SA1638BE-T [NXP]

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQFP48, Cellular Telephone Circuit;
SA1638BE-T
型号: SA1638BE-T
厂家: NXP    NXP
描述:

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQFP48, Cellular Telephone Circuit

文件: 总26页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
SA1638  
Low voltage IF I/Q transceiver  
Product specification  
IC17 Data Handbook  
1997 Sept 03  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
DESCRIPTION  
High performance on-board integrated receive filters with  
The SA1638 is a combined Rx and Tx IF I/Q circuit. The receive  
path contains an IF amplifier, a pair of quadrature down-mixers, and  
a pair of baseband filters and amplifiers. A second pair of mixers in  
the transmit path transposes a quadrature baseband input up to the  
IF frequency. An external VCO signal is divided down internally and  
buffered to provide quadrature local oscillator signals for the mixers.  
A further divider chain, reference divider and phase detector are  
provided to avoid the need for an external IF synthesizer. Rx or Tx  
path or the entire circuit may be powered down by logic inputs.  
On-board voltage regulators are provided to allow direct connection  
to a battery supply.  
bandwidth tunable between 50-850 kHz  
Switchable alternative bandwidth setting available to allow  
channel bandwidth flexibility in operation  
Designed for a widely used I and Q baseband GSM interface  
Control registers power up in a default state  
Optional DC offset trim capability to <200mV  
Only a standard reference input frequency required, choice of 13,  
26, 39 or 52MHz  
Fully compatible with SA1620 GSM RF front-end (see Figure 9)  
FEATURES  
Direct supply: 3.3V to 7.5V  
APPLICATIONS  
Two DC regulators giving 3.0V output  
IF circuitry for GSM 900MHz hand-held units  
Low current consumption: 18mA for Rx or 22mA for Tx  
Input/output IF frequency from 70-400 MHz  
IF circuitry for PCN (DCS1800) hand-held units  
Quadrature up and down mixer stage  
Internal IF PLL for synthesizing the local oscillator signal  
PIN CONFIGURATION  
LQFP Package  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
35  
V
I
CP  
EE  
VREG1  
1
2
3
4
5
6
7
8
9
REF  
VREGF2  
VREG2  
34 LO INX  
33  
32  
LO IN  
GNDREG2  
PON  
ADJ IN  
31 CLK IN  
30  
29 LOCK  
V
BATT  
48–pin LQFP  
CLK INX  
AOUT  
BOUT  
STROBE  
CLOCK  
28  
27  
DCRES  
RESD 10  
26 DATA  
25  
RESA  
RESB  
11  
12  
V
DIG  
EE  
13 14 15 16 17 18 19 20 21 22 23 24  
SR00524  
Figure 1. SA1638 Pin Configuration  
ORDERING INFORMATION  
DESCRIPTION  
48-Pin Thin Quad Flat Pack (LQFP)  
TEMPERATURE RANGE  
ORDER CODE  
DWG #  
-40 to +85°C  
SA1638BE  
SOT313-2  
2
1997 Sept 03  
853-1818 18351  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
BLOCK DIAGRAM  
PONRx  
BIAS RX  
V.REG.1  
V.REG.2  
V
REF  
PDTx  
ITx IN  
BIAS TX  
ITx INX  
QTx IN  
TxIFOUT  
TxIFOUTX  
V
TxRx  
CC  
QTx INX  
GND3  
GND1  
IRxOUT  
IRxOUTX  
RxIF IN  
IF  
RxIF INX  
GND2  
QRxOUT  
AMP  
QRxOUTX  
LO IN  
DCRES  
AOUT  
DC  
2
LO INX  
÷
BUFFERS  
ADJUST  
STATUS  
ADJ IN  
BOUT  
REGISTER  
DC  
N
LOCK  
CP  
÷
REGISTER  
I
REF  
CHARGE  
PUMP  
PHASE  
TEST  
DETECTOR  
REGISTER  
PONPLL  
V
CP  
CP  
CC  
÷
13, 26  
39, 52  
SYNTH  
SERIAL  
INPUT  
V
EE  
REGISTER  
SR00525  
Figure 2. SA1638 Block Diagram  
3
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
PIN DESCRIPTIONS  
Pin No.  
1
Pin Name  
VREG1  
Description  
Output voltage of regulator 1  
Feedback of regulator 2  
Output voltage of regulator 2  
Ground of regulator 2  
2
VREGF2  
VREG2  
GNDREG2  
PON  
3
4
5
Power-on input for voltage regulators 1 and 2 (active high)  
Input voltage for regulators 1 and 2  
Programmable logic output (see Figure 9)  
Programmable logic output (see Figure 9)  
Reference current setting resistor for DC offset circuit  
Additional external current defining resistor for filters  
Principal external current defining resistor for filters  
Principal external current defining resistor for filters  
Power-on input for Rx (active high)  
Reference voltage  
6
V
BATT  
7
AOUT  
BOUT  
DCRES  
RESD  
RESA  
RESB  
PONRx  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
V
REF  
QRxOUT  
QRxOUTX  
IRxOUT  
IRxOUTX  
QTx IN  
Differential receive baseband output  
Differential receive baseband output  
Differential receive baseband output  
Differential receive baseband output  
Differential transmit baseband input  
Differential transmit baseband input  
Differential transmit baseband input  
Differential transmit baseband input  
Power-on for transmitter (active low)  
Digital circuit supply  
QTx INX  
ITx IN  
ITx INX  
PDTx  
V
V
DIG  
CC  
DIG  
Digital ground  
EE  
DATA  
Serial bus data input  
CLOCK  
STROBE  
LOCK  
Serial bus clock input  
Serial bus strobe input  
Test control/synthesizer lock indicator  
Differential reference divider input  
Differential reference divider input  
Used for test only. Do not connect  
Differential LO input  
CLK INX  
CLK IN  
ADJ IN  
LO IN  
LO INX  
Differential LO input  
I
Reference current setting for charge pump  
Charge pump ground  
REF  
V
EE  
CP  
CP  
Charge pump output  
V
CC  
CP  
Charge pump circuit supply  
POnPLL  
GND3  
Power-on input for synthesizer circuits (active high)  
Ground (internal connection to GND1 and GND2)  
Differential transmit IFoutput (open collector)  
Differential transmit IFoutput (open collector)  
