SA5212A [NXP]

Transimpedance amplifier 140MHz; 跨阻放大器140MHz的
SA5212A
型号: SA5212A
厂家: NXP    NXP
描述:

Transimpedance amplifier 140MHz
跨阻放大器140MHz的

放大器
文件: 总20页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
SA5212A  
Transimpedance amplifier (140MHz)  
Product specification  
1998 Oct 07  
Replaces datasheet NE/SA/SE5212A of 1995 Apr 26  
IC19 Data Handbook  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
DESCRIPTION  
PIN CONFIGURATION  
The SA5212A is a 14ktransimpedance, wideband, low noise  
differential output amplifier, particularly suitable for signal recovery in  
fiber optic receivers and in any other applications where very low  
signal levels obtained from high-impedance sources need to be  
amplified.  
N, FE, D Packages  
1
2
3
4
8
7
6
5
I
GND  
2
IN  
OUT (–)  
V
CC  
GND  
2
GND  
GND  
1
1
FEATURES  
OUT (+)  
Extremely low noise: 2.5pA/Hz  
Single 5V supply  
SD00336  
Large bandwidth: 140MHz  
Differential outputs  
Figure 1. Pin Configuration  
Low input/output impedances  
14kdifferential transresistance  
ESD hardened  
Wideband gain block  
Medical and scientific instrumentation  
Sensor preamplifiers  
Single-ended to differential conversion  
Low noise RF amplifiers  
APPLICATIONS  
Fiber-optic receivers, analog and digital  
RF signal processing  
Current-to-voltage converters  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
-40°C to +85°C  
ORDER CODE  
DWG #  
SOT96-1  
SOT97-1  
0580A  
8-Pin Plastic Small Outline (SO) Package  
8-Pin Plastic Dual In-Line Package (DIP)  
8-Pin Ceramic Dual In-Line Package (DIP)  
SA5212AD  
SA5212AN  
SA5212AFE  
-40°C to +85°C  
-40°C to +85°C  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
SA5212A  
UNIT  
V
CC  
Power Supply  
6
V
1
Power dissipation, T =25°C (still air)  
A
8-Pin Plastic DIP  
8-Pin Plastic SO  
8-Pin Cerdip  
1100  
750  
mW  
mW  
mw  
mA  
°C  
P
D MAX  
750  
2
I
Maximum input current  
5
IN MAX  
T
A
Operating ambient temperature range  
Operating junction  
-40 to 85  
-55 to 150  
-65 to 150  
T
J
°C  
T
Storage temperature range  
°C  
STG  
NOTES:  
1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance:  
8-Pin Plastic DIP: 110°C/W  
8-Pin Plastic SO: 160°C/W  
8-Pin Cerdip: 165°C/W  
2. The use of a pull-up resistor to V , for the PIN diode, is recommended  
CC  
2
1998 Oct 07  
853-1266 20142  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
RATING  
4.5 to 5.5  
-40 to +85  
-40 to +105  
UNIT  
V
V
CC  
Supply voltage range  
T
A
Ambient temperature ranges  
Junction temperature ranges  
°C  
T
J
°C  
DC ELECTRICAL CHARACTERISTICS  
Minimum and Maximum limits apply over operating temperature range at V =5V, unless otherwise specified. Typical data applies at V =5V  
CC  
CC  
1
and T =25°C .  
A
SYMBOL  
PARAMETER  
Input bias voltage  
TEST CONDITIONS  
Min  
0.55  
2.5  
Typ  
0.8  
3.3  
Max  
1.05  
3.8  
UNIT  
V
V
V
IN  
Output bias voltage  
V
±
O
V
Output offset voltage  
120  
33  
mV  
mA  
mA  
µA  
µA  
OS  
CC  
I
Supply current  
20  
3
26  
4
I
Output sink/source current  
Maximum input current (2% linearity)  
Maximum input current overload threshold  
OMAX  
I
IN  
Test Circuit 6, Procedure 2  
Test Circuit 6, Procedure 4  
±40  
±60  
±80  
±120  
I
N MAX  
NOTES:  
1. As in all high frequency circuits, a supply bypass capacitor should be located as close to the part as possible.  
3
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
AC ELECTRICAL CHARACTERISTICS  
Minimum and Maximum limits apply over operating temperature range at V =5V, unless otherwise specified. Typical data applies at V =5V  
CC  
CC  
5
and T =25°C .  
A
SYMBOL  
PARAMETER  
TEST CONDITIONS  
Min  
Typ  
Max  
UNIT  
DC tested, R = ∞  
Test Circuit 6, Procedure 1  
L
R
T
Transresistance (differential output)  
9.0  
14  
19  
kΩ  
R
R
R
Output resistance (differential output)  
Transresistance (single-ended output)  
Output resistance (single-ended output)  
DC tested  
14  
4.5  
7
30  
7
46  
9.5  
23  
kΩ  
O
DC tested, R = ∞  
T
L
DC tested  
Test Circuit 1  
D package,  
15  
O
f
Bandwidth (-3dB)  
T = 25°C  
A
100  
