SAA7109A [NXP]

HD-CODEC; HD- CODEC
SAA7109A
型号: SAA7109A
厂家: NXP    NXP
描述:

HD-CODEC
HD- CODEC

文件: 总197页 (文件大小:939K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA7108AE; SAA7109AE  
HD-CODEC  
Product specification  
2004 Jun 29  
Supersedes data of 2003 Mar 26  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
CONTENTS  
10  
INPUT/OUTPUT INTERFACES AND PORTS  
OF DIGITAL VIDEO DECODER PART  
1
FEATURES  
10.1  
10.2  
10.3  
10.4  
10.5  
10.6  
Analog terminals  
Audio clock signals  
1.1  
1.2  
1.3  
1.4  
Video decoder  
Video scaler  
Video encoder  
Common features  
Clock and real-time synchronization signals  
Video expansion port (X port)  
Image port (I port)  
Host port for 16-bit extension of video data I/O  
(H port)  
2
3
4
5
6
7
8
APPLICATIONS  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
QUICK REFERENCE DATA  
BLOCK DIAGRAMS  
PINNING  
10.7  
Basic input and output timing diagrams for the  
I and X ports  
11  
BOUNDARY SCAN TEST  
11.1  
11.2  
Initialization of boundary scan circuit  
Device identification codes  
FUNCTIONAL DESCRIPTION OF DIGITAL  
VIDEO ENCODER PART  
12  
13  
14  
LIMITING VALUES  
THERMAL CHARACTERISTICS  
8.1  
Reset conditions  
CHARACTERISTICS OF THE DIGITAL  
VIDEO ENCODER PART  
8.2  
Input formatter  
8.3  
RGB LUT  
15  
CHARACTERISTICS OF THE DIGITAL  
VIDEO DECODER PART  
8.4  
Cursor insertion  
8.5  
8.6  
RGB Y-CB-CR matrix  
Horizontal scaler  
16  
TIMING  
8.7  
8.8  
8.9  
Vertical scaler and anti-flicker filter  
FIFO  
Border generator  
Oscillator and Discrete Time Oscillator (DTO)  
Low-pass Clock Generation Circuit (CGC)  
Encoder  
RGB processor  
Triple DAC  
HD data path  
Timing generator  
Pattern generator for HD sync pulses  
I2C-bus interface  
Power-down modes  
Programming the graphics acquisition scaler of  
the video encoder  
16.1  
16.2  
Digital video encoder part  
Digital video decoder part  
17  
APPLICATION INFORMATION  
8.10  
8.11  
8.12  
8.13  
8.14  
8.15  
8.16  
8.17  
8.18  
8.19  
8.20  
17.1  
17.2  
17.3  
Reconstruction filter  
Analog output voltages  
Suggestions for a board layout  
18  
I2C-BUS DESCRIPTION  
18.1  
18.2  
Digital video encoder part  
Digital video decoder part  
19  
PROGRAMMING START SET-UP OF  
DIGITAL VIDEO DECODER PART  
19.1  
19.2  
19.3  
19.4  
Decoder part  
Audio clock generation part  
Data slicer and data type control part  
Scaler and interfaces  
8.21  
9
Input levels and formats  
FUNCTIONAL DESCRIPTION OF DIGITAL  
VIDEO DECODER PART  
20  
21  
22  
23  
24  
25  
PACKAGE OUTLINE  
SOLDERING  
9.1  
9.2  
9.3  
9.4  
Decoder  
Decoder output formatter  
Scaler  
VBI data decoder and capture  
(subaddresses 40H to 7FH)  
Image port output formatter  
(subaddresses 84H to 87H)  
Audio clock generation  
(subaddresses 30H to 3FH)  
DATA SHEET STATUS  
DEFINITIONS  
DISCLAIMERS  
PURCHASE OF PHILIPS I2C COMPONENTS  
9.5  
9.6  
2004 Jun 29  
2
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
1
FEATURES  
1.1  
Video decoder  
Six analog inputs, internal analog source selectors, e.g.  
6 × CVBS or (2 × Y/C and 2 × CVBS) or (1 × Y/C and  
4 × CVBS)  
Enhanced ITU 656 output format on IPD output bus  
Two analog preprocessing channels in differential  
containing:  
CMOS style for best S/N performance  
– active video  
Fully programmable static gain or Automatic Gain  
Control (AGC) for the selected CVBS or Y/C channel  
– raw CVBS data for INTERCAST applications  
(27 MHz data rate)  
Switchable white peak control  
– decoded VBI data  
Two built-in analog anti-aliasing filters  
Detection of copy protected input signals according to  
the Macrovision (1) standard. Can be used to prevent  
unauthorized recording of pay-TV or video tape signals.  
Two 9-bit video CMOS Analog-to-Digital Converters  
(ADCs), digitized CVBS or Y/C signals are available on  
the Image Port Data (IPD) port under I2C-bus control  
On-chip clock generator  
1.2  
Video scaler  
Line-locked system clock frequencies  
Both up and downscaling  
Digital PLL for horizontal sync processing and clock  
Conversion to square pixel format  
NTSC to 288 lines (video phone)  
generation, horizontal and vertical sync detection  
Requires only one crystal (either 24.576 MHz or  
Phase accuracy better than 1/64 pixel or line, horizontally  
32.11 MHz) for all standards  
or vertically  
Automatic detection of 50 and 60 Hz field frequency,  
and automatic switching between PAL and NTSC  
standards  
Independent scaling definitions for odd and even fields  
Anti-alias filter for horizontal scaling  
Provides output as:  
Luminance and chrominance signal processing for  
PAL BGHI, PAL N, combination PAL N, PAL M,  
NTSC M, NTSC-Japan, NTSC N, NTSC 4.43 and  
SECAM  
– scaled active video  
– raw CVBS data for INTERCAST, WAVE-PHORE,  
POPCON applications or general VBI data decoding  
(27 MHz or sample rate converted)  
User programmable luminance peaking or aperture  
correction  
Local video output for Y-CB-CR 4 : 2 : 2 format (VMI,  
VIP, ZV).  
Cross-colour reduction for NTSC by chrominance comb  
filtering  
PAL delay line for correcting PAL phase errors  
Brightness Contrast Saturation (BCS) and hue control  
on-chip  
Two multi functional real-time output pins controlled by  
the I2C-bus  
Multi-standard VBI data slicer decoding World Standard  
Teletext (WST), North-American Broadcast Text  
System (NABTS), Closed Caption (CC), Wide Screen  
Signalling (WSS), Video Programming System (VPS),  
Vertical Interval Time Code (VITC) variants  
(EBU/SMPTE) etc.  
Standard ITU 656 Y-CB-CR 4 : 2 : 2 format (8-bit) on IPD  
output bus  
(1) Macrovision is a trademark of the Macrovision Corporation.  
2004 Jun 29  
3
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
1.3  
Video encoder  
Adjustable output levels for the DACs  
Programmable horizontal and vertical input  
synchronization phase  
Digital PAL/NTSC encoder with integrated high quality  
scaler and anti-flicker filter for TV output from a PC  
Programmable horizontal sync output phase  
Internal Colour Bar Generator (CBG)  
Supports Intel Digital Video Out (DVO) low voltage  
interfacing to graphics controller  
27 MHz crystal-stable subcarrier generation  
Optional support of various Vertical Blanking Interval  
(VBI) data insertion  
Maximum graphics pixel clock 85 MHz at double edged  
clocking, synthesized on-chip or from external source  
Macrovision Pay-per-View copy protection system  
rev. 7.01, rev. 6.1 and rev. 1.03 (525p) as option;  
this applies to SAA7108AE only. The device is protected  
by USA patent numbers 4631603, 4577216 and  
4819098 and other intellectual property rights. Use of  
the Macrovision anti-copy process in the device is  
licensed for non-commercial home use only. Reverse  
engineering or disassembly is prohibited. Please  
contact your nearest Philips Semiconductors sales  
office for more information.  
Programmable assignment of clock edge to bytes (in  
double edged mode)  
Synthesizable pixel clock (PIXCLK) with minimized  
output jitter, can be used as reference clock for the VGC,  
as well  
PIXCLK output and bi-phase PIXCLK input (VGC clock  
loop-through possible)  
Hot-plug detection through dedicated interrupt pin  
Supported VGA resolutions for PAL or NTSC legacy  
video output up to 1280 × 1024 graphics data at  
60 or 50 Hz frame rate  
1.4  
Common features  
5 V tolerant digital I/O ports  
I2C-bus controlled (full read-back ability by an external  
controller, bit rate up to 400 kbits/s)  
Supported VGA resolutions for HDTV output up to  
1920 × 1080 interlaced graphics data at 60 or 50 Hz  
frame rate  
Versatile power-save modes  
Three Digital-to-Analog Converters (DACs) for CVBS  
(BLUE, CB), VBS (GREEN, CVBS) and C (RED, CR) at  
27 MHz sample rate (signals in parenthesis are  
optionally selected), all at 10-bit resolution  
Boundary scan test circuit complies with the “IEEE Std.  
1149.b1-1994” (separate ID codes for decoder and  
encoder)  
Monolithic CMOS 3.3 V device  
BGA156 package  
Non-interlaced CB-Y-CR or RGB input at maximum  
4 : 4 : 4 sampling  
Moisture Sensitive Level (MSL): e3.  
Downscaling and upscaling from 50 to 400 %  
Optional interlaced CB-Y-CR input of Digital Versatile  
2
APPLICATIONS  
Disk (DVD) signals  
Optional non-interlaced RGB output to drive second  
VGA monitor (bypass mode, maximum 85 MHz)  
Notebook (low-power consumption)  
PCMCIA card application  
AGP based graphics cards  
PC editing  
3 × 256 bytes RGB Look-Up Table (LUT)  
Support for hardware cursor  
HDTV up to 1920 × 1080 interlaced and 1280 × 720  
progressive, including 3-level sync pulses  
Image processing  
Video phone applications  
INTERCAST and PC teletext applications  
Security applications  
Programmable border colour of underscan area  
Programmable 5 line anti-flicker filter  
On-chip 27 MHz crystal oscillator (3rd-harmonic or  
fundamental 27 MHz crystal)  
Hybrid satellite set-top boxes.  
Fast I2C-bus control port (400 kHz)  
Encoder can be master or slave  
2004 Jun 29  
4
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
3
GENERAL DESCRIPTION  
All inputs intended to interface to the host graphics  
controller are designed for low-voltage signals down to  
1.1 V and up to 3.45 V.  
The SAA7108AE; SAA7109AE is a new multi-standard  
video decoder and encoder chip, offering high quality  
video input and TV output processing as required by  
PC-99 specifications. It enables hardware manufacturers  
to implement versatile video functions on a significantly  
reduced printed-circuit board area at very competitive  
costs.  
The video decoder, a 9-bit video input processor, is a  
combination of a 2-channel analog pre-processing circuit  
including source selection, anti-aliasing filter and  
Analog-to-Digital Converter (ADC), automatic clamp and  
gain control, a Clock Generation Circuit (CGC), and a  
digital multi-standard decoder (PAL BGHI, PAL M, PAL N,  
combination PAL N, NTSC M, NTSC-Japan, NTSC N,  
NTSC 4.43 and SECAM).  
Separate pins for supply voltages as well as for I2C-bus  
control and boundary scan test have been provided for the  
video encoder and decoder sections to ensure both  
flexible handling and optimized noise behaviour.  
The decoder includes a brightness, contrast and  
saturation control circuit, a multi-standard VBI data slicer  
and a 27 MHz VBI data bypass. The pure 3.3 V (5 V  
compatible) CMOS circuit SAA7108AE; SAA7109AE,  
consisting of an analog front-end and digital video  
decoder, a digital video encoder and analog back-end, is a  
highly integrated circuit especially designed for desktop  
video applications.  
The video encoder is used to encode PC graphics data at  
maximum 1280 × 1024 resolution (optionally 1920 × 1080  
interlaced) to PAL (50 Hz) or NTSC (60 Hz) video signals.  
A programmable scaler and anti-flicker filter (maximum  
5 lines) ensures properly sized and flicker-free TV display  
as CVBS or S-video output.  
Alternatively, the three Digital-to-Analog Converters  
(DACs) can output RGB signals together with a TTL  
composite sync to feed SCART connectors.  
The decoder is based on the principle of line-locked clock  
decoding and is able to decode the colour of PAL, SECAM  
and NTSC signals into ITU-R BT.601 compatible colour  
component values.  
When the scaler/interlacer is bypassed, a second VGA  
monitor can be connected to the RGB outputs and  
separate H and V-syncs as well, thereby serving as an  
auxiliary monitor at maximum 1280 × 1024  
resolution/60 Hz (PIXCLK < 85 MHz). Alternatively this  
port can provide Y, PB and PR signals for HDTV monitors.  
The encoder can operate fully independently at its own  
variable pixel clock, transporting graphics input data, and  
at the line-locked, single crystal-stable video encoding  
clock.  
As an option, it is possible to slave the video PAL/NTSC  
encoding to the video decoder clock with the encoder FIFO  
acting as a buffer to decouple the line-locked decoder  
clock from the crystal-stable encoder clock.  
The encoder section includes a sync/clock generator and  
on-chip DACs.  
4
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SAA7108AE  
SAA7109AE  
BGA156  
plastic ball grid array package; 156 balls; body 15 × 15 × 1.15 mm  
SOT472-1  
2004 Jun 29  
5
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
5
QUICK REFERENCE DATA  
SYMBOL  
VDDD  
PARAMETER  
CONDITIONS  
MIN.  
3.15  
3.15  
0
TYP. MAX. UNIT  
digital supply voltage  
3.3  
3.3  
3.45  
3.45  
70  
V
VDDA  
Tamb  
PA+D  
analog supply voltage  
V
ambient temperature  
°C  
W
analog and digital power dissipation note 1  
1.7  
Note  
1. Power dissipation is extremely dependent on programming and selected application.  
6
BLOCK DIAGRAMS  
digital video  
input and output  
X port  
ANALOG VIDEO  
ACQUISITION AND  
DEMODULATOR  
I port  
(IPD)  
CVBS, Y/C  
analog  
video input  
digital  
video output  
SCALER  
VIDEO DECODER PART  
VIDEO ENCODER PART  
SCALER  
AND  
INTERLACER  
Y-C -C /RGB  
CVBS, Y/C  
RGB  
B
R
analog  
video output  
digital video  
graphics input  
VIDEO  
ENCODER  
PD  
MHB903  
Fig.1 Simplified block diagram.  
2004 Jun 29  
6
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
C1, C2, B1,  
B2, A2, B4,  
B3, A3, F3,  
FIFO  
AND  
UPSAMPLING  
LUT  
AND  
CURSOR  
H1, H2, H3  
RGB TO Y-C -C  
B
PD11 to  
PD0  
INPUT  
FORMATTER  
R
MATRIX  
DECIMATOR  
4 : 4 : 4 to 4 : 2 : 2  
VERTICAL  
SCALER  
VERTICAL  
FILTER  
HORIZONTAL  
SCALER  
F2  
PIXCLKI  
C6  
C7  
C8  
BLUE_CB_CVBS  
BORDER  
GENERATOR  
VIDEO  
ENCODER  
TRIPLE  
DAC  
FIFO  
GREEN_VBS_CVBS  
RED_CR_C_CVBS  
HD  
OUTPUT  
SAA7108AE  
SAA7109AE  
D7  
VSM  
D8  
HSM_CSYNC  
TVD  
F12  
2
G4  
CRYSTAL  
TIMING  
I C-BUS  
PIXEL CLOCK  
SYNTHESIZER  
PIXCLKO  
OSCILLATOR  
GENERATOR  
CONTROL  
A5  
A6  
C3  
TTX_SRES  
FSVGC  
G1 F1 G3 E3  
C4  
G2  
SDAe  
TTXRQ_XCLKO2  
E2  
D2  
XTALIe XTALOe  
VSVGC  
CBO  
HSVGC  
RESe  
MBL785  
27 MHz  
SCLe  
Fig.2 Block diagram (video encoder part).  
  g
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
 w
[
]
LLC2  
RTS0  
XCLK XPD 7:0  
XRV  
XTRI  
TEST5  
TEST3  
TEST1  
TEST0  
[
]
LLC  
RTCO  
(1)  
RTS1 XDQ  
XRH XRDY  
HPD 7:0  
SDAd SCLd  
TEST4  
TEST2  
M14 L14 L13 K13 L10 M3 M4 K2, K3,  
L1 to L3  
N2 L5 N3 K1  
A13, D12, C12, L12  
B12, A12, C11,  
B11, A11  
M11  
J2  
J1  
J3  
C10 B10 H13  
M1, M2, N1  
2
REAL-TIME OUTPUT  
EXPANSION PORT PIN MAPPING  
I/O CONTROL  
I C-BUS  
M12  
N14  
P4  
RESd  
CE  
chrominance of 16-bit input  
X PORT I/O FORMATTING  
E14, D14,  
C14, B14,  
E13, D13,  
C13, B13  
CLOCK GENERATION  
AND  
POWER-ON CONTROL  
XTOUTd  
XTALId  
XTALOd  
SAA7108AE  
SAA7109AE  
P2  
A/B  
REGISTER  
MUX  
PROGRAMMING  
REGISTER  
ARRAY  
[
]
IPD 7:0  
P3  
H14  
G12  
F13  
F14  
G13  
IDQ  
P13  
P11  
P10  
P9  
AI11  
AI12  
IGPH  
IGPV  
IGP0  
IGP1  
EVENT CONTROLLER  
DIGITAL  
AI21  
DECODER  
ANALOG  
WITH  
AI22  
DUAL  
ADC  
FIR-PREFILTER  
PRESCALER  
AND  
HORIZONTAL  
FINE  
ADAPTIVE  
COMB  
P7  
LINE  
VERTICAL  
FIFO  
AI23  
P6  
SCALING  
BUFFER  
(PHASE)  
SCALING  
VIDEO  
FIFO  
FILTER  
AI24  
SCALER BCS  
32  
to  
8(16)  
MUX  
M10  
AOUT  
H12  
P12  
P8  
ICLK  
AI1D  
AI2D  
BOUNDARY  
SCAN  
AUDIO  
CLOCK  
GENERATION  
GENERAL PURPOSE  
VBI DATA SLICER  
TEXT  
FIFO  
TEST  
J14  
N10  
AGND  
ITRDY  
ITRI  
G14  
VIDEO/TEXT  
ARBITER  
M7,  
D11, F11,  
J4, J11,  
L4, L11  
D10, G11, M8, M9, E11, K4, H4, H11, N7 to N9,  
N4 M6 M5 N6 N5 K12 J13 K14 J12 L8 P5  
L7, L9  
N11  
K11  
L6, M13 N12, N13  
MBL791  
V
TCLKd TDId AMCLK ASCLK  
V
V
V
SSEd  
DDXd  
DDId  
DDAd  
TMSd TDOd ALRCLK AMXCLK  
(1)  
V
V
DDEd  
TRSTd  
V
V
SSAd  
SSXd  
SSId  
(1) The pins RTCO and ALRCLK are used for configuration of the I2C-bus interface  
and the definition of the crystal oscillator frequency at RESET (pin strapping).  
Fig.3 Block diagram (video decoder part).  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
7
PINNING  
SYMBOL  
PIN TYPE(1)  
DESCRIPTION  
PD7  
A2  
A3  
A4  
I
MSB of encoder input bus with CB-Y-CR 4 : 2 : 2; see Tables 9 to 15 for pin  
assignment  
PD4  
I
MSB 3 of encoder input bus with CB-Y-CR 4 : 2 : 2; see Tables 9 to 15 for  
pin assignment  
TRSTe  
I/pu  
test reset input for Boundary Scan Test (BST) (encoder); active LOW; with  
internal pull-up; notes 2 and 3  
XTALIe  
XTALOe  
DUMP  
VSSXe  
RSET  
VDDAe  
HPD0  
HPD3  
HPD7  
PD9  
A5  
A6  
I
O
27 MHz crystal input (encoder)  
27 MHz crystal output (encoder)  
A7  
O
DAC reference pin (encoder), 12 resistor connected to VSSAe  
ground for oscillator (encoder)  
A8  
S
A9  
O
DAC reference pin (encoder), 1 kresistor connected to VSSAe  
3.3 V analog supply voltage (encoder)  
MSB 7 of Host Port Data (HPD) output bus  
MSB 4 of HPD output bus  
A10  
A11  
A12  
A13  
B1  
S
I/O  
I/O  
I/O  
I
MSB of HPD output bus  
see Tables 9, 14 and 15 for pin assignment with different encoder input  
formats  
PD8  
PD5  
PD6  
B2  
B3  
B4  
I
I
I
see Tables 9, 14 and 15 for pin assignment with different encoder input  
formats  
MSB 2 of encoder input bus with CB-Y-CR 4 : 2 : 2; see Tables 9 to 15 for  
pin assignment  
MSB 1 of encoder input bus with CB-Y-CR 4 : 2 : 2; see Tables 9 to 15 for  
pin assignment  
TDIe  
B5  
B6  
I/pu  
S
test data input for BST (encoder); note 4  
3.3 V analog supply voltage (encoder)  
DAC reference pin (encoder); connected to A7  
analog ground (encoder)  
VDDAe  
DUMP  
VSSAe  
VDDAe  
TEST1  
HPD1  
HPD4  
IPD0  
B7  
O
S
B8  
B9  
S
3.3 V analog supply voltage (encoder)  
scan test input 1, do not connect  
MSB 6 of HPD output bus  
B10  
B11  
B12  
B13  
B14  
C1  
I
I/O  
I/O  
O
O
I
MSB 3 of HPD output bus  
MSB 7 of IPD output bus  
IPD4  
MSB 3 of Image Port Data (IPD) output bus  
PD11  
see Tables 9, 14 and 15 for pin assignment with different encoder input  
formats  
PD10  
C2  
I
see Tables 9, 14 and 15 for pin assignment with different encoder input  
formats  
TTX_SRES  
C3  
C4  
I
teletext input or sync reset input (encoder)  
TTXRQ_XCLKO2  
O
teletext request output or 13.5 MHz clock output of the crystal oscillator  
(encoder)  
VSSIe  
C5  
C6  
S
digital ground core (encoder)  
BLUE or CB or CVBS output  
BLUE_CB_CVBS  
O
2004 Jun 29  
9
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SYMBOL  
PIN TYPE(1)  
DESCRIPTION  
GREEN or VBS or CVBS output  
RED or CR or C or CVBS output  
GREEN_VBS_CVBS C7  
O
O
S
RED_CR_C_CVBS  
VDDAe  
C8  
C9  
3.3 V analog supply voltage (encoder)  
scan test input 2, do not connect  
TEST2  
HPD2  
C10  
C11  
C12  
C13  
C14  
D1  
I
I/O  
I/O  
O
O
O
I
MSB 5 of HPD output bus  
HPD5  
MSB 2 of HPD output bus  
IPD1  
MSB 6 of IPD output bus  
IPD5  
MSB 2 of IPD output bus  
TDOe  
test data output for BST (encoder); note 4  
reset input (encoder); active LOW  
RESe  
D2  
TMSe  
D3  
I/pu  
S
test mode select input for BST (encoder); note 4  
3.3 V digital supply voltage for core and peripheral cells (encoder)  
digital ground core (encoder)  
VDDIEe  
D4  
VSSIe  
D5  
S
VDDXe  
D6  
S
3.3 V supply voltage for oscillator (encoder)  
vertical synchronization output to VGA monitor (non-interlaced)  
VSM  
D7  
O
O
HSM_CSYNC  
D8  
horizontal synchronization output to VGA monitor (non-interlaced) or  
composite sync for RGB-SCART  
VDDAe  
VDDEd  
VDDId  
HPD6  
IPD2  
D9  
D10  
D11  
D12  
D13  
D14  
E1  
S
S
3.3 V analog supply voltage (encoder)  
3.3 V digital supply voltage for peripheral cells (decoder)  
3.3 V digital supply voltage for core (decoder)  
MSB 1 of HPD output bus  
S
I/O  
O
MSB 5 of IPD output bus  
IPD6  
O
MSB 1 of IPD output bus  
TCKe  
SCLe  
HSVGC  
I/pu  
I
test clock input for BST (encoder); note 4  
I2C-bus serial clock input (encoder)  
E2  
E3  
I/O  
horizontal synchronization output to Video Graphics Controller (VGC)  
(optional input)  
VSSEe  
VSSId  
E4  
E11  
E12  
E13  
E14  
F1  
S
S
digital ground peripheral cells (encoder)  
digital ground core (decoder)  
not connected  
n.c.  
IPD3  
O
O
I/O  
I
MSB 4 of IPD output bus  
IPD7  
MSB of IPD output bus  
VSVGC  
PIXCLKI  
PD3  
vertical synchronization output to VGC (optional input)  
pixel clock input (looped through)  
F2  
F3  
I
MSB 4 of encoder input bus with CB-Y-CR 4 : 2 : 2; see Tables 9 to 15 for  
pin assignment  
VDD(DVO)  
VDDId  
TVD  
F4  
S
S
digital supply voltage for DVO cells  
F11  
F12  
F13  
F14  
3.3 V digital supply voltage for core (decoder)  
O
O
O
TV Detector; hot-plug interrupt pin, HIGH if TV is connected  
multi-purpose vertical reference output with IPD output bus  
general purpose output signal 0 with IPD output bus  
IGPV  
IGP0  
2004 Jun 29  
10  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SYMBOL  
PIN TYPE(1)  
DESCRIPTION  
FSVGC  
SDAe  
CBO  
G1  
G2  
I/O  
I/O  
O
frame synchronization output to VGC (optional input)  
I2C-bus serial data input/output (encoder)  
G3  
composite blanking output to VGC; active LOW  
pixel clock output to VGC  
PIXCLKO  
VDDEd  
IGPH  
IGP1  
G4  
O
G11  
G12  
G13  
G14  
H1  
S
3.3 V digital supply voltage for peripheral cells (decoder)  
multi-purpose horizontal reference output with IPD output bus  
general purpose output signal 1 with IPD output bus  
programmable control signals for IPD output bus  
O
O
ITRI  
I/(O)  
I
PD2  
MSB 5 of encoder input bus with CB-Y-CR 4 : 2 : 2; see Tables 9 to 15 for  
pin assignment  
PD1  
PD0  
H2  
H3  
I
I
MSB 6 of encoder input bus with CB-Y-CR 4 : 2 : 2; see Tables 9 to 15 for  
pin assignment  
MSB 7 of encoder input bus with CB-Y-CR 4 : 2 : 2; see Tables 9 to 15 for  
pin assignment  
VSSEd  
H4  
H11  
H12  
H13  
H14  
J1  
S
S
digital ground for peripheral cells (decoder)  
digital ground for peripheral cells (decoder)  
clock for IPD output bus (optional clock input)  
scan test output, do not connect  
VSSEd  
ICLK  
I/O  
O
O
O
I
TEST0  
IDQ  
data qualifier for IPD output bus  
TEST4  
TEST5  
TEST3  
VDDId  
scan test output, do not connect  
J2  
scan test input, do not connect  
J3  
I
scan test input, do not connect  
J4  
S
3.3 V digital supply voltage for core (decoder)  
3.3 V digital supply voltage for core (decoder)  
audio master external clock input  
VDDId  
J11  
J12  
J13  
S
AMXCLK  
ALRCLK  
I
(I/)O  
audio left/right clock output; can be strapped to supply via a 3.3 kresistor to  
indicate that the default 24.576 MHz crystal (ALRCLK = 0; internal pull-down)  
has been replaced by a 32.110 MHz crystal (ALRCLK = 1); notes 5 and 6  
ITRDY  
XTRI  
J14  
K1  
I
target ready input for IPD output bus  
control signal for all X port pins  
MSB of XPD bus  
I
XPD7  
XPD6  
VSSId  
K2  
I/O  
I/O  
S
K3  
MSB 1 of XPD bus  
K4  
digital ground core (decoder)  
digital ground core (decoder)  
audio master clock output, must be less than 50 % of crystal clock  
real-time status or sync information line 0  
audio serial clock output  
VSSId  
K11  
K12  
K13  
K14  
L1  
S
AMCLK  
RTS0  
ASCLK  
XPD5  
XPD4  
XPD3  
VDDId  
XRV  
O
O
O
I/O  
I/O  
I/O  
S
MSB 2 of XPD bus  
L2  
MSB 3 of XPD bus  
L3  
MSB 4 of XPD bus  
L4  
3.3 V digital supply voltage for core (decoder)  
vertical reference for XPD bus  
L5  
I/O  
2004 Jun 29  
11  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SYMBOL  
PIN TYPE(1)  
DESCRIPTION  
VSSEd  
VDDEd  
VDDXd  
VDDEd  
RTS1  
VDDId  
SDAd  
RTCO  
L6  
L7  
S
S
digital ground for peripheral cells (decoder)  
3.3 V digital supply voltage for peripheral cells (decoder)  
3.3 V supply voltage for oscillator (decoder)  
3.3 V digital supply voltage for peripheral cells (decoder)  
real-time status or sync information line 1  
L8  
S
L9  
S
L10  
L11  
L12  
L13  
O
S
3.3 V digital supply voltage for core (decoder)  
I2C-bus serial data input/output (decoder)  
I/O  
(I/)O  
real-time control output; contains information about actual system clock  
frequency, eld rate, odd/even sequence, decoder status, subcarrier  
frequency and phase and PAL sequence (see external document “RTC  
Functional Description”, available on request); the RTCO pin is enabled via  
I2C-bus bit RTCE; see notes 5 and 7 and Table 150  
LLC2  
XPD2  
XPD1  
XCLK  
XDQ  
L14  
M1  
O
I/O  
I/O  
I/O  
I/O  
I/pu  
I/pu  
S
line-locked 12 clock output (13.5 MHz nominal)  
MSB 5 of XPD bus  
M2  
MSB 6 of XPD bus  
M3  
clock for XPD bus  
M4  
data qualifier for XPD bus  
TMSd  
TCKd  
VSSAd  
VDDAd  
VDDAd  
AOUT  
SCLd  
RESd  
VSSEd  
LLC  
M5  
test mode select input for BST (decoder); note 4  
test clock input for BST (decoder); note 4  
analog ground (decoder)  
M6  
M7  
M8  
S
3.3 V analog supply voltage (decoder)  
3.3 V analog supply voltage (decoder)  
analog test output (do not connect)  
I2C-bus serial clock input (decoder)  
reset output signal; active LOW (decoder)  
digital ground for peripheral cells (decoder)  
line-locked clock output (27 MHz nominal)  
MSB 7 of XPD bus  
M9  
S
M10  
M11  
M12  
M13  
M14  
N1  
O
I
O
S
O
XPD0  
XRH  
I/O  
I/O  
O
N2  
horizontal reference for XPD bus  
data input ready for XPD bus  
XRDY  
TRSTd  
N3  
N4  
I/pu  
test reset input for BST (decoder); active LOW; with internal pull-up;  
notes 2 and 3  
TDOd  
TDId  
N5  
N6  
O
I/pu  
S
test data output for BST (decoder); note 4  
test data input for BST (decoder); note 4  
analog ground (decoder)  
VSSAd  
VSSAd  
VSSAd  
AGND  
VDDAd  
VSSAd  
VSSAd  
CE  
N7  
N8  
S
analog ground (decoder)  
N9  
S
analog ground (decoder)  
N10  
N11  
N12  
N13  
N14  
S
analog ground (decoder) connected to substrate  
3.3 V analog supply voltage (decoder)  
analog ground (decoder)  
S
S
S
analog ground (decoder)  
I
chip enable or reset input (with internal pull-up)  
2004 Jun 29  
12  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SYMBOL  
PIN TYPE(1)  
DESCRIPTION  
27 MHz crystal input (decoder)  
27 MHz crystal output (decoder)  
XTALId  
XTALOd  
XTOUTd  
VSSXd  
AI24  
P2  
P3  
I
O
O
S
I
P4  
crystal oscillator output signal (decoder); auxiliary signal  
P5  
ground for crystal oscillator (decoder)  
P6  
analog input 24  
AI23  
P7  
I
analog input 23  
AI2D  
P8  
I
differential analog input for channel 2; connect to ground via a capacitor  
AI22  
P9  
I
analog input 22  
AI21  
P10  
P11  
P12  
P13  
I
analog input 21  
AI12  
I
analog input 12  
AI1D  
I
differential analog input for channel 1; connect to ground via a capacitor  
analog input 11  
AI11  
I
Notes  
1. Pin type: I = input, O = output, S = supply, pu = pull-up.  
2. For board design without boundary scan implementation connect TRSTe and TRSTd to ground.  
3. This pin provides easy initialization of the Boundary Scan Test (BST) circuit. TRSTe and TRSTd can be used to force  
the Test Access Port (TAP) controller to the TEST_LOGIC_RESET state (normal operation) at once.  
4. In accordance with the “IEEE1149.1” standard the pads TDIe (TDId), TMSe (TMSd), TCKe (TCKd) and TRSTe  
(TRSTd) are input pads with an internal pull-up resistor and TDOe (TDOd) is a 3-state output pad.  
5. Pin strapping is done by connecting the pin to supply via a 3.3 kresistor. During the power-up reset sequence the  
corresponding pins are switched to input mode to read the strapping level. For the default setting no strapping  
resistor is necessary (internal pull-down).  
6. Pin ALRCLK: 0 = 24.576 MHz crystal (default); 1 = 32.110 MHz crystal.  
7. Pin RTCO: operates as I2C-bus slave address pin; RTCO = 0 slave address 42H/43H (default); RTCO = 1 slave  
address 40H/41H.  
MBL788  
handbook, halfpage  
P
N
M
L
K
J
H
SAA7108AE  
SAA7109AE  
G
F
E
D
C
B
A
1
2 3 4 5 6 7 8 9 10 11 12 13 14  
Fig.4 Pin configuration.  
13  
2004 Jun 29  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
Table 1 Pin assignment (top view)  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
C
PD7  
PD8  
PD10  
PD4  
PD5  
TRSTe XTALIe XTALOe  
DUMP  
DUMP  
VSSXe  
RSET VDDAe HPD0 HPD3  
VDDAe TEST1 HPD1 HPD4  
HPD7  
IPD0  
IPD1  
PD9  
PD6  
TDIe  
VDDAe  
VSSAe  
IPD4  
IPD5  
PD11  
TTX_ TTXRQ_ VSSIe  
SRES XCLKO2  
BLUE_  
CB_CVBS VBS_CVBS  
GREEN_ RED_CR_C_ VDDAe TEST2 HPD2 HPD5  
CVBS  
D
E
TDOe  
TCKe  
RESe  
TMSe  
VDDIEe  
VSSIe  
VDDXe  
VSM  
HSM_CSYNC VDDAe VDDEd VDDId  
HPD6  
n.c.  
IPD2  
IPD3  
IPD6  
IPD7  
IGP0  
ITRI  
SCLe HSVGC  
VSSEe  
VSSId  
VDDId  
VDDEd  
VSSEd  
F VSVGC PIXCLKI  
G FSVGC SDAe  
PD3  
VDD(DVO)  
TVD  
IGPH  
ICLK  
IGPV  
IGP1  
CBO PIXCLKO  
H
J
PD2  
PD1  
PD0  
VSSEd  
VDDId  
VSSId  
TEST0  
IDQ  
TEST4 TEST5 TEST3  
VDDId AMXCLK ALRCLK ITRDY  
K
L
XTRI  
XPD5  
XPD2  
XPD0  
XPD7  
XPD4  
XPD1  
XRH  
XPD6  
XPD3  
XCLK  
XRDY  
VSSId AMCLK  
RTS0 ASCLK  
VDDId  
XDQ  
XRV  
TMSd  
TDOd  
VSSEd  
TCKd  
TDId  
AI24  
VDDEd  
VSSAd  
VSSAd  
AI23  
VDDXd  
VDDAd  
VSSAd  
AI2D  
VDDEd RTS1 VDDId  
SDAd  
RESd  
RTCO  
VSSEd  
VSSAd  
AI11  
LLC2  
LLC  
CE  
M
N
P
VDDAd AOUT SCLd  
TRSTd  
VSSAd AGND VDDAd VSSAd  
XTALId XTALOd XTOUTd VSSXd  
AI22  
AI21  
AI12  
AI1D  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
8
FUNCTIONAL DESCRIPTION OF DIGITAL VIDEO  
ENCODER PART  
For ease of analog post filtering the signals are twice  
oversampled to 27 MHz before digital-to-analog  
conversion.  
The digital video encoder encodes digital luminance and  
colour difference signals (CB-Y-CR) or digital RGB signals  
into analog CVBS, S-video and, optionally, RGB or  
CR-Y-CB signals. NTSC M, PAL B/G and sub-standards  
are supported.  
The total filter transfer characteristics (scaler and  
anti-flicker filter are not taken into account) are illustrated  
in Figs 5 to 10. All three DACs are realized with full 10-bit  
resolution. The CR-Y-CB to RGB dematrix can be  
bypassed (optionally) in order to provide the upsampled  
CR-Y-CB input signals.  
The SAA7108AE; SAA7109AE can be directly connected  
to a PC video graphics controller with a maximum  
resolution of 1280 × 1024 (progressive) or 1920 × 1080  
(interlaced) at a 50 or 60 Hz frame rate. A programmable  
scaler scales the computer graphics picture so that it will fit  
into a standard TV screen with an adjustable underscan  
area. Non-interlaced-to-interlaced conversion is optimized  
with an adjustable anti-flicker filter for a flicker-free display  
at a very high sharpness.  
The 8-bit multiplexed CB-Y-CR formats are “ITU-R BT.656”  
(D1 format) compatible, but the SAV and EAV codes can  
be decoded optionally, when the device is operated in  
slave mode. For assignment of the input data to the rising  
or falling clock edge see Tables 9 to 15.  
In order to display interlaced RGB signals through a  
euro-connector TV set, a separate digital composite sync  
signal (pin HSM_CSYNC) can be generated; it can be  
advanced up to 31 periods of the 27 MHz crystal clock in  
order to be adapted to the RGB processing of a TV set.  
Besides the most common 16-bit 4 : 2 : 2 CB-Y-CR input  
format (using 8 pins with double edge clocking), other  
CB-Y-CR and RGB formats are also supported; see  
Tables 9 to 15.  
The SAA7108AE; SAA7109AE synthesizes all necessary  
internal signals, colour subcarrier frequency and  
synchronization signals from that clock.  
A complete 3 × 256 bytes Look-Up Table (LUT), which can  
be used, for example, as a separate gamma corrector, is  
located in the RGB domain; it can be loaded either through  
the video input port PD (Pixel Data) or via the I2C-bus.  
It is also possible to connect pin RTCO of the decoder  
section to pin RTCI of the encoder section. Thus,  
information containing actual subcarrier frequency,  
PAL-ID etc. is available in case the line-locked clock of the  
decoder section is used for re-encoding of the encoder  
section.  