Ground (internal connection to GND1 and GND3)  
Differential receive IF input  
TxIFOUTX  
TxIFOUT  
GND2  
RxIF INX  
RxIF IN  
GND1  
Differential receive IF input  
Ground (internal connection to GND2 and GND3)  
Transmit and receive circuits supply voltage (also feedback of Regulator 1)  
Ground of regulator 1  
V
CC  
TxRx  
GNDREG1  
NOTE: There are no ESD protection diodes at Pins 41 and 42. Thus, open collector outputs may have increased DC voltage or higher AC  
peak voltage.  
4
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
XXX  
PARAMETER  
Supply voltages: V TxRx, V DIG, V CP  
RATING  
-0.3 to +6.0  
-0.3 to +8.0  
UNITS  
V
V
CC  
CC  
CC  
CC  
V
BATT  
Battery voltage  
V
V
IN  
Voltage applied to any other pin  
-0.3 to (V  
+0.3)  
V
CCXXX  
VG  
Any GND pin to any other GND pin  
0
V
P
Power dissipation, T = 25°C (still air)  
300  
150  
mW  
°C  
D
A
T
Maximum operating junction temperature  
Maximum power input/output  
JMAX  
P
MAX  
+20  
dBm  
°C  
T
STG  
Storage temperature range  
–65 to +150  
NOTE:  
1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ . 48-pin LQFP: θ = 67°C/W.  
JA  
JA  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
XXX  
PARAMETER  
RATING  
2.7 to 5.5  
2.9 to 5.5  
3.3 to 7.5  
-40 to +85  
UNITS  
V
Supply voltages: V TxRx, V DIG  
V
V
CC  
CC  
CC  
V
CC  
CP  
Charge pump supply voltage  
V
BATT  
Battery voltage  
V
T
A
Operating ambient temperature range  
°C  
Voltage Regulators  
T = 25°C, P = 3V, P RX = 0V, PDTX = 3V, P PLL = 0V, V  
= 3.3V, I  
1 = I  
2 = 15mA, V  
1 connected to V TxRx, V  
2
REG  
A
ON  
ON  
ON  
BATT  
OUT  
OUT  
REG  
CC  
connected to V  
F2; V DIG = V CP = 3V; unless otherwise stated.  
REG  
CC CC  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
Min  
2.85  
3.3  
–3σ  
2.93  
Typ  
+3σ  
Max  
3.15  
7.5  
V
V
1,  
REG  
Nominal V  
3.00  
3.07  
V
V
OUT  
2
REG  
V
BATT  
Maximum output current for each  
regulator  
I 1, I  
OUT  
2
OUT  
30  
mA  
1
I
Supply current for both regulators  
Power-down supply current  
I
= 0mA  
4.3  
7.7  
5
9
5.7  
7
15  
mA  
µA  
µF  
µF  
%
BATT  
LOAD  
I
P
= 0V, I = 0mA  
LOAD  
10.3  
BATT PD  
2
ON  
C
1
2
V
V
1 cap load  
2 cap load  
0.1  
0.1  
1000  
500  
0.4  
5
REG  
REG  
2
C
REG  
REG  
LINEREG  
LOADREG Load regulation  
BW Bandwidth  
Line regulation  
DC, V  
= 3.3V to 7.5V  
–0.4  
–5  
–0.2  
0.001  
-0.17  
0.2  
BATT  
I
= 15mA to 30mA  
–0.37  
0.03  
%
LOAD  
100  
kHz  
Feedthrough attenuation from P to  
each regulator  
ON  
F
PON  
-40  
dB  
f 100kHz  
f = 10MHz  
f = 100MHz  
f = 400MHz  
-61  
-32  
-37  
-48  
Feedthrough attenuation from V  
each regulator  
to  
BATT  
F
REG  
dB  
t
Turn ON time  
10  
µs  
ON  
NOTES:  
1. At T 150°C a thermal switch reduces the output current to avoid damage.  
j
2. Recommended load capacitors: In every case C  
1 = C 2 = 100nF to ground with series resistance 0.1. Additional capacitor  
REG REG  
optional 1000µF with series resistance 5. The low series resistance is very important to ensure regulator stability.  
3. Standard deviations are based on the characterization results of 90 ICs.  
5
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
DC ELECTRICAL CHARACTERISTICS  
V
CC  
TxRx=V DIG=V CP=PONRx=PONPLL= +3V; V DIG = V CP=GND1=GND2=GND3=PDTx = 0V; T = 25°C, unless otherwise stated.  
CC CC EE EE A  
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
MAX  
MIN  
–3σ  
TYP  
+3σ  
Supply current  
PONRx = PONPLL = PDTx = Hi  
Rx and IF synthesizer active  
14.4  
17.4  
16  
17.6  
21.6  
20  
PONRx = PDTx = Low;  
PONPLL = Hi  
I
mA  
24  
CC  
Tx and IF synthesizer active  
19.5  
PONRx = PONPLL = Low;  
PDTx = Hi  
Power-down mode  
Reference voltage  
0.068  
1.57  
V
Generated internally  
1.39  
1.86  
1.75  
2.14  
V
REF  
V
REF  
I
I
5
5
SINK  
SOURCE  
IV  
µA  
REF  
At pins TxIFOUT and  
TxIFOUTX  
I
DC output current  
1.5  
2.0  
2.7  
mA  
OUT  
Digital inputs (P  
)
ON  
V
High level input voltage range  
Low level input voltage range  
2.0  
0
V
V
V
IH  
BATT  
V
0.8  
IL  
Digital inputs (PDTx, P Rx, P PLL, P )  
ON  
ON  
ON  
V
High level input voltage range  
Low level input voltage range  
2.0  
0
V
TxRx  
V
V
IH  
CC  
V
0.8  
IL  
Digital inputs (Clock, Data, Strobe)  
V
High level input voltage range  
Low level input voltage range  
2.0  
0
V
Dig  
V
V
IH  
CC  
V
0.8  
IL  
Digital outputs (LOCK, AOUT, BOUT)  
V
CC  
DIG–0.4  
V
Output voltage HIGH  
Output voltage LOW  
I
= -2mA  
= 2mA  
O
V
V
OH  
O
V
I
0.4  
OL  
AC ELECTRICAL CHARACTERISTICS  
V
TxRx=V DIG=V CP=PONRx=PONPLL= +3V; V DIG = V CP=GND1=GND2=GND3=PDTx = 0V; LO = 100mV  
, 800MHz;  
CC  
CC  
CC  
EE  
EE  
IN  
PEAK  
CLK = 100mV  
, 52MHz; serial registers programmed with default values; T = 25°C unless otherwise stated. Test Circuit Figure 8.  
IN  
PEAK  
A
LIMITS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
MIN  
–3σ  
TYP  
+3σ  
MAX  
IF Transmit Modulator  
BW Input modulation bandwidth  
200source impedance  
0.82  
0.94  
1.5  
1.06  
MHz  
V
Common mode range for  
baseband inputs  
DC at pins ITxIN, ITxINx,  
QTxIN, QTxINx  
V
COM  
1
2
V
IN  
Peak input signal amplitude  
Centered on V  
0.75  
V
COM  
| ITxIn | = | ITxInX | =  
| QTxIn | = | QTxInX |  
1
Third harmonic distortion  
-61  
-57  
-53  
-40  
dB  
= 0.75V  
fin = 20kHz  
PEAK;  
Between pins: ITxIn and  
ITxInX or QTxIn and  
QTxInX  
R
C
Input resistance  
112  
kΩ  
INTx  
INTx  
At ITxIn, ITxInX,  
