SA56600-42D-T [NXP]

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, 3.90 MM, PLASTIC, MS-012, SOP-8, Power Management Circuit;
SA56600-42D-T
型号: SA56600-42D-T
厂家: NXP    NXP
描述:

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, 3.90 MM, PLASTIC, MS-012, SOP-8, Power Management Circuit

光电二极管
文件: 总12页 (文件大小:135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
SA56600-42  
System reset for lithium battery backup  
Product data  
2001 Jun 19  
Supersedes data of 2001 Apr 24  
File under Integrated Circuits, Standard Analog  
Philips  
Semiconductors  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
GENERAL DESCRIPTION  
The SA56600-42 is designed to protect SRAM data in computer  
systems during periods of sagging power supply voltages and power  
outages. When the power supply voltage drops to typically 4.2 V, the  
CS output goes to a logic LOW state pulling CE to a LOW state,  
disabling the SRAM device. In addition, a reset logic LOW is asserted  
for system use. If the supply voltage drops further, to 3.3 V typically  
or lower, the SA56600-42 switches the system’s operation from the  
main power supply source to the Lithium back-up battery. As the  
main supply is restored and the voltage rises to 3.3 V or higher, the  
SRAM support voltage transfers from the Lithium back-up battery to  
the main supply. When the main supply voltage rises to greater than  
typically 4.2 V, the CS output goes to a logic HIGH state for SRAM  
CE control. Reset assertion is released and normal operation is  
resumed. This sequence ensures reliable preservation of SRAM  
data during periods of supply deficiency and interruptions.  
The SA56600-42 is offered in the SO8 surface mount package.  
FEATURES  
APPLICATIONS  
Supply switching at 4.2 V threshold (falling supply)  
DC  
Memory cards (SRAM)  
RESET output  
Both CS and CS outputs available for SRAM control  
During battery back-up operation:  
PCs, word processors  
FAX machines, photocopiers, office equipment  
Sequence controllers  
Low supply current (0.3 µA typical)  
Video games and other equipment with SRAM  
Low input/output voltage drop (0.3 V typical at 100 µA)  
Low reverse current leakage (0.1 µA max.)  
During normal operation:  
Low input/output voltage drop (0.2 V typical at 50 mA)  
4.8 V typical output voltage at 50 mA with V = 5.0 V  
CC  
Restoration of main supply operation at 3.3 V  
SIMPLIFIED SYSTEM DIAGRAM  
V
V
OUT  
6
4
SA56600-42  
BATT  
8
V
CC  
V
CC  
V
DD  
3.3 V  
DETECTION  
CITCUIT  
R
R
PU  
LITHIUM  
BATTERY  
2
RESET  
SRAM  
CS  
CS  
3
5
CE  
GND  
4.2 V  
DETECTION  
CITCUIT  
1
GND  
7
SL01277  
Y
Figure 1. Simplified system diagram.  
ORDERING INFORMATION  
PACKAGE  
TEMPERATURE  
RANGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
SA56600-42D  
2001 Jun 19  
SO8  
plastic small outline package; 8 leads; body width 3.9 mm  
–40 to +85 °C  
2
853–2249 26559  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
Part number marking  
PIN CONFIGURATION  
The package is marked with a four letter code in the first line to the  
right of the logo. The first three letters designate the product. The  
fourth letter, represented by ‘x’, is a date tracking code. The  
remaining two or three lines of characters are internal manufacturing  
codes.  
TOP VIEW  
GND  
RESET  
CS  
1
2
3
4
8
7
6
5
V
CC  
Y
SO8  
V
OUT  
V
CS  
BATT  
SL01278  
Figure 2. Pin configuration.  
Part number  
Marking  
