S83C562-6A68 [NXP]

Single-chip 8-bit microcontroller; 单芯片8位微控制器
S83C562-6A68
型号: S83C562-6A68
厂家: NXP    NXP
描述:

Single-chip 8-bit microcontroller
单芯片8位微控制器

微控制器和处理器 外围集成电路 装置 时钟
文件: 总20页 (文件大小:203K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
80C562/83C562  
Single-chip 8-bit microcontroller  
Product specification  
IC20 Data Handbook  
1992 Jan 08  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
Single-chip 8-bit microcontroller with 8-bit A/D, capture/compare timer, high-speed outputs, PWM  
DESCRIPTION  
FEATURES  
PIN CONFIGURATION  
The 80C562/83C562 (hereafter generically  
referred to as 8XC562) Single-Chip 8-Bit  
Microcontroller is manufactured in an  
advanced CMOS process and is a derivative  
of the 80C51 microcontroller family. The  
83C562/83C562 has the same instruction set  
as the 80C51.  
80C51 instruction set  
9
1
61  
8k × 8 ROM expandable externally to  
64k bytes  
10  
26  
60  
44  
256 × 8 RAM, expandable externally to  
PLASTIC  
LEADED  
64k bytes  
CHIP CARRIER  
Two standard 16-bit timer/counters  
An additional 16-bit timer/counter coupled  
to four capture registers and three compare  
registers  
The 8XC562 contains a non-volatile 256 × 8  
read-only program memory, a volatile 256 × 8  
read/write data memory (83C562) (the  
80C562 is ROMless), a volatile 256 × 8  
read/write data memory, six 8-bit I/O ports,  
two 16-bit timer/event counters (identical to  
the timers of the 80C51), an additional 16-bit  
timer coupled to capture and compare  
latches, a 15-source, two-priority-level,  
nested interrupt structure, an 8-input ADC,  
two pulse width modulated outputs, standard  
80C51 UART, a watchdog” timer and on-chip  
oscillator and timing circuits. For systems that  
require extra capability, the 83C562 can be  
expanded using standard TTL compatible  
memories and logic.  
27  
43  
Capable of producing eight synchronized,  
Pin Function  
Pin Function  
timed outputs  
1
2
3
4
5
6
7
8
9
P5.0/ADC0  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
XTAL1  
V
V
An 8-bit ADC with eight multiplexed analog  
DD  
SS  
STADC  
PWM0  
PWM1  
EW  
V
SS  
NC  
inputs  
P2.0/A08  
P2.1/A09  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN  
Two 8-bit resolution, pulse width modulated  
outputs  
P4.0/CMSR0  
P4.1/CMSR1  
P4.2/CMSR2  
P4.3/CMSR3  
P4.4/CMSR4  
P4.5/CMSR5  
P4.6/CMT0  
P4.7/CMT1  
RST  
P1.0/CT0I  
P1.1/CT1I  
P1.2/CT2I  
P1.3/CT3I  
P1.4/T2  
Five 8-bit I/O ports plus one 8-bit input port  
shared with analog inputs  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Full-duplex UART compatible with the  
standard 80C51  
ALE  
EA  
On-chip watchdog timer  
Three temperature ranges  
– 0 to +70°C  
The device also functions as an arithmetic  
processor having facilities for both binary and  
BCD arithmetic plus bit-handling capabilities.  
The instruction set consists of over 100  
instructions: 49 one-byte, 45 two-byte and 17  
three-byte. With a 12MHz crystal, 58% of the  
instructions are executed in 1µs and 40% in  
2µs. Multiply and divide instructions require  
4µs.  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
AVref–  
AVref+  
AV  
AV  
P5.7/ADC7  
P5.6/ADC6  
P5.5/ADC5  
P5.4/ADC4  
P5.3/ADC3  
P5.2/ADC2  
P5.1/ADC1  
– –40 to +85°C  
P1.5/RT2  
P1.6  
– –40 to +125°C  
P1.7  
P3.0/RxD  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
SS  
DD  
P3.5/T1  
P3.6/WR  
P3.7/RD  
NC  
NC  
XTAL2  