QTxIn, QTxInX  
Input capacitance  
10  
pF  
V
Output saturation limit  
V
CC  
TxRx-0.3  
| ITxIn | = | ITxInX | =  
| QTxIn | = | QTxInX |  
I
RMS output current  
0.6  
+30  
+35  
0.73  
0.82  
+43  
+50  
0.91  
1.08  
mA  
dB  
dB  
OUT  
= 0.75V  
PEAK  
| ITxIn | = | ITxInX | =  
| QTxIn | = | QTxInX |  
1
S
LO suppression  
LO  
= 0.75V  
; fin = 20k  
PEAK  
| ITxIn | = | ITxInX | =  
| QTxIn | = | QTxInX |  
1
SSB  
Sideband suppression  
= 0.75V  
; fin = 20k  
PEAK  
6
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
AC ELECTRICAL CHARACTERISTICS (Continued)  
LIMITS  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
MAX  
MIN  
–3σ  
+3σ  
IF Transmit Modulator (continued)  
Noise density at 600kHz  
-130  
-133  
-129  
-131  
5
-128  
-129  
|ITxIn| = |ITxInX| = |QTxIn| =  
dBc/Hz  
|QTxInX| = 0.75V  
Noise density at 10MHz  
PEAK  
t
Turn ON time  
Turn OFF time  
PdTx = LO, transmit signal to 90%  
PdTx = HI, transmit signal to 10%  
µs  
µs  
ON  
t
5
OFF  
IF Receiver (R = 36kbetween pins RESA and RESB)  
RInRx Differential input impedance  
ROutRx Output impedance  
Output common mode voltage  
f
IN  
= 400MHz  
5 || 0.6  
1
k|| pF  
kΩ  
V
REF  
V
f3dB  
Low pass filter -3dB bandwidth  
70  
83  
90  
58  
kHz  
Low pass filter attenuation:  
200kHz  
6.5  
30  
8.9  
38.1  
10.7  
45  
70  
>80  
>80  
12.5  
51.9  
400kHz  
600kHz  
6.5MHz  
13.0MHz  
dB  
Differential output PD into GSM  
baseband relative to 1200Ω  
source EMF  
VG  
NF  
Voltage gain  
43  
49.4  
5.7  
51  
52.7  
8.3  
dB  
dB  
1200source and external  
matching resistor and inductor  
8
Noise figure  
7.0  
Channel matching:  
Gain  
-1.5  
-60  
-0.26  
0.0  
1.5  
60  
dB  
degrees  
f
= 400.005MHz  
IN  
Phase  
2
Output DC offset  
Differential, DCRES=562kΩ  
-25  
10 (700)  
2.0  
mV  
µA  
V
I
Output drive current at each pin  
Minimum differential output swing  
Source (Sink)  
OUT  
V
OUT  
Input 1dB compression point:  
In band  
200kHz  
400kHz  
600kHz  
-59  
-54  
-55.3  
-49.3  
-53  
-47  
-47  
-47  
-50.7  
-44.8  
-47  
-40  
P
-1dB  
1200source EMF  
dBV  
POnRx = HI, to baseband signal  
out  
3
t
Turn ON time  
2
2
µs  
µs  
ON  
POnRx = LO, to no baseband  
signal out  
t
Turn OFF time  
OFF  
IF Synthesizer  
Local oscillator input frequency  
f
LO  
140  
800  
100  
MHz  
|| pF  
mV  
9
range  
Between pins LO and LO X, f  
IN  
IN  
IN  
Z
Differential input impedance  
LO peak input voltage range  
276 || 0.6  
LOIN  
LOIN  
= 800MHz  
Single-ended  
Referred to 50Ω  
V
50  
64  
Programmable divider:  
Division range  
Step size  
511  
52  
1
f
Reference clock input frequency  
Differential input impedance  
V
CLKIN  
= 100mV  
PEAK  
MHz  
k|| pF  
mV  
CLKIN  
Z
V
Between pins ClkIn and ClkInX  
10 || 1.0  
CLKIN  
CLK peak input voltage range  
Single-ended, referred to 50Ω  
50  
400  
CLKIN  
IN  
Charge pump input reference  
current  
I
31.2  
µA  
REF  
Charge pump output current:  
c0...c2 = 000  
0.425 0.487  
0.85 0.979  
0.045 0.062  
0.5  
1.0  
0.071  
0.513 0.575  
I
=31.2µA,  
REF  
| I  
|
mA  
CP  
c0...c2 = 111  
Step size  
1.021  
0.08  
1.15  
0.105  
V
CP  
= V CP/2  
CC  
7
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
AC ELECTRICAL CHARACTERISTICS (Continued)  
LIMITS  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
MIN  
–3σ  
+3σ  
MAX  
IF Synthesizer (cont.)  
DICP  
4
Relative output current variation  
I
=31.2µA  
=31.2µA,  
0.1  
1.3  
2.5  
±10  
%
REF  
ICP  
I
REF  
5
I  
CP_M  
Output current matching  
±12  
±15  
%
nA  
µs  
V
CP  
= V CP/2  
CC  
|I  
|
Output leakage current  
Turn ON time  
V
CP  
= 0.3V to V CP-0.3V  
-0.02  
0.1  
15  
0.22  
CP_L  
CC  
POnPLL = HI, to full charge  
pump current  
t
ON  
POnPLL = LO, to I CP,  
CC  
6
I
DIG <5% of operational  
t
Turn OFF time  
15  
µs  
CC  
OFF  
supply current  
7
Serial Interface  
f
Clock frequency  
10  
MHz  
ns  
CLOCK  
Set-up time: DATA to CLOCK,  
CLOCK to STROBE  
t
30  
SU  
t
Hold time: CLOCK to DATA  
Pulse width: CLOCK  
30  
30  
30  
ns  
H
t
W
ns  
Pulse width: STROBE  
NOTES:  
1. Parameter measured relative to modulation sideband amplitude.  
2. After programming the DC offset register for minimum offset. DCRES = 562k.  
3. The turn on time relates only to the power up time of the circuit. The settling time of the integrated baseband filters has to be added (for  
GSM–mode = 8µs with filter bandwidth setting resistor = 36k).  
DI  
(I2 * I1)  
|(I2 ) I1)|  
OUT + 2 @  
4. The relative output current variation is defined thus:  
; with V = 0.3V, V = V CP – 0.3V (see Figure 3).  
1
2
CC  
IOUT  
5. The output current matching is measured when both (positive current and negative current) sections of the output charge pumps are on.  
6. As soon as P PLL is set to LO, the phase detector is reset and no charge pumps pulses are generated.  
ON  
7. Guaranteed by design.  
Eno  
20log ǒ Ǔ  
8. NF =  
* VG  
where, E is the output noise voltage measured in a 1Hz bandwidth, R = 1200, VG = gain in dB.  
no  
ƪ
ƫ
Ǹ
4kTR  
9. Minimium frequency is guaranteed by design.  
address bits and 1 subaddress bit. Figure 2 shows the timing  
diagram of the serial input. When the STROBE = L, the clock driver  
is enabled and on the positive edges of the CLOCK the signal on  
DATA input is clocked into a shift register. When the STROBE = H,  
the clock is disabled and the data in the shift register remains stable.  
