)  
Schmitt  
Input/  
TB0 — Timer B, Channel 0  
Output  
(SCLK1)  
Schmitt  
Input/  
Output  
SPI 1 Serial Clock — In the master mode, this pin serves as an  
output, clocking slaved listeners. In slave mode, this pin serves as  
the data clock input. To activate the SPI function, set the  
PHSA_ALT bit in the SIM_GPS register. For details, see Part  
6.5.8.  
(GPIOC0)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
Output  
In the 56F8365, the default state after reset is PHASEA1.  
In the 56F8165, the default state is not one of the functions  
offered and must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 0 in the  
GPIOC_PUR register.  
56F8365 Technical Data, Rev. 9  
28  
Freescale Semiconductor  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
PHASEB1  
10  
Schmitt  
Input  
Input,  
pull-up  
enabled  
Phase B1 — Quadrature Decoder 1, PHASEB input for decoder  
1.  
(TB1)  
Schmitt  
Input/  
TB1 — Timer B, Channel 1  
Output  
(MOSI1)  
Schmitt  
Input/  
Output  
SPI 1 Master Out/Slave In — This serial data pin is an output  
from a master device and an input to a slave device. The master  
device places data on the MOSI line a half-cycle before the clock  
edge the slave device uses to latch the data. To activate the SPI  
function, set the PHSB_ALT bit in the SIM_GPS register. For  
details, see Part 6.5.8.  
(GPIOC1)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
Output  
In the 56F8365, the default state after reset is PHASEB1.  
In the 56F8165, the default state is not one of the functions  
offered and must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 1 in the  
GPIOC_PUR register.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
29  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
Index1 — Quadrature Decoder 1, INDEX input  
TB2 — Timer B, Channel 2  
INDEX1  
11  
Schmitt  
Input  
Input,  
pull-up  
enabled  
(TB2)  
Schmitt  
Input/  
Output  
(MISO1)  
Schmitt  
Input/  
Output  
SPI 1 Master In/Slave Out — This serial data pin is an input to a  
master device and output from a slave device. The MISO line of a  
slave device is placed in the high-impedance state if the slave  
device is not selected. The slave device places data on the MISO  
line a half-cycle before the clock edge the master device uses to  
latch the data. To activate the SPI function, set the INDEX_ALT  
bit in the SIM_GPS register. See Part 6.5.8 for details.  
(GPIOC2)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed  
as an input or output pin.  
Output  
In the 56F8365, the default state after reset is INDEX1.  
In the 56F8165, the default state is not one of the functions  
offered and must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 2 in the  
GPIOC_PUR register.  
HOME1  
12  
Schmitt  
Input  
Input,  
pull-up  
enabled  
Home — Quadrature Decoder 1, HOME input  
(TB3)  
Schmitt  
Input/  
TB3 — Timer B, Channel 3  
Output  
(SS1)  
Schmitt  
Input  
SPI 1 Slave Select — In the master mode, this pin is used to  
arbitrate multiple masters. In slave mode, this pin is used to select  
the slave. To activate the SPI function, set the HOME_ALT bit in  
the SIM_GPS register. See Part 6.5.8 for details.  
(GPIOC3)  
Schmitt  
Input/  
Port C GPIO — This GPIO pin can be individually programmed  
as input or output pin.  
Output  
In the 56F8365, the default state after reset is HOME1.  
In the 56F8165, the default state is not one of the functions  
offered and must be reconfigured.  
To deactivate the internal pull-up resistor, clear bit 3 in the  
GPIOC_PUR register.  
56F8365 Technical Data, Rev. 9  
30  
Freescale Semiconductor  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
PWMA0  
PWMA1  
PWMA2  
PWMA3  
PWMA4  
PWMA5  
ISA0  
58  
60  
Output  
In reset,  
output is  
disabled  
PWMA0 - 5 — These are six PWMA output pins.  
61  
63  
64  
66  
104  
Schmitt  
Input  
Input,  
pull-up  
enabled  
ISA0 - 2 — These three input current status pins are used for  
top/bottom pulse width correction in complementary channel  
operation for PWMA.  
(GPIOC8)  
Schmitt  
Input/  
Port C GPIO — These GPIO pins can be individually  
programmed as input or output pins.  
ISA1  
(GPIOC9)  
105  
106  
Output  
In the 56F8365, these pins default to ISA functionality.  
ISA2  
In the 56F8165, the default state is not one of the functions  
offered and must be reconfigured.  
(GPIOC10)  
To deactivate the internal pull-up resistor, clear the appropriate bit  
of the GPIOC_PUR register. See Part 6.5.6 for details.  
FAULTA0  
FAULTA1  
FAULTA2  
67  
68  
69  
Schmitt  
Input  
Input,  
pull-up  
enabled  
FAULTA0 - 2 — These three fault input pins are used for  
disabling selected PWMA outputs in cases where fault conditions  
originate off-chip.  
To deactivate the internal pull-up resistor, set the PWMA0 bit in  
the SIM_PUDR register. See Part 6.5.6 for details.  
FAULTA3  
70  
Schmitt  
Input  
Input,  
pull-up  
enabled  
FAULTA3 — This fault input pin is used for disabling selected  
PWMA outputs in cases where fault conditions originate off-chip.  
To deactivate the internal pull-up resistor, set the PWMA1 bit in  
the SIM_PUDR register. See Part 6.5.6 for details.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
31  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
PWMB0  
PWMB1  
PWMB2  
PWMB3  
PWMB4  
PWMB5  
ISB0  
32  
33  
34  
37  
38  
39  
48  
Output  
In reset,  
output is  
disabled  
PWMB0 - 5 — Six PWMB output pins.  
Schmitt  
Input  
Input,  
pull-up  
enabled  
ISB0 - 2 — These three input current status pins are used for  
top/bottom pulse width correction in complementary channel  
operation for PWMB.  
(GPIOD10)  
Schmitt  
Input/  
Port D GPIO — These GPIO pins can be individually  
programmed as input or output pins.  
ISB1  
(GPIOD11)  
50  
51  
Output  
At reset, these pins default to ISA functionality.  
ISB2  
Deactivate pull-up by setting the approproate bit of the  
GPIOD_PUR register. See Part 6.5.6 for details.  
(GPIOD12)  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
ANA0  
54  
55  
56  
57  
80  
81  
82  
83  
84  
85  
86  
87  
93  
Schmitt  
Input  
Input,  
pull-up  
enabled  
FAULTB0 - 3 — These four fault input pins are used for disabling  
selected PWMB outputs in cases where fault conditions originate  
off-chip.  
To deactivate the internal pull-up resistor, set the PWMB bit in the  
SIM_PUDR register. See Part 6.5.6 for details.  
Input  
Input  
Input  
Analog  
Input  
ANA0 - 3 — Analog inputs to ADC A, channel 0  
ANA1  
ANA2  
ANA3  
ANA4  
Analog  
Input  
ANA4 - 7 — Analog inputs to ADC A, channel 1  
ANA5  
ANA6  
ANA7  
VREFH  
Analog  
Input  
VREFH — Analog Reference Voltage High. VREFH must be less  
than or equal to VDDA_ADC.  
56F8365 Technical Data, Rev. 9  
32  
Freescale Semiconductor  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
VREFP  
VREFMID  
VREFN  
92  
91  
90  
89  
Input/  
Output  
Analog  
Input/  
Output  
V
REFP, VREFMID & VREFN — Internal pins for voltage reference  
which are brought off-chip so that they can be bypassed. Connect  
to a 0.1 F low ESR capacitor.  
VREFLO  
Input  
Input  
Analog  
Input  
VREFLO — Analog Reference Voltage Low. This should normally  
be connected to a low-noise VSSA  
.
ANB0  
ANB1  
ANB2  
ANB3  
ANB4  
ANB5  
ANB6  
ANB7  
96  
97  
Analog  
Input  
ANB0 - 3 — Analog inputs to ADC B, channel 0  
98  
99  
100  
101  
102  
103  
88  
Input  
Analog  
Input  
ANB4 - 7 — Analog inputs to ADC B, channel 1  
TEMP_  
SENSE  
Output  
Analog  
Output  
Temp Sense Diode — This signal connects to an on-chip diode  
that can be connected to one of the ADC inputs and is used to  
monitor the temperature of the die. Must be bypassed with a  
0.01 F capacitor.  
CAN_RX  
CAN_TX  
121  
120  
Schmitt  
Input  
Input,  
pull-up  
enabled  
FlexCAN Receive Data — This is the CAN input. This pin has an  
internal pull-up resistor.  
To deactivate the internal pull-up resistor, set the CAN bit in the  
SIM_PUDR register.  
Open  
Drain  
Open  
Drain  
FlexCAN Transmit Data — CAN output with internal pull-up  
enable at reset.*  
Output  
Output  
* Note: If a pin is configured as open drain output mode, internal  
pull-up will automatically be disabled when it outputs low. Internal  
pull-up will be enabled unless it has been manually disabled by  
clearing the corresponding bit in the PUREN register of the GPIO  
module, when it outputs high.  
If a pin is configured as push-pull output mode, internal pull-up will  
automatically be disabled, whether it outputs low or high.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
33  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
TC0  
111  
Schmitt  
Input/  
Output  
Input,  
pull-up  
enabled  
TC0 - 1 — Timer C, Channels 0 and 1  
(GPIOE8)  
Schmitt  
Input/  
Port E GPIO — These GPIO pins can be individually  
programmed as input or output pins.  
TC1  
(GPIOE9)  
113  
107  
Output  
At reset, these pins default to Timer functionality.  
To deactivate the internal pull-up resistor, clear the appropriate bit  
of the GPIOE_PUR register. See Part 6.5.6 for details.  
TD0  
Schmitt  
Input/  
Input,  
pull-up  
enabled  
TD0 - TD3 — Timer D, Channels 0, 1, 2 and 3  
Output  
(GPIOE10)  
Schmitt  
Input/  
Port E GPIO — These GPIO pins can be individually  
programmed as input or output pins.  
TD1  
(GPIOE11)  
108  
109  
110  
Output  
At reset, these pins default to Timer functionality.  
TD2  
(GPIOE12)  
To deactivate the internal pull-up resistor, clear the appropriate bit  
of the GPIOE_PUR register. See Part 6.5.6 for details.  
TD3  
(GPIOE13)  
IRQA  
IRQB  
52  
53  
Schmitt  
Input  
Input,  
pull-up  
enabled  
External Interrupt Request A and B — The IRQA and IRQB  
inputs are asynchronous external interrupt requests during Stop  
and Wait mode operation. During other operating modes, they are  
synchronized external interrupt requests, which indicate an  
external device is requesting service. They can be programmed to  
be level-sensitive or negative-edge triggered.  
To deactivate the internal pull-up resistor, set the IRQ bit in the  
SIM_PUDR register. See Part 6.5.6 for details.  
56F8365 Technical Data, Rev. 9  
34  
Freescale Semiconductor  
Signal Pins  
Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)  
State  
During  
Reset  
Signal  
Name  
Pin No.  
Type  
Signal Description  
RESET  
78  
Schmitt  
Input  
Input,  
pull-up  
enabled  
Reset — This input is a direct hardware reset on the processor.  
When RESET is asserted low, the device is initialized and placed  
in the reset state. A Schmitt trigger input is used for noise  
immunity. The internal reset signal will be deasserted  
synchronous with the internal clocks after a fixed number of  
internal clocks.  
To ensure complete hardware reset, RESET and TRST should be  
asserted together. The only exception occurs in a debugging  
environment when a hardware device reset is required and the  
JTAG/EOnCE module must not be reset. In this case, assert  
RESET, but do not assert TRST.  
Note: The internal Power-On Reset will assert on initial power-up.  
To deactivate the internal pull-up resistor, set the RESET bit in the  
SIM_PUDR register. See Part 6.5.6. for details.  
RSTO  
77  
Output  
Output  
Reset Output — This output reflects the internal reset state of the  
chip.  
EXTBOOT  
Internal  
Ground  
Schmitt  
Input  
Input,  
pull-up  
enabled  
External Boot —This input is tied to VDD to force the device to  
boot from off-chip memory (assuming that the on-chip Flash  
memory is not in a secure state). Otherwise, it is tied to ground.  
For details, see Table 4-4.  
Note: When this pin is tied low, the customer boot software  
should disable the internal pull-up resistor by setting the XBOOT  
bit of the SIM_PUDR; see Part 6.5.6.  
Note: This pin is internally tied low (to VSS).  
EMI_MODE  
Internal  
Ground  
Schmitt  
Input  
Input,  
pull-up  
enabled  
External Memory Mode — This device will boot from internal  
Flash memory under normal operation.  
This function is also affected by EXTBOOT and the Flash security  
mode; see Table 4-4 for details.  
Note: When this pin is tied low, the customer boot software  
should disable the internal pull-up resistor by setting the  
EMI_MODE bit of the SIM_PUDR; see Part 6.5.6.  
Note: This pin is internally tied low (to VSS).  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
35  
Part 3 On-Chip Clock Synthesis (OCCS)  
3.1 Introduction  
Refer to the OCCS chapter of the 56F8300 Peripheral User Manual for a full description of the OCCS.  
The material contained here identifies the specific features of the OCCS design. Figure 3-1 shows the  
specific OCCS block diagram to reference in the OCCS chapter of the 56F8300 Peripheral User Manual.  
CLKMODE  
XTAL  
ZSRC  
Crystal  
OSC  
Prescaler CLK  
PLLCOD  
SYS_CLK2  
Source to SIM  
EXTAL  
PLLCID  
PLLDB  
PLL  
FOUT  
FOUT/2  
Postscaler  
Prescaler  
(1,2,4,8)  
Postscaler CLK  
2  
x (1 to 128)  
(1,2,4,8)  
Bus  
Interface  
Bus Interface & Control  
LCK  
Lock  
Detector  
Loss of Reference  
Clock Interrupt  
Loss of  
Reference  
Clock  
Detector  
Figure 3-1 OCCS Block Diagram  
3.2 External Clock Operation  
The system clock can be derived from an external crystal, ceramic resonator, or an external system clock  
signal. To generate a reference frequency using the internal oscillator, a reference crystal or ceramic  
resonator must be connected between the EXTAL and XTAL pins.  
3.2.1  
Crystal Oscillator  
The internal oscillator is designed to interface with a parallel-resonant crystal resonator in the frequency  
range specified for the external crystal in Table 10-15. A recommended crystal oscillator circuit is shown  
in Figure 3-2. Follow the crystal supplier’s recommendations when selecting a crystal, since crystal  
parameters determine the component values required to provide maximum stability and reliable start-up.  
56F8365 Technical Data, Rev. 9  
36  
Freescale Semiconductor  
External Clock Operation  
The crystal and associated components should be mounted as near as possible to the EXTAL and XTAL  
pins to minimize output distortion and start-up stabilization time.  
Crystal Frequency = 4 - 8MHz (optimized for 8MHz)  
EXTAL XTAL  
Rz  
EXTAL XTAL  
Rz  
Sample External Crystal Parameters:  
Rz = 750 K  
Note: If the operating temperature range is limited to  
CLKMODE = 0  
below 85oC (105oC junction), then Rz = 10 Meg   
CL1  
CL2  
Figure 3-2 Connecting to a Crystal Oscillator  
Note:  
The OCCS_COHL bit must be set to 1 when a crystal oscillator is used. The reset condition on the  
OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed  
in the 56F8300 Peripheral User Manual.  
3.2.2  
Ceramic Resonator (Default)  
It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system  
design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in Figure 3-3.  
Refer to the supplier’s recommendations when selecting a ceramic resonator and associated components.  
The resonator and components should be mounted as near as possible to the EXTAL and XTAL pins.  
Resonator Frequency = 4 - 8MHz (optimized for 8MHz)  
3 Terminal  
2 Terminal  
EXTAL XTAL  
Rz  
Sample External Ceramic Resonator Parameters:  
Rz = 750 K  
EXTAL XTAL  
Rz  
CLKMODE = 0  
CL1  
CL2  
C1  
C2  
Figure 3-3 Connecting a Ceramic Resonator  
Note:  
The OCCS_COHL bit must be set to 0 when a ceramic resonator is used. The reset condition on the  
OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed  
in the 56F8300 Peripheral User Manual.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
37  
3.2.3  
External Clock Source  
The recommended method of connecting an external clock is illustrated in Figure 3-4. The external clock  
source is connected to XTAL and the EXTAL pin is grounded. Set OCCS_COHL bit high when using an  
external clock source as well.  
Note: When using an external clocking source  
XTAL  
EXTAL  
with this configuration, the input “CLKMODE”  
should be high and the COHL bit in the OSCTL  
register should be set to 1.  
V
External  
Clock  
SS  
Figure 3-4 Connecting an External Clock Signal Register  
3.3 Registers  
When referring to the register definitions for the OCCS in the 56F8300 Peripheral User Manual, use the  
register definitions without the internal Relaxation Oscillator, since the 56F8365/56F8165 devices do  
NOT contain this oscillator.  
Part 4 Memory Map  
4.1 Introduction  
The 56F8365 and 56F8165 devices are 16-bit motor-control chips based on the 56800E core. These parts  
use a Harvard-style architecture with two independent memory spaces for Data and Program. On-chip  
RAM and Flash memories are used in both spaces.  
This section provides memory maps for:  
Program Address Space, including the Interrupt Vector Table  
Data Address Space, including the EOnCE Memory and Peripheral Memory Maps  
On-chip memory sizes for each device are summarized in Table 4-1. Flash memories’ restrictions are  
identified in the “Use Restrictions” column of Table 4-1.  
Note: Data Flash and Program RAM are NOT available on the 56F8165 device.  
Table 4-1 Chip Memory Configurations  
On-Chip Memory  
56F8365  
56F8165  
Use Restrictions  
Program Flash  
512KB  
512KB  
Erase/Program via Flash interface unit and word writes to  
CDBW  
56F8365 Technical Data, Rev. 9  
38  
Freescale Semiconductor  
Program Map  
Table 4-1 Chip Memory Configurations  
On-Chip Memory  
56F8365  
56F8165  
Use Restrictions  
Data Flash  
32KB  
Erase/Program via Flash interface unit and word writes to  
CDBW. Data Flash can be read via either CDBR or XDB2, but  
not by both simultaneously  
Program RAM  
Data RAM  
4KB  
32KB  
32KB  
None  
None  
32KB  
32KB  
Program Boot Flash  
Erase/Program via Flash Interface unit and word writes to  
CDBW  
4.2 Program Map  
The Program memory map is located in Table 4-4. The operating mode control bits (MA and MB) in the  
Operating Mode Register (OMR) control the Program memory map. At reset, these bits are set as indicated  
in Table 4-2.  
EXT_BOOT = EMI_MODE = 0 and cannot be changed in the 56F8365 or 56F8165.  
Note: Program RAM is NOT available on the 56F8165 device.  
1
Table 4-2 OMR MB/MA Value at Reset  
OMR MB =  
OMR MA =  
Flash Secured  
State2,3  
Chip Operating Mode  
EXTBOOT Pin  
0
0
0
Mode 0 – Internal Boot; EMI is configured to use 16 address lines; Flash  
Memory is secured; external P-space is not allowed; the EOnCE is disabled  
1
Not valid; cannot boot externally if the Flash is secured and will actually  
configure to 00 state  
1
1
0
1
Mode 0 – Internal Boot; EMI is configured to use 16 address lines  
Mode 1 – External Boot; Flash Memory is not secured; EMI configuration is  
determined by the state of the EMI_MODE pin  
1. Information in shaded areas not applicable to 56F8365/56F8165.  
2. This bit is only configured at reset. If the Flash secured state changes, this will not be reflected in MB until the next reset.  
3. Changing MB in software will not affect Flash memory security.  
After reset, the OMR MA bit can be changed and will have an effect on the P-space memory map, as shown  
in Table 4-3. Changing the OMR MB bit will have no effect.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
39  
Table 4-3 Changing OMR MA Value During Normal Operation  
OMR MA  
Chip Operating Mode  
0
Use internal P-space memory map configuration  
11  
Use external P-space memory map configuration – If MB = 0 at reset, changing this bit has no effect.  
1. Setting this bit can cause unpredictable results and is not recommended, since the EMI is not functional in this package.  
Table 4-4 shows the memory map options of the 56F8365/56F8165. The two right columns cannot be  
used, since the EMI pins are not provided in the package; therefore, only the Mode 0 column is relevant.  
Note: Program RAM is NOT available on the 56F8165 device.  
Table 4-4 Program Memory Map at Reset  
Mode 11 (MA = 1)  
Mode 0 (MA = 0)  
Begin/End  
Address  
Internal Boot  
External Boot  
EMI_MODE = 02, 3  
EMI_MODE = 14  
Internal Boot  
16-Bit External Address Bus  
16-Bit External Address Bus  
20-Bit External Address Bus  
P:$1F FFFF  
P:$10 0000  
External Program Memory  
External Program Memory5  
External Program Memory6  
P:$0F FFFF  
P:$05 0000  
P:$04 FFFF  
P:$04 F800  
On-Chip Program RAM  
4KB  
On-Chip Program RAM  
4KB  
P:$04 F7FF  
P:$04 4000  
Reserved  
92KB  
P:$04 3FFF  
P:$04 0000  
Boot Flash  
32KB  
COP Reset Address = 04 0002  
Boot Location = 04 0000  
Boot Flash  
32KB  
(Not Used for Boot in this Mode)  
External Program Memory  
COP Reset Address = 04 0002  
Boot Location = 04 0000  
Internal Program Flash7  
256KB  
P:$03 FFFF  
P:$02 0000  
Internal Program Flash  
256KB  
P:$01 FFFF  
P:$01 0000  
Internal Program Flash  
128KB  
Internal Program Flash7  
256KB  
P:$00 FFFF  
P:$00 0000  
External Program Memory  
COP Reset Address = 00 0002  
Boot Location = 00 0000  
1. Cannot be used since MA = EXTBOOT = 0 and the EMI is not available; information in shaded areas not applicable to  
56F8365/56F8165.  
2. This mode provides maximum compatibility with 56F80x parts while operating externally.  
3. “EMI_MODE = 0”, EMI_MODE pin is tied to ground at boot up.  
4. “EMI_MODE = 1”, EMI_MODE pin is tied to V at boot up.  
DD  
56F8365 Technical Data, Rev. 9  
40  
Freescale Semiconductor  
Interrupt Vector Table  
5. Not accessible in reset configuration, since the address is above P:$00 FFFF. The higher bit address/GPIO (and/or chip selects)  
pins must be reconfigured before this external memory is accessible.  
6. Not accessible in this part, since the EMI is not fully pinned out in this package; information in shaded areas not applicable  
to 56F8365/56F8165.  
7. Two independent program flash blocks allow one to be programmed/erased while executing from another. Each block must have  
its own mass erase.  
4.3 Interrupt Vector Table  
Table 4-5 provides the reset and interrupt priority structure, including on-chip peripherals. The table is  
organized with higher-priority vectors at the top and lower-priority interrupts lower in the table. The  
priority of an interrupt can be assigned to different levels, as indicated, allowing some control over  
interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For a selected priority  
level, the lowest vector number has the highest priority.  
The location of the vector table is determined by the Vector Base Address (VBA) register. Please see Part  
5.6.11 for the reset value of the VBA.  
In some configurations, the reset address and COP reset address will correspond to vector 0 and 1 of the  
interrupt vector table. In these instances, the first two locations in the vector table must contain branch or  
JMP instructions. All other entries must contain JSR instructions.  
Note: PWMA, FlexCAN, Quadrature Decoder 1, and Quad Timers B and D are NOT available on the  
56F8165 device.  
1
Table 4-5 Interrupt Vector Table Contents  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
Reserved for Reset Overlay2  
Reserved for COP Reset Overlay2  
Illegal Instruction  
core  
2
3
4
5
6
7
3
3
3
3
P:$04  
P:$06  
P:$08  
P:$0A  
P:$0C  
P:$0E  
core  
core  
core  
core  
core  
SW Interrupt 3  
HW Stack Overflow  
Misaligned Long Word Access  
OnCE Step Counter  
OnCE Breakpoint Unit 0  
Reserved  
1-3  
1-3  
core  
core  
core  
9
1-3  
1-3  
1-3  
P:$12  
P:$14  
P:$16  
OnCE Trace Buffer  
10  
11  
OnCE Transmit Register Empty  
OnCE Receive Register Full  
Reserved  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
41  
1
Table 4-5 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
core  
Interrupt Function  
14  
2
1
0
P:$1C  
P:$1E  
P:$20  
P:$22  
P:$24  
SW Interrupt 2  
SW Interrupt 1  
SW Interrupt 0  
IRQA  
core  
core  
core  
core  
15  
16  
17  
18  
0-2  
0-2  
IRQB  
Reserved  
LVI  
PLL  
FM  
FM  
FM  
20  
21  
22  
23  
24  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$28  
P:$2A  
P:$2C  
P:$2E  
P:$30  
Low-Voltage Detector (power sense)  
PLL  
FM Access Error Interrupt  
FM Command Complete  
FM Command, data and address Buffers Empty  
Reserved  
FLEXCAN  
FLEXCAN  
FLEXCAN  
FLEXCAN  
GPIOF  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$34  
P:$36  
P:$38  
P:$3A  
P:$3C  
P:$3E  
P:$40  
P:$42  
P:$44  
P:$46  
FLEXCAN Bus Off  
FLEXCAN Error  
FLEXCAN Wake Up  
FLEXCAN Message Buffer Interrupt  
GPIO F  
GPIOE  
GPIO E  
GPIOD  
GPIO D  
GPIOC  
GPIO C  
GPIOB  
GPIO B  
GPIOA  
GPIO A  
Reserved  
SPI1  
SPI1  
SPI0  
SPI0  
SCI1  
SCI1  
38  
39  
40  
41  
42  
43  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$4C  
P:$4E  
P:$50  
P:$52  
P:$54  
P:$56  
SPI 1 Receiver Full  
SPI 1 Transmitter Empty  
SPI 0 Receiver Full  
SPI 0 Transmitter Empty  
SCI 1 Transmitter Empty  
SCI 1 Transmitter Idle  
Reserved  
SCI1  
SCI1  
45  
46  
0-2  
0-2  
P:$5A  
P:$5C  
SCI 1 Receiver Error  
SCI 1 Receiver Full  
56F8365 Technical Data, Rev. 9  
42  
Freescale Semiconductor  
Interrupt Vector Table  
1
Table 4-5 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
DEC1  
DEC1  
DEC0  
DEC0  
47  
0-2  
P:$5E  
P:$60  
P:$62  
P:$64  
Quadrature Decoder #1 Home Switch or Watchdog  
Quadrature Decoder #1 INDEX Pulse  
Quadrature Decoder #0 Home Switch or Watchdog  
Quadrature Decoder #0 INDEX Pulse  
Reserved  
48  
49  