140  
MHz  
3dB  
N, FE packages,  
T = 25°C  
A
100  
70  
120  
110  
10  
R
C
Input resistance  
150  
18  
IN  
IN  
Input capacitance  
pF  
R/V  
Transresistance power supply sensitivity  
V
CC  
= 5 ±0.5V  
9.6  
%/V  
Transresistance ambient  
temperature sensitivity  
D package  
T = T -T  
R/T  
0.05  
2.5  
20  
%/°C  
A
A MAX A MIN  
RMS noise current spectral density  
(referred to input)  
Test Circuit 2  
f = 10MHz T = 25°C  
I
pA/Hz  
N
T
A
T = 25°C Test Circuit 2  
A
f = 50MHz  
f = 100MHz  
f = 200MHz  
f = 50MHz  
f = 100MHz  
f = 200MHz  
Integrated RMS noise current over the band-  
width (referred to input) C = 0  
1
27  
40  
22  
32  
52  
S
I
nA  
C = 1pF  
S
Any package  
DC tested  
2
2
PSRR  
PSRR  
Power supply rejection ratio  
V = 0.1V  
20  
33  
dB  
dB  
CC  
Equivalent AC  
Test Circuit 3  
Any package  
Power supply rejection ratio  
(ECL configuration)  
1
f = 0.1MHz  
23  
Test Circuit 4  
R = ∞  
Test Circuit 6, Procedure 3  
L
V
V
Maximum differential output voltage swing  
Maximum input amplitude for output duty  
1.7  
3.2  
V
P-P  
O MAX  
Test Circuit 5  
325  
2.0  
mV  
P-P  
IN MAX  
3
cycle of 50 ±5%  
4
t
R
Rise time for 50mV output signal  
Test Circuit 5  
ns  
NOTES:  
1. Package parasitic capacitance amounts to about 0.2pF.  
2. PSRR is output referenced and is circuit board layout dependent at higher frequencies. For best performance use RF filter in V line.  
CC  
3. Guaranteed by linearity and over load tests.  
4. t defined as 20-80% rise time. It is guaranteed by -3dB bandwidth test.  
R
5. As in all high frequency circuits, a supply bypass capacitor should be located as close to the part as possible.  
4
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
TEST CIRCUITS  
SINGLE-ENDED  
DIFFERENTIAL  
V
V
OUT  
OUT  
R
+
2 @ S21 @ R  
R
+
+
4 @ S21 @ R  
t
t
V
V
IN  
IN  
O Ť1 S22Ť *  
)
O Ť1 S22Ť *  
)
R
+
Z
33  
R
2Z  
66  
O
O
1
*
S22  
1 * S22  
SPECTRUM ANALYZER  
NETWORK ANALYZER  
V
A
= 60DB  
CC  
V
1µF  
1µF  
33  
33  
OUT  
S-PARAMETER TEST SET  
IN DUT  
NC  
PORT 1  
PORT 2  
OUT  
GND  
R
= 50  
L
V
CC  
GND  
1
2
1µF  
1µF  
33  
OUT  
OUT  
0.1µF  
R = 1k  
Z
= 50Ω  
O
IN DUT  
33  
R
L
= 50Ω  
50  
GND  
GND  
1
2
Test Circuit 1  
Test Circuit 2  
SD00337  
Figure 2. Test Circuits 1 and 2  
NETWORK ANALYZER  
5V + V  
S-PARAMETER TEST SET  
10µF  
10µF  
PORT 1  
PORT 2  
CURRENT PROBE  
1mV/mA  
10µF  
0.1µF  
16  
CAL  
V
CC  
1µF  
33  
OUT  
DUT  
OUT  
50  
TEST  
100  
BAL.  
NC  
TRANSFORMER  
UNBAL.  
IN  
1
NH0300HB  
33  
1µF  
GND  
GND  
2
SD00338  
Test Circuit 3  
Figure 3. Test Circuit 3  
5
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
TEST CIRCUITS (Continued)  
NETWORK ANALYZER  
–5.2V + V  
S-PARAMETER TEST SET  
10µF  
10µF  
0.1µF  
PORT 1  
PORT 2  
CURRENT PROBE  
1mV/mA  
0.1µF  
16  
CAL  
GND  
GND  
2
1
1µF  
33  
OUT  
50  
TEST  
100  
BAL.  
NC  
TRANSFORMER  
UNBAL.  
IN  
NH0300HB  
33  
OUT  
1µF  
V
CC  
Test Circuit 4  
SD00339  
Figure 4. Test Circuit 4  
PULSE GEN.  
5V  
1µF  
33  
OUT  
A
B
Z
= 50Ω  
0.1µF  
IN  
O
1k  
DUT  
33  
OSCILLOSCOPE  
= 50Ω  
Z
O
OUT  
1µF  
50  
Measurement done using  
differential wave forms  
GND  
GND  
2
1
SD00545  
Test Circuit 5  
Figure 5. Test Circuit 5  
6
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
TEST CIRCUITS (Continued)  
Typical Differential Output Voltage  
vs Current Input  
5V  
+
OUT +  
V
(V)  
OUT  
IN  
DUT  
OUT –  
I
(µA)  
IN  
GND  
GND  
2
1
2.00  
1.60  
1.20  
0.80  
0.40  
0.00  
–0.40  
–0.80  
–1.20  
–1.60  
–2.00  
–200  
–160  
–120  
–80  
–40  
0
40  
80  
120  
160  
200  
CURRENT INPUT (µA)  
NE5212A TEST CONDITIONS  
Procedure 1  
R
R
measured at 30µA  
T
T
= (V  
O1  
– V )/(+30µA – (–30µA))  
O2  
Where: V  
Measured at I = +30µA  
O1  
IN  
V
Measured at I = –30µA  
O2  
IN  
Procedure 2  
Linearity = 1 – ABS((V  
– V  
OB  
) / (V  
O3  
– V ))  
O4  
OA  
Where: V  
Measured at I = +60µA  
O3  
IN  
V
Measured at I = –60µA  
O4  
IN  
V
+ R @ () 60mA) ) V  
OA  
T
OB  
V
+ R @ (* 60mA) ) V  
OB  
= V  
T
OB  
Procedure 3  
Procedure 4  