Depending on the value of the subaddress bit the data is latched  
into different working registers. Table 3 shows the contents of each  
word.  
CURRENT  
I
2
I
1
VOLTAGE  
V
1
V
2
Default States  
Upon power up (V DIG is applied) a reset signal is generated,  
CC  
which sets all registers to a default state. The logic level at the  
STROBE pin should be low during power up to guarantee a proper  
reset. These default states are shown in Table 3.  
I
2
I
1
SR00526  
Reference Divider  
The reference divider can be programmed to four different division  
ratios (:13, :26, :39, :52), see registers r0, r1; default setting: divide  
by 13.  
Figure 3. Relative Output Current Variation  
FUNCTIONAL DESCRIPTION  
Serial Programming Input  
The serial input is a 3-wire input (CLOCK, STROBE, DATA) to  
program the counter ratios, charge pump current, status- and  
DC-offset register, mode select and test register. The programming  
data is structured into two 21-bit words; each word includes 4 chip  
Main Divider  
The external VCO signal, applied to the LO and LO X inputs, is  
IN IN  
divided by two and then fed to the main divider (:N). The main  
divider is a programmable 9 bit divider, the minimum division ratio is  
8
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
divide by 64. The division ratio is binary coded and set in the  
registers n0 to n8. The default setting is a divide by 400.  
Status Register  
The s0 and s1 status bits determine the values of the logic output  
pins A and B . These outputs can be connected to the AGC  
OUT  
OUT  
At the completion of a main divider cycle, a main divider output is  
generated which will drive the phase detector.  
control inputs A and B of the SA1620. (See Figure 9)  
DC Offset Register  
Phase Detector  
Registers i0 to i3 and q0 to q3 control a correction to the output DC  
offset of the I and Q channels of the receiver. The polarity of the DC  
offset correction in the I and Q channels are determined by i0 and  
q0, respectively. The other bits set the magnitude of the offset  
correction. The step size of the two offset correction DACs is fixed  
by an external resistor between the DCRES pin and ground. A  
value of 120kwill give a step size of 200mV.  
The phase detector is a D-type flip-flop phase and frequency  
detector shown in Figure 5. The flip-flops are set by the negative  
edges of the output signals of the dividers. The rising edge of the  
signal L will reset the flip-flops after both flip-flops have been set.  
Around zero phase error this has the effect of delaying the reset for  
1 reference input cycle. This avoids non-linearity or deadband  
around zero phase error. The flip-flops drive on-chip charge pumps.  
A source current from the charge pump acts to increase the VCO  
frequency; a sink current acts to decrease the VCO frequency.  
Mode Select Register  
t0:  
switches the RX IF gain.  
t0 = 0  
t0 = 1  
no attenuation  
10dB attenuation  
Current Setting  
The charge pump current is defined by the current set between the  
pin I  
and V CP. The current value to be set there is 31.2µA.  
EE  
REF  
The attenuation switch is included between the IF amplifier and the I  
and Q mixers, thereby influencing the noise figure negligibly. The  
purpose of this switch is to provide another AGC step which does  
not influence the receiver noise figure. Please note that this gain  
change will influence the DC offset of the I and Q mixers.  
t1 = 0 test mode only, always to be set to 0.  
This current can be set by an external resistor to be connected  
between the pin I  
setting resistor) can be calculated with the formula  
and V CP. The typical value R  
(current  
REF  
EE  
EXT  
V
CCCP * 1.4V  
31.2mA  
REXT  
+
t2, t3 sets the mode of the level locked loop (LLL)  
The current can be set to zero by connecting the pin I  
to V CP.  
CC  
REF  
The LLL is a circuit which processes the LO input signal in order to  
provide an LO signal with a perfect 50% duty cycle, which  
determines the precision of the 90° shift of the I and Q mixing  
signals generated by the ÷2 divider. For an external tuning of the  
90° phase shift of the I and Q mixing signals, a trimming resistor  
Charge Pumps  
The charge pumps at pin CP are driven by the phase dectector and  
the current value is determined by the binary value of the charge  
pumps register CN = c2, c1, c0, default 1mA. The active charge  
pump current is typically:  
may be connected (but is not required) between the ADJ pin and  
IN  
ground, and the LLL has to be put in one of the following modes:  
|ICP| + (c0 ) 2c1 ) 4c2) @ 71mA ) 500mA  
Table 2.  
Mode Select Register  
LLL Status  
t2 t3  
Lock Detect  
The output LOCK is H when the phase detector indicates a lock  
condition. This condition is defined as a phase difference of less  
0
0
1
1
0
1
0
1
LLL on (no external tune, monitor performance, default)  
LLL on (with medium external tune)  
LLL off (tune externally)  
than ±1 cycle on the reference input CLK , CLK X.  
IN  
IN  
LLL on (with fine external tune)  
Test Modes (Synthesizer, Transmit Mixer)  
The LOCK output is selectable as a test output. Bits x0, x1 control  
the selection, the default setting is normal lock output as described  
in the Lock detect section. The selection of a Bit x0, x1 combination  
has a twofold effect: First it routes a divider output signal to the  
LOCK pin, second it disables mixer stages in the transmit path.  
