SAA3323 [NXP]

Drive processor for DCC systems; 对于DCC系统驱动处理器
SAA3323
型号: SAA3323
厂家: NXP    NXP
描述:

Drive processor for DCC systems
对于DCC系统驱动处理器

驱动
文件: 总56页 (文件大小:271K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA3323  
Drive processor for DCC systems  
May 1994  
Preliminary specification  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
FEATURES  
Operating supply voltage: 2.7 to 3.6 V  
Low power dissipation: 84 mW (typ)  
Single chip digital equalizer, tape formatting and error  
correction  
8-bit flash analog-to-digital converter (ADC) for low  
symbol error rate  
Frequency and phase regulation of capstan servo  
during playback  
Two switchable Infinite Impulse-Response (IIR) filter  
Choice of Dynamic Random Access Memory (DRAM)  
and Static Random Access Memory (SRAM) types for  
system Random Access Memory (RAM)  
sections  
10-tap Finite Impulse-Response (FIR) filter per main  
data channel, with 8 bit coefficients, identical for all main  
channels  
Scratch pad RAM for microcontroller in system RAM  
Integrated interface for Precision Adaptive Sub-band  
Coding (PASC) data bus  
10-tap FIR filter for the AUX channel  
Analog and digital eye outputs  
Three wire microcontroller ‘L3’ interface  
Protection against invalid auxiliary data  
Seamless joins between recordings.  
Interrupt line triggered by internal auxiliary envelope  
processing e.g. label, counter, and others  
Robust programmable digital PLL clock extraction unit  
Low power SLEEP mode  
GENERAL DESCRIPTION  
Slew rate limited Electromagnetic Compatibility (EMC)  
The SAA3323 performs the drive processor function in the  
DCC system. This function is built up of digital equalizer,  
error correction and tape formatting functions. The digital  
equalizer is intended for use with DCC read amplifiers  
TDA1318 or TDA1380. The tape formatting and error  
correction circuit is intended for use with PASC ICs  
SAA2003 and SAA2013, and write amplifiers TDA1319 or  
TDA1381.  
friendly output  
Digital Compact Cassette (DCC) optimized error  
correction  
Programmable symbol synchronization strategy for tape  
input data  
Microcontroller control of capstan servo possible during  
playback and recording  
ORDERING INFORMATION  
TYPE NUMBER  
PACKAGE  
PINS  
PIN POSITION  
MATERIAL  
plastic  
CODE  
SAA3323H  
80  
80  
TQFP80(1)  
QFP80(1)  
SOT315-1  
SOT318-2  
SAA3323GP  
plastic  
Note  
1. When using reflow soldering it is recommended that the Dry Packing instructions in the “Quality Reference  
Pocketbook” are followed. The pocketbook can be ordered using the code 9398 510 34011.  
May 1994  
2
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
BLOCK DIAGRAM  
SAA3323  
DIGITAL-  
TO-ANALOG  
CONVERTER  
ANAEYE  
RDSYNC  
RDMUX  
PHASE  
LOCKED  
LOOP  
ANALOG  
TO-DIGITAL  
CONVERTER  
ZERO  
CROSSING  
(1)  
(2)  
BIAS  
V
FIR  
IIR  
ref(p)  
V
ref(n)  
AUXILIARY  
ENVELOPE  
DETECTION  
TAPE  
INPUT  
BUFFER  
EQUALIZER  
MODULE  
SBDIR  
SBMCLK  
SBEF  
TAPE  
OUTPUT  
BUFFER  
TCLOCK  
WDATA  
SUB-BAND  
I S  
INTERFACE  
2
INTERNAL DATA BUS  
SBDA  
SBCL  
SBWS  
SPEED  
URDA  
RESET  
SLEEP  
CONTROL  
INTERFACE  
ERROR  
CORRECTOR  
RAM  
INTERFACE  
L3REF  
L3DATA  
8
11  
6
MLB761  
(1) FIR = Finite Impulse-Response.  
(2) IIR = Infinite Impulse-Response.  
Fig.1 Block diagram.  
May 1994  
3
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
PINNING  
PIN  
SYMBOL  
DESCRIPTION  
TYPE(1)  
QFP80  
TQFP80  
SBWS  
SBCL  
SBDA  
SBDIR  
SBMCLK  
URDA  
L3MODE  
L3CLK  
L3DATA  
L3INT  
VDD1  
1
79  
80  
1
word select for sub-band PASC interface  
bit clock for sub-band PASC interface  
data line for sub-band PASC interface  
direction line for sub-band PASC interface  
master clock for sub-band PASC interface  
unreliable data  
I/O (1 mA)  
I/O (1 mA)  
I/O (1 mA)  
O (1 mA)  
I
2
3
4
2
5
3
6
4
O (1 mA)  
I
7
5
mode line for L3 interface  
bit clock line for L3 interface  
serial data line for L3 interface  
L3 interrupt output  
8
6
I
9
7
I/O (2 mA)  
O (1 mA)  
S
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
8
9
digital supply voltage  
VSS1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
digital ground  
S
L3REF  
RESET  
SLEEP  
CLK24  
AZCHK  
MCLK  
TEST3  
ERCOSTAT  
OEN  
L3 bus timing reference  
O (1 mA)  
I
reset SAA3323  
sleep mode selection of SAA3323  
24.576 MHz clock input  
I
I
channel 0 and channel 7 azimuth monitor  
6.144 MHz clock output  
O (1 mA)  
O (1 mA)  
O (1 mA)  
O (1 mA)  
O (2 mA)  
O (2 mA)  
S
TEST3 output; do not connect  
ERCO status, for symbol error rate measurements  
output enable for RAM  
A10/RAS  
VDD2  
address SRAM; RAS DRAM  
digital supply voltage  
VSS2  
digital ground  
S
D7  
data SRAM  
I/O (4 mA)  
I/O (4 mA)  
I/O (4 mA)  
I/O (4 mA)  
I/O (4 mA)  
I/O (4 mA)  
I/O (4 mA)  
S
D6  
data SRAM  
D5  
data SRAM  
D4  
data SRAM  
D3  
data SRAM; data DRAM  
data SRAM; data DRAM  
data SRAM; data DRAM  
digital supply voltage for RAM  
digital ground for RAM  
D2  
D1  
VDD7  
VSS7  
S
D0  
data SRAM; data DRAM  
address SRAM; address DRAM  
address SRAM; address DRAM  
address SRAM; address DRAM  
address SRAM; address DRAM  
I/O (4 mA)  
O (2 mA)  
O (2 mA)  
O (2 mA)  
O (2 mA)  
A0  
A1  
A2  
A3  
May 1994  
4
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
PIN  
SYMBOL  
DESCRIPTION  
address SRAM; address DRAM  
TYPE(1)  
QFP80  
TQFP80  
A4  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
O (2 mA)  
S
VSS3  
digital ground  
VDD3  
digital supply voltage  
S
A5  
address SRAM; address DRAM  
address SRAM; address DRAM  
address SRAM; address DRAM  
address SRAM; Port expander output 5  
address SRAM; Port expander output 1  
address SRAM; Port expander output 3  
address SRAM; Port expander output 4  
write enable for RAM  
O (2 mA)  
O (2 mA)  
O (2 mA)  
O (2 mA)  
O (2 mA)  
O (2 mA)  
O (2 mA)  
O (2 mA)  
O (2 mA)  
O (2 mA)  
S
A6  
A7  
A12/PINO5  
A14/PINO1  
A16/PINO3  
A15/PINO4  
WEN  
A13/PINO2  
A8  
address SRAM; Port expander output 2  
address SRAM; address DRAM  
digital supply voltage  
VDD4  
VSS4  
digital ground  
S
A9/CAS  
A11  
address SRAM; CAS for DRAM  
address SRAM  
O (2 mA)  
O (2 mA)  
SPEED  
PINO2  
WDATA  
TCLOCK  
VSS5  
Pulse Width Modulation (PWM) capstan control output for deck Ot (1 mA)  
Port expander output 2  
Ot (1 mA)  
serial output to write amplifier  
3.072 MHz clock output for tape I/O  
digital ground  
O (1 mA)  
O (1 mA)  
S
VDD5  
digital supply voltage  
S
TEST2  
RDMUX  
Vref(p)  
TEST mode select; do not connect  
analog multiplexed input from read amplifier  
ADC positive reference voltage  
ADC negative reference voltage  
substrate connection  
Ipd  
IA  
IA  
Vref(n)  
IA  
SUBSTR  
BIAS  
IA  
bias current for ADC  
IA  
VSSA  
analog ground  
S
VDDA  
analog supply voltage  
S
ANAEYE  
RDSYNC  
VDD6  
analog eye pattern output  
synchronization output for read amplifier  
digital supply voltage  
OA  
O (1 mA)  
S
VSS6  
digital ground  
S
CHTST1  
CHTST2  
TEST0  
TEST1  
channel test pin 1  
O (1 mA)  
O (1 mA)  
Ipd  
channel test pin 2  
TEST mode select; do not connect  
TEST mode select; do not connect  
Ipd  
May 1994  
5
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
PIN  
SYMBOL  
DESCRIPTION  
TYPE(1)  
QFP80  
TQFP80  
PINI  
78  
79  
80  
76  
77  
78  
Port expander input  
I
PINO1  
SBEF  
Port expander output 1  
O (1 mA)  
O (1 mA)  
sub-band PASC error flag line  
Note  
1. I = input; IA = analog input; Ipd = input with pull-down resistance; I/O = bidirectional; O = output; OA = analog output;  
Ot = 3-state output; S = supply.  
SBDA  
SBDIR  
1
2
60 TEST2  
V
59  
58  
DD5  
SS5  
V
SBMCLK  
URDA  
3
4
57 TCLOCK  
56 WDATA  
55 PINO2  
54 SPEED  
53 A11  
L3MODE  
5
L3CLK  
L3DATA  
L3INT  
6
7
8
V
9
52 A9/CAS  
V
DD1  
V
10  
51  
50  
SS4  
DD4  
SS1  
SAA3323  
V
L3REF 11  
RESET 12  
SLEEP 13  
CLK24 14  
49 A8  
48 A13/PINO2  
47  
WEN  
AZCHK 15  
MCLK 16  