V
– V  
OMAX  
Where: V  
O7  
O8  
Measured at I = +130µA  
O7  
IN  
V
Measured at I = –130µA  
O8  
IN  
I
Test Pass Conditions:  
IN  
V
– V  
O5  
> 20mV and V – V > 20mV  
06 O5  
O7  
Where: V  
Measured at I = +800µA  
O5  
IN  
V
Measured at I = –80µA  
O6  
O7  
O8  
IN  
V
Measured at I = +130µA  
IN  
V
Measured at I = –130µA  
IN  
SD00340  
Test Circuit 8  
Figure 6. Test Circuit 8  
7
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
TYPICAL PERFORMANCE CHARACTERISTICS  
NE5212A Supply Current  
vs Temperature  
NE5212A Input Bias Voltage  
NE5212A Output Bias Voltage  
vs Temperature  
vs Temperature  
3.50  
3.45  
3.40  
3.35  
3.30  
3.25  
950  
900  
850  
800  
750  
700  
650  
600  
30  
29  
28  
27  
26  
25  
V
= 5.0V  
V
= 5.0V  
V = 5.0V  
CC  
CC  
CC  
PIN 5  
PIN 7  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
NE5212A Differential Output Swing  
vs Temperature  
NE5212A Output Offset Voltage  
vs Temperature  
NE5212A Differential Transresistance  
vs Temperature  
3.8  
80  
17.0  
V
= 5.0V  
CC  
DC TESTED  
V
V
= 5.0V  
= V  
60  
CC  
OS  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
V
= 5.0V  
CC  
DC TESTED  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
– V  
OUT7  
OUT5  
R
= ∞  
L
40  
R
= ∞  
L
20  
0
–20  
–40  
–60  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60 –40 –20  
0
20 40 60 80 100 120 140  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
NE5212A Output Resistance  
vs Temperature  
NE5212A Power Supply Rejection Ratio  
vs Temperature  
NE5212A Typical  
Bandwidth Distribution  
(75 Parts from 3 Wafer Lots)  
40  
17  
16  
15  
14  
13  
12  
11  
10  
9
V
= 5.0V  
50  
40  
30  
20  
10  
0
V
= 5.0V  
CC  
V  
PIN 5  
SINGLE-ENDED  
= 50Ω  
CC  
DC TESTED  
39  
38  
37  
36  
35  
34  
33  
N, F PKG  
= ±0.1V  
CC  
V
T
= 5.0V  
CC  
= 25°C  
DC TESTED  
R
L
OUTPUT REFERRED  
A
PIN 7  
PIN 5  
112.5 122.5 132.5 142.5 152.5 162.5  
FREQUENCY (MHz)  
–60 –40 –20  
0
20 40 60 80 100 120 140  
–60–40 –20  
0
20 40 60 80 100 120 140  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
SD00341  
Figure 7. Typical Performance Characteristics  
8
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Gain vs Frequency  
Gain vs Frequency  
Output Resistance  
vs Frequency  
12  
11  
10  
9
5.5V  
11  
10  
9
5.5V  
5.0V  
4.5V  
80  
70  
60  
50  
40  
30  
20  
10  
5.0V  
N PKG  
8
8
V
= 5V  
CC  
= 25°C  
7
7
T
A
4.5V  
6
N PKG  
PIN 5  
= 25°C  
6
PIN 5  
N PKG  
PIN 7  
5
5
T
A
4
T
= 25°C  
4
A
3
3
PIN 7  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Output Resistance  
vs Frequency  
Gain vs Frequency  
Gain vs Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
11  
125°C  
25°C  
85°C  
–55°C  
11  
–55°C  
125°C  
–55°C  
D PKG  
= 25°C  
10  
9
10  
9
T
A
V
= 5V  
CC  
8
8
7
7
–55°C  
125°C  
6
6
125°C  
N PKG  
PIN 5  
N PKG  
PIN 7  
5
5
V
= 5V  
4
CC  
4
V
= 5V  
CC  
3
3
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
Gain and Phase Shift  
vs Frequency  
Gain and Phase Shift  
vs Frequency  
Gain and Phase Shift  
vs Frequency  
φ
11  
10  
9
11  
10  
9
11  
10  
9
–45  
N PKG  
PIN 5  
–180  
–180  
8
φ
8
φ
8
V
= 5V  
= 25°C  
CC  
–135  
7
N PKG  
PIN 7  
7
D PKG  
PIN 7  
–270  
–360  
7
–270  
–360  
T
A
6
6
6
V
T
= 5V  
CC  
V
T
= 5V  
5
CC  
= 25°C  
5
5
= 25°C  
A
–225  
4
A
4
4
3
3
3
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SD00342  
Figure 8. Typical Performance Characteristics (cont.)  
9
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)  
Output Voltage  
vs Input Current  
Differential Output Voltage  
vs Input Current  
Gain and Phase Shift  
vs Frequency  
2.0  
4.5  
5.5V  
5.0V  
125°C  
85°C  
11  
10  
9
25°C  
4.5V  
–55°C  
0
8
7
–90  
–180  
D PKG  
PIN 5  
0
6
V
T
= 5V  
125°C  
CC  
= 25°C  
5
A
85°C  
4
5.5V  
–55°C25°C  
3
5.0V  
4.5V  
2.0  
–150.0  
–2.0  
0.1  
1
10  
100  
0
150.0  
–150.0  
0
150.0  
FREQUENCY (MHz)  
INPUT CURRENT (µA)  
INPUT CURRENT (µA)  
Group Delay  
vs Frequency  
Differential Output Voltage  
vs Input Current  
10  
8
2.000  
25°C 85°C  
–55°C  
6