50  
0-2  
0-2  
0-2  
TMRD  
TMRD  
TMRD  
TMRD  
TMRC  
TMRC  
TMRC  
TMRC  
TMRB  
TMRB  
TMRB  
TMRB  
TMRA  
TMRA  
TMRA  
TMRA  
SCI0  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$68  
P:$6A  
P:$6C  
P:$6E  
P:$70  
P:$72  
P:$74  
P:$76  
P:$78  
P:$7A  
P:$7C  
P:$7E  
P:$80  
P:$82  
P:$84  
P:$86  
P:$88  
P:$8A  
Timer D, Channel 0  
Timer D, Channel 1  
Timer D, Channel 2  
Timer D, Channel 3  
Timer C, Channel 0  
Timer C, Channel 1  
Timer C, Channel 2  
Timer C, Channel 3  
Timer B, Channel 0  
Timer B, Channel 1  
Timer B, Channel 2  
Timer B, Channel 3  
Timer A, Channel 0  
Timer A, Channel 1  
Timer A, Channel 2  
Timer A, Channel 3  
SCI 0 Transmitter Empty  
SCI 0 Transmitter Idle  
SCI0  
Reserved  
SCI0  
71  
72  
73  
74  
75  
76  
77  
78  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
0-2  
P:$8E  
P:$90  
P:$92  
P:$94  
P:$96  
P:$98  
P:$9A  
P:$9C  
SCI 0 Receiver Error  
SCI0  
SCI 0 Receiver Full  
ADCB  
ADCA  
ADCB  
ADCA  
PWMB  
PWMA  
ADC B Conversion Compete / End of Scan  
ADC A Conversion Complete / End of Scan  
ADC B Zero Crossing or Limit Error  
ADC A Zero Crossing or Limit Error  
Reload PWM B  
Reload PWM A  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
43  
1
Table 4-5 Interrupt Vector Table Contents (Continued)  
Vector  
Number  
Priority  
Level  
Vector Base  
Address +  
Peripheral  
Interrupt Function  
PWMB  
79  
0-2  
P:$9E  
P:$A0  
P:$A2  
P:$A4  
P:$A6  
P:$A8  
P:$AA  
PWM B Fault  
PWMA  
80  
81  
82  
83  
84  
85  
0-2  
- 1  
PWM A Fault  
core  
SW Interrupt LP  
FlexCAN Bus-Off  
FlexCAN Error  
FlexCAN Wake Up  
FLEXCAN2  
FLEXCAN2  
FLEXCAN2  
FLEXCAN2  
0-2  
0-2  
0-2  
0-2  
FlexCAN Message Buffer Interrupt  
1. Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced  
from the vector table, providing only 19 bits of address.  
2. If the VBA is set to $0400 (or VBA = 0000 for Mode 1, EMI_MODE = 0), the first two locations of the vector table are  
the chip reset addresses; therefore, these locations are not interrupt vectors.  
4.4 Data Map  
Note: Data Flash is NOT available on the 56F8165 device.  
1, 2  
Table 4-6 Data Memory Map  
Begin/End  
Address  
EX = 03  
EX = 14  
X:$FF FFFF  
X:$FF FF00  
EOnCE  
256 locations allocated  
EOnCE  
256 locations allocated  
X:$FF FEFF  
X:$01 0000  
External Memory  
External Memory  
X:$00 FFFF  
X:$00 F000  
On-Chip Peripherals  
4096 locations allocated  
On-Chip Peripherals  
4096 locations allocated  
X:$00 EFFF  
X:$00 8000  
External Memory  
X:$00 7FFF  
X:$00 4000  
On-Chip Data Flash  
32KB  
External Memory  
X:$003FFF  
X:$00 0000  
On-Chip Data RAM  
32KB5  
1. Information in shaded areas not applicable to 56F8365/56F8165.  
2. All addresses are 16-bit Word addresses, not byte addresses.  
3. In the Operating Mode Register  
4. Setting EX = 1 is not recommended in the 56F8365/56F8165, since the EMI is not functional in this package.  
5. The Data RAM is organized as an 8K x 32-bit memory to allow single-cycle, long-word operations.  
56F8365 Technical Data, Rev. 9  
44  
Freescale Semiconductor  
Flash Memory Map  
4.5 Flash Memory Map  
Figure 4-1 illustrates the Flash Memory (FM) map on the system bus.  
The Flash Memory is divided into three functional blocks. The Program and boot memories reside on the  
Program Memory buses. They are controlled by one set of banked registers. Data Memory Flash resides  
on the Data Memory buses and is controlled separately by its own set of banked registers.  
The top nine words of the Program Memory Flash are treated as special memory locations. The content of  
these words is used to control the operation of the Flash Controller. Because these words are part of the  
Flash Memory content, their state is maintained during power-down and reset. During chip initialization,  
the content of these memory locations is loaded into Flash Memory control registers, detailed in the Flash  
Memory chapter of the 56F8300 Peripheral User Manual. In the 56F8365, these configuration  
parameters are located between $03_FFF7 and $03_FFFF.  
Program Memory  
Data Memory  
FM_BASE + $14  
FM_BASE + $00  
BOOT_FLASH_START + $3FFF  
Banked Registers  
32KB  
Boot  
Unbanked Registers  
BOOT_FLASH_START = $04_0000  
PROG_FLASH_START + $03_FFFF  
FM_PROG_MEM_TOP = $01_FFFF  
Configure Field  
DATA_FLASH_START + $3FFF  
DATA_FLASH_START + $0000  
256KB  
Program  
32KB  
Note: Data Flash  
is NOT available in  
the 56F8165  
device.  
BLOCK 1 Odd (2 Bytes) $02_0003  
BLOCK 1 Even (2 Bytes) $02_0002  
BLOCK 1 Odd (2 Bytes) $02_0001  
BLOCK 1 Even (2 Bytes) $02_0000  
PROG_FLASH_START + $02_0000  
PROG_FLASH_START + $01_FFFF  
256KB  
Program  
BLOCK 0 Odd (2 Bytes) $00_0003  
BLOCK 0 Even (2 Bytes) $00_0002  
BLOCK 0 Odd (2 Bytes) $00_0001  
BLOCK 0 Even (2 Bytes) $00_0000  
PROG_FLASH_START = $00_0000  
Figure 4-1 Flash Array Memory Maps  
Table 4-7 shows the page and sector sizes used within each Flash memory block on the chip.  
Note: Data Flash is NOT available on the 56F8165 device.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
45  
Table 4-7. Flash Memory Partitions  
Flash Size  
Sectors  
Sector Size  
Page Size  
Program Flash  
Data Flash  
512KB  
32KB  
32KB  
16  
16  
4
16K x 16 bits  
1024 x 16 bits  
4K x 16 bits  
1024x 16 bits  
256 x 16 bits  
512 x 16 bits  
Boot Flash  
Please see the 56F8300 Peripheral User Manual for additional Flash information.  
4.6 EOnCE Memory Map  
Table 4-8 EOnCE Memory Map  
Address  
Register Acronym  
Register Name  
Reserved  
X:$FF FF8A  
X:$FF FF8E  
OESCR  
External Signal Control Register  
Reserved  
OBCNTR  
Breakpoint Unit [0] Counter  
Reserved  
X:$FF FF90  
X:$FF FF91  
X:$FF FF92  
X:$FF FF93  
X:$FF FF94  
X:$FF FF95  
X:$FF FF96  
X:$FF FF97  
X:$FF FF98  
X:$FF FF99  
X:$FF FF9A  
X:$FF FF9B  
X:$FF FF9C  
X:$FF FF9D  
X:$FF FF9E  
OBMSK (32 bits)  
Breakpoint 1 Unit [0] Mask Register  
Breakpoint 1 Unit [0] Mask Register  
Breakpoint 2 Unit [0] Address Register  
Breakpoint 2 Unit [0] Address Register  
Breakpoint 1 Unit [0] Address Register  
Breakpoint 1 Unit [0] Address Register  
Breakpoint Unit [0] Control Register  
Breakpoint Unit [0] Control Register  
Trace Buffer Register Stages  
Trace Buffer Register Stages  
Trace Buffer Pointer Register  
Trace Buffer Control Register  
Peripheral Base Address Register  
Status Register  
OBAR2 (32 bits)  
OBAR1 (24 bits)  
OBCR (24 bits)  
OTB (21-24 bits/stage)  
OTBPR (8 bits)  
OTBCR  
OBASE (8 bits)  
OSR  
OSCNTR (24 bits)  
Instruction Step Counter  
56F8365 Technical Data, Rev. 9  
46  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-8 EOnCE Memory Map (Continued)  
Address  
Register Acronym  
Register Name  
X:$FF FF9F  
X:$FF FFA0  
Instruction Step Counter  
Control Register  
Reserved  
OCR (bits)  
X:$FF FFFC  
X:$FF FFFD  
X:$FF FFFE  
X:$FF FFFF  
OCLSR (8 bits)  
Core Lock / Unlock Status Register  
OTXRXSR (8 bits)  
OTX / ORX (32 bits)  
OTX1 / ORX1  
Transmit and Receive Status and Control Register  
Transmit Register / Receive Register  
Transmit Register Upper Word  
Receive Register Upper Word  
4.7 Peripheral Memory Mapped Registers  
On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may  
be accessed with the same addressing modes used for ordinary Data memory, except all peripheral  
registers should be read/written using word accesses only.  
Table 4-9 summarizes base addresses for the set of peripherals on the 56F8365 and 56F8165 devices.  
Peripherals are listed in order of the base address.  
The following tables list all of the peripheral registers required to control or access the peripherals.  
Note: Features in italics are NOT available in the 56F8165 device.  
Table 4-9 Data Memory Peripheral Base Address Map Summary  
Peripheral  
Prefix  
Base Address  
Table Number  
External Memory Interface  
Timer A  
EMI  
X:$00 F020  
X:$00 F040  
X:$00 F080  
X:$00 F0C0  
X:$00 F100  
X:$00 F140  
X:$00 F160  
X:$00 F180  
X:$00 F190  
X:$00 F1A0  
X:$00 F200  
X:$00 F240  
4-10  
4-11  
4-12  
4-13  
4-14  
4-15  
4-16  
4-17  
4-18  
4-19  
4-20  
4-21  
TMRA  
TMRB  
TMRC  
TMRD  
PWMA  
PWMB  
DEC0  
DEC1  
ITCN  
Timer B  
Timer C  
Timer D  
PWM A  
PWM B  
Quadrature Decoder 0  
Quadrature Decoder 1  
ITCN  
ADC A  
ADCA  
ADCB  
ADC B  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
47  
Table 4-9 Data Memory Peripheral Base Address Map Summary (Continued)  
Peripheral  
Prefix  
TSENSOR  
Base Address  
Table Number  
Temperature Sensor  
SCI #0  
X:$00 F270  
X:$00 F280  
X:$00 F290  
X:$00 F2A0  
X:$00 F2B0  
X:$00 F2C0  
X:$00 F2D0  
X:$00 F2E0  
X:$00 F300  
X:$00 F310  
X:$00 F320  
X:$00 F330  
X:$00 F340  
X:$00 F350  
X:$00 F360  
X:$00 F400  
X:$00 F800  
X:$00 FA00  
4-22  
4-23  
4-24  
4-25  
4-26  
4-27  
4-28  
4-29  
4-30  
4-31  
4-32  
4-33  
4-34  
4-35  
4-36  
4-37  
4-38  
4-39  
SCI0  
SCI1  
SPI0  
SCI #1  
SPI #0  
SPI #1  
SPI1  
COP  
COP  
PLL, OSC  
GPIO Port A  
GPIO Port B  
GPIO Port C  
GPIO Port D  
GPIO Port E  
GPIO Port F  
SIM  
CLKGEN  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOF  
SIM  
Power Supervisor  
FM  
LVI  
FM  
FlexCAN  
FC  
FlexCAN2  
FC  
56F8365 Technical Data, Rev. 9  
48  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-10 External Memory Integration Registers Address Map  
(EMI_BASE = $00 F020)  
Register Acronym  
Address Offset  
Register Description  
CSBAR 0  
CSBAR 1  
CSBAR 2  
CSBAR 3  
CSBAR 4  
CSBAR 5  
CSBAR 6  
CSBAR 7  
CSOR 0  
CSOR 1  
CSOR 2  
CSOR 3  
CSOR 4  
CSOR 5  
CSOR 6  
CSOR 7  
CSTC 0  
CSTC 1  
CSTC 2  
CSTC 3  
CSTC 4  
CSTC 5  
CSTC 6  
CSTC 7  
BCR  
$0  
$1  
Chip Select Base Address Register 0  
Chip Select Base Address Register 1  
Chip Select Base Address Register 2  
Chip Select Base Address Register 3  
Chip Select Base Address Register 4  
Chip Select Base Address Register 5  
Chip Select Base Address Register 6  
Chip Select Base Address Register 7  
Chip Select Option Register 0  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
Chip Select Option Register 1  
$A  
Chip Select Option Register 2  
$B  
Chip Select Option Register 3  
$C  
$D  
$E  
Chip Select Option Register 4  
Chip Select Option Register 5  
Chip Select Option Register 6  
$F  
Chip Select Option Register 7  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
Chip Select Timing Control Register 0  
Chip Select Timing Control Register 1  
Chip Select Timing Control Register 2  
Chip Select Timing Control Register 3  
Chip Select Timing Control Register 4  
Chip Select Timing Control Register 5  
Chip Select Timing Control Register 6  
Chip Select Timing Control Register 7  
Bus Control Register  
Table 4-11 Quad Timer A Registers Address Map  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRA0_CMP1  
$0  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
49  
Table 4-11 Quad Timer A Registers Address Map (Continued)  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 2  
TMRA0_CMP2  
TMRA0_CAP  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Capture Register  
TMRA0_LOAD  
TMRA0_HOLD  
TMRA0_CNTR  
TMRA0_CTRL  
TMRA0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA0_CMPLD1  
TMRA0_CMPLD2  
TMRA0_COMSCR  
TMRA1_CMP1  
TMRA1_CMP2  
TMRA1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRA1_LOAD  
TMRA1_HOLD  
TMRA1_CNTR  
TMRA1_CTRL  
TMRA1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRA1_CMPLD1  
TMRA1_CMPLD2  
TMRA1_COMSCR  
TMRA2_CMP1  
TMRA2_CMP2  
TMRA2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRA2_LOAD  
TMRA2_HOLD  
TMRA2_CNTR  
TMRA2_CTRL  
TMRA2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
TMRA2_CMPLD1  
56F8365 Technical Data, Rev. 9  
50  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-11 Quad Timer A Registers Address Map (Continued)  
(TMRA_BASE = $00 F040)  
Register Acronym  
Address Offset  
$29  
Register Description  
Comparator Load Register 2  
TMRA2_CMPLD2  
TMRA2_COMSCR  
$2A  
Comparator Status and Control Register  
Reserved  
TMRA3_CMP1  
TMRA3_CMP2  
TMRA3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRA3_LOAD  
TMRA3_HOLD  
TMRA3_CNTR  
TMRA3_CTRL  
TMRA3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRA3_CMPLD1  
TMRA3_CMPLD2  
TMRA3_COMSCR  
Table 4-12 Quad Timer B Registers Address Map  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRB0_CMP1  
TMRB0_CMP2  
TMRB0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Compare Register 2  
Capture Register  
TMRB0_LOAD  
TMRB0_HOLD  
TMRB0_CNTR  
TMRB0_CTRL  
TMRB0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB0_CMPLD1  
TMRB0_CMPLD2  
TMRB0_COMSCR  
TMRB1_CMP1  
$10  
Compare Register 1  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
51  
Table 4-12 Quad Timer B Registers Address Map (Continued)  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Compare Register 2  
TMRB1_CMP2  
TMRB1_CAP  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Capture Register  
TMRB1_LOAD  
TMRB1_HOLD  
TMRB1_CNTR  
TMRB1_CTRL  
TMRB1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB1_CMPLD1  
TMRB1_CMPLD2  
TMRB1_COMSCR  
TMRB2_CMP1  
TMRB2_CMP2  
TMRB2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRB2_LOAD  
TMRB2_HOLD  
TMRB2_CNTR  
TMRB2_CTRL  
TMRB2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRB2_CMPLD1  
TMRB2_CMPLD2  
TMRB2_COMSCR  
TMRB3_CMP1  
TMRB3_CMP2  
TMRB3_CAP  
TMRB3_LOAD  
TMRB3_HOLD  
TMRB3_CNTR  
TMRB3_CTRL  
TMRB3_SCR  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
Compare Register 1  
Compare Register 2  
Capture Register  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
56F8365 Technical Data, Rev. 9  
52  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-12 Quad Timer B Registers Address Map (Continued)  
(TMRB_BASE = $00 F080)  
Quad Timer B is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Comparator Load Register 1  
TMRB3_CMPLD1  
TMRB3_CMPLD2  
TMRB3_COMSCR  
$38  
$39  
$3A  
Comparator Load Register 2  
Comparator Status and Control Register  
Table 4-13 Quad Timer C Registers Address Map  
(TMRC_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRC0_CMP1  
TMRC0_CMP2  
TMRC0_CAP  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Compare Register 2  
Capture Register  
TMRC0_LOAD  
TMRC0_HOLD  
TMRC0_CNTR  
TMRC0_CTRL  
TMRC0_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC0_CMPLD1  
TMRC0_CMPLD2  
TMRC0_COMSCR  
TMRC1_CMP1  
TMRC1_CMP2  
TMRC1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRC1_LOAD  
TMRC1_HOLD  
TMRC1_CNTR  
TMRC1_CTRL  
TMRC1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC1_CMPLD1  
TMRC1_CMPLD2  
TMRC1_COMSCR  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
53  
Table 4-13 Quad Timer C Registers Address Map (Continued)  
(TMRC_BASE = $00 F0C0)  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRC2_CMP1  
TMRC2_CMP2  
TMRC2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 2  
Capture Register  
TMRC2_LOAD  
TMRC2_HOLD  
TMRC2_CNTR  
TMRC2_CTRL  
TMRC2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRC2_CMPLD1  
TMRC2_CMPLD2  
TMRC2_COMSCR  
TMRC3_CMP1  
TMRC3_CMP2  
TMRC3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRC3_LOAD  
TMRC3_HOLD  
TMRC3_CNTR  
TMRC3_CTRL  
TMRC3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRC3_CMPLD1  
TMRC3_CMPLD2  
TMRC3_COMSCR  
Table 4-14 Quad Timer D Registers Address Map  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Compare Register 1  
TMRD0_CMP1  
TMRD0_CMP2  
TMRD0_CAP  
TMRD0_LOAD  
$0  
$1  
$2  
$3  
Compare Register 2  
Capture Register  
Load Register  
56F8365 Technical Data, Rev. 9  
54  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-14 Quad Timer D Registers Address Map (Continued)  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
TMRD0_HOLD  
TMRD0_CNTR  
TMRD0_CTRL  
TMRD0_SCR  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD0_CMPLD1  
TMRD0_CMPLD2  
TMRD0_COMSCR  
TMRD1_CMP1  
TMRD1_CMP2  
TMRD1_CAP  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD1_LOAD  
TMRD1_HOLD  
TMRD1_CNTR  
TMRD1_CTRL  
TMRD1_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
Reserved  
TMRD1_CMPLD1  
TMRD1_CMPLD2  
TMRD1_COMSCR  
TMRD2_CMP1  
TMRD2_CMP2  
TMRD2_CAP  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD2_LOAD  
TMRD2_HOLD  
TMRD2_CNTR  
TMRD2_CTRL  
TMRD2_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRD2_CMPLD1  
TMRD2_CMPLD2  
TMRD2_COMSCR  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
55  
Table 4-14 Quad Timer D Registers Address Map (Continued)  
(TMRD_BASE = $00 F100)  
Quad Timer D is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Reserved  
TMRD3_CMP1  
TMRD3_CMP2  
TMRD3_CAP  
$30  
$31  
$32  
$33  
$34  
$35  
$36  
$37  
$38  
$39  
$3A  
Compare Register 1  
Compare Register 2  
Capture Register  
TMRD3_LOAD  
TMRD3_HOLD  
TMRD3_CNTR  
TMRD3_CTRL  
TMRD3_SCR  
Load Register  
Hold Register  
Counter Register  
Control Register  
Status and Control Register  
Comparator Load Register 1  
Comparator Load Register 2  
Comparator Status and Control Register  
TMRD3_CMPLD1  
TMRD3_CMPLD2  
TMRD3_COMSCR  
Table 4-15 Pulse Width Modulator A Registers Address Map  
(PWMA_BASE = $00 F140)  
PWMA is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
PWMA_PMCTL  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
Control Register  
PWMA_PMFCTL  
PWMA_PMFSA  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
PWMA_PMOUT  
PWMA_PMCNT  
PWMA_PWMCM  
PWMA_PWMVAL0  
PWMA_PWMVAL1  
PWMA_PWMVAL2  
PWMA_PWMVAL3  
PWMA_PWMVAL4  
PWMA_PWMVAL5  
PWMA_PMDEADTM  
PWMA_PMDISMAP1  
Counter Modulo Register  
Value Register 0  
Value Register 1  
Value Register 2  
Value Register 3  
Value Register 4  
Value Register 5  
Dead Time Register  
Disable Mapping Register 1  
56F8365 Technical Data, Rev. 9  
56  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-15 Pulse Width Modulator A Registers Address Map (Continued)  
(PWMA_BASE = $00 F140)  
PWMA is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Disable Mapping Register 2  
PWMA_PMDISMAP2  
PWMA_PMCFG  
PWMA_PMCCR  
PWMA_PMPORT  
PWMA_PMICCR  
$E  
$F  
Configure Register  
$10  
$11  
$12  
Channel Control Register  
Port Register  
PWM Internal Correction Control Register  
Table 4-16 Pulse Width Modulator B Registers Address Map  
(PWMB_BASE = $00 F160)  
Register Acronym  
Address Offset  
Register Description  
PWMB_PMCTL  
$0  
$1  
Control Register  
PWMB_PMFCTL  
PWMB_PMFSA  
Fault Control Register  
Fault Status Acknowledge Register  
Output Control Register  
Counter Register  
$2  
PWMB_PMOUT  
$3  
PWMB_PMCNT  
$4  
PWMB_PWMCM  
PWMB_PWMVAL0  
PWMB_PWMVAL1  
PWMB_PWMVAL2  
PWMB_PWMVAL3  
PWMB_PWMVAL4  
PWMB_PWMVAL5  
PWMB_PMDEADTM  
PWMB_PMDISMAP1  
PWMB_PMDISMAP2  
PWMB_PMCFG  
$5  
Counter Modulo Register  
Value Register 0  
$6  
$7  
Value Register 1  
$8  
Value Register 2  
$9  
Value Register 3  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
$11  
$12  
Value Register 4  
Value Register 5  
Dead Time Register  
Disable Mapping Register 1  
Disable Mapping Register 2  
Configure Register  
PWMB_PMCCR  
Channel Control Register  
Port Register  
PWMB_PMPORT  
PWMB_PMICCR  
PWM Internal Correction Control Register  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
57  
Table 4-17 Quadrature Decoder 0 Registers Address Map  
(DEC0_BASE = $00 F180)  
Register Acronym  
Address Offset  
Register Description  
Decoder Control Register  
DEC0_DECCR  
DEC0_FIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
Filter Interval Register  
DEC0_WTR  
DEC0_POSD  
DEC0_POSDH  
DEC0_REV  
Watchdog Time-out Register  
Position Difference Counter Register  
Position Difference Counter Hold Register  
Revolution Counter Register  
Revolution Hold Register  
DEC0_REVH  
DEC0_UPOS  
DEC0_LPOS  
DEC0_UPOSH  
DEC0_LPOSH  
DEC0_UIR  
Upper Position Counter Register  
Lower Position Counter Register  
Upper Position Hold Register  
Lower Position Hold Register  
Upper Initialization Register  
Lower Initialization Register  
Input Monitor Register  
DEC0_LIR  
DEC0_IMR  
Table 4-18 Quadrature Decoder 1 Registers Address Map  
(DEC1_BASE = $00 F190)  
Quadrature Decoder 1 is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Decoder Control Register  
DEC1_DECCR  
DEC1_FIR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
Filter Interval Register  
DEC1_WTR  
DEC1_POSD  
DEC1_POSDH  
DEC1_REV  
Watchdog Time-out Register  
Position Difference Counter Register  
Position Difference Counter Hold Register  
Revolution Counter Register  
Revolution Hold Register  
DEC1_REVH  
DEC1_UPOS  
DEC1_LPOS  
DEC1_UPOSH  
DEC1_LPOSH  
DEC1_UIR  
Upper Position Counter Register  
Lower Position Counter Register  
Upper Position Hold Register  
Lower Position Hold Register  
Upper Initialization Register  
Lower Initialization Register  
DEC1_LIR  
56F8365 Technical Data, Rev. 9  
58  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-18 Quadrature Decoder 1 Registers Address Map (Continued)  
(DEC1_BASE = $00 F190)  
Quadrature Decoder 1 is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Input Monitor Register  
DEC1_IMR  
$D  
Table 4-19 Interrupt Control Registers Address Map  
(ITCN_BASE = $00 F1A0)  
Register Acronym  
IPR 0  
Address Offset  
Register Description  
Interrupt Priority Register 0  
$0  
$1  
IPR 1  
Interrupt Priority Register 1  
IPR 2  
$2  
Interrupt Priority Register 2  
IPR 3  
$3  
Interrupt Priority Register 3  
IPR 4  
$4  
Interrupt Priority Register 4  
IPR 5  
$5  
Interrupt Priority Register 5  
IPR 6  
$6  
Interrupt Priority Register 6  
IPR 7  
$7  
Interrupt Priority Register 7  
IPR 8  
$8  
Interrupt Priority Register 8  
IPR 9  
$9  
Interrupt Priority Register 9  
VBA  
$A  
$B  
$C  
$D  
$E  
$F  
Vector Base Address Register  
Fast Interrupt Match Register 0  
Fast Interrupt Vector Address Low 0 Register  
Fast Interrupt Vector Address High 0 Register  
Fast Interrupt Match Register 1  
Fast Interrupt Vector Address Low 1 Register  
Fast Interrupt Vector Address High 1 Register  
IRQ Pending Register 0  
FIM0  
FIVAL0  
FIVAH0  
FIM1  
FIVAL1  
FIVAH1  
IRQP 0  
IRQP 1  
IRQP 2  
IRQP 3  
IRQP 4  
IRQP 5  
Reserved  
ICTL  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
IRQ Pending Register 1  
IRQ Pending Register 2  
IRQ Pending Register 3  
IRQ Pending Register 4  
IRQ Pending Register 5  
$1D  
Interrupt Control Register  
Reserved  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
59  
Table 4-19 Interrupt Control Registers Address Map (Continued)  
(ITCN_BASE = $00 F1A0)  
Register Acronym  
IPR10  
Address Offset  
Register Description  
Interrupt Priority Register 10  
$1F  
Table 4-20 Analog-to-Digital Converter Registers Address Map  
(ADCA_BASE = $00 F200)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADCA_CR1  
$0  
$1  
ADCA_CR2  
Control Register 2  
ADCA_ZCC  
$2  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
ADCA_LST 1  
ADCA_LST 2  
ADCA_SDIS  
$3  
$4  
$5  
ADCA_STAT  
ADCA_LSTAT  
ADCA_ZCSTAT  
ADCA_RSLT 0  
ADCA_RSLT 1  
ADCA_RSLT 2  
ADCA_RSLT 3  
ADCA_RSLT 4  
ADCA_RSLT 5  
ADCA_RSLT 6  
ADCA_RSLT 7  
ADCA_LLMT 0  
ADCA_LLMT 1  
ADCA_LLMT 2  
ADCA_LLMT 3  
ADCA_LLMT 4  
ADCA_LLMT 5  
ADCA_LLMT 6  
ADCA_LLMT 7  
ADCA_HLMT 0  
ADCA_HLMT 1  
$6  
$7  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
$8  
$9  
$A  
Result Register 1  
$B  
Result Register 2  
$C  
$D  
$E  
Result Register 3  
Result Register 4  
Result Register 5  
$F  
Result Register 6  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
Low Limit Register 3  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
High Limit Register 0  
High Limit Register 1  
56F8365 Technical Data, Rev. 9  
60  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-20 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADCA_BASE = $00 F200)  
Register Acronym  
Address Offset  
$1B  
Register Description  
High Limit Register 2  
ADCA_HLMT 2  
ADCA_HLMT 3  
ADCA_HLMT 4  
ADCA_HLMT 5  
ADCA_HLMT 6  
ADCA_HLMT 7  
ADCA_OFS 0  
ADCA_OFS 1  
ADCA_OFS 2  
ADCA_OFS 3  
ADCA_OFS 4  
ADCA_OFS 5  
ADCA_OFS 6  
ADCA_OFS 7  
ADCA_POWER  
ADCA_CAL  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
ADC Calibration Register  
Table 4-21 Analog-to-Digital Converter Registers Address Map  
(ADCB_BASE = $00 F240)  
Register Acronym  
Address Offset  
Register Description  
Control Register 1  
ADCB_CR1  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
ADCB_CR2  
Control Register 2  
ADCB_ZCC  
Zero Crossing Control Register  
Channel List Register 1  
Channel List Register 2  
Sample Disable Register  
Status Register  
ADCB_LST 1  
ADCB_LST 2  
ADCB_SDIS  
ADCB_STAT  
ADCB_LSTAT  
ADCB_ZCSTAT  
ADCB_RSLT 0  
ADCB_RSLT 1  
ADCB_RSLT 2  
Limit Status Register  
Zero Crossing Status Register  
Result Register 0  
Result Register 1  
Result Register 2  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
61  
Table 4-21 Analog-to-Digital Converter Registers Address Map (Continued)  
(ADCB_BASE = $00 F240)  
Register Acronym  
Address Offset  
Register Description  
Result Register 3  
ADCB_RSLT 3  
ADCB_RSLT 4  
ADCB_RSLT 5  
ADCB_RSLT 6  
ADCB_RSLT 7  
ADCB_LLMT 0  
ADCB_LLMT 1  
ADCB_LLMT 2  
ADCB_LLMT 3  
ADCB_LLMT 4  
ADCB_LLMT 5  
ADCB_LLMT 6  
ADCB_LLMT 7  
ADCB_HLMT 0  
ADCB_HLMT 1  
ADCB_HLMT 2  
ADCB_HLMT 3  
ADCB_HLMT 4  
ADCB_HLMT 5  
ADCB_HLMT 6  
ADCB_HLMT 7  
ADCB_OFS 0  
ADCB_OFS 1  
ADCB_OFS 2  
ADCB_OFS 3  