46 A15/PINO4  
45 A16/PINO3  
44 A14/PINO1  
43 A12/PINO5  
42 A7  
TEST3 17  
ERCOSTAT 18  
19  
20  
OEN  
A10/RAS  
41 A6  
MLB762  
Fig.2 Pin configuration (SOT315-1; TQFP80).  
6
May 1994  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
V
SBWS  
SBCL  
1
2
3
4
5
6
7
8
9
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
ref(p)  
RDMUX  
TEST2  
SBDA  
V
SBDIR  
DD5  
V
SBMCLK  
URDA  
SS5  
TCLOCK  
WDATA  
PINO2  
SPEED  
A11  
L3MODE  
L3CLK  
L3DATA  
L3INT 10  
V
11  
12  
13  
A9/CAS  
DD1  
V
V
SS1  
SS4  
SAA3323  
V
L3REF  
DD4  
RESET 14  
SLEEP 15  
A8  
A13/PINO2  
CLK24 16  
WEN  
AZCHK 17  
MCLK 18  
A15/PINO4  
A16/PINO3  
A14/PINO1  
TEST3 19  
ERCOSTAT 20  
A12/PINO5  
21  
A7  
A6  
OEN  
22  
A10/RAS  
V
23  
42 A5  
DD2  
V
V
24  
SS2  
41  
DD3  
MLB763  
Fig.3 Pin configuration (SOT318-2; QFP80).  
7
May 1994  
RAM  
41464  
BUFFER  
64K x 4  
speed control  
CAPSTAN  
DRIVE  
L
DAC  
analog  
output  
TDA1305  
sub-band  
R
2
I S  
SFC3  
SAA2003  
WRAMP  
TDA1381  
WRITE AMP.  
baseband  
STEREO  
FILTER CODEC  
2
I S  
DRP  
SAA2023  
OR  
L
FIXED  
HEAD  
TAPE  
analog  
input  
ADC  
SAA7366  
SAA3323  
DRIVE  
PROCESSOR  
2
R
filtered I S  
RDAMP  
TDA1380  
READ AMP.  
ADAS3  
SAA2013  
ADAPTIVE  
ALLOCATION  
DIGITAL  
AUDIO I/O  
TDA1315  
MECHANICS  
DRIVERS  
IEC958  
search data  
analog CC  
L output  
detect  
switch  
analog CC  
R output  
AUDIO IN/OUT  
PASC PROCESSOR  
TAPE DRIVE PROCESSING  
SYSTEM  
MICROCONTROLLER  
SYSTEM CONTROL  
MBD620  
Fig.4 DCC system block diagram.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
A simplified block diagram of the SAA3323 is shown in  
Fig.1.  
Table 1 Basic modes of TFE module.  
MODE EXPLANATION  
DPAP  
audio and SYSINFO (main data) play;  
AUX play  
DCC drive processing  
The SAA3323 provides the following functions for the DCC  
drive processing.  
DPAR  
DRAR  
audio and SYSINFO (main data) play;  
AUX record  
audio and SYSINFO (main data) record;  
AUX record  
PLAYBACK MODES  
Analog-to-digital conversion  
Tape channel equalization  
TFE REGISTERS  
Tape channel data and clock recovery  
10-to-8 demodulation  
The TFE module has 8 writable and 5 readable registers  
that are accessible via the L3 interface, one write register  
(CMD) and four read registers (STATUS0 to STATUS3)  
which are directly addressable, the other registers are  
indirectly addressable via commands sent to the CMD  
register. The registers are named as shown in Table 2.  
Data placement in system RAM  
C1 and C2 error correction decoding  
Interfacing to sub-band serial PASC interface  
Table 2 TFE register names.  
Interfacing to microcontroller for SYSINFO and AUX  
data  
REGISTER NAME  
READ/WRITE  
Capstan control for tape deck.  
CMD  
W
R
STATUS0  
STATUS1  
STATUS2  
STATUS3  
SET0  
RECORD MODES  
R
Interfacing to sub-band serial PASC interface  
C1 and C2 error correction encoding  
Formatting for tape transfer  
8-to-10 modulation  
R
R
W
W
W
W
W
W
W
R
SET1  
SET2  
Interfacing to microcontroller for SYSINFO and AUX  
data  
SET3(1)  
SPDDTY  
BYTCNT  
RACCNT  
SPEED  
Capstan control for tape deck, programmable by  
microcontroller.  
SEARCH MODE  
Detection and interpretation of AUX envelope  
information  
Note  
1. The 4 LSBs of register ‘SET3’ set RAM type (RType)  
and RAM timing (RTim). See Table 3.  
AUX envelope counting  
Search speed estimation.  
For normal operation the 4 MSBs of register ‘SET3’  
should be logic 0.  
Tape Formatting and Error (TFE) correction module  
The TFE module has 3 basic modes of operation as shown  
in Table 1.  
May 1994  
9
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
Table 3 RAM settings by register SET3.  
Table 4 TFE data streams.  
RAM  
REGISTER SET3  
DATA STREAM NAME  
READ/WRITE  
RTYPE 0  
RTYPE 1  
RTim 0  
bit 0  
bit 1  
bit 2  
bit 3  
SYSINFO  
R/W  
R/W  
R/W  
AUXINFO  
Scratch pad RAM  
RTim 1  
TFE ‘COMMANDS’  
TFE DATA STREAMS  
These are the commands that need to be sent to the TFE  
in order to access the indirectly accessible registers and  
the data streams, see Table 5.  
The TFE module has three read/write data streams that  
are accessible via the L3 interface and they are shown in  
Table 4.  
Table 5 TFE commands.  
COMMAND BYTE  
NAME  
EXPLANATION  
7
6
5
4
3
2
1
0
RDSPEED  
LDSET0  
0
0
0
0
0
0
0
0
0
0
Y
Y
0
0
Y
Y
0
0
0
0
0
0
0
0
0
0
Z
Z
0
0
Z
Z
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
1
1
0
0
1
0
1
0
1
0
1
read SPEED register  
load new TFE settings register 0  
load new TFE settings register 1  
load new TFE settings register 2  
load new TFE settings register 3  
load SPDDTY register  
LDSET1  
LDSET2  
LDSET3  
LDSPDDTY  
LDBYTCNT  
LDRACCNT  
RDAUX  
load BYTCNT register  
load RACCNT register  
read AUXILIARY information  
read SYSINFO  
RDSYS  
RDDRAC  
RDWDRAC  
WRAUX  
read RAM data bytes (8 bits) from quarter YZ  
read RAM data words (12 bits) from quarter YZ  
write AUXILIARY information  
write SYSINFO  
WRSYS  
WRDRAC  
WRWDRAC  
write RAM data bytes (8 bits) to quarter YZ  
write RAM data words (12 bits) to quarter YZ  
Digital equalizer module  
DIGITAL EQUALIZER REGISTERS  
The digital equalizer module has 2 basic modes of  
operation as shown in Table 6.  
The digital equalizer module has 9 write only, 3 read only  
and 1 read/write register(s) that are accessible via the  
L3 interface, one write register (CMD) and 2 read registers  
(STATUS0 and STATUS1) which are directly addressable,  
the other registers are indirectly addressable via  
commands sent to the CMD register. The registers are  
named as shown in Table 7.  
Table 6 Basic modes of equalizer module.  
MODE  
EXPLANATION  
Play  
main data and AUX channels are  
equalized  
Search  
only AUX channel is processed; AUX  
envelope information is processed  
May 1994  
10  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
Table 7 Digital equalizer register names.  
DATA STREAMS  
The digital equalizer module has one write only and one  
read only data stream that are accessible via the  
L3 interface and they are shown in Table 8.  
REGISTER NAME  
READ/WRITE  
CMD  
W
R
STATUS0  
STATUS1  
COEFCNT  
FCTRL  
R
Table 8 Digital equalizer data streams.  
W
W
W
W
W
R/W  
R
DATA STREAM NAME  
FIR coefficients to buffer bank  
FIR coefficients from active bank  
READ/WRITE  
W
W
CHT1SEL  
CHT2SEL  
ANAEYE  
AEC  
DIGITAL EQUALIZER COMMANDS”  
These are the commands that need to be sent to the digital  
equalizer in order to access the indirectly accessible  
registers and the data streams.  
SSPD  
INTMASK  
DEQ2SET  
CLKSET  
W
W
W
Table 9 Digital equalizer commands.  
COMMAND BYTE  
NAME  
WRCOEF  
EXPLANATION  
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
1
0
1
1
1
1
1
1
0
0
1
1
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
0
0
0
1
0
1
1
0
0
1
0
1
0
0
0
0
1
0
0
1
0
1
0
0
0
0
1
write FIR coefficients to the digital equalizer buffer bank  
read FIR coefficients from the digital equalizer active bank  
load FIR coefficient counter  
RDCOEF  
LDCOEFCNT  
LDFCTRL  
LDT1SEL  
LDT2SEL  
LDTAEYE  
LDAEC  
load filter control register  
load CHTST1 pin selection register  
load CHTST2 pin selection register  
load ANAEYE channel selection register  
load AEC counter  
RDAEC  
read AEC counter  
RDSSPD  
read SEARCH speed register  
LDINTMSK  
LDDEQ3SET  
LDCLKSET  
load interrupt mask register  
load digital equalizer settings register  
load PLL clock extraction settings register  
Table 10 Filter control register.  
BIT  
7
6
0
5
0
4
µCS(1)  
0
3
2
1
0
Meaning  
Default  
SH1  
1
SH0  
0
Reserved  
0
1
1
Note  
1. µCS is a microcontroller controlled coefficient bank switch. This causes the filter coefficients to be activated at a time  
that is safe for the digital equalizer, i.e. at the end of the FIR program and that the complete value of coefficient  
number 9 has been received.  
May 1994  
11  
--------  
                                                     