The SAA7108AE; SAA7109AE supports a 32 × 32 × 2-bit  
hardware cursor, the pattern of which can also be loaded  
through the video input port or via the I2C-bus.  
It is also possible to encode interlaced 4 : 2 : 2 video  
signals such as PC-DVD; for that the anti-flicker filter, and  
in most cases the scaler, will simply be bypassed.  
Wide screen signalling data can be loaded via the I2C-bus  
and is inserted into line 23 for standards using a 50 Hz  
field rate.  
Besides the applications for video output, the  
SAA7108AE; SAA7109AE can also be used for generating  
a kind of auxiliary VGA output, when the RGB  
non-interlaced input signal is fed to the DACs. This may be  
of interest for example, when the graphics controller  
provides a second graphics window at its video output  
port.  
VPS data for program dependent automatic start and stop  
of such featured VCRs is loadable via the I2C-bus.  
The IC also contains Closed Caption and extended data  
services encoding (line 21), and supports teletext insertion  
for the appropriate bit stream format at a 27 MHz clock rate  
(see Fig.51). It is also possible to load data for the copy  
generation management system into line 20 of every field  
(525/60 line counting).  
The basic encoder function consists of subcarrier  
generation, colour modulation and insertion of  
synchronization signals at a crystal-stable clock rate of  
13.5 MHz (independent of the actual pixel clock used at  
the input side), corresponding to an internal 4 : 2 : 2  
bandwidth in the luminance/colour difference domain.  
Luminance and chrominance signals are filtered in  
accordance with the standard requirements of “RS-170-A”  
and “ITU-R BT.470-3”.  
A number of possibilities are provided for setting different  
video parameters such as:  
Black and blanking level control  
Colour subcarrier frequency  
Variable burst amplitude etc.  
2004 Jun 29  
15  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MBE737  
6
G
v
(dB)  
0
6  
12  
18  
24  
30  
36  
(1)  
(2)  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
(1) SCBW = 1.  
(2) SCBW = 0.  
Fig.5 Chrominance transfer characteristic 1.  
MBE735  
handbook, halfpage  
2
G
v
(dB)  
0
(1)  
(2)  
2  
4  
6  
0
0.4  
0.8  
1.2  
1.6  
f (MHz)  
(1) SCBW = 1.  
(2) SCBW = 0.  
Fig.6 Chrominance transfer characteristic 2.  
16  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MGD672  
6
G
v
(dB)  
(4)  
0
(2)  
(3)  
6  
12  
18  
(1)  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
(1) CCRS1 = 0; CCRS0 = 1.  
(2) CCRS1 = 1; CCRS0 = 0.  
(3) CCRS1 = 1; CCRS0 = 1.  
(4) CCRS1 = 0; CCRS0 = 0.  
Fig.7 Luminance transfer characteristic 1 (excluding scaler).  
MBE736  
handbook, halfpage  
1
G
v
(dB)  
(1)  
0
1  
2  
3  
4  
5  
0
2
4
6
f (MHz)  
(1) CCRS1 = 0; CCRS0 = 0.  
Fig.8 Luminance transfer characteristic 2 (excluding scaler).  
17  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MGB708  
6
G
v
(dB)  
0
6  
12  
18  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig.9 Luminance transfer characteristic in RGB (excluding scaler).  
MGB706  
6
G
v
(dB)  
0
6  
12  
18  
24  
30  
36  
42  
48  
54  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig.10 Colour difference transfer characteristic in RGB (excluding scaler).  
18  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
8.1  
Reset conditions  
If Y-CB-CR is being applied as a 27 Mbyte/s data stream,  
the output of the input formatter can be used directly to  
feed the video encoder block.  
To activate the reset a pulse at least of 2 crystal clocks  
duration is required.  
The horizontal upscaling is supported via the input  
formatter. According to the programming of the pixel clock  
dividers (see Section 8.10), it will upsample the data  
stream to 1 ×, 2 × or 4 × the input data rate. An optional  
interpolation filter is available. The clock domain transition  
is handled by a 4 entries wide FIFO which gets initialized  
every field or explicitly at request. A bypass for the FIFO is  
available, especially for high input data rates.  
During reset (RESET = LOW) plus an extra 32 crystal  
clock periods, FSVGC, VSVGC, CBO, HSVGC and  
TTX_SRES are set to input mode and HSM_CSYNC and  
VSM are set to 3-state. A reset also forces the I2C-bus  
interface to abort any running bus transfer and sets it into  
receive condition.  
After reset, the state of the I/Os and other functions is  
defined by the strapping pins until an I2C-bus access  
redefines the corresponding registers; see Table 2.  
8.3  
RGB LUT  
The three 256-byte RAMs of this block can be addressed  
by three 8-bit wide signals, thus it can be used to build any  
transformation, e.g. a gamma correction for RGB signals.  
In the event that the indexed colour data is applied, the  
RAMs are addressed in parallel.  
Table 2 Strapping pins  
PIN  
TIED  
PRESET  
FSVGC (pin G1)  
LOW NTSC M encoding, PIXCLK  
fits to 640 × 480 graphics  
input  
The LUTs can either be loaded by an I2C-bus write access  
or can be part of the pixel data input through the PD port.  
In the latter case, 256 × 3 bytes for the R, G and B LUT are  
expected at the beginning of the input video line, two lines  
before the line that has been defined as first active line,  
until the middle of the line immediately preceding the first  
active line. The first 3 bytes represent the first RGB LUT  
data, and so on.  
HIGH PAL B/G encoding, PIXCLK  
fits to 640 × 480 graphics  
input  
VSVGC (pin F1)  
CBO (pin G3)  
LOW 4 : 2 : 2 Y-CB-CR graphics  
input (format 0)  
HIGH 4 : 4 : 4 RGB graphics input  
(format 3)  
LOW input demultiplex phase:  
LSB = LOW  
8.4  
Cursor insertion  
A 32 × 32 dots cursor can be overlaid as an option; the bit  
map of the cursor can be uploaded by an I2C-bus write  
access to specific registers or in the pixel data input via the  
PD port. In the latter case the 256 bytes defining the cursor  
bit map (2 bits per pixel) are expected immediately  
following the last RGB LUT data in the line preceding the  
first active line.  
HIGH input demultiplex phase:  
LSB = HIGH  
HSVGC (pin E3)  
LOW input demultiplex phase:  
MSB = LOW  
HIGH input demultiplex phase:  
MSB = HIGH  
TTXRQ_XCLKO2 LOW slave (FSVGC, VSVGC and  
The cursor bit map is set up as follows: each pixel  
occupies 2 bits. The meaning of these bits depends on the  
CMODE I2C-bus register as described in Table 5.  
Transparent means that the input pixels are passed  
through, the ‘cursor colours’ can be programmed in  
separate registers.  
(pin C4)  
HSVGC are inputs, internal  
colour bar is active)  
HIGH master (FSVGC, VSVGC  
and HSVGC are outputs)  
8.2  
Input formatter  
The bit map is stored with 4 pixels per byte, aligned to the  
least significant bit. So the first pixel is in bits 0 and 1, the  
next pixel in bits 3 and 4 and so on. The first index is the  
column, followed by the row; index 0,0 is the upper left  
corner.  
The input formatter converts all accepted PD input data  
formats, either RGB or Y-CB-CR, to a common internal  
RGB or Y-CB-CR data stream.  
When double-edge clocking is used, the data is internally  
split into portions PPD1 and PPD2. The clock edge  
assignment must be set according to the I2C-bus control  
bits SLOT and EDGE for correct operation.  
2004 Jun 29  
19  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 3 Layout of a byte in the cursor bit map  
Table 5 Cursor modes  
D7  
pixel n + 3  
D1 D0  
D6  
D5  
pixel n + 2  
D1 D0  
D4  
D3  
pixel n + 1  
D1 D0  
D2  
D1  
D0  
CURSOR MODE  
CMODE = 0 CMODE = 1  
second cursor colour second cursor colour  
CURSOR  
PATTERN  
pixel n  
D1  
D0  
00  
01  
10  
11  
first cursor colour  
transparent  
first cursor colour  
transparent  
For each direction, there are 2 registers controlling the  
position of the cursor, one controls the position of the  
‘hot spot’, the other register controls the insertion position.  
The hot spot is the ‘tip’ of the pointer arrow. It can have any  
position in the bit map. The actual position registers  
describe the co-ordinates of the hot spot. Again 0,0 is the  
upper left corner. While it is not possible to move the  
hot spot beyond the left respectively upper screen border  
this is perfectly legal for the right respectively lower border.  
It should be noted that the cursor position is described  
relative to the input resolution.  
inverted input  
auxiliary cursor  
colour  
8.5  
RGB Y-CB-CR matrix  
RGB input signals to be encoded to PAL or NTSC are  
converted to the Y-CB-CR colour space in this block. The  
colour difference signals are fed through low-pass filters  
and formatted to a ITU-R BT.601 like 4 : 2 : 2 data stream  
for further processing.  
A gain adjust option corrects the level swing of the  
graphics world (black-to-white as 0 to 255) to the required  
range of 16 to 235.  
Table 4 Cursor bit map  
BYTE D7 D6 D5 D4 D3 D2 D1 D0  
0
1
2
row 0  
column 3 column 2 column 1 column 0  
row 0 row 0 row 0 row 0  
column 7 column 6 column 5 column 4  
row 0 row 0 row 0 row 0  
column 11 column 10 column 9 column 8  
row 0  
row 0  
row 0  
The matrix and formatting blocks can be bypassed for  
Y-CB-CR graphics input.  
When the auxiliary VGA mode is selected, the output of the  
cursor insertion block is immediately directed to the triple  
DAC.  
8.6  
Horizontal scaler  
...  
6
...  
...  
...  
...  
row 0  
row 0  
row 0  
row 0  
The high quality horizontal scaler operates on the 4 : 2 : 2  
data stream. Its control engines compensate the colour  
phase offset automatically.  
column 27 column 26 column 25 column 24  
row 0 row 0 row 0 row 0  
column 31 column 30 column 29 column 28  
7
The scaler starts processing after a programmable  
horizontal offset and continues with a number of input  
pixels. Each input pixel is a programmable fraction of the  
current output pixel (XINC/4096). A special case is  
XINC = 0, this sets the scaling factor to 1.  
...  
...  
...  
...  
...  
254  
row 31  
row 31  
row 31  
row 31  
column 27 column 26 column 25 column 24  
row 31 row 31 row 31 row 31  
column 31 column 30 column 29 column 28  
255  
If the SAA7108AE; SAA7109AE input data is in  
accordance with “ITU-R BT.656”, the scaler enters  
another mode. In this event, XINC needs to be set to 2048  
for a scaling factor of 1. With higher values, upscaling will  
occur.  
The phase resolution of the circuit is 12 bits, giving a  
maximum offset of 0.2 after 800 input pixels. Small FIFOs  
rearrange a 4 : 2 : 2 data stream at the scaler output.  
2004 Jun 29  
20  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
8.7  
Vertical scaler and anti-flicker filter  
8.10 Oscillator and Discrete Time Oscillator (DTO)  
The functions scaling, Anti-Flicker Filter (AFF) and  
re-interlacing are implemented in the vertical scaler.  
The master clock generation is realized as a 27 MHz  
crystal oscillator, which can operate with either a  
fundamental wave crystal or a 3rd-harmonic crystal.  
Besides the entire input frame, it receives the first and last  
lines of the border to allow anti-flicker filtering.  
The crystal clock supplies the DTO of the pixel clock  
synthesizer, the video encoder and the I2C-bus control  
block. It also usually supplies the triple DAC, with the  
exception of the auxiliary VGA mode, where the triple DAC  
is clocked by the pixel clock (PIXCLK).  
The circuit generates the interlaced output fields by scaling  
down the input frames with different offsets for odd and  
even fields. Increasing the YSKIP setting reduces the  
anti-flicker function. A YSKIP value of 4095 switches it off;  
see Table 120.  
The DTO can be programmed to synthesize all relevant  
pixel clock frequencies between circa 40 and 85 MHz.  
Two programmable dividers provide the actual clock to be  
used externally and internally. The dividers can be  
programmed to factors of 1, 2, 4 and 8. For the internal  
pixel clock, a divider ratio of 8 makes no sense and is thus  
forbidden.  
An additional, programmable vertical filter supports the  
anti-flicker function. This filter is not available at upscaling  
factors of more than 2.  
The programming is similar to the horizontal scaler. For the  
re-interlacing, the resolutions of the offset registers are not  
sufficient, so the weighting factors for the first lines can  
also be adjusted. YINC = 0 sets the scaling factor to 1;  
YIWGTO and YIWGTE must not be 0.  
The internal clock can be switched completely to the pixel  
clock input. In this event, the input FIFO is useless and will  
be bypassed.  
Due to the re-interlacing, the circuit can perform upscaling  
by a maximum factor of 2. The maximum factor depends  
on the setting of the anti-flicker function and can be derived  
from the formulae given in Section 8.20.  
The entire pixel clock generation can be locked to the  
vertical frequency. Both pixel clock dividers get  
re-initialized every field. Optionally, the DTO can be  
cleared with each V-sync. At proper programming, this will  
make the pixel clock frequency a precise multiple of the  
vertical and horizontal frequencies. This is required for  
some graphic controllers.  
An additional upscaling mode enables the upscaling factor  
to be increased to a maximum of 4 as it is required for the  
old VGA modes like 320 × 240.  
8.8  
FIFO  
8.11 Low-pass Clock Generation Circuit (CGC)  
The FIFO acts as a buffer to translate from the PIXCLK  
clock domain to the XTAL clock domain. The write clock is  
PIXCLK and the read clock is XTAL. An underflow or  
overflow condition can be detected via the I2C-bus read  
access.  
This block reduces the phase jitter of the synthesized pixel  
clock. It works as a tracking filter for all relevant  
synthesized pixel clock frequencies.  
8.12 Encoder  
In order to avoid underflows and overflows, it is essential  
that the frequency of the synthesized PIXCLK matches to  
the input graphics resolution and the desired scaling  
factor.  
8.12.1 VIDEO PATH  
The encoder generates luminance and colour subcarrier  
output signals from the Y, CB and CR baseband signals,  
which are suitable for use as CVBS or separate Y and C  
signals.  
8.9  
Border generator  
Input to the encoder, at 27 MHz clock (e.g. DVD), is either  
originated from computer graphics at pixel clock, fed  
through the FIFO and border generator, or a ITU-R BT.656  
style signal.  
When the graphics picture is to be displayed as interlaced  
PAL, NTSC, S-video or RGB on a TV screen, it is desired  
in many cases not to lose picture information due to the  
inherent overscanning of a TV set. The desired amount of  
underscan area, which is achieved through appropriate  
scaling in the vertical and horizontal direction, can be filled  
in the border generator with an arbitrary true colour tint.  
Luminance is modified in gain and in offset (the offset is  
programmable in a certain range to enable different black  
level set-ups). A blanking level can be set after insertion of  
a fixed synchronization pulse tip level, in accordance with  
standard composite synchronization schemes.  
2004 Jun 29  
21  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Other manipulations used for the Macrovision anti-taping  
process, such as additional insertion of AGC super-white  
pulses (programmable in height), are supported by the  
SAA7108AE only.  
8.12.3 VIDEO PROGRAMMING SYSTEM (VPS) ENCODING  
Five bytes of VPS information can be loaded via the  
I2C-bus and will be encoded in the appropriate format into  
line 16.  
To enable easy analog post filtering, luminance is  
interpolated from a 13.5 MHz data rate to a 27 MHz data  
rate, thereby providing luminance in a 10-bit resolution.  
The transfer characteristics of the luminance interpolation  
filter are illustrated in Figs 7 and 8. Appropriate transients  
at start/end of active video and for synchronization pulses  
are ensured.  
8.12.4 CLOSED CAPTION ENCODER  
Using this circuit, data in accordance with the specification  
of Closed Caption or extended data service, delivered by  
the control interface, can be encoded (line 21). Two  
dedicated pairs of bytes (two bytes per field), each pair  
preceded by run-in clocks and framing code, are possible.  
Chrominance is modified in gain (programmable  
separately for CB and CR), and a standard dependent  
burst is inserted, before baseband colour signals are  
interpolated from a 6.75 MHz data rate to a 27 MHz data  
rate. One of the interpolation stages can be bypassed,  
thus providing a higher colour bandwidth, which can be  
used for the Y and C output. The transfer characteristics of  
the chrominance interpolation filter are illustrated in  
Figs 5 and 6.  
The actual line number in which data is to be encoded, can  
be modified in a certain range.  
The data clock frequency is in accordance with the  
definition for NTSC M standard 32 times horizontal line  
frequency.  
Data LOW at the output of the DACs corresponds to 0 IRE,  
data HIGH at the output of the DACs corresponds to  
approximately 50 IRE.  
The amplitude (beginning and ending) of the inserted  
burst, is programmable in a certain range that is suitable  
for standard signals and for special effects. After the  
succeeding quadrature modulator, colour is provided on  
the subcarrier in 10-bit resolution.  
It is also possible to encode Closed Caption data for 50 Hz  
field frequencies at 32 times the horizontal line frequency.  
8.12.5 ANTI-TAPING (SAA7108AE ONLY)  
For more information contact your nearest Philips  
Semiconductors sales office.  
The numeric ratio between the Y and C outputs is in  
accordance with the standards.  
8.13 RGB processor  
8.12.2 TELETEXT INSERTION AND ENCODING (NOT  
SIMULTANEOUSLY WITH REAL-TIME CONTROL)  
This block contains a dematrix in order to produce RED,  
GREEN and BLUE signals to be fed to a SCART plug.  
Pin TTX_SRES receives a WST or NABTS teletext  
bitstream sampled at the crystal clock. At each rising edge  
of the output signal (TTXRQ) a single teletext bit has to be  
provided after a programmable delay at input pin  
TTX_SRES.  
Before Y, CB and CR signals are de-matrixed, individual  
gain adjustment for Y and colour difference signals and  
2 times oversampling for luminance and 4 times  
oversampling for colour difference signals is performed.  
The transfer curves of luminance and colour difference  
components of RGB are illustrated in Figs 9 and 10.  
Phase variant interpolation is achieved on this bitstream in  
the internal teletext encoder, providing sufficient small  
phase jitter on the output text lines.  
8.14 Triple DAC  
TTXRQ_XCLKO2 provides a fully programmable request  
signal to the teletext source, indicating the insertion period  
of bitstream at lines which can be selected independently  
for both fields. The internal insertion window for text is set  
to 360 (PAL WST), 296 (NTSC WST) or 288 (NABTS)  
teletext bits including clock run-in bits. The protocol and  
timing are illustrated in Fig.51.  
Both Y and C signals are converted from digital-to-analog  
in a 10-bit resolution at the output of the video encoder.  
Y and C signals are also combined into a 10-bit CVBS  
signal.  
The CVBS output signal occurs with the same processing  
delay as the Y, C and optional RGB or CR-Y-CB outputs.  
Absolute amplitude at the input of the DAC for CVBS is  
Alternatively, this pin can be provided with a buffered  
crystal clock (XCLK) of 13.5 MHz.  
reduced by 15  
maximum use of the conversion ranges.  
16 with respect to Y and C DACs to make  
2004 Jun 29  
22  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
RED, GREEN and BLUE signals are also converted from  
digital-to-analog, each providing a 10-bit resolution.  
Alternatively, the device can be triggered by auxiliary  
codes in a ITU-R BT.656 data stream via PD7 to PD0.  
The reference currents of all three DACs can be adjusted  
individually in order to adapt for different output signals.  
In addition, all reference currents can be adjusted  
commonly to compensate for small tolerances of the  
on-chip band gap reference voltage.  
Only vertical frequencies of 50 and 60 Hz are allowed with  
the SAA7108AE; SAA7109AE. In slave mode, it is not  
possible to lock the encoders colour carrier to the line  
frequency with the PHRES bits.  
In the (more common) master mode, the time base of the  
circuit is continuously free-running. The IC can output a  
frame sync at pin FSVGC, a vertical sync at pin VSVGC, a  
horizontal sync at pin HSVGC and a composite blanking  
signal at pin CBO. All of these signals are defined in the  
PIXCLK domain. The duration of HSVGC and VSVGC are  
fixed, they are 64 clocks for HSVGC and 1 line for VSVGC.  
The leading slopes are in phase and the polarities can be  
programmed.  
Alternatively, all currents can be switched off to reduce  
power dissipation.  
All three outputs can be used to sense for an external load  
(usually 75 ) during a pre-defined output. A flag in the  
I2C-bus status byte reflects whether a load is applied or  
not. An automatic sense mode can also be activated,  
which will immediately indicate any 75 load at any of the  
three outputs at the dedicated interrupt pin TVD.  
The input line length can be programmed. The field length  
is always derived from the field length of the encoder and  
the pixel clock frequency that is being used.  
If the SAA7108AE; SAA7109AE is required to drive a  
second (auxiliary) VGA monitor or an HDTV set, the DACs  
receive the signal coming from the HD data path. In this  
event, the DACs are clocked at the incoming PIXCLKI  
instead of the 27 MHz crystal clock used in the video  
encoder.  
CBO acts as a data request signal. The circuit accepts  
input data at a programmable number of clocks after CBO  
goes active. This signal is programmable and it is possible  
to adjust the following (see Figs 49 and 50):  
8.15 HD data path  
The horizontal offset  
This data path enables the SAA7108AE; SAA7109AE to  
be used with VGA or HDTV monitors. It receives its data  
directly from the cursor generator and supports RGB and  
Y-PB-PR output formats (RGB not with Y-PB-PR input  
formats). No scaling is done in this mode.  
The length of the active part of the line  
The distance from active start to first expected data  
The vertical offset separately for odd and even fields  
The number of lines per input field.  
A gain adjustment either leads the full level swing to the  
digital-to-analog converters or reduces the amplitude by a  
factor of 0.69. This enables sync pulses to be added to the  
signal as it is required for display units that require signals  
with sync pulses, either regular or 3-level syncs.  
In most cases, the vertical offsets for odd and even fields  
are equal. If they are not, then the even field will start later.  
The SAA7108AE; SAA7109AE will also request the first  
input lines in the even field, the total number of requested  
lines will increase by the difference of the offsets.  
As stated above, the circuit can be programmed to accept  
the look-up and cursor data in the first 2 lines of each field.  
The timing generator provides normal data request pulses  
for these lines; the duration is the same as for regular lines.  
The additional request pulses will be suppressed with  
LUTL set to logic 0; see Table 143. The other vertical  
timings do not change in this case, so the first active line  
can be number 2, counted from 0.  
8.16 Timing generator  
The synchronization of the SAA7108AE; SAA7109AE is  
able to operate in two modes; slave mode and master  
mode.  
In slave mode, the circuit accepts sync pulses on the  
bidirectional FSVGC (frame sync), VSVGC (vertical sync)  
and HSVGC (horizontal sync) pins: the polarities of the  
signals can be programmed. The frame sync signal is only  
necessary when the input signal is interlaced, in other  
cases it may be omitted. If the frame sync signal is present,  
it is possible to derive the vertical and the horizontal phase  
from it by setting the HFS and VFS bits. HSVGC and  
VSVGC are not necessary in this case, so it is possible to  
switch the pins to output mode.  
2004 Jun 29  
23  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
8.17 Pattern generator for HD sync pulses  
Each index of this table points to a particular line of the  
next table in the linked list. This table is called the line  
pattern array and each of the up to seven entries stores up  
to four pairs of a duration in pixel clock cycles and an index  
to a value table. The table entries are used to define  
portions of a line representing a certain value for a certain  
number of clock cycles.  
The pattern generator provides an appropriate  
synchronization pattern for the video data path in auxiliary  
monitor or HDTV mode, respectively. It provides maximum  
flexibility in terms of raster generation for all interlaced and  
non-interlaced computer graphics or ATSC formats. The  
sync engine is capable of providing a combination of  
event-value pairs which can be used to insert certain  
values at specified times in the outgoing data stream. It  
can also be used to generate digital signals associated  
with time events. They can be used as digital horizontal  
and vertical synchronization signals on pins HSM_CSYNC  
and VSM.  
The value specified in this table is actually another 3-bit  
index into a value array which can hold up to eight 8-bit  
values. If bit 4 (MSB) of the index is logic 1, the value is  
inserted into the G or Y signal only; if bit 4 = 0, the  
associated value is inserted into all three signals.  
Two additional bits of the entries in the value array (LSBs  
of the second byte) determine if the associated events  
appear as a digital pulse on the HSM_CSYNC and/or VSM  
outputs.  
The picture position is adjustable through the  
programmable relationship between the sync pulses and  
the video contents.  
The generation of embedded analog sync pulses is bound  
to a number of events which can be defined for a line.  
Several of these line timing definitions can exist in parallel.  
For the final sync raster composition a certain sequence of  
lines with different sync event properties has to be defined.  
The sequence specifies a series of line types and the  
number of occurrences of this specific line type. After the  
sequence has been completed, it restarts from the  
beginning. All pulse shapes are filtered internally in order  
to avoid ringing after analog post filters.  
To ease the trigger set-up for the sync generation module,  
a set of registers is provided to set up the screen raster  
defined as width and height. A trigger position can be  
specified as an x, y co-ordinate within the overall  
dimensions of the screen raster. If the x, y counter  
matches the specified co-ordinates, a trigger pulse is  
generated which pre-loads the tables with their initial  
values.  
Table 6 outlines an example on how to set up the sync  
tables for a 1080i HD raster.  
The sequence of the generated pulse stream must fit  
precisely to the incoming data stream in terms of the total  
number of pixels per line and lines per frame.  
Important note:  
Due to a problem in the programming interface, writing to  
the line pattern array (address D2) might destroy the data  
of the line type array (address D1). A work around is to  
write the line pattern array data before writing the line type  
array. Reading of the arrays is possible but all address  
pointers must be initialized before the next write operation.  
The sync engines flexibility is achieved by using a  
sequence of linked lists carrying the properties for the  
image, the lines as well as fractions of lines. Figure 11  
illustrates the context between the various tables.  
The first table serves as an array to hold the correct  
sequence of lines composing the synchronization raster. It  
can contain up to 16 entries. Each entry holds a 4-bit index  
to the next table and a 10-bit counter value which specifies  
how often this particular line is invoked. If the necessary  
line count for a particular line exceeds the 10 bits, it has to  
use two table entries.  
The 4-bit index in the line count array points to the line type  
array. It holds up to 15 entries where, index 0 is not used,  
index 1 points to the first entry, index 2 to the second entry  
of the line type array etc.  
Each entry of the line type array can hold up to 8 index  
pointers to another table. These indices point to portions of  
a line pulse pattern: A line could be split up e.g. into a sync,  
a blank, and an active portion followed by another blank  
portion, occupying four entries in one table line.  
2004 Jun 29  
24  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
4-bit line type index  
10-bit line count  
line  
count  
pointer  
LINE COUNT ARRAY  
16 entries  
3
3
3
3
3
3
3
3
3
3
3
3
line type pointer  
LINE TYPE ARRAY  
15 entries  
pattern pointer  
3
3
3
3
event type pointer  
10-bit duration  
10-bit duration  
10-bit duration  
10-bit duration  
4-bit value index 4-bit value index 4-bit value index 4-bit value index  
LINE PATTERN ARRAY  
7 entries  
8 + 2-bit value  
VALUE ARRAY  
8 entries  
line pattern pointer  
MBL797  
Fig.11 Context between the pattern generator tables for DH sync pulses.  
2004 Jun 29  
25  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 6 Example for set-up of the sync tables  
SEQUENCE  
COMMENT  
Write to subaddress D0H  
00  
points to first entry of line count array (index 0)  
05 20  
generate 5 lines of line type index 2 (remember, it is the second entry of the line type  
array); will be the first vertical raster pulse  
01 40  
generate 1 line of line type index 4; will be sync-black-sync-black sequence after the first  
vertical pulse  
0E 60  
1C 12  
02 60  
01 50  
generate 14 lines of line type index 6; will be the following lines with sync-black sequence  
generate 540 lines of line type index 1; will be lines with sync and active video  
generate 2 lines of line type index 6; will be the following lines with sync-black sequence  
generate 1 line of line type index 5; will be the following line (line 563) with  
sync-black-sync-black-null sequence (null is equivalent to sync tip)  
04 20  
01 30  
generate 4 lines of line type index 2; will be the second vertical raster pulse  
generate 1 line of line type index 3; will be the following line with sync-null-sync-black  
sequence  
0F 60  
1C 12  
02 60  
generate 15 lines of line type index 6; will be the following lines with sync-black sequence  
generate 540 lines of line type index 1; will be lines with sync and active video  
generate 2 lines of line type index 6; will be the following lines with sync-black sequence;  
now, 1125 lines are defined  
Write to subaddress D2H (insertion is done into all three analog output signals)  
00 points to first entry of line pattern array (index 1)  
6F 33 2B 30 00 00 00 00 880 × value(3) + 44 × value(3); (subtract 1 from real duration)  
6F 43 2B 30 00 00 00 00 880 × value(4) + 44 × value(3)  
3B 30 BF 03 BF 03 2B 30 60 × value(3) + 960 × value(0) + 960 × value(0) + 44 × value(3)  
2B 10 2B 20 57 30 00 00 44 × value(1) + 44 × value(2) + 88 × value(3)  
3B 30 BF 33 BF 33 2B 30 60 × value(3) + 960 × value(3) + 960 × value(3) + 44 × value(3)  
Write to subaddress D1H  
00  
points to first entry of line type array (index 1)  
34 00 00 00  
24 24 00 00  
24 14 00 00  
14 14 00 00  
14 24 00 00  
54 00 00 00  
use pattern entries 4 and 3 in this sequence (for sync and active video)  
use pattern entries 4, 2, 4 and 2 in this sequence (for 2 × sync-black-null-black)  
use pattern entries 4, 2, 4 and 1 in this sequence (for sync-black-null-black-null)  
use pattern entries 4, 1, 4 and 1 in this sequence (for sync-black-sync-black)  
use pattern entries 4, 1, 4 and 2 in this sequence (for sync-black-sync-black-null)  
use pattern entries 4 and 5 in this sequence (for sync-black)  
2004 Jun 29  
26  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SEQUENCE  
COMMENT  
Write to subaddress D3H (no signals are directed to pins HSM_CSYNC and VSM)  
00  
points to first entry of value array (index 0)  
black level, to be added during active video  
sync level LOW (minimum output voltage)  
sync level HIGH (3-level sync)  
CC 00  
80 00  
0A 00  
CC 00  
80 00  
black level (needed elsewhere)  
null (identical with sync level LOW)  
Write to subaddress DCH  
0B  
insertion is active, gain for signal is adapted accordingly  
8.18 I2C-bus interface  
So in most cases, DOWNA and DOWND should be set to  
logic 1 simultaneously. If the EIDIV bit is logic 1, it should  
be set to logic 0 before power-down.  
The I2C-bus interface is a standard slave transceiver,  
supporting 7-bit slave addresses and 400 kbits/s  
guaranteed transfer rate. It uses 8-bit subaddressing with  
an auto-increment function. All registers are read and  
write, except two read only status bytes.  
8.20 Programming the graphics acquisition scaler  
of the video encoder  
The encoder section needs to provide a continuous data  
stream at its analog outputs as well as receive a  
continuous stream from its data source. Due to the fact  
that there is no frame memory isolating the data streams,  
restrictions apply to the input frame timings.  
The register bit map consists of an RGB Look-Up Table  
(LUT), a cursor bit map and control registers. The LUT  
contains three banks of 256 bytes, where each RGB triplet  
is assigned to one address. Thus a write access needs the  
LUT address and three data bytes following subaddress  
FFH. For further write access auto-incrementing of the  
LUT address is performed. The cursor bit map access is  
similar to the LUT access but contains only a single byte  
per address.  
Input and output processing of the encoder section are  
only coupled through the vertical frequencies. In master  
mode, the encoder provides a vertical sync and an  
odd/even pulse to the input processing, in slave mode, the  
encoder receives them.  
The I2C-bus slave address is defined as 88H.  
The parameters of the input field are mainly given by the  
memory capacity of the encoder section. The rule is that  
the scaler and thus the input processing needs to provide  
the video data in the same time frames as the encoder  
reads them. So the vertical active video times (and the  
vertical frequencies) need to be the same.  
8.19 Power-down modes  
In order to reduce the power consumption, the  
SAA7108AE; SAA7109AE supports 2 Power-down  
modes, accessible via the I2C-bus. The analog  
Power-down mode (DOWNA = 1) turns off the  
digital-to-analog converters and the pixel clock  
synthesizer. The digital down mode turns off all internal  
clocks and sets the digital outputs to LOW except the  
I2C-bus interface. The IC retains its programming and can  
still be accessed in this mode, but not all registers can be  
read from or written to. Reading or writing to the look-up  
tables, the cursor and the HD sync generator require a  
valid pixel clock. The typical supply current in full  
power-down is approximately 5 mA.  
The second rule is that there has to be data in the buffer  
FIFO when the encoder enters the active video area.  
So the vertical offset in the input path needs to be a bit  
shorter than the offset of the encoder.  
The following gives the set of equations required to  
program the IC for the most common application: A post  
processor in master mode with non-interlaced video input  
data.  
Due to the fact that the analog Power-down mode turns off  
the pixel clock synthesizer, there are limitations in some  
applications. If there is no pixel clock, the IC is not able to  
set its outputs to LOW.  
2004 Jun 29  
27  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Some variables are defined below:  
262.5 × 1716 × TXclk  
Thus: TPclk =  
(60 Hz)  
---------------------------------------------------------------------------------------  
InLin + 2  
InPix: the number of active pixels per input line  
InPpl: the length of the entire input line in pixel clocks  
InLin: the number of active lines per input field/frame  
TPclk: the pixel clock period  
InPpl × integer  
× 262.5  
----------------------  
OutLin  
312.5 × 1728 × TXclk  
---------------------------------------------------------------------------------------  
InLin + 2  
TPclk =  
(50 Hz)  
InPpl × integer  
× 312.5  
----------------------  
OutLin  
RiePclk: the ratio of internal to external pixel clock  
OutPix: the number of active pixels per output line  
OutLin: the number of active lines per output field  
TXclk: the encoder clock period (37.037 ns).  
and for the pixel clock generator  
TXclk  
PCL =  
× 220 + PCLE (all frequencies);  
--------------  
TPclk  
see Tables 102, 104 and 105. The divider PCLE should  
be set according to Table 104. PCLI may be set to a lower  
or the same value. Setting a lower value means that the  
internal pixel clock is higher and the data get sampled up.  
The difference may be 1 at 640 × 480 pixels resolution and  
2 at resolutions with 320 pixels per line as a rule of thumb.  
This allows horizontal upscaling by a maximum factor of 2  
respectively 4 (this is the parameter RiePclk).  
8.20.1 TV DISPLAY WINDOW  
At 60 Hz, the first visible pixel has the index 256,  
710 pixels can be encoded; at 50 Hz, the index is 284,  
702 pixels can be visible.  
The output lines should be centred on the screen. It should  
be noted that the encoder has 2 clocks per pixel;  
see Table 93.  
logRiePclk  
PCLI = PCLE –  
(all frequencies)  
----------------------------  
log2  
ADWHS = 256 + 710 OutPix (60 Hz);  
ADWHS = 284 + 702 OutPix (50 Hz);  
ADWHE = ADWHS + OutPix × 2 (all frequencies)  
The equations ensure that the last line of the field has the  
full number of clock cycles. Many graphic controllers  
require this. Note that the bit PCLSY needs to be set to  
ensure that there is not even a fraction of a clock left at the  
end of the field.  
For vertical, the procedure is the same. At 60 Hz, the first  
line with video information is number 19, 240 lines can be  
active. For 50 Hz, the numbers are 23 and 287;  
see Table 99.  
8.20.3 HORIZONTAL SCALER  
240 OutLin  
XOFS can be chosen arbitrarily, the condition being that  
XOFS + XPIX HLEN is fulfilled. Values given by the  
VESA display timings are preferred.  
FAL = 19 +  
FAL = 23 +  
(60 Hz);  
(50 Hz);  
---------------------------------  
2
287 OutLin  
---------------------------------  
2
HLEN = InPpl × RiePclk 1  
LAL = FAL + OutLin (all frequencies)  
InPix  
2
XPIX =  
XINC =  
× RiePclk  
------------  
Most TV sets use overscan, and not all pixels respectively  
lines are visible. There is no standard for the factor, it is  
highly recommended to make the number of output pixels  
and lines adjustable. A reasonable underscan factor is  
10 %, giving approximately 640 output pixels per line.  
OutPix  
4096  
×
----------------- -------------------  
InPix RiePclk  
XINC needs to be rounded up, it needs to be set to 0 for a  
scaling factor of 1.  
8.20.2 INPUT FRAME AND PIXEL CLOCK  
8.20.4 VERTICAL SCALER  
The total number of pixel clocks per line and the input  
horizontal offset need to be chosen next. The only  
constraint is that the horizontal blanking has at least  
10 clock pulses.  
The input vertical offset can be taken from the assumption  
that the scaler should have just finished writing the first line  
when the encoder starts reading it:  
FAL × 1716 × TXclk  
YOFS =  
YOFS =  
2.5 (60 Hz)  
2.5 (50 Hz)  
----------------------------------------------------  
The required pixel clock frequency can be determined in  
the following way: Due to the limited internal FIFO size, the  
input path has to provide all pixels in the same time frame  
as the encoders vertical active time. The scaler also has to  
process the first and last border lines for the anti-flicker  
function.  
InPpl × TPclk  
FAL × 1728 × TXclk  
----------------------------------------------------  
InPpl × TPclk  
2004 Jun 29  
28  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
In most cases the vertical offsets will be the same for odd  
and even fields. The results should be rounded down.  
For C and CVBS outputs, deviating amplitudes of the  
colour difference signals can be compensated for by  
independent gain control setting, while gain for luminance  
is set to predefined values, distinguishable for 7.5 IRE  
set-up or without set-up.  
YPIX = InLin  
YSKIP defines the anti-flicker function. 0 means maximum  
flicker reduction but minimum vertical bandwidth, 4095  
gives no flicker reduction and maximum bandwidth. Note  
that the maximum value for YINC is 4095. It might be  
necessary to reduce the value of YSKIP to fulfil this  
requirement.  
The RGB, respectively CR-Y-CB path features an  
individual gain setting for luminance (GY) and colour  
difference signals (GCD). Reference levels are measured  
with a colour bar, 100 % white, 100 % amplitude and  
100 % saturation.  
OutLin  
----------------------  
InLin + 2  
YSKIP  
-----------------  
4095  
The encoder section of the SAA7108AE; SAA7109AE has  
special input cells for the VGC port. They operate at a  
wider supply voltage range and have a strict input  
threshold at 1/2VDD(DVO). To achieve full speed of these  
cells, the EIDIV bit needs to be set to logic 1. In this case  
the impedance of these cells is approximately 6 k. This  
may cause trouble with the bootstrapping pins of some  
graphic chips. So the power-on reset forces the bit to  
logic 0, the input impedance is regular in this mode.  