ADCB_OFS 4  
ADCB_OFS 5  
ADCB_OFS 6  
ADCB_OFS 7  
ADCB_POWER  
ADCB_CAL  
$C  
$D  
Result Register 4  
$E  
Result Register 5  
$F  
Result Register 6  
$10  
$11  
$12  
$13  
$14  
$15  
$16  
$17  
$18  
$19  
$1A  
$1B  
$1C  
$1D  
$1E  
$1F  
$20  
$21  
$22  
$23  
$24  
$25  
$26  
$27  
$28  
$29  
$2A  
Result Register 7  
Low Limit Register 0  
Low Limit Register 1  
Low Limit Register 2  
Low Limit Register 3  
Low Limit Register 4  
Low Limit Register 5  
Low Limit Register 6  
Low Limit Register 7  
High Limit Register 0  
High Limit Register 1  
High Limit Register 2  
High Limit Register 3  
High Limit Register 4  
High Limit Register 5  
High Limit Register 6  
High Limit Register 7  
Offset Register 0  
Offset Register 1  
Offset Register 2  
Offset Register 3  
Offset Register 4  
Offset Register 5  
Offset Register 6  
Offset Register 7  
Power Control Register  
ADC Calibration Register  
56F8365 Technical Data, Rev. 9  
62  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-22 Temperature Sensor Register Address Map  
(TSENSOR_BASE = $00 F270)  
Temperature Sensor is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
TSENSOR_CNTL  
$0  
Control Register  
Table 4-23 Serial Communication Interface 0 Registers Address Map  
(SCI0_BASE = $00 F280)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI0_SCIBR  
SCI0_SCICR  
$0  
$1  
Control Register  
Reserved  
SCI0_SCISR  
SCI0_SCIDR  
$3  
$4  
Status Register  
Data Register  
Table 4-24 Serial Communication Interface 1 Registers Address Map  
(SCI1_BASE = $00 F290)  
Register Acronym  
Address Offset  
Register Description  
Baud Rate Register  
SCI1_SCIBR  
SCI1_SCICR  
$0  
$1  
Control Register  
Reserved  
SCI1_SCISR  
SCI1_SCIDR  
$3  
$4  
Status Register  
Data Register  
Table 4-25 Serial Peripheral Interface 0 Registers Address Map  
(SPI0_BASE = $00 F2A0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI0_SPSCR  
SPI0_SPDSR  
SPI0_SPDRR  
SPI0_SPDTR  
$0  
$1  
$2  
$3  
Data Size Register  
Data Receive Register  
Data Transmitter Register  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
63  
Table 4-26 Serial Peripheral Interface 1 Registers Address Map  
(SPI1_BASE = $00 F2B0)  
Register Acronym  
Address Offset  
Register Description  
Status and Control Register  
SPI1_SPSCR  
SPI1_SPDSR  
SPI1_SPDRR  
SPI1_SPDTR  
$0  
$1  
$2  
$3  
Data Size Register  
Data Receive Register  
Data Transmitter Register  
Table 4-27 Computer Operating Properly Registers Address Map  
(COP_BASE = $00 F2C0)  
Register Acronym  
Address Offset  
Register Description  
COPCTL  
COPTO  
$0  
$1  
$2  
Control Register  
Time Out Register  
Counter Register  
COPCTR  
Table 4-28 Clock Generation Module Registers Address Map  
(CLKGEN_BASE = $00 F2D0)  
Register Acronym  
PLLCR  
Address Offset  
Register Description  
$0  
$1  
$2  
Control Register  
PLLDB  
PLLSR  
Divide-By Register  
Status Register  
Reserved  
SHUTDOWN  
OSCTL  
$4  
$5  
Shutdown Register  
Oscillator Control Register  
Table 4-29 GPIOA Registers Address Map  
(GPIOA_BASE = $00 F2E0)  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
0 x 3FFF  
0 x 0000  
Register Acronym  
GPIOA_PUR  
$0  
$1  
$2  
$3  
GPIOA_DR  
Data Register  
GPIOA_DDR  
GPIOA_PER  
Data Direction Register  
Peripheral Enable Register  
0 x 0000  
0 x 3FFF  
56F8365 Technical Data, Rev. 9  
64  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-29 GPIOA Registers Address Map (Continued)  
(GPIOA_BASE = $00 F2E0)  
Address Offset  
$4  
Register Description  
Interrupt Assert Register  
Reset Value  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 3FFF  
Register Acronym  
GPIOA_IAR  
GPIOA_IENR  
$5  
$6  
$7  
$8  
$9  
$A  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOA_IPOLR  
GPIOA_IPR  
GPIOA_IESR  
GPIOA_PPMODE  
GPIOA_RAWDATA  
Table 4-30 GPIOB Registers Address Map  
(GPIOB_BASE = $00 F300)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOB_PUR  
GPIOB_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x 00FF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 00FF  
Data Register  
GPIOB_DDR  
GPIOB_PER  
GPIOB_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOB_IENR  
GPIOB_IPOLR  
GPIOB_IPR  
GPIOB_IESR  
GPIOB_PPMODE  
GPIOB_RAWDATA  
Table 4-31 GPIOC Registers Address Map  
(GPIOC_BASE = $00 F310)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOC_PUR  
GPIOC_DR  
GPIOC_DDR  
GPIOC_PER  
GPIOC_IAR  
$0  
$1  
$2  
$3  
$4  
0 x 07FF  
0 x 0000  
0 x 0000  
0 x 07FF  
0 x 0000  
Data Register  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
65  
Table 4-31 GPIOC Registers Address Map (Continued)  
(GPIOC_BASE = $00 F310)  
Register Acronym  
Address Offset  
Register Description  
Reset Value  
GPIOC_IENR  
$5  
$6  
$7  
$8  
$9  
$A  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 07FF  
GPIOC_IPOLR  
GPIOC_IPR  
GPIOC_IESR  
GPIOC_PPMODE  
GPIOC_RAWDATA  
Table 4-32 GPIOD Registers Address Map  
(GPIOD_BASE = $00 F320)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOD_PUR  
GPIOD_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x 1FFF  
0 x 0000  
0 x 0000  
0 x 1FC0  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 1FFF  
Data Register  
GPIOD_DDR  
GPIOD_PER  
GPIOD_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOD_IENR  
GPIOD_IPOLR  
GPIOD_IPR  
GPIOD_IESR  
GPIOD_PPMODE  
GPIOD_RAWDATA  
Table 4-33 GPIOE Registers Address Map  
(GPIOE_BASE = $00 F330)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOE_PUR  
GPIOE_DR  
$0  
$1  
$2  
$3  
$4  
$5  
0 x 3FFF  
0 x 0000  
0 x 0000  
0 x 3FFF  
0 x 0000  
0 x 0000  
Data Register  
GPIOE_DDR  
GPIOE_PER  
GPIOE_IAR  
GPIOE_IENR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
56F8365 Technical Data, Rev. 9  
66  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-33 GPIOE Registers Address Map (Continued)  
(GPIOE_BASE = $00 F330)  
Register Acronym  
Address Offset  
Register Description  
Interrupt Polarity Register  
Reset Value  
GPIOE_IPOLR  
GPIOE_IPR  
$6  
$7  
$8  
$9  
$A  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 3FFF  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOE_IESR  
GPIOE_PPMODE  
GPIOE_RAWDATA  
Table 4-34 GPIOF Registers Address Map  
(GPIOF_BASE = $00 F340)  
Register Acronym  
Address Offset  
Register Description  
Pull-up Enable Register  
Reset Value  
GPIOF_PUR  
GPIOF_DR  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
0 x FFFF  
0 x 0000  
0 x 0000  
0 x FFFF  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x 0000  
0 x FFFF  
Data Register  
GPIOF_DDR  
GPIOF_PER  
GPIOF_IAR  
Data Direction Register  
Peripheral Enable Register  
Interrupt Assert Register  
Interrupt Enable Register  
Interrupt Polarity Register  
Interrupt Pending Register  
Interrupt Edge-Sensitive Register  
Push-Pull Mode Register  
Raw Data Input Register  
GPIOF_IENR  
GPIOF_IPOLR  
GPIOF_IPR  
GPIOF_IESR  
GPIOF_PPMODE  
GPIOF_RAWDATA  
Table 4-35 System Integration Module Registers Address Map  
(SIM_BASE = $00 F350)  
Register Acronym  
Address Offset  
Register Description  
SIM_CONTROL  
SIM_RSTSTS  
SIM_SCR0  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
Control Register  
Reset Status Register  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half JTAG ID  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
SIM_MSH_ID  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
67  
Table 4-35 System Integration Module Registers Address Map (Continued)  
(SIM_BASE = $00 F350)  
Register Acronym  
Address Offset  
Register Description  
Least Significant Half JTAG ID  
SIM_LSH_ID  
SIM_PUDR  
$7  
$8  
Pull-up Disable Register  
Reserved  
SIM_CLKOSR  
SIM_GPS  
$A  
$B  
$C  
$D  
$E  
$F  
Clock Out Select Register  
Quad Decoder 1 / Timer B / SPI 1 Select Register  
Peripheral Clock Enable Register  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
Peripheral Clock Enable Register 2  
SIM_PCE  
SIM_ISALH  
SIM_ISALL  
SIM_PCE2  
Table 4-36 Power Supervisor Registers Address Map  
(LVI_BASE = $00 F360)  
Register Acronym  
Address Offset  
Register Description  
LVI_CONTROL  
LVI_STATUS  
$0  
$1  
Control Register  
Status Register  
Table 4-37 Flash Module Registers Address Map  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Register Description  
Clock Divider Register  
FMCLKD  
FMMCR  
$0  
$1  
Module Control Register  
Reserved  
FMSECH  
FMSECL  
$3  
$4  
Security High Half Register  
Security Low Half Register  
Reserved  
Reserved  
FMPROT  
$10  
$11  
Protection Register (Banked)  
Protection Boot Register (Banked)  
Reserved  
FMPROTB  
FMUSTAT  
FMCMD  
$13  
$14  
User Status Register (Banked)  
Command Register (Banked)  
56F8365 Technical Data, Rev. 9  
68  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-37 Flash Module Registers Address Map (Continued)  
(FM_BASE = $00 F400)  
Register Acronym  
Address Offset  
Register Description  
Reserved  
Reserved  
FMOPT 0  
$1A  
16-Bit Information Option Register 0  
Hot temperature ADC reading of Temperature Sensor;  
value set during factory test  
FMOPT 1  
FMOPT 2  
$1B  
$1C  
16-Bit Information Option Register 1  
Not used  
16-Bit Information Option Register 2  
Room temperature ADC reading of Temperature Sensor;  
value set during factory test  
Table 4-38 FlexCAN Registers Address Map  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8165 device  
Register Acronym  
FCMCR  
Address Offset  
Register Description  
Module Configuration Register  
$0  
Reserved  
FCCTL0  
FCCTL1  
FCTMR  
$3  
$4  
$5  
$6  
Control Register 0 Register  
Control Register 1 Register  
Free-Running Timer Register  
Maximum Message Buffer Configuration Register  
Reserved  
FCMAXMB  
FCRXGMASK_H  
FCRXGMASK_L  
FCRX14MASK_H  
FCRX14MASK_L  
FCRX15MASK_H  
FCRX15MASK_L  
$8  
$9  
$A  
$B  
$C  
$D  
Receive Global Mask High Register  
Receive Global Mask Low Register  
Receive Buffer 14 Mask High Register  
Receive Buffer 14 Mask Low Register  
Receive Buffer 15 Mask High Register  
Receive Buffer 15 Mask Low Register  
Reserved  
FCSTATUS  
$10  
$11  
$12  
$13  
Error and Status Register  
FCIMASK1  
Interrupt Masks 1 Register  
Interrupt Flags 1 Register  
FCIFLAG1  
FCR/T_ERROR_CNTRS  
Receive and Transmit Error Counters Register  
Reserved  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
69  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Reserved  
Reserved  
FCMB0_CONTROL  
FCMB0_ID_HIGH  
FCMB0_ID_LOW  
FCMB0_DATA  
$40  
$41  
$42  
$43  
$44  
$45  
$46  
Message Buffer 0 Control / Status Register  
Message Buffer 0 ID High Register  
Message Buffer 0 ID Low Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Reserved  
FCMB0_DATA  
FCMB0_DATA  
FCMB0_DATA  
FCMSB1_CONTROL  
FCMSB1_ID_HIGH  
FCMSB1_ID_LOW  
FCMB1_DATA  
$48  
$49  
$4A  
$4B  
$4C  
$4D  
$4E  
Message Buffer 1 Control / Status Register  
Message Buffer 1 ID High Register  
Message Buffer 1 ID Low Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Reserved  
FCMB1_DATA  
FCMB1_DATA  
FCMB1_DATA  
FCMB2_CONTROL  
FCMB2_ID_HIGH  
FCMB2_ID_LOW  
FCMB2_DATA  
$50  
$51  
$52  
$53  
$54  
$55  
$56  
Message Buffer 2 Control / Status Register  
Message Buffer 2 ID High Register  
Message Buffer 2 ID Low Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Reserved  
FCMB2_DATA  
FCMB2_DATA  
FCMB2_DATA  
FCMB3_CONTROL  
FCMB3_ID_HIGH  
FCMB3_ID_LOW  
FCMB3_DATA  
$58  
$59  
$5A  
$5B  
$5C  
Message Buffer 3 Control / Status Register  
Message Buffer 3 ID High Register  
Message Buffer 3 ID Low Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
FCMB3_DATA  
56F8365 Technical Data, Rev. 9  
70  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8165 device  
Register Acronym  
FCMB3_DATA  
Address Offset  
Register Description  
Message Buffer 3 Data Register  
$5D  
$5E  
FCMB3_DATA  
Message Buffer 3 Data Register  
Reserved  
FCMB4_CONTROL  
FCMB4_ID_HIGH  
FCMB4_ID_LOW  
FCMB4_DATA  
$60  
$61  
$62  
$63  
$64  
$65  
$66  
Message Buffer 4 Control / Status Register  
Message Buffer 4 ID High Register  
Message Buffer 4 ID Low Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Reserved  
FCMB4_DATA  
FCMB4_DATA  
FCMB4_DATA  
FCMB5_CONTROL  
FCMB5_ID_HIGH  
FCMB5_ID_LOW  
FCMB5_DATA  
$68  
$69  
$6A  
$6B  
$6C  
$6D  
$6E  
Message Buffer 5 Control / Status Register  
Message Buffer 5 ID High Register  
Message Buffer 5 ID Low Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Reserved  
FCMB5_DATA  
FCMB5_DATA  
FCMB5_DATA  
FCMB6_CONTROL  
FCMB6_ID_HIGH  
FCMB6_ID_LOW  
FCMB6_DATA  
$70  
$71  
$72  
$73  
$74  
$75  
$76  
Message Buffer 6 Control / Status Register  
Message Buffer 6 ID High Register  
Message Buffer 6 ID Low Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Reserved  
FCMB6_DATA  
FCMB6_DATA  
FCMB6_DATA  
FCMB7_CONTROL  
FCMB7_ID_HIGH  
FCMB7_ID_LOW  
FCMB7_DATA  
$78  
$79  
$7A  
$7B  
Message Buffer 7 Control / Status Register  
Message Buffer 7 ID High Register  
Message Buffer 7 ID Low Register  
Message Buffer 7 Data Register  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
71  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8165 device  
Register Acronym  
FCMB7_DATA  
Address Offset  
Register Description  
Message Buffer 7 Data Register  
$7C  
$7D  
$7E  
FCMB7_DATA  
FCMB7_DATA  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
Reserved  
FCMB8_CONTROL  
FCMB8_ID_HIGH  
FCMB8_ID_LOW  
FCMB8_DATA  
$80  
$81  
$82  
$83  
$84  
$85  
$86  
Message Buffer 8 Contro l /Status Register  
Message Buffer 8 ID High Register  
Message Buffer 8 ID Low Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Reserved  
FCMB8_DATA  
FCMB8_DATA  
FCMB8_DATA  
FCMB9_CONTROL  
FCMB9_ID_HIGH  
FCMB9_ID_LOW  
FCMB9_DATA  
$88  
$89  
$8A  
$8B  
$8C  
$8D  
$8E  
Message Buffer 9 Control / Status Register  
Message Buffer 9 ID High Register  
Message Buffer 9 ID Low Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Reserved  
FCMB9_DATA  
FCMB9_DATA  
FCMB9_DATA  
FCMB10_CONTROL  
FCMB10_ID_HIGH  
FCMB10_ID_LOW  
FCMB10_DATA  
FCMB10_DATA  
FCMB10_DATA  
FCMB10_DATA  
$90  
$91  
$92  
$93  
$94  
$95  
$96  
Message Buffer 10 Control / Status Register  
Message Buffer 10 ID High Register  
Message Buffer 10 ID Low Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Reserved  
FCMB11_CONTROL  
FCMB11_ID_HIGH  
FCMB11_ID_LOW  
$98  
$99  
$9A  
Message Buffer 11 Control / Status Register  
Message Buffer 11 ID High Register  
Message Buffer 11 ID Low Register  
56F8365 Technical Data, Rev. 9  
72  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8165 device  
Register Acronym  
FCMB11_DATA  
Address Offset  
Register Description  
Message Buffer 11 Data Register  
$9B  
$9C  
$9D  
$9E  
FCMB11_DATA  
FCMB11_DATA  
FCMB11_DATA  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Reserved  
FCMB12_CONTROL  
FCMB12_ID_HIGH  
FCMB12_ID_LOW  
FCMB12_DATA  
FCMB12_DATA  
FCMB12_DATA  
FCMB12_DATA  
$A0  
$A1  
$A2  
$A3  
$A4  
$A5  
$A6  
Message Buffer 12 Control / Status Register  
Message Buffer 12 ID High Register  
Message Buffer 12 ID Low Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Reserved  
FCMB13_CONTROL  
FCMB13_ID_HIGH  
FCMB13_ID_LOW  
FCMB13_DATA  
FCMB13_DATA  
FCMB13_DATA  
FCMB13_DATA  
$A8  
$A9  
$AA  
$AB  
$AC  
$AD  
$AE  
Message Buffer 13 Control / Status Register  
Message Buffer 13 ID High Register  
Message Buffer 13 ID Low Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Reserved  
FCMB14_CONTROL  
FCMB14_ID_HIGH  
FCMB14_ID_LOW  
FCMB14_DATA  
FCMB14_DATA  
FCMB14_DATA  
FCMB14_DATA  
$B0  
$B1  
$B2  
$B3  
$B4  
$B5  
$B6  
Message Buffer 14 Control / Status Register  
Message Buffer 14 ID High Register  
Message Buffer 14 ID Low Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Reserved  
FCMB15_CONTROL  
FCMB15_ID_HIGH  
$B8  
$B9  
Message Buffer 15 Control / Status Register  
Message Buffer 15 ID High Register  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
73  
Table 4-38 FlexCAN Registers Address Map (Continued)  
(FC_BASE = $00 F800)  
FlexCAN is NOT available in the 56F8165 device  
Register Acronym  
FCMB15_ID_LOW  
Address Offset  
Register Description  
$BA  
$BB  
$BC  
$BD  
$BE  
Message Buffer 15 ID Low Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Reserved  
FCMB15_DATA  
FCMB15_DATA  
FCMB15_DATA  
FCMB15_DATA  
Table 4-39 FlexCAN2 Registers Address Map  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Module Configuration Register  
FC2MCR  
$0  
Reserved  
FC2CTL0  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
Control Register 0 Register  
Control Register 1 Register  
Free-Running Timer Register  
Maximum Message Buffer Configuration Register  
Interrupt Masks 2 Register  
FC2CTL1  
FC2TMR  
FC2MAXMB  
FC2IMASK2  
FC2RXGMASK_H  
FC2RXGMASK_L  
FC2RX14MASK_H  
FC2RX14MASK_L  
FC2RX15MASK_H  
FC2RX15MASK_L  
Receive Global Mask High Register  
Receive Global Mask Low Register  
Receive Buffer 14 Mask High Register  
Receive Buffer 14 Mask Low Register  
Receive Buffer 15 Mask High Register  
Receive Buffer 15 Mask Low Register  
Reserved  
FC2STATUS  
$10  
$11  
$12  
$13  
Error and Status Register  
FC2IMASK1  
Interrupt Masks 1 Register  
FC2IFLAG1  
Interrupt Flags 1 Register  
FC2R/T_ERROR_CNTRS  
Receive and Transmit Error Counters Register  
Reserved  
FC2IFLAG 2  
$1B  
Interrupt Flags 2 Register  
56F8365 Technical Data, Rev. 9  
74  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-39 FlexCAN2 Registers Address Map (Continued)  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8165 device  
Register Acronym  
Address Offset  
Register Description  
Reserved  
FC2MB0_CONTROL  
FC2MB0_ID_HIGH  
FC2MB0_ID_LOW  
FC2MB0_DATA  
FC2MB0_DATA  
FC2MB0_DATA  
FC2MB0_DATA  
$40  
$41  
$42  
$43  
$44  
$45  
$46  
Message Buffer 0 Control / Status Register  
Message Buffer 0 ID High Register  
Message Buffer 0 ID Low Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Message Buffer 0 Data Register  
Reserved  
FC2MSB1_CONTROL  
FC2MSB1_ID_HIGH  
FC2MSB1_ID_LOW  
FC2MB1_DATA  
$48  
$49  
$4A  
$4B  
$4C  
$4D  
$4E  
Message Buffer 1 Control / Status Register  
Message Buffer 1 ID High Register  
Message Buffer 1 ID Low Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Message Buffer 1 Data Register  
Reserved  
FC2MB1_DATA  
FC2MB1_DATA  
FC2MB1_DATA  
FC2MB2_CONTROL  
FC2MB2_ID_HIGH  
FC2MB2_ID_LOW  
FC2MB2_DATA  
FC2MB2_DATA  
FC2MB2_DATA  
FC2MB2_DATA  
$50  
$51  
$52  
$53  
$54  
$55  
$56  
Message Buffer 2 Control / Status Register  
Message Buffer 2 ID High Register  
Message Buffer 2 ID Low Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Message Buffer 2 Data Register  
Reserved  
FC2MB3_CONTROL  
FC2MB3_ID_HIGH  
FC2MB3_ID_LOW  
FC2MB3_DATA  
$58  
$59  
$5A  
$5B  
$5C  
$5D  
Message Buffer 3 Control / Status Register  
Message Buffer 3 ID High Register  
Message Buffer 3 ID Low Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
Message Buffer 3 Data Register  
FC2MB3_DATA  
FC2MB3_DATA  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
75  
Table 4-39 FlexCAN2 Registers Address Map (Continued)  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8165 device  
Register Acronym  
FC2MB3_DATA  
Address Offset  
Register Description  
Message Buffer 3 Data Register  
$5E  
Reserved  
FC2MB4_CONTROL  
FC2MB4_ID_HIGH  
FC2MB4_ID_LOW  
FC2MB4_DATA  
FC2MB4_DATA  
FC2MB4_DATA  
FC2MB4_DATA  
$60  
$61  
$62  
$63  
$64  
$65  
$66  
Message Buffer 4 Control / Status Register  
Message Buffer 4 ID High Register  
Message Buffer 4 ID Low Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Message Buffer 4 Data Register  
Reserved  
FC2MB5_CONTROL  
FC2MB5_ID_HIGH  
FC2MB5_ID_LOW  
FC2MB5_DATA  
FC2MB5_DATA  
FC2MB5_DATA  
FC2MB5_DATA  
$68  
$69  
$6A  
$6B  
$6C  
$6D  
$6E  
Message Buffer 5 Control / Status Register  
Message Buffer 5 ID High Register  
Message Buffer 5 ID Low Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Message Buffer 5 Data Register  
Reserved  
FC2MB6_CONTROL  
FC2MB6_ID_HIGH  
FC2MB6_ID_LOW  
FC2MB6_DATA  
FC2MB6_DATA  
FC2MB6_DATA  
FC2MB6_DATA  
$70  
$71  
$72  
$73  
$74  
$75  
$76  
Message Buffer 6 Control / Status Register  
Message Buffer 6 ID High Register  
Message Buffer 6 ID Low Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Message Buffer 6 Data Register  
Reserved  
FC2MB7_CONTROL  
FC2MB7_ID_HIGH  
FC2MB7_ID_LOW  
FC2MB7_DATA  
$78  
$79  
$7A  
$7B  
$7C  
Message Buffer 7 Control / Status Register  
Message Buffer 7 ID High Register  
Message Buffer 7 ID Low Register  
Message Buffer 7 Data Register  
Message Buffer 7 Data Register  
FC2MB7_DATA  
56F8365 Technical Data, Rev. 9  
76  
Freescale Semiconductor  
Peripheral Memory Mapped Registers  
Table 4-39 FlexCAN2 Registers Address Map (Continued)  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8165 device  
Register Acronym  
FC2MB7_DATA  
Address Offset  
Register Description  
Message Buffer 7 Data Register  
$7D  
$7E  
FC2MB7_DATA  
Message Buffer 7 Data Register  
Reserved  
FC2MB8_CONTROL  
FC2MB8_ID_HIGH  
FC2MB8_ID_LOW  
FC2MB8_DATA  
FC2MB8_DATA  
FC2MB8_DATA  
FC2MB8_DATA  
$80  
$81  
$82  
$83  
$84  
$85  
$86  
Message Buffer 8 Contro l /Status Register  
Message Buffer 8 ID High Register  
Message Buffer 8 ID Low Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Message Buffer 8 Data Register  
Reserved  
FC2MB9_CONTROL  
FC2MB9_ID_HIGH  
FC2MB9_ID_LOW  
FC2MB9_DATA  
FC2MB9_DATA  
FC2MB9_DATA  
FC2MB9_DATA  
$88  
$89  
$8A  
$8B  
$8C  
$8D  
$8E  
Message Buffer 9 Control / Status Register  
Message Buffer 9 ID High Register  
Message Buffer 9 ID Low Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Message Buffer 9 Data Register  
Reserved  
FC2MB10_CONTROL  
FC2MB10_ID_HIGH  
FC2MB10_ID_LOW  
FC2MB10_DATA  
FC2MB10_DATA  
FC2MB10_DATA  
FC2MB10_DATA  
$90  
$91  
$92  
$93  
$94  
$95  
$96  
Message Buffer 10 Control / Status Register  
Message Buffer 10 ID High Register  
Message Buffer 10 ID Low Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Message Buffer 10 Data Register  
Reserved  
FC2MB11_CONTROL  
FC2MB11_ID_HIGH  
FC2MB11_ID_LOW  
FC2MB11_DATA  
$98  
$99  
$9A  
$9B  
Message Buffer 11 Control / Status Register  
Message Buffer 11 ID High Register  
Message Buffer 11 ID Low Register  
Message Buffer 11 Data Register  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
77  
Table 4-39 FlexCAN2 Registers Address Map (Continued)  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8165 device  
Register Acronym  
FC2MB11_DATA  
Address Offset  
Register Description  
Message Buffer 11 Data Register  
$9C  
$9D  
$9E  
FC2MB11_DATA  
FC2MB11_DATA  
Message Buffer 11 Data Register  
Message Buffer 11 Data Register  
Reserved  
FC2MB12_CONTROL  
FC2MB12_ID_HIGH  
FC2MB12_ID_LOW  
FC2MB12_DATA  
FC2MB12_DATA  
FC2MB12_DATA  
FC2MB12_DATA  
$A0  
$A1  
$A2  
$A3  
$A4  
$A5  
$A6  
Message Buffer 12 Control / Status Register  
Message Buffer 12 ID High Register  
Message Buffer 12 ID Low Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Message Buffer 12 Data Register  
Reserved  
FC2MB13_CONTROL  
FC2MB13_ID_HIGH  
FC2MB13_ID_LOW  
FC2MB13_DATA  
FC2MB13_DATA  
FC2MB13_DATA  
FC2MB13_DATA  
$A8  
$A9  
$AA  
$AB  
$AC  
$AD  
$AE  
Message Buffer 13 Control / Status Register  
Message Buffer 13 ID High Register  
Message Buffer 13 ID Low Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Message Buffer 13 Data Register  
Reserved  
FC2MB14_CONTROL  
FC2MB14_ID_HIGH  
FC2MB14_ID_LOW  
FC2MB14_DATA  
FC2MB14_DATA  
FC2MB14_DATA  
FC2MB14_DATA  
$B0  
$B1  
$B2  
$B3  
$B4  
$B5  
$B6  
Message Buffer 14 Control / Status Register  
Message Buffer 14 ID High Register  
Message Buffer 14 ID Low Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Message Buffer 14 Data Register  
Reserved  
FC2MB15_CONTROL  
FC2MB15_ID_HIGH  
FC2MB15_ID_LOW  
$B8  
$B9  
$BA  
Message Buffer 15 Control / Status Register  
Message Buffer 15 ID High Register  
Message Buffer 15 ID Low Register  
56F8365 Technical Data, Rev. 9  
78  
Freescale Semiconductor  
Factory Programmed Memory  
Table 4-39 FlexCAN2 Registers Address Map (Continued)  
(FC2_BASE = $00 FA00)  
FlexCAN2 is NOT available in the 56F8165 device  
Register Acronym  
FC2MB15_DATA  
Address Offset  
Register Description  
Message Buffer 15 Data Register  
$BB  
$BC  
$BD  
$BE  
FC2MB15_DATA  
FC2MB15_DATA  
FC2MB15_DATA  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Message Buffer 15 Data Register  
Reserved  
4.8 Factory Programmed Memory  
The Boot Flash memory block is programmed during manufacturing with a default Serial Bootloader  
program. The Serial Bootloader application can be used to load a user application into the Program and  
Data Flash (NOT available in the 56F8165) memories of the device. The 56F83xx SCI/CAN Bootloader  
User Manual (MC56F83xxBLUM) provides detailed information on this firmware. An application note,  
Production Flash Programming (AN1973), details how the Serial Bootloader program can be used to  
perform production Flash programming of the on-board Flash memories, as well as other potential  
methods.  
Like all the Flash memory blocks the Boot Flash can be erased and programmed by the user. The Serial  
Bootloader application is programmed as an aid to the end user, but is not required to be used or maintained  
in the Boot Flash memory.  