-
---------  
                                                     
--------  
                                                     
-
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
There are 2 banks of coefficients for both the aux and the  
main data channels, namely the ‘buffer’, and the ‘active’  
banks. The microcontroller writes only to the ‘buffer’  
banks, and reads only from the ‘active’ banks.  
Table 11 SH1 and SH2 (FIR output scaling).  
SH  
EFFECT ON FIR OUTPUT  
1
0
The microcontroller can poll the digital equalizer status bit  
BKSW to see when the switch occurs. BKSW starts life  
LOW, goes HIGH as a result of the bank switching and  
goes LOW as result of the complete value of a main data  
coefficient being received by the digital equalizer.  
0
0
0
1
FIR mod 256  
FIR  
mod 256  
mod 256  
mod 256  
2
1
1
0
1
FIR  
4
The microcontroller sets µCS HIGH before sending the  
new set of aux or main data coefficients, the digital  
equalizer resets it once the bank switch occurs.  
FIR  
8
The actual FIR coefficients that are used are a function of  
the tape head, read amplifier and type of tape (i.e.  
pre-recorded or own recorded) used, such information is  
outside of the scope of this data sheet.  
Transfer of FIR coefficients  
For the main data channels (tracks 0 to 7) there are  
10 coefficients (taps) each of 8 bits, where all of the data  
channels make use of the same coefficients. The  
addresses for the main data coefficients 0 to 9 are  
0 to 9dec respectively.  
Coefficient address counter (COEFCNT)  
This 5 bit counter is used to point to the FIR coefficient to  
be transferred to or from the digital equalizer.  
There are ten coefficients (taps) each of 8 bits for the aux  
channel (CHAUX). The addresses for the auxiliary  
coefficients 0 to 9 are 16 to 25dec respectively.  
Table 12 Coefficient address counter.  
BIT  
7
6
5
4
3
2
1
0
Meaning  
Default  
CC4  
0
CC3  
0
CC2  
0
CC1  
0
CC0  
0
0
0
0
mode, the SLEEP pin should be taken LOW and the  
SAA3323 reset.  
Pin explanations and interfacing to other hardware  
RESET  
CLK24  
This is an active HIGH input which resets the SAA3323  
and brings it into its default mode, DPAP. This reset does  
not affect the contents of the FIR filter coefficients in the  
digital equalizer. This should be connected to the system  
reset, which can be driven by the microcontroller. The  
duration of the reset pulse should be at least 15 µs.  
This is the 24.576 MHz clock input and should be  
connected directly to the SAA2003 (pin CLK24).  
Sub-band serial PASC interface connections  
The timing for the sub-band serial PASC interface is given  
in Figs 5 to 7.  
SLEEP  
This pin is an active HIGH input which puts the SAA3323  
in a low power consumption SLEEP mode. This pin should  
be connected to the DCC SLEEP signal, which can be  
driven by the microcontroller. The CLK24 clock may be  
stopped and the VREFP and VREFN inputs brought to  
ground while the SAA3323 is in ‘sleep’ mode to further  
reduce power consumption. When recovering from sleep  
May 1994  
12  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
SBCL(in)  
SBWS(in)  
SBDA(in)  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SBCL(in)  
SBWS(in)  
SBDA(in)  
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
bit number  
V
V
IH  
SBCL(in)  
SBWS(in)  
SBDA(in)  
OH  
V
V
IH  
OH  
V
V
IH  
OH  
MGB381  
2 x t  
40 ns  
40 ns  
MCLK  
Fig.5 Sub-band serial PASC interface timing; DRAR mode.  
May 1994  
13  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
SBCL(out)  
SBWS(out)  
SBDA(out)  
SBEF(out)  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SBCL(out)  
SBWS(out)  
SBDA(out)  
SBEF(out)  
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
bit number  
V
V
IH  
IL  
SBMCLK(in)  
V
V
OH  
OL  
SBCL(out)  
SBWS(out)  
SBDA(out)  
SBDA(out)  
60 ns  
V
V
OH  
OL  
V
V
OH  
OL  
7 ns  
7 ns  
V
V
OH  
OL  
MGB382  
Fig.6 Sub-band serial PASC interface timing in play modes; DRPMAS = logic 1.  
May 1994  
14  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
SBCL(in)
SBWS(in)  
SBDA(out)  
SBEF(out)  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
SBCL(in)  
SBWS(in)  
SBDA(out)  
SBEF(out)  
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
bit number  
V
V
IH  
IL  
SBCL(in)  
SBWS(in)  
SBDA(out)  
SBDA(out)  
V
V
IH  
IL  
2 x t  
40 ns  
40 ns  
MCLK  
t
V
V
OH  
OL  
(40 85) ns  
MCLK  
V
V
OH  
OL  
MGB383  
t
(40 40) ns  
MCLK  
Fig.7 Sub-band serial PASC interface timing in play modes; DRPMAS = logic 0.  
SBMCLK  
SBCL  
This is the sub-band master clock input for the sub-band  
serial PASC interface. The frequency of this signal is  
nominally 6.144 MHz. When the SAA3323 is used with  
SAA2003 this pin is tied to ground, and the TFE settings  
bit ‘DRPMAS’ set to logic 1.  
This input/output pin is the bit clock line for the sub-band  
serial PASC interface to the SAA2003. When used with  
SAA2003 this pin is input only. It has a nominal frequency  
of 768 kHz.  
SBWS  
SBDIR  
This input/output pin is the word select line for the  
sub-band serial PASC interface to the SAA2003. When  
used with SAA2003 this pin is input only. It has a nominal  
frequency of 12 kHz.  
This output pin is the sub-band serial PASC bus direction  
signal, it indicates the direction of transfer on the sub-band  
serial PASC bus. This pin connects directly to the SBDIR  
pin on the SAA2003. The transfer directions are shown in  
Table 13.  
SBDA  
This input/output pin is the serial data line for the sub-band  
serial PASC interface to the SAA2003.  
Table 13 PASC bus transfer directions.  
SBDIR  
DIRECTION  
SBEF  
1
0
SAA3323 to SAA2003 transfer (audio play)  
SAA2003 to SAA3323 transfer (audio record)  
This active HIGH output pin is the error-per-byte line for  
the sub-band serial PASC interface to the SAA2003.  
May 1994  
15  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
the URDA pin of the SAA2003. URDA goes active as a  
result of a reset, a mode change from mode DRAR to  
DPAP, or if the SAA3323 has had to re-synchronize with  
the incoming data from tape.  
URDA  
This active HIGH output pin indicates that the main data  
(audio), the SYSINFO and the AUXILIARY data are NOT  
usable, regardless of the state of the corresponding  
reliability flags. The state of this pin is reflected in the  
URDA bit of STATUS byte 0, which can be read by the  
microcontroller. This pin should be connected directly to  
The position of the first sub-band serial PASC bytes in a  
tape frame is shown in Figs 8 and 9.  
0
1
SNUM  
SBWS  
L3REF  
'FIRST BYTE"  
SBDA  
MGB384  
byte 0  
byte 1 byte 2  
Fig.8 Position of first sub-band serial PASC bytes in a tape frame in DPAP/DPAR mode.  
3
0
SNUM  
SBWS  
L3REF  
'FIRST BYTE'  
SBDA  
MGB385  
byte 0 byte 1 byte 2  
Fig.9 Position of first sub-band serial PASC bytes in a tape frame in DRAR mode.  
May 1994  
16  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
RAM connections  
OEN  
The SAA3323 has been designed to operate with DRAMs  
and SRAMs. Suitable DRAMs are 64K × 4-bit or  
256K × 4-bit configurations operating in page mode, with  
an access time of 80 to 100 ns. The timing for read, write  
and refresh cycles for DRAMs is shown in Figs 10 to 12.  
The timing for SRAMs is shown in Figs 13 to 19.  
This output pin is the output enable (active LOW) for the  
RAM, it connects directly to the output enable pin of the  
RAM.  
WEN  
This output pin is the write enable (active LOW) for the  
RAM, it connects directly to the write enable pin of the  
RAM.  
For fast SRAMs: (these values are subject to verification  
during characterization in). The conditions (most critical at  
the required VDD) are shown in Table 14.  
A0 TO A8  
Table 14 Fast SRAM conditions.  
When SAA3323 is used with DRAM these output pins are  
the multiplexed column and row address lines. When the  
64K × 4-bit DRAM is used, pins A0 to A7 should be  
connected to the DRAM address input pins, and pin A8  
should be left unconnected. When using the 256K × 4-bit  
DRAM the address pins A0 to A8 should be connected to  
the address input pins of the DRAM.  
CONDITION(1)  
TIME  
W 140 ns  
su 72 ns  
cy 200 ns  
ACC 240 ns  
Write pulse duration  
Data set-up to rising WEN  
Write cycle time  
t
t
T
Read access time  
t
When SAA3323 is used with SRAM these are the lower  
address pins and should be connected directly to the  
SRAM address pins.  
Note  
1. The SAA3323 should work in: RType = ‘01’;  
RTim = ‘00’ mode.  
A11  
A9/CAS  
This output pin is the an address pin for the SRAM and  
when SRAM is used they should be connected directly to  
the address pins of the SRAM. When DRAM is used this  
pin should not be connected.  
When SAA3323 is used with SRAM this output pin is  
Address line 9, and should be connected directly to the  
corresponding address pin on the SRAM. When SAA3323  
is used with DRAM this output pin is the column address  
strobe (active LOW), it connects directly to the column  
address strobe pin of the DRAM.  
A10 AND A12 TO A16  
These output pins are the upper address pins for the  
SRAM and when SRAM is used they should be connected  
directly to the address pins of the SRAM. When DRAM is  
used or when the small SRAM is used all or some of these  
pins become available as Port expander outputs.  
A10/RAS  
When SAA3323 is used with SRAM this output pin is  
Address line 10, and should be connected to the  
corresponding address pin of the SRAM. When SAA3323  
is used with DRAM this output pin is the row address  
strobe (active LOW), it connects directly to the row  
address strobe pin of the DRAM.  
May 1994  
17  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
Table 15 Port expander outputs.  
PIN  
PORT EXPANDER  
OUTPUT  
PIN NAME  
CONDITIONS  
QFP80  
TQFP80  
A14/PINO1  
A13/PINO2  
A16/PINO3  
A15/PINO4  
A12/PINO5  
46  
50  
47  
48  
45  
44  
48  
45  
46  
43  
PINO1  
PINO2  
PINO3  
PINO4  
PINO5  
RType = 00  
RType = 00  
RType = 00 or RType = 01  
RType = 00 or RType = 01  
RType = 00  
D0 TO D3  
When SAA3323 is used with SRAM these I/O pins form the lower nibble of the data bus connection to the RAM, and  
should be connected to the corresponding data I/O pins of the SRAM. When SAA3323 is used with DRAM these  
input/output pins are the data lines for the RAM, they should be connected directly to the DRAM data I/O pins.  
D4 TO D7  
These input/output pins are the upper nibble of the data bus for use with SRAM, and when SRAM is being used they  
should be connected directly to the corresponding SRAM I/O pins.  