Setting x0,1 = 11 disables both transmit path mixers. This mode can  
be used to prevent the transmitter from producing an IF output  
signal even if the transmit part is powered on (PDTx = 0V). This can  
be used to simplify the control timing while commanding the transmit  
and receive simultaneously without the transmit part causing  
interference.  
t4  
selects the bandwidth of the RC low pass filters at the I, Q  
Rx mixer outputs  
t4 = 0  
t4 = 1  
cutt-off frequency (-3dB) 110kHz  
cutt-off frequency (-3dB) 792kHz  
t5  
selects the bandwidth of the integrated 5th-order gyrator  
filters. The filters are tuneable over a range of 50kHz to  
1MHz with external resistors. The -3dB bandwidth is  
inversely proportional to the value of the external resistor.  
With  
t5, two external resistor values are selectable.  
t5 = 0  
the resistance between the pins RESA and  
RESB determines the cutoff frequency. For  
GSM a nominal bandwidth of 80kHz is chosen  
when the external resistor is 36k.  
Table 1.  
Test Modes  
Transmit Mixer  
Synthesizer Signal  
at LOCK Pin  
x0 x1  
Q-mixer I-mixer  
t5 = 1  
a second resistor between the pins RESB and  
RESD is connected in parallel to the first  
external resistor, thus increasing the filter  
bandwidth. The relative amplification is  
decreased in this mode.  
0
1
0
1
0
0
1
1
normal lock detect  
on  
off  
on  
off  
on  
on  
off  
off  
CLK divided by reference  
IN  
divider ratio  
LO ÷ 2 * (main divider ratio)  
IN  
main divider output, that goes to  
the phase detector  
9
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
The overall filter response in the receive section is the sum of the  
filter responses of the passive RC low-pass filter and the active  
gyrator filter.  
P
Rx = H powers up the receiver part.  
ON  
PDTx = L powers up the transmitter part.  
PLL = H powers up the synthesizer part. As it also powers up  
P
ON  
Power Down Modes  
the first divide by 2 stage for generating the 0/90 degree phase  
shifted signals for the transmit and receive mixers, it also has to be  
There are 4 power-on pins in the SA1638: P , P Rx, PDTx,  
ON  
ON  
P
ON  
PLL.  
set H if either the transmit part or the receive part is used. P PLL  
ON  
= L powers down the dividers, resets the phase detector and  
P
= H powers up both voltage regulators V  
1 and V  
2. P  
REG ON  
ON  
REG  
disconnects the current setting pin I  
. In P PLL = L mode, the  
REF ON  
should be set to L, if these internal voltage regulators are not to be  
used.  
values in the serial input registers are still kept and the part still can  
be reprogrammed as long as V DIG is present.  
CC  
Table 3. Definition of SA1638 Serial Registers  
First data word: (shown with default values)  
Sub  
Adr  
Address SA1638  
N-Divider  
Ref ÷ Reg  
Charge-Pump  
Reg Test  
LSB  
MSB  
a0  
a1  
a2  
a3  
sa  
n0  
n1  
n2  
n3  
n4  
n5  
n6  
n7  
n8  
r0  
r1  
c0  
c1  
c2  
x0  
x1  
1
1
1
0
0
1
1
0
0
1
0
0
0
0
0
0
1
1
1
0
0
Address: 4 bits, a0...a3, fixed to 1110  
Sub:Address: 1 bit, sa, fixed to 0 for first data word  
N-Divider: 9 bits, n0...n8, values 64 (00100 0000) to 511 (111111111) allowed for IF-choice, default 400  
Reference Divider Register: 2 bits, r0...r1, 00 = ÷13, 01 = ÷26, 10 = ÷39, 11 = ÷52. Default: 00  
Charge-Pump Register: 3 bits, c0...c2, Binary current setting factor for charge pumps, values 000 = minimum current to 111 =  
maximum current, default maximum charge pump current  
Test Register: 2 bits, x0...x1, default 00, see Functional Description  
Second data word: (shown with default values)  
DC Offset Register  
Q-Channel I-Channel  
Sub  
Adr  
Status  
Reg  
Address SA1638  
Mode Select Register  
MSB  
LSB  
t5  
a0  
a1  
a2  
a3  
sa  
s0  
s1  
q0  
q1  
q2  
q3  
i0  
i1  
i2  
i3  
t0  
t1  
t2  
t3  
t4  
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Address: 4 bits, a0...a3, fixed to 1110  
Sub:Address: 1 bit, sa, fixed to 1 for second data word  
Status Register: 2 bits, s0 sets pin A ; s1 sets pin B  
, see Functional Description  
OUT  
OUT  
DC Offset Register: 4 bits per channel, i0...i3 and q0...q3, no correction as default  
i0 and q0 switches offset polarity, 0 to lower voltage, 1 to higher voltage  
il...i3 and q1...q3, 000 no correction to 111 max. correction enabled  
Mode Select Register: 6 bits,  
t0...t5,  
000000 = normal GSM-Operation as default, see Functional Description  
10  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
LSB  
MSB  
DATA  
a
a
0
X
or t  
X or t  
0 4  
1
1
5
t
H
t
t
SU  
SU  
50%  
CLOCK  
FIRST CLOCK  
LAST CLOCK  
FIRST CLOCK  
t
SU  
STROBE  
CLOCK ENABLED  
SHIFT IN DATA  
CLOCK  
DISABLED  
STORE DATA  
t
W
50%  
CLOCK  
SR00527  
STROBE  
Figure 4. Serial Input Timing Sequence  
L
“1”  
R
D
C
Q
REFERENCE  
DIVIDER  
CLK  
IN  
V
CP  
CC  
R
R
P
P-TYPE  
CHARGE PUMP  
C
P
“1”  
X
D
C
MAIN  
DIVIDER  
LO  
IN  
÷2  
N-TYPE  
CHARGE PUMP  
Q
N
V
SS  
CLK  
IN  
L
R
X
P
N
I
CP  
SR00528  
Figure 5. Phase Detector Structure with Timing  
11  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
PIN FUNCTIONS  
PIN  
PIN  
PIN  
PIN  
DC V  
EQUIVALENT CIRCUIT  
DC V  
EQUIVALENT CIRCUIT  
No. MNEMONIC  
No. MNEMONIC  
5
6
BG  
1.2  
47  
48  
V
TxRx  
3.0  
2.5  
CC  
10  
10  
11  
RES  
0.05  
D
A
+
1
t5  
35k  
GND  
V
1
REG  
0.0  
47  
RES  
0.00  
25k  
11  
40 43 46  
48  
1
2
1
REG  
3.0  
3.0  
40  
43 46  
5
6
V
F2  
REG  
BG  
2.5  
1.2  
3
4
V
2
REG  
ON  
3.0  
0.0  
REG  