YINC =  
× 1 +  
× 4096  
YINC  
2
YIWGTO =  
YIWGTE =  
+ 2048  
-------------  
YINC YSKIP  
-------------------------------------  
2
When YINC = 0 it sets the scaler to scaling factor 1. The  
initial weighting factors must not be set to 0 in this case.  
YIWGTE may go negative. In this event, YINC should be  
added and YOFSE incremented. This can be repeated as  
often as necessary to make YIWGTE positive.  
Table 7 “ITU-R BT.601” signal component levels  
SIGNALS(1)  
COLOUR  
Note that these equations assume that the input is  
non-interlaced while the output is interlaced. If the input is  
interlaced, the initial weighting factors need to be adapted  
to get the proper phase offsets in the output frame.  
Y
CB  
235 128 128 235 235 235  
210 16 146 235 235 16  
170 166 235 235  
145 54  
CR  
R
G
B
White  
Yellow  
Cyan  
16  
34  
16  
16  
If vertical upscaling beyond the upper capabilities is  
required, the parameter YUPSC may be set to 1. This  
extends the maximum vertical scaling factor by a factor 2.  
Only the parameter YINC gets affected, it needs to be  
divided by 2 to get the same effect.  
Green  
Magenta  
Red  
235  
16  
16  
16  
16  
16  
235  
16  
106 202 222 235  
81  
41  
16  
90  
240 235  
Blue  
240 110  
128 128  
16  
16  
235  
16  
There are restrictions in this mode:  
Black  
The vertical filter YFILT is not available in this mode; the  
circuit will ignore this value  
Note  
The horizontal blanking needs to be long enough to  
transfer an output line between 2 memory locations.  
This is 710 internal pixel clocks  
1. Transformation:  
a) R = Y + 1.3707 × (CR 128)  
b) G = Y 0.3365 × (CB 128) 0.6982 × (CR 128)  
c) B = Y + 1.7324 × (CB 128).  
Or the upscaling factor needs to be limited to 1.5 and the  
horizontal upscaling factor is also limited to less than  
1.5. In this case a normal blanking length is sufficient.  
8.21 Input levels and formats  
The SAA7108AE; SAA7109AE accepts digital Y, CB, CR  
or RGB data with levels (digital codes) in accordance with  
“ITU-R BT.601”. An optional gain adjustment also allows  
data to be accepted with the full level swing of 0 to 255.  
2004 Jun 29  
29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 8 Usage of bits SLOTand EDGE  
Table 10 Pin assignment for input format 1  
5 + 5 + 5-BIT 4 : 4 : 4 NON-INTERLACED RGB  
DATA SLOT CONTROL  
(EXAMPLE FOR FORMAT 0)  
FALLING  
CLOCK EDGE  
RISING  
CLOCK EDGE  
PIN  
SLOT EDGE  
1st DATA  
2nd DATA  
0
0
1
1
0
1
0
1
at rising edge  
G3/Y3  
at falling edge  
R7/CR7  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G2  
G1  
G0  
B4  
B3  
B2  
B1  
B0  
X
R4  
R3  
R2  
R1  
R0  
G4  
G3  
at falling edge  
G3/Y3  
at rising edge  
R7/CR7  
at rising edge  
R7/CR7  
at falling edge  
G3/Y3  
at falling edge  
R7/CR7  
at rising edge  
G3/Y3  
Table 9 Pin assignment for input format 0  
Table 11 Pin assignment for input format 2  
8 + 8 + 8-BIT 4 : 4 : 4 NON-INTERLACED  
RGB/CB-Y-CR  
5 + 6 + 5-BIT 4 : 4 : 4 NON-INTERLACED RGB  
FALLING  
CLOCK EDGE  
RISING  
CLOCK EDGE  
FALLING  
CLOCK EDGE  
RISING  
CLOCK EDGE  
PIN  
PIN  
PD11  
PD10  
PD9  
PD8  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G3/Y3  
G2/Y2  
R7/CR7  
R6/CR6  
R5/CR5  
R4/CR4  
R3/CR3  
R2/CR2  
R1/CR1  
R0/CR0  
G7/Y7  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G2  
G1  
G0  
B4  
B3  
B2  
B1  
B0  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G1/Y1  
G0/Y0  
B7/CB7  
B6/CB6  
B5/CB5  
B4/CB4  
B3/CB3  
B2/CB2  
B1/CB1  
B0/CB0  
Table 12 Pin assignment for input format 3  
8 + 8 + 8-BIT 4 : 2 : 2 NON-INTERLACED CB-Y-CR  
FALLING RISING FALLING RISING  
G6/Y6  
G5/Y5  
G4/Y4  
CLOCK  
EDGE  
n
CLOCK  
EDGE  
n
CLOCK  
EDGE  
n + 1  
CLOCK  
EDGE  
n + 1  
PIN  
PD7  
CB7(0)  
CB6(0)  
CB5(0)  
CB4(0)  
CB3(0)  
CB2(0)  
CB1(0)  
CB0(0)  
Y7(0)  
Y6(0)  
Y5(0)  
Y4(0)  
Y3(0)  
Y2(0)  
Y1(0)  
Y0(0)  
CR7(0)  
CR6(0)  
CR5(0)  
CR4(0)  
CR3(0)  
CR2(0)  
CR1(0)  
CR0(0)  
Y7(1)  
Y6(1)  
Y5(1)  
Y4(1)  
Y3(1)  
Y2(1)  
Y1(1)  
Y0(1)  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
2004 Jun 29  
30  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 13 Pin assignment for input format 4  
Table 15 Pin assignment for input format 6  
8 + 8 + 8-BIT 4 : 2 : 2 INTERLACED CB-Y-CR  
(ITU-R BT.656, 27 MHz CLOCK)  
8 + 8 + 8-BIT 4 : 4 : 4 NON-INTERLACED  
RGB/CB-Y-CR  
RISING  
CLOCK  
EDGE  
n
RISING  
CLOCK  
EDGE  
n + 1  
RISING  
CLOCK  
EDGE  
n + 2  
RISING  
CLOCK  
EDGE  
n + 3  
FALLING  
CLOCK EDGE  
RISING  
CLOCK EDGE  
PIN  
PIN  
PD11  
PD10  
PD9  
PD8  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
G4/Y4  
G3/Y3  
R7/CR7  
R6/CR6  
R5/CR5  
R4/CR4  
R3/CR3  
G7/Y7  
PD7  
CB7(0)  
CB6(0)  
CB5(0)  
CB4(0)  
CB3(0)  
CB2(0)  
CB1(0)  
CB0(0)  
Y7(0)  
Y6(0)  
Y5(0)  
Y4(0)  
Y3(0)  
Y2(0)  
Y1(0)  
Y0(0)  
CR7(0)  
CR6(0)  
CR5(0)  
CR4(0)  
CR3(0)  
CR2(0)  
CR1(0)  
CR0(0)  
Y7(1)  
Y6(1)  
Y5(1)  
Y4(1)  
Y3(1)  
Y2(1)  
Y1(1)  
Y0(1)  
G2/Y2  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
B7/CB7  
B6/CB6  
B5/CB5  
B4/CB4  
B3/CB3  
G0/Y0  
G6/Y6  
G5/Y5  
R2/CR2  
R1/CR1  
R0/CR0  
G1/Y1  
B2/CB2  
B1/CB1  
B0/CB0  
Table 14 Pin assignment for input format 5; note 1  
8-BIT NON-INTERLACED INDEX COLOUR  
FALLING  
CLOCK EDGE  
RISING  
CLOCK EDGE  
PIN  
PD11  
PD10  
PD9  
PD8  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INDEX7  
INDEX6  
INDEX5  
INDEX4  
INDEX3  
INDEX2  
INDEX1  
INDEX0  
Note  
1. X = don’t care.  
2004 Jun 29  
31  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9
FUNCTIONAL DESCRIPTION OF DIGITAL VIDEO DECODER PART  
Decoder  
9.1  
9.1.1  
ANALOG INPUT PROCESSING  
The SAA7108AE; SAA7109AE offers six analog signal inputs, two analog main channels with source switch, clamp  
circuit, analog amplifier, anti-alias filter and video 9-bit CMOS ADC; see Fig.15.  
9.1.2  
ANALOG CONTROL CIRCUITS  
The anti-alias filters are adapted to the line-locked clock frequency via a filter control circuit. The characteristics are  
illustrated in Fig.12. During the vertical blanking period, gain and clamping control is frozen.  
MGD138  
6
V
(dB)  
0
6  
12  
18  
24  
30  
36  
42  
0
2
4
6
8
10  
12  
14  
f (MHz)  
Fig.12 Anti-alias filter.  
2004 Jun 29  
32  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.1.2.1  
Clamping  
The AGC (automatic gain control for luminance) is used to  
amplify a CVBS or Y signal to the required signal  
amplitude, which is matched to the ADCs input voltage  
range. The AGC active time is the sync bottom of the video  
signal.  
The clamping control circuit controls the correct clamping  
of the analog input signals. A coupling capacitor is used to  
store and filter the clamping voltage. An internal digital  
clamp comparator generates the information with respect  
to clamp-up or clamp-down. The clamping levels for the  
two ADC channels are fixed for luminance (60) and  
chrominance (128). Clamping time in normal use is set  
with the HCL pulse at the back porch of the video signal.  
Signal (white) peak control limits the gain at signal  
overshoots. The influence of supply voltage variation  
within the specified range is automatically eliminated by  
clamping and automatic gain control. The flow charts show  
more details of the AGC; see Figs 16 and 17.  
9.1.2.2  
Gain control  
The gain control circuit receives (via the I2C-bus) the static  
gain levels for the two analog amplifiers, or controls one of  
these amplifiers automatically via a built-in Automatic Gain  
Control (AGC) as part of the Analog Input Control (AICO).  
TV line  
analog line blanking  
controlled  
ADC input level  
analog input level  
255  
maximum  
+3 dB  
GAIN  
HSY  
CLAMP  
HCL  
0 dB  
range 9 dB  
0 dB  
60  
1
(1 V (p-p) 18/56 )  
6 dB  
minimum  
MGL065  
MHB325  
Fig.13 Analog line with clamp (HCL) and gain  
range (HSY).  
Fig.14 Automatic gain range.  
2004 Jun 29  
33  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  a
TEST  
SELECTOR  
AND  
M10  
AOUT  
BUFFER  
P6  
P7  
AI24  
AI23  
[
]
AOSL 1:0  
SOURCE  
SWITCH  
P8  
AI2D  
ANALOG  
AMPLIFIER  
DAC9  
CLAMP  
CIRCUIT  
ANTI-ALIAS  
FILTER  
BYPASS  
SWITCH  
P9  
ADC2  
ADC1  
AI22  
AI21  
P10  
[
]
FUSE 1:0  
P11  
P12  
P13  
AI12  
AI1D  
AI11  
ANALOG  
AMPLIFIER  
DAC9  
CLAMP  
CIRCUIT  
ANTI-ALIAS  
FILTER  
BYPASS  
SWITCH  
SOURCE  
SWITCH  
[
]
FUSE 1:0  
VERTICAL  
BLANKING  
CONTROL  
MODE  
CONTROL  
CLAMP  
CONTROL  
GAIN  
CONTROL  
ANTI-ALIAS  
CONTROL  
HCL  
VBLNK  
SVREF  
GLIMB HSY  
GLIMT  
WIPA  
VBSL  
HOLDG  
GAFIX  
WPOFF  
MODE3  
MODE2  
MODE1  
MODE0  
9
9
[
]
]
]
SLTCA  
GUDL 1:0  
[
GAI 28:20  
ANALOG CONTROL  
[
GAI 18:10  
HLNRS  
UPTCV  
CROSS MULTIPLEXER  
9
9
9
9
MHB892  
AD2BYP AD1BYP  
CVBS/LUM CVBS/CHR  
Fig.15 Analog input processing using the SAA7108AE; SAA7109AE as differential front-end with 9-bit ADC.  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
ANALOG INPUT  
AMPLIFIER  
9
gain  
DAC  
ANTI-ALIAS FILTER  
ADC  
9
LUMA/CHROMA DECODER  
1
0
NO ACTION  
VBLK  
1
0
HOLDG  
1
0
X
1
0
HSY  
0
1
>
254  
0
1
1
0
1
0
<
<
>
254  
4
1
X = 1  
X = 0  
1
0
>
248  
+/0  
+1/L  
+1/F  
+1/LLC2 1/LLC2  
1/LLC2  
STOP  
GAIN ACCUMULATOR (18 BITS)  
[
]
ACTUAL GAIN VALUE 9-BIT (AGV) 3/+6 dB  
1
0
X
1
0
HSY  
1
0
Y
AGV  
UPDATE  
FGV  
X = system variable.  
GAIN VALUE 9-BIT  
Y = (IAGV FGVI) > GUDL.  
VBLK = vertical blanking pulse.  
HSY = horizontal sync pulse.  
AGV = actual gain value.  
MHB531  
FGV = frozen gain value.  
Fig.16 Gain flow chart.  
35  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
ANALOG INPUT  
ADC  
1
0
NO BLANKING ACTIVE  
VBLK  
<- CLAMP  
GAIN ->  
1
1
0
0
HCL  
HSY  
0
1
1
0
1
0
CLL  
SBOT  
WIPE  
slow + GAIN  
NO CLAMP  
+ CLAMP  
CLAMP  
fast GAIN  
+ GAIN  
GAIN  
MGC647  
WIPE = white peak level (254).  
SBOT = sync bottom level (1).  
CLL = clamp level [60 Y (128 C)].  
HSY = horizontal sync pulse.  
HCL = horizontal clamp pulse.  
Fig.17 Clamp and gain flow.  
2004 Jun 29  
36  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
CVBS-IN  
or Y-IN  
Y
DELAY  
COMPENSATION  
LUMINANCE-PEAKING  
OR  
SUBTRACTOR  
LDEL  
Y/CVBS  
YCOMB  
LOW-PASS,  
CHR  
UV  
Y-DELAY ADJUSTMENT  
[
]
]
]
DBRI 7:0  
[
DCON 7:0  
QUADRATURE  
MODULATOR  
INTERPOLATION  
LOW-PASS 3  
[
DSAT 7:0  
[
]
]
RAWG 7:0  
[
]
]
LUFI 3:0  
SET_RAW  
SET_VBI  
[
RAWO 7:0  
[
CSTD 2:0  
COLO  
[
]
YDEL 2:0  
LUBW UV  
CVBS-IN  
or CHR-IN  
QUADRATURE  
DEMODULATOR  
LOW-PASS 1  
DOWNSAMPLING  
ADAPTIVE  
COMB FILTER  
BRIGHTNESS  
CONTRAST  
SATURATION  
CONTROL  
UV  
LOW-PASS 2  
CHBW  
Y-OUT/  
CVBS-OUT  
UV-OUT  
CCOMB  
YCOMB  
LDEL  
SET_RAW  
SET_VBI  
[
]
LCBW 2:0  
SUBCARRIER  
GENERATION 2  
RAW DATA  
GAIN AND  
OFFSET  
HREF-OUT  
BYPS  
CONTROL  
SECAM  
PROCESSING  
LDEL  
YCOMB  
CHROMINANCE  
INCREMENT  
DELAY  
UV SET_RAW  
SET_VBI  
CHROMINANCE  
INCREMENT  
DTO-RESET  
PHASE  
DEMODULATOR  
CHROMA  
GAIN  
CONTROL  
AMPLITUDE  
DETECTOR  
SUBCARRIER  
GENERATION 1  
SUBCARRIER  
INCREMENT  
GENERATION  
AND  
PAL DELAY LINE  
BURST GATE  
ACCUMULATOR  
UV-  
ADJUSTMENT  
SECAM  
RECOMBINATION  
LOOP FILTER  
DIVIDER  
HUEC  
CDTO INCS  
DCVF  
SET_RAW  
SET_VBI  
SECS  
CODE  
FCTC  
ACGC  
[
]
CSTD 2:0  
[
]
CGAIN 6:0  
[
]
IDEL 3:0  
MHB532  
RTCO  
f
/2 switch signal  
H
ahdnbok,uflapegwidt  
Fig.18 Chrominance and luminance processing.  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.1.3.1  
Chrominance path  
Baseband ‘bell’ filters to reconstruct the amplitude and  
phase equalized 0° and 90° FM signals  
The 9-bit CVBS or chrominance input signal is fed to the  
input of a quadrature demodulator, where it is multiplied by  
two time-multiplexed subcarrier signals from the subcarrier  
generation block 1 (0 and 90° phase relationship to the  
demodulator axis). The frequency is dependent on the  
chosen colour standard.  
Phase demodulator and differentiator  
(FM demodulation)  
De-emphasis filter to compensate the pre-emphasized  
input signal, including frequency offset compensation  
(DB or DR white carrier values are subtracted from the  
signal, controlled by the SECAM switch signal).  
The time-multiplexed output signals of the multipliers are  
low-pass filtered (low-pass 1). Eight characteristics are  
programmable via LCBW3 to LCBW0 to achieve the  
desired bandwidth for the colour difference signals (PAL,  
NTSC) or the 0° and 90° FM signals (SECAM).  
The succeeding chrominance gain control block amplifies  
or attenuates the CB-CR signal according to the required  
ITU 601/656 levels. It is controlled by the output signal  
from the amplitude detection circuit within the burst  
processing block.  
The chrominance low-pass 1 characteristic also influences  
the grade of cross-luminance reduction during horizontal  
colour transients (large chrominance bandwidth means  
strong suppression of cross-luminance). If the Y comb  
filter is disabled when YCOMB = 0 the filter directly  
influences the width of the chrominance notch within the  
luminance path (large chrominance bandwidth means  
wide chrominance notch resulting to lower luminance  
bandwidth).  
The burst processing block provides the feedback loop of  
the chrominance PLL and contains the following:  
Burst gate accumulator  
Colour identification and killer  
Comparison nominal/actual burst amplitude (PAL/NTSC  
standards only)  
Loop filter chrominance gain control (PAL/NTSC  
standards only)  
The low-pass filtered signals are fed to the adaptive comb  
filter block. The chrominance components are separated  
from the luminance via a two-line vertical stage (four lines  
for PAL standards) and a decision logic circuit between the  
filtered and the non-filtered output signals: this block is  
bypassed for SECAM signals. The comb filter logic can be  
enabled independently for the succeeding luminance and  
chrominance processing by YCOMB (subaddress 09H,  
bit 6) and/or CCOMB (subaddress 0EH, bit 0). It is always  
bypassed during VBI or raw data lines, programmable by  
the LCRn registers (subaddresses 41H to 57H);  
see Section 9.2.  
Loop filter chrominance PLL (only active for PAL/NTSC  
standards)  
PAL/SECAM sequence detection, H/2-switch  
generation.  
The increment generation circuit produces the Discrete  
Time Oscillator (DTO) increment for both subcarrier  
generation blocks. It contains a division by the increment  
of the line-locked clock generator to create a stable  
phase-locked sine signal under all conditions (e.g. for  
non-standard signals).  
The PAL delay line block eliminates crosstalk between the  
chrominance channels in accordance with the PAL  
standard requirements. For NTSC colour standards, the  
delay line can be used as an additional vertical filter.  
If desired, it can be switched off by DCVF = 1. It is always  
disabled during VBI or raw data lines programmable by the  
LCRn registers (subaddresses 41H to 57H); see  
Section 9.2. The embedded line delay is also used for  
SECAM recombination (cross-over switches).  
The separated CB-CR components are further processed  
by a second filter stage (low-pass 2) to modify the  
chrominance bandwidth without influencing the luminance  
path. It’s characteristic is controlled by CHBW  
(subaddress 10H, bit 3). For the complete transfer  
characteristic of low-pass filters 1 and 2 see  
Figs 19 and 20.  
The SECAM processing (bypassed for QAM standards)  
contains the following blocks:  
2004 Jun 29  
38  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MHB533  
3
0
V
(dB)  
3  
6  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(1)  
(2)  
(3)  
(4)  
(1) LCBW[2:0] = 000.  
(2) LCBW[2:0] = 010.  
(3) LCBW[2:0] = 100.  
(4) LCBW[2:0] = 110.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
f (MHz)  
3
0
V
(dB)  
3  
6  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(5)  
(6)  
(7)  
(8)  
(5) LCBW[2:0] = 001.  
(6) LCBW[2:0] = 011.  
(7) LCBW[2:0] = 101.  
(8) LCBW[2:0] = 111.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
f (MHz)  
Fig.19 Transfer characteristics of the chrominance low-pass at CHBW = 0.  
39  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MHB534  
3
0
V
(dB)  
3  
6  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(1)  
(2)  
(3)  
(4)  
(1) LCBW[2:0] = 000.  
(2) LCBW[2:0] = 010.  
(3) LCBW[2:0] = 100.  
(4) LCBW[2:0] = 110.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
f (MHz)  
3
0
V
(dB)  
3  
6  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(5)  
(6)  
(7)  
(8)  
(5) LCBW[2:0] = 001.  
(6) LCBW[2:0] = 011.  
(7) LCBW[2:0] = 101.  
(8) LCBW[2:0] = 111.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0  
f (MHz)  
Fig.20 Transfer characteristics of the chrominance low-pass at CHBW = 1.  
40  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.1.3.2  
Luminance path  
The frequency characteristic of the separated luminance  
signal can be further modified by the succeeding  
luminance filter block. It can be configured as peaking  
(resolution enhancement) or low-pass block by  
LUFI3 to LUFI0 (subaddress 09H, bits 3 to 0). The 16  
resulting frequency characteristics can be seen in Fig.25.  
The LUFI3 to LUFI0 settings can be used as a user  
programmable sharpness control.  
The rejection of the chrominance components within the  
9-bit CVBS or Y input signal is done by subtracting the  
re-modulated chrominance signal from the CVBS input.  
The comb filtered CB-CR components are interpolated  
(upsampled) by the low-pass 3 block. It’s characteristic is  
controlled by LUBW (subaddress 09H, bit 4) to modify the  
width of the chrominance ‘notch’ without influencing the  
chrominance path. The programmable frequency  
characteristics available, in conjunction with the  
LCBW2 to LCBW0 settings, can be seen in Figs 21 to 24.  
It should be noted that these frequency curves are only  
valid for Y comb disabled filter mode (YCOMB = 0).  
In comb filter mode the frequency response is flat. The  
centre frequency of the notch is automatically adapted to  
the chosen colour standard.  
The luminance filter block also contains the adjustable  
Y delay part; programmable by YDEL2 to YDEL0  
(subaddress 11H, bits 2 to 0).  
The interpolated CB-CR samples are multiplied by two  
time-multiplexed subcarrier signals from the subcarrier  
generation block 2. This second DTO is locked to the first  
subcarrier generator by an increment delay circuit  
matched to the processing delay, which is different for  
PAL and NTSC standards according to the chosen comb  
filter algorithm. The two modulated signals are finally  
added to create the re-modulated chrominance signal.  
2004 Jun 29  
41  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MHB535  
3
0
V
(dB)  
3  
6  
9  
(1)  
(2)  
(3)  
(4)  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(1) LCBW[2:0] = 000.  
(2) LCBW[2:0] = 010.  
(3) LCBW[2:0] = 100.  
(4) LCBW[2:0] = 110.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0  
f (MHz)  
3
0
V
(dB)  
3  
6  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(5)  
(6)  
(7)  
(8)  
(5) LCBW[2:0] = 001.  
(6) LCBW[2:0] = 011.  
(7) LCBW[2:0] = 101.  
(8) LCBW[2:0] = 111.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0  
f (MHz)  
Fig.21 Transfer characteristics of the luminance notch filter in 3.58 MHz mode (Y-comb filter disabled) at  
LUBW = 0.  
2004 Jun 29  
42  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MHB536  
3
0
V
(dB)  
3  
6  
9  
(1)  
(2)  
(3)  
(4)  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(1) LCBW[2:0] = 000  
(2) LCBW[2:0] = 010  
(3) LCBW[2:0] = 100  
(4) LCBW[2:0] = 110  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0  
f (MHz)  
3
0
V
(dB)  
3  
6  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(5)  
(6)  
(7)  
(8)  
(5) LCBW[2:0] = 001  
(6) LCBW[2:0] = 011  
(7) LCBW[2:0] = 101  
(8) LCBW[2:0] = 111  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0  
f (MHz)  
Fig.22 Transfer characteristics of the luminance notch filter in 3.58 MHz mode (Y-comb filter disabled) at  
LUBW =1.  
2004 Jun 29  
43  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MHB537  
3
0
V
(dB)  
3  
6  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(1)  
(2)  
(3)  
(4)  
(1) LCBW[2:0] = 000.  
(2) LCBW[2:0] = 010.  
(3) LCBW[2:0] = 100.  
(4) LCBW[2:0] = 110.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0  
f (MHz)  
3
0
V
(dB)  
3  
6  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(5)  
(6)  
(7)  
(8)  
(5) LCBW[2:0] = 001.  
(6) LCBW[2:0] = 011.  
(7) LCBW[2:0] = 101.  
(8) LCBW[2:0] = 111.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0  
f (MHz)  
Fig.23 Transfer characteristics of the luminance notch filter in 4.43 MHz mode (Y-comb filter disabled) at  
LUBW = 0.  
2004 Jun 29  
44  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MHB538  
3
0
V
(dB)  
3  
6  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(1)  
(2)  
(3)  
(4)  
(1) LCBW[2:0] = 000.  
(2) LCBW[2:0] = 010.  
(3) LCBW[2:0] = 100.  
(4) LCBW[2:0] = 110.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0  
f (MHz)  
3
0
V
(dB)  
3  
6  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
57  
60  
(5)  
(6)  
(7)  
(8)  
(5) LCBW[2:0] = 001.  
(6) LCBW[2:0] = 011.  
(7) LCBW[2:0] = 101.  
(8) LCBW[2:0] = 111.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0  
f (MHz)  
Fig.24 Transfer characteristics of the luminance notch filter in 4.43 MHz mode (Y-comb filter disabled) at  
LUBW = 1.  
2004 Jun 29  
45  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MHB539  
9
8
7
6
5
4
3
2
1
0
V
(dB)  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
(7)  
(8)  
(1) LUFI[3:0] = 0001.  
(2) LUFI[3:0] = 0010.  
(3) LUFI[3:0] = 0011.  
(4) LUFI[3:0] = 0100.  
(5) LUFI[3:0] = 0101.  
(6) LUFI[3:0] = 0110.  
(7) LUFI[3:0] = 0111.  
(8) LUFI[3:0] = 0000.  
1  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
f (MHz)  
3
V
(dB)  
0
3  
6  
(9)  
(10)  
(11)  
(12)  
(13)  
(14)  
(15)  
(16)  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
(9) LUFI[3:0] = 1000.  
(10) LUFI[3:0] = 1001.  
(11) LUFI[3:0] = 1010.  
(12) LUFI[3:0] = 1011.  
(13) LUFI[3:0] = 1100.  
(14) LUFI[3:0] = 1101.  
(15) LUFI[3:0] = 1110.  
(16) LUFI[3:0] = 1111.  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
f (MHz)  
Fig.25 Transfer characteristics of the luminance peaking/low-pass filter (sharpness).  
46  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.1.3.3  
Brightness Contrast Saturation (BCS) control and decoder output levels  
The resulting Y (CVBS) and CB-CR signals are fed to the BCS block, which contains the following functions:  
Chrominance saturation control by DSAT7 to DSAT0  
Luminance contrast and brightness control by DCON7 to DCON0 and DBRI7 to DBRI0  
Raw data (CVBS) gain and offset adjustment by RAWG7 to RAWG0 and RAWO7 to RAWO0  
Limiting Y-CB-CR or CVBS to the values 1 (minimum) and 254 (maximum) to fulfil “ITU Recommendation 601/656”.  
+255  
+255  
+240  
+255  
+240  
blue 100%  
blue 75%  
red 100%  
red 75%  
white  
+235  
+212  
+212  
colourless  
colourless  
LUMINANCE 100%  
+128  
+128  
+128  
C
-COMPONENT  
C -COMPONENT  
R
B
yellow 75%  
cyan 75%  
+44  
+16  
0
+44  
+16  
0
yellow 100%  
cyan 100%  
black  
+16  
0
MHB730  
a. Y output range.  
b. CB output range.  
c. CR output range.  
“ITU Recommendation 601/656” digital levels with default BCS (decoder) settings DCON[7:0] = 44H, DBRI[7:0] = 80H and DSAT[7:0] = 40H.  
Equations for modification to the Y-CB-CR levels via BCS control I2C-bus bytes DBRI, DCON and DSAT.  
DCON  
68  
Luminance:  
YOUT = Int  
× (Y 128) + DBRI  
-----------------  
DSAT  
Chrominance:(CRCB)OUT = Int  
× (C , CB 128) + 128  
R
---------------  
64  
It should be noted that the resulting levels are limited to 1 to 254 in accordance with “ITU Recommendation 601/656”.  
Fig.26 Y-CB-CR range for scaler input and X port output.  
2004 Jun 29  
47  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
+255  
+209  
+255  
+199  
white  
white  
LUMINANCE  
LUMINANCE  
black  
black shoulder  
+71  
+60  
black shoulder = black  
+60  
SYNC  
SYNC  
1
1
sync bottom  
sync bottom  
MGD700  
a. Sources containing 7.5 IRE black level offset (e.g. NTSC M).  
b. Sources not containing black level offset.  
CVBS levels with default settings RAWG[7:0] = 64 and RAWO[7:0] = 128.  
Equation for modification of the raw data levels via bytes RAWG and RAWO:  
RAWG  
64  
CVBSOUT = Int  
× (CVBSnom 128) + RAWO  
------------------  
It should be noted that the resulting levels are limited to 1 to 254 in accordance with “ITU Recommendation 601/656”.  
Fig.27 CVBS (raw data) range for scaler input, data slicer and X port output.  
2004 Jun 29  
48  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.1.4  
SYNCHRONIZATION  
The internal signal LFCO is a digital-to-analog converted  
signal provided by the horizontal PLL. It is a multiple of the  
line frequency:  
The prefiltered luminance signal is fed to the  
synchronization stage. Its bandwidth is further reduced to  
1 MHz by a low-pass filter. The sync pulses are sliced and  
fed to the phase detectors where they are compared with  
the sub-divided clock frequency. The resulting output  
signal is applied to the loop filter to accumulate all phase  
deviations. Internal signals (e.g. HCL and HSY) are  
generated in accordance with analog front-end  
requirements. The loop filter signal drives an oscillator to  
generate the line frequency control signal (LFCO);  
see Fig.28.  
6.75 MHz = 429 × fH (50 Hz), or  
6.75 MHz = 432 × fH (60 Hz).  
The LFCO signal is multiplied internally by a factor of  
2 and 4 in the PLL circuit (including phase detector, loop  
filtering, VCO and frequency divider) to obtain the output  
clock signals. The rectangular output clocks have a 50 %  
duty cycle.  
Table 16 Decoder clock frequencies  
The detection of ‘pseudo syncs’ as part of the Macrovision  
copy protection standard is also done within the  
synchronization circuit.  
CLOCK  
FREQUENCY (MHz)  
XTAL  
LLC  
24.576 or 32.110  
27  
The result is reported as flag COPRO within the decoder  
status byte at subaddress 1FH.  
LLC2  
13.5  
6.75  
3.375  
LLC4 (internal)  
LLC8 (virtual)  
9.1.5  
CLOCK GENERATION CIRCUIT  
The internal CGC generates all clock signals required for  
the video input processor.  
ZERO  
CROSS  
DETECTION  
BAND PASS  
FC = LLC/4  
PHASE  
DETECTION  
LOOP  
FILTER  
LFCO  
OSCILLATOR  
LLC  
DIVIDER  
1/2  
DIVIDER  
1/2  
LLC2  
MHB330  
Fig.28 Block diagram of the clock generation circuit.  
9.1.6  
POWER-ON RESET AND CE INPUT  
A missing clock, insufficient digital or analog VDDAd supply voltages (below 2.7 V) will start the reset sequence; all outputs  
are forced to 3-state (see Fig.29). The indicator output RESd is LOW for approximately 128 LLC after the internal reset  
and can be applied to reset other circuits of the digital TV system.  
It is possible to force a reset by pulling the Chip Enable (CE) to ground. After the rising edge of CE and sufficient power  
supply voltage, the outputs LLC, LLC2 and SDAd return from 3-state to active, while the other signals have to be  
activated via programming.  
2004 Jun 29  
49  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
POC V  
POC V  
DDA  
DDD  
ANALOG  
DIGITAL  
CLOCK  
PLL  
LLC  
POC  
LOGIC  
POC  
DELAY  
RES  
CE  
RESINT  
CLK0  
CE  
XTALO  
LLCINT  
RESINT  
LLC  
RES  
(internal  
reset)  
20 to 200 µs  
PLL-delay  
896 LCC  
digital delay  
MHB331  
some ms  
128 LCC  
<
1 ms  
POC = Power-on Control.  
CE = chip enable input.  
XTALO = crystal oscillator output.  
LLCINT = internal system clock.  
RESINT = internal reset.  
LLC = line-locked clock output.  
RES = reset output.  
Fig.29 Power-on control circuit.  
50  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.2  
Decoder output formatter  
For each LCR value, from 2 to 23, the data type can be  
programmed individually. LCR2 to LCR23 refer to line  
numbers. The selection in LCR24 values is valid for the  
rest of the corresponding field. The upper nibble contains  
the value for field 1 (odd), the lower nibble for field 2  
(even). The relationship between LCR values and line  
numbers can be adjusted via VOFF8 to VOFF0, located in  
subaddresses 5BH (bit 4) and 5AH (bits 7 to 0) and FOFF  
subaddress 5BH (bit 7). The recommended values are  
VOFF[8:0] = 03H for 50 Hz sources (with FOFF = 0) and  
VOFF[8:0] = 06H for 60 Hz sources (with FOFF = 1), to  
accommodate line number conventions as used for PAL,  
SECAM and NTSC standards; see Tables 18 to 21.  
The output interface block of the decoder part contains the  
ITU 656 formatter for the expansion port data output  
XPD7 to XPD0 (see Section 10.4.1) and the control circuit  
for the signals needed for the internal paths to the scaler  
and data slicer part. It also controls the selection of the  
reference signals for the RT port (RTCO, RTS0 and  
RTS1) and the expansion port (XRH, XRV and XDQ).  
The generation of the decoder data type control signals  
SET_RAW and SET VBI is also done within this block.  
These signals are decoded from the requested data type  
for the scaler input and/or the data slicer, selectable by the  
control registers LCR2 to LCR24; see Section 18.2.4.2.  
Table 17 Data formats at decoder output  
DATA TYPE NUMBER  
DATA TYPE  
teletext EuroWST, CCST  
European Closed Caption  
DECODER OUTPUT DATA FORMAT  
0
1
raw  
raw  
2
Video Programming Service (VPS)  
Wide screen signalling bits  
US teletext (WST)  
raw  
3
raw  
4
raw  
5
US Closed Caption (line 21)  
video component signal, VBI region  
CVBS data  
raw  
6
Y-CB-CR 4 : 2 : 2  
7
raw  
8
teletext  
raw  
9
VITC/EBU time codes (Europe)  
VITC/SMPTE time codes (USA)  
reserved  
raw  
10  
11  
12  
13  
14  
15  
raw  
raw  
US NABTS  
raw  
raw  
MOJI (Japanese)  
Japanese format switch (L20/22)  
video component signal, active video region  
raw  
Y-CB-CR 4 : 2 : 2  
2004 Jun 29  
51  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
Table 18 Relationship of LCR to line numbers in 525 lines/60 Hz systems (part 1)  
Vertical line offset, VOFF[8:0] = 06H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0] and  
59H[7:0]); FOFF = 1 (subaddress 5BH[7])  
Line number  
(1st field)  
521  
522  
523  
active video  
261  
524  
525  
1
2
3
4
5
6
269  
6
7
8
9
equalization pulses  
serration pulses  
equalization pulses  
Line number  
(2nd field)  
259  
260  
262  
263  
264  
265  
equalization pulses  
2
266  
267  
268  
270  
271  
272  
active video  
serration pulses  
equalization pulses  
LCR  
24  
3
4
5
7
8
9
Table 19 Relationship of LCR to line numbers in 525 lines/60 Hz systems (part 2)  
Vertical line offset, VOFF[8:0] = 06H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0] and  
59H[7:0]); FOFF = 1 (subaddress 5BH[7])  
Line number  
(1st field)  
10  
273  
10  
11  
274  
11  
12  
275  
12  
13  
276  
13  
14  
277  
14  
15  
nominal VBI lines F1  
278 279  
nominal VBI lines F2  
15 16  
16  
17  
280  
17  
18  
281  
18  
19  
282  
19  
20  
283  
20  
21  
284  
21  
22  
285  
22  
23  
active video  
286 287  
24  
25  
Line number  
(2nd field)  
288  
active video  
23  
LCR  
24  
Table 20 Relationship of LCR to line numbers in 625 lines/50 Hz systems (part 1)  
Vertical line offset, VOFF[8:0] = 03H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0] and  
59H[7:0]); FOFF = 0 (subaddress 5BH[7])  
Line number  
(1st field)  
621  
622  
active video  
310  
623  
624  
equalization pulses  
312 313  
625  
1
2
serration pulses  
315  
3
4
5
equalization pulses  
317 318  
Line number  
(2nd field)  
309  
311  
314  
316  
active video  
equalization pulses  
24  
serration pulses  
equalization pulses  
LCR  
2
3
4
5
Table 21 Relationship of LCR to line numbers in 625 lines/50 Hz systems (part 2)  
Vertical line offset, VOFF[8:0] = 03H (subaddresses 5BH[4] and 5AH[7:0]); horizontal pixel offset, HOFF[10:0] = 347H (subaddresses 5BH[2:0] and  
59H[7:0]); FOFF = 0 (subaddress 5BH[7])  
Linenumber  
(1st field)  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
nominal VBI lines F1  
active video  
Linenumber 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338  
(2nd field)  
nominal VBI lines F2  
13 14 15  
active video  
23 24  
LCR  
6
7
8
9
10  
11  
12  
16  
17  
18  
19  
20  
21  
22  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
625  
312  
1
1
2
2
3
3
4
4
5
5
6
6
7
7
22  
22  
23  
23  
624  
311  
622  
309  
623  
310  
...  
...  
ITU counting  
single field counting  
CVBS  
HREF  
F_ITU656  
(1)  
V123  
[
]
VSTO 8:0 = 134H  
VGATE  
FID  
[
]
VSTA 8:0 = 15H  
(a) 1st field  
312  
312  
313  
313  
314  
1
315  
2
316  
3
317  
4
318  
5
319  
6
335  
22  
336  
23  
ITU counting  
single field counting  
311  
311  
309  
309  
310  
310  
...  
...  