SA56600-42  
A A A x  
PIN DESCRIPTION  
PIN  
1
SYMBOL  
GND  
DESCRIPTION  
Circuit ground for the device.  
2
RESET  
Asserted open collector output LOW whenever the V input source voltage falls below V (4.2 V typical).  
CC S  
The open collector topology requires an external pull-up resistor.  
3
CS  
Chip select HIGH output signal, asserted whenever the V input source voltage is above V (4.2 V typical).  
CC S  
Can be used as a chip enable HIGH (CE) signal for system SRAM.  
4
5
V
Positive polarity connection for lithium back-up battery.  
BATT  
CS  
Asserted chip select LOW output signal whenever the V input source voltage is above V (4.2 V typical)  
CC S  
and Y is grounded. Can be used as a chip enable LOW (CE) signal for system SRAM.  
6
V
OUT  
Primary power with lithium battery back-up power for the protected system. Switch over to lithium battery  
back-up operation occurs when V falls below V .  
CC  
S
7
8
Y
V
Open Emitter input to microcontroller used to enable CS output (microcontroller controls CS function).  
Primary input power source for device.  
CC  
MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
–0.3 to +7.0  
–0.3 to +7.0  
80  
UNIT  
V
V
V
Power supply voltage  
Operating voltage  
Output current  
CC(max)  
CC(op)  
V
I
O
I
O
(V  
(V  
)
CC  
mA  
µA  
°C  
)
Output current  
200  
BATT  
T
Operating temperature  
Storage temperature  
Power dissipation  
–40 to +85  
–40 to +125  
250  
oper  
T
stg  
°C  
P
mW  
3
2001 Jun 19  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
ELECTRICAL CHARACTERISTICS  
Characteristics measured with V = 5.0 V, and T  
= 25 °C, unless otherwise specified.  
CC  
amb  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
1.4  
MAX.  
2.2  
0.05  
UNIT  
mA  
V
I
Supply current  
V
= 5.0 V; V  
= 3.0 V; I = 0 mA  
BATT O  
CC  
CC  
V
I/O voltage difference 1  
Output voltage 1  
V
= 5.0 V; V  
= 5.0 V; V  
= 3.0 V; I = 1.0 mA  
0.03  
4.97  
4.90  
4.20  
100  
SAT1  
O1  
O2  
S
CC  
CC  
BATT  
BATT  
O
V
V
V
V
= 3.0 V; I = 1.0 mA  
4.95  
4.75  
4.00  
V
O
Output voltage 2  
V
CC  
= 5.0 V; V  
= 3.0 V; I = 15 mA  
V
BATT  
O
Detection threshold  
Detection hysteresis  
Reset output LOW  
V
CC  
falling  
4.40  
V
V  
V = V (rising V ) – V (falling V )  
CC  
mA  
V
S
RSL  
RSH  
S
SH  
CC  
SL  
V
V
CC  
= 3.7 V  
0.2  
0.4  
±0.1  
1.2  
I
Reset leakage current HIGH  
V
CC  
= 5.0 V; V = 7.0 V  
±0.01  
0.8  
µA  
V
RS  
V
OPL  
Reset assertion  
V
RSL  
0.4 V; V falling; R = 10 kΩ  
CC  
PU  
(minimum operating voltage)  
V
V
V
V
CS output voltage LOW  
CS output voltage HIGH  
CS output voltage LOW  
CS output voltage HIGH  
V
= 3.7 V; V  
= 3.0 V; I = 1.0 µA  
4.90  
0.1  
V
V
CSL  
CSH  
CSL  
CSH  
CC  
BATT  
CS  
V
CC  
= 5.0 V; V  
= 3.0 V; I = –1.0 µA  
CS  
BATT  
V
= 5.0 V; V  
= 3.0 V; I = 1.0 µA  
0.2  
V
CC  
CC  
BATT  
BATT  
CS  
V
= 3.7 V; V  
= 3.0 V; I = –1.0 µA  
V
– 0.1  
V
CS  
O
V /T  
Detection voltage temperature  
characteristic  
–40 T  
+85  
±0.05  
%/°C  
S
amb  
V
V
Battery back-up threshold  
Battery back-up hysteresis  
V
falling  
3.15  
3.30  
100  
3.45  
1.0  
V
BT  
CC  
V
=
mV  
BT(HYS)  
BT(HYS)  
V
BTH  
(V rising) – V  
(V falling)  
CC  
BTL CC  
V /T  
BT  
Switching voltage temperature  
characteristic  
–40 T  
+85  
±0.05  
%/°C  
amb  
I
Loss current  
V
= 0 V; V  
= 3.0 V; I = 0 µA  
0.3  
0.2  
2.8  
2.7  
1.25  
0.5  
0.3  
µA  
V
L
CC  
BATT  
O
V
V
V