125°C  
4
2
0
0
–55°C  
25°C  
85°C  
125°C  
–2.000  
0.1 20  
40  
60  
80 100 120 140 160  
–150.0  
150.0  
FREQUENCY (MHz)  
INPUT CURRENT (µA)  
Output Step Response  
V
T
= 5V  
CC  
= 25°C  
A
20mV/Div  
0
2
4
6
8
10  
(ns)  
12  
14  
16  
18  
20  
SD00343  
Figure 9. Typical Performance Characteristics (cont.)  
10  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
VIN  
IIN  
RF  
7.2K  
70  
THEORY OF OPERATION  
RIN  
+
+
+
+ 103W  
1 ) AVOL  
Transimpedance amplifiers have been widely used as the  
preamplifier in fiber-optic receivers. The SA5212A is a wide  
bandwidth (typically 140MHz) transimpedance amplifier designed  
primarily for input currents requiring a large dynamic range, such as  
those produced by a laser diode. The maximum input current before  
output stage clipping occurs at typically 240µA. The SA5212A is a  
bipolar transimpedance amplifier which is current driven at the input  
and generates a differential voltage signal at the outputs. The  
forward transfer function is therefore a ratio of the differential output  
voltage to a given input current with the dimensions of ohms. The  
main feature of this amplifier is a wideband, low-noise input stage  
which is desensitized to photodiode capacitance variations. When  
connected to a photodiode of a few picoFarads, the frequency  
response will not be degraded significantly. Except for the input  
stage, the entire signal path is differential to provide improved  
power-supply rejection and ease of interface to ECL type circuitry. A  
block diagram of the circuit is shown in Figure 10. The input stage  
(A1) employs shunt-series feedback to stabilize the current gain of  
the amplifier. The transresistance of the amplifier from the current  
More exact calculations would yield a higher value of 110.  
Thus C and R will form the dominant pole of the entire amplifier;  
IN  
IN  
1
f*3dB  
+
2p RIN CIN  
Assuming typical values for R = 7.2k, R = 110, C = 10pF  
F
IN  
IN  
1
f*3dB  
+
+ 145MHz  
2p (110) 10 @ 10*12  
The operating point of Q1, Figure 2, has been optimized for the  
lowest current noise without introducing a second dominant pole in  
the pass-band. All poles associated with subsequent stages have  
been kept at sufficiently high enough frequencies to yield an overall  
single pole response. Although wider bandwidths have been  
achieved by using a cascade input stage configuration, the present  
solution has the advantage of a very uniform, highly desensitized  
frequency response because the Miller effect dominates over the  
external photodiode and stray capacitances. For example, assuming  
source to the emitter of Q is approximately the value of the  
3
feedback resistor, R =7k. The gain from the second stage (A2)  
F
a source capacitance of 1pF, input stage voltage gain of 70, R  
60then the total input capacitance, C = (1+7.5) pF which will  
lead to only a 12% bandwidth reduction.  
=
IN  
and emitter followers (A3 and A4) is about two. Therefore, the  
differential transresistance of the entire amplifier, R is  
IN  
T
V
OUT(diff)  
IIN  
RT  
+
+ 2RF + 2(7.2K) + 14.4kW  
OUTPUT +  
The single-ended transresistance of the amplifier is typically 7.2k.  
A3  
The simplified schematic in Figure 11 shows how an input current is  
converted to a differential output voltage. The amplifier has a single  
input for current which is referenced to Ground 1. An input current  
from a laser diode, for example, will be converted into a voltage by  
INPUT  
A1  
A2  
the feedback resistor R . The transistor Q1 provides most of the  
F
open loop gain of the circuit, A  
70. The emitter follower Q  
2
VOL  
minimizes loading on Q . The transistor Q , resistor R , and V  
B1  
R
1
4
7
F
A4  
provide level shifting and interface with the Q – Q differential  
OUTPUT –  
15  
16  
pair of the second stage which is biased with an internal reference,  
. The differential outputs are derived from emitter followers Q  
SD00327  
V
B2  
11  
Q
Q
which are biased by constant current sources. The collectors of  
Figure 10. SA5212A – Block Diagram  
12  