CVBS  
HREF  
F_ITU656  
(1)  
V123  
[
]
VSTO 8:0 = 134H  
VGATE  
FID  
(b) 2nd field  
[
]
VSTA 8:0 = 15H  
MHB540  
(1) The inactive going edge of the V123 signal indicates whether the field is odd or even. If HREF is active during  
the falling edge of V123, the field is ODD (field 1). If HREF is inactive during the falling edge of V123, the field  
is EVEN. The specific position of the slope is dependent on the internal processing delay and may change a  
few clock cycles from version to version.  
The control signals listed above are available on pins RTS0, RTS1, XRH and XRV according to the following table:  
NAME  
HREF  
RTS0 (PIN K13) RTS1 (PIN L10) XRH (PIN N2) XRV (PIN L5)  
X
X
X
X
X
F_ITU656  
V123  
X
X
X
X
X
X
VGATE  
FID  
For further information see programming section, Tables 171, 172 and 173.  
Fig.30 Vertical timing diagram for 50 Hz/625 line systems.  
53  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
10  
21  
21  
22  
22  
2
2
525  
262  
1
1
...  
...  
ITU counting  
single field counting  
CVBS  
HREF  
F_ITU656  
(1)  
V123  
[
]
VSTO 8:0 = 101H  
VGATE  
FID  
[
]
VSTA 8:0 = 011H  
(a) 1st field  
265  
2
266  
3
267  
4
268  
5
269  
6
270  
7
271  
8
272  
9
284  
21  
285  
22  
ITU counting  
single field counting  
264  
1
262  
262  
263  
263  
...  
...  
CVBS  
HREF  
F_ITU656  
(1)  
V123  
[
]
VSTO 8:0 = 101H  
VGATE  
FID  
(b) 2nd field  
[
]
VSTA 8:0 = 011H  
MHB541  
(1) The inactive going edge of the V123 signal indicates whether the field is odd or even. If HREF is active during  
the falling edge of V123, the field is ODD (field 1). If HREF is inactive during the falling edge of V123, the field  
is EVEN. The specific position of the slope is dependent on the internal processing delay and may change a  
few clock cycles from version to version.  
The control signals listed above are available on pins RTS0, RTS1, XRH and XRV according to the following table:  
NAME  
HREF  
RTS0 (PIN K13  
RTS1 (PIN L10) XRH (PIN N2) XRV (PIN L5)  
X
X
X
X
X
F_ITU656  
V123  
X
X
X
X
X
X
VGATE  
FID  
For further information see programming section, Tables 171, 172 and 173.  
Fig.31 Vertical timing diagram for 60 Hz/525 line systems.  
54  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
burst  
CVBS input  
processing delay ADC to expansion port:  
140 × 1/LLC  
expansion port  
data output  
sync clipped  
HREF (50 Hz)  
12 × 2/LLC  
144 × 2/LLC  
720 × 2/LLC  
5 × 2/LLC  
CREF  
CREF2  
2 × 2/LLC  
HS (50 Hz)  
programming range  
(step size: 8/LLC)  
107  
108  
0
HREF (60 Hz)  
16 × 2/LLC  
138 × 2/LLC  
720 × 2/LLC  
1 × 2/LLC  
CREF  
CREF2  
HS (60 Hz)  
2 × 2/LLC  
106  
programming range  
(step size: 8/LLC)  
107  
0
MHB542  
The signals HREF, HS, CREF2 and CREF are available on pins RTS0 and/or RTS1 (see Section 18.2.2.19 Tables 171 and 172);  
their polarity can be inverted via RTP0 and/or RTP1.  
The signals HREF and HS are available on pin XRH (see Section 18.2.2.20 Table 173).  
Fig.32 Horizontal timing diagram (50/60 Hz).  
2004 Jun 29  
55  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.3  
Scaler  
The overall H and V zooming (HV_zoom) is restricted by  
the input/output data rate relationships. With a safety  
margin of 2 % for running in and running out, the  
maximum HV_zoom is equal to:  
The High Performance video Scaler (HPS) is based on the  
system as implemented in the SAA7140, but enhanced in  
some aspects. Vertical upsampling is supported and the  
processing pipeline buffer capacity is enhanced, to allow  
more flexible video stream timing at the image port,  
discontinuous transfers and handshake. The internal data  
flow from block to block is discontinuous dynamically, due  
to the scaling process.  
T_input_field T_v_blanking  
in_pixel × in_lines × out_cycle_per_pix × T_out_clk  
0.98 ×  
-------------------------------------------------------------------------------------------------------------------------------------  
For example:  
1. Input from decoder: 50 Hz, 720 pixel, 288 lines, 16-bit  
data at 13.5 MHz data rate, 1 cycle per pixel; output:  
8-bit data at 27 MHz, 2 cycles per pixel; the maximum  
HV_zoom is equal to:  
The flow is controlled by internal data valid and data  
request flags (internal handshake signalling) between the  
sub-blocks. Therefore the entire scaler acts as a pipeline  
buffer. Depending on the actually programmed scaling  
parameters the effective buffer can exceed to an entire  
line. The access/bandwidth requirements to the VGA  
frame buffer are reduced significantly.  
20 ms 24 × 64 µs  
720 × 288 × 2 × 37 ns  
0.98 ×  
= 1.18  
--------------------------------------------------------  
2. Input from X port: 60 Hz, 720 pixel, 240 lines, 8-bit  
data at 27 MHz data rate (ITU 656), 2 cycles per pixel;  
output via I + H port: 16-bit data at 27 MHz clock,  
1 cycle per pixel; the maximum HV_zoom is equal to:  
The high performance video scaler in the SAA7108AE;  
SAA7109AE has the following major blocks.  
16.666 ms 22 × 64 µs  
720 × 240 × 1 × 37 ns  
0.98 ×  
= 2.34  
--------------------------------------------------------------  
Acquisition control (horizontal and vertical timer) and  
task handling (the region/field/frame based processing)  
The video scaler receives its input signal from the video  
decoder or from the expansion port (X port). It gets 16-bit  
Y-CB-CR 4 : 2 : 2 input data at a continuous rate of  
13.5 MHz from the decoder. A discontinuous data stream  
can be accepted from the expansion port, normally 8-bit  
wide ITU 656 like Y-CB-CR data, accompanied by a pixel  
qualifier on XDQ.  
Prescaler, for horizontal downscaling by an integer  
factor, combined with appropriate band limiting filters,  
especially anti-aliasing for CIF format  
Brightness, saturation and contrast control for scaled  
output data  
Line buffer, with asynchronous read and write, to  
support vertical upscaling (e.g. for videophone  
application, converting 240 into 288 lines, Y-CB-CR  
4 : 2 : 2)  
The input data stream is sorted into two data paths, one for  
luminance (or raw samples), and one for time multiplexed  
chrominance CB and CR samples. A Y-CB-CR 4 : 1 : 1  
input format is converted to 4 : 2 : 2 for the horizontal  
prescaling and vertical filter scaling operation.  
Vertical scaling, with phase accurate Linear Phase  
Interpolation (LPI) for zoom and downscaling, or phase  
accurate Accumulation Mode (ACM) for large  
The scaler operation is defined by two programming pages  
A and B, representing two different tasks that can be  
applied field alternating or to define two regions in a field  
(e.g. with different scaling range, factors, and signal  
source during odd and even fields).  
downscaling ratios and better anti-alias suppression  
Variable Phase Delay (VPD), operates as horizontal  
phase accurate interpolation for arbitrary non-integer  
scaling ratios, supporting conversion between square  
and rectangular pixel sampling  
Each programming page contains control for:  
Signal source selection and formats  
Output formatter for scaled Y-CB-CR 4 : 2 : 2,  
Y-CB-CR 4 : 1 : 1 and Y only (format also for raw data)  
Task handling and trigger conditions  
FIFO, 32-bit wide, with 64 pixel capacity in Y-CB-CR  
Input and output acquisition window definition  
H prescaler, V scaler and H phase scaling.  
formats  
Output interface, 8 or 16-bit (only if extended by H port)  
data pins wide, synchronous or asynchronous  
operation, with stream events on discrete pins, or coded  
in the data stream.  
Raw VBI data will be handled as specific input format and  
need its own programming page (equals own task).  
2004 Jun 29  
56  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
In VBI pass through operation the processing of prescaler  
and vertical scaling has to be disabled, however the  
horizontal fine scaling VPD can be activated. Upscaling  
(oversampling, zooming), free of frequency folding, up to  
factor 3.5 can be achieved, as required by some software  
data slicing algorithms.  
9.3.1.1  
Input field processing  
The trigger event for the field sequence detection from  
external signals (X port) are defined in subaddress 92H.  
The state of the scalers horizontal reference signal at the  
time of the vertical reference edge is taken from the X port  
as field sequence identifier (FID). For example, if the falling  
edge of the XRV input signal is the reference and the state  
of XRH input is logic 0 at that time, the detected field ID is  
logic 0.  
These raw samples are transported through the image  
port as valid data and can be output as Y only format. The  
lines are framed by SAV and EAV codes.  
The bits XFDV[92H[7]] and XFDH[92H[6]] define the  
detection event and state of the flag from the X port. For  
the default setting of XFDV and XFDH at ‘00’ is taken from  
the state of the horizontal input at the falling edge of the  
vertical input.  
9.3.1  
ACQUISITION CONTROL AND TASK HANDLING  
(SUBADDRESSES 80H, 90H, 91H, 94H TO 9FH  
AND C4H TO CFH)  
The acquisition control receives horizontal and vertical  
synchronization signals from the decoder section or from  
the X port. The acquisition window is generated via pixel  
and line counters at the appropriate places in the data  
path. Only qualified pixels and lines (lines with qualified  
pixel) are counted from the X port.  
The scaler gets corresponding field ID information directly  
from the SAA7108AE; SAA7109AE decoder path.  
The FID flag is used to determine whether the first or  
second field of a frame is going to be processed within the  
scaler, and it is also used as trigger conditions for the task  
handling (see bits STRC[1:0] 90H[1:0]).  
The acquisition window parameters are as follows:  
Signal source selection: input video stream and formats  
from the decoder, or from the X port (programming bits  
SCSRC[1:0] 91H[5:4] and FSC[2:0] 91H[2:0])  
According to ITU 656, FID at logic 0 means first field of a  
frame. To ease the application, the polarities of the  
detection results on the X port signals and the internal  
decoder ID can be changed via XFDH.  
Remark: The input of raw VBI data from the internal  
decoder should be controlled via the decoder output  
formatter and the LCR registers (see Section 9.2)  
As the V sync from the decoder path has a half line timing  
(due to the interlaced video signal), but the scaler  
processing only recognises full lines, during 1st fields from  
the decoder the line count of the scaler can possibly shift  
by one line, compared to the 2nd field. This can be  
compensated for by switching the vertical trigger event, as  
defined by XDV0, to the opposite V sync edge or by using  
the vertical scalers phase offsets. The vertical timing of the  
decoder can be seen in Figs 30 and 31.  
Vertical offset: defined in lines of the video source,  
parameter YO[11:0] 99H[3:0] 98H[7:0]  
Vertical length: defined in lines of the video source,  
parameter YS[11:0] 9BH[3:0] 9AH[7:0]  
Vertical length: defined in number of target lines, as a  
result of vertical scaling, parameter YD[11:0] 9FH[3:0]  
9EH[7:0]  
Horizontal offset: defined in number of pixels of the  
video source, parameter XO[11:0] 95H[3:0] 94H[7:0]  
As the horizontal and vertical reference events inside the  
ITU 656 data stream (from X port) and the real-time  
reference signals from the decoder path are processed  
differently, the trigger events for the input acquisition also  
have to be programmed differently.  
Horizontal length: defined in number of pixels of the  
video source, parameter XS[11:0] 97H[3:0] 96H[7:0]  
Horizontal destination size: defined in target pixels after  
fine scaling, parameter XD[11:0] 9DH[3:0] 9CH[7:0].  
The source start offset XO(11:0) and YO(11:0) opens the  
acquisition window, and the target size (XD11 to XD0,  
YD11 to YD0) closes the window, however the window is  
cut vertically if there are less output lines than required.  
The trigger events for the pixel and line counts are the  
horizontal and vertical reference edges as defined in  
subaddress 92H.  
The task handling is controlled by subaddress 90H;  
see Section 9.3.1.2.  
2004 Jun 29  
57  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 22 Processing trigger and start  
XDV1  
92H[5]  
XDV0  
92H[4]  
XDH  
92H[2]  
DESCRIPTION  
Internal decoder: The processing triggers at the falling edge of the V123 pulse  
(see Figs 30 (50 Hz) and 31 (60 Hz)), and starts earliest with the rising edge of the  
decoder HREF at line number:  
0
0
0
1
0
0
0
0
0
4/7 (50/60 Hz, 1st field), respectively 3/6 (50/60 Hz, 2nd field) (decoder count)  
2/5 (50/60 Hz, 1st field), respectively 2/5 (50/60 Hz, 2nd field) (decoder count)  
External ITU 656 stream: The processing starts earliest with SAV at line number 23  
(50 Hz system), respectively line 20 (60 Hz system) (according ITU 656 count)  
9.3.1.2  
Task handling  
Remarks:  
To activate a task, the start condition must be  
fulfilled and the acquisition window offsets must be  
reached. For example, in case of ‘start immediately’,  
and two regions are defined for one field, the offset of  
the lower region must be greater than (offset + length) of  
the upper region, if not, the actual counted H and V  
position at the end of the upper task is beyond the  
programmed offsets and the processing will ‘wait for  
next V’.  
The task handler controls the switching between the two  
programming register sets. It is controlled by  
subaddresses 90H and C0H. A task is enabled via the  
global control bits TEA[80H[4]] and TEB[80H[5]]. The  
handler is then triggered by events which can be defined  
for each register set.  
In the event of a programming error the task handling and  
the complete scaler can be reset to the initial states by the  
software reset bit SWRST[88H[5]] being set to logic 0.  
A software reset must be done after programming  
especially if the programming registers, related acquisition  
window and scaler are reprogrammed while a task is  
active.  
Basically, the trigger conditions are checked when a  
task is activated. It is important to know that they are  
not checked while a task is inactive. So it is not possible  
to trigger to the next logic 0 or logic 1 with overlapping  
offset and active video ranges between the tasks (e.g.  
task A STRC[2:0] = 2, YO[11:0] = 310 and task B  
STRC[2:0] = 3, YO[11:0] = 310 results in an output field  
rate of 503 Hz).  
The difference in the disabling/enabling of a task, which is  
evaluated at the end of a running task (when SWRST is set  
to logic 0) is that it sets the internal state machines directly  
to their idle states.  
After power-on or software reset  
(via SWRST[88H[5]]) task B gets priority over  
task A.  
The start condition for the handler is defined by bits  
STRC[1:0] 90H[1:0] and means: start immediately, wait for  
next V sync, next FID at logic 0 or next FID at logic 1. The  
FID is evaluated if the vertical and horizontal offsets are  
reached.  
With RPTSK[90H[2]] at logic 1 the actual running task is  
repeated (under the defined trigger conditions) before  
handing control over to the alternate task.  
To support field rate reduction, the handler is also enabled  
to skip fields (bits FSKP[2:0] 90H[5:3]) before executing  
the task. A TOGGLE flag is generated (used for the correct  
output field processing), which changes state at the  
beginning of a task every time a task is activated;  
examples are given in Section 9.3.1.3.  
2004 Jun 29  
58  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.3.1.3  
Output field processing  
When OFIDC = 0, the scalers input field ID is available as  
output field ID on bit 6 of SAV and EAV, and respectively  
on pin IGP0 (IGP1), if the FID output is selected.  
As a reference for the output field processing, two signals  
are available for the back-end hardware.  
When OFIDC[90H[6]] = 1, the TOGGLE information is  
available as output field ID on bit 6 of SAV and EAV, and  
respectively on pin IGP0 (IGP1) if the FID output is  
selected.  
These signals are the input field ID from the scaler source  
and a TOGGLE flag, which shows that an active task is  
used an odd (1, 3, 5...) or even (2, 4, 6...) number of times.  
Using a single or both tasks and reducing the field or frame  
rate with the task handling functionality, the TOGGLE  
information can be used to reconstruct an interlaced  
scaled picture at a reduced frame rate. The TOGGLE flag  
is not synchronized to the input field detection, as it is only  
dependent on the interpretation of this information by the  
external hardware i.e. whether the output of the scaler is  
processed correctly; see Section 9.3.3.  
Additionally bit 7 of SAV and EAV can be defined via  
CONLH[90H[7]]. When CONLH[90H[7]] = 0 (default) it  
sets bit 7 to logic 1; a logic 1 inverts the SAV/EAV bit 7.  
So it is possible to mark the output of both tasks by  
different SAV/EAV codes. This bit can also be seen as  
‘task flag’ on pins IGP0 (IGP1), if the TASK output is  
selected.  
2004 Jun 29  
59  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
Table 23 Example for field processing  
FIELD SEQUENCE FRAME/FIELD  
SUBJECT  
EXAMPLE 1(1)  
EXAMPLE 2(2)(3)  
EXAMPLE 3(2)(4)(5)  
EXAMPLE 4(2)(4)(6)  
1/1  
A
1/2  
A
2/1 1/1 1/2 2/1 2/2 1/1 1/2 2/1 2/2 3/1 3/2  
1/1  
B
1/2 2/1  
2/2  
B
3/1 3/2  
Processed by task  
A
0
B
0
A
1
B
0
A
1
B
0
B
1
A
0
B
1
B
0
A
1
B
1
A
0
B
0
A
1
State of detected  
ITU 656 FID  
0
1
0
1
TOGGLE flag  
1
0
0
1
1
0
1
0
1
1
0
0
0
1
1
1
0
0
1
1
1
1
0
0
0
0
0(7)  
0(7)  
1
1
1
1
1(7)  
1(7)  
0
0
0
0
Bit 6 of SAV/EAV byte  
Required sequence  
conversion at the vertical  
scaler(8)  
UP  
UP  
LO  
LO  
UP UP LO UP LO UP LO UP LO UP LO  
UP  
UP  
LO UP  
LO  
LO  
UP LO  
UP UP LO UP LO LO UP LO LO UP UP  
LO LO  
UP UP  
Output(9)  
O
O
O
O
O
O
O
O
O
O
O
O
O
NO  
O
O
NO  
O
O
Notes  
1. Single task every field; OFIDC = 0; subaddress 90H at 40H; TEB[80H[5]] = 0.  
2. Tasks are used to scale to different output windows, priority on task B after SWRST.  
3. Both tasks at 12 frame rate; OFIDC = 0; subaddresses 90H at 43H and C0H at 42H.  
4. In examples 3 and 4 the association between input FID and tasks can be flipped, dependent on which time the SWRST is de-asserted.  
5. Task B at 23 frame rate constructed from neighbouring motion phases; task A at 13 frame rate of equidistant motion phases; OFIDC = 1;  
subaddresses 90H at 41H and C0H at 45H.  
6. Task A and B at 13 frame rate of equidistant motion phases; OFIDC = 1; subaddresses 90H at 41H and C0H at 49H.  
7. State of prior field.  
8. It is assumed that input/output FID = 0 (upper lines); UP = upper lines; LO = lower lines.  
9. O = data output; NO = no output.  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.3.2  
HORIZONTAL SCALING  
The bit XC2_1[A2H[3]], which defines the weighting of  
the incoming pixels during the averaging process  
The overall horizontal scaling factor has to be split into a  
binary and a rational value according to the following  
– XC2_1 = 0  
– XC2_1 = 1  
1 + 1...+ 1 + 1  
1 + 2...+ 2 + 1.  
output pixel  
equation: H scale ratio =  
------------------------------  
input pixel  
The prescaler creates a prescale dependent FIR low-pass,  
with up to 64 + 7 filter taps. The parameter XACL[5:0] can  
be used to vary the low-pass characteristic for a given  
integer prescale of 1XPSC[5:0]. The user can therewith  
decide between signal bandwidth (sharpness impression)  
and alias.  
1
1024  
H scale ratio =  
×
--------------------------- ------------------------------  
XPSC[5:0] XSCY[12:0]  
where, the parameter of the prescaler XPSC[5:0] = 1 to 63  
and the parameter of VPD phase interpolation  
XSCY[12:0] = 300 to 8191 (0 to 299 are only theoretical  
values). For example, 13.5 is split into 14 × 1.14286. The  
binary factor is processed by the prescaler, the arbitrary  
non-integer ratio is achieved via the variable phase delay  
VPD circuitry, called horizontal fine scaling. The latter  
calculates horizontally interpolated new samples with a  
6-bit phase accuracy, which relates to less than 1 ns jitter  
for regular sampling schemes. Together the prescaler and  
fine scaler form the horizontal scaler of the SAA7108AE;  
SAA7109AE.  
The equation for the XPSC[5:0] calculation is:  
Npix_in  
XPSC[5:0] = lower integer of  
-----------------------  
Npix_out  
Where:  
the range is 1 to 63 (value 0 is not allowed);  
Npix_in = number of input pixel, and  
Npix_out = number of desired output pixel over the  
complete horizontal scaler.  
Using the accumulation length function of the prescaler  
(XACL[5:0] A1H[5:0]), application and destination  
dependent (e.g. scale for display or for a compression  
machine), a compromise between visible bandwidth and  
alias suppression can be found.  
The use of the prescaler results in a XACL[5:0] and  
XC2_1 dependent gain amplification. The amplification  
can be calculated according to the equation:  
DC gain = [(XACL[5:0] XC2_1) + 1] × (XC2_1 + 1)  
It is recommended to use sequence lengths and weights,  
which results in a 2N DC gain amplification, as these  
amplitudes can be renormalized by the XDCG[2:0]  
9.3.2.1  
Horizontal prescaler (subaddresses  
A0H to A7H and D0H to D7H)  
The prescaling function consists of an FIR anti-alias filter  
stage and an integer prescaler, which together form an  
adaptive prescale dependent low-pass filter to balance the  
sharpness and aliasing effects.  
1
controlled  
shifter of the prescaler.  
------  
2N  
The renormalization range of XDCG[2:0] is 1, 12... down  
to 1128  
.
The FIR pre-filter stage implements different low-pass  
characteristics to reduce the anti-alias for downscales in  
the range of 1 to 12. A CIF optimized filter is built-in, which  
reduces artefacts for CIF output formats (to be used in  
combination with the prescaler set to 12 scale); see  
Table 24.  
Other amplifications have to be normalized by using the  
following BCS control circuitry. In these cases the  
prescaler has to be set to an overall gain 1, e.g. for an  
accumulation sequence of ‘1 + 1 + 1’ (XACL[5:0] = 2 and  
XC2_1 = 0), XDCG[2:0] must be set to ‘010’, which  
equals 14 and the BCS has to amplify the signal to 43  
(SATN[7:0] and CONT[7:0] value = lower integer of  
43 × 64).  
The function of the prescaler is defined by:  
An integer prescaling ratio XPSC[5:0] A0H[5:0] (equals  
1 to 63), which covers the integer downscale range  
1 to 163  
The use of XACL[5:0] is XPSC[5:0] dependent.  
XACL[5:0] must be <2 × XPSC[5:0].  
An averaging sequence length XACL[5:0] A1H[5:0]  
(equals 0 to 63); range 1 to 64  
XACL[5:0] can be used to find a compromise between  
bandwidth (sharpness) and alias effects.  
A DC gain renormalization XDCG[2:0] A2H[2:0];  
1 down to 1128  
)
2004 Jun 29  
61  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Remark: Due to bandwidth considerations XPSC[5:0] and  
XACL[5:0] can be chosen differently to the previously  
mentioned equations or Table 25, as the horizontal phase  
scaling is able to scale in the range from zooming up by  
For example, if XACL[5:0] = 5, XC2_1 = 1, then  
DC gain = 10 and the required XDCG[2:0] = 4.  
The horizontal source acquisition timing and the  
prescaling ratio is identical for both the luminance and  
chrominance path, but the FIR filter settings can be  
defined differently in the two channels.  
factor 3 to downscaling by a factor of 1024  
.
8191  
Figs 35 and 36 show some frequency characteristics of  
the prescaler.  
Fade-in and fade-out of the filters is achieved by copying  
an original source sample each as first and last pixel after  
prescaling.  
Table 25 shows the recommended prescaler  
programming. Other programming, than given in Table 25,  
may result in better alias suppression, but the resulting  
DC gain amplification needs to be compensated by the  
BCS control, according to the equation:  
Figs 33 and 34 show the frequency characteristics of the  
selectable FIR filters.  
2XDCG[2:0]  
DC gain × 64  
CONT[7:0] = SATN[7:0] = lower integer of  
----------------------------------  
Where:  
2XDCG[2:0] DC gain  
DC gain = (XC2_1 + 1) × XACL[5:0] + (1 XC2_1).  
Table 24 FIR prefilter functions  
PFUV[1:0] A2H[7:6]  
PFY[1:0] A2H[5:4]  
LUMINANCE FILTER  
COEFFICIENTS  
CHROMINANCE COEFFICIENTS  
00  
01  
10  
11  
bypassed  
1 2 1  
bypassed  
1 2 1  
1 1 1.75 4.5 1.75 1 1  
1 2 2 2 1  
3 8 10 8 3  
1 2 2 2 1  
2004 Jun 29  
62  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MHB543  
6
3
V
(dB)  
0
3  
6  
9  
(1)  
(2)  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
(3)  
(1) PFY[1:0] = 01.  
(2) PFY[1:0] = 10.  
(3) PFY[1:0] = 11.  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
f_sig/f_clock  
0.5  
Fig.33 Luminance prefilter characteristic.  
MHB544  
6
3
V
(dB)  
0
3  
6  
9  
(1)  
(2)  
(3)  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
(1) PFUV[1:0] = 01.  
(2) PFUV[1:0] = 10.  
(3) PFUV[1:0] = 11.  
0
0.025  
0.05  
0.075  
0.1  
0.125  
0.15  
0.175  
0.2  
0.225  
f_sig/f_clock  
0.25  
Fig.34 Chrominance prefilter characteristic.  
63  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MHB545  
6
3
V
(dB)  
0
3  
6  
9  
(5)  
(4)  
(3)  
(2)  
(1)  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
XC2_1 = 0; Zero’s at  
1
f = n ×  
------------------------  
XACL + 1  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
f_sig/f_clock  
0.5  
with XACL = (1), (2), (3),  
(4) or (5)  
Fig.35 Examples for prescaler filter characteristics: effect of increasing XACL[5:0].  
MHB546  
6
V
3
(dB)  
0
(1)  
3 dB at 0.25  
3  
(2)  
6 dB at 0.33  
6  
(6) (5)  
(4)  
(3)  
9  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
(1) XC2_1 = 0 and  
XACL[5:0] = 1.  
(2) XC2_1 = 1 and  
XACL[5:0] = 2.  
(3) XC2_1 = 0 and  
XACL[5:0] = 3.  
(4) XC2_1 = 1 and  
XACL[5:0] = 4.  
(5) XC2_1 = 0 and  
XACL[5:0] = 7.  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
f_sig/f_clock  
0.5  
(6) XC2_1 = 1 and  
XACL[5:0] = 8.  
Fig.36 Examples for prescaler filter characteristics: setting XC2_1 = 1.  
64  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 25 Example of XACL[5:0] usage  
RECOMMENDED VALUES  
FOR LOWER BANDWIDTH FOR HIGHER BANDWIDTH  
FIR  
PREFILTER  
PFY[1:0]/  
PRESCALE XPSC  
RATIO  
[5:0]  
REQUIREMENTS  
REQUIREMENTS  
PFUV[1:0]  
XACL[5:0]  
XC2_1  
XDCG[2:0] XACL[5:0]  
XC2_1  
XDCG[2:0]  
1
1
2
0
2
0
1
0
2
0
1
0
0
1
0 to 2  
0 to 2  
1
2
3
4
5
6
7
8
9
0
(1 1) × 12  
0
(1)  
(1)  
(1 2 1) × 14  
1
1
1
1
1
1
1
3
4
4
7
1
3
3
4
4
4
4
3
4
7
7
7
8
2
3
3
3
3
4
2
2
2
3
3
3
3
3
(1)  
(1)  
(1 2 2 2 1) × 18  
(1 1 1 1) × 14  
0
1
(1)  
(1)  
(1 1 1 1 1 1 1 1) × 18  
(1 2 2 2 1) × 18  
5
8
8
1
0
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1 2 2 2 2 2 2 2 1) × 116  
(1 1 1 1 1 1 1 1) × 18  
6
1
0
(1 2 2 2 2 2 2 2 1) × 116  
(1 1 1 1 1 1 1 1) × 18  
7
8
1
0
(1 2 2 2 2 2 2 2 1) × 116  
(1 1 1 1 1 1 1 1) × 18  
8
15  
0
1
(1)  
(1)  
(1)  
(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) × 116  
15  
(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) × 116  
16  
(1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1) × 132  
(1 2 2 2 2 2 2 2 1) × 116  
9
0
4
8
1
4
(1)  
(1 2 2 2 2 2 2 2 1) × 116  
1
10  
1
5
8
1
4
(1)  
10  
(1)  
(1 2 2 2 2 2 2 2 1) × 116  
1
1
1
1
1
1
1
13  
15  
16  
19  
31  
32  
35  
16  
31  
31  
32  
32  
63  
63  
1
0
0
1
1
1
1
5
5
5
6
6
7
7
16  
1
1
1
1
1
1
1
5
5
5
6
6
6
7
3
3
3
3
3
3
3
13  
15  
16  
19  
31  
32  
35  
16  
16  
32  
32  
32  
63  
Note  
1. Resulting FIR function.  
2004 Jun 29  
65  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.3.2.2  
Horizontal fine scaling (variable phase delay  
filter; subaddresses A8H to AFH and  
D8H to DFH)  
9.3.3.1  
Line FIFO buffer (subaddresses 91H, B4H and  
C1H, E4H)  
The line FIFO buffer is a dual ported RAM structure for  
768 pixels, with asynchronous write and read access. The  
line buffer can be used for various functions, but not all  
functions may be available simultaneously.  
The horizontal fine scaling (VPD) should operate at scaling  
ratios between 12 and 2 (0.8 and 1.6), but can also be  
used for direct scaling in the range from 17.999 to  
(theoretical) zoom 3.5 (restriction due to the internal data  
path architecture), without prescaler.  
The line buffer can buffer a complete unscaled active video  
line or more than one shorter lines (only for non-mirror  
mode), for selective repetition for vertical zoom-up.  
In combination with the prescaler a compromise between  
sharpness impression and alias can be found, which is  
signal source and application dependent.  
For zooming up from 240 lines to 288 lines e.g., every  
fourth line is requested (read) twice from the vertical  
scaling circuitry for calculation.  
For the luminance channel a filter structure with 10 taps is  
implemented, for the chrominance a filter with 4 taps.  
For conversion of a 4 : 2 : 0 or 4 : 1 : 0 input sampling  
scheme (MPEG, video phone, Indeo YUV-9) to ITU like  
sampling scheme 4 : 2 : 2, the chrominance line buffer is  
read twice or four times, before being refilled again by the  
source. By means of the input acquisition window  
definition it has to be preserved, that the processing starts  
with a line containing luminance and chrominance  
information for 4 : 2 : 0 and 4 : 1 : 0 input. The bits  
FSC[2:1] 91H[2:1] define the distance between the Y/C  
lines. In case of 4 : 2 : 2 and 4 : 1 : 1 FSC2 and FSC1  
have to be set to ‘00’.  
Luminance and chrominance scale increments  
(XSCY[12:0] A9H[4:0] A8H[7:0] and XSCC[12:0] ADH[4:0]  
ACH[7:0]) are defined independently, but must be set in a  
2 : 1 relationship in the actual data path implementation.  
The phase offsets XPHY[7:0] AAH[7:0] and XPHC[7:0]  
AEH[7:0] can be used to shift the sample phases slightly.  
XPHY[7:0] and XPHC[7:0] covers the phase offset range  
7.999T to 132T. The phase offsets should also be  
programmed in a 2 : 1 ratio.  
The underlying phase controlling DTO has a 13-bit  
resolution.  
The line buffer can also be used for mirroring, i.e. for  
flipping the image left to right, for the vanity picture in video  
phone application (bit YMIR[B4H[4]]). In mirror mode only  
one active prescaled line can be held in the FIFO at a time.  
According to the equations  
Npix_in  
XPSC[5:0] Npix_out  
1
XSCY[12:0] = 1024 ×  
×
and  
--------------------------- -----------------------  
The line buffer can be utilized as excessive pipeline buffer  
for discontinuous and variable rate transfer conditions at  
the expansion port or image port.  
XSCY[12:0]  
XSCC[12:0] =  
------------------------------  
2
The VPD covers the scale range from 0.125 to zoom 3.5.  
The VPD acts equivalent to a polyphase filter with 64  
possible phases. In combination with the prescaler, it is  
possible to get high accurate samples from a highly  
anti-aliased integer downscaled input picture.  
9.3.3.2  
Vertical scaler (subaddresses B0H to BFH and  
E0H to EFH)  
Vertical scaling of any ratio from 64 (theoretical zoom)  
to 163 (icon) can be applied.  
The vertical scaling block consists of another line delay,  
and the vertical filter structure, that can operate in two  
different modes. These are the Linear Phase Interpolation  
(LPI) and Accumulation (ACM) modes, controlled by  
YMODE[B4H[0]].  
9.3.3  
VERTICAL SCALING  
The vertical scaler of the SAA7108AE; SAA7109AE  
decoder part consists of a line FIFO buffer for line  
repetition and the vertical scaler block, which implements  
the vertical scaling on the input data stream in 2 different  
operational modes from theoretical zoom by 64 down to  
icon size 164. The vertical scaler is located between the  
BCS and horizontal fine scaler, so that the BCS can be  
used to compensate for the DC gain amplification of the  
ACM mode (see Section 9.3.3.2) as the internal RAMs are  
only 8-bit wide.  
2004 Jun 29  
66  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
LPI mode: In the linear phase interpolation mode  
(YMODE = 0) two neighbouring lines of the source video  
stream are added together, but weighted by factors  
corresponding to the vertical position (phase) of the  
target output line relative to the source lines. This linear  
interpolation has a 6-bit phase resolution, which equals  
64 intra line phases. It interpolates between two  
consecutive input lines only. The LPI mode should be  
applied for scaling ratios around 1 (down to 12), it must  
be applied for vertical zooming.  
BCS value to compensate DC gain in ACM mode  
(contrast and saturation have to be set): CONT[7:0]  
A5H[7:0] respectively SATN[7:0] A6H[7:0]  
Nline_out  
= lower integer of  
= lower integer of  
× 64 , or  
------------------------  
Nline_in  
1024  
× 64  
------------------------------  
YSCY[15:0]  
9.3.3.3  
Use of the vertical phase offsets  
ACM mode: The vertical Accumulation (ACM) mode  
(YMODE = 1) represents a vertical averaging window  
over multiple lines, sliding over the field. This mode also  
generates phase correct output lines. The averaging  
window length corresponds to the scaling ratio, resulting  
in an adaptive vertical low-pass effect, to greatly reduce  
aliasing artefacts. ACM can be applied for downscales  
only from ratio 1 down to 164. ACM results in a scale  
dependent DC gain amplification, which has to be  
precorrected by the BCS control of the scaler part.  
As shown in Section 9.3.1.3, the scaler processing may  
run randomly over the interlaced input sequence.  
Additionally the interpretation and timing between ITU 656  
field ID and real-time detection by means of the state of  
H sync at the falling edge of V sync may result in different  
field ID interpretation.  
A vertically scaled interlaced output also gets a larger  
vertical sampling phase error, if the interlaced input fields  
are processed, without regard to the actual scale at the  
starting point of operation (see Fig.37).  
The phase and scale controlling DTO calculates in 16-bit  
resolution, controlled by parameters YSCY[15:0] B1H[7:0]  
B0H[7:0] and YSCC[15:0] B3H[7:0] B2H[7:0], continuously  
over the entire filed. A start offset can be applied to the  
phase processing by means of the parameters  
YPY3[7:0] to YPY0[7:0] in BFH[7:0] to BCH[7:0] and  
YPC3[7:0] to YPC0[7:0] in BBH[7:0] to B8H[7:0]. The start  
phase covers the range of 255 32 to 132 lines offset.  
The four events to be considered are illustrated in Fig.38.  
In Tables 26 and 27 PHO is a usable common phase  
offset.  
It should be noted that the equations in Fig.38 also  
produce an interpolated output for the unscaled case, as  
the geometrical reference position for all conversions is  
the position of the first line of the lower field; see Table 26.  
By programming appropriate, opposite, vertical start  
phase values (subaddresses B8H to BFH and  
E8H to EFH) depending on odd/even field ID of the source  
video stream and A/B page cycle, frame ID conversion and  
field rate conversion are supported (i.e. de-interlacing,  
re-interlacing).  
If there is no need for UP-LO and LO-UP conversion and  
the input field ID is the reference for the back-end  
operation, then it is UP-LO = UP-UP and LO-UP = LO-LO  
and the 12 line phase shift (PHO + 16) that can be  
skipped; this case is given in Table 27.  
The SAA7108AE; SAA7109AE supports 4 phase offset  
registers per task and component (luminance and  
chrominance). The value of 20H represents a phase shift  
of one line.  
Figs 37 and 38 and Tables 26 and 27 describe the use of  
the offsets.  
Remark: The vertical start phase, as well as the  
scaling ratio are defined independently for luminance  
and chrominance channels, but must be set to the  
same values in the actual implementation for accurate  
4 : 2 : 2 output processing.  
The registers are assigned to the following events;  
e.g. subaddresses B8H to BBH:  
B8H: 00 = input field ID 0, task status bit 0 (toggle  
status, see Section 9.3.1.3)  
The vertical processing communicates on its input side  
with the line FIFO buffer. The scale related equations are:  
B9H: 01 = input field ID 0, task status bit 1  
BAH: 10 = input field ID 1, task status bit 0  
BBH: 11 = input field ID 1, task status bit 1.  
Scaling increment calculation for ACM and LPI mode,  
downscale and zoom: YSCY[15:0] and YSCC[15:0]  
Nline_in  
Nline_out  
= lower integer of 1024 ×  
------------------------  
2004 Jun 29  
67  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Depending on the input signal (interlaced or non-interlaced) and the task processing (50 Hz or field reduced processing  
with one or two tasks, see examples in Section 9.3.1.3), other combinations may also be possible, but the basic  
equations are the same.  
scaled output,  
no phase offset  
scaled output,  
with phase offset  
unscaled input  
field 1  
field 2  
field 1  
field 2  
field 1  
field 2  
correct scale dependent position  
scale dependent start offset  
mismatched vertical line distances  
MHB547  
Fig.37 Basic problem of interlaced vertical scaling (example: downscale 35).  