Part 5 Interrupt Controller (ITCN)  
5.1 Introduction  
The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs), to  
signal to the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in  
order to service this interrupt.  
5.2 Features  
The ITCN module design includes these distinctive features:  
Programmable priority levels for each IRQ  
Two programmable Fast Interrupts  
Notification to SIM module to restart clocks out of Wait and Stop modes  
Drives initial address on the address bus after reset  
For further information, see Table 4-5, Interrupt Vector Table Contents.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
79  
5.3 Functional Description  
The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 86 interrupt  
sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of  
the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the  
active interrupt requests for that level. Within a given priority level, 0 is the highest priority, while number  
85 is the lowest.  
5.3.1  
Normal Interrupt Handling  
Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest  
priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the  
vector number to determine the vector address. In this way, an offset is generated into the vector table for  
each interrupt.  
5.3.2  
Interrupt Nesting  
Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be  
serviced. The following tables define the nesting requirements for each priority level.  
Table 5-1 Interrupt Mask Bit Definition  
SR[9]1  
SR[8]1  
Permitted Exceptions  
Masked Exceptions  
None  
0
0
1
1
0
1
0
1
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 0  
Priorities 0, 1  
Priorities 0, 1, 2  
1. Core status register bits indicating current interrupt mask within the core.  
Table 5-2. Interrupt Priority Encoding  
Current Interrupt  
Priority Level  
Required Nested  
Exception Priority  
IPIC_LEVEL[1:0]1  
00  
01  
10  
11  
No Interrupt or SWILP  
Priority 0  
Priorities 0, 1, 2, 3  
Priorities 1, 2, 3  
Priorities 2, 3  
Priority 3  
Priority 1  
Priorities 2 or 3  
1. See IPIC field definition in Part 5.6.30.2  
5.3.3  
Fast Interrupt Handling  
Fast interrupts are described in the DSP56800E Reference Manual. The interrupt controller recognizes  
fast interrupts before the core does.  
A fast interrupt is defined (to the ITCN) by:  
56F8365 Technical Data, Rev. 9  
80  
Freescale Semiconductor  
Block Diagram  
1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers  
2. Setting the FIMn register to the appropriate vector number.  
3. Setting the FIVALn and FIVAHn registers with the address of the code for the fast interrupt  
When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a  
match occurs, and it is a level 2 interrupt, the ITCN handles it as a fast interrupt. The ITCN takes the vector  
address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an  
offset from the VBA.  
The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the core starts  
its fast interrupt handling.  
5.4 Block Diagram  
any0  
Priority  
Level  
Level 0  
82 -> 7  
Priority  
Encoder  
7
2 -> 4  
Decode  
INT1  
INT  
VAB  
IPIC  
CONTROL  
any3  
IACK  
SR[9:8]  
Level 3  
Priority  
Level  
82 -> 7  
Priority  
PIC_EN  
7
Encoder  
2 -> 4  
Decode  
INT82  
Figure 5-1 Interrupt Controller Block Diagram  
5.5 Operating Modes  
The ITCN module design contains two major modes of operation:  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
81  
Functional Mode  
The ITCN is in this mode by default.  
Wait and Stop Modes  
During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN will signal  
a pending IRQ to the System Integration Module (SIM) to restart the clocks and service the IRQ. An IRQ  
can only wake up the core if the IRQ is enabled prior to entering the Wait or Stop mode. Also, the IRQA  
and IRQB signals automatically become low-level sensitive in these modes, even if the control register bits  
are set to make them falling-edge sensitive. This is because there is no clock available to detect the falling  
edge.  
A peripheral which requires a clock to generate interrupts will not be able to generate interrupts during Stop  
mode. The FlexCAN module can wake the device from Stop, and a reset will do just that, or IRQA and  
IRQB can wake it up.  
5.6 Register Descriptions  
A register address is the sum of a base address and an address offset. The base address is defined at the  
system level and the address offset is defined at the module level. The ITCN peripheral has 24 registers.  
Table 5-3 ITCN Register Summary  
(ITCN_BASE = $00F1A0)  
Register  
Acronym  
Base Address +  
Register Name  
Section Location  
IPR0  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
$9  
$A  
$B  
$C  
$D  
$E  
$F  
$10  
Interrupt Priority Register 0  
5.6.1  
5.6.2  
IPR1  
Interrupt Priority Register 1  
IPR2  
Interrupt Priority Register 2  
5.6.3  
IPR3  
Interrupt Priority Register 3  
5.6.4  
IPR4  
Interrupt Priority Register 4  
5.6.5  
IPR5  
Interrupt Priority Register 5  
5.6.6  
IPR6  
Interrupt Priority Register 6  
5.6.7  
IPR7  
Interrupt Priority Register 7  
5.6.8  
IPR8  
Interrupt Priority Register 8  
5.6.9  
IPR9  
Interrupt Priority Register 9  
5.6.10  
5.6.11  
5.6.12  
5.6.13  
5.6.14  
5.6.15  
5.6.16  
5.6.17  
VBA  
Vector Base Address Register  
Fast Interrupt 0 Match Register  
Fast Interrupt 0 Vector Address Low Register  
Fast Interrupt 0 Vector Address High Register  
Fast Interrupt 1 Match Register  
Fast Interrupt 1 Vector Address Low Register  
Fast Interrupt 1 Vector Address High Register  
FIM0  
FIVAL0  
FIVAH0  
FIM1  
FIVAL1  
FIVAH1  
56F8365 Technical Data, Rev. 9  
82  
Freescale Semiconductor  
Register Descriptions  
Table 5-3 ITCN Register Summary  
(ITCN_BASE = $00F1A0)  
Register  
Acronym  
Base Address +  
Register Name  
Section Location  
IRQP0  
$11  
$12  
$13  
$14  
$15  
$16  
IRQ Pending Register 0  
5.6.18  
5.6.19  
5.6.20  
5.6.21  
5.6.22  
5.6.23  
IRQP1  
IRQP2  
IRQP3  
IRQP4  
IRQP5  
Reserved  
ICTL  
IRQ Pending Register 1  
IRQ Pending Register 2  
IRQ Pending Register 3  
IRQ Pending Register 4  
IRQ Pending Register 5  
$1D  
Interrupt Control Register  
5.6.30  
5.6.32  
Reserved  
IPR10  
$1F  
Interrupt Priority Register 10  
Note: IPR10 is NOT available in the 56F8165 device.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
83  
Add. Register  
Offset  
Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
$0  
IPR0  
BKPT_U0 IPL  
STPCNT IPL  
0
0
0
0
0
0
0
0
0
0
$1  
$2  
IPR1  
IPR2  
RX_REG IPL  
TX_REG IPL  
IRQB IPL  
TRBUF IPL  
IRQA IPL  
W
R
0
0
FMCBE IPL  
GPIOD IPL  
FMCC IPL  
GPIOE IPL  
FMERR IPL  
GPIOF IPL  
LOCK IPL  
LVI IPL  
W
R
0
0
$3  
IPR3  
FCMSGBUF IPL FCWKUP IPL  
FCERR IPL  
GPIOA IPL  
FCBOFF IPL  
GPIOB IPL  
W
R
0
0
0
0
0
0
SPI0_RCV  
IPL  
SPI1_XMIT  
IPL  
SPI1_RCV  
IPL  
$4  
IPR4  
GPIOC IPL  
W
R
SCI1_RCV  
IPL  
SCI1_RERR  
IPL  
SCI1_TIDL  
IPL  
SCI1_XMIT  
IPL  
SPI0_XMIT  
IPL  
$5  
IPR5  
DEC1_XIRQ IPL DEC1_HIRQ IPL  
W
R
0
0
$6  
IPR6  
TMRC0 IPL  
TMRA0 IPL  
TMRD3 IPL  
TMRB3 IPL  
TMRD2 IPL  
TMRB2 IPL  
TMRD1 IPL  
TMRB1 IPL  
TMRD0 IPL  
TMRB0 IPL  
DEC0_XIRQ IPL  
TMRC2 IPL  
DEC0_HIRQ IPL  
TMRC1 IPL  
W
R
$7  
IPR7  
TMRC3 IPL  
TMRA3 IPL  
W
R
0
0
0
0
$8  
IPR8  
SCI0_RCV IPL SCI0_RERR IPL  
SCI0_TIDL IPL SCI0_XMIT IPL  
TMRA2 IPL  
TMRA1 IPL  
W
R
$9  
IPR9  
PWMA_F IPL  
PWMB_F IPL PWMA_RL IPL PWMB_RL IPL ADCA_ZC IPL  
ABCB_ZC IPL  
ADCA_CC IPL  
ADCB_CC IPL  
W
R
0
0
0
0
0
$A  
$B  
$C  
$D  
$E  
$F  
VBA  
VECTOR BASE ADDRESS  
0
W
R
0
0
0
0
0
0
0
0
0
0
0
FIM0  
FAST INTERRUPT 0  
W
R
FAST INTERRUPT 0  
VECTOR ADDRESS LOW  
FIVAL0  
FIVAH0  
FIM1  
W
R
0
0
0
0
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS HIGH  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1  
W
R
FAST INTERRUPT 1  
VECTOR ADDRESS LOW  
FIVAL1  
FIVAH1  
IRQP0  
IRQP1  
IRQP2  
IRQP3  
IRQP4  
W
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAST INTERRUPT 1  
$10  
$11  
$12  
$13  
$14  
$15  
VECTOR ADDRESS HIGH  
W
R
PENDING [16:2]  
1
W
R
PENDING [32:17]  
W
R
PENDING [48:33]  
PENDING [64:49]  
PENDING [80:65]  
W
R
W
R
W
PENDING  
[81]  
R
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
$16  
IRQP5  
Reserved  
ICTL  
W
IRQB  
STATE STATE  
IRQA  
R
INT  
0
IPIC  
VAB  
0
IRQB  
EDG  
IRQA  
EDG  
$1D  
$1F  
INT_DIS  
W
Reserved  
IPR10  
R
0
0
0
0
0
0
FLEXCAN2  
MSGBUF IPL  
FLEXCAN2  
WKUP IPL  
FLEXCAN2  
ERR IPL  
FLEXCAN2  
BOFF IPL  
W
= Reserved  
56F8365 Technical Data, Rev. 9  
84  
Freescale Semiconductor  
Register Descriptions  
Figure 5-2 ITCN Register Map Summary  
5.6.1  
Interrupt Priority Register 0 (IPR0)  
Base + $0  
Read  
15  
0
14  
0
13  
12  
11  
10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
BKPT_U0IPL  
STPCNT IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-3 Interrupt Priority Register 0 (IPR0)  
5.6.1.1  
Reserved—Bits 15–14  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.1.2  
EOnCE Breakpoint Unit 0 Interrupt Priority Level (BKPT_U0 IPL)—  
Bits13–12  
This field is used to set the interrupt priority levels for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.3  
EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.1.4  
Reserved—Bits 9–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
85  
5.6.2  
Interrupt Priority Register 1 (IPR1)  
Base + $1  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
RX_REG IPL TX_REG IPL  
TRBUF IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-4 Interrupt Priority Register 1 (IPR1)  
5.6.2.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.2.2  
EOnCE Receive Register Full Interrupt Priority Level  
(RX_REG IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.2.3  
EOnCE Transmit Register Empty Interrupt Priority Level  
(TX_REG IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
5.6.2.4  
EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)—  
Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 1  
10 = IRQ is priority level 2  
11 = IRQ is priority level 3  
56F8365 Technical Data, Rev. 9  
86  
Freescale Semiconductor  
Register Descriptions  
5.6.3  
Interrupt Priority Register 2 (IPR2)  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
0
5
0
4
0
3
2
1
0
FMCBE IPL  
FMCC IPL  
FMERR IPL  
LOCK IPL  
LVI IPL  
IRQB IPL  
IRQA IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-5 Interrupt Priority Register 2 (IPR2)  
5.6.3.1  
Flash Memory Command, Data, Address Buffers Empty Interrupt  
Priority Level (FMCBE IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.2  
Flash Memory Command Complete Priority Level  
(FMCC IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.3  
Flash Memory Error Interrupt Priority Level  
(FMERR IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.4  
PLL Loss of Lock Interrupt Priority Level (LOCK IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
87  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.5  
Low Voltage Detector Interrupt Priority Level (LVI IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.6  
Reserved—Bits 5–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.3.7  
External IRQ B Interrupt Priority Level (IRQB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.3.8  
External IRQ A Interrupt Priority Level (IRQA IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
It is disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4  
Interrupt Priority Register 3 (IPR3)  
Base + $3  
Read  
15  
14  
13  
12 11 10  
9
8
7
6
5
4
3
2
1
0
0
0
GPIOD  
IPL  
GPIOF  
IPL  
GPIOE IPL  
FCMSGBUF IPL  
FCWKUP IPL  
FCERR IPL  
FCBOFF IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-6 Interrupt Priority Register 3 (IPR3)  
56F8365 Technical Data, Rev. 9  
88  
Freescale Semiconductor  
Register Descriptions  
5.6.4.1  
GPIOD Interrupt Priority Level (GPIOD IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.2  
GPIOE Interrupt Priority Level (GPIOE IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.3  
GPIOF Interrupt Priority Level (GPIOF IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.4  
FlexCAN Message Buffer Interrupt Priority Level (FCMSGBUF IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.5  
FlexCAN Wake Up Interrupt Priority Level (FCWKUP IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
89  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.6  
FlexCAN Error Interrupt Priority Level (FCERR IPL)— Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.7  
FlexCAN Bus Off Interrupt Priority Level (FCBOFF IPL)— Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.4.8  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.5  
Interrupt Priority Register 4 (IPR4)  
Base + $4  
Read  
15  
14  
13  
12  
11  
10  
9
0
8
0
7
0
6
0
5
4
3
2
1
0
SPI0_RCV  
IPL  
SPI1_XMIT  
IPL  
SPI1_RCV  
IPL  
GPIOA IPL  
GPIOB IPL  
GPIOC IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-7 Interrupt Priority Register 4 (IPR4)  
SPI 0 Receiver Full Interrupt Priority Level (SPI0_RCV IPL)—Bits 15–14  
5.6.5.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8365 Technical Data, Rev. 9  
90  
Freescale Semiconductor  
Register Descriptions  
5.6.5.2  
SPI 1 Transmit Empty Interrupt Priority Level (SPI1_XMIT IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.3  
SPI 1 Receiver Full Interrupt Priority Level (SPI1_RCV IPL)—  
Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.4  
Reserved—Bits 9–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.5.5  
GPIOA Interrupt Priority Level (GPIOA IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.6  
GPIOB Interrupt Priority Level (GPIOB IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.5.7  
GPIOC Interrupt Priority Level (GPIOC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
91  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6  
Interrupt Priority Register 5 (IPR5)  
Base + $5  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
0
6
0
5
4
3
2
1
0
DEC1_XIRQ DEC1_HIRQ  
IPL IPL  
SCI1_RCV  
IPL  
SCI1_RERR  
IPL  
SCI1_TIDL  
IPL  
SCI1_XMIT  
IPL  
SPI0_XMIT  
IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-8 Interrupt Priority Register 5 (IPR5)  
5.6.6.1  
Quadrature Decoder 1 INDEX Pulse Interrupt Priority Level  
(DEC1_XIRQ IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.2  
Quadrature Decoder 1 HOME Signal Transition or Watchdog Timer  
Interrupt Priority Level (DEC1_HIRQ IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.3  
SCI 1 Receiver Full Interrupt Priority Level (SCI1_RCV IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8365 Technical Data, Rev. 9  
92  
Freescale Semiconductor  
Register Descriptions  
5.6.6.4  
SCI 1 Receiver Error Interrupt Priority Level (SCI1_RERR IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.5  
Reserved—Bits 7–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.6.6  
SCI 1 Transmitter Idle Interrupt Priority Level (SCI1_TIDL IPL)—  
Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.7  
SCI 1 Transmitter Empty Interrupt Priority Level (SCI1_XMIT IPL)—  
Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.6.8  
SPI 0 Transmitter Empty Interrupt Priority Level (SPI0_XMIT IPL)—  
Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
93  
5.6.7  
Interrupt Priority Register 6 (IPR6)  
Base + $6  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
0
4
0
3
2
1
0
DEC0_XIRQ  
IPL  
DEC0_HIRQ  
IPL  
TMRC0 IPL  
TMRD3 IPL  
TMRD2 IPL  
TMRD1 IPL  
TMRD0 IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-9 Interrupt Priority Register 6 (IPR6)  
Timer C, Channel 0 Interrupt Priority Level (TMRC0 IPL)—Bits 15–14  
5.6.7.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.2  
Timer D, Channel 3 Interrupt Priority Level (TMRD3 IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.3  
Timer D, Channel 2 Interrupt Priority Level (TMRD2 IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.4  
Timer D, Channel 1 Interrupt Priority Level (TMRD1 IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8365 Technical Data, Rev. 9  
94  
Freescale Semiconductor  
Register Descriptions  
5.6.7.5  
Timer D, Channel 0 Interrupt Priority Level (TMRD0 IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.6  
Reserved—Bits 5–4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.7.7  
Quadrature Decoder 0 INDEX Pulse Interrupt Priority Level  
(DEC0_XIRQ IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.7.8  
Quadrature Decoder 0, HOME Signal Transition or Watchdog Timer  
Interrupt Priority Level (DEC0_HIRQ IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8  
Interrupt Priority Register 7 (IPR7)  
Base + $7  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TMRA0 IPL  
TMRB3 IPL  
TMRB2 IPL  
TMRB1 IPL  
TMRB0 IPL  
TMRC3 IPL  
TMRC2 IPL  
TMRC1 IPL  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-10 Interrupt Priority Register (IPR7)  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
95  
5.6.8.1  
Timer A, Channel 0 Interrupt Priority Level (TMRA0 IPL)—  
Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.2  
Timer B, Channel 3 Interrupt Priority Level (TMRB3 IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.3  
Timer B, Channel 2 Interrupt Priority Level (TMRB2 IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.4  
Timer B, Channel 1 Interrupt Priority Level (TMRB1 IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.5  
Timer B, Channel 0 Interrupt Priority Level (TMRB0 IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
56F8365 Technical Data, Rev. 9  
96  
Freescale Semiconductor  
Register Descriptions  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.6  
Timer C, Channel 3 Interrupt Priority Level (TMRC3 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.7  
Timer C, Channel 2 Interrupt Priority Level (TMRC2 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.8.8  
Timer C, Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9  
Interrupt Priority Register 8 (IPR8)  
Base + $8  
Read  
15  
14  
13  
12  
11  
0
10  
0
9
8
7
6
5
4
3
2
1
0
SCI0_RCV  
IPL  
SCI0_RERR  
IPL  
SCI0_TIDL  
IPL  
SCI0_XMIT  
IPL  
TMRA3 IPL  
TMRA2 IPL  
TMRA1 IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-11 Interrupt Priority Register 8 (IPR8)  
SCI0 Receiver Full Interrupt Priority Level (SCI0_RCV IPL)—Bits 15–14  
5.6.9.1  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
97  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.2  
SCI0 Receiver Error Interrupt Priority Level (SCI0_RERR IPL)—  
Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.3  
Reserved—Bits 11–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.9.4  
SCI0 Transmitter Idle Interrupt Priority Level (SCI0_TIDL IPL)—  
Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.5  
SCI0 Transmitter Empty Interrupt Priority Level (SCI0_XMIT IPL)—  
Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.6  
Timer A, Channel 3 Interrupt Priority Level (TMRA3 IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
56F8365 Technical Data, Rev. 9  
98  
Freescale Semiconductor  
Register Descriptions  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.7  
Timer A, Channel 2 Interrupt Priority Level (TMRA2 IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.9.8  
Timer A, Channel 1 Interrupt Priority Level (TMRA1 IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10 Interrupt Priority Register 9 (IPR9)  
Base + $9  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PWMA_RL  
IPL  
PWMB_RL  
IPL  
ADCA_CC  
IPL  
ADCB_CC  
IPL  
PWMA_F IPL PWMB_F IPL  
ADCA_ZC IPL ABCB_ZC IPL  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-12 Interrupt Priority Register 9 (IPR9)  
5.6.10.1 PWM A Fault Interrupt Priority Level (PWMA_F IPL)—Bits 15–14  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.2 PWM B Fault Interrupt Priority Level (PWMB_F IPL)—Bits 13–12  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
99  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.3 Reload PWM A Interrupt Priority Level (PWMA_RL IPL)—Bits 11–10  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.4 Reload PWM B Interrupt Priority Level (PWMB_RL IPL)—Bits 9–8  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.5 ADC A Zero Crossing or Limit Error Interrupt Priority Level  
(ADCA_ZC IPL)—Bits 7–6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.6 ADC B Zero Crossing or Limit Error Interrupt Priority Level  
(ADCB_ZC IPL)—Bits 5–4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
56F8365 Technical Data, Rev. 9  
100  
Freescale Semiconductor  
Register Descriptions  
5.6.10.7 ADC A Conversion Complete Interrupt Priority Level  
(ADCA_CC IPL)—Bits 3–2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.10.8 ADC B Conversion Complete Interrupt Priority Level  
(ADCB_CC IPL)—Bits 1–0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.11 Vector Base Address Register (VBA)  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
11  
10  
9
8
7
6
5
4
0
3
0
2
0
1
0
0
0
VECTOR BASE ADDRESS  
Write  
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-13 Vector Base Address Register (VBA)  
5.6.11.1 Reserved—Bits 15–13  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)—Bits 12–0  
The contents of this register determine the location of the Vector Address Table. The value in this register  
is used as the upper 13 bits of the interrupt Vector Address Bus (VAB[20:0]). The lower eight bits are  
determined based upon the highest-priority interrupt. They are then appended onto VBA before presenting  
the full interrupt address to the 56800E core; see Part 5.3.1 for details.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
101  
5.6.12 Fast Interrupt 0 Match Register (FIM0)  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
0
FAST INTERRUPT 0  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-14 Fast Interrupt 0 Match Register (FIM0)  
5.6.12.1 Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.12.2 Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 6–0  
This value determines which IRQ will be a Fast Interrupt 0. Fast interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first; see Part 5.3.3. IRQs used as fast interrupts must be set to priority level 2. Unexpected results will  
occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the  
highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared  
as fast interrupt. Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each  
IRQ, refer to Table 4-5.  
5.6.13 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS LOW  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-15 Fast Interrupt 0 Vector Address Low Register (FIVAL0)  
5.6.13.1 Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15–0  
The lower 16 bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAH0  
to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.6.14 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
Base + $D  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 0  
VECTOR ADDRESS HIGH  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-16 Fast Interrupt 0 Vector Address High Register (FIVAH0)  
56F8365 Technical Data, Rev. 9  
102  
Freescale Semiconductor  
Register Descriptions  
5.6.14.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.14.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0  
The upper five bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAL0  
to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register.  
5.6.15 Fast Interrupt 1 Match Register (FIM1)  
Base + $E  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 1  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-17 Fast Interrupt 1 Match Register (FIM1)  
5.6.15.1 Reserved—Bits 15–7  
This bit field is reserved or not implemented. It is read as 0, but cannot be modified by writing.  
5.6.15.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 6–0  
This value determines which IRQ will be a Fast Interrupt 1. Fast interrupts vector directly to a service  
routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table  
first; see Part 5.3.3. IRQs used as fast interrupts must be set to priority level 2. Unexpected results will  
occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the  
highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared  
as fast interrupt. Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each  
IRQ, refer to Table 4-5.  
5.6.16 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
Base + $F  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
0
0
FAST INTERRUPT 1  
VECTOR ADDRESS LOW  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-18 Fast Interrupt 1 Vector Address Low Register (FIVAL1)  
5.6.16.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0  
The lower 16 bits of the vector address are used for Fast Interrupt 1. This register is combined with  
FIVAH1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
103  
5.6.17 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
Base + $10  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
3
2
1
0
0
FAST INTERRUPT 1  
VECTOR ADDRESS HIGH  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Figure 5-19 Fast Interrupt 1 Vector Address High Register (FIVAH1)  
5.6.17.1 Reserved—Bits 15–5  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.17.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0  
The upper five bits of the vector address are used for Fast Interrupt 1. This register is combined with  