– Q are bonded to an external pin, V  
, in order to reduce  
11  
12  
CC2  
the feedback to the input stage. The output impedance is about 17Ω  
single-ended. For ease of performance evaluation, a 33resistor is  
used in series with each output to match to a 50test system.  
NOISE  
Most of the currently installed fiber-optic systems use non-coherent  
transmission and detect incident optical power. Therefore, receiver  
noise performance becomes very important. The input stage  
achieves a low input referred noise current (spectral density) of  
3.5pA/Hz. The transresistance configuration assures that the  
external high value bias resistors often required for photodiode  
biasing will not contribute to the total noise system noise. The  
BANDWIDTH CALCULATIONS  
The input stage, shown in Figure 12, employs shunt-series feedback  
to stabilize the current gain of the amplifier. A simplified analysis can  
determine the performance of the amplifier. The equivalent input  
capacitance, C , in parallel with the source, I , is approximately  
IN  
S
equivalent input  
noise current is strongly determined by the  
7.5pF, assuming that C =0 where C is the external source  
RMS  
S
S
quiescent current of Q , the feedback resistor R , and the  
capacitance.  
Since the input is driven by a current source the input must have a  
low input resistance. The input resistance, R , is the ratio of the  
1
F
bandwidth; however, it is not dependent upon the internal  
Miller-capacitance. The measured wideband noise was 52nA RMS  
in a 200MHz bandwidth.  
IN  
incremental input voltage, V , to the corresponding input current, I  
IN  
IN  
and can be calculated as:  
11  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
V
CC1  
R
V
CC2  
R
R
R
13  
1
3
12  
Q
Q
Q
11  
2
4
INPUT  
+
Q
Q
12  
3
Q
1
Q
Q
OUT–  
OUT+  
15  
R
16  
R
2
R
14  
15  
GND  
1
R
+
7
PHOTODIODE  
VB2  
R
5
R
4
GND  
2
SD00328  
Figure 11. Transimpedance Amplifier  
No. of incident photons/sec= where P=optical incident power  
P
V
CC  
I
C1  
R3  
R1  
hc  
No. of incident photons/sec =  
l
INPUT  
Q2  
I
B
where P = optical incident power  
No. of generated electrons/sec =  
where η = quantum efficiency  
I
Q3  
IN  
Q1  
P
hc  
l
R2  
h @  
I
V
F
EQ3  
V
IN  
R
F
no. of generated electron hole paris  
+
R4  
no. of incident photons  
P
hc  
l
NI + h @  
@ e Amps (Coulombsńsec.)  
SD00329  
-19  
where e = electron charge = 1.6 × 10 Coulombs  
h@e  
Figure 12. Shunt-Series Input Stage  
Responsivity R =  
Amp/watt  
hc  
l
I + P @ R  
DYNAMIC RANGE  
The electrical dynamic range can be defined as the ratio of  
maximum input current to the peak noise current:  
Assuming a data rate of 400 Mbaud (Bandwidth, B=200MHz), the  
noise parameter Z may be calculated as:  
1
IEQ  
qB  
52 @ 10*9  
(1.6 @ 10*19)(200 @ 106)  
Amp  
Amp  
Electrical dynamic range, D , in a 200MHz bandwidth assuming  
ǒ Ǔ  
Z +  
+
+ 1625  
E
I
= 120µA and a wideband noise of I =52nA  
for an  
INMAX  
EQ  
RMS  
external source capacitance of C = 1pF.  
S
where Z is the ratio of  
noise output to the peak response to a  
RMS  
single hole-electron pair. Assuming 100% photodetector quantum  
efficiency, half mark/half space digital transmission, 850nm  
lightwave and using Gaussian approximation, the minimum required  
(Max. input current)  
(Peak noise current)  
DE  
+
(120 @ 10*6  
)
-9  
optical power to achieve 10 BER is:  
DE(dB) + 20log  
DE(dB) + 20log  
Ǹ
( 2 52nA)  
hc  
l
P
avMIN + 12 B Z + 12 (2.3 @ 10*19  
)
(120mA)  
(73nA)  
+ 64dB  
200 @ 106 1625 + 897nW + * 30.5dBm,  
In order to calculate the optical dynamic range the incident optical  
power must be considered.  
where h is Planck’s Constant, c is the speed of light, λ is the  
wavelength. The minimum input current to the SA5212A, at this  
input power is:  
For a given wavelength λ;  
hc  
l
l
Energy of one Photon =  
watt sec (Joule)  
IavMIN + qP  
avMIN hc  
-34  
Where h=Planck’s Constant = 6.6 × 10 Joule sec.  
897 @ 10*9 @ 1.6 @ 10*19  
+
8
c = speed of light = 3 × 10 m/sec  
2.3 @ 10*19  
= 624nA  
c / λ = optical frequency  