SU00224  
2
1992 Jan 08  
853–1463 05128  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
ORDERING INFORMATION  
PHILIPS PART  
ORDER NUMBER  
PART MARKING  
TEMPERATURE  
PHILIPS NORTH AMERICA  
PART ORDER NUMBER  
RANGE °C  
Drawing  
Number  
Drawing  
Number  
AND PACKAGE  
FREQ  
MHz  
ROMless  
ROM  
ROMless  
ROM  
EPROM  
PCB80C562- PCB83C562-  
0 to +70, Plastic  
Leaded Chip Carrier  
2
S80C562-4A68 S83C562-4A68 SOT188 S87C552-4A68  
SOT188-3  
16  
16WP  
16WP/xxx  
0 to +70, Plastic  
Leaded Chip Carrier  
w/Window  
2
S87C552-4K68  
1473A  
16  
12  
2
PCF80C562- PCF83C562- S80C562-2A68 S83C562-2A68 SOT188 S87C552-5A68  
12WP 12WP/xxx  
SOT188-3  
–40 to +85, Plastic  
Leaded Chip  
Carrier  
–40 to +85, Plastic  
Leaded Chip Carrier  
w/Window  
2
S87C552-5K68  
1473A  
12  
12  
PCA80C562- PCA83C562- S80C562-6A68 S83C562-6A68 SOT188  
–40 to +125, Plastic  
Leaded Chip Carrier  
12WP  
12WP/xxx  
NOTES:  
1. 80C562 and 83C562 frequency range is 1.2MHz–12MHz or 1.2MHz–16MHz.  
2. 87C552 frequency range is 3.5MHz–16MHz. For full specification, see the 87C552 data sheets.  
3. xxx denotes the ROM code number.  
LOGIC SYMBOL  
V
V
SS  
DD  
XTAL1  
XTAL2  
EA  
ALE  
PSEN  
LOW ORDER  
ADDRESS AND  
DATA BUS  
AV  
AV  
SS  
DD  
AVref+  
AVref–  
STADC  
PWM0  
PWM1  
CT0I  
CT1I  
CT2I  
CT3I  
T2  
RT2  
ADC0-7  
HIGH ORDER  
ADDRESS AND  
DATA BUS  
CMSR0-5  
RxD  
TxD  
INT0  
INT1  
T0  
T1  
CMT0  
CMT1  
WR  
RD  
RST  
EW  
SU00225  
3
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
BLOCK DIAGRAM  
T0  
T1  
INT0  
INT1  
3
PWM0 PWM1  
ADC0–7  
AV  
AV  
REF  
SS  
+
V
V
SS  
5
DD  
3
3
3
AV  
STADC  
DD  
XTAL1  
T0, T1  
PROGRAM  
MEMORY  
8k x 8 ROM  
(83C562)  
DATA  
MEMORY  
256 x 8 RAM  
TWO 16-BIT  
TIMER/EVENT  
COUNTERS  
DUAL  
PWM  
XTAL2  
EA  
CPU  
ADC  
ALE  
80C51 CORE  
EXCLUDING  
PSEN  
ROM/RAM  
3
WR  
RD  
8-BIT INTERNAL BUS  
3
0
16  
AD0–7  
T2  
16-BIT  
COMPARATORS  
WITH  
REGISTERS  
FOUR  
16-BIT  
CAPTURE  
T2  
16-BIT  
TIMER/  
EVENT  
16  
PARALLEL I/O  
PORTS AND  
EXTERNAL BUS  
SERIAL  
UART  
PORT  
COMPARATOR  
OUTPUT  
SELECTION  
T3  
8-BIT  
PORT  
2
WATCHDOG  
TIMER  
LATCHES  
COUNTERS  
A8–15  
3
3
1
1
1
4
P0  
P1  
P2  
P3  
TxD  
RxD  
P5  
P4  
CT0I–CT3I  
T2  
RT2  
CMSR0–CMSR5  
CMT0, CMT1  
RST EW  
3
4
5
0
1
2
ALTERNATE FUNCTION OF PORT 0  
ALTERNATE FUNCTION OF PORT 3  
ALTERNATE FUNCTION OF PORT 4  
ALTERNATE FUNCTION OF PORT 5  
ALTERNATE FUNCTION OF PORT 1  
ALTERNATE FUNCTION OF PORT 2  
SU00226  
4
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
PIN DESCRIPTION  
MNEMONIC  
PIN NO. TYPE  
NAME AND FUNCTION  
V
2
3
I
I
Digital Power Supply: +5V power supply pin during normal operation, idle and power-down mode.  
DD  
STADC  
Start ADC Operation: Input starting analog to digital conversion (ADC operation can also be started  
by software).  
PWM0  
PWM1  
EW  
4
O
O
Pulse Width Modulation: Output 0.  
5
6
Pulse Width Modulation: Output 1.  
I
Enable Watchdog Timer: Enable for T3 watchdog timer and disable power-down mode.  
P0.0–P0.7  
57–50  
I/O  
Port 0: Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float  
and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and data  
bus during accesses to external program and data memory. In this application it uses strong internal  
pull-ups when emitting 1s.  
P1.0–P1.7  
16–23  
16–23  
16–19  
20  
I/O  
I/O  
I/O  
I