+
3
2
GND  
2
35k  
25k  
12  
RES  
0.05  
B
5
6
P
3.3  
3.3  
4
12  
V
BATT  
40  
43 46  
13  
P
ON  
Rx  
3.0  
7
13  
7
A
OUT  
3.0  
14  
V
REF  
1.5  
8
8
B
OUT  
3.0  
14  
15  
16  
17  
QRX  
QRX  
1.5  
1.5  
1.5  
OUT  
X
OUT  
9
15, 17  
16, 18  
9
DC  
1.6  
RES  
IRX  
OUT  
18  
IRX X  
OUT  
1.5  
SR00529  
Figure 6. Pin Functions  
12  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
PIN FUNCTIONS (continued)  
PIN  
PIN  
PIN  
PIN  
DC V  
EQUIVALENT CIRCUIT  
DC V  
1.6  
EQUIVALENT CIRCUIT  
No. MNEMONIC  
No. MNEMONIC  
19  
20  
21  
22  
QTX  
1.5  
1.5  
1.5  
1.5  
IN  
19, 20, 21, 22  
QTX  
ITX  
X
IN  
IN  
35  
I
REF  
35  
ITX  
X
IN  
36  
37  
V
CP  
0.0  
EE  
23  
PdTx  
0.0  
23  
37  
CP  
24  
25  
26  
V
DIG  
3.0  
3.0  
CC  
38  
39  
V
CP  
3.0  
3.0  
CC  
V
DIG  
EE  
P
ON  
PLL  
DATA  
39  
27  
28  
CLOCK  
26, 27, 28  
40  
41  
GND3  
0.0  
STROBE  
41  
42  
TXIF  
X
X
OUT  
29  
29  
LOCK  
42  
TXIF  
OUT  
30  
31  
CLK  
2.0  
2.0  
IN  
30  
31  
43  
44  
GND2  
0.0  
1.5  
CLK  
X
IN  
RxIF  
X
IN  
44  
45  
45  
46  
RxIF  
1.5  
0.0  
IN  
32  
32  
ADJ  
2.0  
IN  
V
REF  
GND1  
33  
34  
LO  
2.0  
2.0  
IN  
47  
48  
V
TxRx  
3.0  
0.0  
CC  
33  
34  
LO  
X
IN  
GND  
1
REG  
SR00530  
Figure 7. Pin Functions (cont.)  
13  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
output power can be reduced to an appropriate level by choice of  
an external resistor.  
Overview of Dual GSM/PCN Architecture  
The SA1620 RF front-end and SA1638 IF transceivers form a dual  
conversion architecture which uses a common IF and standard I/Q  
baseband interface for both transmit and receive paths. The time  
division multiplex nature of the GSM system permits integration of  
the transmit and receive functions together on the one RF and one  
IF chips. This simplifies the distribution of local oscillator signals,  
maximizes circuitry commonality, and reduces power consumption.  
DC offsets generated in the receive channel are independent of  
the LNA AGC setting, and correctable by software to prevent  
erosion of signal handling dynamic range by DC offsets.  
Minimal high-quality filter requirements. As a result of the  
integration in the SA1638 of high quality channel selectivity filters,  
only sufficient filtering is needed in the receive path to provide  
blocking protection for the second mixers. This reduces receiver  
cost and size.  
The SA1620 and SA1638 allow considerable flexibility to optimize  
the transceiver design for particular price/size/performance  
requirements, through choice of appropriate RF and IF filters. The  
IF may be chosen freely in the range 70–400 MHz. The same IF  
can be used in the transmit and receive directions. Alternately,  
different IFs can be used if the SA1638 synthesizer frequency is  
switched between transmit and receive timeslots. The comparison  
frequency of the SA1638 PLL is high in order to provide fast  
switching time.  
Operation at a high IF allows RF image reject filter requirements  
to be relaxed. For example, at a 400MHz IF, the natural gain  
roll-off in the SA1620 LNAs and mixer suppresses the image  
signal in the 1800MHz band by typically 28dB below the desired  
900MHz band signal.  
DC Offset Correction  
With suitable choice of the IF, an identical SA1638 IF receiver  
design can be used for both 900MHz GSM and 1800MHz PCN  
(DCS1800) equipment.  
DC offset correction is provided by two DACs each feeding into one  
of the two Rx channels. The step size of both DACs is set by the  
value of the external resistor between DCRES and ground. Thus  
any original offset less than 1.5V magnitude in either channel can be  
reduced to the specified level by selecting the appropriate DAC  
setting via the serial interface.  
General Benefits/Advantages  
2.7V operation. Compatible with 3V digital technology and  
portable applications. (Higher voltage operation also possible, if  
desired.)  
Integrated Receive Filters  
The low-pass characteristics of the Rx channel are determined by  
two low-pass responses. The first of these is a passive filter at the  
output of the quadrature mixers and the second is the low-pass  
filters which follow the post-mixer amplifiers. These specifications  
refer only to the response of the default state, but this may be  
switched by the control register to an alternative setting with a  
nominal 3dB point of 792kHz.  
Excellent dynamic range. The availability of two LNAs in the  
SA1620 allows flexibility in receiver dynamic design for portable  
and mobile GSM spec. applications with appropriate filters. If for  
a particular application a GaAs or discrete front-end is desired,  
one of the LNAs can be left unpowered. Placing the AGC gain  
switches at the front results in some attenuation most of the time,  
further increasing typical dynamic performance beyond that  
specified by GSM.  
The corner frequency of the low pass filters can be adjusted over a  
wide range by varying the value of the external resistor between  
RESA and RESB. The range of feasible corner frequencies extends  
at least between 50kHz and 500kHz.  
High power transmit output driver, delivering +7.5dBm output.  
This is sufficient to drive a filter and power amplifier input, without  
a driver amplifier. To avoid unnecessary current consumption, the  
14  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VREG1  
GNDREG1  
100nF  
2
VREGF2  
3V  
V