12  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
Choosing the maximum peak overload current of I  
maximum mean optical power is:  
=120µA, the  
As with any high-frequency device, some precautions must be  
avMAX  
observed in order to enjoy reliable performance. The first of these is  
the use of a well-regulated power supply. The supply must be  
capable of providing varying amounts of current without significantly  
changing the voltage level. Proper supply bypassing requires that a  
good quality 0.1µF high-frequency capacitor be inserted between  
OUT–  
V
R = 560  
IN  
IN  
IN  
IN  
NE5212A  
OUT+  
V
CC1  
and V  
, preferably a chip capacitor, as close to the package  
CC2  
pins as possible. Also, the parallel combination of 0.1µF capacitors  
with 10µF tantalum capacitors from each supply, V and V , to  
CC1  
CC2  
a. Non-inverting 20dB Amplifier  
the ground plane should provide adequate decoupling. Some  
applications may require an RF choke in series with the power  
supply line. Separate analog and digital ground leads must be  
maintained and printed circuit board ground plane should be  
employed whenever possible.  
OUT+  
V
R = 560  
NE5212A  
OUT–  
IN  
BASIC CONFIGURATION  
b. Inverting 20dB Amplifier  
A trans resistance amplifier is a current-to-voltage converter. The  
forward transfer function then is defined as voltage out divided by  
current in, and is stated in ohms. The lower the source resistance,  
the higher the gain. The SA5212A has a differential transresistance  
of 14ktypically and a single-ended transresistance of 7kΩ  
typically. The device has two outputs: inverting and non-inverting.  
The output  
OUT+  
V
R = 560  
NE5212A  
OUT–  
IN  
c. Differential 20dB Amplifier  
voltage in the differential output mode is twice that of the output  
voltage in the single-ended mode. Although the device can be used  
without coupling capacitors, more care is required to avoid upsetting  
the internal bias nodes of the device. Figure 13 shows some basic  
configurations.  
SD00344  
Figure 13. Variable Gain Circuit  
2.3 @ 10*19(120 @ 10*6  
1.6 @ 10*19  
)
hcIavMAX  
PavMAX  
+
+
lq  
VARIABLE GAIN  
= 172µW or –7.6dBm  
Thus the optical dynamic range, D is:  
Figure 14 shows a variable gain circuit using the SA5212A and the  
SA5230 low voltage op amp. This op amp is configured in a  
non-inverting gain of five. The output drives the gate of the SD210  
DMOS FET. The series resistance of the FET changes with this  
output voltage which in turn changes the gain of the SA5212A. This  
circuit has a distortion of less than 1% and a 25dB range, from  
-42.2dBm to -15.9dBm at 50MHz, and a 45dB range, from -60dBm  
O
D
= P  
- P  
= -30.5 -(-7.6) = 22.8dB.  
O
avMAX  
avMIN  
This represents the maximum limit attainable with the SA5212A  
operating at 200MHz bandwidth, with a half mark/half space digital  
transmission at 820nm wavelength.  
to -14.9dBm at 10MHz with 0 to 1V of control voltage at V  
.
CC  
APPLICATION INFORMATION  
Package parasitics, particularly ground lead inductances and  
parasitic capacitances, can significantly degrade the frequency  
response. Since the SA5212A has differential outputs which can  
feed back signals to the input by parasitic package or board layout  
capacitances, both peaking and attenuating type frequency  
response shaping is possible. Constructing the board layout so that  
Ground 1 and Ground 2 have very low impedance paths has  
produced the best results. This was accomplished by adding a  
ground-plane stripe underneath the device connecting Ground 1,  
Pins 8–11, and Ground 2, Pins 1 and 2 on opposite ends of the  
SO14 package. This ground-plane stripe also provides isolation  
OUT+  
0.1µF  
RF  
IN  
SD210  
IN  
NE5212A  
RF  
OUT  
51  
OUT–  
+5V  
V
CC  
0–5V  
0–1V  
between the output return currents flowing to either V  
or Ground  
CC2  
10k  
2 and the input photodiode currents to flowing to Ground 1. Without  
this ground-plane stripe and with large lead inductances on the  
board, the part may be unstable and oscillate near 800MHz. The  