WEN  
OEN  
t
RAS  
A10/RAS  
t
t
t
CAS  
RP  
RCD  
t
A9/CAS  
ASC  
t
t
t
CP  
RAH  
t
t
CAH  
ASR  
A0 to A8  
D0 to D3  
ROW ADDRESS  
COLUMN ADDRESS  
COLUMN ADDRESS  
OFF  
COLUMN ADDRESS  
t
t
CAC  
OEZ  
NIBBLE 0 DATA  
NIBBLE 1 DATA  
NIBBLE 2 DATA  
t
MGB386  
RAC  
Fig.10 DRAM read cycle timing.  
May 1994  
18  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
t
WCS  
t
WCH  
WEN  
OEN  
t
RAS  
A10/RAS  
A9/CAS  
t
t
t
CAS  
RP  
RCD  
t
ASC  
t
t
CP  
RAH  
t
t
CAH  
ASR  
A0 to A8  
D0 to D3  
ROW ADDRESS  
COLUMN ADDRESS  
COLUMN ADDRESS  
NIBBLE 1 DATA  
COLUMN ADDRESS  
NIBBLE 2 DATA  
NIBBLE 0 DATA  
MGB387  
t
DH  
t
DS  
Fig.11 DRAM write cycle timing.  
WEN  
OEN  
t
t
RP  
RAS  
A10/RAS  
A9/CAS  
t
RAH  
t
ASR  
A0 to A8  
D0 to D3  
ROW ADDRESS  
MGB388  
Fig.12 DRAM refresh cycle timing.  
19  
May 1994  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
WEN  
OEN  
A0 to A16  
D0 to D7  
ADDRESS  
ADDRESS  
OH  
t
t
t
OHZ  
AA  
DATA  
DATA  
MGB389  
t
OLZ  
READ  
READ  
Fig.13 Fast SRAM read cycle timing.  
t
t
WP  
WP  
WEN  
OEN  
t
AW  
t
WC  
A0 to A16  
ADDRESS  
ADDRESS  
t
DHO1  
t
t
t
DW2  
OLZ  
DATA  
DW1  
D0 to D7  
DATA  
t
DATA  
MGB390  
t
AA  
t
t
DH2  
DH1  
OHZ  
READ MODIFY WRITE  
WRITE  
Fig.14 Fast SRAM write cycle timing; RTim = “00”.  
20  
May 1994  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
t
t
WP  
WP  
WEN  
OEN  
t
AW  
t
WC  
A0 to A16  
D0 to D7  
ADDRESS  
ADDRESS  
t
t
DHO1  
t
DAH  
DAH  
t
OLZ  
t
t
DW1  
DW2  
DATA  
t
DATA  
DATA  
MGB391  
t
AA  
t
t
OHZ  
DDH  
DDH  
WRITE  
READ MODIFY WRITE  
Fig.15 Fast SRAM write cycle timing; RTim = “01”.  
t
t
WP  
WP  
WEN  
OEN  
t
AW  
t
WC  
A0 to A16  
ADDRESS  
ADDRESS  
t
DHO1  
t
t
OLZ  
t
DW1  
DW2  
D0 to D7  
DATA  
DATA  
OHZ  
DATA  
t
MGB392  
t
DH2  
t
DH1  
t
AA  
t
WOA  
WRITE  
READ MODIFY WRITE  
Fig.16 Fast SRAM write cycle timing; RTim = “10”.  
21  
May 1994  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
WEN  
OEN  
A0 to A16  
D0 to D7  
MGB393  
WRITE  
READ MODIFY WRITE  
Fig.17 Fast SRAM write cycle timing; RTim = “11”.  
WEN  
OEN  
A0 to A16  
D0 to D7  
ADDRESS  
t
ADDRESS  
OHZ  
t
OLZ  
DATA  
DATA  
MGB394  
t
t
OH  
AA  
READ  
READ  
Fig.18 Slow SRAM read cycle timing.  
22  
May 1994  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
t
t
WP  
WP  
WEN  
OEN  
t
t
AW  
WC  
AW  
WC  
t
t
A0 to A16  
D0 to D7  
ADDRESS  
ADDRESS  
t
t
DW1  
DW2  
DATA  
DATA  
MGB395  
t
t
DH  
DH  
WRITE  
WRITE  
Fig.19 Slow SRAM write cycle timing.  
Table 16 Timing values for Figs 10 to 12.  
Table 17 Timing values for Figs 13 to 17.  
SYMBOL  
VALUE (ns)  
SYMBOL  
VALUE (ns)  
tRP  
110  
510  
70  
tWP  
tAW  
tWC  
tDW  
tDM  
tAA  
140  
180  
200  
72  
tRAS  
tRCD  
tCP  
30  
tCAS  
tASR  
tRAH  
tASC  
tCAM  
tDS  
100  
100  
25  
25  
240  
250  
tHC  
30  
Table 18 Timing values for Figs 18 and 19.  
SYMBOL VALUE (ns)  
100  
25  
tDH  
100  
30  
tWP  
tAW  
tWC  
tDW  
tDM  
tAA  
225  
260  
300  
140  
25  
tWCS  
tWCH  
tRAC  
tCAC  
100  
160  
80  
280  
May 1994  
23  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
Read/write connections  
RDSYNC  
This output line provides synchronization information for  
the read Amplifier data transfers. The relationship between  
TCLOCK, RDSYNC and the channel information carried  
by the RDMUX line is given in Fig.20. This pin should be  
connected directly to the RDSYNC pin of the read  
amplifier. When the digital equalizer in SAA3323 is in  
search mode this pin will be HIGH ensuring that only the  
AUX channel is processed by the SAA3323.  
TCLOCK  
This output pin is the 3.072 MHz clock output for the read  
and write amplifiers, it should be connected directly to the  
WCLOCK pin of the write amplifier and to the RDCLK pin  
of the read amplifier.  
RDMUX  
This input pin carries the time multiplexed analog tape  
channel signals from the read amplifier.  
WDATA  
This output pin is the multiplexed data and control line for  
the write amplifier. Figure 21 shows the manner in which  
this information is multiplexed onto WDATA. The WDATA  
pin should be connected directly to the WDATA pin of the  
write amplifier.  
Vref(n) AND Vref(p)  
These are the lower and upper voltage reference inputs for  
the ADC in the digital equalizer part of SAA3323.  
BIAS  
This pin defines a bias current for the ADC. It should be  
connected to the analog supply voltage VDDA via a 47 kΩ  
resistor.  
TCLOCK  
RDMUX  
RDSYNC  
MGB396  
Fig.20 RDMUX, RDSYNC and TCLOCK timing.  
TCLOCK  
WDATA  
SYNC  
MGB397  
Fig.21 WDATA and TCLOCK timing.  
May 1994  
24  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
Tape deck capstan control connections  
SPEED  
This pin outputs a pulse width modulated signal that may  
be used for controlling the tape capstan of the deck.  
Operation of the SPEED control signal  
Table 19 gives the sources that determine the duty factor  
of the SPEED signal. Note that the 3-state SPEED output  
may be put into high-impedance state by programming the  
TFE setting by bit HiZSpd.  
Table 19 SPEED signal duty factor.  
SOURCE FOR  
MODE  
DPAP  
µCSPD  
SPEED DUTY  
FACTOR  
0
1
0
1
0
1
tape(1)  
µC(2)  
tape(1)  
µC(2)  
50%(3)  
µC(2)  
DPAP  
DPAR  
DPAR  
DRAR  
DRAR  
Notes  
1. “Tape” means that the duty factor has been calculated  
from the played back main data tape signal. When  
tape is the source for the duty factor of the SPEED  
signal, the type of regulation can be chosen with the  
TFE settings bits EnFReg and SeINBand.  
2. “µC” means that the microcontroller programs the duty  
factor via the SPDDTY register.  
3. “50%” means that the duty factor is fixed at 50%.  
May 1994  
25  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
MEA717  
100 %  
91 %  
duty  
factor  
speed  
50 %  
9 %  
0
0
+ 2 blocks  
+ 10.6 ms  
+ 1.65 blocks  
+ 8.8 ms  
– 1.65 blocks  
– 8.8 ms  
– 2 blocks  
– 10.6 ms  
Fig.22 SPEED regulation duty factor as a function of phase characteristic.  
If EnFReg is programmed ‘LOW’ then there is phase  
If EnFReg is programmed ‘HIGH’ then the above  
regulation of the capstan speed. The period of the pulse  
width modulated SPEED signal is 41.66 µs. The SAA3323  
performs a new calculation to determine the duty factor of  
SPEED once every 21.33 ms, giving a sampling rate of  
approximately 46.9 Hz. This calculation is basically a  
phase comparison between the incoming Main Data tape  
frame and an internally generated reference. The SPEED  
duty factor as a function of phase characteristic is shown  
in Fig.22. As shown the duty factor increases  
monotonously from approximately 9% when the incoming  
Main Data tape frame is 1.65 tape blocks (8.8 ms) too  
early up to 91% when it is 1.65 tape blocks (8.8 ms) too  
late. Outside of a ±2 tape blocks range the pulse width  
characteristic overflows and repeats itself forming a  
sawtooth pattern. The SAA3323 has an internal buffer of  
±8.8 ms outside of which the phase information is invalid.  
description is over-ridden with frequency information. If the  
incoming main data bit rate deviation from the nominal  
96000 bits/s rate is less than the Phase Only Threshold  
(POT) then the control is as described above in the phase  
control description. If the deviation is more than the  
Frequency Only Threshold (FOT) then the SPEED  
information is gated with the phase information resulting in  
the SPEED signal being continuously HIGH or LOW while  
the condition continues. If the deviation is between the  
POT and the FOT then the frequency information is gated  
with the Phase information for 50% of the time.  
The deviation thresholds POT and FOT are programmable  
via the TFE settings bit SeINBand.  
Table 20 POT and FOT deviation thresholds.  
POT  
FOT  
SeINBand  
(DEVIATION FROM NOMINAL)  
(DEVIATION FROM NOMINAL)  
0
1
±6%  
±3%  
±9%  
±4.5%  
May 1994  
26  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
If SLEEP is ‘HIGH’ then the state of the SPEED signal will  
be the state that it was in just before the SAA3323 went  
into sleep. Thus if SPEED was HIGH just before sleep it  
will stay HIGH during sleep. The same applies if it was  
LOW or if it was in ‘high-Z’ state. Note that a reset of the  
SAA3323 will take the SPEED signals out of ‘high-Z’ state.  
Table 21 Timing values for Fig.23.  
SYMBOL  
TIME(1)  
tW1  
td1  
th2  
td2  
td5  
tcL  
tcH  
tsu1  
th1  
td3  
th3  
td4  
T + tsu (L3MODE) + th (L3MODE); tw1 200 ns  
T + tsu (L3MODE) + th (L3CLK); td1 200 ns  
T + tsu (L3CLK) + th (L3MODE); th2 200 ns  
T + tsu (L3CLK) + td (L3DATA); td2 250 ns  
0 td5 50 ns  
Microcontroller connections  
L3REF  
T + tsu (L3CLK) + th (L3CLK); tcL 200 ns  
T + tsu (L3CLK) + th (L3CLK); tcH 200 ns  
T + tsu (L3DATA) + th (L3CLK); tsu1 200 ns  
T + tsu (L3CLK) + th (L3DATA); th1 35 ns  
2 × T + tsu (L3MODE) + td (L3DATA); td3 250 ns  
T + th (L3CLK) + td (L3DATA); th3 50 ns  
2 × T + tsu (L3CLK) + td (L3DATA); td4 410 ns  
3 × T + tsu (L3CLK) + td (L3DATA); td4 575 ns  
This active LOW output pin indicates the start of a time  
segment, it goes LOW for 5.2 µs once every 42.66 ms  
approximately and can be used for generating interrups for  
the microcontroller. If a re-synchronization occurs then the  
time between the occurrences van vary. This pin can be  
connected directly to the interrupt input of the  
microcontroller.  
(2)  
td4  
L3CLK  
This input pin is the clock line for the microcontroller  
interface.  
Notes  
1. T is the period of the master clock on the chip.  
2. td4 is the delay time between the last bit of a byte and  
first bit of the next byte, if no ‘halt’ is used.  
L3DATA  
This input/output pin is the serial data line for the  
microcontroller interface.  
L3MODE  
This input determines the type of transfer that is occurring  
between the microcontroller and the SAA3323. If L3MODE  
is LOW then a device address can be sent by the  
microcontroller. If L3MODE is HIGH then a data transfer  
may be occurring.  
L3INT  
This pin carries interrupts from the digital equalizer  
module. It can also be programmed to reflect the state of  
the AENV, LABEL and VIRGIN signals.  
May 1994  
27  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
t
W1  
L3MODE  
t
t
h2  
d1  
L3CLK  
t
t
d5  
d5  
L3DATA  
DRP to  
microcontroller  
a.  
L3MODE  
t
t
cH  
cL  
t
h2  
L3CLK  
t
t
d1  
h1  
L3DATA  
microcontroller  
to DRP  
0
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
t
su1  
b.  
L3MODE  
L3CLK  
t
t
cH  
cL  
t
h2  
t
t
h1  
d1  
L3DATA  
microcontroller  