TxRx  
CC  
0–30mA  
3
VREG2  
GND1  
RxIN  
1.8pF  
2.5k  
TC4–14  
100nF  
4
GNDREG2  
RxIFIN  
RxIFINX  
GND2  
0–30mA  
1800Ω  
33nH  
51.4Ω  
51.4Ω  
P
ON  
5
6
1.8pF  
P
V
ON  
1nF  
2:1  
V
BATT  
BATT  
TxOUT  
100nF  
17.4Ω  
TC4–14  
A
B
OUT  
OUT  
7
TxIFOUT  
TxIFOUTX  
GND3  
A
B
OUT  
OUT  
294Ω  
294Ω  
8
2:1  
9
2–3V  
PLL  
1nF  
DCRES  
112kΩ  
1MΩ  
P
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
ON  
RESD  
RESA  
RESB  
P
PLL  
ON  
100nF  
1nF  
22kΩ  
56kΩ  
V
CCP  
VCP  
V
CCP  
CP  
10nF  
P
Rx  
ON  
P
V
Rx  
V
CP  
ON  
EE  
VCO  
800MHz  
V
REF  
I
REF  
REF  
4740Ω  
4.7nF  
10nF  
10nF  
17.4Ω  
470pF  
QRxOUT  
LOINX  
LOIN  
LOIN  
294Ω  
294Ω  
10kΩ  
QRxOUTX  
IRxOUT  
IRxOUTX  
QTxIN  
ADJ  
IN  
Rx OUT  
+
ADJ  
IN  
10kΩ  
1nF  
CLKIN  
10nF  
17.4Ω  
294Ω  
CLKIN  
10kΩ  
49.9Ω  
294Ω  
CLKINX  
LOCK  
10kΩ  
10nF  
I/Q  
LOCK  
QTxINX  
ITxIN  
GEN  
2.7pF  
STROBE  
STROBE  
DC - 1MHz  
10pF  
3-WIRE  
SERIAL  
BUS  
CLOCK  
DATA  
ITxINX  
PDTx  
CLOCK  
DATA  
10pF  
PD Tx  
10pF  
1nF  
V
CC DIG  
V
V
EE DIG  
CC DIG  
1nF  
10nF  
SR00531  
Figure 8. SA1638 Test Circuit  
15  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
SR00532  
Figure 9. SA1620 / SA1638 System Block Diagram  
16  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
TYPICAL PERFORMANCE CHARACTERISTICS  
Regulator Dropout Voltage vs. Temperature and V  
Regulator Supply Current vs. Temperature and V  
BATT  
BATT  
5
4.5  
4
7
6.5  
6
7.5V  
No Load  
I
=30mA  
3.5  
3
LOAD  
5.5  
5
5.5V  
2.5  
2
3.3V  
4.5  
4
5.5V  
7.5V  
1.5  
1
3.5  
3
3.3V  
0.5  
0
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Regulator Load Regulation vs.  
Temperature and V  
Regulator Powerdown Supply Current vs.  
Temperature and V  
BATT  
BATT  
40  
35  
30  
25  
20  
15  
10  
5
1
0.8  
0.6  
0.4  
0.2  
0
ILoad = 15mA to 30mA  
7.5V  
7.5V  
5.5V  
5.5V  
3.3V  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
3.3V  
0
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
Regulator Output Voltage vs.  
Regulator Line Regulation vs.  
Temperature and V  
Temperature and V  
BATT  
BATT  
3.15  
3.1  
0.4  
3.3V  
5.5V  
0.3  
0.2  
0.1  
0
I
=15ma  
LOAD  
I
=15mA  
5.5V  
LOAD  
7.5V  
7.5V  
3.05  
3
3.3V  
-0.1  
-0.2  
-0.3  
-0.4  
2.95  
2.9  
2.85  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
Figure 10. Typical Performance Characteristics  
17  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Transmitter Output Second Harmonic Distortion  
Transmitter Input Modulation Bandwidth vs.  
-50  
Temperature and V TxRx  
CC  
1100.0  
1050.0  
1000.0  
950.0  
900.0  
850.0  
800.0  
Tx In = 1.5V  
P-P  
ITXIN=ITXINX=QTXIN=QTXINX=1.5Vpp  
-55  
-60  
-65  
-70  
2.7V  
5.5V  
4.0V  
3.0V  
4V  
2.7V  
-50  
-30  
-10  
10  
30  
50  
70  
90  
3V  
Temperature (°C)  
5.5V  
Transmitter Output Third Harmonic vs.  
Temperature and V TxRx  
CC  
-50  
-55  
-60  
-65  
-70  
-50  
0
50  
100  
Temperature (°C)  
TX =1.5V  
IN  
P-P  
2.7V  
3V  
4V  
Transmitter Output Fourth Harmonic Distortion  
5.5V  
-60  
-65  
-70  
-75  
-80  
Tx In = 1.5V  
P-P  
-50  
-30  
-10  
10  
30  
50  
70  
90  
2.7V  
Temperature (°C)  
3V  
4V  
5.5V  
Transmitter Output Fifth Harmonic Distortion  
-60  
-65  
-70  
-75  
-80  
Tx In = 1.5V  
P-P  
3V  
4V  
-50  
0
50  
100  
Temperature (°C)  
5.5V  
-50  
0
50  
100  
Temperature (°C)  
Figure 11. Typical Performance Characteristics (continued)  
18  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Transmitter RMS Output Current  
vs. Temperature and V TxRx  
Transmitter Output Saturation vs.  
Temperature and VccTxRx  
CC  
-50  
-52  
-54  
-56  
-58  
-60  
-62  
-64  
-66  
-68  
-70  
1.1  
1.05  
1
TXIFOUT=TXIFOUTX=VccTxRx–0.3V  
2.7V  
3.0V  
4.0V  
IF=400MHz  
0.95  
0.9  
5.5V  
4.0V  
3.0V  
2.7V  
0.85  
0.8  
5.5V  
0.75  
0.7  
0.65  
0.6  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
Transmitter LO Suppression vs.  
Temperature and VccTxRx  
Transmitter DC Output Current vs.  
Temperature and V TxRx  
CC  
2.5  
-36.0  
-38.0  
-40.0  
-42.0  
-44.0  
-46.0  
-48.0  
-50.0  
2.4  
2.3  
2.2  
2.1  
2
5.5V  
4.0V  
3.0V  
2.7V  
5.5V  
4.0V  
3.0V  
2.7V  
1.9  
1.8  
1.7  
1.6  
1.5  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
Transmit Noise Floor vs Temperature and Supply Voltage  
Transmitter Side Band Suppresion vs.  
TxRx and Temperature  
-126  
V
CC  
Baseband Input = 1.5V  
P-P  
differential, 30kHz  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-127  
-128  
-129  
-130  
-131  
-132  
-133  
-134  
-135  
-136  
600kHz from Carrier  
5.5V  
4.0V  
3.0V  
5.5V  
4V  
3V  
2.7V  
2.7V  
5.5V  
4V  
3V  
2.7V  
10MHz from Carrier  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Figure 12. Typical Performance Characteristics (continued)  
19  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Transmitter Input Common Mode Range  
Vs. Supply Voltage  
Receiver 3dB Bandwidth vs. Temperature and V TxRx  
CC  
0
-20  
-40  
-60  
-80  
100.0  
90.0  
80.0  
70.0  
60.0  
50.0  
40.0  
2.7V  
3.0V  
T = +25°C  
4.0V  
5.5V  
5.5V  
2.7V 3.0V  
4.0V  
0
1
2
3
4
5
6
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
COMMON MODE VOLTAGE  
Temperature (°C)  
Receiver NF vs Temperature and Supply Voltage  
16  
14  
12  
10  
8
Receiver Gain vs. Temperature and V TxRx  
CC  
60.0  
Relative to 1200source resistance  
5.5V  
58.0  
56.0  
54.0  
52.0  
50.0  