Port 1: 8-bit I/O port. Alternate functions include:  
(P1.0–P1.7): Quasi-bidirectional port pins.  
CT0I–CT3I (P1.0–P1.3): Capture timer input signals for timer T2.  
T2 (P1.4): T2 event input  
21  
I
RT2 (P1.5): T2 timer reset signal. Rising edge triggered.  
P2.0–P2.7  
P3.0–P3.7  
39–46  
I/O  
Port 2: 8-bit quasi-bidirectional I/O port.  
Alternate function: High-order address byte for external memory (A08–A15).  
24–31  
24  
I/O  
Port 3: 8-bit quasi-bidirectional I/O port. Alternate functions include:  
RxD(P3.0): Serial input port.  
25  
TxD (P3.1): Serial output port.  
26  
INT0 (P3.2): External interrupt.  
27  
INT1 (P3.3): External interrupt.  
28  
T0 (P3.4): Timer 0 external input.  
29  
T1 (P3.5): Timer 1 external input.  
30  
31  
WR (P3.6): External data memory write strobe.  
RD (P3.7): External data memory read strobe.  
P4.0–P4.7  
P5.0–P5.7  
7–14  
7–12  
13, 14  
I/O  
O
O
Port 4: 8-bit quasi-bidirectional I/O port. Alternate functions include:  
CMSR0–CMSR5 (P4.0–P4.5): Timer T2 compare and set/reset outputs on a match with timer T2.  
CMT0, CMT1 (P4.6, P4.7): Timer T2 compare and toggle outputs on a match with timer T2.  
68–62,  
1
I
Port 5: 8-bit input port.  
ADC0–ADC7 (P5.0–P5.7): Alternate function: Eight input channels to ADC.  
RST  
15  
35  
I/O  
I
Reset: Input to reset the 87C552. It also provides a reset pulse as output when timer T3 overflows.  
XTAL1  
Crystal Input 1: Input to the inverting amplifier that forms the oscillator, and input to the internal clock  
generator. Receives the external clock signal when an external oscillator is used.  
XTAL2  
34  
O
Crystal Input 2: Output of the inverting amplifier that forms the oscillator. Left open–circuit when an  
external clock is used.  
V
36, 37  
47  
I
Digital ground.  
SS  
PSEN  
ALE  
O
O
Program Store Enable: Active-low read strobe to external program memory.  
48  
Address Latch Enable: Latches the low byte of the address during accesses to external memory. It is  
activated every six oscillator periods. During an external data memory access, one ALE pulse is  
skipped. ALE can drive up to eight LS TTL inputs and handles CMOS inputs without an external  
pull-up.  
EA  
49  
I
External Access: When EA is held at TTL level high, the CPU executes out of the internal program  
ROM provided the program counter is less than 8192. When EA is held at TTL low level, the CPU  
executes out of external program memory. EA is not allowed to float.  
AV  
AV  
AV  
AV  
58  
59  
60  
61  
I
I
I
I
Analog to Digital Conversion Reference Resistor: Low-end.  
Analog to Digital Conversion Reference Resistor: High-end.  
Analog Ground  
REF–  
REF+  
SS  
Analog Power Supply  
DD  
NOTE:  
1. To avoid “latch-up” effect at power-on, the voltage on any pin at any time must not be higher or lower than V +0.5V or V – 0.5V,  
DD  
SS  
respectively.  
5
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
remain intact during this mode. The idle  
mode can be terminated either by any  
enabled interrupt (at which time the process  
is picked up at the interrupt service routine  
and continued), or by a hardware reset which  
starts the processor in the same manner as a  
power-on reset.  
OSCILLATOR  
CHARACTERISTICS  
XTAL1 and XTAL2 are the input and output,  
respectively, of an inverting amplifier. The  
pins can be configured for use as an on-chip  
oscillator, as shown in the logic symbol.  
RESET  