easiest way to realize that the part is not functioning normally is to  
measure the DC voltages at the outputs. If they are not close to their  
quiescent values of 3.3V (for a 5V supply), then the circuit may be  
oscillating. Input pin layout necessitates that the photodiode be  
physically very close to the input and Ground 1. Connecting Pins 3  
and 5 to Ground 1 will tend to shield the input but it will also tend to  
increase the capacitance on the input and slightly reduce the  
bandwidth.  
2.4k  
SD00345  
Figure 14. Variable Gain Circuit  
13  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
16MHZ CRYSTAL OSCILLATOR  
DIGITAL FIBER OPTIC RECEIVER  
Figures 16 and 17 show a fiber optic receiver using off-the-shelf  
components.  
Figure 15 shows a 16MHz crystal oscillator operating in the series  
resonant mode using the SA5212A. The non-inverting input is fed  
back to the input of the SA5212A in series with a 2pF capacitor. The  
output is taken from the inverting output.  
The receiver shown in Figure 16 uses the SA5212A, the Philips  
Semiconductors 10116 ECL line receiver, and Philips/Amperex  
BPF31 PIN diode. The circuit is a capacitor-coupled receiver and  
utilizes positive feedback in the last stage to provide the hysteresis.  
The amount of hysteresis can be tailored to the individual application  
by changing the values of the feedback resistors to maintain the  
desired balance between noise immunity and sensitivity. At room  
temperature, the circuit operates at 50Mbaud with a BER of 10E-10  
and over the automotive temperature range at 40Mbaud with a BER  
of 10E-9. Higher speed experimental diodes have been used to  
operate this circuit at 220Mbaud with a BER of 10E-10.  
+5V  
OUT+  
NE5212A  
OUT–  
IN  
Figure 17 depicts a TTL receiver using the SA5212A and the  
SA5214 fast amplifier system along with the Philips/Amperex PIN  
diode. The system shown is optimized for 50 Mb/s Non Return to  
Zero (NRZ) data. A link status indication is provided along with a  
jamming function when the input level is below a  
SD00346  
Figure 15. 16MHz Crystal Oscillator  
user-programmable threshold level.  
V
EE  
1
V
1
1.0µF  
V
BB  
BB  
V
CC  
+5.0  
4.7  
510  
510  
0.01µF  
1k  
510  
1k  
1k  
15  
1/3  
10116  
0.1µF  
0.1µF  
100pF  
100pF  
1
2
9
16  
5
4
2
13  
12  
7
6
ECL  
ECL  
1
7
5
1/3  
10116  
1/3  
10116  
NE5212A  
10  
8
3
6
14  
1k  
4
3
11  
BPF31  
8
0.01µF  
1k  
0.01µF  
510  
510  
1k  
1
510  
–15V  
V
0.1µF  
0.01µF  
1
V
V
BB  
2.7µH  
0.1µF  
BB  
EE  
–5.2V  
V
EE  
4.7µF  
4.7µF  
NOTE:  
1. Tie all V  
points together.  
BB  
SD00347  
Figure 16. ECL Fiber Optic Receiver  
14  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
+V  
CC  
GND  
47µF  
C1  
C2  
L1  
10µH  
R1  
100  
.01µF  
C5  
C3  
D1  
LED  
R2  
220  
1.0µF  
10µF  
LED  
OUT+  
1
GND  
IN  
20  
19  
1
1
1B  
5
6
4
3
C7  
C9  
100pF  
.01µF  
C
PKDET  
2
IN  
GND  
2
GND  
V
1A  
100pF  
C4  
.01µF  
THRESH  
3
OUT–  
18  
CC  
C
C
7
2
1
AZP  
C6  
C8  
0.1µF  
GND  
A
I
IN  
GND  
2
4
5
17  
16  
AZN  
8
BPF31  
OPTICAL  
INPUT  
R3  
47k  
FLAG  
JAM  
OUT  
2B  
L2  
10µH  
6
7
15  
14  
IN  
8B  
V
V
CCD  
CCA  
OUT  
2A  
C11  
C10  
10µF  
8
13  
12  
IN  
R
.01µF  
8A  
GND  
TTL  
D
9
HYST  
R
PKDET  
OUT  
10  
11  
L3  
10µH  
C13  
.01µF  
C12  
10µF  
R4  
5.1k  
V
(TTL)  
OUT  
SD00348  
Figure 17. A 50Mb/s TTL Digital Fiber Optic Receiver  
15  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
8
GND2  
I
1
IN  
2
7
OUT–  
V
CC  
6
3
GND2  
GND1  
GND1  
5
4
OUT+  
ECN No.: 99918  
1990 Jul 5  
SD00489  
Figure 18. SA5212A Bonding Diagram  
carriers, it is impossible to guarantee 100% functionality through this  
process. There is no post waffle pack testing performed on  
individual die.  
Die Sales Disclaimer  
Due to the limitations in testing high frequency and other parameters  
at the die level, and the fact that die electrical characteristics may  
shift after packaging, die electrical parameters are not specified and  
die are not guaranteed to meet electrical characteristics (including  