2004 Jun 29  
68  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
field 1  
upper  
field 2  
lower  
field 1  
field 2  
field 1  
field 2  
case UP-UP  
case LO-LO  
case UP-LO  
case LO-UP  
B
A
C
D
MHB548  
1024  
32  
1
2
YSCY[15:0]  
------------------------------  
64  
Offset =  
= 32 = 1 line shift  
C = scale increment =  
------------  
--  
D = no offset = 0  
1
2
A = input line shift = 16  
--  
1
2
1
2
YSCY[15:0]  
------------------------------  
64  
B = input line shift+ scale increment =  
-- --  
+ 16  
Fig.38 Derivation of the phase related equations (example: interlace vertical scaling down to 35, with field  
conversion).  
Table 26 Examples for vertical phase offset usage: global equations  
INPUT FIELD UNDER  
PROCESSING  
OUTPUT FIELD  
INTERPRETED AS  
USED  
ABBREVIATION  
EQUATION FOR PHASE OFFSET  
CALCULATION (DECIMAL VALUES)  
Upper input lines  
Upper input lines  
upper output lines  
lower output lines  
UP-UP  
PHO + 16  
UP-LO  
YSCY[15:0]  
------------------------------  
64  
PHO +  
PHO  
+ 16  
Lower input lines  
Lower input lines  
upper output lines  
lower output lines  
LO-UP  
LO-LO  
YSCY[15:0]  
------------------------------  
64  
PHO +  
2004 Jun 29  
69  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 27 Vertical phase offset usage; assignment of the phase offsets  
DETECTED INPUT  
FIELD ID  
VERTICAL PHASE  
OFFSET  
TASK STATUS BIT  
CASE  
EQUATION TO BE USED  
0 = upper lines  
0 = upper lines  
1 = lower lines  
0
YPY0[7:0] and  
YPC0[7:0]  
case 1(1) UP-UP (PHO)  
case 2(2) UP-UP  
case 3(3) UP-LO  
1
0
YPY1[7:0] and  
YPC1[7:0]  
case 1  
case 2  
case 3  
case 1  
UP-UP (PHO)  
UP-LO  
UP-UP  
YPY2[7:0] and  
YPC2[7:0]  
YSCY[15:0]  
------------------------------  
64  
LO-LO PHO +  
16  
16  
case 2  
case 3  
case 1  
LO-UP  
LO-LO  
1 = lower lines  
1
YPY3[7:0] and  
YPC3[7:0]  
YSCY[15:0]  
------------------------------  
64  
LO-LO PHO +  
case 2  
case 3  
LO-LO  
LO-UP  
Notes  
1. Case 1: OFIDC[90H[6]] = 0; scaler input field ID as output ID; back-end interprets output field ID at logic 0 as upper  
output lines.  
2. Case 2: OFIDC[90H[6]] = 1; task status bit as output ID; back-end interprets output field ID at logic 0 as upper output  
lines.  
3. Case 3: OFIDC[90H[6]] = 1; task status bit as output ID; back-end interprets output field ID at logic 1 as upper output  
lines.  
9.4  
VBI data decoder and capture  
(subaddresses 40H to 7FH)  
For lines 2 to 24 of a field, per VBI line, 1 of 16 standards  
can be selected (LCRxxx[41:57[7:0]]: 23 × 2 × 4-bit  
programming bits). The definition for line 24 is valid for the  
rest of the corresponding field, normally no text data (video  
data) should be selected there (LCR24 = FFH) to stop the  
activity of the VBI data slicer during active video.  
The SAA7108AE; SAA7109AE contains a versatile VBI  
data decoder.  
The implementation and programming model accords to  
the VBI data slicer the built-in multimedia video data  
acquisition circuit of the SAA5284.  
To adjust the slicers processing to the input signal source,  
there are offsets in the horizontal and vertical direction  
available (parameters HOFF[5B,59[2:0,7:0]],  
VOFF[5B,5A[4,7:0]] and FOFF[5B[7]]).  
The circuitry recovers the actual clock phase during the  
clock run-in period, slices the data bits with the selected  
data rate, and groups them into bytes. The result is  
buffered into a dedicated VBI data FIFO with a capacity of  
2 × 56 bytes (2 × 14 Dwords). The clock frequency, signal  
source, field frequency and accepted error count must be  
defined in subaddress 40H.  
In difference to the scalers counting, the slicers offsets  
define the position of the horizontal and vertical trigger  
events related to the processed video field. The trigger  
events are the falling edge of HREF and the falling edge of  
V123 from the decoder processing part.  
The VBI data standards that are supported are given in  
Table 28.  
The relationship of these programming values to the input  
signal and the recommended values can be seen in  
Tables 18 to 21.  
2004 Jun 29  
70  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 28 Data types supported by the data slicer block  
DATA TYPE  
NUMBER  
DATA RATE  
(Mbits/s)  
FC  
WINDOW  
HAM  
CHECK  
STANDARD TYPE  
FRAMING CODE  
27H  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
teletext EuroWST, CCST  
European Closed Caption  
VPS  
6.9375  
WST625  
CC625  
VPS  
always  
0.500  
001  
5
9951H  
wide screen signalling bits  
US teletext (WST)  
US Closed Caption (line 21)  
(video data selected)  
(raw data selected)  
teletext  
5
1E3C1FH  
27H  
WSS  
5.7272  
0.503  
5
WST525  
CC525  
disable  
disable  
always  
001  
none  
5
none  
6.9375  
programmable  
programmable  
programmable  
programmable  
programmable  
general text optional  
VITC625  
VITC/EBU time codes (Europe) 1.8125  
VITC/SMPTE time codes (USA) 1.7898  
5
VITC525  
open  
US NABTS  
5.7272  
NABTS  
optional  
MOJI (Japanese)  
5.7272  
programmable (A7H) Japtext  
Japanese format switch (L20/22)  
5
5
programmable  
none  
open  
no sliced data transmitted  
(video data selected)  
disable  
9.5  
Image port output formatter  
(subaddresses 84H to 87H)  
The disconnected data stream at the scaler output is  
accompanied by a data valid flag (or data qualifier), or is  
transported via a gated clock. Clock cycles with invalid  
data on the I port data bus (including the HPD pins in 16-bit  
output mode) are marked with code 00H.  
The output interface consists of a FIFO for video and for  
sliced text data, an arbitration circuit, which controls the  
mixed transfer of video and sliced text data over the I port,  
and a decoding and multiplexing unit, which generates the  
8 or 16-bit wide output data stream together with the  
accompanying reference and help information.  
The output interface also arbitrates the transfer between  
scaled video data and sliced text data over the I port  
output.  
The clock for the output interface can be derived from an  
internal clock, decoder, expansion port or an externally  
provided clock which is appropriate, for example, for the  
VGA and frame buffer. The clock can be up to 33 MHz.  
The scaler provides the following video related timing  
reference events (signals), which are available on pins as  
defined by subaddresses 84H and 85H:  
The bits VITX1 and VITX0 (subaddress 86H) are used to  
control the arbitration.  
The serialization of the internal 32-bit Dwords to 8-bit or  
16-bit output (optional), as well as the insertion of the  
extended ITU 656 codes (SAV/EAV for video data, ANC or  
SAV/EAV codes for sliced text data) are also done here.  
For handshaking with the VGA controller, or other memory  
or bus interface circuitry, programmable FIFO flags are  
provided; see Section 9.5.2.  
Output field ID  
Start and end of vertical active video range  
Start and end of active video line  
Data qualifier or gated clock  
Actually activated programming page (if CONLH is  
used)  
Threshold controlled FIFO filling flags (empty, full, filled)  
Sliced data marker.  
2004 Jun 29  
71  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.5.1  
SCALER OUTPUT FORMATTER  
(SUBADDRESSES 93H AND C3H)  
FSI[2:0] defines the horizontal packing of the data,  
FOI[1:0] defines how many Y only lines are expected  
before a Y/C line will be formatted. If FYSK is set to logic 0  
preceding Y only lines will be skipped, and the output will  
always start with a Y/C line.  
The output formatter organizes the packing into the output  
FIFO. The following formats are available:  
Y-CB-CR 4 : 2 : 2, Y-CB-CR 4 : 1 : 1, Y-CB-CR 4 : 2 : 0,  
Y-CB-CR 4 : 1 : 0, Y only (e.g. for raw samples). The  
formatting is controlled by FSI[2:0] 93H[2:0], FOI[1:0]  
93H[4:3] and FYSK[93H[5]].  
Additionally the output formatter limits the amplitude range  
of the video data (controlled by ILLV[85H[5]]); see  
Table 31.  
The data formats are defined on Dwords, or multiples  
thereof, and are similar to the video formats as  
recommended for PCI multimedia applications (see  
SAA7146A). Planar formats are not supported.  
Table 29 Byte stream for different output formats  
OUTPUT FORMAT  
Y-CB-CR 4 : 2 : 2  
Y-CB-CR 4 : 1 : 1  
Yonly  
BYTE SEQUENCE FOR 8-BIT OUTPUT MODES  
CB0  
CB0  
Y0  
Y0 CR0  
Y0 CR0  
Y1 Y2  
Y1 CB2  
Y1 CB4  
Y3 Y4  
Y2 CR2  
Y2 CR4  
Y5 Y6  
Y3 CB4  
Y3 Y4  
Y7 Y8  
Y4 CR4  
Y5 Y6  
Y5  
Y7  
CB6  
CB8  
Y6  
Y8  
Y9 Y10  
Y11 Y12  
Y13  
Table 30 Explanation to Table 29  
NAME  
EXPLANATION  
CBn  
Yn  
CB (B Y) colour difference component, pixel number n = 0, 2, 4 to 718  
Y (luminance) component, pixel number n = 0, 1, 2, 3 to 719  
CRn  
CR (R Y) colour difference component, pixel number n = 0, 2, 4 to 718  
Table 31 Limiting range on I port  
VALID RANGE  
DECIMAL VALUE HEXADECIMAL VALUE  
SUPPRESSED CODES (HEXADECIMAL VALUE)  
LIMIT STEP  
ILLV[85H[5]]  
LOWER RANGE  
00  
UPPER RANGE  
FF  
0
1
1 to 254  
8 to 247  
01 to FE  
08 to F7  
00 to 07  
F8 to FF  
2004 Jun 29  
72  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.5.2  
VIDEO FIFO (SUBADDRESS 86H)  
The decoded VBI data is collected in the dedicated VBI  
data FIFO. Once the capture of a line is completed, the  
FIFO can be streamed through the image port, preceded  
by a header, giving the line number and standard.  
The video FIFO at the scaler output contains 32 Dwords.  
That corresponds to 64 pixels in 16-bit Y-CB-CR 4 : 2 : 2  
format. But as the entire scaler can act as a pipeline buffer,  
the actually available buffer capacity for the image port is  
much higher, and can exceed beyond a video line.  
The VBI data period can be signalled via the sliced data  
flag on pin IGP0 or IGP1. The decoded VBI data is lead by  
the ITU ancillary data header (DID[5:0] 5DH[5:0] at value  
<3EH) or by SAV/EAV codes selected by DID[5:0] at value  
3EH or 3FH. IGP0 or IGP1 is set if the first byte of the ANC  
header is valid on the I port bus; it is reset if an SAV  
occurs. Therefore it may frame multiple lines of text data  
output, in case the video processing starts with a distance  
of several video lines to the region of text data. Valid sliced  
data from the text FIFO is available on the I port as long as  
the IGP0 or IGP1 flag is set and the data qualifier is active  
on pin IDQ.  
The image port and the video FIFO, can operate with the  
video source clock (synchronous mode) or with an  
externally provided clock (asynchronous, and burst mode),  
as appropriate for the VGA controller or attached frame  
buffer.  
The video FIFO provides 4 internal flags, which report to  
what extent the FIFO is actually filled. These are:  
The FIFO Almost Empty (FAE) flag  
The FIFO Combined (FC) flag or FIFO filled, which is set  
at almost full level and reset, with hysteresis, only after  
the level crosses below the almost empty mark  
The decoded VBI data is presented in two different data  
formats, controlled by bit RECODE.  
RECODE = 1: values 00H and FFH will be recoded to  
even parity values 03H and FCH  
The FIFO Almost Full (FAF) flag  
The FIFO Overflow (FOVL) flag.  
RECODE = 0: values 00H and FFH may occur in the  
data stream as detected.  
The trigger levels for FAE and FAF are programmable by  
FFL[1:0] 86H[3:2] (16, 24, 28, full) and FEL[1:0] 86H[1:0]  
(16, 8, 4, empty).  
9.5.4  
VIDEO AND TEXT ARBITRATION (SUBADDRESS 86H)  
The state of this flag can be seen on pins IGP0 or IGP1.  
The pin mapping is defined by subaddresses 84H  
and 85H; see Section 10.5.  
Sliced text data and scaled video data are transferred over  
the same bus, the I port. The mixed transfer is controlled  
by an arbitration circuit. If the video data is transferred  
without any interrupt and the video FIFO does not need to  
buffer any output pixel, the text data is inserted after the  
end of a scaled video line, normally during the video  
blanking interval.  
9.5.3  
TEXT FIFO  
The data of the terminal VBI data slicer is collected in the  
text FIFO before transmission over the I port is requested  
(normally before the video window starts) and partitioned  
into two FIFO sections. A complete line is fed into the FIFO  
before a data transfer is requested. So normally, one line  
of text data is ready for transfer while the next text line is  
collected. Thus sliced text data is delivered as a block of  
qualified data, without any qualification gaps in the byte  
stream of the I port.  
2004 Jun 29  
73  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.5.5  
DATA STREAM CODING AND REFERENCE SIGNAL  
GENERATION (SUBADDRESSES 84H, 85H AND 93H)  
If ITU 656 like codes are not required, they can be  
suppressed in the output stream.  
As horizontal and vertical reference signals are logic 1,  
active gate signals are generated, which frame the transfer  
of the valid output data. Alternatively, the horizontal and  
vertical trigger pulses can be generated on the rising  
edges of the gates.  
As a further option, it is possible to provide the scaler with  
an external gating signal on pin ITRDY. It is therefore  
possible to hold the data output for a certain time and to  
get valid output data in bursts of a guaranteed length.  
The sketched reference signals and events can be  
mapped to the I port output pins IDQ, IGPH, IGPV, IGP0  
and IGP1. The polarities of all the outputs can be modified  
to enable flexible use. The default polarity for the qualifier  
and reference signals is logic 1 (active).  
Due to the dynamic FIFO behaviour of the complete scaler  
path, the output signal timing has no fixed timing  
relationship to the real-time input video stream. Thus fixed  
propagation delays, in terms of clock cycles, related to the  
analog input can not be defined.  
Table 32 shows the relevant and supported SAV and EAV  
coding.  
The data stream is accompanied by a data qualifier.  
Additionally invalid data cycles are marked with code 00H.  
Table 32 SAV/EAV codes on the I port  
SAV/EAV CODES ON I PORT(1) (HEX)  
MSB(2) OF SAV/EAV BYTE = 0 MSB(2) OF SAV/EAV BYTE = 1  
EVENT DESCRIPTION  
COMMENT  
FIELD ID = 0  
FIELD ID = 1  
FIELD ID = 0  
FIELD ID = 1  
Next pixel is FIRST pixel of any  
active line  
0E  
49  
80  
C7  
HREF = active;  
VREF = active  
Previous pixel was LAST pixel  
of any active line, but not the  
last  
13  
54  
9D  
DA  
HREF = inactive;  
VREF = active  
Next pixel is FIRST pixel of any  
V-blanking line  
25  
38  
62  
7F  
AB  
B6  
EC  
F1  
HREF = active;  
VREF = inactive  
Previous pixel was LAST pixel  
of the last active line or of any  
V-blanking line  
HREF = inactive;  
VREF = inactive  
No valid data, do not capture  
and do not increment pointer  
00  
IDQ pin inactive  
Notes  
1. The leading byte sequence is: FFH-00H-00H.  
2. The MSB of the SAV/EAV code byte is controlled by:  
a) Scaler output data: task A MSB = CONLH[90H[7]]; task B  
b) VBI data slicer output data: DID[5:0] 5DH[5:0] = 3EH  
MSB = CONLH[C0H[7]].  
MSB = 1; DID[5:0] 5DH[5:0] = 3FH  
MSB = 0.  
2004 Jun 29  
74  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
invalid data  
or  
timing reference code  
internal header  
sliced data  
and filling data  
DDC_3 DDC_4 CS BC  
timing reference code  
invalid data  
00  
end of raw VBI line  
00 00  
00 EAV  
...  
...  
FF 00 00 SAV SDID DC IDI1 IDI2  
D
1_3  
D
1_4  
D
2_1  
...  
FF 00 00 EAV 00  
MHB549  
D
1_1  
D
1_2  
...  
FF  
00  
ANC data output is only filled up  
to the Dword boundary  
ANC header  
00 FF  
internal header  
FF DID SDID DC IDI1 IDI2  
sliced data  
...  
D
1_3  
D
1_4  
... DDC_3 DDC_4 CS BC  
00  
00  
ANC header active for DID (subaddress 5DH) <3EH  
Fig.39 Sliced data formats on the I port in 8-bit mode.  
Table 33 Explanation to Fig.39  
NAME  
EXPLANATION  
SAV  
start of active data; see Table 34  
SDID sliced data identification: NEP(1), EP(2), SDID5 to SDID0, freely programmable via I2C-bus subaddress 5EH, bits 5 to 0, e. g. to be used as  
source identifier  
DC  
Dword count: NEP(1), EP(2), DC5 to DC0. DC describes the number of succeeding 32-bit words:  
For SAV/EAV mode DC is fixed to 11 Dwords (byte value 4BH)  
For ANC mode it is: DC = 14(C + n), where C = 2 (the two data identification bytes IDI1 and IDI2) and n = number of decoded bytes  
according to the chosen text standard.  
Note that the number of valid bytes inside the stream can be seen in the BC byte.  
IDI1  
IDI2  
Dn_m  
internal data identification 1: OP(3), FID (field 1 = 0, field 2 = 1), LineNumber8 to LineNumber3 = Dword 1 byte 1; see Table 34  
internal data identification 2: OP(3), LineNumber2 to LineNumber0, DataType3 to DataType0 = Dword 1 byte 2; see Table 34  
Dword number n, byte number m  
DDC_4 last Dword byte 4, note: for SAV/EAV framing DC is fixed to 0BH, missing data bytes are filled up; the fill value is A0H  
CS  
the check sum byte, the check sum is accumulated from the SAV (respectively DID) byte to the DDC_4 byte  
number of valid sliced bytes counted from the IDI1 byte  
BC  
EAV  
end of active data; see Table 34  
Notes  
1. Inverted EP (bit 7); for EP see note 2.  
2. Even parity (bit 6) of bits 5 to 0.  
3. Odd parity (bit 7) of bits 6 to 0.  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 34 Bytes stream of the data slicer  
NICK  
NAME  
COMMENT  
subaddress  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
DID,  
SAV,  
EAV  
NEP(1)  
NEP  
1
EP(2)  
0
1
0
FID(3)  
I1(4)  
I0(4)  
5DH = 00H  
subaddress 5DH;  
bit 5 = 1  
EP  
FID(3)  
FID(3)  
EP  
0
D4[5DH] D3[5DH] D2[5DH] D1[5DH] D0[5DH]  
subaddress 5DH  
bit 5 = 3EH; note 5  
V(6)  
V(6)  
H(7)  
H(7)  
P3  
P3  
P2  
P2  
P1  
P1  
P0  
P0  
subaddress 5DH  
bit 5 = 3FH; note 5  
0
SDID  
programmable via  
subaddress 5EH  
NEP  
D5[5EH] D4[5EH] D3[5EH] D2[5EH] D1[5EH] D0[5EH]  
DC(8)  
IDI1  
IDI2  
CS  
NEP  
OP(9)  
OP  
EP(2)  
FID(3)  
LN2(10) LN1(10)  
DC5  
LN8(10)  
DC4  
LN7(10)  
LN0(10)  
CS4  
DC3  
LN6(10)  
DT3(11)  
CS3  
DC2  
LN5(10)  
DT2(11)  
CS2  
DC1  
LN4(10)  
DT1(11)  
CS1  
DC0  
LN3(10)  
DT0(11)  
CS0  
check sum byte  
valid byte count  
CS6  
OP  
CS6  
0
CS5  
BC  
CNT5  
CNT4  
CNT3  
CNT2  
CNT1  
CNT0  
Notes  
1. NEP = inverted EP (see note 2).  
2. EP = Even Parity of bits 5 to 0.  
3. FID = 0: field 1; FID = 1: field 2.  
4. I1 = 0 and I0 = 0: before line 1; I1 = 0 and I0 = 1: lines 1 to 23; I1 = 1 and I0 = 0: after line 23; I1 = 1 and I0 = 1:  
line 24 to end of field.  
5. Subaddress 5DH at 3EH and 3FH are used for ITU 656 like SAV/EAV header generation; recommended value.  
6. V = 0: active video; V = 1: blanking.  
7. H = 0: start of line; H = 1: end of line.  
8. DC = Data Count in Dwords according to the data type.  
9. OP = Odd Parity of bits 6 to 0.  
10. LN = Line Number.  
11. DT = Data Type according to table.  
2004 Jun 29  
76  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.6  
Audio clock generation  
(subaddresses 30H to 3FH)  
Audio master Clocks Per Field, ACPF[17:0] 32H[1:0]  
31H[7:0] 30H[7:0] according to the equation:  
audio frequency  
field frequency  
The SAA7108AE; SAA7109AE incorporates the  
generation of a field-locked audio clock, as an auxiliary  
function for video capture. An audio sample clock, that is  
locked to the field frequency, ensures that there is always  
the same predefined number of audio samples associated  
with a field, or a set of fields. This ensures synchronous  
playback of audio and video after digital recording (e.g.  
capture to hard disk), MPEG or other compression or  
non-linear editing.  
ACPF[17:0] = round  
------------------------------------------  
Audio master Clocks Nominal Increment, ACNI[21:0]  
36H[5:0] 35H[7:0] 34H[7:0] according to the equation:  
audio frequency  
ACNI[21:0] = round  
× 223  
--------------------------------------------  
crystal frequency  
See Table 35 for examples.  
Remark: For standard applications the synthesized audio  
clock AMCLK can be used directly as master clock and as  
input clock for port AMXCLK (short cut) to generate  
ASCLK and ALRCLK. For high-end applications it is  
recommended to use an external analog PLL circuit to  
enhance the performance of the generated audio clock.  
9.6.1  
MASTER AUDIO CLOCK  
The audio clock is synthesized from the same crystal  
frequency as the line-locked video clock is generated. The  
master audio clock is defined by the parameters:  
Table 35 Programming examples for audio master clock generation  
CRYSTAL  
FREQUENCY  
(MHz)  
ACPF  
ACNI  
FIELD  
(Hz)  
DECIMAL  
HEX  
DECIMAL  
HEX  
AMCLK = 256 × 48 kHz (12.288 MHz)  
50  
245760  
3C000  
3210190  
30FBCE  
32.11  
59.94  
205005  
320CD  
3210190  
30FBCE  
50  
24.576  
59.94  
AMCLK = 256 × 44.1 kHz (11.2896 MHz)  
50  
225792  
188348  
225792  
188348  
37200  
2DFBC  
37200  
2949362  
2949362  
3853517  
3853517  
2D00F2  
2D00F2  
3ACCCD  
3ACCCD  
32.11  
59.94  
50  
24.576  
59.94  
2DFBC  
AMCLK = 256 × 32 kHz (8.192 MHz)  
50  
163840  
136670  
163840  
136670  
28000  
215DE  
28000  
215DE  
2140127  
2140127  
2796203  
2796203  
20A7DF  
20A7DF  
2AAAAB  
2AAAAB  
32.11  
59.94  
50  
24.576  
59.94  
2004 Jun 29  
77  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
9.6.2  
SIGNALS ASCLK AND ALRCLK  
Two binary divided signals ASCLK and ALRCLK are provided for slower serial digital audio signal transmission and for  
channel-select. The frequencies of these signals are defined by the parameters:  
fAMXCLK  
f
SDIV[5:0] 38H[5:0] according to the equation: fASCLK  
=
SDIV[5:0] = AMXCLK 1  
-------------------------------------  
-------------------  
(SDIV + 1) × 2  
2fASCLK  
fASCLK  
fASCLK  
----------------------  
2fALRCLK  
LRDIV[5:0] 39H[5:0] according to the equation: fALRCLK  
=
LRDIV[5:0] =  
--------------------------  
LRDIV × 2  
See Table 36 for examples.  
Table 36 Programming examples for ASCLK/ALRCLK clock generation  
SDIV  
LRDIV  
AMXCLK  
(MHz)  
ASCLK  
(kHz)  
ALRCLK  
(kHz)  
DECIMAL  
HEX  
DECIMAL  
HEX  
1536  
768  
3
7
3
1
3
1
03  
07  
03  
01  
03  
01  
16  
8
10  
08  
10  
10  
10  
10  
12.288  
11.2896  
8.192  
48  
1411.2  
2822.4  
1024  
16  
32  
16  
32  
44.1  
32  
2048  
9.6.3  
OTHER CONTROL SIGNALS  
Further control signals are available to define reference clock edges and vertical references; see Table 37.  
Table 37 Control signals  
CONTROL  
DESCRIPTION  
SIGNAL  
APLL[3AH[3]] Audio PLL mode:  
0: PLL closed  
1: PLL open  
AMVR[3AH[2]] Audio Master clock Vertical Reference:  
0: internal vertical reference  
1: external vertical reference  
LRPH[3AH[1]] ALRCLK Phase:  
0: invert ASCLK, ALRCLK edges triggered by falling edge of ASCLK  
1: do not invert ASCLK, ALRCLK edges triggered by rising edge of ASCLK  
SCPH[3AH[0]] ASCLK Phase:  
0: invert AMXCLK, ASCLK edges triggered by falling edge of AMXCLK  
1: do not invert AMXCLK, ASCLK edges triggered by rising edge of AMXCLK  
2004 Jun 29  
78  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
10 INPUT/OUTPUT INTERFACES AND PORTS OF  
DIGITAL VIDEO DECODER PART  
10.1 Analog terminals  
The SAA7108AE; SAA7109AE has 6 analog inputs  
AI21 to AI24, AI11 and AI12 (see Table 38) for composite  
video CVBS or S-video Y/C signal pairs. Additionally, there  
are two differential reference inputs, which must be  
connected to ground via a capacitor equivalent to the  
decoupling capacitors at the 6 inputs. There are no  
peripheral components required other than the decoupling  
capacitors and 18 /56 termination resistors, one set  
per connected input signal (see also application example  
in Fig.53). Two anti-alias filters are integrated, and self  
adjusting via the clock frequency.  
The SAA7108AE; SAA7109AE has 5 different I/O  
interfaces. These are:  
Analog video input interface, for analog CVBS and/or  
Y and C input signals  
Audio clock port  
Digital real-time signal port (RT port)  
Digital video expansion port (X port), for unscaled digital  
video input and output  
Digital image port (I port) for scaled video data output  
and programming  
Clamp and gain control for the two ADCs are also  
integrated. An analog video output pin (AOUT) is provided  
for testing purposes.  
Digital host port (H port) for extension of the image port  
or expansion port from 8 to 16-bit.  
Table 38 Analog pin description  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
BIT  
AI24 to AI21  
P6, P7, P9  
and P10  
I
analog video signal inputs, e.g. 2 CVBS signals and MODE3 to MODE0  
two Y/C pairs can be connected simultaneously  
AI12 and AI11 P11 and P13  
AOUT M10  
O
I
analog video output, for test purposes  
AOSL1 and AOSL0  
AI1D and AI2D P12 and P8  
analog reference pins for differential ADC operation  
10.2 Audio clock signals  
The SAA7108AE; SAA7109AE also synchronizes the audio clock and sampling rate to the video frame rate, via a very  
slow PLL. This ensures that the multimedia capture and compression processes always gather the same predefined  
number of samples per video frame.  
An audio master clock AMCLK and two divided clocks, ASCLK and ALRCLK, are generated; see Table 39.  
ASCLK: can be used as audio serial clock  
ALRCLK: audio left/right channel clock.  
The ratios are programmable; see Section 9.6.  
Table 39 Audio clock pin description  
SYMBOL PIN I/O  
DESCRIPTION  
BIT  
AMCLK  
K12  
O
I
audio master clock output  
ACPF[17:0] 32H[1:0] 31H[7:0] 30H[7:0]  
and ACNI[21:0] 36H[5:0] 35H[7:0]  
34H[7:0]  
AMXCLK J12  
external audio master clock input for the clock  
division circuit, can be directly connected to  
output AMCLK for standard applications  
ASCLK  
K14  
O
O
serial audio clock output, can be synchronized to SDIV[5:0] 38H[5:0] and SCPH[3AH[0]]  
rising or falling edge of AMXCLK  
ALRCLK J13  
audio channel (left/right) clock output, can be  
synchronized to rising or falling edge of ASCLK  
LRDIV[5:0] 39H[5:0] and LRPH[3AH[1]]  
2004 Jun 29  
79  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
10.3 Clock and real-time synchronization signals  
The Line-Locked Clock (LLC) is the double pixel clock at a  
nominal 27 MHz. It is locked to the selected video input,  
generating baseband video pixels according to “ITU  
recommendation 601”. In order to support interfacing  
circuits, a direct pixel clock LLC2 is also provided.  
A crystal accurate frequency reference is required for the  
generation of the line-locked video (pixel) clock LLC, and  
the frame-locked audio serial bit clock. An oscillator is  
built-in, for fundamental or 3rd-harmonic crystals. The  
supported crystal frequencies are 32.11 or 24.576 MHz  
(defined during reset by strapping pin ALRCLK).  
The pins for line and field timing reference signals are  
RTCO, RTS1 and RTS0. Various real-time status  
information can be selected for the RTS pins. The signals  
are always available (output) and reflect the  
synchronization operation of the decoder part in the  
SAA7108AE; SAA7109AE. The function of the RTS1 and  
RTS0 pins can be defined by bits RTSE1[3:0] 12H[7:4] and  
RTSE0[3:0] 12H[3:0]; see Table 40.  
Alternatively pins XTALId and XTALIe can be driven from  
an external single-ended oscillator.  
The crystal oscillation can be propagated as clock to other  
ICs in the system via pin XTOUTd.  
Table 40 Clock and real-time synchronization signals  
SYMBOL PIN  
I/O  
DESCRIPTION  
BIT  
Crystal oscillator  
XTALId  
P2  
P3  
P4  
I
input for crystal oscillator, or reference clock  
output of crystal oscillator  
XTALOd  
XTOUTd  
O
O
reference (crystal) clock output drive (optional)  
XTOUTE[14H[3]]  
Real-time signals (RT port)  
LLC  
M14  
O
line-locked clock; nominal 27 MHz, double pixel clock locked to the  
selected video input signal  
LLC2  
L14  
L13  
O
O
line-locked pixel clock; nominal 13.5 MHz  
RTCO  
real-time control output; transfers real-time status information  
supporting RTC level 3.1 (see external document “RTC Functional  
Description”, available on request)  
RTS0  
RTS1  
K13  
L10  
O
O
real-time status information line 0; can be programmed to carry  
various real-time informations; see Table 171  
RTSE0[3:0] 12H[3:0]  
RTSE1[3:0] 12H[7:4]  
real-time status information line 1; can be programmed to carry  
various real-time informations; see Table 172  
2004 Jun 29  
80  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
10.4 Video expansion port (X port)  
As output, these are direct copies of the decoder signals.  
The expansion port is intended for transporting video  
streams of image data from other digital video circuits such  
as MPEG encoder/decoder and video phone codec, to the  
image port (I port); see Table 41.  
The data transfers through the expansion port represent a  
single D1 port, with half duplex mode. The SAV and EAV  
codes may be inserted optionally for data input (controlled  
by bit XCODE[92H[3]]). The input/output direction is  
switched for complete fields only.  
The expansion port consists of two groups of signals/pins:  
8-bit data, I/O, regular video components Y-CB-CR  
4 : 2 : 2, i.e. CB-Y-CR-Y, byte serial, exceptionally raw  
video samples (e.g. ADC test). In input mode the data  
bus can be extended to 16-bit by pins HPD7 to HPD0.  
Clock, synchronization and auxiliary signals,  
accompanying the data stream, I/O.  
Table 41 Signals dedicated to the expansion port  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
BIT  
XPD7 to  
XPD0  
K2, K3,  
L1 to L3,  
M1, M2  
and N1  
I/O  
X port data: in output mode controlled by decoder OFTS[2:0] 13H[2:0], 91H[7:0]  
section, for data format see Table 42; in input  
mode Y-CB-CR 4 : 2 : 2 serial input data or  
luminance part of a 16-bit Y-CB-CR 4 : 2 : 2 input  
and C1H[7:0]  
XCLK  
M3  
I/O  
clock at expansion port: if output, then copy of  
LLC; as input normally a double pixel clock of up  
to 32 MHz or a gated clock (clock gated with a  
qualifier)  
XCKS[92H[0]]  
XDQ  
M4  
N3  
I/O  
O
data valid flag of the expansion port input  
(qualifier): if output, then decoder (HREF and  
VGATE) gate (see Fig.32)  
XRDY  
data request flag = ready to receive, to work with XRQT[83H[2]]  
optional buffer in external device, to prevent  
internal buffer overflow;  
second function: input related task flag A/B  
XRH  
XRV  
XTRI  
N2  
L5  
K1  
I/O  
I/O  
I
horizontal reference signal for the X port: as  
output: HREF or HS from the decoder (see  
Fig.32); as input: a reference edge for horizontal  
input timing and a polarity for input field ID  
detection can be defined  
XRHS[13H[6]], XFDH[92H[6]]  
and XDH[92H[2]]  
vertical reference signal for the X port: as output: XRVS[1:0] 13H[5:4],  
V123 or field ID from the decoder,  
see Figs 30 and 31; as input: a reference edge for 92H[5:4]  
vertical input timing and for input field ID detection  
can be defined  
XFDV[92H[7]] and XDV[1:0]  
port control: switches X port input to 3-state  
XPE[1:0] 83H[1:0]  
2004 Jun 29  
81  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
10.4.1 X PORT CONFIGURED AS OUTPUT  
Raw samples (data types 0 to 5 and 7 to 14): CB-CR  
samples are similar to data type 6, but CVBS samples  
are transferred instead of processed luminance samples  
within the Y time slots.  
If the data output is enabled at the expansion port, then the  
data stream from the decoder is present. The data format  
of the 8-bit data bus is dependent on the chosen data type  
which is selectable by the line control registers LCR2  
to LCR24; see Table 17. In contrast to the image port, the  
sliced data format is not available on the expansion port.  
Instead, raw CVBS samples are always transferred if any  
sliced data type is selected.  
The amplitude and offset of the CVBS signal is  
programmable via RAWG7 to RAWG0 and  
RAWO7 to RAWO0, see Chapter 18,  
Tables 178 and 179. For nominal levels see Fig.27.  
The relationship of LCR programming to line numbers is  
described in Section 9.2; see Tables 18 to 21.  
Details of some of the data types on the expansion port are  
as follows:  
The data type selections by LCR are overruled by setting  
OFTS2 = 1 (subaddress 13H bit 2). This setting is mainly  
intended for device production testing. The VPO-bus  
carries the upper or lower 8 bits of the two ADCs  
depending on the OFTS[1:0] 13H[1:0] settings; see  
Table 173. The output configuration is done via  
MODE[3:0] 02H[3:0] settings; see Table 155. If a Y/C  
mode is selected, the expansion port carries the  
multiplexed output signals of both ADCs, in CVBS mode  
the output of only one ADC. No timing reference codes are  
generated in this mode.  
Active video: (data type 15) contains components  
Y-CB-CR 4 : 2 : 2 signal, 720 active pixels per line. The  
amplitude and offsets are programmable via  
DBRI7 to DBRI0, DCON7 to DCON0,  
DSAT7 to DSAT0, OFFU1, OFFU0, OFFV1 and  
OFFV0. For nominal levels see Fig.26.  
Test line: (data type 6) is similar to the active video  
format, with some constraints within the data  
processing:  
– adaptive chrominance comb filter, vertical filter  
(chrominance comb filter for NTSC standards, PAL  
phase error correction) within the chrominance  
processing are disabled  
Remark: The LSBs (bit 0) of the ADCs are also available  
on pin RTS0; see Table 171.  
The SAV/EAV timing reference codes define the start and  
end of valid data regions. The ITU-blanking code  
sequence ‘- 80 - 10 - 80 - 10 -...’ is transmitted during the  
horizontal blanking period, between EAV and SAV.  
– adaptive luminance comb filter, peaking and  
chrominance trap are bypassed within the luminance  
processing.  
This data type is defined for future enhancements. It can  
be activated for lines containing standard test signals  
within the vertical blanking period. Currently most  
sources do not contain test lines. For nominal levels  
see Fig.26.  
The position of the F bit is constant according to ITU 656;  
see Tables 44 and 45.  
The V bit can be generated in two different ways (see  
Tables 44 and 45) controlled via OFTS1 and OFTS0; see  
Table 173.  
F and V bits change synchronously with the EAV code.  
Table 42 Data format on the expansion port  
TIMING  
REFERENCE  
CODE (HEX)(1)  
TIMING  
BLANKING  
REFERENCE  
PERIOD  
BLANKING  
PERIOD  
720 PIXELS Y-CB-CR 4 : 2 : 2 DATA(2)  
CODE (HEX)(1)  
... 80 10 FF 00 00 SAV CB0 Y0 CR0 Y1 CB2 Y2 ... CR718 Y719 FF 00 00 EAV 80 10 ...  
Notes  
1. The generation of the timing reference codes can be suppressed by setting OFTS[2:0] to ‘010’; see Table 173. In  
this event the code sequence is replaced by the standard ‘- 80 - 10 -’ blanking values.  
2. If raw samples or sliced data are selected by the line control registers (LCR2 to LCR24), the Y samples are replaced  
by CVBS samples.  
2004 Jun 29  
82  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 43 SAV/EAV format on expansion port XPD7 to XPD0  
BIT 6  
(F)  
BIT 5  
(V)  
BIT 4  
(H)  
BIT 3 BIT 2 BIT 1 BIT 0  
(P3) (P2) (P1) (P0)  
BIT 7  
1
field bit  
vertical blanking bit  
VBI: V = 1  
format  
reserved; evaluation not  
recommended (protection  
bits according to ITU 656)  
1st field: F = 0  
2nd field: F = 1  
H = 0 in SAV format  
H = 1 in EAV format  
active video: V = 0  
for vertical timing see Tables 44 and 45  
Table 44 525 lines/60 Hz vertical timing  
V
LINE NUMBER  
F (ITU 656)  
OFTS[2:0] = 000 (ITU 656)  
OFTS[2:0] = 001  
1 to 3  
4 to 19  
20  
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
according to selected VGATE position type via  
VSTA and VSTO (subaddresses 15H to 17H);  
see Tables 175 to 177  
21  
22 to 261  
262  
263  
264 and 265  
266 to 282  
283  
284  
285 to 524  
525  
Table 45 625 lines/50 Hz vertical timing  
V
LINE NUMBER  
F (ITU 656)  
OFTS[2:0] = 000 (ITU 656)  
OFTS[1:0] = 10  
1 to 22  
23  
0
0
0
0
0
1
1
1
1
1
1
0
0
0
1
1
0
0
0
1
according to selected VGATE position type via  
VSTA and VSTO (subaddresses 15H to 17H);  
see Tables 175 to 177  
24 to 309  
310  
311 and 312  
313 to 335  
336  
337 to 622  
623  
624 and 625  
2004 Jun 29  
83  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
10.4.2 X PORT CONFIGURED AS INPUT  
The data formats at the image port are defined in Dwords  
of 32 bits (4 bytes), such as the related FIFO structures.  