to DRP  
0
c.  
t
su1  
L3MODE  
L3CLK  
t
t
cH  
cL  
t
h2  
t
t
t
d5  
h3  
d1  
t
L3DATA  
DRP to  
microcontroller  
0
t
d2  
MGB398  
t
d3  
d4  
d.  
a. Halt mode.  
b. Addressing mode.  
c. Data mode (transfer from microcontroller to SAA3323).  
d. Data mode (transfer from SAA3323 to microcontroller).  
Fig.23 L3 interface timing and typical transfers (1).  
28  
May 1994  
L3MODE  
L3CLK  
L3DATA  
TFE3 WCMD  
TFE3 RSTAT  
TFE3 WCMD  
LDSET0  
TFE3 WDAT  
SET0 DATA  
TFE3 WCMD  
LDSET1  
TFE3 WDAT  
SET1 DATA  
a.  
L3MODE  
L3CLK  
L3DATA  
STATUS0  
DATA  
STATUS1  
DATA  
STATUS2  
DATA  
STATUS3  
DATA  
b.  
L3MODE  
L3CLK  
L3DATA  
LDBYCYNT  
TFE3 WDAT  
D8HEX  
TFE3 WCMD  
RDSYS  
TFE3 RDAT  
SYSINFO(8)  
SYSINFO(9)  
c.  
L3MODE  
L3CLK  
L3DATA  
TFE3 WCMD  
TFE3 RSTAT  
LDBYCYNT  
TFE3 WDAT  
D8HEX  
TFE3 WCMD  
RDSYS  
TFE3 RSTAT  
STATUS0  
DATA  
TFE3 RDAT  
SYSINFO(8)  
MGB399  
L3MODE  
L3CLK  
L3DATA  
STATUS0  
DATA  
TFE3 RDAT  
SYSINFO(9)  
d.  
a. Write settings bytes 0 and 1 to TFE3 part of SAA3323.  
b. Read all 4 status bytes from TFE part of SAA3323.  
c. Read 2 SYSINFO bytes starting at byte 8 (in high-speed transfer part of program).  
d. Read 2 SYSINFO bytes starting at byte 8 (in low-speed transfer part of program).  
ahdnbok,uflapegwidt  
Fig.24 L3 interface timing and typical transfers (2).  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
SAA3323 test pins  
PINO1  
This output pin is connected directly to the PINO1 bit of the  
TFE settings 0 register. The microcontroller can set or  
reset this pin.  
TEST0 TO TEST3  
These input pins are for test only, do not connect.  
AZCHK  
PINO2 TO PINO5  
This output pin indicates the occurrence of a tape channel  
sync symbol on tape channels TCH0 and TCH7, the  
distance between the pulses for the TCH0 and TCH7  
channels gives a measure of the azimuth error between  
the tape and head alignment. Figure 25 shows the typical  
timing for this signal.  
Depending upon the type and the size of system RAM  
used, some or all of these Port expander output pins may  
be available, (please see Section “RAM connections”  
“A10 and A12 to A16” on interfacing to the RAM pins).  
Supply pins  
ERCOSTAT  
VDD1 TO VDD6  
This output pin can be connected to a symbol error rate  
measurement system.  
These are the supply pins, all of these pins must be  
connected. We recommend that each power supply pin  
pair (i.e. VDD1 to VSS1, VDD2 to VSS2, etc.) be decoupled  
using a 22 nF capacitor as close as is physically possible  
to the pins of the SAA3323.  
Port expansion pins  
PINI  
This input pin is connected directly to the PINI bit in the  
status byte 1, it can be read by the microcontroller, and  
may be used for any CMOS level compatible input signals.  
VSS1 TO VSS6  
These are the supply ground pins, all of which must be  
connected.  
Duration of the one tape block  
5.3 ms  
AZCHK  
(8 periods MCLK)  
1.3 µs  
MEA705  
This is a measure of the azimuth error.  
Nominal Inter Frame Gap (IFG) lasts 660 µs.  
Fig.25 AZCHK timing.  
May 1994  
30  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
internally to all the supply ground pins (VSS1 to VSS6),  
however it should always be connected externally.  
VDD7  
This is the supply pin for the output buffers to the data lines  
of the system RAM. It should always be connected  
externally. Decouple this pin with a 22 nF capacitor to the  
Auxiliary envelope detection  
INTMASK  
VSS7 pin.  
INTMASK is a interrupt mask register. This register sets  
the mode of operation for the interrupt interface, and is  
writable only.  
VSS7  
This is the ground supply pin for the output buffers of the  
data lines of the system RAM. This pin is connected  
Table 22 Interrupt mask register.  
BIT  
7
BP1  
0
6
BP0  
0
5
Vup(1)  
0
4
AEup(2)  
0
3
AEdn(3)  
0
2
Lup(4)  
0
1
Ldn(5)  
0
0
ECZ(6)  
0
Meaning  
Default  
Notes  
1. Vup rising edge of VIRGIN interrupt.  
2. AEup rising edge of AUX envelope interrupt.  
3. AEdn falling edge of AUX envelope interrupt.  
4. Lup rising edge of LABEL interrupt.  
5. Ldn falling edge of LABEL interrupt.  
6. ECZ AUX envelope counter has just reached zero interrupt.  
The AUX envelope information is only valid when the  
digital equalizer is in search mode and when the tape  
speed is between the values of  
3 to 48 × nominal tape speed. The timing relationships  
between the AUX channel input signal, AENV, LAB and  
VIR are shown in Figs 26 to 28. The delays td1 and td2 are  
between 0.25 and 0.5tAUX (AUX envelope periods). The  
delays td3, td4, td5 and td6 are between 2 and 6tAUX  
(AUX envelope periods).  
BP1 AND BP0 (BYPASS)  
If any of the bypass bits are HIGH then the interrupts are  
not passed on to the microcontroller, instead the level of  
the corresponding signal is available an the interrupt pin.  
Table 23 BP1 and BP0.  
BP  
EFFECT OF BYPASS  
1
0
When using the digital equalizer in search mode first  
program the digital equalizer to search mode, then  
program the INTMASK register.  
0
0
1
1
0
1
0
1
no bypass  
LAB on L3INT pin; note 1  
AENV on L3INT pin; note 2  
VIR on L3INT pin; note 3  
MASK  
If the BP1 and BP0 bits are LOW then the mask bits take  
effect. Any combination of the mask bits may be HIGH,  
enabling the corresponding interrupts. The interrupt pin  
L3INT is active LOW when used for interrupts and active  
HIGH when used for bypassing. So if it is not in bypass  
mode and at least one of the interrupts has occurred it will  
go LOW and stays LOW until DEQ status byte 0 has been  
read. Extra interrupts that occur after the first interrupt and  
before the DEQ status byte 0 is read are seen in the status  
register. Extra interrupts that occur after the status byte  
Notes  
1. LAB = LABEL (HIGH if a LABEL condition is detected  
in the envelope of the AUX channel).  
2. AENV = envelope of the AUX channel (1 bit binary).  
3. VIR = VIRGIN (indicated by the total [continuous]  
absence of signal on the AUX channel).  
May 1994  
31  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
has been read will generate a new interrupt. Interrupts that are already noted in the digital equalizer Status 0 are cleared  
by reading it.  
Table 24 Digital equalizer STATUS0.  
BIT  
7
6
5
4
3
2
1
0
Meaning  
BKSW(1)  
TEST  
Vup(2)  
AEup(3)  
AEdn(4)  
Lup(5)  
Ldn(6)  
ECZ(7)  
Notes  
1. BKSW (filter bank switched) indicates that the last main data coefficients sent to the digital equalizer have been  
activated.  
2. Vup indicates whether an interrupt caused by the rising edge of VIRGIN has occurred.  
3. AEup indicates whether an interrupt caused by the rising edge of AUX envelope has occurred.  
4. AEdn indicates whether an interrupt caused by the falling edge of AUX envelope has occurred  
5. Lup indicates whether an interrupt caused by the rising edge of LABEL has occurred.  
6. Ldn indicates whether an interrupt caused by the falling edge of LABEL has occurred.  
7. ECZ indicates that the AUX envelope counter has reached zero.  
t
AUX  
RDMUX  
AENV  
MGB400  
t
t
d2  
d1  
Fig.26 AUX channel envelope to AENV delays.  
t
AUX  
AENV  
(internal)  
LAB  
MGB401  
t
t
d4  
d3  
Fig.27 AENV to LAB delays.  
32  
May 1994  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
t
AUX  
AENV  
(internal)  
Vir  
MGB402  
t
t
d6  
d5  
Fig.28 AENV to VIR delays.  
Table 25 Digital equalizer STATUS1.  
BIT  
7
6
5
4
3
2
1
0
Meaning  
VIR(1)  
AENV(2)  
LAB(3)  
Notes  
1. VIR gives the state of the VIRGIN signal.  
2. AENV represents the state of the AENV signal.  
3. LAB gives the state of the LAB signal.  
AUX envelope count (AECNT) register  
This 16 bit register is used for loading the AUX envelope  
counter and for reading the state of that counter, it is  
therefore readable and writable as 2 bytes. Least  
Significant Byte first.  
Table 26 AECNT register.  
AECNT  
BIT  
LEAST SIGNIFICANT BYTE  
MOST SIGNIFICANT BYTE  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Meaning  
27  
26  
25  
24  
23  
22  
21  
20 215 214 213 212 211 210 29  
28  
Search speed (SSPD) register  
Search speed = 2SR  
×
× normal speed  
51.2  
-----------  
SV  
Table 27 Search speed register.  
BIT  
7
6
5
4
3
2
1
0
Meaning  
SVF(1)  
SV4(2)  
SV3(2)  
SV2(2)  
SV1(2)  
SV0(2)  
SR1(3)  
SR0(3)  
Notes  
1. SVF speed validation flag, if HIGH then the search speed measurement is invalid.  
2. SV4 to SV0 search speed value.  
3. SR1 and SR0 search speed range.  
May 1994  
33  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
ANAEYE register  
Table 28 ANAEYE register analog eye pattern selection register.  
BIT  
Meaning  
7
0
6
0
5
0
4
AEN(1)  
0
3
2
1
0
ACHN3(2) ACHN2(2) ACHN1(2) ACHN0(2)  
Default  
0
0
0
0
Notes  
1. AEN analog eye pattern output enable. If this bit is LOW the Digital-to-Analog Converter (DAC) is switched off and  
the output is HIGH.  
2. ACHN3 to ACHN0 select channel for analog eye output.  
Table 29 ACHN3 to ACHN0 channel selections for analog eye output.  
ACHN  
CHANNEL ON ANAEYE  
3
2
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
2
3
4
5
6
7
AUX  
T1sel register  
Table 30 T1SEL register CHTST1 pin selection register.  
BIT  
Meaning  
Default  
7
6
5
4
3
2
1
0
T1F2  
0
T1F1  
0
T1F0  
0
T1C3  
0
T1C2  
0
T1C1  
0
T1C0  
0
0
Table 31 T1C3 to T1C0 CHTST1 pin channel selections.  
T1C  
CHANNEL ON CHTST1  
3
2
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
2
3
4
5
6
7
AUX  
May 1994  
34  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
Table 32 T1F2 to T1F0 CHTST1 pin function selections.  
T1F  
FUNCTION OF CHTST1 PIN  
2
1
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
off; logic 0  
digital eye pattern  
sliced data  
bit clock  
clock extraction frequency  
The digital eye pattern is in 8 bits two’s complement notation, the sliced data and the bit clock give the current binary  
state of the corresponding signals, and the clock extraction frequency output is in 8 bits offset binary format. The timing  
diagrams for the digital eye pattern output and the clock extraction frequency output are shown in Fig.29.  
T2sel register  
Table 33 T2SEL register CHTST2 pin selection register.  
BIT  
7
6
5
4
3
2
1
0
Meaning  
Default  
T2F2  
0
T2F1  
0
T2F0  
0
T2C3  
0
T2C2  
0
T2C1  
0
T2C0  
0
0
Table 34 T2C3 to T2C0 CHTST2 pin channel selections.  
Table 35 T2F2 to T2F0 CHTST2 pin function selections.  
T2C  
T2F  
CHANNEL ON  
FUNCTION OF CHTST2 PIN  
CHTST2  
3
2
1
0
2
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
off; logic 0  
digital eye pattern  
sliced data  
2
3
bit clock  
4
clock extraction frequency  