FIVAL1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register.  
5.6.18 IRQ Pending 0 Register (IRQP0)  
Base + $11  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
1
2
1
1
1
0
1
PENDING [16:2]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-20 IRQ Pending 0 Register (IRQP0)  
5.6.18.1 IRQ Pending (PENDING)—Bits 16–2  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers two  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.18.2 Reserved—Bit 0  
This bit is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
5.6.19 IRQ Pending 1 Register (IRQP1)  
$Base + $12  
Read  
15  
1
14  
1
13  
12  
11  
10  
9
8
7
6
5
4
3
1
2
1
1
1
0
1
PENDING [32:17]  
Write  
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-21 IRQ Pending 1 Register (IRQP1)  
56F8365 Technical Data, Rev. 9  
104  
Freescale Semiconductor  
Register Descriptions  
5.6.19.1 IRQ Pending (PENDING)—Bits 32–17  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.20 IRQ Pending 2 Register (IRQP2)  
Base + $13  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [48:33]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-22 IRQ Pending 2 Register (IRQP2)  
5.6.20.1 IRQ Pending (PENDING)—Bits 48–33  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.21 IRQ Pending 3 Register (IRQP3)  
Base + $14  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [64:49]  
Write  
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-23 IRQ Pending 3 Register (IRQP3)  
5.6.21.1 IRQ Pending (PENDING)—Bits 64–49  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
105  
5.6.22 IRQ Pending 4 Register (IRQP4)  
Base + $15  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
PENDING [80:65]  
Write  
RESET  
1
1
1
1
1
1
1
1
1
Figure 5-24 IRQ Pending 4 Register (IRQP4)  
5.6.22.1 IRQ Pending (PENDING)—Bits 80–65  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 81.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.23 IRQ Pending 5 Register (IRQP5)  
Base + $16  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
0
1
PENDING[85:81]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 5-25 IRQ Pending Register 5 (IRQP5)  
5.6.23.1 Reserved—Bits 96–86  
This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by writing.  
5.6.23.2 IRQ Pending (PENDING)—Bits 81–85  
This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2  
through 85.  
0 = IRQ pending for this vector number  
1 = No IRQ pending for this vector number  
5.6.24 Reserved—Base + 17  
5.6.25 Reserved—Base + 18  
5.6.26 Reserved—Base + 19  
5.6.27 Reserved—Base + 1A  
5.6.28 Reserved—Base + 1B  
56F8365 Technical Data, Rev. 9  
106  
Freescale Semiconductor  
Register Descriptions  
5.6.29 Reserved—Base + 1C  
5.6.30 ITCN Control Register (ICTL)  
Base + $1D  
Read  
15  
14  
13  
12 11 10  
9
8
7
6
0
5
INT_DIS  
0
4
1
3
2
1
0
INT  
IPIC  
VAB  
IRQB STATE IRQA STATE  
IRQB IRQA  
EDG  
EDG  
Write  
RESET  
0
0
0
1
0
0
0
0
0
1
1
1
0
0
Figure 5-26 ITCN Control Register (ICTL)  
5.6.30.1 Interrupt (INT)—Bit 15  
This read-only bit reflects the state of the interrupt to the 56800E core.  
0 = No interrupt is being sent to the 56800E core  
1 = An interrupt is being sent to the 56800E core  
5.6.30.2 Interrupt Priority Level (IPIC)—Bits 14–13  
These read-only bits reflect the state of the new interrupt priority level bits being presented to the 56800E  
core at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new  
interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
00 = Required nested exception priority levels are 0, 1, 2, or 3  
01 = Required nested exception priority levels are 1, 2, or 3  
10 = Required nested exception priority levels are 2 or 3  
11 = Required nested exception priority level is 3  
5.6.30.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6  
This read-only field shows the vector number (VAB[7:1]) used at the time the last IRQ was taken. This  
field is only updated when the 56800E core jumps to a new interrupt service routine.  
Note:  
Nested interrupts may cause this field to be updated before the original interrupt service routine can  
read it.  
5.6.30.4 Interrupt Disable (INT_DIS)—Bit 5  
This bit allows all interrupts to be disabled.  
0 = Normal operation (default)  
1 = All interrupts disabled  
5.6.30.5 Reserved—Bit 4  
This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
107  
5.6.30.6 IRQB State Pin (IRQB STATE)—Bit 3  
This read-only bit reflects the state of the external IRQB pin.  
5.6.30.7 IRQA State Pin (IRQA STATE)—Bit 2  
This read-only bit reflects the state of the external IRQA pin.  
5.6.30.8 IRQB Edge Pin (IRQB Edg)—Bit 1  
This bit controls whether the external IRQB interrupt is edge or level sensitive. During Stop and Wait  
modes, it is automatically level-sensitive.  
0 = IRQB interrupt is a low-level sensitive (default)  
1 = IRQB interrupt is falling-edge sensitive.  
5.6.30.9 IRQA Edge Pin (IRQA Edg)—Bit 0  
This bit controls whether the external IRQA interrupt is edge or level sensitive. During Stop and Wait  
modes, it is automatically level-sensitive.  
0 = IRQA interrupt is a low-level sensitive (default)  
1 = IRQA interrupt is falling-edge sensitive.  
5.6.31 Reserved—Base + $1E  
5.6.32 Interrupt Priority Register 10 (IPR10)  
Base + $1F  
Read  
15  
0
14  
0
13  
0
12 11 10  
9
0
8
0
7
6
5
4
3
2
1
0
0
0
0
FLEXCAN2_  
MSGBUF IPL  
FLEXCAN2_  
WKUP IPL  
FLEXCAN2_  
BOFF IPL  
FLEXCAN2_  
ERR IPL  
Write  
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 5-27 Interrupt Priority Register 10 (IPR10)  
Note: This register is NOT available in the 56F8165 device.  
5.6.32.1 Reserved—Bits 15 - 8  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
5.6.32.2 FlexCAN2 Message Buffer Interrupt Priority Level  
(FlexCAN2_MSGBUF IPL)—Bits 7 - 6  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
56F8365 Technical Data, Rev. 9  
108  
Freescale Semiconductor  
Resets  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.32.3 FlexCAN2 Wake Up Interrupt Priority Level (FlexCAN2_WKUP IPL)—  
Bits 5 - 4  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.32.4 FlexCAN2 Error Interrupt Priority Level (FlexCAN2_ERR IPL)—Bits 3 - 2  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.6.32.5 FlexCAN2 Bus-Off Interrupt Priority Level (FlexCAN2_BOFF IPL)—  
Bits 1 - 0  
This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2.  
They are disabled by default.  
00 = IRQ disabled (default)  
01 = IRQ is priority level 0  
10 = IRQ is priority level 1  
11 = IRQ is priority level 2  
5.7 Resets  
5.7.1  
Reset Handshake Timing  
The ITCN provides the 56800E core with a reset vector address whenever RESET is asserted. The reset  
vector will be presented until the second rising clock edge after RESET is released.  
5.7.2  
ITCN After Reset  
After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled except  
the core IRQs with fixed priorities:  
Illegal Instruction  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
109  
SW Interrupt 3  
HW Stack Overflow  
Misaligned Long Word Access  
SW Interrupt 2  
SW Interrupt 1  
SW Interrupt 0  
SW Interrupt LP  
These interrupts are enabled at their fixed priority levels.  
Part 6 System Integration Module (SIM)  
6.1 Introduction  
The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls  
distribution of resets and clocks and provides a number of control features. The system integration module  
is responsible for the following functions:  
Reset sequencing  
Clock generation & distribution  
Stop/Wait control  
Pull-up enables for selected peripherals  
System status registers  
Registers for software access to the JTAG ID of the chip  
Enforcing Flash security  
These are discussed in more detail in the sections that follow.  
6.2 Features  
The SIM has the following features:  
Flash security feature prevents unauthorized access to code/data contained in on-chip Flash memory  
Power-saving clock gating for peripheral  
Three power modes (Run, Wait, Stop) to control power utilization  
— Stop mode shuts down the 56800E core, system clock, peripheral clock, and PLL operation  
— Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart); must be  
explicitly done  
— Wait mode shuts down the 56800E core and unnecessary system clock operation  
— Run mode supports full part operation  
Controls to enable/disable the 56800E core WAIT and STOP instructions  
Calculates base delay for reset extension based upon POR or RESET operations. Reset delay will be 3 x 32  
clocks (phased release of reset) for reset, except for POR, which is 2^21 clock cycles  
56F8365 Technical Data, Rev. 9  
110  
Freescale Semiconductor  
Operating Modes  
Controls reset sequencing after reset  
Software-initiated reset  
Four 16-bit registers reset only by a Power-On Reset usable for general-purpose software control  
System Control Register  
Registers for software access to the JTAG ID of the chip  
6.3 Operating Modes  
Since the SIM is responsible for distributing clocks and resets across the chip, it must understand the  
various chip operating modes and take appropriate action. These are:  
Reset Mode, which has two submodes:  
— POR and RESET operation  
The 56800E core and all peripherals are reset. This occurs when the internal POR is asserted or the  
RESET pin is asserted.  
— COP reset and software reset operation  
The 56800E core and all peripherals are reset. The MA bit within the OMR is not changed. This allows  
the software to determine the boot mode (internal or external boot) to be used on the next reset.  
Run Mode  
This is the primary mode of operation for this device. In this mode, the 56800E controls chip operation.  
Debug Mode  
The 56800E is controlled via JTAG/EOnCE when in debug mode. All peripherals, except the COP and  
PWMs, continue to run. COP is disabled and PWM outputs are optionally switched off to disable any motor  
from being driven; see the PWM chapter in the 56F8300 Peripheral User Manual for details.  
Wait Mode  
In Wait mode, the core clock and memory clocks are disabled. Optionally, the COP can be stopped.  
Similarly, it is an option to switch off PWM outputs to disable any motor from being driven. All other  
peripherals continue to run.  
Stop Mode  
When in Stop mode, the 56800E core, memory and most peripheral clocks are shut down. Optionally, the  
COP and CAN can be stopped. For lowest power consumption in Stop mode, the PLL can be shut down.  
This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. The  
CAN (along with any non-gated interrupt) is capable of waking the chip up from Stop mode, but is not fully  
functional in Stop mode.  
6.4 Operating Mode Register  
Bit  
15  
NL  
R/W  
0
14  
13  
12  
11  
10  
9
0
8
CM  
R/W  
0
7
XP  
R/W  
0
6
SD  
R/W  
0
5
R
4
SA  
R/W  
0
3
EX  
R/W  
0
2
0
1
MB  
R/W  
X
0
MA  
R/W  
X
Type  
R/W  
0
0
0
0
0
0
0
RESET  
Figure 6-1 OMR  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
111  
The reset state for MB and MA will depend on the Flash secured state. See Part 4.2 and Part 7 for detailed  
information on how the Operating Mode Register (OMR) MA and MB bits operate in this device. For  
additional information on the EX bit, see Part 4.4. For all other bits, see the DSP56F800E Reference  
Manual.  
Note:  
The OMR is not a Memory Map register; it is directly accessible in code through the acronym OMR.  
6.5 Register Descriptions  
Table 6-1 SIM Registers (SIM_BASE = $00 F350)  
Address Offset  
Base + $0  
Base + $1  
Base + $2  
Base + $3  
Base + $4  
Base + $5  
Base + $6  
Base + $7  
Base + $8  
Address Acronym  
SIM_CONTROL  
SIM_RSTSTS  
SIM_SCR0  
Register Name  
Control Register  
Section Location  
6.5.1  
Reset Status Register  
6.5.2  
Software Control Register 0  
Software Control Register 1  
Software Control Register 2  
Software Control Register 3  
Most Significant Half of JTAG ID  
Least Significant Half of JTAG ID  
Pull-up Disable Register  
6.5.3  
SIM_SCR1  
6.5.3  
SIM_SCR2  
6.5.3  
SIM_SCR3  
6.5.3  
SIM_MSH_ID  
SIM_LSH_ID  
SIM_PUDR  
6.5.4  
6.5.5  
6.5.6  
Reserved  
Base + $A  
Base + $B  
Base + $C  
Base + $D  
Base + $E  
Base + $F  
SIM_CLKOSR  
SIM_GPS  
CLKO Select Register  
6.5.7  
6.5.8  
GPIO Peripheral Select Register  
Peripheral Clock Enable Register  
I/O Short Address Location High Register  
I/O Short Address Location Low Register  
Peripheral Clock Enable Register 2  
SIM_PCE  
6.5.9  
SIM_ISALH  
SIM_ISALL  
SIM_PCE2  
6.5.10  
6.5.10  
6.5.11  
56F8365 Technical Data, Rev. 9  
112  
Freescale Semiconductor  
Register Descriptions  
Add.  
Offset  
Register  
Name  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
R
W
R
0
0
0
0
0
0
0
0
0
0
SIM_  
CONTROL  
ONCE  
EBL0  
SW  
RST  
STOP_  
DISABLE  
WAIT_  
DISABLE  
$0  
$1  
$2  
$3  
$4  
$5  
$6  
$7  
$8  
0
0
0
0
0
0
0
0
0
0
0
0
SIM_  
RSTSTS  
SWR  
COPR EXTR POR  
W
R
SIM_SCR0  
SIM_SCR1  
SIM_SCR2  
SIM_SCR3  
FIELD  
FIELD  
FIELD  
FIELD  
W
R
W
R
W
R
W
R
0
1
0
0
1
0
0
0
1
0
0
0
0
0
0
1
0
1
0
1
0
0
0
0
1
1
0
0
1
1
1
0
1
0
0
0
1
0
SIM_MSH_  
ID  
W
R
SIM_LSH_ID  
W
R
EMI_  
MODE  
SIM_PUDR  
Reserved  
PWMA1 CAN  
RESET IRQ XBOOT PWMB PWMA0  
CTRL  
JTAG  
W
R
W
R
0
0
0
0
0
0
0
0
0
0
0
0
SIM_  
CLKOSR  
$A  
$B  
$C  
$D  
$E  
$F  
A23  
0
A22  
0
A21  
0
A20 CLKDIS  
CLKOSEL  
C2  
0
SIM_GPS  
SIM_PCE  
D1  
D0  
C3  
C1  
C0  
W
R
EMI  
1
ADCB ADCA  
CAN  
1
DEC1 DEC 0 TMRD TMRC TMRB TMRA  
SCI1  
1
SCI0  
1
SPI1  
1
SPI0 PWMB PWMA  
W
R
1
1
0
1
0
1
0
1
0
1
1
1
0
1
SIM_ISALH  
SIM_ISALL  
SIM_PCE2  
ISAL[23:22]  
W
R
ISAL[21:6]  
W
R
0
0
0
0
0
0
0
0
0
0
CAN2  
W
= Reserved  
Figure 6-2 SIM Register Map Summary  
6.5.1  
SIM Control Register (SIM_CONTROL)  
Base + $0  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
Read  
Write  
ONCE SW  
EBL0 RST  
STOP_  
DISABLE  
WAIT_  
DISABLE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-3 SIM Control Register (SIM_CONTROL)  
6.5.1.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.1.2  
OnCE Enable (OnCE EBL)—Bit 5  
0 = OnCE clock to 56800E core enabled when core TAP is enabled  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
113  
1 = OnCE clock to 56800E core is always enabled  
6.5.1.3  
Software Reset (SW RST)—Bit 4  
This bit is always read as 0. Writing a 1 to this bit will cause the part to reset.  
6.5.1.4  
Stop Disable (STOP_DISABLE)—Bits 3–2  
00 = Stop mode will be entered when the 56800E core executes a STOP instruction  
01 = The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can be  
reprogrammed in the future  
10 = The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can then only be  
changed by resetting the device  
11 = Same operation as 10  
6.5.1.5  
Wait Disable (WAIT_DISABLE)—Bits 1–0  
00 = Wait mode will be entered when the 56800E core executes a WAIT instruction  
01 = The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can be  
reprogrammed in the future  
10 = The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can then only  
be changed by resetting the device  
11 = Same operation as 10  
6.5.2  
SIM Reset Status Register (SIM_RSTSTS)  
Bits in this register are set upon any system reset and are initialized only by a Power-On Reset (POR). A  
reset (other than POR) will only set bits in the register; bits are not cleared. Only software should clear this  
register.  
Base + $1  
Read  
15  
0
14  
0
13  
O
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
4
3
2
1
0
0
0
SWR COPR  
EXTR POR  
Write  
RESET  
0
0
0
0
0
0
0
0
0
0
0
0
Figure 6-4 SIM Reset Status Register (SIM_RSTSTS)  
6.5.2.1  
Reserved—Bits 15–6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.2.2  
Software Reset (SWR)—Bit 5  
When 1, this bit indicates that the previous reset occurred as a result of a software reset (write to SW RST  
bit in the SIM_CONTROL register). This bit will be cleared by any hardware reset or by software. Writing  
a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it.  
6.5.2.3  
COP Reset (COPR)—Bit 4  
When 1, the COPR bit indicates the Computer Operating Properly (COP) timer-generated reset has  
56F8365 Technical Data, Rev. 9  
114  
Freescale Semiconductor  
Register Descriptions  
occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will  
set the bit, while writing a 1 to the bit will clear it.  
6.5.2.4  
External Reset (EXTR)—Bit 3  
If 1, the EXTR bit indicates an external system reset has occurred. This bit will be cleared by a Power-On  
Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit position  
will clear it. Basically, when the EXTR bit is 1, the previous system reset was caused by the external  
RESET pin being asserted low.  
6.5.2.5  
Power-On Reset (POR)—Bit 2  
When 1, the POR bit indicates a Power-On Reset occurred some time in the past. This bit can only be  
cleared by software or by another type of reset. Writing a 0 to this bit will set the bit, while writing a 1 to  
the bit position will clear the bit. In summary, if the bit is 1, the previous system reset was due to a  
Power-On Reset.  
6.5.2.6  
Reserved—Bits 1–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.3  
SIM Software Control Registers (SIM_SCR0, SIM_SCR1, SIM_SCR2,  
and SIM_SCR3)  
Only SIM_SCR0 is shown in this section. SIM_SCR1, SIM_SCR2, and SIM_SCR3 are identical in  
functionality.  
Base + $2  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
0
1
0
0
0
FIELD  
0
Write  
0
0
0
0
0
0
0
0
0
0
0
0
POR  
Figure 6-5 SIM Software Control Register 0 (SIM_SCR0)  
Software Control Data 1 (FIELD)—Bits 15–0  
6.5.3.1  
This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and is  
intended for use by a software developer to contain data that will be unaffected by the other reset sources  
(RESET pin, software reset, and COP reset).  
6.5.4  
Most Significant Half of JTAG ID (SIM_MSH_ID)  
This read-only register displays the most significant half of the JTAG ID for the chip. This register reads  
$01D6.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
115  
Base + $6  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
1
7
1
6
1
5
0
4
1
3
0
2
1
1
1
0
0
Write  
RESET  
0
0
0
0
0
0
0
1
1
1
0
1
0
1
1
0
Figure 6-6 Most Significant Half of JTAG ID (SIM_MSH_ID)  
6.5.5  
Least Significant Half of JTAG ID (SIM_LSH_ID)  
This read-only register displays the least significant half of the JTAG ID for the chip. This register reads  
$D01D.  
Base + $7  
Read  
15  
1
14  
1
13  
0
12  
1
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
1
3
1
2
1
1
0
0
1
Write  
RESET  
1
1
0
1
0
0
0
0
0
0
0
1
1
1
0
1
Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID)  
6.5.6  
SIM Pull-up Disable Register (SIM_PUDR)  
Most of the pins on the chip have on-chip pull-up resistors. Pins which can operate as GPIO can have these  
resistors disabled via the GPIO function. Non-GPIO pins can have their pull-ups disabled by setting the  
appropriate bit in this register. Disabling pull-ups is done on a peripheral-by-peripheral basis (for pins not  
muxed with GPIO). Each bit in the register (see Figure 6-8) corresponds to a functional group of pins. See  
Table 2-2 to identify which pins can deactivate the internal pull-up resistor.  
Base + $8  
Read  
15  
0
14  
13  
12  
11  
10  
9
8
7
6
0
5
CTRL  
0
4
0
3
JTAG  
0
2
0
1
0
0
0
EMI_  
MODE  
PWMA1 CAN  
RESET IRQ XBOOT PWMB PWMA0  
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-8 SIM Pull-up Disable Register (SIM_PUDR)  
6.5.6.1  
Reserved—Bit 15  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.2  
PWMA1—Bit 14  
This bit controls the pull-up resistors on the FAULTA3 pin.  
56F8365 Technical Data, Rev. 9  
116  
Freescale Semiconductor  
Register Descriptions  
6.5.6.3  
CAN—Bit 13  
This bit controls the pull-up resistors on the CAN_RX pin.  
6.5.6.4  
EMI_MODE—Bit 12  
This bit controls the pull-up resistors on the EMI_MODE pin.  
Note:  
In this package, this input pin is double-bonded with the adjacent VSS pin and this bit should be  
changed to a 1 in order to reduce power consumption.  
6.5.6.5  
RESET—Bit 11  
This bit controls the pull-up resistors on the RESET pin.  
6.5.6.6  
IRQ—Bit 10  
This bit controls the pull-up resistors on the IRQA and IRQB pins.  
6.5.6.7  
XBOOT—Bit 9  
This bit controls the pull-up resistors on the EXTBOOT pin.  
Note:  
In this package, this input pin is double-bonded with the adjacent VSS pin and this bit should be  
changed to a 1 in order to reduce power consumption.  
6.5.6.8  
PWMB—Bit 8  
This bit controls the pull-up resistors on the FAULTB0, FAULTB1, FAULTB2, and FAULTB3 pins.  
6.5.6.9 PWMA0—Bit 7  
This bit controls the pull-up resistors on the FAULTA0, FAULTA1, and FAULTA2 pins.  
6.5.6.10 Reserved—Bit 6  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.11 CTRL—Bit 5  
This bit controls the pull-up resistors on the WR and RD pins.  
6.5.6.12 Reserved—Bit 4  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.6.13 JTAG—Bit 3  
This bit controls the pull-up resistors on the TRST, TMS and TDI pins.  
6.5.6.14 Reserved—Bit 2–0  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
117  
6.5.7  
CLKO Select Register (SIM_CLKOSR)  
The CLKO select register can be used to multiplex out any one of the clocks generated inside the clock  
generation and SIM modules. The default value is SYS_CLK. This path has been optimized in order to  
minimize any delay and clock duty cycle distortion. All other clocks primarily muxed out are for test  
purposes only, and are subject to significant phase shift at high frequencies.  
The upper four bits of the GPIOB register can function as GPIO, [A23:A20], or as additional clock output  
signals. GPIO has priority and is enabled/disabled via the GPIOB_PER. If GPIOB[7:4] are programmed  
to operate as peripheral outputs, then the choice between [A23:A20] and additional clock outputs is done  
here in the CLKOSR. The default state is for the peripheral function of GPIOB[7:4] to be programmed as  
[A23:A20]. This can be changed by altering [A23:A20], as shown in Figure 6-9.  
Base + $A  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
A23  
0
8
A22  
0
7
A21  
0
6
A20  
0
5
4
0
3
0
2
CLKOSEL  
0
1
0
0
0
CLK  
DIS  
Write  
RESET  
0
0
0
0
0
0
1
Figure 6-9 CLKO Select Register (SIM_CLKOSR)  
6.5.7.1  
Reserved—Bits 15–10  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.7.2  
Alternate GPIO_B Peripheral Function for A23 (A23)—Bit 9  
0 = Peripheral output function of GPIOB[7] is defined to be A[23]  
1 = Peripheral output function of GPIOB[7] is defined to be the oscillator_clock (MSTR_OSC, see  
Figure 3-4)  
6.5.7.3  
Alternate GPIO_B Peripheral Function for A22 (A22)—Bit 8  
0 = Peripheral output function of GPIOB[6] is defined to be A[22]  
1 = Peripheral output function of GPIOB[6] is defined to be SYS_CLK2  
6.5.7.4  
Alternate GPIO_B Peripheral Function for A21 (A21)—Bit 7  
0 = Peripheral output function of GPIOB[5] is defined to be A[21]  
1 = Peripheral output function of GPIOB[5] is defined to be SYS_CLK  
6.5.7.5  
Alternate GPIO_B Peripheral Function for A20 (A20)—Bit 6  
0 = Peripheral output function of GPIOB[4] is defined to be A[20]  
1 = Peripheral output function of GPIOB[4] is defined to be the prescaler_clock (FREF, see Figure 3-4)  
6.5.7.6  
Clockout Disable (CLKDIS)—Bit 5  
0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL  
1 = CLKOUT is tri-stated  
56F8365 Technical Data, Rev. 9  
118  
Freescale Semiconductor  
Register Descriptions  
6.5.7.7  
CLockout Select (CLKOSEL)—Bits 4–0  
Selects clock to be muxed out on the CLKO pin.  
00000 = SYS_CLK (from OCCS - DEFAULT)  
00001 = Reserved for factory test—56800E clock  
00010 = Reserved for factory test—XRAM clock  
00011 = Reserved for factory test—PFLASH odd clock  
00100 = Reserved for factory test—PFLASH even clock  
00101 = Reserved for factory test—BFLASH clock  
00110 = Reserved for factory test—DFLASH clock  
00111 = Oscillator output  
01000 = Fout (from OCCS)  
01001 = Reserved for factory test—IPB clock  
01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL)  
01011 = Reserved for factory test—Prescaler clock (from OCCS)  
01100 = Reserved for factory test—Postscaler clock (from OCCS)  
01101 = Reserved for factory test—SYS_CLK2 (from OCCS)  
01110 = Reserved for factory test—SYS_CLK_DIV2  
01111 = Reserved for factory test—SYS_CLK_D  
10000 = ADCA clock  
10001 = ADCB clock  
6.5.8  
GPIO Peripheral Select Register (SIM_GPS)  
Some GPIO pads can have more than one peripheral selected as the alternate function instead of GPIO.  
For these pads, this register selects which of the alternate peripherals are actually selected for the GPIO  
peripheral function. This applies to GPIOC, pins 0-3, and to GPIOD, pins 0 and 1.  
The GPIOC Peripheral Select Register can be used to multiplex out any one of the three alternate  
peripherals for GPIOC. The default peripheral is Quad Decoder 1 and Quad Timer B (NOT available in  
the 56F8165 device); these peripherals work together.  
The four I/O pins associated with GPIOC can function as GPIO, Quad Decoder 1/Quad Timer B, or as  
SPI 1 signals. GPIO is not the default and is enabled/disabled via the GPIOC_PER, as shown in  
Figure 6-10 and Table 6-2. When GPIOC[3:0] are programmed to operate as peripheral I/O, then the  
choice between decoder/timer and SPI inputs/outputs is made in the SIM_GPS and in conjunction with the  
Quad Timer Status and Control Registers (SCR). The default state is for the peripheral function of  
GPIOC[3:0] to be programmed as decoder functions. This can be changed by altering the appropriate  