However, the physical data stream at the image port is  
only 16-bit or 8-bit wide; in 16-bit mode data pins HPD7  
to HPD0 are used for chrominance data. The four bytes of  
the Dwords are serialized in words or bytes.  
If data input mode is selected at the expansion port, then  
the scaler can choose its input data stream from the  
on-chip video decoder, or from the expansion port  
(controlled by bit SCSRC[1:0] 91H[5:4]). Byte serial  
Y-CB-CR 4 : 2 : 2, or subsets for other sampling schemes,  
or raw samples from an external ADC may be input (see  
also bits FSC[2:0] 91H[2:0]). The input data stream must  
be accompanied by an external clock XCLK, qualifier XDQ  
and reference signals XRH and XRV. Instead of the  
reference signal, embedded SAV and EAV codes,  
according to ITU 656, can also be accepted. The  
protection bits are not evaluated.  
The available formats are as follows:  
Y-CB-CR 4 : 2 : 2  
Y-CB-CR 4 : 1 : 1  
Raw samples  
Decoded VBI data.  
For handshaking with the receiving VGA controller, or  
other memory or bus interface circuitry, F, H and V  
reference signals and programmable FIFO flags are  
provided. The information is provided on pins IGP0, IGP1,  
IGPH and IGPV. The function on these pins is controlled  
via subaddresses 84H and 85H.  
XRH and XRV carry the horizontal and vertical  
synchronization signals for the digital video stream  
through the expansion port. The field ID of the input video  
stream is carried in the phase (edge) of XRV and state of  
XRH, or directly as FS (frame sync, odd/even signal) on  
the XRV pin (controlled by XFDV[92H[7]], XFDH[92H[6]]  
and XDV[1:0] 92H[5:4]).  
VBI data is collected over an entire line in its own FIFO and  
transferred as an uninterrupted block of bytes. Decoded  
VBI data can be signed by the VBI flag on pins IGP0 and  
IGP1.  
The trigger events on XRH (rising/falling edge) and XRV  
(rising/falling both edges) for the scalers acquisition  
window are defined by XDV[1:0] 92H[5:4] and  
Because scaled video data and decoded VBI data may  
come from different and asynchronous sources, an  
arbitration scheme is needed. Normally the VBI data slicer  
has priority.  
XDH[92H[2]]. The signal polarity of the qualifier can also  
be defined by bit XDQ[92H[1]]. As an alternative to the  
qualifier, the input clock can be applied to a gated clock  
(clock gated with a data qualifier, controlled by bit  
XCKS[92H[0]]). In this event, all input data will be qualified.  
The image port consists of the pins and/or signals, as  
given in Table 46.  
10.5 Image port (I port)  
For pin constrained applications, or interfaces, the relevant  
timing and data reference signals can also be encoded into  
the data stream. Therefore the corresponding pins do not  
need to be connected. The minimum image port  
configuration requires 9 pins only, i.e. 8 pins for data  
including codes, and 1 pin for clock or gated clock. The  
inserted codes are defined in close relationship to the  
ITU-R BT.656 (D1) recommendation, where possible.  
The image port transfers data from the scaler as well as  
from the VBI data slicer, if selected (maximum 33 MHz).  
The reference clock is available at the ICLK pin as an  
output or as an input (maximum 33 MHz). As an output,  
the ICLK is derived from the line-locked decoder or  
expansion port input clock. The data stream from the  
scaler output is normally discontinuous. Therefore valid  
data during a clock cycle is accompanied by a data  
qualifying (data valid) flag on pin IDQ. For pin constrained  
applications the IDQ pin can be programmed to function as  
a gated clock output (bit ICKS2[80H[2]]).  
2004 Jun 29  
84  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
The following deviations from “ITU 656 recommendation”  
are implemented at the SAA7108AE; SAA7109AEs image  
port interface:  
VBI raw sample streams are enveloped with SAV and  
EAV, like normal video  
Decoded VBI data is transported as Ancillary (ANC)  
SAV and EAV codes are only present in those lines,  
where data is to be transferred, i.e. active video lines, or  
VBI raw samples, no codes for empty lines  
data, two modes:  
– direct decoded VBI data bytes (8-bit) are directly  
placed in the ANC data field, 00H and FFH codes  
may appear in the data block (violation to  
ITU-R BT.656)  
There may be more or less than 720 pixels between  
SAV and EAV  
The data content and number of clock cycles during  
horizontal and vertical blanking is undefined, and may  
be not constant  
– recoded VBI data bytes (8-bit) directly placed in ANC  
data field, 00H and FFH codes will be recoded to  
even parity codes 03H and FCH to suppress invalid  
ITU-R BT.656 codes.  
The data stream may be interleaved with not-valid data  
codes, 00H, but SAV and EAV 4-byte codes are not  
interleaved with not-valid data codes  
There are no empty cycles in the ancillary code or its data  
field. The data codes 00H and FFH are suppressed  
(changed to 01H or FEH respectively) in the active video  
stream, as well as in the VBI raw sample stream (VBI  
pass-through). As an option the number range can be  
limited further.  
There may be an irregular pattern of not-valid data, or  
IDQ, and as a result, ‘CB - Y - CR - Y -’ is not in a fixed  
phase to a regular clock divider  
Table 46 Signals dedicated to the image port  
SYMBOL  
PIN  
I/O  
DESCRIPTION  
BIT  
IPD7 to  
IPD0  
E14, D14,  
C14, B14,  
I/O I port data  
ICODE[93H[7]], ISWP[1:0] 85H[7:6]  
and IPE[1:0] 87H[1:0]  
E13, D13,  
C13 and B13  
ICLK  
IDQ  
H12  
H14  
G12  
I/O continuous reference clock at image port,  
can be input or output, as output decoder  
LLC or XCLK from X port  
ICKS[1:0] 80H[1:0] and IPE[1:0]  
87H[1:0]  
O
data valid flag at image port, qualifier, with ICKS2[80H[2]], IDQP[85H[0]] and  
programmable polarity;  
secondary function: gated clock  
IPE[1:0] 87H[1:0]  
IGPH  
O
horizontal reference output signal, copy of IDH[1:0] 84H[1:0], IRHP[85H[1]] and  
the horizontal gate signal of the scaler, with IPE[1:0] 87H[1:0]  
programmable polarity;  
alternative function: HRESET pulse  
IGPV  
F13  
O
vertical reference output signal, copy of the IDV[1:0] 84H[3:2], IRVP[85H[2]] and  
vertical gate signal of the scaler, with  
programmable polarity;  
IPE[1:0] 87H[1:0]  
alternative function: VRESET pulse  
IGP1  
IGP0  
G13  
F14  
O
O
general purpose output signal for I port  
IDG12[86H[4]], IDG1[1:0] 84H[5:4],  
IG1P[85H[3]] and IPE[1:0] 87H[1:0]  
general purpose output signal for I port  
IDG02[86H[5]], IDG0[1:0] 84H[7:6],  
IG0P[85H[4]] and IPE[1:0] 87H[1:0]  
ITRDY  
ITRI  
J14  
I
I
target ready input signals  
G14  
port control, switches I port into 3-state  
IPE[1:0] 87H[1:0]  
2004 Jun 29  
85  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
10.6 Host port for 16-bit extension of video data I/O (H port)  
The H port, pins HPD, can be used to extend the data I/O paths to 16-bit.  
The I port has functional priority. If I8_16[93H[6]] is set to logic 1 the output drivers of the H port are enabled and are  
dependent on the I port enable control. When I8_16 = 0, the HPD output is disabled.  
Table 47 Signals dedicated to the host port  
SYMBOL  
PIN  
A13, D12, C12, B12, I/O 16-bit extension for digital I/O  
A12, C11, B11 and A11 (chrominance component)  
I/O  
DESCRIPTION  
BIT  
HPD7 to  
HPD0  
IPE[1:0] 87H[1:0], ITRI[8FH[6]] and  
I8_16[93H[6]]  
10.7 Basic input and output timing diagrams for the  
I and X ports  
10.7.2 X PORT INPUT TIMING  
The input timing requirements at the X port are the same  
as those for the I port output. However, the following  
differences should be noted:  
10.7.1 I PORT OUTPUT TIMING  
The following diagrams (Figs 40 to 46) illustrate the output  
timing via the I port. IGPH and IGPV are indicated as  
logic 1 active gate signals. If reference pulses are  
programmed, these pulses are generated on the rising  
edge of the logic 1 active gates. Valid data is accompanied  
by the output data qualifier on pin IDQ. In addition, invalid  
cycles are marked with output code 00H.  
It is not necessary to mark invalid cycles with a 00H  
code  
No constraints on the input qualifier (can be a random  
pattern)  
XCLK may by a gated clock (XCLK AND external XDQ).  
Remark: All timings illustrated are given for an  
uninterrupted output stream (no handshake with the  
external hardware).  
The IDQ output pin may be defined to be a gated clock  
output signal (ICLK AND internal IDQ).  
ICLK  
IDQ  
[
]
C
C
C
C
R
IPD 7:0  
00  
FF  
00  
00  
SAV  
00  
Y
Y
00  
Y
Y
00  
B
R
B
IGPH  
MHB550  
Fig.40 Output timing at the I port for serial 8-bit data at start of a line (ICODE = 1).  
2004 Jun 29  
86  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
ICLK  
IDQ  
[
]
C
C
C
C
R
IPD 7:0  
00  
Y
Y
00  
Y
Y
00  
B
R
B
IGPH  
MHB551  
Fig.41 Output timing at the I port for serial 8-bit data at start of a line (ICODE = 0).  
ICLK  
IDQ  
[
]
C
B
C
R
C
B
C
R
IPD 7:0  
00  
Y
Y
00  
Y
Y
00  
FF  
00  
00  
EAV  
00  
IGPH  
MHB552  
Fig.42 Output timing at the I port for serial 8-bit data at end of a line (ICODE = 1).  
87  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
ICLK  
IDQ  
[
]
C
C
C
C
R
IPD 7:0  
00  
Y
Y
00  
Y
Y
00  
B
R
B
IGPH  
MHB553  
Fig.43 Output timing at the I port for serial 8-bit data at end of a line (ICODE = 0).  
ICLK  
IDQ  
[
]
]
Y
IPD 7:0  
Y
C
00  
00  
FF  
00  
00  
00  
00  
Y0  
Y1  
C
00  
00  
Y2  
Y3  
00  
00  
FF  
00  
00  
00  
00  
n1  
n
[
HPD 7:0  
C
B
C
B
C
R
C
B
SAV  
EAV  
R
R
IGPH  
MHB554  
Fig.44 Output timing for 16-bit data output via the I and H port with codes (ICODE = 1), timing is like 8-bit output,  
but packages of 2 bytes per valid cycle.  
2004 Jun 29  
88  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
IDQ  
IGPH  
IGPV  
MHB555  
Fig.45 Horizontal and vertical gate output timing.  
ICLK  
IDQ  
[
]
]
IPD 7:0  
BC  
BC  
00  
00  
00  
FF  
FF  
00  
FF  
00  
DID  
SDID  
XX  
YY  
ZZ  
CS  
00  
FF  
00  
00  
00  
00  
[
HPD 7:0  
SAV  
EAV  
sliced data  
flag on IGP0  
or IGP1  
MHB733  
Fig.46 Output timing for sliced VBI data in 8-bit serial output mode (dotted graphs for SAV/EAV mode).  
2004 Jun 29  
89  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
11 BOUNDARY SCAN TEST  
The Boundary Scan Test (BST) functions BYPASS,  
EXTEST, INTEST, SAMPLE, CLAMP and IDCODE are all  
supported; see Table 48. Details about the JTAG  
BST-TEST can be found in the specification “IEEE Std.  
1149.1”. Two files containing the detailed Boundary Scan  
Description Language (BSDL) of the SAA7108AE;  
SAA7109AE are available on request.  
The SAA7108AE; SAA7109AE has built-in logic and  
2 times 5 dedicated pins to support boundary scan testing,  
separately for the encoder and decoder part, which allows  
board testing without special hardware (nails). The  
SAA7108AE; SAA7109AE follows the “IEEE Std. 1149.1 -  
Standard Test Access Port and Boundary-Scan  
Architecture” set by the Joint Test Action Group (JTAG)  
chaired by Philips.  
The 10 special pins are Test Mode Select (TMSe and  
TMSd), Test Clock (TCKe and TCKd), Test Reset  
(TRSTe and TRSTd), Test Data Input (TDIe and TDId)  
and Test Data Output (TDOe and TDOd), where extension  
‘e’ refers to the encoder part and extension ‘d’ refers to the  
decoder part.  
Table 48 BST instructions supported by the SAA7108AE; SAA7109AE  
INSTRUCTION  
DESCRIPTION  
BYPASS  
This mandatory instruction provides a minimum length serial path (1 bit) between TDIe (or TDId)  
and TDOe (or TDOd) when no test operation of the component is required.  
EXTEST  
SAMPLE  
This mandatory instruction allows testing of off-chip circuitry and board level interconnections.  
This mandatory instruction can be used to take a sample of the inputs during normal operation of  
the component. It can also be used to preload data values into the latched outputs of the boundary  
scan register.  
CLAMP  
This optional instruction is useful for testing when not all ICs have BST. This instruction addresses  
the bypass register while the boundary scan register is in external test mode.  
IDCODE  
This optional instruction will provide information on the components manufacturer, part number and  
version number.  
INTEST  
USER1  
This optional instruction allows testing of the internal logic (no support for customers available).  
This private instruction allows testing by the manufacturer (no support for customers available).  
11.1 Initialization of boundary scan circuit  
is the possibility to check for the correct ICs mounted after  
production and to determine the version number of the ICs  
during field service.  
The Test Access Port (TAP) controller of an IC should be  
in the reset state (TEST_LOGIC_RESET) when the IC is  
in functional mode. This reset state also forces the  
instruction register into a functional instruction such as  
IDCODE or BYPASS.  
When the IDCODE instruction is loaded into the BST  
instruction register, the identification register will be  
connected between TDIe (or TDId) and TDOe (or TDOd)  
of the IC. The identification register will load a component  
specific code during the CAPTURE_DATA_REGISTER  
state of the TAP controller, this code can subsequently be  
shifted out. At board level this code can be used to verify  
component manufacturer, type and version number. The  
device identification register contains 32 bits, numbered  
31 to 0, where bit 31 is the most significant bit (nearest to  
TDIe or TDId) and bit 0 is the least significant bit (nearest  
to TDOe or TDOd); see Fig.47.  
To solve the power-up reset, the standard specifies that  
the TAP controller will be forced asynchronously to the  
TEST_LOGIC_RESET state by setting the TRSTe or  
TRSTd pin LOW.  
11.2 Device identification codes  
A device identification register is specified in “IEEE Std.  
1149.1b-1994”. It is a 32-bit register which contains fields  
for the specification of the IC manufacturer, the IC part  
number and the IC version number. Its biggest advantage  
2004 Jun 29  
90  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
MSB  
31  
LSB  
28 27  
12 11  
1
0
0111000100000100  
(0111000100010100)  
TDIe  
(or TDId)  
TDOe  
(or TDOd)  
nnnn  
1
00000010101  
4-bit  
version  
code  
16-bit part number  
11-bit manufacturer  
identification  
MBL786  
a. SAA7108AE.  
MSB  
LSB  
31  
28 27  
12 11  
1
0
0111000100000101  
(0111000100010100)  
TDIe  
(or TDId)  
TDOe  
(or TDOd)  
nnnn  
1
00000010101  
4-bit  
version  
code  
16-bit part number  
11-bit manufacturer  
identification  
MBL787  
b. SAA7109AE.  
Fig.47 32 bits of identification code.  
12 LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); all ground pins connected together and  
grounded (0 V); all supply pins connected together.  
SYMBOL  
VDDD  
VDDA  
Vi(A)  
PARAMETER  
digital supply voltage  
CONDITIONS  
MIN.  
0.5  
MAX.  
+4.6  
UNIT  
V
V
V
V
V
V
analog supply voltage  
0.5  
0.5  
0.5  
0.5  
0.5  
+4.6  
input voltage at analog inputs  
+4.6  
Vi(n)  
input voltage at pins XTALI, SDA and SCL  
input voltage at digital inputs or I/O pins  
VDDD + 0.5  
+4.6  
Vi(D)  
outputs in 3-state  
outputs in 3-state;  
note 1  
+5.5  
VSS  
Tstg  
voltage difference between VSSA(n) and VSSD(n)  
storage temperature  
100  
mV  
°C  
°C  
V
65  
0
+150  
70  
Tamb  
Vesd  
ambient temperature  
electrostatic discharge voltage  
human body model;  
note 2  
±2000  
machine model;  
note 3  
±150  
V
Notes  
1. Condition for maximum voltage at digital inputs or I/O pins: 3.0 V < VDDD < 3.6 V.  
2. Class 2 according to EIA/JESD22-114-B.  
3. Class A according to EIA/JESD22-115-A.  
2004 Jun 29  
91  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
13 THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
thermal resistance from junction to ambient  
CONDITIONS  
in free air  
VALUE  
UNIT  
Rth(j-a)  
32(1)  
K/W  
Note  
1. The overall Rth(j-a) value can vary depending on the board layout. To minimize the effective Rth(j-a) all power and  
ground pins must be connected to the power and ground layers directly. An ample copper area direct under the  
SAA7108AE; SAA7109AE with a number of through-hole plating, which connect to the ground layer (four-layer  
board: second layer), can also reduce the effective Rth(j-a). Please do not use any solder-stop varnish under the chip.  
In addition the usage of soldering glue with a high thermal conductance after curing is recommended.  
14 CHARACTERISTICS OF THE DIGITAL VIDEO ENCODER PART  
Tamb = 0 to 70 °C (typical values measured at Tamb = 25 °C); unless otherwise specified.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDDA  
analog supply voltage  
digital supply voltage  
3.15  
3.15  
3.3  
3.45  
3.45  
V
VDDIe  
3.3  
1.1  
1.5  
1.8  
2.5  
3.3  
110  
175  
V
VDD(DVO)  
digital supply voltage  
(DVO)  
1.045  
1.425  
1.71  
2.375  
3.135  
1
1.155  
1.575  
1.89  
V
V
V
2.625  
3.465  
115  
V
V
IDDA  
IDDD  
analog supply current  
digital supply current  
note 1  
note 2  
mA  
mA  
1
200  
Inputs  
VIL  
LOW-level input voltage  
VDD(DVO) = 1.1 V, 1.5 V,  
1.8 V or 2.5 V; note 3  
0.1  
+0.2  
V
V
DD(DVO) = 3.3 V; note 3  
0.5  
0.5  
+0.8  
+0.8  
V
V
pins RESe, TMSe, TCKe,  
TRSTe and TDIe  
VIH  
HIGH-level input voltage VDD(DVO) = 1.1 V, 1.5 V,  
1.8 V or 2.5 V; note 3  
VDD(DVO) 0.2  
VDD(DVO) + 0.1 V  
VDD(DVO) = 3.3 V; note 3  
2
2
VDD(DVO) + 0.3 V  
pins RESe, TMSe, TCKe,  
TRSTe and TDIe  
VDDIe + 0.3  
V
ILI  
Ci  
input leakage current  
10  
10  
10  
10  
µA  
pF  
pF  
pF  
input capacitance  
clocks  
data  
I/Os at high-impedance  
2004 Jun 29  
92  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Outputs  
VOL  
LOW-level output voltage VDD(DVO) = 1.1 V, 1.5 V,  
1.8 V or 2.5 V; note 3  
0
0.1  
V
VDD(DVO) = 3.3 V; note 3  
0
0
0.4  
0.4  
V
V
pins TDOe,  
TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
VOH  
HIGH-level output voltage VDD(DVO) = 1.1 V, 1.5 V,  
1.8 V or 2.5 V; note 3  
VDD(DVO) 0.1  
VDD(DVO)  
V
VDD(DVO) = 3.3 V; note 3  
2.4  
2.4  
VDD(DVO)  
VDDIe  
V
V
pins TDOe,  
TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
I2C-bus; pins SDAe and SCLe  
VIL  
VIH  
Ii  
LOW-level input voltage  
HIGH-level input voltage  
input current  
0.5  
0.7VDDIe  
10  
0.3VDDIe  
VDDIe + 0.3  
+10  
V
V
Vi = LOW or HIGH  
µA  
V
VOL  
LOW-level output voltage IOL = 3 mA  
(pin SDAe)  
0.4  
Io  
output current  
during acknowledge  
3
mA  
Clock timing; pins PIXCLKI and PIXCLKO  
TPIXCLK  
td(CLKD)  
cycle time  
note 4  
note 5  
12  
ns  
ns  
delay from PIXCLKO to  
PIXCLKI  
δ
duty factor tHIGH/TPIXCLK note 4  
40  
40  
50  
50  
60  
%
%
ns  
ns  
duty factor tHIGH/TCLKO2  
rise time  
output  
note 4  
note 4  
60  
tr  
tf  
1.5  
1.5  
fall time  
Input timing  
tSU;DAT  
tHD;DAT  
tSU;DAT  
input data set-up time  
input data hold time  
input data set-up time  
pins PD11 to PD0  
pins PD11 to PD0  
2
ns  
ns  
ns  
0.9  
2
pins HSVGC, VSVGC  
and FSVGC; note 6  
tHD;DAT  
input data hold time  
pins HSVGC, VSVGC  
and FSVGC; note 6  
1.5  
ns  
Crystal oscillator  
fnom  
nominal frequency  
27  
MHz  
106  
f/fnom  
permissible deviation of  
nominal frequency  
note 7  
50  
+50  
2004 Jun 29  
93  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
CRYSTAL SPECIFICATION  
Tamb  
CL  
ambient temperature  
0
70  
°C  
pF  
load capacitance  
series resistance  
8
RS  
80  
1.8  
C1  
motional capacitance  
(typical)  
1.2  
1.5  
fF  
C0  
parallel capacitance  
(typical)  
2.8  
3.5  
4.2  
pF  
Data and reference signal output timing  
CL  
output load capacitance  
8
40  
pF  
ns  
to(h)(gfx)  
output hold time to  
graphics controller  
pins HSVGC, VSVGC,  
FSVGC and CBO  
1.5  
to(d)(gfx)  
to(h)  
output delay time to  
graphics controller  
pins HSVGC, VSVGC,  
FSVGC and CBO  
10  
ns  
ns  
output hold time  
pins TDOe,  
3
TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
to(d)  
output delay time  
pins TDOe,  
25  
ns  
TTXRQ_XCLKO2, VSM  
and HSM_CSYNC  
CVBS and RGB outputs  
Vo(CVBS)(p-p) output voltage CVBS  
(peak-to-peak value)  
see Table 49  
see Table 49  
1.23  
1
V
V
Vo(VBS)(p-p) output voltage VBS  
(S-video)  
(peak-to-peak value)  
Vo(C)(p-p)  
output voltage C  
(S-video)  
(peak-to-peak value)  
see Table 49  
see Table 49  
0.89  
V
Vo(RGB)(p-p) output voltage R, G, B  
(peak-to-peak value)  
0.7  
2
V
Vo  
inequality of output signal  
voltages  
%
RL  
output load resistance  
37.5  
170  
BDAC  
output signal bandwidth  
of DACs  
3 dB; note 8  
MHz  
ILElf(DAC)  
low frequency integral  
linearity error of DACs  
±3  
±1  
LSB  
LSB  
DLElf(DAC)  
low frequency differential  
linearity error of DACs  
2004 Jun 29  
94  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Notes  
1. Minimum value for I2C-bus bit DOWNA = 1.  
2. Minimum value for I2C-bus bit DOWND = 1.  
3. Levels refer to pins PD11 to PD0, FSVGC, PIXCLKI, VSVGC, PIXCLKO, CBO, TVD, and HSVGC, being inputs or  
outputs directly connected to a graphics controller.  
Input sensitivity is 1/2VDD(DVO) + 100 mV for HIGH and 1/2VDD(DVO) 100 mV for LOW.  
The reference voltage 1/2VDD(DVO) is generated on chip.  
4. The data is for both input and output direction.  
5. This parameter is arbitrary, if PIXCLKI is looped through the VGC.  
6. Tested with programming IFBP = 1.  
7. If an internal oscillator is used, crystal deviation of nominal frequency is directly proportional to the deviation of  
subcarrier frequency and line/field frequency.  
1
8. B3 dB  
=
with Cext = 20 pF (typical).  
----------------------------------------------------------  
2π(Ro(L)(Cext + 5 pF))  
15 CHARACTERISTICS OF THE DIGITAL VIDEO DECODER PART  
DDD = 3.0 to 3.6 V; VDDA = 3.1 to 3.5 V; Tamb = 0 to 70 °C (typical values measured at Tamb = 25 °C); timings and levels  
refer to drawings and conditions illustrated in Fig.52; unless otherwise specified.  
V
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDDD  
IDDD  
PD  
digital supply voltage  
digital supply current  
3.15  
3.3  
3.45  
V
X port 3-state; 8-bit I port  
90  
mA  
power dissipation digital  
part  
300  
mW  
VDDA  
IDDA  
analog supply voltage  
analog supply current  
3.15  
3.3  
3.45  
V
AOSL1 and AOSL0 = 0  
CVBS mode  
47  
mA  
Y/C mode  
72  
mA  
PA  
power dissipation analog  
part  
CVBS mode  
150  
240  
450  
540  
5
mW  
mW  
mW  
mW  
mW  
Y/C mode  
Ptot(A+D)  
total power dissipation  
analog and digital part  
CVBS mode  
Y/C mode  
Ptot(A+D)(pd)  
total power dissipation  
analog and digital part in  
Power-down mode  
CE pulled down to ground  
Ptot(A+D)(ps)  
total power dissipation  
analog and digital part in  
power-save mode  
I2C-bus controlled via  
address 88H = 0FH  
75  
mW  
Analog part  
Iclamp  
clamping current  
VI = 0.9 V DC  
±8  
µA  
2004 Jun 29  
95  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SYMBOL  
Vi(p-p)  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
0.7  
MAX.  
UNIT  
input voltage  
(peak-to-peak value)  
for normal video levels  
1 V (p-p), 3 dB  
V
termination 27/47 and  
AC coupling required;  
coupling capacitor = 22 nF  
Zi  
Ci  
αcs  
input impedance  
input capacitance  
channel crosstalk  
clamping current off  
200  
kΩ  
pF  
dB  
10  
fi < 5 MHz  
50  
9-bit analog-to-digital converters  
B
analog bandwidth  
at 3 dB  
7
2
MHz  
deg  
φdiff  
differential phase  
(amplifier plus anti-alias  
filter bypassed)  
Gdiff  
differential gain (amplifier  
plus anti-alias filter  
bypassed)  
2
%
fclk(ADC)  
ADC clock frequency  
12.8  
14.3  
MHz  
LSB  
DLEdc(d)  
DC differential linearity  
error  
0.7  
ILEdc(i)  
DC integral linearity error  
1
LSB  
Digital inputs  
VIL(SDAd,SCLd) LOW-level input voltage  
pins SDAd and SCLd  
0.5  
0.7VDDD  
0.3  
2.0  
+0.3VDDD  
VDDD + 0.5  
+0.8  
V
V
V
V
V
V
VIH(SDAd,SCLd) HIGH-level input voltage  
pins SDAd and SCLd  
VIL(XTALId)  
VIH(XTALId)  
VIL(n)  
LOW-level CMOS input  
voltage pin XTALId  
HIGH-level CMOS input  
voltage pin XTALId  
VDDD + 0.3  
+0.8  
LOW-level input voltage all  
other inputs  
0.3  
2.0  
VIH(n)  
HIGH-level input voltage  
all other inputs  
5.5  
ILI  
input leakage current  
I/O leakage current  
input capacitance  
1
µA  
µA  
pF  
ILI/O  
Ci  
10  
8
I/O at high-impedance  
Digital outputs; note 1  
VOL(SDAd) LOW-level output voltage  
SDAd at 3 mA sink current  
0.4  
V
V
V
pin SDAd  
VOL(clk)  
LOW-level output voltage  
for clocks  
0.5  
2.4  
+0.6  
VOH(clk)  
HIGH-level output voltage  
for clocks  
VDDD + 0.5  
2004 Jun 29  
96  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SYMBOL  
VOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
0.4  
UNIT  
LOW-level output voltage  
all other digital outputs  
0
V
VOH  
HIGH-level output voltage  
all other digital outputs  
2.4  
VDDD + 0.5  
V
Clock output timing (LLC and LLC2); note 2  
CL(LLC)  
Tcy  
output load capacitance  
cycle time  
15  
35  
70  
40  
50  
39  
78  
60  
pF  
ns  
ns  
%
pin LLC  
pin LLC2  
δ
duty factors for tLLCH/tLLC  
and tLLC2H/tLLC2  
CL = 40 pF  
tr  
rise time LLC and LLC2  
fall time LLC and LLC2  
0.2 V to VDDD 0.2 V  
5
ns  
ns  
ns  
tf  
VDDD 0.2 V to 0.2 V  
5
td(LLC-LLC2)  
delay time between LLC  
and LLC2 output  
measured at 1.5 V;  
CL = 25 pF  
4  
+8  
Horizontal PLL  
fH(nom)  
nominal line frequency  
50 Hz field  
60 Hz field  
15625  
15734  
Hz  
Hz  
%
fH/fH(nom)  
permissible static deviation  
5.7  
Subcarrier PLL  
fsc(nom)  
nominal subcarrier  
frequency  
PAL BGHI  
NTSC M  
PAL M  
4433619  
3579545  
3575612  
3582056  
Hz  
Hz  
Hz  
Hz  
Hz  
PAL N  
fsc  
lock-in range  
±400  
Crystal oscillator for 32.11 MHz; note 3  
fxtal(nom)  
nominal frequency  
3rd-harmonic  
32.11  
MHz  
fxtal(nom)  
permissible nominal  
frequency deviation  
±70 × 106  
fxtal(nom)(T)  
permissible nominal  
frequency deviation with  
temperature  
±30 × 106  
CRYSTAL SPECIFICATION (X1)  
Tamb(X1)  
CL  
ambient temperature  
0
8
70  
°C  
pF  
load capacitance  
Rs  
series resonance resistor  
motional capacitance  
parallel capacitance  
40  
80  
C1  
1.5 ±20 % −  
4.3 ±20 % −  
fF  
C0  
pF  
Crystal oscillator for 24.576 MHz; note 3  
fxtal(nom)  
nominal frequency  
3rd-harmonic  
24.576  
MHz  
fxtal(nom)  
permissible nominal  
frequency deviation  
±50 × 106  
2004 Jun 29  
97  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
fxtal(nom)(T)  
permissible nominal  
frequency deviation with  
temperature  
±20 × 106  
CRYSTAL SPECIFICATION (X1)  
Tamb(X1)  
CL  
ambient temperature  
0
8
70  
°C  
load capacitance  
pF  
Rs  
series resonance resistor  
motional capacitance  
parallel capacitance  
40  
80  
C1  
1.5 ±20 % −  
3.5 ±20 % −  
fF  
C0  
pF  
Clock input timing (XCLK)  
Tcy  
δ
cycle time  
31  
40  
45  
ns  
%
duty factors for tLLCH/tLLC  
rise time  
50  
60  
5
tr  
ns  
ns  
tf  
fall time  
5
Data and control signal input timing X port, related to XCLK input  
tSU;DAT  
tHD;DAT  
input data set-up time  
input data hold time  
10  
3
ns  
ns  
Clock output timing  
CL  
Tcy  
δ
output load capacitance  
15  
35  
35  
50  
39  
65  
pF  
ns  
%
cycle time  
duty factors for  
tXCLKH/tXCLKL  
tr  
tf  
rise time  
fall time  
0.6 to 2.6 V  
2.6 to 0.6 V  
5
5
ns  
ns  
Data and control signal output timing X port, related to XCLK output (for XPCK[1:0] 83H[5:4] = 00 is default);  
note 2  
CL  
output load capacitance  
output hold time  
15  
50  
pF  
ns  
ns  
tOHD;DAT  
tPD  
CL = 15 pF  
CL = 15 pF  
14  
24  
propagation delay from  
positive edge of XCLK  
output  
Control signal output timing RT port, related to LLC output  
CL  
output load capacitance  
output hold time  
15  
50  
pF  
ns  
ns  
tOHD;DAT  
tPD  
CL = 15 pF  
CL = 15 pF  
14  
24  
propagation delay from  
positive edge of LLC  
output  
ICLK output timing  
CL  
Tcy  
δ
output load capacitance  
15  
31  
35  
50  
45  
65  
pF  
ns  
%
cycle time  
duty factors for tICLKH/tICLKL  
2004 Jun 29  
98  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SYMBOL  
PARAMETER  
CONDITIONS  
0.6 to 2.6 V  
2.6 to 0.6 V  
MIN.  
TYP.  
MAX.  
UNIT  
ns  
ns  
tr  
tf  
rise time  
fall time  
5
5
Data and control signal output timing I port, related to ICLK output (for IPCK[1:0] 87H[5:4] = 00 is default)  
CL  
output load capacitance at  
all outputs  
15  
50  
pF  
tOHD;DAT  
to(d)  
output data hold time  
output delay time  
CL = 15 pF  
CL = 15 pF  
12  
22  
ns  
ns  
ICLK input timing  
Tcy  
cycle time  
31  
100  
ns  
Notes  
1. The levels must be measured with load circuits; 1.2 kat 3 V (TTL load); CL = 50 pF.  
2. The effects of rise and fall times are included in the calculation of tOHD;DAT and tPD. Timings and levels refer to  
drawings and conditions illustrated in Fig.52.  
3. The crystal oscillator drive level is 0.28 mW (typ.).  
16 TIMING  
16.1 Digital video encoder part  
T
PIXCLK  
t
HIGH  
V
OH  
PIXCLKO  
PIXCLKI  
0.5V  
DD(DVO)  
V
OL  
t
t
r
t
f
d(CLKD)  
V
IH  
0.5V  
DD(DVO)  
V
IL  
t
t
HD;DAT  
HD;DAT  
t
t
SU;DAT  
SU;DAT  
V
IH  
PDn  
V
IL  
t
o(d)  
t
o(h)  
V
OH  
OL  
any output  
V
MBL789  
Fig.48 Input/output timing specification.  
2004 Jun 29  
99  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
HSVGC  
CBO  
PD  
XOFS  
IDEL  
XPIX  
HLEN  
MHB905  
Fig.49 Horizontal input timing.  
HSVGC  
VSVGC  
CBO  
YOFS  
YPIX  
MHB906  
Fig.50 Vertical input timing.  
100  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
16.1.1 TELETEXT TIMING  
Time ti(TTXW) is the internally used insertion window for  
TTX data; it has a constant length that allows insertion of  
360 teletext bits at a text data rate of 6.9375 Mbits/s (PAL),  
296 teletext bits at a text data rate of 5.7272 Mbits/s (world  
standard TTX) or 288 teletext bits at a text data rate of  
5.7272 Mbits/s (NABTS). The insertion window is not  
opened if the control bit TTXEN is zero.  
Time tFD is the time needed to interpolate input data TTX  
and insert it into the CVBS and VBS output signal, such  
that it appears at tTTX = 9.78 µs (PAL) or tTTX = 10.5 µs  
(NTSC) after the leading edge of the horizontal  
synchronization pulse.  
Time tPD is the pipeline delay time introduced by the  
source that is gated by TTXRQ_XCLKO2 in order to  
deliver TTX data. This delay is programmable by register  
TTXHD. For every active HIGH state at output pin  
TTXRQ_XCLKO2, a new teletext bit must be provided by  
the source.  
Using appropriate programming, all suitable lines of the  
odd field (TTXOVS and TTXOVE) plus all suitable lines of  
the even field (TTXEVS and TTXEVE) can be used for  
teletext insertion.  
It is essential to note that the two pins used for teletext  
insertion must be configured for this purpose by the  
correct I2C-bus register settings.  
Since the beginning of the pulses representing the TTXRQ  
signal and the delay between the rising edge of TTXRQ  
and valid teletext input data are fully programmable  
(TTXHS and TTXHD), the TTX data is always inserted at  
the correct position after the leading edge of the outgoing  
horizontal synchronization pulse.  
CVBS/Y  
t
t
TTX  
i(TTXW)  
text bit #:  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
TTX_SRES  
t
t
FD  
PD  
TTXRQ_XCLKO2  
MHB891  
Fig.51 Teletext timing.  
2004 Jun 29  
101  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
16.2 Digital video decoder part  
T
cy  
t
XCLKH  
2.4 V  
1.5 V  
0.6 V  
clock input  
XCLK  
t
t
t
SU;DAT  
f
r
t
HD;DAT  
2.0 V  
0.8 V  
data and  
control inputs  
(X port)  
not valid  
SU;DAT  
t
t
HD;DAT  
2.0 V  
0.8 V  
input  
XDQ  
t
o(d)  
t
OHD;DAT  
2.4 V  
0.6 V  
data and  
control outputs  
X port, I port  
t
t
X(I)CLKL  
X(I)CLKH  
2.6 V  
1.5 V  
0.6 V  
clock outputs  
LLC, LLC2, XCLK, ICLK  
and ICLK input  
t
t
MHB735  
f
r
Fig.52 Data input/output timing diagram (X port, RT port and I port).  