5
6
7
AUX  
May 1994  
35  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
RDSYNC  
TCLOCK  
MCLK  
LSB  
MSB  
7
0
1
2
3
4
5
6
0
1
2
3
CHTST  
MGB403  
Fig.29 CHTST1 and CHTST2 output timing.  
Table 36 DEQSET digital equalizer settings.  
BIT  
7
6
5
4
3
2
1
0
Meaning  
Default  
ACup(1)  
0
DM1  
0
DM0  
0
0
0
0
0
0
Note  
1. ACup is the AUX envelope counter direction is up. This setting caused the AUX envelope counter increment or to  
decrement by 1 every rising edge of the AUX envelope signal AENV.  
DM1 and DM0  
Table 37 DM1 and DM0 digital equalizer mode of  
operation.  
DM  
MODE OF OPERATION OF  
DIGITAL EQUALIZER  
1
0
0
1
1
0
0
1
0
1
normal(1)  
search(2)  
off(3)  
off(3)  
Notes  
1. In normal mode the main data channels and the AUX  
channel are processed (equalized), the AUX channel  
envelope information is not processed.  
2. In search mode only the AUX channel is processed by  
the digital equalizer.  
3. Off means that the digital equalizer is put to sleep (low  
power), this can be used for example in portable  
recording equipment. RDSYNC is HIGH if off mode.  
Also note that the other digital equalizer registers are  
not addressable while the digital equalizer is in off  
mode.  
May 1994  
36  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
CLKSET  
Table 38 CLKSET clock extraction settings.  
BIT  
7
LEAE(1)  
1
6
FR1  
0
5
FR0  
0
4
GNOR  
1
3
GE1  
1
2
GE0  
0
1
RD1  
1
0
RD0  
0
Meaning  
Default  
Note  
1. LEAE (leakage enable): this setting enables a leakage function in the PLL clock extraction loop filter. This gives a  
slightly improved performance with high SER tapes at the cost of a slight decrease in dynamic performance. For  
home (static) applications program this bit to logic 1 and for portable applications to logic 0.  
Table 39 FR1 and FR0 clock extraction frequency range  
Table 40 GNOR gain in normal frequency range mode of  
control.  
clock extraction.  
FR  
GNOR  
EFFECT ON GAIN IN NORMAL RANGE  
gain 2; for portable (mobile) applications  
gain 1; for home (static) applications  
EFFECT ON PLL FREQUENCY  
LOOP  
0
1
1
0
0
0
1
1
0
1
0
1
range ±8%  
range ±16%  
range ±22%  
range ±28%  
Table 41 GE1 and GE0 gain in extended frequency  
range mode of clock extraction.  
GE  
EFFECT ON PLL GAIN IN EXTENDED  
RANGE  
1
0
Note that in the (FR = 0) range the clock extraction stays  
in its normal range only, hence it does not enter the  
extended range.  
0
0
1
1
0
1
0
1
gain 2  
gain 3  
Figure 30 shows the lock characteristic of the clock  
extraction PLL.  
gain 4  
gain 5; do not use  
MGB404  
30  
28% frequency loop range limitation  
22% frequency loop range limitation  
bit rate  
deviation  
(%)  
(3)  
20  
16% frequency loop range limitation  
8% frequency loop range limitation  
(2)  
(1)  
10  
0
10  
2
3
4
(1) Gain 4.  
(2) Gain 3.  
(3) Gain 2.  
10  
10  
f (Hz)  
Fig.30 Clock extraction PLL lock characteristic.  
37  
May 1994  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
The 128 bytes in each tape frame contain SYSINFO. The  
SYSINFO bytes can for convenience, be considered as  
being grouped into 4 SYSINFO blocks with:  
RD1 and RD0 return delay  
This is the delay before returning to normal mode after  
being in ‘extended range mode’ (i.e. the number of  
consecutive channel clock bit periods where the bit clock  
frequency falls within the normal range before the clock  
extraction returns to normal frequency mode).  
SYSBLK0 SI0 to SI31, SYSBLK1 SI31 to SI63, etc.  
In modes DPAP and DRAR SYSINFO transfers may occur  
in two ways:  
1. 4 blocks of 36 bytes, one block being transferred to the  
SAA3323 in each time segment.  
Table 42 RD1 and RD0 return delay.  
2. 1 block of 128 bytes being transferred in time  
segment 1.  
RD  
DELAY IN BITS TO RETURN TO  
NORMAL MODE  
1
0
0
1
1
0
0
1
0
1
In mode DRAR SYSINFO must be transferred as 4 blocks  
of 32 bytes, one block in each segment.  
64  
128  
256  
512  
Figures 31 to 34 show the offsets between the SYSINFO  
and AUX and the time segment counter, for the various  
modes of operation of the SAA3323.  
SYSINFO and AUX data offsets in the SAA3323  
AUX data consists of 4 blocks of 36 bytes, one block being  
transferred in each (n) time segment.  
Table 43 Block offsets with respect to time segment.  
MODE  
DESCRIPTION  
DPAP  
SYSBLK = (SNUM + 3) MOD4; or read all 4 SYSINFO blocks when SNUM = logic 0; if AUX and  
main were recorded simultaneously then AUXBLK = (SNUM + 1) MOD4; else read and interpret  
1 AUX block in each time segment.  
DRAR  
DPAR  
SYSBLK = SNUM; AUXBLK = (SNUM + 1) MOD4  
SYSBLK = (SNUM + 3) MOD4; or read all 4 SYSINFO blocks when SNUM = logic 0  
May 1994  
38  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
SNUM  
0 1  
2
3
1
3
0
2
0
1
3
1
2
0
2
3
1
3
0
2
0
1
3
1
2
0
2
3
1
3
0
2
0
1
3
1
2
0
2
3
AUX BLK  
SYS BLK  
SYS BLK  
1
2
0
3
1
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
*
AUX, MAIN  
DATA INPUT  
FROM TAPE  
0 1  
2
3
0
1
2
3
0
1
2
3
0
1
2
MLB413  
Fig.31 SYSINFO and AUX block delays in DPAP mode; audio and AUX simultaneously recorded.  
SNUM  
0 1  
2
3
0
1
2
3
0
1
2
3
0
1
0
2
DEPENDS ON PHASE OF AUX WRT MAIN DATA CHANNELS  
AUX BLK  
SYS BLK  
SYS BLK  
3
0
1
2
3
0
1
2
3
0
1
2
3
1
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
*
AUX, MAIN  
DATA INPUT  
FROM TAPE  
0 1  
2
3
0
1
2
3
0
1
2
3
0
1
2
MLB414  
Fig.32 SYSINFO and AUX block delays in DPAP mode; audio and AUX separately recorded.  
39  
May 1994  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
SNUM  
0
1
0
1
2
1
2
3
2
3
0
3
0
1
0
1
2
1
2
3
2
3
0
3
0
1
0
1
2
1
2
3
2
3
0
3
0
1
0
1
2
1
2
3
2
AUX BLK  
SYS BLK  
AUX, MAIN  
DATA OUTPUT  
TO TAPE  
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
MBG405  
Fig.33 SYSINFO and AUX block delays in DRAR mode.  
SNUM  
0 1  
2
3
1
3
0
2
0
1
3
1
2
0
2
3
1
3
0
2
0
1
3
1
2
0
2
3
1
3
0
2
0
1
3
1
2
0
2
3
1
AUX BLK  
SYS BLK  
SYS BLK  
1
2
0
3
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
*
MAIN DATA  
INPUT  
FROM TAPE  
0 1  
2
1
3
2
0
3
1
0
2
1
3
2
0
3
1
0
2
1
3
2
0
3
1
0
2
AUX OUTPUT  
TO TAPE  
0
1
1
MLB416  
Fig.34 SYSINFO and AUX block delays in DPAR mode.  
40  
May 1994  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
the scratch pad RAM may be written and read in 8 bit or  
12 bit units.  
Scratch pad RAM  
The SAA3323 provides the microcontroller with a scratch  
pad RAM that the microcontroller can use for whatever it  
likes. The size of the scratch pad depends upon the size  
and type of RAM used with the SAA3323. The locations in  
The RAM may be viewed as having up to 4 quarters, the  
availability of these quarters for the scratch pad RAM is  
given in Table 44.  
Table 44 Availability of RAM quarters for the scratch pad RAM.  
RTYPE  
TYPE OF RAM USED  
AVAILABLE RAM QUARTERS YZ(1)  
1
0
0
0
0
1
1
1
0
0
1
0
1
1
DRAM 64K × 4  
00  
DRAM 256K × 4  
00, 01, 10 and 11  
SRAM 32K × 8 fast  
SRAM 128K × 8 fast  
SRAM (2×) 32K × 8 slow  
SRAM 128K × 8 slow  
00  
00, 01, 10 and 11  
00  
00 and 10  
Note  
1. In RAM quarter YZ = 00, the scratch pad is arranged as 6 pages, where each page consists of 7 columns × 64 rows.  
The pages are numbered 0 to 5, the columns 1 to 7 and the rows 0 to 63.  
This gives a total of (6 × 7 × 64) 2688 locations.  
In each of the RAM quarters YZ = 01, 10 and 11 the scratch pad is arranged as 6 pages where each page consists  
of 8 columns × 448 rows. The pages are numbered 0 to 5, the columns 0 to 7 and the rows 0 to 447. This gives then  
a total of (6 × 8 × 448) 21504 locations per RAM quarter YZ.  
During communication with the scratch pad RAM, the  
RAM quarter YZ is chosen when sending the RDDRAC,  
RDWDRAC, WRDRAC or WRWDRAC commands to the  
TFE module.  
The 8 bit transfers are initiated by the WRDRAC and  
RDDRAC commands, these transfers are each 1 byte per  
memory location, therefore the byte counter will increment  
after each byte transfer.  
Use of the scratch pad RAM outside the specified ranges  
is not allowed and it may upset the operation of the  
SAA3323.  
The 12 bit transfers are initiated by the WRDRAC and  
RDDRAC commands, these transfers are each 2 bytes  
per memory location. The first byte contains the 4 Most  
Significant Bits (MSBs) of the memory location in its  
4 Least Significant Bits (LSBs) positions. The other bit  
positions being ‘don’t care’. The second byte contains the  
8 LSBs of the memory location. The byte counter is  
incremented after the transfer of the second byte.  
As with SYSINFO and AUX transfers can occur at high  
speed at all times except the second half of time  
segment 0, that is when the status bit SLOWTFR is HIGH.  
When SLOWTFR is HIGH the microcontroller must poll the  
status bit RFBT to investigate when a transfer can occur.  
The RACCNT and BYTCNT registers are used for  
addressing the scratch pad.  
Two addressing modes are available for the scratch pad,  
namely random access and auto-increment. For random  
access mode the address of each location is sent by the  
microcontroller to the SAA3323 before each location  
transfer. For auto-increment mode the address of the first  
location is sent by the microcontroller before the first  
location transfer, auto-incrementing of the row occurs then  
for all transfers until the end of the column.  
For RAM quarter YZ = 00 the mapping of the scratch pad  
RAM address onto the RACCNT and BYTCNT registers is  
shown in Table 45.  
May 1994  
41  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
Table 45 Mapping of scratch pad RAM address for RAM quarter YZ = 00.  
REGISTER  
RACCNT  
BYTCNT  
BIT  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Value  
P2  
P1  
P0  
C2  
C1  
C0  
1
1
R6  
R5  
R4  
R3  
R2  
R1  
R0  
For The other three quarters of the RAM the mapping of the scratch pad RAM address onto the RACCNT and BYTCNT  
registers is shown in Table 46.  
Table 46 Mapping of scratch pad RAM address for RAM quarter YZ = 01, 10 and 11.  
REGISTER  
RACCNT  
BYTCNT  
BIT  
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Value  
P2  
P1  
P0  
C2  
C1  
C0  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Mode changes  
Mode change DRAR to DPAP  
This mode change occurs at the first end of time  
segment 0 after the TFE module receives the new setting.  
Writing of Main and AUX data stops immediately after the  
mode change.The time segment jumps back to logic 0,  
URDA goes HIGH and stays HIGH for 5 time segments  
(i.e. approximately 213.3 ms) after which it goes LOW, as  
shown in Fig.37.  
The possible mode changes for the TFE are shown in  