V
I/O voltage difference 2  
Output voltage 3  
V
CC  
V
CC  
= 0 V; V  
= 3.0 V; I = 1.0 µA  
O
SAT2  
O3  
BATT  
BATT  
= 0 V; V  
= 0 V; V  
= 3.0 V; I = 1.0 µA  
2.7  
2.6  
V
O
Output voltage 4  
V
= 3.0 V; I = 100 µA  
V
O4  
CC  
BATT  
CS  
Reference voltage (typical)  
V
REF  
I
I
t
t
V
BATT  
leakage current  
V
CC  
= 5.0 V; V = 0 V  
BATT  
0.1  
400  
20  
20  
µA  
µA  
ns  
ns  
BL  
Y current  
V
CC  
= 5.0 V; V  
= 3.0 V; V = 0 V  
150  
8.0  
8.0  
YLO  
PLH  
PHL  
BATT  
Y
Y propagation delay time (Note 1)  
Y propagation delay time (Note 1)  
VY = logic LOW to logic HIGH  
VY = logic HIGH to logic LOW  
NOTE:  
1. Y input rise and fall time less than 6.0 ns. 15 pF capacitance load on CS (Pin 5 to GND).  
4
2001 Jun 19  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
TYPICAL PERFORMANCE CURVES  
5.3  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
5.0  
V
V
= 5.0 V  
= 3.0 V  
CC  
BATT  
V
V
= 5.0 V  
= 3.0 V  
CC  
BATT  
T
= –40 °C  
RESET, RESET, CS, CS = OPEN  
Y = GND  
amb  
4.9  
4.8  
4.7  
4.6  
4.5  
I
= 0 mA  
OUT  
20 mA  
40 mA  
T
amb  
= 25 °C  
= 85 °C  
= 125 °C  
60 mA  
T
amb  
T
amb  
80 mA  
0
10  
20  
30  
40  
50  
60  
70  
80  
–50  
–25  
0
25  
50  
75  
100  
125  
I , OUTPUT CURRENT (mA)  
OUT  
T , TEMPERATURE (°C)  
amb  
SL01330  
SL01332  
Figure 3. Output voltage versus output current.  
Figure 4. Output voltage versus temperature.  
3.0  
2.9  
3.0  
2.9  
2.8  
V
V
= 0 V  
= 3.0 V  
V
V
= 0 V  
CC  
BATT  
CC  
= 3.0 V  
BATT  
RESET, RESET, CS, CS = OPEN  
Y = GND  
I
= 1.0 µA  
OUT  
2.8  
T
= 125 °C  
= 85 °C  
amb  
200 µA  
400 µA  
2.7  
2.6  
2.5  
2.4  
2.7  
2.6  
2.5  
2.4  
2.3  
T
amb  
600 µA  
800 µA  
T
= 25 °C  
= –40 °C  
200  
amb  
1000 µA  
T
amb  
2.3  
0
400  
600  
800  
1000  
–50  
–25  
0
25  
50  
75  
100  
125  
I , OUTPUT CURRENT (mA)  
O
T , TEMPERATURE (°C)  
amb  
SL01331  
SL01333  
Figure 5. Output voltage versus current.  
Figure 6. Output voltage versus temperature.  
5.0  
4.5  
4.0  
3.5  
3.0  
15  
10  
V
V
T
= OPEN  
= 3.0 V  
= 25 °C  
I = 0 mA  
O
OUT  
BATT  
amb  
V
T
= 3.0 V  
= 25 °C  
BATT  
amb  
5.0  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
–5.0  
–10  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0 10.0  
SL01335  
V
, SUPPLY VOLTAGE (V)  
V
CC  
, SUPPLY VOLTAGE (V)  
CC  
SL01334  
Figure 7. Supply current versus supply voltage.  
Figure 8. Battery current versus supply voltage.  
5
2001 Jun 19  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
4.30  
150  
125  
100  
75  
V = V – V  
SL  
S
SH  
V
V
= FALLING  
CC  
(V = Rising then Falling)  
CC  
= 3.0 V  
BATT  
V
= 3.0 V  
BATT  
RESET, CS = OPEN  
Y = GND  
RESET, CS, V  
Y = GND  
= OPEN  
OUT  
4.25  
4.20  
4.15  
4.10  
50  
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
T , TEMPERATURE °C)  
amb  
T , TEMPERATURE (°C)  
amb  
SL01336  
SL01337  
Figure 9. Detection threshold versus temperature.  
Figure 10. Detection hysteresis versus temperature.  
4
3.00  
2.75  
2.00  
1.75  
1.50  
1.25  
1.00  
10  
V
V
= 3.0 V  
= OPEN  
V
V
= 5.0 V  
CC  
= 0 V  
BATT  
BATT  
OUT  
3
2
10  
10  
1
10  
10  
0
–50  
–25  
0
25  
50  
75  
100  
125  
–50  
–25  
0
25  
50  
75  
100  
125  
T , TEMPERATURE (°C)  
amb  
T , TEMPERATURE (°C)  
amb  
SL01338  
SL01339  
Figure 11. Power supply current versus temperature.  
Figure 12. Output reverse current versus temperature.  
4
10  
V