102  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
17 APPLICATION INFORMATION  
V
V
V
V
V
V
(ID11)  
(IF11)  
(IJ4)  
V
V
(EL9)  
(EL7)  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
V
(EG11)  
(ED10)  
DD  
(IJ11)  
(IL4)  
V
DD  
V
(AM8)  
DD  
(IL11)  
V
(AM9)  
DD  
V
(XL8)  
V
(AN11)  
DD  
DD  
R27 0   
R28 0 Ω  
SDA  
SCL  
L12  
SDAd  
SCLd  
M11  
[
]
XPD 0:7  
K2  
K3  
L1  
XPD7  
XPD6  
XPD5  
XPD4  
XPD3  
XPD2  
XPD1  
XPD0  
32.11 MHz  
DDP  
24.576 MHz  
DGND  
XPD7  
XPD6  
XPD5  
XPD4  
XPD3  
XPD2  
XPD1  
XPD0  
V
JP43 fXTAL  
’strapping’  
R12  
L2  
AUDIO2  
L3  
4.7 kΩ  
M1  
M2  
N1  
I2C-BUS_Adr:40H/42H  
[
]
XPCON 0:5  
K1  
L5  
XPCON5  
XPCON4  
XPCON3  
XPCON2  
XPCON1  
XPCON0  
V
DGND  
XTRI  
XRV  
DDP  
JP44  
R13  
N2  
M3  
M4  
N3  
RCON0  
XRH  
4.7 kΩ  
XCLK  
XDQ  
’strapping’  
XRDY  
[
]
HPD 0:7  
A13 HPD7  
D12 HPD6  
C12 HPD5  
B12 HPD4  
A12 HPD3  
C11 HPD2  
B11 HPD1  
A11 HPD0  
HPD7  
HPD6  
HPD5  
HPD4  
HPD3  
HPD2  
HPD1  
HPD0  
C100  
R19  
18 Ω  
R17  
18 Ω  
R16  
18 Ω  
R18  
18 Ω  
P6  
AI24  
AI23  
AI22  
AI21  
AI24  
AI23  
AI22  
AI21  
47 nF  
C97  
P7  
[
]
IPD 0:7  
E14 IPD7  
D14 IPD6  
C14 IPD5  
B14 IPD4  
E13 IPD3  
D13 IPD2  
C13 IPD1  
B13 IPD0  
IPD7  
IPD6  
IPD5  
IPD4  
IPD3  
IPD2  
IPD1  
IPD0  
47 nF  
C98  
P9  
47 nF  
C99  
P10  
P8  
47 nF  
C109  
[
]
IPCON 0:7  
AI2D  
AI12  
AI11  
AI1D  
G14 IPCON7  
F13 IPCON6  
G12 IPCON5  
G13 IPCON4  
F14 IPCON3  
H12 IPCON2  
H14 IPCON1  
J14 IPCON0  
SAA7108AE  
SAA7109AE  
47 nF  
C101  
ITRI  
IGPV  
IGPH  
IGP1  
IGP0  
ICLK  
IDQ  
R15  
18 Ω  
R20  
P11  
P13  
P12  
AI12  
AI11  
47 nF  
C102  
18 Ω  
47 nF  
C110  
R21  
56 Ω  
R22  
56 Ω  
R23  
56 Ω  
R24  
56 Ω  
R25  
56 Ω  
R26  
56 Ω  
ITRDY  
[
]
AUDIO 0:3  
J12 AUDIO3  
J13 AUDIO2  
K14 AUDIO1  
K12 AUDIO0  
47 nF  
AMXCLK  
ALRCLK  
ASCLK  
AGND  
AMCLK  
R29  
M10  
[
]
RCON 0:2  
AOUT  
AOUT  
L10 RCON2  
K13 RCON1  
L13 RCON0  
0 Ω  
RTS1  
RTS0  
RTCO  
R37 33 Ω  
R38 33 Ω  
L14  
LLC2  
LLC  
LLC2  
LLC  
M14  
M12  
N14  
RESd  
CE  
RES  
R47  
V
DDP  
open  
M5  
M6  
N4  
N6  
N5  
BSC0  
BSC1  
BSC2  
TMSd  
TCLKd  
TRSTd  
TDId  
JP45  
CE_Dec.  
V
V
V
(AM8)  
DD  
DD  
DD  
[
]
BSC 0:2  
(AM9)  
TDI_D  
TDO_D  
DGND  
(AN11)  
TDOd  
V
V
V
V
V
V
V
V
V
V
V
(EL9)  
(EL7)  
(EG11)  
(ED10)  
(ID11)  
(IF11)  
(IJ4)  
J2  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
TEST5  
TEST4  
TEST3  
TEST2  
TEST1  
TEST0  
TEST5  
TEST4  
TEST3  
TEST2  
TEST1  
TEST0  
J1  
J3  
C10  
B10  
H13  
P4  
P3  
P2  
(IJ11)  
(IL4)  
XTOUTd  
XTALOd  
XTALId  
XTOUT  
(IL11)  
(XL8)  
Y1  
24.576  
MHz  
L34  
10 µH  
C55 C53 C54  
C52 C48 C51 C49 C50 C60 C56 C59 C57 C58 C61  
100 100 100 100 100 100 100 100 100 100 100  
C107  
1 nF  
C103  
10 pF  
C104  
10 pF  
100 100 100  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
nF  
L36  
ferrite  
R49  
AGND  
DGND  
DXGND  
open  
AGND  
DGND  
DXGND  
open  
3PAD  
0 Ω  
AGND  
DGND  
DGND  
AGND  
MBL790  
Fig.53 Application circuit (decoder part).  
103  
2004 Jun 29  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
+3.3 V digital  
+3.3 V analog  
0.1 µF  
AGND  
1 nF  
10 pF  
AGND  
use one capacitor  
for each V and V  
10 pF  
0.1 µF  
0.1 µF  
0.1 µH  
DGND  
DGND  
27 MHz  
DDAe  
DDXe  
V
and V  
V
V
XTALIe  
A5  
XTALOe  
A6  
DDAe  
DDXe  
D7 VSM  
D8 HSM_CSYNC  
DD(DVO)  
DDIEe  
A10, B6,  
B9, C9,  
D9 and D6  
F4  
D4  
GREEN_VBS_CVBS  
C7  
C8  
FLTR0  
75 Ω  
75 Ω  
U
U
U
Y
AGND  
AGND AGND  
FLTR1  
digital  
inputs  
and  
RED_CR_C_CVBS  
SAA7108AE  
SAA7109AE  
outputs  
75 Ω  
75 Ω  
C
AGND  
AGND AGND  
FLTR2  
BLUE_CB_CVBS  
C6  
B7  
75 Ω  
75 Ω  
C5, D5, E4  
A8  
B8  
V
A9  
A7  
CVBS  
V
V
RSET  
DUMP  
DUMP  
SSIe  
SSXe  
SSAe  
AGND  
AGND AGND  
1 kΩ  
12 Ω  
MBL784  
DGND  
AGND  
AGND  
AGND  
AGND  
Fig.54 Application circuit (encoder part).  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
C16  
handbook, halfpage  
120 pF  
L2  
L3  
2.7 µH  
2.7 µH  
C10  
C13  
390 pF  
560 pF  
AGND  
JP11  
JP12  
FIN  
FOUT  
FILTER 1  
= byp.  
ll act.  
MHB912  
Fig.55 FLTR0, FLTR1 and FLTR2 as shown in Fig.54.  
2004 Jun 29  
105  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SAA7108AE  
SAA7109AE  
SAA7108AE  
SAA7109AE  
SAA7108AE  
SAA7109AE  
P2  
P3  
XTALOd  
P2  
P3  
P2  
P3  
XTALOd  
XTALId  
XTALId  
XTALOd  
XTALId  
32.11 MHz  
32.11 MHz  
32.11 MHz  
4.7 µH  
1 nF  
15  
pF  
15  
pF  
33  
pF  
33  
pF  
10  
pF  
10  
pF  
MBL796  
(1a) With 3rd-harmonic quartz.  
Crystal load = 8 pF.  
(1b) With fundamental quartz.  
Crystal load = 20 pF.  
(1c) With fundamental quartz.  
Crystal load = 8 pF  
SAA7108AE  
SAA7109AE  
SAA7108AE  
SAA7109AE  
SAA7108AE  
SAA7109AE  
P2  
P3  
XTALOd  
P2  
P3  
XTALOd  
P2  
P3  
XTALId  
XTALId  
XTALId  
XTALOd  
24.576 MHz  
24.576 MHz  
24.576 MHz  
4.7 µH  
1 nF  
18  
pF  
18  
pF  
39  
pF  
39  
pF  
15  
pF  
15  
pF  
MBL795  
(2a) With 3rd-harmonic quartz.  
Crystal load = 8 pF.  
(2b) With fundamental quartz.  
Crystal load = 20 pF.  
(2c) With fundamental quartz.  
Crystal load = 8 pF.  
SAA7108AE  
SAA7109AE  
SAA7108AE  
SAA7109AE  
P2  
P3  
XTALOd  
P2  
P3  
XTALOd  
XTALId  
XTALId  
R
s
32.11 MHz or  
24.576 MHz  
n.c.  
clock  
MBL794  
(3a) With direct clock.  
(3b) With fundamental quartz and restricted drive level. When Pdrive of the internal oscillator  
is too high, a resistance Rs can be placed in series with the oscillator output XTALOd.  
Note: The decreased crystal amplitude results in a lower drive level but on the other hand  
the jitter performance will decrease.  
Fig.56 Oscillator application for decoder part.  
106  
2004 Jun 29  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
SAA7108AE  
SAA7109AE  
SAA7108AE  
SAA7109AE  
A5  
A6  
XTALOe  
A5  
A6  
XTALOe  
XTALIe  
XTALIe  
27.00 MHz  
27.00 MHz  
4.7 µH  
1 nF  
18  
pF  
18  
pF  
39  
pF  
39  
pF  
MBL792  
(1a) With 3rd-harmonic quartz.  
Crystal load = 8 pF.  
(1b) With fundamental quartz.  
Crystal load = 20 pF.  
SAA7108AE  
SAA7109AE  
SAA7108AE  
SAA7109AE  
A5  
A6  
XTALOe  
A5  
A6  
XTALIe  
XTALIe  
XTALOe  
R
s
27.00 MHz  
n.c.  
clock  
MBL793  
(2a) With direct clock.  
(2b) With fundamental quartz and restricted drive level. When Pdrive of the internal oscillator  
is too high, a resistance Rs can be placed in series with the oscillator output XTALOe.  
Note: The decreased crystal amplitude results in a lower drive level but on the other hand  
the jitter performance will decrease.  
Fig.57 Oscillator application for encoder part.  
2004 Jun 29  
107  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
17.1 Reconstruction filter  
By setting the reference currents of the DACs as shown in  
Table 49, standard compliant amplitudes can be achieved  
for all signal combinations; it is assumed that in  
subaddress 16H, parameter DACF = 0000b, that means  
the fine adjustment for all DACs in common is set to 0 %.  
Figure 55 shows a possible reconstruction filter for the  
digital-to-analog converters. Due to its cut-off frequency of  
6 MHz, it is not suitable for HDTV applications.  
17.2 Analog output voltages  
If S-video output is desired, the adjustment for the C  
(chrominance subcarrier) output should be identical to the  
one for VBS (luminance plus sync) output.  
The analog output voltages are dependent on the total  
load (typical value 37.5 ), the digital gain parameters and  
the I2C-bus settings of the DAC reference currents (analog  
settings).  
The digital output signals in front of the DACs under  
nominal (nominal here stands for the settings given in  
Tables 75 to 82 for example a standard PAL or NTSC  
signal) conditions occupy different conversion ranges, as  
indicated in Table 49 for a 100  
100 colour bar signal.  
Table 49 Digital output signals conversion range  
SET/OUT  
CVBS, SYNC TIP-TO-WHITE VBS, SYNC TIP-TO-WHITE  
RGB, BLACK-TO-WHITE  
Digital settings  
Digital output  
Analog settings  
Analog output  
see Tables 75 to 82  
1014  
see Tables 75 to 82  
881  
see Table 70  
876  
e.g. B DAC = 1FH  
1.23 V (p-p)  
e.g. G DAC = 1BH  
1.00 V (p-p)  
e.g. R DAC = G DAC = B DAC = 0BH  
0.70 V (p-p)  
17.3 Suggestions for a board layout  
Use serial resistors in clock, sync and data lines, to avoid  
clock or data reflection effects and to soften data energy.  
Use separate ground planes for analog and digital ground.  
Connect these planes only at one point directly under the  
device, by using a 0 resistor directly at the supply stage.  
Use separate supply lines for the analog and digital supply.  
Place the supply decoupling capacitors close to the supply  
pins.  
The SAA7108AE; SAA7109AE crystal temperature  
depends on the PCB it is soldered on. For normal airflow  
conditions at a maximum ambient temperature of 70 °C it  
will be sufficient to provide:  
PCB dimensions at least 2000 mm2  
Use Lbead (ferrite coil) in each digital supply line close to  
the decoupling capacitors to minimize radiation energy  
(EMC).  
PCB at least 4 layers  
At least 50 vias (connecting PCB layers) close to the  
chip  
Place the analog coupling (clamp) capacitors close to the  
analog input pins. Place the analog termination resistors  
close to the coupling capacitors.  
Metal coverage at least 60 % on at least 2 PCB layers  
near the chip.  
Be careful of hidden layout capacitors around the crystal  
application.  
2004 Jun 29  
108  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
18 I2C-BUS DESCRIPTION  
18.1 Digital video encoder part  
Table 50 Slave receiver bit allocation map (slave address 88H)  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(1)  
(1)  
Status byte (read only)  
Null  
00  
01 to 15  
16  
VER2  
(1)  
VER1  
(1)  
VER0  
(1)  
CCRDO  
CCRDE  
FSEQ  
(1)  
O_E  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Common DAC adjust fine  
R DAC adjust coarse  
G DAC adjust coarse  
B DAC adjust coarse  
MSM threshold  
DACF3  
RDACC3  
GDACC3  
BDACC3  
DACF2  
RDACC2  
GDACC2  
BDACC2  
MSMT2  
RCOMP  
CID2  
DACF1  
RDACC1  
GDACC1  
BDACC1  
MSMT1  
GCOMP  
CID1  
DACF0  
RDACC0  
GDACC0  
BDACC0  
MSMT0  
BCOMP  
CID0  
17  
RDACC4  
GDACC4  
BDACC4  
18  
19  
1A  
MSMT7  
MSM  
MSMT6  
MSA  
MSMT5  
MSOE  
CID5  
MSMT4  
MSMT3  
(1)  
(1)  
Monitor sense mode  
Chip ID (02B or 03B, read only)  
Wide screen signal  
Wide screen signal  
Real-time control, burst start  
Sync reset enable, burst end  
Copy generation 0  
Copy generation 1  
CG enable, copy generation 2  
Output port control  
Null  
1B  
1C  
26  
CID7  
CID6  
CID4  
WSS4  
WSS12  
BS4  
CID3  
WSS3  
WSS11  
BS3  
WSS7  
WSS6  
(1)  
WSS5  
WSS13  
BS5  
WSS2  
WSS10  
BS2  
WSS1  
WSS9  
BS1  
WSS0  
WSS8  
BS0  
27  
WSSON  
(1)  
(1)  
(1)  
28  
29  
SRES  
CG07  
CG15  
CGEN  
BE5  
BE4  
BE3  
BE2  
BE1  
BE0  
2A  
CG06  
CG05  
CG04  
CG03  
CG11  
CG19  
CG02  
CG01  
CG00  
2B  
CG14  
(1)  
CG13  
(1)  
CG12  
(1)  
CG10  
CG09  
CG08  
2C  
2D  
2E to 36  
37  
CG18  
CG17  
CG16  
(1)  
VBSEN  
CVBSEN1 CVBSEN0  
CEN  
(1)  
ENCOFF  
CLK2EN  
CVBSEN2  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Input path control  
YUPSC  
YFIL1  
(1)  
YFIL0  
GY4  
CZOOM  
GY2  
IGAIN  
GY1  
XINT  
GY0  
(1)  
Gain luminance for RGB  
Gain colour difference for RGB  
Input port control 1  
VPS enable, input control 2  
VPS byte 5  
38  
GY3  
(1)  
(1)  
(1)  
(1)  
39  
GCD4  
GCD3  
GCD2  
GCD1  
Y2C  
GCD0  
3A  
CBENB  
VPSEN  
VPS57  
SYNTV  
GPVAL  
VPS55  
SYMP  
DEMOFF  
CSYNC  
UV2C  
(1)  
(1)  
54  
GPEN  
EDGE  
VPS51  
VPS111  
VPS121  
VPS131  
VPS141  
SLOT  
55  
VPS56  
VPS116  
VPS126  
VPS136  
VPS146  
VPS54  
VPS114  
VPS124  
VPS134  
VPS144  
VPS53  
VPS113  
VPS123  
VPS133  
VPS143  
VPS52  
VPS112  
VPS122  
VPS132  
VPS142  
VPS50  
VPS110  
VPS120  
VPS130  
VPS140  
VPS byte 11  
56  
VPS117  
VPS127  
VPS137  
VPS147  
VPS115  
VPS125  
VPS135  
VPS145  
VPS byte 12  
57  
VPS byte 13  
58  
VPS byte 14  
59  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Chrominance phase  
Gain U  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
70  
CHPS7  
GAINU7  
GAINV7  
GAINU8  
GAINV8  
CHPS6  
CHPS5  
GAINU5  
GAINV5  
BLCKL5  
BLNNL5  
CHPS4  
GAINU4  
GAINV4  
BLCKL4  
BLNNL4  
CHPS3  
GAINU3  
GAINV3  
BLCKL3  
BLNNL3  
CHPS2  
GAINU2  
GAINV2  
BLCKL2  
BLNNL2  
CHPS1  
GAINU1  
GAINV1  
BLCKL1  
BLNNL1  
CHPS0  
GAINU0  
GAINV0  
BLCKL0  
BLNNL0  
GAINU6  
Gain V  
GAINV6  
(1)  
Gain U MSB, black level  
Gain V MSB, blanking level  
CCR, blanking level VBI  
Null  
(1)  
CCRS1  
CCRS0  
BLNVB5  
BLNVB4  
BLNVB3  
BLNVB2  
BLNVB1  
BLNVB0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Standard control  
Burst amplitude  
Subcarrier 0  
DOWND  
RTCE  
DOWNA  
BSTA6  
FSC06  
FSC14  
FSC22  
FSC30  
L21O06  
L21O16  
L21E06  
INPI  
YGS  
SCBW  
BSTA2  
FSC02  
FSC10  
FSC18  
FSC26  
L21O02  
L21O12  
L21E02  
PAL  
FISE  
BSTA5  
FSC05  
FSC13  
FSC21  
FSC29  
L21O05  
L21O15  
L21E05  
BSTA4  
FSC04  
FSC12  
FSC20  
FSC28  
L21O04  
L21O14  
L21E04  
BSTA3  
FSC03  
FSC11  
FSC19  
FSC27  
L21O03  
L21O13  
L21E03  
BSTA1  
FSC01  
FSC09  
FSC17  
FSC25  
L21O01  
L21O11  
L21E01  
BSTA0  
FSC00  
FSC08  
FSC16  
FSC24  
L21O00  
L21O10  
L21E00  
FSC07  
FSC15  
FSC23  
FSC31  
L21O07  
L21O17  
L21E07  
Subcarrier 1  
Subcarrier 2  
Subcarrier 3  
Line 21 odd 0  
Line 21 odd 1  
Line 21 even 0  
Line 21 even 1  
Null  
L21E17  
L21E16  
L21E15  
L21E14  
L21E13  
L21E12  
L21E11  
L21E10  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Trigger control  
Trigger control  
Multi control  
HTRIG7  
HTRIG10  
NVTRIG  
CCEN1  
HTRIG6  
HTRIG9  
BLCKON  
CCEN0  
HTRIG5  
HTRIG8  
PHRES1  
TTXEN  
HTRIG4  
VTRIG4  
PHRES0  
SCCLN4  
HTRIG3  
VTRIG3  
LDEL1  
HTRIG2  
VTRIG2  
LDEL0  
HTRIG1  
VTRIG1  
FLC1  
HTRIG0  
VTRIG0  
FLC0  
Closed Caption, teletext enable  
SCCLN3  
ADWHS3  
SCCLN2  
ADWHS2  
SCCLN1  
SCCLN0  
Active display window horizontal  
start  
ADWHS7  
ADWHS6 ADWHS5 ADWHS4  
ADWHE6 ADWHE5 ADWHE4  
ADWHE10 ADWHE9 ADWHE8  
ADWHS1 ADWHS0  
Active display window horizontal  
end  
71  
ADWHE7  
ADWHE3  
ADWHE2  
ADWHE1 ADWHE0  
(1)  
(1)  
MSBs ADWH  
72  
73  
74  
75  
76  
77  
ADWHS10 ADWHS9 ADWHS8  
TTX request horizontal start  
TTX request horizontal delay  
CSYNC advance  
TTXHS7  
TTXHS6  
TTXHS5  
TTXHS4  
TTXHS3  
TTXHD3  
TTXHS2  
TTXHS1  
TTXHS0  
(1)  
(1)  
(1)  
(1)  
TTXHD2  
TTXHD1  
TTXHD0  
(1)  
(1)  
(1)  
CSYNCA4 CSYNCA3 CSYNCA2 CSYNCA1 CSYNCA0  
TTX odd request vertical start  
TTX odd request vertical end  
TTXOVS7 TTXOVS6 TTXOVS5 TTXOVS4 TTXOVS3 TTXOVS2 TTXOVS1 TTXOVS0  
TTXOVE7 TTXOVE6 TTXOVE5 TTXOVE4 TTXOVE3 TTXOVE2 TTXOVE1 TTXOVE0  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TTX even request vertical start  
TTX even request vertical end  
First active line  
78  
79  
TTXEVS7 TTXEVS6 TTXEVS5 TTXEVS4 TTXEVS3 TTXEVS2 TTXEVS1 TTXEVS0  
TTXEVE7 TTXEVE6 TTXEVE5 TTXEVE4 TTXEVE3 TTXEVE2 TTXEVE1 TTXEVE0  
7A  
7B  
7C  
7D  
7E  
7F  
FAL7  
LAL7  
FAL6  
LAL6  
FAL5  
LAL5  
FAL4  
LAL4  
FAL3  
LAL3  
FAL2  
LAL2  
FAL1  
LAL1  
FAL0  
LAL0  
Last active line  
TTX mode, MSB vertical  
Null  
TTX60  
LAL8  
TTXO  
FAL8  
TTXEVE8 TTXOVE8 TTXEVS8 TTXOVS8  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Disable TTX line  
Disable TTX line  
FIFO status (read only)  
Pixel clock 0  
LINE12  
LINE11  
LINE10  
LINE9  
LINE8  
LINE16  
IFERR  
PCL03  
PCL11  
PCL19  
PCLE1  
LINE7  
LINE15  
BFERR  
PCL02  
PCL10  
PCL18  
PCLE0  
LINE6  
LINE14  
OVFL  
LINE5  
LINE13  
UDFL  
LINE20  
LINE19  
LINE18  
LINE17  
(1)  
(1)  
(1)  
(1)  
80  
81  
PCL07  
PCL15  
PCL23  
DCLK  
PCL06  
PCL14  
PCL22  
PCL05  
PCL13  
PCL21  
PCL04  
PCL12  
PCL20  
PCL01  
PCL09  
PCL17  
PCLI1  
PCL00  
PCL08  
PCL16  
PCLI0  
Pixel clock 1  
82  
Pixel clock 2  
83  
Pixel clock control  
FIFO control  
84  
PCLSY  
IFRA  
IFBP  
(1)  
(1)  
(1)  
85  
EIDIV  
FILI3  
FILI2  
FILI1  
FILI0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Null  
86 to 8F  
90  
Horizontal offset  
Pixel number  
XOFS7  
XPIX7  
YOFSO7  
YOFSE7  
YOFSE9  
YPIX7  
EFS  
XOFS6  
XPIX6  
XOFS5  
XPIX5  
XOFS4  
XPIX4  
YOFSO4  
YOFSE4  
YOFSO8  
YPIX4  
ILC  
XOFS3  
XPIX3  
YOFSO3  
YOFSE3  
XPIX9  
YPIX3  
YFIL  
XOFS2  
XPIX2  
XOFS1  
XPIX1  
XOFS0  
XPIX0  
91  
Vertical offset odd  
Vertical offset even  
MSBs  
92  
YOFSO6  
YOFSE6  
YOFSE8  
YPIX6  
YOFSO5  
YOFSE5  
YOFSO9  
YPIX5  
YOFSO2  
YOFSE2  
XPIX8  
YOFSO1  
YOFSE1  
XOFS9  
YPIX1  
YOFSO0  
YOFSE0  
XOFS8  
YPIX0  
93  
94  
Line number  
95  
YPIX2  
(1)  
Scaler CTRL, MCB YPIX  
Sync control  
96  
PCBN  
SLAVE  
OFS  
YPIX9  
YPIX8  
97  
HFS  
VFS  
PFS  
OVS  
PVS  
OHS  
PHS  
Line length  
98  
HLEN7  
IDEL3  
HLEN6  
IDEL2  
HLEN5  
IDEL1  
HLEN4  
IDEL0  
XINC4  
YINC4  
YINC8  
HLEN3  
HLEN11  
XINC3  
YINC3  
XINC11  
HLEN2  
HLEN10  
XINC2  
YINC2  
XINC10  
HLEN1  
HLEN9  
XINC1  
YINC1  
XINC9  
HLEN0  
HLEN8  
XINC0  
YINC0  
XINC8  
Input delay, MSB line length  
Horizontal increment  
Vertical increment  
99  
9A  
9B  
9C  
XINC7  
YINC7  
YINC11  
XINC6  
YINC6  
YINC10  
XINC5  
YINC5  
YINC9  
MSBs vertical and horizontal  
increment  
Weighting factor odd  
Weighting factor even  
Weighting factor MSB  
9D  
9E  
9F  
YIWGTO7 YIWGTO6 YIWGTO5 YIWGTO4 YIWGTO3 YIWGTO2 YIWGTO1 YIWGTO0  
YIWGTE7 YIWGTE6 YIWGTE5 YIWGTE4 YIWGTE3 YIWGTE2 YIWGTE1 YIWGTE0  
YIWGTE11 YIWGTE10 YIWGTE9 YIWGTE8 YIWGTO11 YIWGTO10 YIWGTO9 YIWGTO8  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
Vertical line skip  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A0  
A1  
YSKIP7  
BLEN  
YSKIP6  
YSKIP5  
YSKIP4  
YSKIP3  
YSKIP2  
YSKIP1  
YSKIP9  
YSKIP0  
YSKIP8  
(1)  
(1)  
(1)  
Blank enable for NI-bypass,  
vertical line skip MSB  
YSKIP11  
YSKIP10  
Border colour Y  
A2  
A3  
A4  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
DA  
DB  
DC  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
BCY7  
BCU7  
BCV7  
BCY6  
BCU6  
BCV6  
BCY5  
BCU5  
BCV5  
BCY4  
BCU4  
BCV4  
BCY3  
BCU3  
BCV3  
BCY2  
BCU2  
BCV2  
BCY1  
BCU1  
BCV1  
BCY0  
BCU0  
BCV0  
Border colour U  
Border colour V  
HD sync line count array  
HD sync line type array  
HD sync line pattern array  
HD sync value array  
HD sync trigger state 1  
HD sync trigger state 2  
HD sync trigger state 3  
HD sync trigger state 4  
HD sync trigger phase x  
RAM address (see Table 123)  
RAM address (see Table 125)  
RAM address (see Table 127)  
RAM address (see Table 129)  
HLCT7  
HLCT6  
HLCPT2  
HDCT6  
HEPT2  
HLCT5  
HLCPT1  
HDCT5  
HEPT1  
HLCT4  
HLCPT0  
HDCT4  
HEPT0  
HLCT3  
HLCT2  
HLCT1  
HLCT9  
HDCT1  
HDCT9  
HTX1  
HLCT0  
HLCT8  
HDCT0  
HDCT8  
HTX0  
HLCPT3  
HLPPT1  
HLPPT0  
HDCT7  
HDCT3  
HDCT2  
(1)  
(1)  
(1)  
HTX7  
(1)  
HTX6  
(1)  
HTX5  
(1)  
HTX4  
(1)  
HTX3  
HTX2  
HTX11  
HTX10  
HTX9  
HTX8  
HD sync trigger phase y  
HTY7  
(1)  
HTY6  
(1)  
HTY5  
(1)  
HTY4  
(1)  
HTY3  
(1)  
HTY2  
(1)  
HTY1  
HTY0  
HTY9  
HTY8  
(1)  
(1)  
(1)  
(1)  
HD output control  
HDSYE  
CC1R3  
CC1G3  
CC1B3  
CC2R3  
CC2G3  
CC2B3  
AUXR3  
AUXG3  
AUXB3  
XCP3  
HDTC  
CC1R2  
CC1G2  
CC1B2  
CC2R2  
CC2G2  
CC2B2  
AUXR2  
AUXG2  
AUXB2  
XCP2  
HDGY  
CC1R1  
CC1G1  
CC1B1  
CC2R1  
CC2G1  
CC2B1  
AUXR1  
AUXG1  
AUXB1  
XCP1  
HDIP  
Cursor colour 1 R  
CC1R7  
CC1G7  
CC1B7  
CC2R7  
CC2G7  
CC2B7  
AUXR7  
AUXG7  
AUXB7  
XCP7  
CC1R6  
CC1G6  
CC1B6  
CC2R6  
CC2G6  
CC2B6  
AUXR6  
AUXG6  
AUXB6  
XCP6  
CC1R5  
CC1G5  
CC1B5  
CC2R5  
CC2G5  
CC2B5  
AUXR5  
AUXG5  
AUXB5  
XCP5  
CC1R4  
CC1G4  
CC1B4  
CC2R4  
CC2G4  
CC2B4  
AUXR4  
AUXG4  
AUXB4  
XCP4  
CC1R0  
CC1G0  
CC1B0  
CC2R0  
CC2G0  
CC2B0  
AUXR0  
AUXG0  
AUXB0  
XCP0  
Cursor colour 1 G  
Cursor colour 1 B  
Cursor colour 2 R  
Cursor colour 2 G  
Cursor colour 2 B  
Auxiliary cursor colour R  
Auxiliary cursor colour G  
Auxiliary cursor colour B  
Horizontal cursor position  
Horizontal hot spot, MSB XCP  
Vertical cursor position  
Vertical hot spot, MSB YCP  
XHS4  
XHS3  
XHS2  
XHS1  
XHS0  
XCP10  
XCP9  
XCP8  
YCP7  
YCP6  
YCP5  
YCP4  
YCP3  
YCP2  
(1)  
YCP1  
YCP0  
YHS4  
YHS3  
YHS2  
YHS1  
YHS0  
YCP9  
YCP8  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
Input path control  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FD  
FE  
FF  
LUTOFF  
CMODE  
LUTL  
IF2  
IF1  
IF0  
MATOFF  
DFOFF  
Cursor bit map  
RAM address (see Table 144)  
RAM address (see Table 145)  
Colour look-up table  
Note  
1. All unused control bits must be programmed with logic 0 to ensure compatibility to future enhancements.  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.1.1 I2C-BUS FORMAT  
Table 51 I2C-bus write access to control registers; see Table 57  
S 1 0 0 0 1 0 0 0 A  
SUBADDRESS  
A
DATA 0  
A
--------  
DATA n  
DATA n  
DATA n  
A
A
A
P
P
P
P
Table 52 I2C-bus write access to the HD line count array (subaddress D0H); see Table 57  
S 1 0 0 0 1 0 0 0 A D0H A RAM ADDRESS A DATA 00  
A
DATA 01  
A
--------  
Table 53 I2C-bus write access to cursor bit map (subaddress FEH); see Table 57  
S 1 0 0 0 1 0 0 0 A FEH A RAM ADDRESS A DATA 0  
A
--------  
Table 54 I2C-bus write access to colour look-up table (subaddress FFH); see Table 57  
S 1 0 0 0 1 0 0 0 A FFH A RAM ADDRESS A DATA 0R  
A
DATA 0G  
A
DATA 0B  
A
--------  
Table 55 I2C-bus read access to control registers; see Table 57  
S 1 0 0 0 1 0 0 0 A  
SUBADDRESS  
A Sr 1 0 0 0 1 0 0 1 A DATA 0 Am -------- DATA n Am P  
Table 56 I2C-bus read access to cursor bit map or colour LUT; see Table 57  
S 1 0 0 0 1 0 0 0 A FEH A RAM ADDRESS A Sr 1 0 0 0 1 0 0 1 A DATA 0 Am -------- DATA n Am P  
or  
FFH  
Table 57 Explanations of Tables 51 to 56  
CODE  
DESCRIPTION  
S
START condition  
Sr  
repeated START condition  
slave address  
1 0 0 0 1 0 0 X; note 1  
A
acknowledge generated by the slave  
acknowledge generated by the master  
subaddress byte  
Am  
SUBADDRESS; note 2  
DATA  
data byte  
--------  
continued data bytes and acknowledges  
STOP condition  
P
RAM ADDRESS  
start address for RAM access  
Notes  
1. X is the read/write control bit; X = logic 0 is order to write; X = logic 1 is order to read.  
2. If more than 1 byte of DATA is transmitted, then auto-increment of the subaddress is performed.  
2004 Jun 29  
114  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.1.2 SLAVE RECEIVER  
Table 58 Subaddress 16H  
DATA BYTE  
DESCRIPTION  
DACF  
output level adjustment fine in 1 % steps for all DACs; default after reset is 00H; see Table 59  
Table 59 Fine adjustment of DAC output voltage  
BINARY  
GAIN (%)  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
7
6
5
4
3
2
1
0
0
1  
2  
3  
4  
5  
6  
7  
Table 60 Subaddresses 17H to 19H  
DATA BYTE  
DESCRIPTION  
RDACC  
GDACC  
BDACC  
output level coarse adjustment for RED DAC; default after reset is 1BH for output of C signal  
00000b 0.585 V to 11111b 1.240 V at 37.5 nominal for full-scale conversion  
output level coarse adjustment for GREEN DAC; default after reset is 1BH for output of VBS signal  
00000b 0.585 V to 11111b 1.240 V at 37.5 nominal for full-scale conversion  
output level coarse adjustment for BLUE DAC; default after reset is 1FH for output of CVBS signal  
00000b 0.585 V to 11111b 1.240 V at 37.5 nominal for full-scale conversion  
Table 61 Subaddress 1AH  
DATA BYTE  
DESCRIPTION  
monitor sense mode threshold for DAC output voltage, should be set to 70  
MSMT  
2004 Jun 29  
115  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 62 Subaddress 1BH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
MSM  
MSA  
0
1
0
monitor sense mode off; RCOMP, GCOMP and BCOMP bits are not valid; default after reset  
monitor sense mode on  
automatic monitor sense mode off; RCOMP, GCOMP and BCOMP bits are not valid; default  
after reset  
1
0
1
0
1
0
1
0
1
automatic monitor sense mode on if MSM = 0  
MSOE  
pin TVD is active  
pin TVD is 3-state; default after reset  
RCOMP  
(read only)  
check comparator at DAC on pin RED_CR_C_CVBS is active, output is loaded  
check comparator at DAC on pin RED_CR_C_CVBS is inactive, output is not loaded  
check comparator at DAC on pin GREEN_VBS_CVBS is active, output is loaded  
check comparator at DAC on pin GREEN_VBS_CVBS is inactive, output is not loaded  
check comparator at DAC on pin BLUE_CB_CVBS is active, output is loaded  
check comparator at DAC on pin BLUE_CB_CVBS is inactive, output is not loaded  
GCOMP  
(read only)  
BCOMP  
(read only)  
Table 63 Subaddresses 26H and 27H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
WSS  
wide screen signalling bits  
3 to 0 = aspect ratio  
7 to 4 = enhanced services  
10 to 8 = subtitles  
13 to 11 = reserved  
WSSON  
0
1
wide screen signalling output is disabled; default after reset  
wide screen signalling output is enabled  
Table 64 Subaddress 28H  
LOGIC  
DATA BYTE  
DESCRIPTION  
REMARKS  
LEVEL  
BS  
starting point of burst in clock cycles  
PAL: BS = 33 (21H); default after reset if  
strapping pin FSVGC tied to HIGH  
NTSC: BS = 25 (19H); default after reset if  
strapping pin FSVGC tied to LOW  
2004 Jun 29  
116  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 65 Subaddress 29H  
LOGIC  
DATA BYTE  
DESCRIPTION  
REMARKS  
LEVEL  
SRES  
BE  
0
1
pin TTX_SRES accepts a teletext bit  
stream (TTX)  
default after reset  
pin TTX_SRES accepts a sync reset input a HIGH impulse resets synchronization of the  
(SRES)  
encoder (first field, first line)  
ending point of burst in clock cycles  
PAL: BE = 29 (1DH); default after reset if  
strapping pin FSVGC tied to HIGH  
NTSC: BE = 29 (1DH); default after reset if  
strapping pin FSVGC tied to LOW  
Table 66 Subaddresses 2AH to 2CH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
CG  
LSB of the respective bytes are encoded immediately after run-in, the MSBs of the  
respective bytes have to carry the CRCC bits, in accordance with the definition of copy  
generation management system encoding format.  
CGEN  
0
1
copy generation data output is disabled; default after reset  
copy generation data output is enabled  
Table 67 Subaddress 2DH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
VBSEN  
0
pin GREEN_VBS_CVBS provides a component GREEN signal (CVBSEN1 = 0) or CVBS  
signal (CVBSEN1 = 1)  
1
0
pin GREEN_VBS_CVBS provides a luminance (VBS) signal; default after reset  
CVBSEN1  
pin GREEN_VBS_CVBS provides a component GREEN (G) or luminance (VBS) signal;  
default after reset  
1
0
1
0
1
pin GREEN_VBS_CVBS provides a CVBS signal  
CVBSEN0  
CEN  
pin BLUE_CB_CVBS provides a component BLUE (B) or colour difference BLUE (CB) signal  
pin BLUE_CB_CVBS provides a CVBS signal; default after reset  
pin RED_CR_C_CVBS provides a component RED (R) or colour difference RED (CR) signal  
pin RED_CR_C_CVBS provides a chrominance signal (C) as modulated subcarrier for  
S-video; default after reset  
ENCOFF  
CLK2EN  
0
1
0
1
encoder is active; default after reset  
encoder bypass, DACs are provided with RGB signal after cursor insertion block  
pin TTXRQ_XCLKO2 provides a teletext request signal (TTXRQ)  
pin TTXRQ_XCLKO2 provides the buffered crystal clock divided by two (13.5 MHz); default  
after reset  
CVBSEN2  
0
1
pin RED_CR_C_CVBS provides a signal according to CEN; default after reset  
pin RED_CR_C_CVBS provides a CVBS signal  
2004 Jun 29  
117  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 68 Subaddress 37H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
YUPSC  
0
1
normal operation of the vertical scaler; default after reset  
vertical upscaling is enabled  
YFIL  
controls the vertical interpolation filter, see Table 69; the filter is not available if  
YUPSC = 1  
CZOOM  
0
1
0
1
0
1
normal operation of the cursor generator; default after reset  
the cursor will be zoomed by a factor of 2 in both directions  
expected input level swing is 16 to 235 (8-bit RGB); default after reset  
expected input level swing is 0 to 255 (8-bit RGB)  
IGAIN  
XINT  
no horizontal interpolation filter; default after reset  
interpolation filter for horizontal upscaling is active  
Table 69 Logic levels and function of YFIL  
DATA BYTE  
DESCRIPTION  
YFIL1  
YFIL0  
0
0
1
1
0
1
0
1
no filter active; default after reset  
filter is inserted before vertical scaling  
filter is inserted after vertical scaling; YSKIP should be logic 0  
reserved  
Table 70 Subaddresses 38H and 39H  
DATA BYTE  
DESCRIPTION  
GY4 to GY0  
Gain luminance of RGB (CR, Yand CB) output, ranging from (1 1632) to (1 + 1532).  