Table 47.  
Table 47 Mode changes.  
NEW MODE  
CURRENT  
MODE  
DPAP  
DRAR  
DPAR  
DPAP  
DRAR  
DPAR  
yes  
yes  
no  
Mode change DPAR to DPAP  
yes  
yes  
This mode change occurs at the first end of time  
segment 0 after the TFE module receives the new setting.  
The writing of AUX data to tape stops immediately after the  
mode change. The first AUX read from tape can be  
expected during the following time segment 0 or 1 (i.e.  
approximately 128 to 170.67 ms after the mode change),  
as shown in Fig.38.  
no  
TIMING FOR SAA3323 MODE CHANGES  
Mode change DPAP to DRAR  
This mode change occurs at the end of the time segment  
in which the TFE module receives the new settings.  
Writing of the first Main and AUX data to tape starts at the  
start of the time segment 1 which occurs 2 ‘end of time  
segment 3’ s after the mode change. The delay to writing  
to tape is approximately 222 ms, as shown in Fig.35.  
Mode change DPAP to search  
This mode change occurs almost instantaneously,  
program the digital equalizer module in SAA3323 to go to  
search mode, then program the interrupt mask register to  
select the required type of interrupt.  
If ‘seamless appending’ is required the new settings  
should be sent to the TFE module during time segment 2.  
Mode change search to DPAP  
Mode change DPAP to DPAR  
This mode change occurs almost instantaneously,  
program the interrupt mask register to disable interrupts  
program the digital equalizer module of SAA3323 to go to  
normal mode. A re-synchronization will most likely occur  
when as result of the data being read from tape, thus  
causing URDA to go HIGH.  
This mode change occurs at the first end of time  
segment 2 after the TFE module receives the new  
settings. Output of AUX to tape begins at the start of the  
following time segment 1, (i.e. approximately 85.3 ms after  
the mode change), as shown in Fig.36.  
May 1994  
42  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
andbook, halfpage  
handbook, halfpage  
SNUM  
0
1
2 3 0  
1
2
3
0
1
2
SNUM  
1
2
3
0
1
2
3
0
1
2
DPAP  
DRAR  
DRAR  
222 ms  
MODE  
MODE  
DPAP  
DPAR  
85.3 ms  
DPAR  
NEW MODE  
NEW MODE  
AUXILIARY, MAIN  
TAPE OUT  
AUXILIARY  
TAPE OUT  
MEA707 - 2  
MEA708 - 2  
Fig.35 Mode change to DRAR.  
Fig.36 Mode change to DPAR.  
handbook, halfpage  
handbook, halfpage  
SNUM  
MODE  
1
2
3
0
1
2
3
0
1
2
SNUM  
1
2
3
0
0
1
2
3
0
1
DPAR  
DPAP  
DPAP  
MODE  
DRAR  
DPAP  
DPAP  
NEW MODE  
NEW MODE  
AUXILIARY  
TAPE OUT  
URDA  
213.3 ms  
128 ms  
MEA709 - 1  
AUXILIARY  
TO  
MICROCONTROLLER  
170.66 ms  
MEA710 - 2  
Fig.37 Mode change from DRAR.  
Fig.38 Mode change from DPAR.  
May 1994  
43  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
MAX.  
3.6  
UNIT  
VDD  
VI  
2.7  
V
V
input voltage  
note 1  
0.5  
10  
tbf  
VDD + 0.5  
+10  
II  
input current  
mA  
V
VO  
IO  
output voltage  
tbf  
output current  
20  
+20  
mA  
mA  
mA  
mW  
°C  
°C  
V
IDD  
ISS  
Ptot  
Tstg  
supply current  
100  
supply current  
100  
total power dissipation  
storage temperature  
operating ambient temperature  
electrostatic handling  
electrostatic handling  
500  
55  
40  
2000  
200  
+150  
+85  
Tamb  
Ves1  
Ves2  
note 2  
note 3  
+2000  
+200  
V
Notes  
1. The input voltage must not exceed maximum supply voltage unless otherwise specified.  
2. Equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
3. Equivalent to discharging a 200 pF capacitor through a 0 series resistor.  
DC CHARACTERISTICS  
VDD = 2.7 to 3.6 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD  
IDD  
supply voltage  
supply current  
2.7  
tbf  
3.6  
V
digital plus analog;  
see Fig.39  
28.1  
mA  
inputs with internal  
100  
µA  
pull-down to VSS  
;
all other inputs to VSS  
or VDD  
Inputs CLK24, L3CLK, L3MODE, PINI, SLEEP and SBMCLK  
VIL  
VIH  
II  
LOW level input voltage  
HIGH level input voltage  
input current  
0.3VDD  
V
0.7VDD  
V
VI = 0 V to VDD  
;
10  
+10  
µA  
Tamb = 25 °C  
Inputs TEST0, TEST1 and TEST2  
VIL  
VIH  
II  
LOW level input voltage  
HIGH level input voltage  
input current  
0.3VDD  
V
0.7VDD  
V
VI = VDD; Tamb = 25 °C 25  
400  
µA  
May 1994  
44  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Input RESET  
VtLH  
VtHL  
Vhys  
positive-going threshold  
negative-going threshold  
0.8VDD  
V
V
V
0.2VDD  
hysteresis (VtLH to VtHL  
)
0.3VDD  
Outputs AZCHK, CHTST1, CHTST2, ERCOSTAT, L3INT, L3REF, MCLK, PINO3, RDSYNC, SBDIR, SBEF, URDA,  
TCLOCK and WDATA  
VOH  
VOL  
HIGH level output voltage  
LOW level output voltage  
IO = 1 mA  
V
DD 0.5  
DD 0.5  
DD 0.5  
V
V
IO = 1 mA  
0.4  
Outputs A0 to A8, A9/CAS, A10/RAS, OEN and WEN  
VOH  
VOL  
HIGH level output voltage  
LOW level output voltage  
IO = 2 mA  
V
V
V
IO = 2 mA  
0.4  
Outputs SPEED and PINO2  
VOH  
VOL  
IOZ  
HIGH level output voltage  
IO = 1 mA  
V
V
LOW level output voltage  
3-state leakage current  
IO = 1 mA  
0.4  
+10  
V
VI = 0 V to VDD  
;
10  
µA  
Tamb = 25 °C  
Inputs/outputs SBCL, SBDA and SBWS  
VOH  
VOL  
VIL  
HIGH level output voltage  
LOW level output voltage  
LOW level input voltage  
HIGH level input voltage  
3-state leakage current  
IO = 1 mA  
V
DD 0.5  
V
IO = 1 mA  
0.4  
0.3VDD  
V
outputs in 3-state  
outputs in 3-state  
V
VIH  
IOZ  
0.7VDD  
10  
V
VI = 0 V to VDD  
;
+10  
µA  
Tamb = 25 °C  
Inputs/outputs A11 to A16 and L3DATA  
VOH  
VOL  
VIL  
HIGH level output voltage  
LOW level output voltage  
LOW level input voltage  
HIGH level input voltage  
3-state leakage current  
IO = 2 mA  
V
DD 0.5  
V
IO = 2 mA  
0.4  
0.3VDD  
V
outputs in 3-state  
outputs in 3-state  
V
VIH  
IOZ  
0.7VDD  
V
VI = 0 V to VDD  
;
10  
+10  
µA  
Tamb = 25 °C  
Inputs/outputs D0 to D7  
VOH  
VOL  
VIL  
HIGH level output voltage  
IO = 4 mA  
V
2
DD 0.5  
V
LOW level output voltage  
LOW level input voltage  
HIGH level input voltage  
3-state leakage current  
IO = 4 mA  
0.4  
0.8  
V
outputs in 3-state  
outputs in 3-state  
V
VIH  
IOZ  
V
VI = 0 V to VDD  
;
10  
+10  
µA  
Tamb = 25 °C  
May 1994  
45  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
Average current consumption  
MLB778  
60  
I
DD  
(mA)  
max  
40  
typ  
min  
20  
0
2.0  
2.5  
3.0  
3.5  
4.0  
V
(V)  
DD  
Fig.39 Average current consumption.  
AC CHARACTERISTICS  
VDD = 2.7 to 3.6 V; Tamb = 40 to +85 °C; CL = 10 pF on all outputs; see Fig.40; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Clock inputs  
CI  
input capacitance  
10  
pF  
CLK24  
fCLK24  
t24L  
clock frequency  
24  
12  
12  
24.576  
25  
MHz  
ns  
pulse width LOW  
pulse width HIGH  
t24H  
ns  
SBMCLK  
fSBMCLK  
tSCL  
clock frequency  
pulse width LOW  
pulse width HIGH  
6.144  
12.5  
MHz  
ns  
30  
30  
tSCH  
ns  
May 1994  
46  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Clock output MCLK  
CL  
td  
load capacitance  
20  
pF  
delay time from SLEEP HIGH to  
SLEEP active  
20  
ns  
fMCLK  
tMCL  
tMCH  
tpd  
clock frequency  
6.144  
6.25  
MHz  
ns  
MCLK pulse width LOW  
MCLK pulse width HIGH  
50  
50  
ns  
propagation delay time from rising  
edge of CLK24  
65  
ns  
Inputs  
CI  
input capacitance  
10  
pF  
L3CLK, L3MODE AND RESET  
tsu  
th  
set-up time to rising edge of MCLK  
35  
0
ns  
ns  
hold time from rising edge of MCLK  
PINI  
tsu  
set-up time to rising edge of MCLK  
hold time from rising edge of MCLK  
60  
0
ns  
ns  
th  
Outputs  
CL  
load capacitance  
20  
50  
pF  
ns  
A0 TO A8  
tpd  
propagation delay time from falling  
edge of CLK24  
A9/CAS, A10/RAS AND OEN  
tpd propagation delay time from falling  
50  
ns  
ns  
edge of CLK24  
td  
delay time from SLEEP HIGH to  
SLEEP active  
20  
WEN  
tpd  
propagation delay time  
from falling edge of CLK24  
50  
50  
ns  
ns  
from falling edge of WEN to rising long write pulse  
edge of CLK24  
mode  
td  
delay time from SLEEP HIGH to  
SLEEP active  
20  
ns  
ns  
ns  
AZCHK, CHTST1, CHTST2, L3INT, PINO3, RDSYNC, SBEF AND WDATA  
tpd  
propagation delay time from rising  
edge of MCLK  
45  
55  
ERCOSTAT, L3REF, SBDIR, SPEED, PINO2, URDA AND TCLOK  
tpd  
propagation delay time from rising  
edge of MCLK  
May 1994  
47  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Inputs/outputs  
CI  
input capacitance  
load capacitance  
10  
20  
pF  
CL  
pF  
A11 TO A16  
td  
delay time from SLEEP HIGH to  
SLEEP active  
25  
ns  
ns  
tpd  
propagation delay time from falling  
edge of CLK24  
55  
D0 TO D3  
td  
delay time from SLEEP HIGH to  
SLEEP active  
20  
ns  
tsu  
th  
set-up time to falling edge of CLK24  
hold time from falling edge of CLK24  
propagation delay time  
5
ns  
ns  
15  
tpd  
from falling edge of CLK24  
50  
50  
ns  
ns  
from rising edge of CLK24  
early write mode −  
D4 TO D7  
td  
delay time from SLEEP HIGH to  
SLEEP active  
25  
ns  
tsu  
th  
set-up time to falling edge of CLK24  
hold time from falling edge of CLK24  
propagation delay time  
5
ns  
ns  
15  
tpd  
from falling edge of CLK24  
50  
50  
ns  
ns  
from rising edge of CLK24  
early write mode −  
L3DATA  
td  
delay time from SLEEP HIGH to  
SLEEP active  
25  
ns  
tsu  
th  
set-up time to rising edge of MCLK  
hold time from rising edge of MCLK  
propagation delay time  
35  
ns  
ns  
0
tpd  
from rising edge of MCLK  
from L3MODE  
50  
45  
ns  
ns  
SBCL AND SBWS  
td  
delay time from SLEEP HIGH to  
25  
ns  
SLEEP active  
tsu  
th  
set-up time to rising edge of MCLK  
hold time from rising edge of MCLK  
propagation delay time  
40  
0
ns  
ns  
tpd  
from rising edge of SBMCLK  
60  
55  
ns  
ns  
from rising edge of MCLK  
(3-state control)  
May 1994  
48  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
SBDA  
td  
delay time from SLEEP HIGH to  
SLEEP active  
25  
ns  
tsu  
th  
set-up time to rising edge of MCLK  
hold time from rising edge of MCLK  
35  
0
ns  
ns  
ns  
tpd  
propagation delay time from rising  
edge of MCLK  
55  
t
24H  
CLK24  
V
IH  
IL  
V
t
t
su1  
h1  
t
t
24L  
V
V
IH  
IL  
IN1  
t
d2  
d1  
V
V
OH  
OL  
OUT1  
MCLK  
IN2  
t
t
pd  
d4  
t
MCL  
V
V
OH  
OL  
t
MCH  
t
t
h2  
su2  
V
V
IH  
IL  
t
d
V
V
OH  
OL  
OUT2  
SBMCLK  
OUT3  
t
SCL  
V
V
IH  
IL  
t
SCH  
t
d5  
V
V
OH  
OL  
MGB407  
Fig.40 Timing for AC characteristics.  
May 1994  
49  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
ADC CHARACTERISTICS  
VDD = 2.7 to 3.6 V; Tamb = 40 to +85 °C; CL = 10 pF on TCLOCK output; see Fig.41; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
bits  
AC RDMUX ADC resolution  
positive reference voltage  
negative reference voltage  