A reset is accomplished by holding the RST  
pin high for at least two machine cycles (24  
oscillator periods), while the oscillator is  
running. To ensure a good power-on reset,  
the RST pin must be high long enough to  
allow the oscillator time to start up (normally  
a few milliseconds) plus two machine cycles.  
To drive the device from an external clock  
source, XTAL1 should be driven while XTAL2  
is left unconnected. There are no  
requirements on the duty cycle of the  
external clock signal, because the input to  
the internal clock circuitry is through a  
divide-by-two flip-flop. However, minimum  
and maximum high and low times specified in  
the data sheet must be observed.  
At power-on, the voltage on V and RST  
must come up at the same time for a proper  
start-up.  
DD  
POWER-DOWN MODE  
In the power-down mode, the oscillator is  
stopped and the instruction to invoke  
power-down is the last instruction executed.  
Only the contents of the on-chip RAM are  
preserved. A hardware reset is the only way  
to terminate the power-down mode. the  
control bits for the reduced power modes are  
in the special function register PCON. Table 1  
shows the state of the I/O ports during low  
current operating modes.  
IDLE MODE  
In the idle mode, the CPU puts itself to sleep  
while all of the on-chip peripherals stay  
active. The instruction to invoke the idle  
mode is the last instruction executed in the  
normal operating mode before the idle mode  
is activated. The CPU contents, the on-chip  
RAM, and all of the special function registers  
Table 1.  
External Pin Status During Idle and Power-Down Modes  
PROGRAM  
MEMORY  
PWM0/  
MODE  
ALE  
PSEN  
PORT 0  
Data  
PORT 1  
Data  
PORT 2  
Data  
PORT 3  
Data  
PORT 4  
Data  
PWM1  
High  
High  
High  
High  
Idle  
Internal  
1
1
0
0
1
1
0
0
Idle  
External  
Internal  
Float  
Data  
Address  
Data  
Data  
Data  
Power-down  
Power-down  
Data  
Data  
Data  
Data  
External  
Float  
Data  
Data  
Data  
Data  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
RATING  
UNIT  
V
Voltage on any other pin to V  
–0.5 to +6.5  
5.0  
SS  
Input, output DC current on any single I/O pin  
mA  
W
Power dissipation (based on package heat transfer limitations, not device power consumption)  
1.0  
Storage temperature range  
–65 to +150  
°C  
NOTES:  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise  
SS  
noted.  
6
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
DC ELECTRICAL CHARACTERISTICS  
V
SS  
, AV = 0V  
SS  
TEST  
LIMITS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNIT  
V
DD  
Supply voltage  
PCB8XC562  
PCF8XC562  
PCA8XC562  
4.0  
4.0  
4.5  
6.0  
6.0  
5.5  
V
V
V
I
I
I
Supply current operating:  
PCB8XC562  
See notes 1 and 2  
DD  
f
f
f
= 16MHz  
= 12MHz  
= 12MHz  
45  
34  
30  
mA  
mA  
mA  
OSC  
OSC  
OSC  
PCF8XC562  
PCA8XC562  
Idle mode:  
See notes 1 and 3  
ID  
PCB8XC562  
PCF8XC562  
PCA8XC562  
f
f
f
= 16MHz  
= 12MHz  
= 12MHz  
10  
8
7
mA  
mA  
mA  
OSC  
OSC  
OSC  
Power-down current:  
See notes 1 and 4;  
2V < V < V max  
PD  
PD  
DD  
PCB8XC562  
PCF8XC562  
PCA8XC562  
50  
50  
100  
µA  
µA  
µA  
Inputs  
V
V
V
V
Input low voltage, except EA  
–0.5  
–0.5  
0.2V –0.1  
V
V
IL  
DD  
Input low voltage to EA  
0.2V –0.3  
DD  
IL1  
IH  
Input high voltage, except XTAL1, RST  
Input high voltage, XTAL1, RST  
0.2V +0.9  
V
DD  
V
DD  
+0.5  
+0.5  
V
DD  
0.7V  