V
= 0 V  
CC  
= 3.0 V  
BATT  
I
= 0 µA  
OUT  
3
2
10  
10  
1
0
10  
10  
–50  
–25  
0
25  
50  
75  
100  
125  
T , TEMPERATURE (°C)  
amb  
SL01334  
Figure 13. Battery loss current versus temperature.  
6
2001 Jun 19  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
CS goes to a LOW logic state only when V is above 4.2 V plus  
TECHNICAL DESCRIPTION  
CC  
hysteresis, and Y is simultaneously at a LOW logic state. If Y is not  
a LOW logic state (is open or at a HIGH logic state) CS will be at a  
HIGH logic state. Essentially, Y functions as a control switch for CS  
and is normally used as an input gating signal from the computer’s  
microprocessor.  
The SA56600-42 provides battery back-up functions to protect  
SRAM data in computer memory systems. In addition, it provides  
RESET, Chip Select HIGH (CS), and Chip Select LOW (CS)  
outputs. The device incorporates a 3.3 V detection circuit,  
4.2 V detection circuit, PNP switching transistor, and Schottky diode  
for low drop lithium battery connection to the output.  
Caution should be exercised in the application to keep the voltage  
on Y to less than 5.0 V when the V voltage is less than 4.2 V to  
CC  
During power-up, RESET is actively asserted (LOW logic state) at  
avoid breaking down the Emitter-Base junction of the internal NPN  
transistor associated with Y. Breakdown of the junction may produce  
excessive current flow causing damage to the device. When the  
V
voltages as low as 0.8 V and does not output a release (HIGH  
CC  
logic state) until V attains 4.2 V plus hysteresis. CS, in a similar  
manner, only transitions to a HIGH logic state when V attains  
4.2 V plus hysteresis. This ensures adequate voltage being present  
at the output of the SA56600 for proper operation of the associated  
computer system.  
CC  
CC  
V
CC  
voltage is less than 4.2 V, the base of the NPN transistor  
associated with the Y is at a LOW logic state and most susceptible  
to an overvoltage on Y.  
Recovering primary V power is sensed by the 3.3 V detection  
circuit. The PNP switching transistor is activated when the applied  
CC  
If the V voltage falls below 4.2 V, CS and RESET both go to a  
LOW logic state. During this time, with CS in a LOW logic state, no  
data ca be read from, or written to, the SRAM device. If the primary  
CC  
V
CC  
voltage reaches 3.3 V plus hysteresis. When this event occurs,  
the Schottky diode becomes back-biased, automatically  
disconnecting the lithium battery from the output and the SRAM is  
voltage (V ) continues to fall to 3.3 V and below, the PNP  
CC  
switching transistor disconnects the primary input source power  
once again supported by the primary V power source. Full  
CC  
(V ) from the output and the Schottky diode automatically couples  
CC  
operation is restored when the applied primary V voltage reaches  
CC  
the lithium battery power to the output of the SA56600 to supply  
sustaining power to the SRAM memory.  
the required 4.2 V plus hysteresis value. This level is sensed by the  
4.2 V detection circuit. RESET and CS are then caused to go to a  
HIGH logic state, and the computer memory is back in full operation  
without any loss of SRAM data.  
The SA56600 provides complementary CS and CS outputs. The  
outputs differ in ways other than being simple complements of each  
other. The logic state of CS is strictly a function of V voltage.  
CC  