Vref(p) to Vref(n)  
8
V
Vref(p)  
Vref(n)  
Vref  
Zi  
DD 0.5  
V
0
V
2.0  
V
input impedance  
Vref(p) to Vref(n)  
ref(n) to VSS  
700  
1200  
1500  
V
650  
CI  
input capacitance (RDMUX)  
input current  
15  
pF  
µA  
LSB  
dB  
II  
90  
DNL  
differential non-linearity  
±0.99  
S/(THD+N) signal-to-total harmonic  
distortion plus noise ratio  
20 dB (FS);  
100 to 500 kHz  
24  
Timing  
Tcy  
td1  
cycle time of CLK24  
40  
ns  
ns  
TCLOCK delay time from  
rising edge of CLK24  
CL = 10 pF  
80  
tsu  
th  
RDMUX set-up time to falling Zsource < 150 Ω  
edge of CLK24  
60  
40  
ns  
ns  
RDMUX hold time from falling  
edge of CLK24  
t
d1  
CLK24  
V
V
IH  
IL  
t
T
cy  
d2  
V
V
OH  
OL  
TCLOCK  
CLK ADC  
RDMUX  
t
d3  
t
h
t
su  
SAMPLE(1)  
t
d4  
V
V
IH  
IL  
TESTBUS DATA SAMPLE(1-3)  
DATA SAMPLE(1-2)  
MGB408  
Fig.41 ADC timing.  
May 1994  
50  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
DAC CHARACTERISTICS  
VDD = 2.7 to 3.6 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
bits  
DIGEYE/ANAEYE resolution  
ANAEYE output voltage  
6
Vo  
ZL > 1 MΩ  
(VDD 1.1) −  
V
to VDD  
May 1994  
51  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
PACKAGE OUTLINES  
seating plane  
S
0.1  
S
14.3  
13.7  
80  
61  
B
1.45  
1.05  
(4x)  
60  
1
pin 1 index  
0.5  
14.3  
13.7  
12.1  
11.9  
0.25  
0.13  
20  
41  
40  
21  
0.25  
0.13  
1.45  
1.05  
0.5  
0.15 M  
A
(4x)  
X
12.1  
11.9  
A
0.70  
0.58  
1.5  
1.3  
1.7  
1.5  
0.18  
0.12  
0.16  
0.04  
o
0.7  
0.3  
0 to 4  
detail X  
MBB947  
Dimensions in mm.  
Fig.42 Plastic thin quad flatpack; 80 leads; body 12 × 12 × 1.4 mm (SOT315-1; TQFP80).  
May 1994  
52  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
seating plane  
S
S
0.10  
18.2  
17.6  
B
80  
65  
64  
1
1.0  
0.6  
pin 1 index  
(4x)  
0.8  
20.1 24.2  
19.9 23.6  
0.45  
0.30  
41  
24  
25  
40  
0.45  
0.30  
1.2  
0.8  
0.20 M  
A
(4x)  
X
0.8  
14.1  
13.9  
A
1.4  
1.2  
2.90  
2.65  
3.2  
2.7  
0.25  
0.05  
0.25  
0.14  
1.0  
0.6  
o
0 to 7  
detail X  
MSA394 - 1  
Dimensions in mm.  
Fig.43 Plastic quad flatpack; 80 leads (lead length 1.95 mm); body 14 × 20 × 2.7 mm; high stand-off  
height (SOT318-2; QFP80).  
May 1994  
53  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
applied to the substrate by screen printing, stencilling or  
pressure-syringe dispensing before device placement.  
SOLDERING  
Plastic quad flatpacks  
BY WAVE  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt, infrared, and  
vapour-phase reflow. Dwell times vary between 50 and  
300 s according to method. Typical reflow temperatures  
range from 215 to 250 °C.  
During placement and before soldering, the component  
must be fixed with a droplet of adhesive. After curing the  
adhesive, the component can be soldered. The adhesive  
can be applied by screen printing, pin transfer or syringe  
dispensing.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 min at 45 °C.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder bath is  
10 s, if allowed to cool to less than 150 °C within 6 s.  
Typical dwell time is 4 s at 250 °C.  
REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING  
IRON OR PULSE-HEATED SOLDER TOOL)  
Fix the component by first soldering two, diagonally  
opposite, end pins. Apply the heating tool to the flat part of  
the pin only. Contact time must be limited to 10 s at up to  
300 °C. When using proper tools, all other pins can be  
soldered in one operation within 2 to 5 s at between 270  
and 320 °C. (Pulse-heated soldering is not recommended  
for SO packages.)  
A modified wave soldering technique is recommended  
using two solder waves (dual-wave), in which a turbulent  
wave with high upward pressure is followed by a smooth  
laminar wave. Using a mildly-activated flux eliminates the  
need for removal of corrosive residues in most  
applications.  
For pulse-heated solder tool (resistance) soldering of VSO  
packages, solder is applied to the substrate by dipping or  
by an extra thick tin/lead plating before package  
placement.  
BY SOLDER PASTE REFLOW  
Reflow soldering requires the solder paste (a suspension  
of fine solder particles, flux and binding agent) to be  
May 1994  
54  
Philips Semiconductors  
Preliminary specification  
Drive processor for DCC systems  
SAA3323  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
The Digital Compact Cassette logo is a registered trade mark of Philips Electronics N.V.  
May 1994  
55  
Philips Semiconductors – a worldwide company  
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)  
Norway: Box 1, Manglerud 0612, OSLO,  
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367  
Tel. (022)74 8000, Fax. (022)74 8341  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. (02)805 4455, Fax. (02)805 4466  
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,  
Pakistan: Philips Electrical Industries of Pakistan Ltd.,  
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,  
KARACHI 75600, Tel. (021)587 4641-49,  
Fax. (021)577035/5874546.  
Tel. (01)60 101-1236, Fax. (01)60 101-1211  
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474  
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,  
Tel. (31)40 783 749, Fax. (31)40 788 399  
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,  
CEP: 04552-903-SÃO PAULO-SP, Brazil.  
P.O. Box 7383 (01064-970).  
Portugal: PHILIPS PORTUGUESA, S.A.,  
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,  
Apartado 300, 2795 LINDA-A-VELHA,  
Tel. (01)14163160/4163333, Fax. (01)14163174/4163366.  
Tel. (011)821-2327, Fax. (011)829-1849  
Canada: INTEGRATED CIRCUITS:  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. (800)234-7381, Fax. (708)296-8556  
DISCRETE SEMICONDUCTORS: 601 Milner Ave,  
SCARBOROUGH, ONTARIO, M1B 1M8,  
Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477  
Tel. (65)350 2000, Fax. (65)251 6500  
South Africa: S.A. PHILIPS Pty Ltd., Components Division,  
195-215 Main Road Martindale, 2092 JOHANNESBURG,  
P.O. Box 7430 Johannesburg 2000,  
Tel. (011)470-5911, Fax. (011)470-5494.  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. (03)301 6312, Fax. (03)301 42 43  
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,  
Tel. (0)8-632 2000, Fax. (0)8-632 2745  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Chile: Av. Santa Maria 0760, SANTIAGO,  
Tel. (02)773 816, Fax. (02)777 6730  
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,  
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,  
Fax. (571)217 4549  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. (032)88 2636, Fax. (031)57 1949  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. (01)488 2211, Fax. (01)481 77 30  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West  
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,  
TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.  
Tel. (9)0-50261, Fax. (9)0-520971  
France: 4 Rue du Port-aux-Vins, BP317,  
92156 SURESNES Cedex,  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong,  
Bangkok 10260, THAILAND,  
Tel. (662)398-0141, Fax. (662)398-3319.  
Turkey:Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. (01)4099 6161, Fax. (01)4099 6427  
Germany: PHILIPS COMPONENTS UB der Philips G.m.b.H.,  
P.O. Box 10 63 23, 20043 HAMBURG,  
Tel. (040)3296-0, Fax. (040)3296 213.  
Greece: No. 15, 25th March Street, GR 17778 TAVROS,  
Tel. (0212)279 2770, Fax. (0212)269 3094  
Tel. (01)4894 339/4894 911, Fax. (01)4814 240  
United Kingdom: Philips Semiconductors Limited, P.O. Box 65,  
Philips House, Torrington Place, LONDON, WC1E 7HD,  
Tel. (071)436 41 44, Fax. (071)323 03 42  
Hong Kong: PHILIPS HONG KONG Ltd., Components Div.,  
6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T.,  
Tel. (852)424 5121, Fax. (852)428 6729  
India: Philips INDIA Ltd, Components Dept,  
Shivsagar Estate, A Block ,  
Dr. Annie Besant Rd. Worli, Bombay 400 018  
Tel. (022)4938 541, Fax. (022)4938 722  
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,  
P.O. Box 4252, JAKARTA 12950,  
United States:INTEGRATED CIRCUITS:  
811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. (800)234-7381, Fax. (708)296-8556  
DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd.,  
P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404,  
Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300  
Uruguay: Coronel Mora 433, MONTEVIDEO,  
Tel. (021)5201 122, Fax. (021)5205 189  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. (02)70-4044, Fax. (02)92 0601  
For all other countries apply to: Philips Semiconductors,  
International Marketing and Sales, Building BAF-1,  
P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands,  
Telex 35000 phtcnl, Fax. +31-40-724825  
Tel. (01)640 000, Fax. (01)640 200  
Italy: PHILIPS COMPONENTS S.r.l.,  
Viale F. Testi, 327, 20162 MILANO,  
Tel. (02)6752.3302, Fax. (02)6752 3300.  
Japan: Philips Bldg 13-37, Kohnan2-chome, Minato-ku, TOKYO 108,  
SCD31  
© Philips Electronics N.V. 1994  
Tel. (03)3740 5028, Fax. (03)3740 0580  
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,  
All rights are reserved. Reproduction in whole or in part is prohibited without the  
prior written consent of the copyright owner.  
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,  
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880  
Mexico: Philips Components, 5900 Gateway East, Suite 200,  
The information presented in this document does not form part of any quotation  
or contract, is believed to be accurate and reliable and may be changed without  
notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent- or  
other industrial or intellectual property rights.  
EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556  
Printed in The Netherlands  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB  
Tel. (040)783749, Fax. (040)788399  
513061/1500/01/pp56  
Date of release: May 1994  
9397 732 30011  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. (09)849-4160, Fax. (09)849-7811  
Document order number:  
Philips Semiconductors  

相关型号:

SAA3323GP

Drive processor for DCC systems
NXP

SAA3323H

Drive processor for DCC systems
NXP

SAA3500H

Digital audio broadcast channel decoder
NXP

SAA4700

VPS dataline processor
NXP

SAA4700T

VPS dataline processor
NXP

SAA4945H

LIne MEmory noise Reduction IC LIMERIC
NXP

SAA4945H-T

IC SPECIALTY CONSUMER CIRCUIT, PQFP44, Consumer IC:Other
NXP

SAA4951

Memory controller
NXP

SAA4951WP

Memory controller
NXP

SAA4951WP-T

IC SPECIALTY CONSUMER CIRCUIT, PQCC44, Consumer IC:Other
NXP