controls in the indicated registers.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
119  
GPIOC_PER Register  
GPIO Controlled  
0
1
I/O Pad Control  
SIM_ GPS Register  
0
1
Quad Timer Controlled  
SPI Controlled  
Figure 6-10 Overall Control of GPIOC Pads Using SIM_GPS Control  
1
Table 6-2 Control of GPIOC Pads Using SIM_GPS Control  
Control Registers  
Pin Function  
Comments  
GPIO Input  
0
0
1
0
1
0
0
GPIO Output  
Quad Timer Input / Quad  
Decoder Input 2  
See the “Switch Matrix for Inputs to the Timer”  
table in the 56F8300 Peripheral User Manual  
for the definition of timer inputs based on the  
Quad Decoder mode configuration.  
Quad Timer Output / Quad  
Decoder Input 3  
1
0
1
SPI input  
1
1
1
1
See SPI controls for determining the direction  
of each of the SPI pins.  
SPI output  
1. This applies to the four pins that serve as Quad Decoder / Quad Timer / SPI / GPIOC functions. A separate set of control bits  
is used for each pin.  
2. Reset configuration  
3. Quad Decoder pins are always inputs and function in conjunction with the Quad Timer pins.  
Two Input/Output pins associated with GPIOD can function as GPIO, EMI (default peripheral) or CAN2  
signals. GPIO is the default and is enabled/disabled via the GPIOD_PER, as shown in Figure 6-11 and  
Table 6-3. When GPIOD[1:0] are programmed to operate as peripheral input/output, then the choice  
between EMI and CAN2 inputs/outputs is made here in the GPS.  
56F8365 Technical Data, Rev. 9  
120  
Freescale Semiconductor  
Register Descriptions  
GPIOD_PER Register  
GPIO Controlled  
0
1
I/O Pad Control  
SIM_ GPS Register  
0
1
EMI Controlled  
CAN2 Controlled  
Figure 6-11 Overall Control of GPIOD Pads Using SIM_GPS Control  
1
Table 6-3 Control of GPIOD Pads Using SIM_GPS Control  
Control Registers  
Pin Function  
Comments  
GPIO Input  
GPIO Output  
EMI I/O  
0
0
1
1
0
1
0
EMI CSn pins are always outputs  
CAN2  
1
CAN2_TX is always an output  
CAN2_RX is always an input  
1. This applies to the two pins that serve as EMI CSn / CAN2 / GPIOD functions. A separate set of control  
bits is used for each pin.  
Base + $B  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
D1  
0
4
D0  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Write  
0
0
0
0
0
0
0
0
0
0
RESET  
Figure 6-12 GPIO Peripheral Select Register (SIM_GPS)  
Reserved—Bits 15–6  
6.5.8.1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
121  
6.5.8.2  
GPIOD1 (D1)—Bit 5  
This bit selects the alternate function for GPIOD1.  
0 = CS3  
1 = CAN2_RX  
6.5.8.3  
GPIOD0 (D0)—Bit 4  
0 = CS2  
1 = CAN2_TX  
6.5.8.4  
GPIOC3 (C3)—Bit 3  
This bit selects the alternate function for GPIOC3.  
0 = HOME1/TB3 (default - see “Switch Matrix Mode” bits of the Quad Decoder DECCR register in the  
56F8300 Peripheral User Manual)  
1 = SS1  
6.5.8.5  
GPIOC2 (C2)—Bit 2  
This bit selects the alternate function for GPIOC2.  
0 = INDEX1/TB2 (default)  
1 = MISO1  
6.5.8.6  
GPIOC1 (C1)—Bit 1  
This bit selects the alternate function for GPIOC1.  
0 = PHASEB1/TB1 (default)  
1 = MOSI1  
6.5.8.7  
GPIOC0 (C0)—Bit 0  
This bit selects the alternate function for GPIOC0.  
0 = PHASEA1/TB0 (default)  
1 = SCLK1  
6.5.9  
Peripheral Clock Enable Register (SIM_PCE)  
The Peripheral Clock Enable register is used to enable or disable clocks to the peripherals as a power  
savings feature. The clocks can be individually controlled for each peripheral on the chip.  
56F8365 Technical Data, Rev. 9  
122  
Freescale Semiconductor  
Register Descriptions  
Base + $C  
Read  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
EMI ADCB ADCA CAN DEC1 DEC0 TMRD TMRC TMRB TMRA SCI1 SCI0 SPI1  
SPI0 PWMB PWMA  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-13 Peripheral Clock Enable Register (SIM_PCE)  
6.5.9.1  
External Memory Interface Enable (EMI)—Bit 15  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.2  
Analog-to-Digital Converter B Enable (ADCB)—Bit 14  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.3  
Analog-to-Digital Converter A Enable (ADCA)—Bit 13  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.4  
FlexCAN Enable (CAN)—Bit 12  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.5  
Decoder 1 Enable (DEC1)—Bit 11  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.6  
Decoder 0 Enable (DEC0)—Bit 10  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
123  
6.5.9.7  
Quad Timer D Enable (TMRD)—Bit 9  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.8  
Quad Timer C Enable (TMRC)—Bit 8  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.9  
Quad Timer B Enable (TMRB)—Bit 7  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.10 Quad Timer A Enable (TMRA)—Bit 6  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.11 Serial Communications Interface 1 Enable (SCI1)—Bit 5  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.12 Serial Communications Interface 0 Enable (SCI0)—Bit 4  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.13 Serial Peripheral Interface 1 Enable (SPI1)—Bit 3  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.14 Serial Peripheral Interface 0 Enable (SPI0)—Bit 2  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
56F8365 Technical Data, Rev. 9  
124  
Freescale Semiconductor  
Register Descriptions  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.15 Pulse Width Modulator B Enable (PWMB)—Bit 1  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.9.16 Pulse Width Modulator A Enable (PWMA)—Bit 0  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.5.10 I/O Short Address Location Register (SIM_ISALH and SIM_ISALL)  
The I/O Short Address Location registers are used to specify the memory referenced via the I/O short  
address mode. The I/O short address mode allows the instruction to specify the lower six bits of address;  
the upper address bits are not directly controllable. This register set allows limited control of the full  
address, as shown in Figure 6-14.  
Note:  
If this register is set to something other than the top of memory (EOnCE register space) and the EX bit  
in the OMR is set to 1, the JTAG port cannot access the on-chip EOnCE registers, and debug functions  
will be affected.  
Instruction Portion  
Hard Coded” Address Portion  
6 Bits from I/O Short Address Mode Instruction  
16 Bits from SIM_ISALL Register  
2 Bits from SIM_ISALH Register  
Full 24-Bit for Short I/O Address  
Figure 6-14 I/O Short Address Determination  
With this register set, an interrupt driver can set the SIM_ISALL register pair to point to its peripheral  
registers and then use the I/O Short addressing mode to reference them. The ISR should restore this register  
to its previous contents prior to returning from interrupt.  
Note:  
The default value of this register set points to the EOnCE registers.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
125  
Note:  
The pipeline delay between setting this register set and using short I/O addressing with the new value  
is three cycles.  
Base + $D  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
1
7
1
6
1
5
1
4
1
3
1
2
1
1
0
ISAL[23:22]  
Write  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
RESET  
Figure 6-15 I/O Short Address Location High Register (SIM_ISALH)  
6.5.10.1 Input/Output Short Address Low (ISAL[23:22])—Bit 1–0  
This field represents the upper two address bits of the “hard coded” I/O short address.  
Base + $E  
Read  
15  
1
14  
1
13  
1
12  
1
11  
1
10  
1
9
1
8
7
6
1
5
1
4
1
3
1
2
1
1
1
0
1
ISAL[21:6]  
Write  
1
1
RESET  
Figure 6-16 I/O Short Address Location Low Register (SIM_ISAL)  
6.5.10.2 Input/Output Short Address Low (ISAL[21:6])—Bit 15–0  
This field represents the lower 16 address bits of the “hard coded” I/O short address.  
6.5.11 Peripheral Clock Enable Register 2 (SIM_PCE2)  
The Peripheral Clock Enable Register 2 is used to enable or disable clocks to the peripherals as a  
power-saving feaure. The clocks can be individually controller for each peripheral on the chip.  
Base + $D  
Read  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
CAN  
2
Write  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
RESET  
6.5.11.1 Reserved—Bits 15–1  
This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.  
6.5.11.2 CAN2 Enable—Bit 0  
Each bit controls clocks to the indicated peripheral.  
1 = Clocks are enabled  
56F8365 Technical Data, Rev. 9  
126  
Freescale Semiconductor  
Clock Generation Overview  
0 = The clock is not provided to the peripheral (the peripheral is disabled)  
6.6 Clock Generation Overview  
The SIM uses an internal master clock from the OCCS (CLKGEN) module to produce the peripheral and  
system (core and memory) clocks. The maximum master clock frequency is 120MHz. Peripheral and  
system clocks are generated at half the master clock frequency and therefore at a maximum 60MHz. The  
SIM provides power modes (Stop, Wait) and clock enables (SIM_PCE register, CLK_DIS, ONCE_EBL)  
to control which clocks are in operation. The OCCS, power modes, and clock enables provide a flexible  
means to manage power consumption.  
Power utilization can be minimized in several ways. In the OCCS, crystal oscillator, and PLL may be shut  
down when not in use. When the PLL is in use, its prescaler and postscaler can be used to limit PLL and  
master clock frequency. Power modes permit system and/or peripheral clocks to be disabled when unused.  
Clock enables provide the means to disable individual clocks. Some peripherals provide further controls  
to disable unused subfunctions. Refer to Part 3 On-Chip Clock Synthesis (OCCS), and the 56F8300  
Peripheral User Manual for further details.  
6.7 Power-Down Modes Overview  
The 56F8365/56F8165 operates in one of three power-down modes, as shown in Table 6-4.  
Table 6-4 Clock Operation in Power-Down Modes  
Mode  
Core Clocks  
Active  
Peripheral Clocks  
Description  
Device is fully functional  
Run  
Wait  
Active  
Active  
Core and memory  
clocks disabled  
Peripherals are active and can produce interrupts if  
they have not been masked off.  
Interrupts will cause the core to come out of its  
suspended state and resume normal operation.  
Typically used for power-conscious applications.  
Stop  
System clocks continue to be generated in The only possible recoveries from Stop mode are:  
the SIM, but most are gated prior to  
reaching memory, core and peripherals.  
1. CAN traffic (1st message will be lost)  
2. Non-clocked interrupts  
3. COP reset  
4. External reset  
5. Power-on reset  
All peripherals, except the COP/watchdog timer, run off the IPbus clock frequency, which is the same as  
the main processor frequency in this architecture. The maximum frequency of operation is  
SYS_CLK = 60MHz.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
127  
6.8 Stop and Wait Mode Disable Function  
Permanent  
D
Q
Disable  
D-FLOP  
C
56800E  
Reprogrammable  
Disable  
STOP_DIS  
D
Q
D-FLOP  
Clock  
Select  
C
R
Note: Wait disable circuit is similar  
Reset  
Figure 6-17 Internal Stop Disable Circuit  
The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For lowest  
power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering  
Stop mode, since there is no automatic mechanism for this. When the PLL is shut down, the 56800E  
system clock must be set equal to the oscillator output.  
Some applications require the 56800E STOP and WAIT instructions be disabled. To disable those  
instructions, write to the SIM control register (SIM_CONTROL), described in Part 6.5.1. This procedure  
can be on either a permanent or temporary basis. Permanently assigned applications last only until their  
next reset.  
6.9 Resets  
The SIM supports four sources of reset. The two asynchronous sources are the external RESET pin and  
the Power-On Reset (POR). The two synchronous sources are the software reset, which is generated within  
the SIM itself by writing to the SIM_CONTROL register, and the COP reset.  
Reset begins with the assertion of any of the reset sources. Release of reset to various blocks is sequenced  
21  
to permit proper operation of the device. A POR reset is first extended for 2 clock cycles to permit  
stabilization of the clock source, followed by a 32 clock window in which SIM clocking is initiated. It is  
then followed by a 32 clock window in which peripherals are released to implement Flash security, and,  
finally, followed by a 32 clock window in which the core is initialized. After completion of the described  
reset sequence, application code will begin execution.  
56F8365 Technical Data, Rev. 9  
128  
Freescale Semiconductor  
Operation with Security Enabled  
Resets may be asserted asynchronously, but are always released internally on a rising edge of the system  
clock.  
Part 7 Security Features  
The 56F8365/56F8165 offers security features intended to prevent unauthorized users from reading the  
contents of the Flash Memory (FM) array. The Flash security consists of several hardware interlocks that  
block the means by which an unauthorized user could gain access to the Flash array.  
However, part of the security must lie with the user’s code. An extreme example would be user’s code that  
dumps the contents of the internal program, as this code would defeat the purpose of security. At the same  
time, the user may also wish to put a “backdoor” in his program. As an example, the user downloads a  
security key through the SCI, allowing access to a programming routine that updates parameters stored in  
another section of the Flash.  
7.1 Operation with Security Enabled  
Once the user has programmed the Flash with his application code, the device can be secured by  
programming the security bytes located in the FM configuration field, which occupies a portion of the FM  
array. These non-volatile bytes will keep the part secured through reset and through power-down of the  
device. Only two bytes within this field are used to enable or disable security. Refer to the Flash Memory  
section in the 56F8300 Peripheral User Manual for the state of the security bytes and the resulting state  
of security. When Flash security mode is enabled in accordance with the method described in the Flash  
Memory module specification, the device will disable the core EOnCE debug capabilities. Normal  
program execution is otherwise unaffected.  
7.2 Flash Access Blocking Mechanisms  
The 56F8365/56F8165 have several operating functional and test modes. Effective Flash security must  
address operating mode selection and anticipate modes in which the on-chip Flash can be compromised  
and read without explicit user permission. Methods to block these are outlined in the next subsections.  
7.2.1  
Forced Operating Mode Selection  
At boot time, the SIM determines in which functional modes the device will operate. These are:  
Unsecured Mode  
Secure Mode (EOnCE disabled)  
When Flash security is enabled as described in the Flash Memory module specification, the device will  
disable the EOnCE debug interface.  
7.2.2  
Disabling EOnCE Access  
On-chip Flash can be read by issuing commands across the EOnCE port, which is the debug interface for  
the 56800E core. The TRST, TCLK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the  
EOnCE port functionality is mapped. When the device boots, the chip-level JTAG TAP (Test Access Port)  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
129  
is active and provides the chip’s boundary scan capability and access to the ID register.  
Proper implementation of Flash security requires that no access to the EOnCE port is provided when  
security is enabled. The 56800E core has an input which disables reading of internal memory via the  
JTAG/EOnCE. The FM sets this input at reset to a value determined by the contents of the FM security  
bytes.  
7.2.3  
Flash Lockout Recovery  
If a user inadvertently enables Flash security on the device, a built-in lockout recovery mechanism can be  
used to reenable access to the device. This mechanism completely reases all on-chip Flash, thus disabling  
Flash security. Access to this recovery mechanism is built into CodeWarrior via an instruction in memory  
configuration (.cfg) files. Add, or uncomment the following configuration command:  
unlock_flash_on_connect 1  
For more information, please see CodeWarrior MC56F83xx/DSP5685x Family Targeting Manual.  
The LOCKOUT_RECOVERY instruction has an associated 7-bit Data Register (DR) that is used to  
control the clock divider circuit within the FM module. This divider, FM_CLKDIV[6:0], is used to control  
the period of the clock used for timed events in the FM erase algorithm. This register must be set with  
appropriate values before the lockout sequence can begin. Refer to the JTAG section of the 56F8300  
Peripheral User Manual for more details on setting this register value.  
The value of the JTAG FM_CLKDIV[6:0] will replace the value of the FM register FMCLKD that divides  
down the system clock for timed events, as illustrated in Figure 7-1. FM_CLKDIV[6] will map to the  
PRDIV8 bit, and FM_CLKDIV[5:0] will map to the DIV[5:0] bits. The combination of PRDIV8 and DIV  
must divide the FM input clock down to a frequency of 150kHz-200kHz. The “Writing the FMCLKD  
Register” section in the Flash Memory chapter of the 56F8300 Peripheral User Manual gives specific  
equations for calculating the correct values.  
56F8365 Technical Data, Rev. 9  
130  
Freescale Semiconductor  
Flash Access Blocking Mechanisms  
Flash Memory  
SYS_CLK  
2
input  
clock  
DIVIDER  
7
FMCLKD  
7
7
FM_CLKDIV  
FM_ERASE  
JTAG  
Figure 7-1 JTAG to FM Connection for Lockout Recovery  
Two examples of FM_CLKDIV calculations follow.  
EXAMPLE 1: If the system clock is the 8MHz crystal frequency because the PLL has not been set up,  
the input clock will be below 12.8MHz, so PRDIV8 = FM_CLKDIV[6] = 0. Using the following equation  
yields a DIV value of 19 for a clock of 200kHz, and a DIV value of 20 for a clock of 190kHz. This  
translates into an FM_CLKDIV[6:0] value of $13 or $14, respectively.  
SYS_CLK  
( )  
(2)  
150[kHz]  
200[kHz]  
<
<
(DIV + 1)  
EXAMPLE 2: In this example, the system clock has been set up with a value of 32MHz, making the FM  
input clock 16MHz. Because that is greater than 12.8MHz, PRDIV = FM_CLKDIV[6] = 1. Using the  
following equation yields a DIV value of 9 for a clock of 200kHz, and a DIV value of 10 for a clock of  
181kHz. This translates to an FM_CLKDIV[6:0] value of $49 or $4A, respectively.  
SYS_CLK  
( )  
(2)(8)  
150[kHz]  
200[kHz]  
<
<
(DIV + 1)  
Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock  
divider value must be shifted into the corresponding 7-bit data register. After the data register has been  
updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout  
sequence to commence. The controller must remain in this state until the erase sequence has completed.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
131  
For details, see the JTAG Section in the 56F8300 Peripheral User Manual.  
Note:  
Once the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller  
(by asserting TRST) and the device (by asserting external chip reset) to return to normal unsecured  
operation.  
7.2.4  
Product Analysis  
The recommended method of unsecuring a programmed device for product analysis of field failures is via  
the backdoor key access. The customer would need to supply Technical Support with the backdoor key  
and the protocol to access the backdoor routine in the Flash. Additionally, the KEYEN bit that allows  
backdoor key access must be set.  
An alternative method for performing analysis on a secured hybrid controller would be to mass-erase and  
reprogram the Flash with the original code, but to modify the security bytes.  
To insure that a customer does not inadvertently lock himself out of the device during programming, it is  
recommended that he program the backdoor access key first, his application code second, and the security  
bytes within the FM configuration field last.  
56F8365 Technical Data, Rev. 9  
132  
Freescale Semiconductor  
Introduction  
Part 8 General Purpose Input/Output (GPIO)  
8.1 Introduction  
This section is intended to supplement the GPIO information found in the 56F8300 Peripheral User  
Manual and contains only chip-specific information. This information supercedes the generic information  
in the 56F8300 Peripheral User Manual.  
8.2 Memory Maps  
The width of the GPIO port defines how many bits are implemented in each of the GPIO registers. Based  
on this and the default function of each of the GPIO pins, the reset values of the GPIOx_PUR and  
GPIOx_PER registers change from port to port. Tables 4-29 through 4-34 define the actual reset values of  
these registers.  
8.3 Configuration  
There are six GPIO ports defined on the 56F8365/56F8165. The width of each port and the associated  
peripheral function is shown in Table 8-1 and Table 8-2. The specific mapping of GPIO port pins is  
shown in Table 8-3.  
Table 8-1 56F8365 GPIO Ports Configuration  
Available  
Port  
GPIO Port  
Pins in  
Peripheral Function  
Reset Function  
Width  
56F8365  
EMI Address  
N/A  
A
B
C
14  
6
5
6 pins - EMI Address pins - Can only be used as GPIO  
8 pins - EMI Address pins - Not available in this package  
GPIO  
N/A  
8
5 pins - EMI Address pins - Can only be used as GPIO  
3 pins - EMI Address pins - Not available in this package  
DEC1 / TMRB  
DEC0 / TMRA  
PWMA current  
sense  
11  
11  
4 pins -DEC1 / TMRB / SPI1  
4 pins -DEC0 / TMRA  
3 pins -PWMA current sense  
EMI Chip Selects  
EMI Chip Selects  
SCI1  
N/A  
PWMB current  
sense  
D
E
13  
14  
11  
12  
2 pins - EMI CSn  
4 pins - EMI CSn - Can only be used as GPIO  
2 pins - SCI1  
2 pins - EMI CSn - Not available in this package  
3 pins -PWMB current sense  
2 pins - SCI0  
SCI0  
N/A  
2 pins - EMI Address pins - Not available in this package  
4 pins - SPI0  
2 pins - TMRC  
4 pins - TMRD  
SPI0  
TMRC  
TMRD  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
133  
Table 8-1 56F8365 GPIO Ports Configuration  
Available  
Pins in  
56F8365  
Port  
Width  
GPIO Port  
Peripheral Function  
Reset Function  
EMI Data  
N/A  
F
16  
4
4 pins - EMI Data - Can only be used as GPIO  
12 pins - EMI Data - Not available in this package  
Table 8-2 56F8165 GPIO Ports Configuration  
Available  
Pins in  
56F8165  
Port  
Width  
GPIO Port  
Peripheral Function  
Reset Function  
6 pins - EMI Address pins - Can only be used as GPIO  
8 pins - EMI Address pins - Not available in this package  
EMI Address  
N/A  
A
B
C
14  
8
6
5
5 pins - EMI Address pins - Can only be used as GPIO  
3 pins - EMI Address pins - Not available in this package  
GPIO  
N/A  
4 pins - SPI1  
4 pins - DEC0 / TMRA  
3 pins - Dedicated GPIO  
DEC1 / TMRB  
DEC0 / TMRA  
GPIO  
11  
11  
6 pins - EMI CSn - Can only be used as GPIO  
2 pins - SCI1  
2 pins - EMI CSn - Not available in this package  
3 pins - PWMB current sense  
EMI Chip Selects  
SCI1  
N/A  
PWMB current  
sense  
D
E
F
13  
14  
16  
11  
12  
4
2 pins - SCI0  
SCI0  
N/A  
SPI0  
TMRC  
GPIO  
2 pins - EMI Address pins - Not available in this package  
4 pins - SPI0  
2 pins - TMRC  
4 pins - Dedicated GPIO  
4 pins - EMI Data - Can only be used as GPIO  
12 pins - EMI Data - Not available in this package  
EMI Data  
N/A  
56F8365 Technical Data, Rev. 9  
134  
Freescale Semiconductor  
Configuration  
Table 8-3 GPIO External Signals Map  
Pins in shaded rows are not available in 56F8365 / 56F8165  
Pins in italics are NOT available in the 56F8165 device  
Reset Function  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Functional Signal  
Package Pin #  
GPIO Port  
GPIO Bit  
A81  
A91  
0
1
2
3
4
5
15  
16  
17  
18  
19  
20  
A101  
A111  
A121  
A131  
6
7
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
GPIO  
GPIOA  
8
9
10  
11  
12  
13  
0
A161  
A171  
A181  
27  
28  
29  
30  
31  
1
2
3
GPIO  
GPIO  
GPIO  
A191  
GPIOB  
4
5
6
7
GPIO  
N/A  
A20 / Prescaler_clock  
N/A  
N/A  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
135  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in shaded rows are not available in 56F8365 / 56F8165  
Pins in italics are NOT available in the 56F8165 device  
Reset Function  
Peripheral  
Functional Signal  
Package Pin #  
GPIO Port  
GPIO Bit  
PhaseA1 / TB0 / SCLK12  
PhaseB1 / TB1 / MOSI12  
Index1 / TB2 / MISO12  
0
1
2
3
9
Peripheral  
10  
11  
12  
Peripheral  
Home1 / TB3 / SS12  
PhaseA0 / TA0  
PhaseB0 / TA1  
Index0 / TA2  
Home0 / TA3  
ISA0  
Peripheral  
4
5
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
GPIO  
127  
128  
1
GPIOC  
6
7
2
8
104  
105  
106  
42  
9
ISA1  
10  
0
ISA2  
CS2 / CAN2_TX  
CS3 / CAN2_RX  
1
GPIO  
43  
CS41  
CS51  
CS61  
2
GPIO  
44  
3
4
5
GPIO  
GPIO  
GPIO  
45  
46  
47  
CS71  
TXD1  
RXD1  
GPIO D  
6
7
Peripheral  
Peripheral  
N/A  
40  
41  
8
9
N/A  
10  
11  
12  
Peripheral  
Peripheral  
Peripheral  
ISB0  
ISB1  
ISB2  
48  
50  
51  
56F8365 Technical Data, Rev. 9  
136  
Freescale Semiconductor  
Configuration  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in shaded rows are not available in 56F8365 / 56F8165  
Pins in italics are NOT available in the 56F8165 device  
Reset Function  
Functional Signal  
Package Pin #  
GPIO Port  
GPIO Bit  
0
1