V
IH1  
DD  
I
Logical 0 input current, ports 1, 2, 3, 4  
Logical 1-to-0 transition current, ports 1, 2, 3, 4  
Input leakage current, port 0, EA, STADC, EW  
V
= 0.45V  
–50  
µA  
µA  
µA  
IL  
TL  
IN  
I
See note 5  
0.45V < V < V  
DD  
–650  
10  
+I  
IL1  
I
Outputs  
6
V
V
V
Output low voltage, ports 1, 2, 3, 4  
I
I
= 1.6mA  
0.45  
0.45  
V
V
OL  
OL  
6
Output low voltage, port 0, ALE, PSEN, PWM0, PWM1  
Output high voltage, ports 1, 2, 3, 4  
= 3.2mA  
OL1  
OH  
OL  
V
DD  
+ 5V+10%  
–I = 60µA  
2.4  
V
V
V
OH  
–I = 25µA  
0.75V  
OH  
DD  
DD  
–I = 10µA  
OH  
0.9V  
V
OH1  
Output high voltage (port 0 in external bus mode, ALE,  
PSEN, PWM0, PWM1)  
7
V
DD  
+ 5V+10%  
–I = 400µA  
2.4  
V
V
V
OH  
–I = 150µA  
0.75V  
OH  
DD  
DD  
–I = 40µA  
OH  
0.9V  
V
OH2  
Output high voltage (RST)  
–I = 400µA  
–I = 120µA  
OH  
2.4  
0.8V  
V
V
OH  
DD  
R
C
Internal reset pull-down resistor  
Pin capacitance  
50  
150  
10  
kΩ  
RST  
IO  
Test freq = 1MHz,  
pF  
T
= 25°C  
amb  
7
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
DC ELECTRICAL CHARACTERISTICS (Continued)  
TEST  
LIMITS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNIT  
Analog Inputs  
AV  
Analog supply voltage:  
PCB8XC562  
DD  
AV = V ±0.2V  
AV = V ±0.2V  
DD DD  
AV = V ±0.2V  
DD DD  
4.0  
4.0  
4.5  
6.0  
6.0  
5.5  
V
V
V
DD  
DD  
PCF8XC562  
PCA8XC562  
AI  
AI  
Analog supply current: operating:  
Port 5 = 0 to AV  
1.2  
mA  
DD  
DD  
Idle mode:  
ID  
PCB8XC562  
PCF8XC562  
PCA8XC562  
50  
50  
100  
µA  
µA  
µA  
AI  
PD  
Power-down mode:  
PCB8XC562  
2V < AV < AV max  
PD DD  
50  
50  
100  
µA  
µA  
µA  
PCF8XC562  
PCA8XC562  
AV  
AV  
Analog input voltage  
Reference voltage:  
AV –0.2  
AV +0.2  
V
IN  
SS  
DD  
REF  
AV  
AV  
AV –0.2  
V
V
REF–  
REF+  
SS  
AV +0.2  
DD  
R
C
Resistance between AV  
and AV  
REF–  
5
25  
15  
kΩ  
pF  
REF  
REF+  
Analog input capacitance  
Sampling time  
IA  
t
6t  
CY  
µs  
ADS  
ADC  
t
Conversion time (including sampling time)  
24t  
µs  
CY  
8, 9, 10  
DL  
Differential non-linearity  
±1  
LSB  
LSB  
LSB  
%
e
8, 11  
IL  
e
Integral non-linearity  
±1  
±1  
8, 12  
OS  
Offset error  
e
8, 13  
G
Gain error  
0.4  
±1  
e
M
CTC  
Channel to channel matching  
LSB  
dB  
14  
C
Crosstalk between inputs of port 5  
0–100kHz  
–60  
t
NOTES:  
1. See Figures 8 through 12 for I test conditions.  
DD  
2. The operating supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; EA = RST = Port 0 = EW = V ; STADC = V  
.
DD  
DD  
SS  
3. The idle mode supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; Port 0 = EW = V ; EA = RST = STADC = V  
.
DD  
DD  
SS  
4. The power-down current is measured with all output pins disconnected; XTAL2 not connected; Port 0 = EW = V  
;
DD  
EA = RST = STADC = XTAL1 = V  
.
SS  
5. Pins of ports 1, 2, 3, and 4 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when V is approximately 2V.  
IN  
6. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
7. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the 0.9V specification when the  
OH  
DD  
address bits are stabilizing.  
8. Conditions: AV = 0V; AV = 5.0V, AV = 5.12V. ADC is monotonic with no missing codes.  
REF+  
REF–  
DD  
9. The differential non-linearity (DL ) is the difference between the actual step width and the ideal step width. (See Figure 1.)  
e
10.The ADC is monotonic; there are no missing codes.  