When V is above 4.2 V plus hysteresis, CS is in a HIGH logic  
CC  
state. When V is below 4.2 V, CS is in a LOW logic state.  
CC  
V
V
OUT  
VOLTAGE  
TO SRAM  
SA56600–42  
6
4
BATT  
V
8
CC  
R
47 kΩ  
PNP  
SWITCHING  
TRANSISTOR  
R
R
R
R
R
R
R
R
R1  
C1  
C2  
R
R
R
R
R
R
LITHIUM  
BATTERY  
R
R
47 kΩ  
R
R
1
GND  
1
GND  
5
3
7
2
R1 = OVERVOLTAGE CURRENT LIMITING RESISTOR  
C1, C2 = POWER SUPPLY BYPASS CAPACITOR  
CS  
Y
CS  
RESET  
SL01342  
Figure 14. Functional diagram.  
7
2001 Jun 19  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
Timing diagram  
The Timing Diagram shown in Figure 15 depicts the operation of the  
SA56600-42 in its intended application, with a 3.0 V Lithium battery  
serving as a backup power source for external SRAM circuitry (see  
the Simplified system diagram, Figure 1). Letters indicate events  
along the Time axis.  
F: As V continues to rise, RESET, CS, and V  
also continue to  
CC  
OUT  
rise. Just before ‘F’, Y is asserted HIGH by the microprocessing  
circuitry. This causes CS to change from a LOW state to a HIGH  
state. Following ‘F’ the microprocessing circuitry is signaling Y  
through repetitive cycles. This causes CS to also cycle, but has no  
effect on the battery circuit.  
A: At ‘A’, the V primary power source is off. As a result of the  
CC  
backup battery, the CS and V  
outputs are almost up to the  
G: At ‘G’, the V voltage begins to fall. As a result RESET, CS,  
CC  
OUT  
Lithium battery potential (V ). All other outputs (Y, RESET, and CS)  
and V fall.  
CC  
B
are at or very near ground potential.  
H: When the V voltage falls to V (4.2 V) it is detected by the  
CC  
S
B - C: At ‘B’, the V voltage begins to rise. Also the RESET  
voltage initially rises but then abruptly returns to a LOW state at ‘C’.  
internal 4.2 V detector circuit. The detector circuit forces RESET and  
CS LOW, deselecting the SRAM and stopping data storage and  
retrieval. The PNP series pass switching transistor disconnects the  
primary input source voltage from the output, transferring the SRAM  
to the backup battery. In addition, because Y is already at a LOW  
CC  
when the V voltage reaches the level which activates the internal  
CC  
bias circuitry and asserts RESET to a logic LOW. This occurs at  
approximately 0.8 volts.  
state, CS rises abruptly close to V followed by a continued fall to  
S
D - E: At ‘D’ the internal 3.3 V detection circuit is activated when  
V
B
(Lithium battery potential), following V  
.
CC  
V
CC  
voltage rises to 3.3 V. The circuit causes the PNP series pass  
switching transistor in the output to activate, connecting the main  
power supply voltage (V ) to the output. This causes the Lithium  
J: At ‘J’, V  
has also fallen with V to a level that is now  
OUT CC  
dictated by the Lithium battery potential. The Lithium battery is now  
maintaining the V voltage to preserve the SRAM data.  
CC  
battery to be automatically disconnected from V  
by back-biasing  
OUT  
OUT  
the Schottky diode. As a result, CS and V  
begin to rise with V  
.
CC  
OUT  
K - L: As the V voltage falls to a level which no longer allows the  
CC  
E: At ‘E’, V has risen to the upper detection threshold (V plus  
internal bias circuitry to remain active, the assertion of RESET can  
no longer be maintained. RESET rises slightly, then falls to ground  
CC  
S
hysteresis) as sensed by the device’s internal 4.2 V detection circuit.  