Peripheral  
Peripheral  
N/A  
TXD0  
RXD0  
7
8
2
3
N/A  
4
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
Peripheral  
SCLK0  
MOSI0  
MISO0  
SS0  
124  
126  
125  
123  
111  
113  
107  
108  
109  
110  
5
6
GPIOE  
7
8
TC0  
9
TC1  
10  
11  
12  
13  
TD0  
TD1  
TD2  
TD3  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
137  
Table 8-3 GPIO External Signals Map (Continued)  
Pins in shaded rows are not available in 56F8365 / 56F8165  
Pins in italics are NOT available in the 56F8165 device  
Reset Function  
Peripheral  
Functional Signal  
Package Pin #  
GPIO Port  
GPIO Bit  
D71  
D81  
0
1
2
3
22  
23  
24  
26  
Peripheral  
D91  
Peripheral  
D101  
Peripheral  
4
5
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
6
7
GPIOF  
8
9
10  
11  
12  
13  
14  
15  
1. Not useful in reset configuration in this package - reconfigure as GPIO  
2. See Part 6.5.8 to determine how to select peripherals from this set; DEC1 is the selected peripheral at reset  
Part 9 Joint Test Action Group (JTAG)  
9.1 JTAG Information  
Please contact your Freescale marketing representative or authorized distributor for  
device/package-specific BSDL information.  
Part 10 Specifications  
10.1 General Characteristics  
The 56F8365/56F8165 are fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital  
56F8365 Technical Data, Rev. 9  
138  
Freescale Semiconductor  
General Characteristics  
inputs. The term “5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process  
technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture  
of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V- and  
5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V  
10% during normal operation without causing damage). This 5V-tolerant capability therefore offers the  
power savings of 3.3V I/O levels combined with the ability to receive 5V levels without damage.  
Absolute maximum ratings in Table 10-1 are stress ratings only, and functional operation at the maximum  
is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to  
the device.  
Note: All specifications meet both Automotive and Industrial requirements unless individual  
specifications are listed.  
Note: The 56F8165 device is guaranteed to 40MHz and specified to meet Industrial requirements only.  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields.  
However, normal precautions are advised to avoid application  
of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if  
unused inputs are tied to an appropriate voltage level.  
Note: The 56F8165 device is specified to meet Industrial requirements only; CAN is NOT available on the  
56F8165 device.  
Table 10-1 Absolute Maximum Ratings  
(VSS = VSSA_ADC = 0)  
Characteristic  
Supply voltage  
Symbol  
VDD_IO  
Notes  
Min  
- 0.3  
- 0.3  
Max  
4.0  
Unit  
V
ADC Supply Voltage  
VDDA_ADC, VREFH  
VREFH must be less than or  
equal to VDDA_ADC  
4.0  
V
Oscillator / PLL Supply Voltage  
Internal Logic Core Supply Voltage  
Input Voltage (digital)  
VDDA_OSC_PLL  
VDD_CORE  
VIN  
- 0.3  
- 0.3  
-0.3  
-0.3  
4.0  
3.0  
6.0  
4.0  
V
V
V
V
OCR_DIS is High  
Pin Groups 1, 2, 5, 6, 9, 10  
Pin Groups 11, 12, 13  
Input Voltage (analog)  
VINA  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
139  
Table 10-1 Absolute Maximum Ratings (Continued)  
(VSS = VSSA_ADC = 0)  
Characteristic  
Output Voltage  
Symbol  
Notes  
Min  
Max  
Unit  
Pin Groups 1, 2, 3, 4, 5, 6, 7, 8  
VOUT  
-0.3  
4.0  
6.01  
V
Pin Group 4  
Output Voltage (open drain)  
VOD  
TA  
-0.3  
-40  
-40  
-40  
-40  
-55  
-55  
6.0  
125  
105  
150  
125  
150  
150  
V
Ambient Temperature (Automotive)  
Ambient Temperature (Industrial)  
Junction Temperature (Automotive)  
Junction Temperature (Industrial)  
Storage Temperature (Automotive)  
Storage Temperature (Industrial)  
°C  
°C  
°C  
°C  
°C  
°C  
TA  
TJ  
TJ  
TSTG  
TSTG  
1. If corresponding GPIO pin is configured as open drain.  
Note: Pins in italics are NOT available in the 56F8165 device.  
Pin Group 1: TXD0-1, RXD0-1, SS0, MISO0, MOSI0  
Pin Group 2: PHASEA0, PHASEA1, PHASEB0, PHASEB1, INDEX0, INDEX1, HOME0, HOME1, ISB0-2, ISA0-2, TD2-3, TC0-1,  
TDO, SCLK0  
Pin Group 3: RSTO, TDO  
Pin Group 4: CAN_TX  
Pin Group 5: D0-15, GPIOD0-5  
Pin Group 6: A8-15, GPIOB0-4, TD0-1  
Pin Group 7: CLKO  
Pin Group 8: PWMA0-5, PWMB0-5  
Pin Group 9: IRQA, IRQB, RESET, EXTBOOT, TRST, TMS, TDI, CAN_RX, EMI_MODE, FAULTA0-3, FAULTB0-3  
Pin Group 10: TCK  
Pin Group 11: XTAL, EXTAL  
Pin Group 12: ANA0-7, ANB0-7  
Pin Group 13: OCR_DIS, CLKMODE  
56F8365 Technical Data, Rev. 9  
140  
Freescale Semiconductor  
General Characteristics  
Table 10-2 56F8365/56F8165 ElectroStatic Discharge (ESD) Protection  
Characteristic  
Min  
Typ  
Max  
Unit  
ESD for Human Body Model (HBM)  
ESD for Machine Model (MM)  
2000  
200  
V
V
V
ESD for Charge Device Model (CDM)  
500  
6
Table 10-3 Thermal Characteristics  
Value  
Characteristic  
Symbol  
Unit  
Notes  
Comments  
128-pin LQFP  
R
Junction to ambient  
50.8  
°C/W  
2
JA  
Natural convection  
R
Junction to ambient (@1m/sec)  
46.5  
43.9  
°C/W  
°C/W  
2
JMA  
R
Junction to ambient  
Natural convection  
Four layer board (2s2p)  
Four layer board (2s2p)  
1,2  
JMA  
(2s2p)  
R
Junction to ambient (@1m/sec)  
Junction to case  
41.7  
13.9  
°C/W  
°C/W  
°C/W  
W
1,2  
3
JMA  
R
JC  
Junction to center of case  
I/O pin power dissipation  
Power dissipation  
1.2  
4, 5  
JT  
P
User-determined  
P D = (IDD x VDD + P I/O  
I/O  
P
)
W
D
(TJ - TA) / RJA7  
P
Maximum allowed PD  
W
DMAX  
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p ther-  
mal test board.  
2. Junction to ambient thermal resistance, Theta-JA (R ) was simulated to be equivalent to the JEDEC specification JESD51-2  
JA  
in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes  
(2s2p, where “s” is the number of signal layers and “p” is the number of planes) per JESD51-6 and JESD51-7. The correct name  
for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA.  
3. Junction to case thermal resistance, Theta-JC (R  
), was simulated to be equivalent to the measured values using the cold  
JC  
plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is  
described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when  
the package is being used with a heat sink.  
4. Thermal Characterization Parameter, Psi-JT (), is the "resistance" from junction to reference point thermocouple on top cen-  
JT  
ter of case as defined in JESD51-2. is a useful value to use to estimate junction temperature in steady-state customer en-  
JT  
vironments.  
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature,  
ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
6. See Part 12.1 for more details on thermal design considerations.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
141  
7. TJ = Junction temperature  
TA = Ambient temperature  
Note: The 56F8165 device is guaranteed to 40MHz and specified to meet Industrial requirements only;  
CAN is NOT available on the 56F8165 device.  
Table 10-4 Recommended Operating Conditions  
(VREFLO = 0V, VSS = VSSA_ADC = 0V, VDDA = VDDA_ADC = VDDA_OSC_PLL  
)
Characteristic  
Supply voltage  
Symbol  
Notes  
Min  
3
Typ  
3.3  
3.3  
Max  
3.6  
Unit  
V
V
DD_IO  
V
V
V
must be less than  
REFH  
ADC Supply Voltage  
3
3.6  
DDA_ADC,  
or equal to VDDA_ADC  
V
REFH  
V
V
V
Oscillator / PLL Supply Voltage  
3
3.3  
2.5  
3.6  
DDA_OSC_PLL  
OCR_DIS is High  
V
Internal Logic Core Supply  
Voltage  
2.25  
2.75  
DD_CORE  
MHz  
V
FSYSCLK  
Device Clock Frequency  
Input High Voltage (digital)  
Input High Voltage (analog)  
0
2
2
60  
5.5  
Pin Groups 1, 2, 5, 6, 9, 10  
Pin Group 13  
V
IN  
V
V
VDDA+0.3  
IHA  
Pin Group 11  
V
V
Input High Voltage (XTAL/EXTAL,  
XTAL is not driven by an external  
clock)  
VDDA-0.8  
VDDA+0.3  
IHC  
Pin Group 11  
V
V
V
Input high voltage (XTAL/EXTAL,  
XTAL is driven by an external clock)  
2
VDDA+0.3  
.8  
IHC  
Pin Groups  
1, 2, 5, 6, 9, 10, 11, 13  
V
Input Low Voltage  
-0.3  
IL  
Pin Groups 1, 2, 3  
Pin Groups 5, 6, 7  
Pin Groups 8  
mA  
I
Output High Source Current  
VOH = 2.4V (VOH min.)  
-40  
-4  
-8  
OH  
-12  
4
Pin Groups 1, 2, 3, 4  
Pin Groups 5, 6, 7  
Pin Group 8  
mA  
I
Output Low Sink Current  
VOL = 0.4V (VOL max)  
OL  
8
12  
125  
°C  
T
Ambient Operating Temperature  
(Automotive)  
A
105  
°C  
T
Ambient Operating Temperature  
(Industrial)  
-40  
10,000  
10,000  
15  
A
TA = -40°C to 125°C  
TA = -40°C to 105°C  
TJ <= 85°C avg  
Cycles  
Cycles  
Years  
N
Flash Endurance (Automotive)  
(Program Erase Cycles)  
F
N
Flash Endurance (Industrial)  
(Program Erase Cycles)  
F
T
Flash Data Retention  
(Automotive)  
R
Note: Total chip source or sink current cannot exceed 200mA  
See Pin Groups listed in Table 10-1  
56F8365 Technical Data, Rev. 9  
142  
Freescale Semiconductor  
DC Electrical Characteristics  
10.2 DC Electrical Characteristics  
Note: The 56F8165 device is specified to meet Industrial requirements only; CAN is NOT available on the  
56F8165 device.  
Table 10-5 DC Electrical Characteristics  
At Recommended Operating Conditions; see Table 10-4  
Characteristic  
Output High Voltage  
Output Low Voltage  
Symbol  
Notes  
Min  
2.4  
Typ  
0
Max  
Unit  
V
Test Conditions  
IOH = IOHmax  
V
OH  
IOL = IOLmax  
V
0.4  
V
OL  
Pin Groups  
1, 2, 5, 6, 9  
VIN = 3.0V to 5.5V  
I
Digital Input Current High  
pull-up enabled or disabled  
+/- 2.5  
A  
IH  
Pin Group 10  
VIN = 3.0V to 5.5V  
I
Digital Input Current High  
with pull-down  
40  
80  
160  
A  
IH  
Pin Group 13  
Pin Group 12  
VIN = VDDA  
VIN = VDDA  
VIN = 0V  
I
Analog Input Current High  
ADC Input Current High  
0
0
+/- 2.5  
+/- 3.5  
-50  
A  
A  
A  
IHA  
I
IHADC  
Pin Groups  
1, 2, 5, 6, 9  
I
Digital Input Current Low  
pull-up enabled  
-200  
-100  
IL  
Pin Groups  
1, 2, 5, 6, 9  
VIN = 0V  
VIN = 0V  
I
Digital Input Current Low  
pull-up disabled  
0
0
+/- 2.5  
+/- 2.5  
A  
A  
IL  
Pin Group 10  
I
Digital Input Current Low with  
pull-down  
IL  
Pin Group 13  
Pin Group 12  
VIN = 0V  
VIN = 0V  
I
Analog Input Current Low  
ADC Input Current Low  
0
0
0
+/- 2.5  
+/- 3.5  
+/- 2.5  
A  
A  
A  
ILA  
I
ILADC  
VIN = VDD or 0V  
I
EXTAL Input Current Low  
clock input  
EXTAL  
CKLMODE = High  
CKLMODE = Low  
VIN = VDDA or 0V  
VIN = VDDA or 0V  
I
XTAL Input Current Low  
clock input  
0
0
+/- 2.5  
200  
A  
A  
A  
XTAL  
Pin Groups  
1, 2, 3, 4, 5, 6, 7, 8  
VOUT = 3.0V to  
5.5V or 0V  
I
Output Current  
High Impedance State  
+/- 2.5  
OZ  
Pin Groups  
2, 6, 9,10  
V
Schmitt Trigger Input  
Hysteresis  
0.3  
4.5  
5.5  
6
V
HYS  
C
Input Capacitance  
(EXTAL/XTAL)  
pF  
pF  
pF  
INC  
C
Output Capacitance  
(EXTAL/XTAL)  
OUTC  
C
Input Capacitance  
IN  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
143  
Table 10-5 DC Electrical Characteristics (Continued)  
At Recommended Operating Conditions; see Table 10-4  
Characteristic  
Symbol  
Notes  
Min  
Typ  
Max  
Unit  
Test Conditions  
C
Output Capacitance  
6
pF  
OUT  
See Pin Groups listed in Table 10-1  
A  
0
–10  
–30  
–50  
–70  
–90  
0
1
2
3
Volts  
Figure 10-1 Maximum Current — Schmitt Input DC Response –40 C, 3.6 V  
Table 10-6 Power-On Reset Low Voltage Parameters  
Characteristic  
POR Trip Point  
Symbol  
Min  
1.75  
Typ  
1.8  
Max  
1.9  
Units  
V
V
POR  
VEI2.5  
VEI3.3  
LVI, 2.5 volt Supply, trip point1  
2.14  
LVI, 3.3 volt supply, trip point2  
Bias Current  
2.7  
V
I bias  
110  
130  
A  
1. When V  
2. When V  
drops below V  
drops below V  
, an interrupt is generated.  
, an interrupt is generated.  
DD_CORE  
DD_CORE  
EI2.5  
EI3.3  
56F8365 Technical Data, Rev. 9  
144  
Freescale Semiconductor  
DC Electrical Characteristics  
Table 10-7 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Enabled (OCR_DIS = Low)  
1
IDD_ADC  
IDD_OSC_PLL  
Mode  
Test Conditions  
• 60MHz Device Clock  
IDD_IO  
RUN1_MAC  
155mA  
50mA  
2.5mA  
• All peripheral clocks are enabled  
• All peripherals running  
• Continuous MAC instructions with fetches from  
Data RAM  
• ADC powered on and clocked  
• 60MHz Device Clock  
Wait3  
Stop1  
91mA  
6mA  
70A  
0A  
2.5mA  
• All peripheral clocks are enabled  
• ADC powered off  
• 8MHz Device Clock  
• All peripheral clocks are off  
• ADC powered off  
165A  
• PLL powered off  
• External Clock is off  
• All peripheral clocks are off  
• ADC powered off  
Stop2  
5.1mA  
0A  
155A  
• PLL powered off  
1. No Output Switching  
2. Includes Processor Core current supplied by internal voltage regulator  
Table 10-8 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Disabled (OCR_DIS = High)  
1
IDD_Core  
IDD_ADC  
IDD_OSC_PLL  
Mode  
Test Conditions  
• 60MHz Device Clock  
IDD_IO  
RUN1_MAC  
150mA  
13A  
50mA  
2.5mA  
• All peripheral clocks are enabled  
• All peripherals running  
• Continuous MAC instructions with  
fetches from Data RAM  
• ADC powered on and clocked  
• 60MHz Device Clock  
Wait3  
86mA  
13A  
70A  
2.5mA  
• All peripheral clocks are enabled  
• ADC powered off  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
145  
Table 10-8 Current Consumption per Power Supply Pin (Typical)  
On-Chip Regulator Disabled (OCR_DIS = High)  
1
IDD_Core  
IDD_ADC  
IDD_OSC_PLL  
Mode  
Stop1  
Test Conditions  
• 8MHz Device Clock  
IDD_IO  
950A  
13A  
0A  
165A  
• All peripheral clocks are off  
• ADC powered off  
• PLL powered off  
• External Clock is off  
• All peripheral clocks are off  
• ADC powered off  
Stop2  
100A  
13A  
0A  
155A  
• PLL powered off  
1. No Output Switching  
Table 10-9. Regulator Parameters  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Unloaded Output Voltage  
(0mA Load)  
VRNL  
2.25  
2.75  
V
Loaded Output Voltage  
(200mA load)  
VRL  
2.25  
2.25  
2.75  
2.75  
V
V
Line Regulation @ 250mA load  
(VDD33 ranges from 3.0V to 3.6V)  
VR  
Short Circuit Current  
Iss  
700  
mA  
(output shorted to ground)  
Bias Current  
I bias  
Ipd  
5.8  
0
7
2
mA  
A  
Power-down Current  
Short-Circuit Tolerance  
TRSC  
30  
minutes  
(output shorted to ground)  
Table 10-10. PLL Parameters  
Characteristics  
PLL Start-up time  
Symbol  
TPS  
Min  
0.3  
Typical  
0.5  
Max  
10  
Unit  
ms  
ms  
ps  
Resonator Start-up time  
Min-Max Period Variation  
TRS  
0.1  
0.18  
1
TPV  
120  
200  
56F8365 Technical Data, Rev. 9  
146  
Freescale Semiconductor  
DC Electrical Characteristics  
Table 10-10. PLL Parameters  
Characteristics  
Peak-to-Peak Jitter  
Symbol  
TPJ  
Min  
Typical  
Max  
Unit  
ps  
175  
2
Bias Current  
IBIAS  
IPD  
1.5  
mA  
A  
Quiescent Current, power-down mode  
100  
150  
10.2.1 Temperature Sensor  
Note: Temperature Sensor is NOT available in the 56F8165 device.  
Table 10-11 Temperature Sense Parametrics  
Characteristics  
Slope (Gain)1  
Symbol  
m
Min  
Typical  
7.762  
26  
Max  
Unit  
mV/°C  
°C  
Room Trim Temp. 1, 2  
TRT  
24  
28  
Hot Trim Temp. (Industrial)1,2  
Hot Trim Temp. (Automotive)1,2  
THT  
122  
147  
125  
128  
153  
°C  
THT  
150  
°C  
Output Voltage @  
VDDA_ADC = 3.3V, TJ =0°C1  
VTS0  
1.370  
V
Supply Voltage  
VDDA_ADC  
IDD-OFF  
IDD-ON  
3.0  
3.3  
0
3.6  
10  
V
Supply Current - OFF  
Supply Current - ON  
A  
A  
°C  
250  
6.7  
Accuracy3,1 from -40°C to 150°C  
Using VTS = mT + VTS0  
TACC  
-6.7  
Resolution4, 5,1  
RES  
0.104  
°C / bit  
1. Includes the ADC conversion of the analog Temperature Sense voltage.  
2. The ADC is not calibrated for the conversion of the Temperature Sensor trim value stored in the Flash Memory at  
FMOPT0 and FMOPT1.  
3. See Application Note, AN1980, for methods to increase accuracy.  
4. Assuming a 12-bit range from 0V to 3.3V.  
5. Typical resolution calculated using equation:  
(VREFH - VREFLO) X 1  
=
RES  
212  
m
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
147  
10.3 AC Electrical Characteristics  
Tests are conducted using the input levels specified in Table 10-5. Unless otherwise specified,  
propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured  
between the 10% and 90% points, as shown in Figure 10-2.  
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 10-2 Input Signal Measurement References  
Figure 10-3 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached VOL or VOH  
Data Invalid state, when a signal level is in transition between VOL and VOH  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 10-3 Signal States  
10.4 Flash Memory Characteristics  
Table 10-12 Flash Timing Parameters  
Characteristic  
Symbol  
Tprog  
Terase  
Tme  
Min  
20  
Typ  
Max  
Unit  
s  
Program time1  
Erase time2  
20  
ms  
ms  
Mass erase time  
100  
1. There is additional overhead which is part of the programming sequence. See the 56F8300 Peripheral User Manual  
for details. Program time is per 16-bit word in Flash memory. Two words at a time can be programmed within the Pro-  
gram Flash module, as it contains two interleaved memories.  
56F8365 Technical Data, Rev. 9  
148  
Freescale Semiconductor  
External Clock Operation Timing  
2. Specifies page erase time. There are 512 bytes per page in the Data and Boot Flash memories. The Program Flash  
module uses two interleaved Flash memories, increasing the effective page size to 1024 bytes.  
10.5 External Clock Operation Timing  
1
Table 10-13 External Clock Operation Timing Requirements  
Characteristic  
Symbol  
fosc  
Min  
0
Typ  
Max  
120  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)2  
Clock Pulse Width3  
tPW  
3.0  
External clock input rise time4  
trise  
10  
ns  
External clock input fall time5  
tfall  
10  
ns  
1. Parameters listed are guaranteed by design.  
2. See Figure 10-4 for details on using the recommended connection of an external clock driver.  
3. The high or low pulse width must be no smaller than 8.0ns or the chip will not function.  
4. External clock input rise time is measured from 10% to 90%.  
5. External clock input fall time is measured from 90% to 10%.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
VIL  
tfall  
trise  
tPW  
tPW  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 10-4 External Clock Timing  
10.6 Phase Locked Loop Timing  
Table 10-14 PLL Timing  
Characteristic  
Symbol  
fosc  
Min  
4
Typ  
8
Max  
8.4  
Unit  
MHz  
MHz  
External reference crystal frequency for the PLL1  
PLL output frequency2 (fOUT  
)
fop  
160  
260  
PLL stabilization time3 -40to +125C  
tplls  
1
10  
ms  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
149  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work  
correctly. The PLL is optimized for 8MHz input crystal.  
2. ZCLK may not exceed 60MHz. For additional information on ZCLK and (f  
/2), please refer to the OCCS chapter in  
OUT  
the 56F8300 Peripheral User Manual.  
3. This is the minimum time required after the PLL set up is changed to ensure reliable operation.  
10.7 Crystal Oscillator Timing  
Table 10-15 Crystal Oscillator Parameters  
Characteristic  
Crystal Start-up time  
Symbol  
TCS  
Min  
4
Typ  
5
Max  
10  
Unit  
ms  
ms  
ohms  
ps  
Resonator Start-up time  
TRS  
0.1  
0.18  
1
Crystal ESR  
RESR  
TD  
120  
250  
1.5  
300  
300  
290  
110  
1
Crystal Peak-to-Peak Jitter  
Crystal Min-Max Period Variation  
Resonator Peak-to-Peak Jitter  
Resonator Min-Max Period Variation  
Bias Current, high-drive mode  
Bias Current, low-drive mode  
Quiescent Current, power-down mode  
70  
0.12  
TPV  
ns  
TRJ  
ps  
TRP  
ps  
IBIASH  
IBIASL  
IPD  
250  
80  
0
A  
A  
A  
10.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1,2  
Table 10-16 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Typical  
Min  
Typical  
Max  
Characteristic  
Symbol  
Unit  
See Figure  
Minimum RESET Assertion Duration  
Edge-sensitive Interrupt Request Width  
tRA  
tIRW  
16T  
1.5T  
18T  
14T  
ns  
ns  
ns  
10-5  
10-6  
10-7  
IRQA, IRQB Assertion to General Purpose  
Output Valid, caused by first instruction  
execution in the interrupt service routine  
tIG  
tIG - FAST  
56F8365 Technical Data, Rev. 9  
150  
Freescale Semiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1,2  
Table 10-16 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Typical  
Min  
Typical  
Max  
Characteristic  
Symbol  
Unit  
See Figure  
10-9  
IRQA Width Assertion to Recover from Stop  
State3  
tIW  
1.5T  
ns  
1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and  
Stop modes), T = 125ns.  
2. Parameters listed are guaranteed by design.  
3. The interrupt instruction fetch is visible on the pins only in Mode 3.  
RESET  
tRA  
tRAZ  
tRDA  
First Fetch  
A0–A15,  
D0–D15  
Figure 10-5 Asynchronous Reset Timing  
IRQA,  
IRQB  
tIRW  
Figure 10-6 External Interrupt Timing (Negative Edge-Sensitive)  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
151  
A0–A15  
First Interrupt Instruction Execution  
a) First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 10-7 External Level-Sensitive Interrupt Timing  
IRQA,  
IRQB  
tIRI  
A0–A15  
First Interrupt Vector  
Instruction Fetch  
Figure 10-8 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A15  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 10-9 Recovery from Stop State Using Asynchronous Interrupt Timing  
56F8365 Technical Data, Rev. 9  
152  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
10.9 Serial Peripheral Interface (SPI) Timing  
1
Table 10-17 SPI Timing  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
10-10, 10-11,  
10-12, 10-13  
50  
50  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
10-13  
10-13  
25  
ns  
ns  
Enable lag time  
Master  
Slave  
100  
ns  
ns  
Clock (SCK) high time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
17.6  
25  
ns  
ns  
Clock (SCK) low time  
Master  
Slave  
10-13  
24.1  
25  
ns  
ns  
Data set up time required for inputs  
Master  
Slave  
tDS  
tDH  
tA  
10-10, 10-11,  
10-12, 10-13  
20  
0
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
0
2
ns  
ns  
Access time (time to data active from  
high-impedance state)  
Slave  
10-13  
10-13  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
tD  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
10-10, 10-11,  
10-12, 10-13  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
10-10, 10-11,  
0
0
ns  
ns  
10-12  
Rise time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
10-10, 10-11,  
10-12, 10-13  
9.7  
9.0  
ns  
ns  
1. Parameters listed are guaranteed by design.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
153  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tR  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
tDV  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14–1  
Master LSB out  
tR  
Figure 10-10 SPI Master Timing (CPHA = 0)  
56F8365 Technical Data, Rev. 9  
154  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
SS is held High on master  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tCL  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tR  
tDH  
MISO  
MSB in  
Bits 14–1  
LSB in  
tDI(ref)  
(Input)  
tDV(ref)  
tDI  
tDV  
Bits 14– 1  
MOSI  
(Output)  
Master MSB out  
tF  
Master LSB out  
tR  
Figure 10-11 SPI Master Timing (CPHA = 1)  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
155  
SS  
(Input)  
tC  
tF  
tELG  
tCL  
tR  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tCH  
tF  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 10-12 SPI Slave Timing (CPHA = 0)  
SS  
(Input)  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
Slave LSB out  
tDI  
LSB in  
tA  
tF  
MISO  
Slave MSB out  
Bits 14–1  
tDV  
(Output)  
tDS  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
Figure 10-13 SPI Slave Timing (CPHA = 1)  
56F8365 Technical Data, Rev. 9  
156  
Freescale Semiconductor  
Quad Timer Timing  
10.10 Quad Timer Timing  
1, 2  
Table 10-18 Timer Timing  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
Max  
Unit  
ns  
See Figure  
10-14  
2T + 6  
1T + 3  
1T - 3  
0.5T - 3  
Timer input high / low period  
Timer output period  
PINHL  
POUT  
ns  
10-14  
ns  
10-14  
Timer output high / low period  
POUTHL  
ns  
10-14  
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T = 16.67ns.  
2. Parameters listed are guaranteed by design.  
Timer Inputs  
PINHL  
PINHL  
PIN  
Timer Outputs  
POUTHL  
POUTHL  
POUT  
Figure 10-14 Timer Timing  
10.11 Quadrature Decoder Timing  
1, 2  
Table 10-19 Quadrature Decoder Timing  
Characteristic  
Symbol  
PIN  
Min  
Max  
Unit  
See Figure  
Quadrature input period  
4T + 12  
ns  
ns  
ns  
10-15  
10-15  
10-15  
Quadrature input high / low period  
Quadrature phase period  
PHL  
PPH  
2T + 6  
1T + 3  
1. In the formulas listed, T = the clock cycle. For 60MHz operation, T=16.67ns.  
2. Parameters listed are guaranteed by design.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
157  
PPH PPH PPH PPH  
Phase A  
(Input)  
PHL  
PIN  
PHL  
Phase B  
(Input)  
PHL  
PIN  
PHL  
Figure 10-15 Quadrature Decoder Timing  
10.12 Serial Communication Interface (SCI) Timing  
1
Table 10-20 SCI Timing  
Characteristic  
Baud Rate2  
Symbol  
BR  
Min  
Max  
Unit  
See Figure  
(fMAX/16)  
Mbps  
RXD3 Pulse Width  
TXD4 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
1.04/BR  
1.04/BR  
ns  
ns  
10-16  
0.965/BR  
10-17  
1. Parameters listed are guaranteed by design.  