11. The integral non-linearity (IL ) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
e
appropriate adjustment of gain and offset error. (See Figure 1.)  
12.The offset error (OS ) is the absolute difference between the straight line which fits the actual transfer curve (after removing gain error), and  
e
a straight line which fits the ideal transfer curve. (See Figure 1.)  
13.The gain error (G ) is the relative difference in percent between the straight line fitting the actual transfer curve (after removing offset error),  
e
and the straight line which fits the ideal transfer curve. Gain error is constant at every point on the transfer curve. (See Figure 1.)  
14.This should be considered when both analog and digital signals are simultaneously input to port 5.  
8
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
Offset  
error  
Gain  
error  
OS  
e
G
e
255  
254  
253  
252  
251  
250  
(2)  
7
(1)  
Code  
Out  
6
5
(5)  
4
3
(4)  
(3)  
2
1
1 LSB  
(ideal)  
0
1
2
3
4
5
6
7
250  
251  
252  
253  
254  
)
255  
256  
AV (LSB  
IN  
ideal  
Offset  
error  
OS  
e
AV  
AV  
REF–  
REF+  
256  
1 LSB =  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential non-linearity (DL ).  
e
(4) Integral non-linearity (IL ).  
e
(5) Center of a step of the actual transfer curve.  
SU00227  
Figure 1. ADC Conversion Characteristic  
9
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
1, 2  
AC ELECTRICAL CHARACTERISTICS  
12MHz CLOCK  
VARIABLE CLOCK  
MIN MAX  
16  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency  
MIN  
MAX  
UNIT  
MHz  
ns  
2
2
2
2
2
2
2
2
2
2
2
2
1.2  
CLCL  
t
t
t
t
t
t
t
t
t
t
t
ALE pulse width  
127  
28  
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
–55  
–35  
ns  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
48  
t
ns  
234  
145  
4t  
3t  
–100  
ns  
CLCL  
43  
t
–40  
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
205  
3t  
CLCL  
–45  
ns  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–105  
ns  
CLCL  
0
0
ns  
59  
312  
10  
t
–25  
ns  
CLCL  
5t  
CLCL  
–105  
ns  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
3, 4  
3
Address valid to ALE low  
RD pulse width  
43  
t
6t  
6t  
–35  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVLL  
CLCL  
CLCL  
CLCL  
400  
400  
–100  
–100  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
AVDV  
LLWL  
AVWL  
QVWX  
DW  
4
WR pulse width  
3
RD low to valid data in  
Data hold after RD  
252  
5t  
–165  
CLCL  
3
0
0
3
Data float after RD  
97  
2t  
–70  
CLCL  
3
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data before WR  
517  
585  
300  
8t  
–150  
–165  
CLCL  
CLCL  
3
9t  
3, 4  
3, 4  
4
200  
203  
23  
3t  
–50  
3t  
+50  
CLCL  
CLCL  
4t  
–130  
–60  
CLCL  
CLCL  
CLCL  
CLCL  
t
4
433  
33  
7t  
t
–150  
–50  
4
Data hold after WR  
WHQX  
RLAZ  
WHLH  
3
RD low to address float  
RD or WR high to ALE high  
0
0
3, 4  
43  
123  
t
–40  
t
+40  
CLCL  
CLCL  
External Clock  
3
t
t
t
t
5
5
5
5
High time  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
3
Low time  
3
Rise time  
20  
20  
20  
20  
3
Fall time  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. These values are characterized but not 100% production tested.  
10  
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
EXPLANATION OF THE AC SYMBOLS  
Each timing symbol has five characters. The  
first character is always ‘t’ (= time). The other  