This event signals that the output voltage is adequate to support full  
operation of the associated external computer circuitry. RESET goes  
HIGH, allowing the microprocessor circuitry to operate.  
Simultaneously, CS also goes HIGH, signaling the SRAM to start  
receiving data. CS goes LOW as a result of Y simultaneously being  
at a LOW state.  
as V falls to ground.  
CC  
M: Y is asserted HIGH again by the microprocessor, but because  
V
CC  
is below V , CS remains HIGH and CS remains LOW,  
S
preventing the SRAM from being selected.  
Y controls the CS output. As long as Y is LOW, the CS output is  
enabled.  
5.0  
V
V
S
B
V
CC  
V
OPL  
0
0
0
0
0
Y
RESET  
V
RSH  
V
RSL  
CS  
V
CSH  
V
CSL  
V  
B
CS  
V
CSH  
V
CSL  
V
OUT  
V
O1, O2  
V
O3, O4  
0
A
B
C
D
E
F
G
H
J
K L  
TIME  
SL01341  
Figure 15. Timing diagram.  
8
2001 Jun 19  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
PACKING METHOD  
GUARD  
BAND  
TAPE  
TAPE DETAIL  
REEL  
ASSEMBLY  
COVER TAPE  
CARRIER TAPE  
BARCODE  
LABEL  
BOX  
SL01305  
Figure 16. Tape and reel packing method.  
9
2001 Jun 19  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
pin 1 index  
B
2
4.95  
4.80  
0.51  
0.33  
4.95  
4.80  
1.27  
0.38  
0.076  
0.003  
1.73  
0.189 0.013  
0.195 0.020  
0.050  
0.015  
0.068  
SO8  
10  
2001 Jun 19  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
NOTES  
11  
2001 Jun 19  
Philips Semiconductors  
Product data  
System reset for lithium battery back-up  
SA56600-42  
Data sheet status  
Product  
status  
Definitions  
[1]  
Data sheet status  
[2]  
Objective data  
Development  
This data sheet contains data from the objective specification for product development.  
Philips Semiconductors reserves the right to change the specification in any manner without notice.  
Preliminary data  
Product data  
Qualification  
Production  
This data sheet contains data from the preliminary specification. Supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to change the specification  
without notice, in order to improve the design and supply the best possible product.  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply.  
Changes will be communicated according to the Customer Product/Process Change Notification  
(CPCN) procedure SNW-SQ-650A.  
[1] Please consult the most recently issued data sheet before initiating or completing a design.  
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on  
the Internet at URL http://www.semiconductors.philips.com.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Copyright Philips Electronics North America Corporation 2001  
All rights reserved. Printed in U.S.A.  
Sunnyvale, California 94088–3409  
Telephone 800-234-7381  
Date of release: 06-01  
Document order number:  
9397 750 08448  
Philips  
Semiconductors  

相关型号:

SA56606-18GW-G

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, PLASTIC, SOT-353, UMT-5, Power Management Circuit
NXP

SA56606-20

CMOS system reset
NXP

SA56606-20GW

CMOS system reset
NXP

SA56606-20GW

Power Management Circuit,
PHILIPS

SA56606-20GW-G

暂无描述
NXP

SA56606-27

CMOS system reset
NXP

SA56606-27GW

CMOS system reset
NXP

SA56606-27GW

Power Management Circuit,
PHILIPS

SA56606-27GW-G

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO5, PLASTIC, SOT-23, SO-5, Power Management Circuit
NXP

SA56606-28

CMOS system reset
NXP

SA56606-28GW

CMOS system reset
NXP

SA56606-28GW

Power Management Circuit,
PHILIPS