2. f is the frequency of operation of the system clock, ZCLK, in MHz, which is 60MHz for the 56F8365 device and  
MAX  
40MHz for the 56F8165 device.  
3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 10-16 RXD Pulse Width  
56F8365 Technical Data, Rev. 9  
158  
Freescale Semiconductor  
Controller Area Network (CAN) Timing  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 10-17 TXD Pulse Width  
10.13 Controller Area Network (CAN) Timing  
Note: CAN is NOT available in the 56F8165 device.  
1
Table 10-21 CAN Timing  
Characteristic  
Baud Rate  
Bus Wake Up detection  
Symbol  
BRCAN  
Min  
5
Max  
1
Unit  
See Figure  
Mbps  
T WAKEUP  
s  
10-18  
1. Parameters listed are guaranteed by design  
CAN_RX  
CAN receive  
data pin  
T WAKEUP  
(Input)  
Figure 10-18 Bus Wake Up Detection  
10.14 JTAG Timing  
Table 10-22 JTAG Timing  
Characteristic  
Symbol  
fOP  
Min  
DC  
Max  
Unit  
See Figure  
TCK frequency of operation  
using EOnCE1  
SYS_CLK/8  
MHz  
10-19  
TCK frequency of operation not  
using EOnCE1  
fOP  
DC  
SYS_CLK/4  
MHz  
10-19  
TCK clock pulse width  
tPW  
tDS  
tDH  
tDV  
50  
5
30  
ns  
ns  
ns  
ns  
10-19  
10-20  
10-20  
10-20  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
5
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
159  
Table 10-22 JTAG Timing  
Characteristic  
Symbol  
tTS  
Min  
Max  
30  
Unit  
ns  
See Figure  
TCK low to TDO tri-state  
10-20  
2T2  
TRST assertion time  
tTRST  
ns  
10-21  
1. TCK frequency of operation must be less than 1/8 the processor rate.  
2. T = processor clock period (nominally 1/60MHz)  
1/fOP  
tPW  
tPW  
VIH  
VM  
VM  
TCK  
(Input)  
VIL  
VM = VIL + (VIH – VIL)/2  
Figure 10-19 Test Clock Input Timing Diagram  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
tDV  
TDO  
(Output)  
Output Data Valid  
Figure 10-20 Test Access Port Timing Diagram  
56F8365 Technical Data, Rev. 9  
160  
Freescale Semiconductor  
Analog-to-Digital Converter (ADC) Parameters  
TRST  
(Input)  
tTRST  
Figure 10-21 TRST Timing Diagram  
10.15 Analog-to-Digital Converter (ADC) Parameters  
Table 10-23 ADC Parameters  
Characteristic  
Input voltages  
Symbol  
VADIN  
RES  
Min  
VREFL  
12  
Typ  
Max  
VREFH  
12  
Unit  
V
Resolution  
Bits  
Integral Non-Linearity1  
Differential Non-Linearity  
LSB2  
LSB2  
INL  
+/- 2.4  
+/- 0.7  
+/- 3.2  
< +1  
DNL  
Monotonicity  
GUARANTEED  
ADC internal clock  
fADIC  
RAD  
0.5  
VREFL  
5
5
MHz  
V
Conversion range  
6
VREFH  
16  
tAIC cycles3  
ms  
ADC channel power-up time  
tADPU  
ADC reference circuit power-up time4  
Conversion time  
tVREF  
tADC  
6
25  
tAIC cycles3  
tAIC cycles3  
Sample time  
tADS  
1
Input capacitance  
CADI  
IADI  
5
3
pF  
Input injection current5, per pin  
Input injection current, total  
mA  
mA  
mA  
mA  
IADIT  
20  
VREFH current  
IVREFH  
IADCA  
IADCB  
IADCQ  
EGAIN  
1.2  
25  
3
ADC A current  
ADC B current  
25  
mA  
A  
Quiescent current  
Uncalibrated Gain Error (ideal = 1)  
0
10  
+/- .004  
+/- .01  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
161  
Table 10-23 ADC Parameters (Continued)  
Characteristic  
Symbol  
VOFFSET  
AECAL  
CF1  
Min  
Typ  
Max  
+/- 40  
Unit  
mV  
LSBs  
Uncalibrated Offset Voltage  
+/- 27  
Calibrated Absolute Error6  
Calibration Factor 17  
See Figure 10-22  
0.002289  
–25.6  
Calibration Factor 27  
CF2  
Crosstalk between channels  
Common Mode Voltage  
–60  
dB  
V
Vcommon  
(VREFH - VREFLO) / 2  
Signal-to-noise ratio  
SNR  
SINAD  
THD  
64.6  
59.1  
60.6  
61.1  
9.6  
db  
db  
Signal-to-noise plus distortion ratio  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
db  
SFDR  
ENOB  
db  
Effective Number Of Bits8  
Bits  
Non-averaged DC drift of error over  
3
LSB  
temperature from 27C9  
1. INL measured from V = .1V  
to V = .9V  
in REFH  
in  
REFH  
10% to 90% Input Signal Range  
2. LSB = Least Significant Bit  
3. ADC clock cycles  
4. Assumes each voltage reference pin is bypassed with 0.1F ceramic capacitors to ground  
5. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of  
the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible.  
6. Absolute error includes the effects of both gain error and offset error.  
7. Please see the 56F8300Peripheral User’s Manual for additional information on ADC calibration.  
8. ENOB = (SINAD - 1.76)/6.02  
9. Temperature range –40C to 150C  
56F8365 Technical Data, Rev. 9  
162  
Freescale Semiconductor  
Equivalent Circuit for ADC Inputs  
Figure 10-22 ADC Absolute Error Over Processing and Temperature Extremes Before  
and After Calibration for VDC = 0.60V and 2.70V  
in  
Note: The absolute error data shown in the graphs above reflects the effects of both gain error and offset  
error. The data was taken on 25 parts: five each from four processing corner lots as well as five from one  
nominally processed lot, each at three temperatures: -40°C, 27°C, and 150°C (giving the 75 data points  
shown above), for two input DC voltages: 0.60V and 2.70V. The data indicates that for the given  
population of parts, calibration significantly reduced (by as much as 24%) the collective variation (spread)  
of the absolute error of the population. It also significantly reduced (by as much as 38%) the mean  
(average) of the absolute error and thereby brought it significantly closer to the ideal value of zero.  
Although not guaranteed, it is believed that calibration will produce results similar to those shown above  
for any population of parts including those which represent processing and temperature extremes.  
10.16 Equivalent Circuit for ADC Inputs  
Figure 10-23 illustrates the ADC input circuit during sample and hold. S1 and S2 are always open/closed  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
163  
at the same time that S3 is closed/open. When S1/S2 are closed & S3 is open, one input of the sample and  
hold circuit moves to V - V / 2, while the other charges to the analog input voltage. When the  
REFH  
REFH  
switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended  
analog input is switched to a differential voltage centered about V - V / 2. The switches switch  
REFH  
REFH  
on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that there  
are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into  
the S/H output voltage, as S1 provides isolation during the charge-sharing phase.  
One aspect of this circuit is that there is an on-going input current, which is a function of the analog input  
voltage, V  
and the ADC clock frequency.  
REF  
3
Analog Input  
4
S1  
C1  
C2  
S/H  
S3  
(VREFH - VREFLO) / 2  
S2  
2
1
C1 = C2 = 1pF  
1. Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pf  
2. Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pf  
3. Equivalent resistance for the ESD isolation resistor and the channel select mux; 500 ohms  
4. Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only  
connected to it at sampling time; 1pf  
Figure 10-23 Equivalent Circuit for A/D Loading  
10.17 Power Consumption  
This section provides additional detail which can be used to optimize power consumption for a given  
application.  
Power consumption is given by the following equation:  
Total power =  
A: internal [static component]  
+B: internal [state-dependent component]  
+C: internal [dynamic component]  
+D: external [dynamic component]  
+E: external [static]  
A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage current,  
PLL, and voltage references. These sources operate independently of processor state or operating  
frequency.  
B, the internal [state-dependent component], reflects the supply current required by certain on-chip  
resources only when those resources are in use. These include RAM, Flash memory and the ADCs.  
56F8365 Technical Data, Rev. 9  
164  
Freescale Semiconductor  
Power Consumption  
2
C, the internal [dynamic component], is classic C*V *F CMOS power dissipation corresponding to the  
56800E core and standard cell logic.  
D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading  
2
on the external pins of the chip. This is also commonly described as C*V *F, although simulations on two  
of the IO cell types used on the device reveal that the power-versus-load curve does have a non-zero  
Y-intercept.  
Table 10-24 IO Loading Coefficients at 10MHz  
Intercept  
Slope  
PDU08DGZ_ME  
PDU04DGZ_ME  
1.3  
0.11mW / pF  
0.11mW / pF  
1.15mW  
Power due to capacitive loading on output pins is (first order) a function of the capacitive load and  
frequency at which the outputs change. Table 10-24 provides coefficients for calculating power dissipated  
in the IO cells as a function of capacitive load. In these cases:  
Total Power = ((Intercept +Slope*Cload)*frequency/10MHz)  
where:  
Summation is performed over all output pins with capacitive loads  
Total Power is expressed in mW  
Cload is expressed in pF  
Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found  
to be fairly low when averaged over a period of time.  
E, the external [static component], reflects the effects of placing resistive loads on the outputs of the  
2
device. Sum the total of all V /R or IV to arrive at the resistive load contribution to power. Assume V =  
0.5 for the purposes of these rough calculations. For instance, if there is a total of eight PWM outputs  
driving 10mA into LEDs, then P = 8*.5*.01 = 40mW.  
In previous discussions, power consumption due to parasitics associated with pure input pins is ignored,  
as it is assumed to be negligible.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
165  
Part 11 Packaging  
11.1 56F8365 Package and Pin-Out Information  
This section contains package and pin-out information for the 56F8365. This device comes in a 128-pin  
Low-profile Quad Flat Pack (LQFP). Figure 11-1. shows the package outline for the 128-pin LQFP;  
Figure 11-3 shows the mechanical parameters for this package, and Table 11-1. lists the pin-out for the  
128-pin LQFP.  
56F8365 Technical Data, Rev. 9  
166  
Freescale Semiconductor  
56F8365 Package and Pin-Out Information  
Orientation  
Mark  
INDEX0  
HOME0  
ANB6  
ANB5  
103  
PIN 1  
V
SS  
DD_IO  
ANB4  
ANB3  
ANB2  
ANB1  
ANB0  
V
V
2
PP  
CLKO  
TXD0  
RXD0  
PHASEA1  
PHASEB1  
INDEX1  
V
V
V
SSA_ADC  
DDA_ADC  
REFH  
V
REFP  
HOME1  
CAP  
V
V
V
REFMID  
REFN  
V
4
V
DD_IO  
REFLO  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOA4  
GPIOA5  
TEMP_SENSE  
ANA7  
ANA6  
ANA5  
ANA4  
ANA3  
V
ANA2  
SS  
GPIOF0  
ANA1  
GPIOF1  
ANA0  
GPIOF2  
CLKMODE  
RESET  
RSTO  
V
DD_IO  
GPIOF3  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
V
DD_IO  
V
3
CAP  
EXTAL  
XTAL  
GPIOB4  
V
DDA_OSC_PLL  
PWMB0  
PWMB1  
PWMB2  
OCR_DIS  
FAULTA3  
FAULTA2  
FAULTA1  
FAULTA0  
PWMA5  
V
SS  
V
DD_IO  
PWMB3  
PWMB4  
65  
V
SS  
39  
Figure 11-1 Top View, 56F8365 128-pin LQFP Package  
Table 11-1 56F8365 128-Pin LQFP Package Identification by Pin Number  
Pin No.  
Signal Name  
INDEX0  
Pin No.  
33  
Signal Name  
PWMB1  
Pin No.  
65  
Signal Name  
VSS  
Pin No.  
97  
Signal Name  
ANB1  
1
2
HOME0  
34  
PWMB2  
66  
PWMA5  
98  
ANB2  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
167  
Table 11-1 56F8365 128-Pin LQFP Package Identification by Pin Number (Continued)  
Pin No.  
Signal Name  
VSS  
Pin No.  
35  
Signal Name  
VSS  
Pin No.  
67  
Signal Name  
FAULTA0  
FAULTA1  
FAULTA2  
Pin No.  
99  
Signal Name  
ANB3  
3
4
5
VDD_IO  
36  
VDD_IO  
68  
100  
ANB4  
VPP2  
37  
PWMB3  
69  
101  
ANB5  
6
7
8
CLKO  
TXD0  
RXD0  
38  
39  
40  
PWMB4  
PWMB5  
TXD1  
70  
71  
72  
FAULTA3  
OCR_DIS  
102  
103  
104  
ANB6  
ANB7  
ISA0  
VDDA_OSC_PLL  
9
PHASEA1  
PHASEB1  
INDEX1  
41  
42  
43  
RXD1  
73  
74  
75  
XTAL  
105  
106  
107  
ISA1  
ISA2  
TD0  
10  
11  
GPIOD0  
GPIOD1  
EXTAL  
V
CAP3  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
20  
23  
24  
25  
HOME1  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
ISB0  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
VDD_IO  
RSTO  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
TD1  
TD2  
V
CAP4  
VDD_IO  
RESET  
CLKMODE  
ANA0  
TD3  
GPIOA01  
GPIOA11  
GPIOA21  
GPIOA31  
GPIOA41  
TC0  
VDD_IO  
TC1  
VCAP  
1
ANA1  
ISB1  
ISB2  
ANA2  
TRST  
TCK  
TMS  
TDI  
ANA3  
GPIOA51  
VSS  
IRQA  
ANA4  
IRQB  
AN5  
GPIOF01  
GPIOF11  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
ANA6  
TDO  
ANA7  
VPP1  
GPIOF21  
VDD_IO  
TEMP_SENSE  
VREFLO  
CAN_TX  
CAN_RX  
1. Primary function is not available in this package configuration; GPIO function must be used instead  
GPIOF31  
GPIOB0  
26  
27  
28  
58  
59  
60  
PWMA0  
VSS  
90  
91  
92  
VREFN  
VREFMID  
VREFP  
122  
123  
124  
VCAP2  
SS0  
GPIOB1  
PWMA1  
SCLK0  
56F8365 Technical Data, Rev. 9  
168  
Freescale Semiconductor  
56F8165 Package and Pin-Out Information  
Table 11-1 56F8365 128-Pin LQFP Package Identification by Pin Number (Continued)  
Pin No.  
29  
Signal Name  
GPIOB2  
Pin No.  
61  
Signal Name  
PWMA2  
VDD_IO  
Pin No.  
93  
Signal Name  
VREFH  
Pin No.  
125  
Signal Name  
MISO0  
30  
GPIOB3  
62  
94  
VDDA_ADC  
VSSA_ADC  
ANB0  
126  
MOSI0  
31  
GPIOB4  
63  
PWMA3  
PWMA4  
95  
127  
PHASEA0  
PHASEB0  
32  
PWMB0  
64  
96  
128  
11.2 56F8165 Package and Pin-Out Information  
This section contains package and pin-out information for the 56F8165. This device comes in a 128-pin  
Low-profile Quad Flat Pack (LQFP). Figure 11-1. shows the package outline for the 128-pin LQFP,  
Figure 11-3 shows the mechanical parameters for this package, and Table 11-1 lists the pin-out for the  
128-pin LQFP.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
169  
Orientation  
Mark  
INDEX0  
HOME0  
ANB6  
ANB5  
103  
PIN 1  
V
SS  
DD_IO  
ANB4  
ANB3  
ANB2  
ANB1  
ANB0  
V
V
2
PP  
CLKO  
TXD0  
RXD0  
SCLK1  
MOSI1  
MISO1  
V
V
V
SSA_ADC  
DDA_ADC  
REFH  
V
REFP  
SS1  
CAP  
V
V
V
REFMID  
REFN  
V
V
4
DD_IO  
REFLO  
GPIOA0  
GPIOA1  
GPIOA2  
GPIOA3  
GPIOA4  
GPIOA5  
NC  
ANA7  
ANA6  
ANA5  
ANA4  
ANA3  
ANA2  
V
SS  
GPIOF0  
ANA1  
GPIOF1  
ANA0  
GPIOF2  
CLKMODE  
RESET  
RSTO  
V
DD_IO  
GPIOF3  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
V
DD_IO  
V
3
CAP  
EXTAL  
XTAL  
GPIOB4  
V
DDA_OSC_PLL  
PWMB0  
PWMB1  
PWMB2  
OCR_DIS  
NC  
NC  
NC  
NC  
NC  
V
SS  
V
DD_IO  
PWMB3  
PWMB4  
65  
V
SS  
39  
Figure 11-2 Top View, 56F8165 128-pin LQFP Package  
Table 11-2 56F8165 128-Pin LQFP Package Identification by Pin Number  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
INDEX0  
33  
PWMB1  
65  
VSS  
97  
ANB1  
56F8365 Technical Data, Rev. 9  
170  
Freescale Semiconductor  
56F8165 Package and Pin-Out Information  
Table 11-2 56F8165 128-Pin LQFP Package Identification by Pin Number (Continued)  
Pin No.  
Signal Name  
HOME0  
VSS  
Pin No.  
34  
Signal Name  
PWMB2  
VSS  
Pin No.  
66  
Signal Name  
Pin No.  
98  
Signal Name  
ANB2  
2
3
NC  
NC  
35  
67  
99  
ANB3  
4
5
VDD_IO  
36  
37  
VDD_IO  
68  
69  
NC  
NC  
100  
101  
ANB4  
ANB5  
VPP2  
PWMB3  
6
7
8
CLKO  
TXD0  
RXD0  
38  
39  
40  
PWMB4  
PWMB5  
TXD1  
70  
71  
72  
NC  
102  
103  
104  
ANB6  
ANB7  
OCR_DIS  
VDDA_OSC_PLL  
GPIOC8  
9
SCLK1  
MOSI1  
MISO1  
41  
42  
43  
RXD1  
73  
74  
75  
XTAL  
105  
106  
107  
GPIOC9  
GPIOC10  
GPIOE10  
10  
11  
GPIOD0  
GPIOD1  
EXTAL  
VCAP3  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
220  
23  
24  
25  
SS1  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
ISB0  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
VDD_IO  
RSTO  
RESET  
CLKMODE  
ANA0  
ANA1  
ANA2  
ANA3  
ANA4  
AN5  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
GPIOE11  
GPIOE12  
GPIOE13  
TC0  
VCAP  
4
VDD_IO  
GPIOA01  
GPIOA11  
GPIOA21  
GPIOA31  
GPIOA41  
VDD_IO  
TC1  
VCAP  
1
ISB1  
ISB2  
TRST  
TCK  
GPIOA51  
VSS  
IRQA  
TMS  
IRQB  
TDI  
GPIOF01  
GPIOF11  
FAULTB0  
FAULTB1  
FAULTB2  
FAULTB3  
ANA6  
ANA7  
NC  
TDO  
VPP1  
GPIOF21  
VDD_IO  
NC  
NC  
VREFLO  
1. Primary function is not available in this package configuration; GPIO function must be used instead  
GPIOF31  
GPIOB0  
26  
27  
28  
58  
59  
60  
NC  
VSS  
NC  
90  
91  
92  
VREFN  
VREFMID  
VREFP  
122  
123  
124  
VCAP2  
SS0  
GPIOB1  
SCLK0  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
171  
Table 11-2 56F8165 128-Pin LQFP Package Identification by Pin Number (Continued)  
Pin No.  
29  
Signal Name  
GPIOB2  
Pin No.  
61  
Signal Name  
Pin No.  
93  
Signal Name  
VREFH  
Pin No.  
125  
Signal Name  
MISO0  
NC  
VDD_IO  
NC  
30  
GPIOB3  
62  
94  
VDDA_ADC  
VSSA_ADC  
ANB0  
126  
MOSI0  
31  
GPIOB4  
63  
95  
127  
PHASEA0  
PHASEB0  
32  
PWMB0  
64  
NC  
96  
128  
56F8365 Technical Data, Rev. 9  
172  
Freescale Semiconductor  
56F8165 Package and Pin-Out Information  
MILLIMETERS  
DIM  
MIN  
---  
MAX  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
A
A1  
A2  
b
b1  
c
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
c1  
D
22.00 BSC  
D1  
e
E
E1  
L
20.00BSC  
0.50 BSC  
16.00 BSC  
14.00 BSC  
NOTES:  
0.45  
0.75  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD  
AND IS COINCIDENT WITH THE LEAD WHERE THE  
LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF  
THE PARTING LINE.  
L1  
L2  
S
R1  
R2  
0
1.00 REF  
0.50 REF  
0.20  
0.08  
0.08  
---  
---  
0.20  
0o  
0o  
11o  
7o  
---  
13o  
4. DATUMS A, B, AND D TO BE DETERMINED AT DATUM  
01  
02  
PLANE H.  
5. DIMENSIONS D AND E TO BE DETERMINED AT  
SEATING PLANE C.  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER  
SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD  
MISMATCH AND ARE DETERMINED AT DATUM  
PLANE H.  
7. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL NOT  
CAUSE THE b DIMENSION TO EXCEED 0.35.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
173  
Figure 11-3 128-pin LQFP Mechanical Information  
Please see www.freescale.com for the most current case outline.  
Part 12 Design Considerations  
12.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
x P )  
D
J
A
J  
where:  
o
T
R
= Ambient temperature for the package ( C)  
A
o
= Junction-to-ambient thermal resistance ( C/W)  
J  
P
= Power dissipation in the package (W)  
D
The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy  
estimation of thermal performance. Unfortunately, there are two values in common usage: the value  
determined on a single-layer board and the value obtained on a board with two planes. For packages such  
as the PBGA, these values can be different by a factor of two. Which value is closer to the application  
depends on the power dissipated by other components on the board. The value obtained on a single-layer  
board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the  
internal planes is usually appropriate if the board has low-power dissipation and the components are well  
separated.  
When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal  
resistance and a case-to-ambient thermal resistance:  
R
= R  
+ R  
JA  
JC CA  
where:  
R
R
R
= Package junction-to-ambient thermal resistance °C/W  
= Package junction-to-case thermal resistance °C/W  
= Package case-to-ambient thermal resistance °C/W  
JA  
JC  
CA  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
JC  
change the case-to-ambient thermal resistance, R  
. For instance, the user can change the size of the heat  
CA  
sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit  
board, or change the thermal dissipation on the printed circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the  
Thermal Characterization Parameter () can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (x P )  
J
T
JT  
D
56F8365 Technical Data, Rev. 9  
174  
Freescale Semiconductor  
Electrical Design Considerations  
where:  
o
T
= Thermocouple temperature on top of package ( C)  
= Thermal characterization parameter ( C)/W  
T
o
JT  
P
= Power dissipation in package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back-calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction-to-case  
thermal resistance.  
12.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or electrical  
fields. However, normal precautions are advised to  
avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused inputs are  
tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation of the 56F8365/56F8165:  
Provide a low-impedance path from the board power supply to each VDD pin on the device, and from the  
board ground to each VSS (GND) pin  
The minimum bypass requirement is to place six 0.01–0.1F capacitors positioned as close as possible to  
the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each  
of the VDD/VSS pairs, including VDDA/VSSA. Ceramic and tantalum capacitors tend to provide better  
performance tolerances.  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
175  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and VSS (GND)  
pins are less than 0.5 inch per capacitor lead  
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for VDD and VSS  
Bypass the VDD and VSS layers of the PCB with approximately 100F, preferably with a high-grade  
capacitor such as a tantalum capacitor  
Because the device’s output signals have fast rise and fall times, PCB trace lengths should be minimal  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the VDD and VSS circuits.  
Take special care to minimize noise levels on the VREF, VDDA and VSSA pins  
Designs that utilize the TRST pin for JTAG port or OnCE module functionality (such as development or  
debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means  
to assert TRST independently of RESET. Designs that do not require debugging functionality, such as  
consumer products, should tie these pins together.  
Because the Flash memory is programmed through the JTAG/OnCE port, the designer should provide an  
interface to this port to allow in-circuit Flash programming  
12.3 Power Distribution and I/O Ring Implementation  
Figure 12-1 illustrates the general power control incorporated in the 56F8365/56F8165. This chip  
contains two internal power regulators. One of them is powered from the V  
pin and cannot  
DDA_OSC_PLL  
be turned off. This regulator controls power to the internal clock generation circuitry. The other regulator  
is powered from the V pins and provides power to all of the internal digital logic of the core, all  
DD_IO  
peripherals and the internal memories. This regulator can be turned off, if an external V  
voltage  
DD_CORE  
is externally applied to the V  
pins.  
CAP  
In summary, the entire chip can be supplied from a single 3.3 volt supply if the large core regulator is  
enabled. If the regulator is not enabled, a dual supply 3.3V/2.5V configuration can also be used.  
Notes:  
Flash, RAM and internal logic are powered from the core regulator output  
VPP1 and VPP2 are not connected in the customer system  
All circuitry, analog and digital, shares a common VSS bus  
56F8365 Technical Data, Rev. 9  
176  
Freescale Semiconductor  
Power Distribution and I/O Ring Implementation  
V
DDA_OSC_PLL  
V
V
DDA_ADC  
DD  
V
V
V
V
V
REFH  
V
CAP  
REG  
REFP  
REG  
I/O  
ADC  
REFMID  
CORE  
REFN  
OSC  
REFLO  
V
V
SS  
SSA_ADC  
Figure 12-1 Power Management  
56F8365 Technical Data, Rev. 9  
Freescale Semiconductor  
177  
Part 13 Ordering Information  
Table 13-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order parts.  
Table 13-1 Ordering Information  
Ambient  
Temperature  
Range  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Part  
Package Type  
Order Number  
MC56F8365  
MC56F8365  
MC56F8165  
3.0–3.6 V Low-Profile Quad Flat Pack (LQFP)  
3.0–3.6 V Low-Profile Quad Flat Pack (LQFP)  
3.0–3.6 V Low-Profile Quad Flat Pack (LQFP)  
128  
128  
128  
60  
60  
40  
-40° to + 105° C  
-40° to + 125° C  
-40° to + 105° C  
MC56F8365VFG60  
MC56F8365MFG60  
MC56F8165VFG  
MC56F8365  
MC56F8365  
MC56F8165  
3.0–3.6 V Low-Profile Quad Flat Pack (LQFP)  
3.0–3.6 V Low-Profile Quad Flat Pack (LQFP)  
3.0–3.6 V Low-Profile Quad Flat Pack (LQFP)  
128  
128  
128  
60  
60  
40  
-40° to + 105° C  
-40° to + 125° C  
-40° to + 105° C  
MC56F8365VFGE*  
MC56F8365MFGE*  
MC56F8165VFGE*  
*This package is RoHS compliant.  
56F8365 Technical Data, Rev. 9  
178  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
RoHS-compliant and/or Pb-free versions of Freescale products have the  
functionality and electrical characteristics of their non-RoHS-compliant  
and/or non-Pb-free counterparts. For further information, see  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
http://www.freescale.com or contact your Freescale sales representative.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005–2012. All rights reserved.  
MC56F8365  
Rev. 9  
02/2012  

相关型号:

S57

RF COILS
SUMIDA

S570-1328-00

COMMON MODE CHOKE
BEL

S5703BH7SMF

ANT OMNIDIR SPEC 3DBI SMA MALE
ETC

S5703BP5SMF

ANT OMNIDIR SPEC 3DBI SMA FEM
ETC

S5711

Duplexer,
MERCURY

S5717

Duplexer,
MERCURY

S57212AMP-51512

CAMPUS AND IN-BUILDING DIRECTIONAL ANTENNAS
LSTD

S57212AMP10SMF

CAMPUS AND IN-BUILDING DIRECTIONAL ANTENNAS
LSTD

S57212AMP10TNF

CAMPUS AND IN-BUILDING DIRECTIONAL ANTENNAS
LSTD

S57212MP10SMF

CAMPUS AND IN-BUILDING DIRECTIONAL ANTENNAS
LSTD

S57212MP10TNF

CAMPUS AND IN-BUILDING DIRECTIONAL ANTENNAS
LSTD

S574-1000-06

MODEM TRANSFORMER
BEL