48.0  
46.0  
44.0  
42.0  
40.0  
IF=400.005MHz, LO=400MHz  
4.0V  
3.0V  
2.7V  
2.7V  
3V  
5.5V  
4V  
6
4
2
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
0
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Receiver Gain match vs V TxRx and Temperature  
CC  
Receiver Channel Matching Phase Error  
vs. Temperature and V TxRx  
1
CC  
5
0.8  
0.6  
0.4  
0.2  
0
4
3
2
5.5V  
2.7V  
1
5.5V  
0
3.0V  
4.0V  
3.0V  
4.0V  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-1  
-2  
-3  
-4  
-5  
2.7V  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
Figure 13. Typical Performance Characteristics (continued)  
20  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Receiver Corrected Output Offset Voltage  
Receiver In–band 1dB Compression Point  
vs. Temperature and V TxRx  
CC  
vs. Temperature and V TxRx  
CC  
200  
150  
100  
50  
-47.0  
-49.0  
-51.0  
-53.0  
-55.0  
-57.0  
-59.0  
DCRes Resistor=100k  
5.5V  
4.0V  
2.7V  
3.0V  
5.5V  
0
3.0V  
4.0V  
-50  
2.7V  
-100  
-150  
-200  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
SA1638 Receiver QRXOUT Voltage  
Reference Voltage  
1.8  
1.7  
1.6  
1.5  
1.4  
1.8  
5.5V  
5.5V  
1.75  
1.7  
4V  
1.65  
4V  
1.6  
3V  
3V  
1.55  
2.7V  
2.7V  
1.5  
1.45  
-50  
0
50  
100  
-50  
0
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LO Maximum Frequency Div800  
Receiver IP2 vs Temperature and Supply Voltage  
IN  
1100  
1050  
1000  
950  
5.00  
4.00  
3.00  
2.00  
1.00  
0
V
= 100mV  
LOIN PEAK  
3V  
3V  
2.7V  
5.5V  
4V  
4V  
-1.00  
-2.00  
-3.00  
-4.00  
-5.00  
2.7V  
5.5V  
900  
-50  
0
50  
100  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
Temperature (°C)  
Figure 14. Typical Performance Characteristics (continued)  
21  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
CLK Maximum Frequency Div52  
N Charge Pump  
IN  
Output Current 000  
250  
-495  
-500  
-505  
-510  
-515  
-520  
-525  
2.7V  
2.7V  
3V  
225  
3V  
4V  
4V  
200  
175  
150  
V
= 100mV  
PEAK  
CLKIN  
5.5V  
50  
5.5V  
-50  
0
50  
100  
-50  
0
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
P Charge Pump  
Output Current 111  
N Charge Pump Relative  
Output Variation  
-1000  
-1010  
-1020  
-1030  
-1040  
-1050  
-1060  
1.25  
1
2.7V  
5.5V  
3V  
0.75  
0.5  
0.25  
0
4V  
4V  
5.5V  
3V  
2.7V  
-50  
0
50  
100  
-50  
0
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Charge Pump Match  
Current 111  
Charge Pump Output Leakage Current  
0.25  
-20  
-30  
-40  
-50  
-60  
2.7V  
2.7V  
3V  
3V  
0
-0.25  
-0.5  
4V  
4V  
5.5V  
5.5V  
-0.75  
-50  
0
50  
100  
-50  
0
50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. Typical Performance Characteristics (continued)  
22  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Transmitter Supply Current vs.  
Receiver Supply Current vs.  
Temperature and V TxRx  
Temperature and V TxRx  
CC  
CC  
26  
24  
22  
20  
18  
16  
14  
12  
10  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
5.5V  
4.0V  
5.5V  
4.0V  
3.0V  
2.7V  
3.0V  
2.7V  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Temperature (°C)  
Temperature (°C)  
Power Down Supply Current vs.  
Receiver Uncorrected Output Offset  
Voltage vs Temperature and V TxRx  
Temperature and V TxRx  
CC  
CC  
270  
265  
260  
255  
250  
160  
140  
120  
100  
80  
DCRES = 100kΩ  
5.5V  
4.0V  
3.0V  
2.7V  
60  
40  
5.5V  
245 4.0V  
3.0V  
20  
2.7V  
240  
-50  
0
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-30  
-10  
10  
30  
50  
70  
90  
Temperature (°C)  
TEMPERATURE (°C)  
Receiver Output Offset Control Step  
Receiver Output Offset Control Step Size vs  
Temperature and V TxRx  
Size vs Temperature and V TxRx  
CC  
CC  
37  
36  
330  
320  
310  
300  
290  
280  
DCRES = 100kΩ  
5.5V  
4.0V  
3.0V  
DCRES = 1MΩ  
5.5V  
35  
34  
33  
32  
4.0V  
3.0V  
2.7V  
2.7V  
-50  
-30  
-10  
10  
30  
50  
70  
90  
-50  
-30  
-10  
10  
30  
50  
70  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. Typical Performance Characteristics (continued)  
23  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
24  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
NOTES  
25  
1997 Sept 03  
Philips Semiconductors  
Product specification  
Low voltage IF I/Q transceiver  
SA1638  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 2000  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 08-98  
Document order number:  
9397 750 06847  
Philips  
Semiconductors  

相关型号:

SA1641-.10K

1 ELEMENT, 0.1 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.15K

1 ELEMENT, 0.15 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.18K

1 ELEMENT, 0.18 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.27K

1 ELEMENT, 0.27 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.39K

1 ELEMENT, 0.39 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.47K

1 ELEMENT, 0.47 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.56K

1 ELEMENT, 0.56 uH, PHENOLIC-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-.82K

1 ELEMENT, 0.82 uH, IRON-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-1.2K

1 ELEMENT, 1.2 uH, IRON-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-1.5K

1 ELEMENT, 1.5 uH, IRON-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-1.8K

1 ELEMENT, 1.8 uH, IRON-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK

SA1641-100K

1 ELEMENT, 100 uH, FERRITE-CORE, GENERAL PURPOSE INDUCTOR
ECLIPTEK