characters, depending on their positions,  
indicate the name of a signal or the logical  
status of that signal. The designations are:  
A – Address  
Q – Output data  
R – RD signal  
– Time  
V – Valid  
W – WR signal  
t
X – No longer a valid logic level  
Z – Float  
C – Clock  
D – Input data  
H – Logic level high  
Examples: t  
= Time for address valid  
to ALE low.  
AVLL  
I
– Instruction (program memory contents)  
t
= Time for ALE low to  
PSEN low.  
LLPL  
L – Logic level low, or ALE  
P – PSEN  
t
LHLL  
ALE  
t
t
LLPL  
AVLL  
t
PLPH  
t
LLIV  
t
PLIV  
PSEN  
t
LLAX  
t
PXIZ  
t
PLAZ  
t
PXIX  
A0–A7  
INSTR IN  
A0–A7  
PORT 0  
PORT 2  
t
AVIV  
A0–A15  
A8–A15  
SU00006  
Figure 2. External Program Memory Read Cycle  
ALE  
PSEN  
RD  
t
WHLH  
t
LLDV  
t
t
LLWL  
RLRH  
t
RHDZ  
t
LLAX  
t
t
RLDV  
AVLL  
t
RLAZ  
t
RHDX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA IN  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
t
AVDV  
P2.0–P2.7 OR A8–A15 FROM DPH  
A0–A15 FROM PCH  
SU00007  
Figure 3. External Data Memory Read Cycle  
11  
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
ALE  
t
WHLH  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
t
t
LLAX  
WHQX  
t
AVLL  
QVWX  
t
DW  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA OUT  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
P2.0–P2.7 OR A8–A15 FROM DPH  
A8–A15 FROM PCH  
SU00213  
Figure 4. External Data Memory Write Cycle  
t
r
t
f
t
HIGH  
V
0.8V  
V
IH1  
0.8V  
V
V
IH1  
0.8V  
IH1  
IH1  
0.8V  
t
LOW  
t
CK  
SU00228  
SU00215  
SU00216  
Figure 5. External Clock Drive XTAL1  
2.4V  
2.0V  
0.8V  
2.0V  
0.8V  
Test Points  
0.45V  
NOTE:  
AC inputs during testing are driven at 2.4V for a logic ‘1’ and 0.45V for a logic ‘0’.  
Timing measurements are made at 2.0V for a logic ‘1’ and 0.8V for a logic ‘0’.  
Figure 6. AC Testing Input/Output  
Float  
2.4V  
2.4V  
2.0V  
0.8V  
2.0V  
0.8V  
0.45V  
0.45V  
NOTE:  
The float state is defined as the point at which a port 0 pin sinks 3.2mA or sources 400µA at the voltage test levels.  
Figure 7. AC Testing Input, Float Waveform  
12  
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
50  
40  
30  
(1)  
I
mA  
DD  
20  
10  
0
(2)  
(3)  
(4)  
(1) Maximum operating mode; V  
= 6V  
= 4V  
DD  
DD  
(2) Maximum operating mode; V  
NOTE:  
0
4
8
12  
16  
(3) Maximum idle mode; V  
(4) Maximum idle mode; V  
= 6V  
DD  
DD  
These values are valid only within the frequency  
specifications of the device under test.  
f (MHz)  
= 4V  
SU00229  
Figure 8. Supply Current (I ) as a Function of Frequency at XTAL1 (f  
)
DD  
OSC  
V
DD  
I
DD  
V
DD  
V
V
DD  
DD  
P0  
EA  
RST  
(NC)  
XTAL2  
XTAL1  
EW  
CLOCK SIGNAL  
V
SS  
STADC  
SU00230  
Figure 9. I Test Condition, Active Mode  
DD  
All other pins are disconnected  
V
DD  
I
DD  
V
DD  
RST  
V
DD  
STADC  
P0  
EW  
EA  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
AV  
SS  
V
SS  
AV  
ref  
SU00231  
Figure 10. I Test Condition, Idle Mode  
DD  
All other pins are disconnected  
13  
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
V
–0.5  
DD  
0.5V  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
CLCL  
SU00232  
Figure 11. Clock Signal Waveform for I  
Tests in Active and Idle Modes  
DD  
t
= t  
= 10ns  
CHCL  
CLCH  
V
DD  
I
DD  
V
DD  
V
RST  
DD  
STADC  
P0  
EW  
EA  
(NC)  
XTAL2  
XTAL1  
AV  
SS  
AV  
ref  