temperature range) as noted in this data sheet which is intended  
only to specify electrical characteristics for a packaged device.  
Since Philips Semiconductors has no control of third party  
procedures in the handling or packaging of die, Philips  
Semiconductors assumes no liability for device functionality or  
performance of the die or systems on any die sales.  
All die are 100% functional with various parametrics tested at the  
wafer level, at room temperature only (25°C), and are guaranteed to  
be 100% functional as a result of electrical testing to the point of  
wafer sawing only. Although the most modern processes are  
utilized for wafer sawing and die pick and place into waffle pack  
Although Philips Semiconductors typically realizes a yield of 85%  
after assembling die into their respective packages, with care  
customers should achieve a similar yield. However, for the reasons  
stated above, Philips Semiconductors cannot guarantee this or any  
other yield on any die sales.  
16  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
DIP8: plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
17  
1998 Oct 07  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
SO8: plastic small outline package; 8 leads; body width 3.9mm  
SOT96-1  
18  
1998 Oct 07  
0.055 (1.40)  
0.030 (0.76)  
0.055 (1.40)  
0.030 (0.76)  
NOTES:  
1. Controlling dimension: Inches. Millimeters are  
shown in parentheses.  
2. Dimension and tolerancing per ANSI Y14. 5M-1982.  
0.303 (7.70)  
3. “T”, “D”, and “E” are reference datums on the body  
and include allowance for glass overrun and meniscus  
on the seal line, and lid to base mismatch.  
– E –  
0.245 (6.22)  
4. These dimensions measured with the leads  
constrained to be perpendicular to plane T.  
5. Pin numbers start with Pin #1 and continue  
counterclockwise to Pin #8 when viewed  
from the top.  
PIN # 1  
– D –  
0.100 (2.54) BSC  
0.408 (10.36)  
0.376 (9.55)  
0.320 (8.13)  
0.070 (1.78)  
0.050 (1.27)  
0.290 (7.37)  
(NOTE 4)  
0.175 (4.45)  
0.145 (3.68)  
0.200 (5.08)  
0.165 (4.19)  
– T –  
SEATING  
PLANE  
0.035 (0.89)  
0.020 (0.51)  
0.165 (4.19)  
0.125 (3.18)  
BSC  
0.300 (7.62)  
(NOTE 4)  
0.023 (0.58)  
0.015 (0.38)  
T
E
D
0.010 (0.254)  
0.395 (10.03)  
0.015 (0.38)  
0.300 (7.62)  
0.010 (0.25)  
Philips Semiconductors  
Product specification  
Transimpedance amplifier (140MHz)  
SA5212A  
Data sheet status  
[1]  
Data sheet  
status  
Product  
status  
Definition  
Objective  
specification  
Development  
This data sheet contains the design target or goal specifications for product development.  
Specification may change in any manner without notice.  
Preliminary  
specification  
Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date.  
Philips Semiconductors reserves the right to make chages at any time without notice in order to  
improve design and supply the best possible product.  
Product  
specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make  
changes at any time without notice in order to improve design and supply the best possible product.  
[1] Please consult the most recently issued datasheet before initiating or completing a design.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 1998  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 10-98  
Document order number:  
9397 750 04625  
Philips  
Semiconductors  

相关型号:

SA5212AD

Transimpedance amplifier 140MHz
NXP

SA5212AD,602

IC SPECIALTY TELECOM CIRCUIT, PDSO8, PLASTIC, SO-8, Telecom IC:Other
NXP

SA5212AD,623

IC SPECIALTY TELECOM CIRCUIT, PDSO8, PLASTIC, SO-8, Telecom IC:Other
NXP

SA5212AD-T

IC SPECIALTY TELECOM CIRCUIT, PDSO8, PLASTIC, SO-8, Telecom IC:Other
NXP

SA5212AD/01,118

IC SPECIALTY TELECOM CIRCUIT, PDSO8, PLASTIC, SO-8, Telecom IC:Other
NXP

SA5212AFE

Transimpedance amplifier 140MHz
NXP

SA5212AN

Transimpedance amplifier 140MHz
NXP

SA5212D

IC SPECIALTY ANALOG CIRCUIT, PDSO8, PLASTIC, SOIC-8, Analog IC:Other
NXP

SA5212D-T

暂无描述
NXP

SA5212FE

Telecom Circuit, CDIP8,
PHILIPS

SA5212N

Telecom Circuit, PDIP8,
PHILIPS

SA5214

Postamplifier with link status indicator
NXP