V
SS  
SU00233  
Figure 12.  
I
Test Condition, Power Down Mode  
DD  
All other pins are disconnected. V = 2V to 5.5V  
DD  
14  
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
PLCC68: plastic leaded chip carrier; 68 leads; pedestal  
SOT188-3  
15  
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
1473A  
68-PIN CERQUAD J-BEND (K) PACKAGE  
853-1473A 05854  
16  
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
NOTES  
17  
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
NOTES  
18  
1992 Jan 08  
Philips Semiconductors  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
NOTES  
19  
1992 Jan 08  
Philips Semiconductors Microcontroller Products  
Product specification  
Single-chip 8-bit microcontroller  
80C562/83C562  
DEFINITIONS  
Data Sheet Identification  
Product Status  
Definition  
This data sheet contains the design target or goal specifications for product development. Specifications  
may change in any manner without notice.  
Objective Specification  
Formative or in Design  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design  
and supply the best possible product.  
Preliminary Specification  
Product Specification  
Preproduction Product  
Full Production  
This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes  
at any time without notice, in order to improve design and supply the best possible product.  
Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,  
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,  
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes  
only. PhilipsSemiconductorsmakesnorepresentationorwarrantythatsuchapplicationswillbesuitableforthespecifiedusewithoutfurthertesting  
or modification.  
LIFE SUPPORT APPLICATIONS  
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,  
orsystemswheremalfunctionofaPhilipsSemiconductorsandPhilipsElectronicsNorthAmericaCorporationProductcanreasonablybeexpected  
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips  
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully  
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Sunnyvale, California 94088–3409  
Philips Semiconductors and Philips Electronics North America Corporation  
register eligible circuits under the Semiconductor Chip Protection Act.  
Copyright Philips Electronics North America Corporation 1992  
All rights reserved. Printed in U.S.A.  
Telephone 800-234-7381  

相关型号:

S83C652-1A44

Microcontroller, 8-Bit, MROM, 8051 CPU, 12MHz, CMOS, PQCC44
PHILIPS

S83C652-1N40

Microcontroller, 8-Bit, MROM, 8051 CPU, 12MHz, CMOS, PDIP40
PHILIPS

S83C652-2A44-T

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQCC44
YAGEO

S83C652-2B44

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PQFP44
YAGEO

S83C652-2N40

Microcontroller, 8-Bit, MROM, 12MHz, CMOS, PDIP40
YAGEO

S83C652-4A44

Microcontroller, 8-Bit, MROM, 8051 CPU, 16MHz, CMOS, PQCC44,
PHILIPS

S83C652-4A44

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PQCC44, Microcontroller
NXP

S83C652-4B44

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PQFP44, Microcontroller
NXP

S83C652-5A44

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PQCC44, Microcontroller
NXP

S83C652-5B44

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PQFP44, Microcontroller
NXP

S83C652-5N40

IC 8-BIT, MROM, 16 MHz, MICROCONTROLLER, PDIP40, Microcontroller
NXP

S83C652-6A44

Microcontroller, 8-Bit, MROM, 8051 CPU, 16MHz, CMOS, PQCC44
PHILIPS