Suggested nominal value = 0, depending on external application.  
GCD4 to GCD0  
Gain colour difference of RGB (CR, Yand CB) output, ranging from  
(1 1632) to (1 + 1532). Suggested nominal value = 0, depending on external  
application.  
Table 71 Subaddress 3AH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
CBENB  
SYNTV  
0
1
0
data from input ports is encoded  
colour bar with fixed colours is encoded  
in slave mode, the encoder is only synchronized at the beginning of an odd field;  
default after reset  
1
0
in slave mode, the encoder receives a vertical sync signal  
SYMP  
horizontal and vertical trigger is taken from FSVGC or both VSVGC and HSVGC;  
default after reset  
1
horizontal and vertical trigger is decoded out of “ITU-R BT.656” compatible data at PD  
port  
2004 Jun 29  
118  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
LOGIC  
LEVEL  
DATA BYTE  
DESCRIPTION  
DEMOFF  
0
1
0
Y-CB-CR to RGB dematrix is active; default after reset  
Y-CB-CR to RGB dematrix is bypassed  
CSYNC  
pin HSM_CSYNC provides a horizontal sync for non-interlaced VGA components  
output (at PIXCLK)  
1
pin HSM_CSYNC provides a composite sync for interlaced components output (at  
XTAL clock)  
Y2C  
0
1
0
1
input luminance data is twos complement from PD input port  
input luminance data is straight binary from PD input port; default after reset  
input colour difference data is twos complement from PD input port  
input colour difference data is straight binary from PD input port; default after reset  
UV2C  
Table 72 Subaddress 54H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
VPSEN  
GPVAL  
GPEN  
EDGE  
0
1
0
1
0
1
0
1
video programming system data insertion is disabled; default after reset  
video programming system data insertion in line 16 is enabled  
pin VSM provides a LOW level if GPEN = 1  
pin VSM provides a HIGH level if GPEN = 1  
pin VSM provides a vertical sync for a monitor; default after reset  
pin VSM provides a constant signal according to GPVAL  
input data is sampled with inverse clock edges  
input data is sampled with the clock edges specified in Tables 9 to 14; default after  
reset  
SLOT  
0
1
normal assignment of the input data to the clock edge; default after reset  
correct time misalignment due to inverted assignment of input data to the clock edge  
Table 73 Subaddresses 55H to 59H  
DATA BYTE  
DESCRIPTION  
REMARKS  
VPS5  
fifth byte of video programming system data  
eleventh byte of video programming system data  
twelfth byte of video programming system data  
thirteenth byte of video programming system data  
fourteenth byte of video programming system data  
in line 16; LSB first; all other bytes are not  
relevant for VPS  
VPS11  
VPS12  
VPS13  
VPS14  
2004 Jun 29  
119  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 74 Subaddress 5AH; note 1  
DATA BYTE  
DESCRIPTION  
VALUE  
6BH  
RESULT  
CHPS  
phase of encoded colour subcarrier  
(including burst) relative to horizontal  
sync; can be adjusted in steps of  
360/256 degrees  
PAL B/G and data from input ports in master mode  
PAL B/G and data from look-up table  
16H  
25H  
NTSC M and data from input ports in master mode  
NTSC M and data from look-up table  
46H  
Note  
1. The default value after reset is 00H.  
Table 75 Subaddresses 5BH and 5DH  
DATA BYTE  
DESCRIPTION  
CONDITIONS  
REMARKS  
GAINU  
variable gain for  
CB signal; input  
representation in  
accordance with  
“ITU-R BT.601”  
white-to-black = 92.5 IRE GAINU = 2.17 × nominal to +2.16 × nominal  
GAINU = 0  
output subcarrier of U contribution = 0  
GAINU = 118 (76H)  
output subcarrier of U contribution = nominal  
white-to-black = 100 IRE GAINU = 2.05 × nominal to +2.04 × nominal  
GAINU = 0  
output subcarrier of U contribution = 0  
GAINU = 125 (7DH)  
output subcarrier of U contribution = nominal  
Table 76 Subaddresses 5CH and 5EH  
DATA BYTE  
DESCRIPTION  
CONDITIONS  
REMARKS  
GAINV  
variable gain for  
CR signal; input  
representation in  
accordance with  
“ITU-R BT.601”  
white-to-black = 92.5 IRE GAINV = 1.55 × nominal to +1.55 × nominal  
GAINV = 0  
output subcarrier of V contribution = 0  
GAINV = 165 (A5H)  
output subcarrier of V contribution = nominal  
white-to-black = 100 IRE GAINV = 1.46 × nominal to +1.46 × nominal  
GAINV = 0  
output subcarrier of V contribution = 0  
GAINV = 175 (AFH)  
output subcarrier of V contribution = nominal  
Table 77 Subaddress 5DH  
DATA BYTE  
DESCRIPTION  
variable black level;  
CONDITIONS  
REMARKS  
BLCKL  
white-to-sync = 140 IRE; recommended value: BLCKL = 58 (3AH)  
input representation note 1  
in accordance with  
BLCKL = 0; note 1  
output black level = 29 IRE  
“ITU-R BT.601”  
BLCKL = 63 (3FH); note 1 output black level = 49 IRE  
white-to-sync = 143 IRE; recommended value: BLCKL = 51 (33H)  
note 2  
BLCKL = 0; note 2  
output black level = 27 IRE  
BLCKL = 63 (3FH); note 2 output black level = 47 IRE  
Notes  
1. Output black level/IRE = BLCKL × 2/6.29 + 28.9.  
2. Output black level/IRE = BLCKL × 2/6.18 + 26.5.  
2004 Jun 29  
120  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 78 Subaddress 5EH  
DATA BYTE  
DESCRIPTION  
variable blanking level  
CONDITIONS  
REMARKS  
BLNNL  
white-to-sync = 140 IRE;  
note 1  
recommended value: BLNNL = 46 (2EH)  
BLNNL = 0; note 1  
output blanking level = 25 IRE  
BLNNL = 63 (3FH); note 1 output blanking level = 45 IRE  
white-to-sync = 143 IRE;  
note 2  
recommended value: BLNNL = 53 (35H)  
BLNNL = 0; note 2  
output blanking level = 26 IRE  
BLNNL = 63 (3FH); note 2 output blanking level = 46 IRE  
Notes  
1. Output black level/IRE = BLNNL × 2/6.29 + 25.4.  
2. Output black level/IRE = BLNNL × 2/6.18 + 25.9; default after reset: 35H.  
Table 79 Subaddress 5FH  
DATA BYTE  
CCRS  
DESCRIPTION  
select cross-colour reduction filter in luminance; see Table 80  
BLNVB  
variable blanking level during vertical blanking interval is typically identical to value of BLNNL  
Table 80 Logic levels and function of CCRS  
CCRS1  
CCRS0  
DESCRIPTION  
0
0
1
1
0
1
0
1
no cross-colour reduction; for overall transfer characteristic of luminance see Fig.7  
cross-colour reduction #1 active; for overall transfer characteristic see Fig.7  
cross-colour reduction #2 active; for overall transfer characteristic see Fig.7  
cross-colour reduction #3 active; for overall transfer characteristic see Fig.7  
Table 81 Subaddress 61H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
DOWND  
DOWNA  
INPI  
0
1
0
1
0
1
0
1
0
digital core in normal operational mode; default after reset  
digital core in sleep mode and is reactivated with an I2C-bus address  
DACs in normal operational mode; default after reset  
DACs in Power-down mode  
PAL switch phase is nominal; default after reset  
PAL switch is inverted compared to nominal if RTCE = 1  
luminance gain for white black 100 IRE  
YGS  
luminance gain for white black 92.5 IRE including 7.5 IRE set-up of black  
SCBW  
enlarged bandwidth for chrominance encoding (for overall transfer characteristic of  
chrominance in baseband representation see Figs 5 and 6)  
1
standard bandwidth for chrominance encoding (for overall transfer characteristic of  
chrominance in baseband representation see Figs 5 and 6); default after reset  
2004 Jun 29  
121  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
LOGIC  
LEVEL  
DATA BYTE  
DESCRIPTION  
NTSC encoding (non-alternating V component)  
PAL  
0
1
0
1
PAL encoding (alternating V component)  
864 total pixel clocks per line  
FISE  
858 total pixel clocks per line  
Table 82 Subaddress 62H  
LOGIC  
DATA BYTE  
DESCRIPTION  
CONDITIONS  
REMARKS  
LEVEL  
RTCE  
BSTA  
0
1
no real-time control of generated subcarrier frequency; default after reset  
real-time control of generated subcarrier frequency through a Philips video decoder; for a  
specification of the RTC protocol see document “RTC Functional Description”, available  
on request  
amplitude of colour burst; input white-to-black = 92.5 IRE;  
recommended value:  
representation in accordance burst = 40 IRE; NTSC encoding BSTA = 63 (3FH)  
with “ITU-R BT.601”  
BSTA = 0 to 2.02 × nominal  
white-to-black = 92.5 IRE;  
burst = 40 IRE; PAL encoding  
recommended value:  
BSTA = 45 (2DH)  
BSTA = 0 to 2.82 × nominal  
white-to-black = 100 IRE;  
recommended value:  
burst = 43 IRE; NTSC encoding BSTA = 67 (43H)  
BSTA = 0 to 1.90 × nominal  
white-to-black = 100 IRE;  
burst = 43 IRE; PAL encoding  
recommended value:  
BSTA = 47 (2FH);  
default after reset  
BSTA = 0 to 3.02 × nominal  
Table 83 Subaddresses 63H to 66H (four bytes to program subcarrier frequency)  
DATA BYTE  
DESCRIPTION  
CONDITIONS  
REMARKS  
FSC0 to  
FSC3  
f
fsc = subcarrier frequency (in multiples of  
FSC3 = most significant byte;  
FSC0 = least significant byte  
f
FSC = round fsc × 232  
;
-------  
line frequency); fllc = clock frequency (in  
multiples of line frequency)  
fllc  
note 1  
Note  
1. Examples:  
a) NTSC M: ffsc = 227.5, fllc = 1716 FSC = 569408543 (21F07C1FH).  
b) PAL B/G: ffsc = 283.7516, fllc = 1728 FSC = 705268427 (2A098ACBH).  
Table 84 Subaddresses 67H to 6AH  
DATA BYTE  
DESCRIPTION  
REMARKS  
L21O0  
L21O1  
L21E0  
L21E1  
first byte of captioning data, odd field  
second byte of captioning data, odd field  
first byte of extended data, even field  
second byte of extended data, even field  
LSBs of the respective bytes are encoded immediately after  
run-in and framing code, the MSBs of the respective bytes  
have to carry the parity bit, in accordance with the definition  
of line 21 encoding format.  
2004 Jun 29  
122  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 85 Subaddresses 6CH and 6DH  
DATA BYTE  
DESCRIPTION  
HTRIG  
sets the horizontal trigger phase related to chip-internal horizontal input  
values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed; increasing HTRIG decreases  
delays of all internally generated timing signals; the default value is 0  
Table 86 Subaddress 6DH  
DATA BYTE  
DESCRIPTION  
VTRIG  
sets the vertical trigger phase related to chip-internal vertical input  
increasing VTRIG decreases delays of all internally generated timing signals, measured in half  
lines; variation range of VTRIG = 0 to 31 (1FH); the default value is 0  
Table 87 Subaddress 6EH  
LOGIC  
DATA BYTE  
DESCRIPTION  
values of the VTRIG register are positive  
LEVEL  
NVTRIG  
BLCKON  
0
1
0
1
values of the VTRIG register are negative  
encoder in normal operation mode; default after reset  
output signal is forced to blanking level  
PHRES  
LDEL  
selects the phase reset mode of the colour subcarrier generator; see Table 88  
selects the delay on luminance path with reference to chrominance path;  
see Table 89  
FLC  
field length control; see Table 90  
Table 88 Logic levels and function of PHRES  
DATA BYTE  
DESCRIPTION  
PHRES1  
PHRES0  
0
0
1
1
0
1
0
1
no subcarrier reset  
subcarrier reset every two lines  
subcarrier reset every eight fields  
subcarrier reset every four fields  
Table 89 Logic levels and function of LDEL  
DATA BYTE  
DESCRIPTION  
no luminance delay; default after reset  
LDEL1  
LDEL0  
0
0
1
1
0
1
0
1
1 LLC luminance delay  
2 LLC luminance delay  
3 LLC luminance delay  
2004 Jun 29  
123  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 90 Logic levels and function of FLC  
DATA BYTE  
DESCRIPTION  
FLC1  
FLC0  
0
0
1
1
0
1
0
1
interlaced 312.5 lines/field at 50 Hz, 262.5 lines/field at 60 Hz; default after reset  
non-interlaced 312 lines/field at 50 Hz, 262 lines/field at 60 Hz  
non-interlaced 313 lines/field at 50 Hz, 263 lines/field at 60 Hz  
non-interlaced 313 lines/field at 50 Hz, 263 lines/field at 60 Hz  
Table 91 Subaddress 6FH  
DATA  
BYTE  
LOGIC  
LEVEL  
DESCRIPTION  
CCEN  
0
1
enables individual line 21 encoding; see Table 92  
disables teletext insertion; default after reset  
enables teletext insertion  
TTXEN  
SCCLN  
selects the actual line, where Closed Caption or extended data are encoded;  
line = (SCCLN + 4) for M-systems; line = (SCCLN + 1) for other systems  
Table 92 Logic levels and function of CCEN  
DATA BYTE  
DESCRIPTION  
CCEN1  
CCEN0  
0
0
1
1
0
1
0
1
line 21 encoding off; default after reset  
enables encoding in field 1 (odd)  
enables encoding in field 2 (even)  
enables encoding in both fields  
Table 93 Subaddresses 70H to 72H  
DATA BYTE  
DESCRIPTION  
ADWHS  
active display window horizontal start; defines the start of the active TV display portion after  
the border colour  
values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed  
ADWHE  
active display window horizontal end; defines the end of the active TV display portion before  
the border colour  
values above 1715 (FISE = 1) or 1727 (FISE = 0) are not allowed  
Table 94 Subaddress 73H  
DATA BYTE  
DESCRIPTION  
REMARKS  
TTXHS  
start of signal TTXRQ on pin TTXRQ_XCLKO2  
(CLK2EN = 0); see Fig.51  
TTXHS = 42H; is default after  
reset if strapped to PAL  
TTXHS = 54H; is default after  
reset if strapped to NTSC  
2004 Jun 29  
124  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 95 Subaddress 74H  
DATA BYTE  
DESCRIPTION  
indicates the delay in clock cycles between rising edge of TTXRQ  
REMARKS  
TTXHD  
minimum value: TTXHD = 2;  
output signal on pin TTXRQ_XCLKO2 (CLK2EN = 0) and valid data at is default after reset  
pin TTX_SRES  
Table 96 Subaddress 75H  
DATA BYTE  
DESCRIPTION  
advanced composite sync against RGB output from 0 XTAL clocks to 31 XTAL clocks  
CSYNCA  
Table 97 Subaddresses 76H, 77H and 7CH  
DATA BYTE  
DESCRIPTION  
REMARKS  
TTXOVS  
TTXOVE  
first line of occurrence of signal TTXRQ on pin TTXRQ_XCLKO2  
(CLK2EN = 0) in odd field  
TTXOVS = 05H; is default  
after reset if strapped to PAL  
TTXOVS = 06H; is default  
after reset if strapped to  
NTSC  
line = (TTXOVS + 4) for M-systems  
line = (TTXOVS + 1) for other systems  
last line of occurrence of signal TTXRQ on pin TTXRQ_XCLKO2  
(CLK2EN = 0) in odd field  
TTXOVE = 16H; is default  
after reset if strapped to PAL  
TTXOVE = 10H; is default  
after reset if strapped to  
NTSC  
line = (TTXOVE + 3) for M-systems  
line = TTXOVE for other systems  
Table 98 Subaddresses 78H, 79H and 7CH  
DATA BYTE  
DESCRIPTION  
REMARKS  
TTXEVS  
first line of occurrence of signal TTXRQ on pin TTXRQ_XCLKO2  
(CLK2EN = 0) in even field  
TTXEVS = 04H; is default  
after reset if strapped to PAL  
TTXEVS = 05H; is default  
after reset if strapped to  
NTSC  
line = (TTXEVS + 4) for M-systems  
line = (TTXEVS + 1) for other systems  
TTXEVE  
last line of occurrence of signal TTXRQ on pin TTXRQ_XCLKO2  
(CLK2EN = 0) in even field  
TTXEVE = 16H; is default  
after reset if strapped to PAL  
TTXEVE = 10H; is default  
after reset if strapped to  
NTSC  
line = (TTXEVE + 3) for M-systems  
line = TTXEVE for other systems  
Table 99 Subaddresses 7AH to 7CH  
DATA BYTE  
DESCRIPTION  
FAL  
first active line = FAL + 4 for M-systems and FAL + 1 for other systems, measured in lines  
FAL = 0 coincides with the first field synchronization pulse  
LAL  
last active line = LAL + 3 for M-systems and LAL for other system, measured in lines  
LAL = 0 coincides with the first field synchronization pulse  
2004 Jun 29  
125  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 100 Subaddress 7CH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
TTX60  
TTXO  
0
1
0
enables NABTS (FISE = 1) or European TTX (FISE = 0); default after reset  
enables world standard teletext 60 Hz (FISE = 1)  
new teletext protocol selected; at each rising edge of TTXRQ a single teletext bit is  
requested (see Fig.51); default after reset  
1
old teletext protocol selected; the encoder provides a window of TTXRQ going HIGH;  
the length of the window depends on the chosen teletext standard (see Fig.51)  
Table 101 Subaddresses 7EH and 7FH  
DATA BYTE  
DESCRIPTION  
LINE  
individual lines in both fields (PAL counting) can be disabled for insertion of teletext by the respective  
bits, disabled line = LINExx (50 Hz field rate)  
this bit mask is effective only if the lines are enabled by TTXOVS/TTXOVE and TTXEVS/TTXEVE  
Table 102 Subaddresses 81H to 83H  
DATA BYTE  
DESCRIPTION  
PCL  
defines the frequency of the synthesized pixel clock PIXCLKO;  
PCL  
fPIXCLK  
=
× f  
× 8 ; fXTAL = 27 MHz nominal, e.g. 640 × 480 to NTSC M: PCL = 20F63BH;  
XTAL  
-----------  
224  
640 × 480 to PAL B/G: PCL = 1B5A73H (as by strapping pins)  
Table 103 Subaddress 84H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
DCLK  
0
pixel clock input is differential, pin PIXCLKI receives the inverted clock; default after  
reset  
1
0
1
0
1
0
1
pixel clock input is single ended, pin PIXCLKI has no function  
pixel clock generator runs free; default after reset  
pixel clock generator gets synchronized with the vertical sync  
input FIFO gets reset explicitly at falling edge  
PCLSY  
IFRA  
input FIFO gets reset every field; default after reset  
input FIFO is active  
IFBP  
input FIFO is bypassed; default after reset  
PCLE  
PCLI  
controls the divider for the external pixel clock; see Table 104  
controls the divider for the internal pixel clock; see Table 105  
2004 Jun 29  
126  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 104 Logic levels and function of PCLE  
DATA BYTE  
DESCRIPTION  
PCLE1  
PCLE0  
0
0
1
1
0
1
0
1
divider ratio for PIXCLK output is 1  
divider ratio for PIXCLK output is 2; default after reset  
divider ratio for PIXCLK output is 4  
divider ratio for PIXCLK output is 8  
Table 105 Logic levels and function of PCLI  
DATA BYTE  
DESCRIPTION  
divider ratio for internal PIXCLK is 1  
PCLI1  
PCLI0  
0
0
1
1
0
1
0
1
divider ratio for internal PIXCLK is 2; default after reset  
divider ratio for internal PIXCLK is 4  
not allowed  
Table 106 Subaddress 85H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
EIDIV  
FILI  
0
1
input dividers are off; inputs are high-impedance; default after reset  
input dividers are on; inputs have lower impedance  
threshold for FIFO internal transfers; nominal value is 8; default after reset  
Table 107 Subaddresses 90H and 94H  
DATA BYTE  
DESCRIPTION  
XOFS  
horizontal offset; defines the number of PIXCLKs from horizontal sync (HSVGC) output to composite  
blanking (CBO) output  
Table 108 Subaddresses 91H and 94H  
DATA BYTE  
DESCRIPTION  
XPIX  
pixel in X direction; defines half the number of active pixels per input line (identical to the length of  
CBO pulses)  
Table 109 Subaddresses 92H and 94H  
DATA BYTE  
DESCRIPTION  
YOFSO  
vertical offset in odd field; defines (in the odd field) the number of lines from VSVGC to first line with  
active CBO; if no LUT data is requested, the first active CBO will be output at YOFSO + 2; usually,  
YOFSO = YOFSE with the exception of extreme vertical downscaling and interlacing  
2004 Jun 29  
127  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 110 Subaddresses 93H and 94H  
DATA BYTE  
DESCRIPTION  
YOFSE  
vertical offset in even field; defines (in the even field) the number of lines from VSVGC to first line with  
active CBO; if no LUT data is requested, the first active CBO will be output at YOFSE + 2; usually,  
YOFSE = YOFSO with the exception of extreme vertical downscaling and interlacing  
Table 111 Subaddresses 95H and 96H  
DATA BYTE  
DESCRIPTION  
YPIX  
defines the number of requested input lines from the feeding device;  
number of requested lines = YPIX + YOFSE YOFSO  
Table 112 Subaddress 96H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
EFS  
0
1
0
1
0
1
0
1
0
1
frame sync signal at pin FSVGC ignored in slave mode  
frame sync signal at pin FSVGC accepted in slave mode  
normal polarity of CBO signal (HIGH during active video)  
inverted polarity of CBO signal (LOW during active video)  
the SAA7108AE; SAA7109AE is timing master to the graphics controller  
the SAA7108AE; SAA7109AE is timing slave to the graphics controller  
if hardware cursor insertion is active, set LOW for non-interlaced input signals  
if hardware cursor insertion is active, set HIGH for interlaced input signals  
luminance sharpness booster disabled  
PCBN  
SLAVE  
ILC  
YFIL  
luminance sharpness booster enabled  
Table 113 Subaddress 97H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
HFS  
0
1
horizontal sync is directly derived from input signal (slave mode) at pin HSVGC  
horizontal sync is derived from a frame sync signal (slave mode) at pin FSVGC (only if  
EFS is set HIGH)  
VFS  
0
1
vertical sync (field sync) is directly derived from input signal (slave mode) at  
pin VSVGC  
vertical sync (field sync) is derived from a frame sync signal (slave mode) at  
pin FSVGC (only if EFS is set HIGH)  
OFS  
PFS  
0
1
0
pin FSVGC is switched to input  
pin FSVGC is switched to active output  
polarity of signal at pin FSVGC in output mode (master mode) is active HIGH; rising  
edge of the input signal is used in slave mode  
1
polarity of signal at pin FSVGC in output mode (master mode) is active LOW; falling  
edge of the input signal is used in slave mode  
OVS  
0
1
pin VSVGC is switched to input  
pin VSVGC is switched to active output  
2004 Jun 29  
128  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
LOGIC  
LEVEL  
DATA BYTE  
DESCRIPTION  
PVS  
0
polarity of signal at pin VSVGC in output mode (master mode) is active HIGH; rising  
edge of the input signal is used in slave mode  
1
polarity of signal at pin VSVGC in output mode (master mode) is active LOW; falling  
edge of the input signal is used in slave mode  
OHS  
PHS  
0
1
0
pin HSVGC is switched to input  
pin HSVGC is switched to active output  
polarity of signal at pin HSVGC in output mode (master mode) is active HIGH; rising  
edge of the input signal is used in slave mode  
1
polarity of signal at pin HSVGC in output mode (master mode) is active LOW; falling  
edge of the input signal is used in slave mode  
Table 114 Subaddresses 98H and 99H  
DATA BYTE  
DESCRIPTION  
number of PIXCLKs  
HLEN  
horizontal length; HLEN =  
1  
----------------------------------------------------  
line  
Table 115 Subaddress 99H  
DATA BYTE  
DESCRIPTION  
IDEL  
input delay; defines the distance in PIXCLKs between the active edge of CBO and the first received  
valid pixel  
Table 116 Subaddresses 9AH and 9CH  
DATA BYTE  
DESCRIPTION  
XINC  
number of output pixels  
--------------------------------------------------------------  
line  
incremental fraction of the horizontal scaling engine; XINC =  
× 4096  
--------------------------------------------------------------  
number of input pixels  
----------------------------------------------------------  
line  
Table 117 Subaddresses 9BH and 9CH  
DATA BYTE  
DESCRIPTION  
YINC  
number of active output lines  
----------------------------------------------------------------------------  
number of active input lines  
incremental fraction of the vertical scaling engine; YINC =  
× 4096  
Table 118 Subaddresses 9DH and 9FH  
DATA BYTE  
DESCRIPTION  
YIWGTO  
YINC  
2
weighting factor for the first line of the odd field; YIWGTO =  
+ 2048  
-------------  
2004 Jun 29  
129  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 119 Subaddresses 9EH and 9FH  
DATA BYTE  
DESCRIPTION  
weighting factor for the first line of the even field; YIWGTE =  
YIWGTE  
YINC YSKIP  
-------------------------------------  
2
Table 120 Subaddresses A0H and A1H  
DATA BYTE  
DESCRIPTION  
YSKIP  
vertical line skip; defines the effectiveness of the anti-flicker filter; YSKIP = 0: most effective;  
YSKIP = 4095: anti-flicker filter switched off  
Table 121 Subaddress A1H  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
BLEN  
0
1
no internal blanking for non-interlaced graphics in bypass mode; default after reset  
forced internal blanking for non-interlaced graphics in bypass mode  
Table 122 Subaddresses A2H to A4H  
DATA BYTE  
DESCRIPTION  
luminance and colour difference portion of border colour in underscan area  
BCY, BCU  
and BCV  
Table 123 Subaddress D0H  
DATA BYTE  
DESCRIPTION  
HLCA  
RAM start address for the HD sync line count array; the byte following subaddress D0 points to the  
first cell to be loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing  
until stop condition. Each line count array entry consists of 2 bytes; see Table 124. The array has  
15 entries.  
HLC  
HLT  
HD line counter. The system will repeat the pattern described in ‘HLT’ HLC times and then start with  
the next entry in line count array.  
HD line type pointer. If not 0, the value points into the line type array, index HLT 1 with the  
description of the current line. 0 means the entry is not used.  
Table 124 Layout of the data bytes in the line count array  
BYTE  
DESCRIPTION  
HLC4 HLC3  
HLT0  
0
1
HLC7  
HLT3  
HLC6  
HLT2  
HLC5  
HLT1  
HLC2  
0
HLC1  
HLC9  
HLC0  
HLC8  
0
2004 Jun 29  
130  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 125 Subaddress D1H  
DATA BYTE  
DESCRIPTION  
HLTA  
RAM start address for the HD sync line type array; the byte following subaddress D1 points to the first  
cell to be loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing  
until stop condition. Each line type array entry consists of 4 bytes; see Table 126. The array has  
15 entries.  
HLP  
HD line type; if not 0, the value points into the line pattern array. The index used is HLP 1. It consists  
of value-duration pairs. Each entry consists of 8 pointers, used from index 0 to 7. The value 0 means  
that the entry is not used.  
Table 126 Layout of the data bytes in the line type array  
BYTE  
DESCRIPTION  
0
1
2
3
0
0
0
0
HLP12  
HLP32  
HLP52  
HLP72  
HLP11  
HLP31  
HLP51  
HLP71  
HLP10  
0
0
0
0
HLP02  
HLP22  
HLP42  
HLP62  
HLP01  
HLP21  
HLP41  
HLP61  
HLP00  
HLP20  
HLP40  
HLP60  
HLP30  
HLP50  
HLP70  
Table 127 Subaddress D2H  
DATA BYTE  
DESCRIPTION  
HLPA  
RAM start address for the HD sync line pattern array; the byte following subaddress D2 points to the  
first cell to be loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing  
until stop condition. Each line pattern array entry consists of 4 value-duration pairs occupying 2 bytes;  
see Table 128. The array has 7 entries.  
HPD  
HPV  
HD pattern duration. The value defines the time in pixel clocks (HPD + 1) the corresponding value  
HPV is added to the HD output signal. If 0, this entry will be skipped.  
HD pattern value pointer. This gives the index in the HD value array containing the level to be inserted  
into the HD output path. If the MSB of HPV is logic 1, the value will only be inserted into the y/green  
channel of the HD data path, the other channels remain unchanged.  
Table 128 Layout of the data bytes in the line pattern array  
BYTE  
DESCRIPTION  
HPD04 HPD03  
0
1
2
3
4
5
6
7
HPD07  
HPV03  
HPD17  
HPV13  
HPD27  
HPV23  
HPD37  
HPV33  
HPD06  
HPV02  
HPD16  
HPV12  
HPD26  
HPV22  
HPD36  
HPV32  
HPD05  
HPV01  
HPD14  
HPV11  
HPD25  
HPV21  
HPD35  
HPV31  
HPD02  
HPD01  
HPD09  
HPD11  
HPD19  
HPD21  
HPD29  
HPD31  
HPD39  
HPD00  
HPD08  
HPD10  
HPD18  
HPD20  
HPD28  
HPD30  
HPD38  
HPV00  
HPD14  
HPV10  
HPD24  
HPV20  
HPD34  
HPV30  
0
0
HPD13  
HPD12  
0
HPD23  
0
0
HPD22  
0
HPD33  
0
HPD32  
0
2004 Jun 29  
131  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 129 Subaddress D3H  
DATA BYTE  
DESCRIPTION  
HPVA  
HPVE  
RAM start address for the HD sync value array; the byte following subaddress D3 points to the first  
cell to be loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing  
until stop condition. Each line pattern array entry consists of 2 bytes. The array has 8 entries.  
HD pattern value entry. The HD path will insert a level of (HPV + 52) × 0.66 IRE into the data path.  
The value is signed 8-bits wide; see Table 130.  
HHS  
HVS  
HD horizontal sync. If the HD engine is active, this value will be provided at pin HSM; see Table 130.  
HD vertical sync. If the HD engine is active, this value will be provided at pin VSM; see Table 130.  
Table 130 Layout of the data bytes in the value array  
BYTE  
DESCRIPTION  
HPVE4 HPVE3  
0
1
HPVE7  
0
HPVE6  
0
HPVE5  
0
HPVE2  
0
HPVE1  
HVS  
HPVE0  
HHS  
0
0
Table 131 Subaddresses D4H and D5H  
DATA BYTE  
DESCRIPTION  
HLCT  
state of the HD line counter after trigger, note that it counts backwards  
state of the HD line type pointer after trigger  
HLCPT  
HLPPT  
state of the HD pattern pointer after trigger  
Table 132 Subaddresses D6H and D7H  
DATA BYTE  
DESCRIPTION  
HDCT  
HEPT  
state of the HD duration counter after trigger, note that it counts backwards  
state of the HD event type pointer in the line type array after trigger  
Table 133 Subaddresses D8H and D9H  
DATA BYTE  
DESCRIPTION  
horizontal trigger phase for the HD sync engine in pixel clocks  
HTX  
Table 134 Subaddresses DAH and DBH  
DATA BYTE  
DESCRIPTION  
vertical trigger phase for the HD sync engine in input lines  
HTY  
Table 135 Subaddress DCH  
LOGIC  
DATA BYTE  
DESCRIPTION  
the HD sync engine is off; default after reset  
LEVEL  
HDSYE  
HDTC  
0
1
0
1
the HD sync engine is active  
HD output path processes RGB; default after reset  
HD output path processes YUV  
2004 Jun 29  
132  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
LOGIC  
LEVEL  
DATA BYTE  
DESCRIPTION  
HDGY  
0
gain in the HD output path is reduced, insertion of sync pulses is possible; default after  
reset  
1
0
full level swing at the input causes full level swing at the DACs in HD mode  
HDIP  
interpolator for the colour difference signal in the HD output path is active; default after  
reset  
1
interpolator for the colour difference signals in the HD output path is off  
Table 136 Subaddresses F0H to F2H  
DATA BYTE  
DESCRIPTION  
CC1R, CC1G RED, GREEN and BLUE portion of first cursor colour  
and CC1B  
Table 137 Subaddresses F3H to F5H  
DATA BYTE  
DESCRIPTION  
CC2R, CC2G RED, GREEN and BLUE portion of second cursor colour  
and CC2B  
Table 138 Subaddresses F6H to F8H  
DATA BYTE  
DESCRIPTION  
AUXR, AUXG RED, GREEN and BLUE portion of auxiliary cursor colour  
and AUXB  
Table 139 Subaddresses F9H and FAH  
DATA BYTE  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
DESCRIPTION  
XCP  
horizontal cursor position  
Table 140 Subaddress FAH  
DATA BYTE  
XHS  
horizontal hot spot of cursor  
Table 141 Subaddresses FBH and FCH  
DATA BYTE  
YCP  
vertical cursor position  
Table 142 Subaddress FCH  
DATA BYTE  
YHS  
vertical hot spot of cursor  
2004 Jun 29  
133  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 143 Subaddress FDH  
LOGIC  
DATA BYTE  
DESCRIPTION  
LEVEL  
LUTOFF  
CMODE  
LUTL  
0
1
0
1
0
1
0
1
2
3
4
colour look-up table is active  
colour look-up table is bypassed  
cursor mode; input colour will be inverted  
auxiliary cursor colour will be inserted  
LUT loading via input data stream is inactive  
colour and cursor LUTs are loaded via input data stream  
input format is 8 + 8 + 8-bit 4 : 4 : 4 non-interlaced RGB or CB-Y-CR  
input format is 5 + 5 + 5-bit 4 : 4 : 4 non-interlaced RGB  
input format is 5 + 6 + 5-bit 4 : 4 : 4 non-interlaced RGB  
input format is 8 + 8 + 8-bit 4 : 2 : 2 non-interlaced CB-Y-CR  
IF  
input format is 8 + 8 + 8-bit 4 : 2 : 2 interlaced CB-Y-CR (ITU-R BT.656, 27 MHz clock)  
(in subaddresses 91H and 94H set XPIX = number of active pixels/line)  
5
6
0
1
0
1
input format is 8-bit non-interlaced index colour  
input format is 8 + 8 + 8-bit 4 : 4 : 4 non-interlaced RGB or CB-Y-CR (special bit ordering)  
RGB to CR-Y-CB matrix is active  
MATOFF  
DFOFF  
RGB to CR-Y-CB matrix is bypassed  
down formatter (4 : 4 : 4 to 4 : 2 : 2) in input path is active  
down formatter is bypassed  
Table 144 Subaddress FEH  
DATA BYTE  
DESCRIPTION  
CURSA  
RAM start address for cursor bit map; the byte following subaddress FEH points to the first cell to be  
loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing until stop  
condition  
Table 145 Subaddress FFH  
DATA BYTE  
DESCRIPTION  
COLSA  
RAM start address for colour LUT; the byte following subaddress FFH points to the first cell to be  
loaded with the next transmitted byte; succeeding cells are loaded by auto-incrementing until stop  
condition  
In subaddresses 5BH, 5CH, 5DH, 5EH, 62H and D3H all IRE values are rounded up.  
2004 Jun 29  
134  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.1.3 SLAVE TRANSMITTER  
Table 146 Slave transmitter (slave address 89H)  
DATA BYTE  
D4 D3  
VER0 CCRDO CCRDE  
REGISTER  
FUNCTION  
SUBADDRESS  
D7  
D6  
D5  
D2  
D1  
D0  
Status byte  
Chip ID  
00H  
1CH  
80H  
VER2  
CID7  
0
VER1  
CID6  
0
0
CID2  
0
FSEQ  
CID1  
O_E  
CID0  
UDFL  
CID5  
0
CID4  
0
CID3  
0
FIFO status  
OVFL  
Table 147 Subaddress 00H  
DATA BYTE  
LOGIC LEVEL  
DESCRIPTION  
VER  
version identification of the device: it will be changed with all versions of the IC that  
have different programming models; current version is 101 binary  
CCRDO  
CCRDE  
1
0
Closed Caption bytes of the odd field have been encoded  
the bit is reset after information has been written to the  
subaddresses 67H and 68H; it is set immediately after the data has been encoded  
1
0
Closed Caption bytes of the even field have been encoded  
the bit is reset after information has been written to the  
subaddresses 69H and 6AH; it is set immediately after the data has been encoded  
FSEQ  
O_E  
1
0
1
0
during first field of a sequence (repetition rate: NTSC = 4 fields, PAL = 8 fields)  
not first field of a sequence  
during even field  
during odd field  
Table 148 Subaddress 1CH  
DATA BYTE  
DESCRIPTION  
CID  
chip ID of SAA7108AE = 04H; chip ID of SAA7109AE = 05H  
Table 149 Subaddress 80H  
DATA BYTE  
LOGIC LEVEL  
DESCRIPTION  
normal FIFO state  
IFERR  
0
1
0
1
0
1
0
1
input FIFO overflow/underflow has occurred  
normal FIFO state  
BFERR  
OVFL  
buffer FIFO overflow, only if YUPSC = 1  
no FIFO overflow  
FIFO overflow has occurred; this bit is reset after this subaddress has been read  
no FIFO underflow  
UDFL  
FIFO underflow has occurred; this bit is reset after this subaddress has been read  
2004 Jun 29  
135  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2 Digital video decoder part  
18.2.1 I2C-BUS FORMAT  
S
ACK-s  
ACK-s  
ACK-s  
P
SLAVE ADDRESS W  
SUBADDRESS  
DATA  
data transferred  
(n bytes + acknowledge)  
MHB339  
a. Write procedure.  
S
SLAVE ADDRESS W  
SLAVE ADDRESS R  
ACK-s  
ACK-s  
SUBADDRESS  
ACK-s  
Sr  
DATA  
ACK-m  
P
data transferred  
(n bytes + acknowledge)  
MHB340  
b. Read procedure (combined).  
Fig.58 I2C-bus format.  
Table 150 Description of I2C-bus format; note 1  
CODE  
DESCRIPTION  
S
START condition  
Sr  
repeated START condition  
SLAVE ADDRESS W ‘0100 0010’ (42H, default) or ‘0100 0000’ (40H; note 2)  
SLAVE ADDRESS R ‘0100 0011’ (43H, default) or ‘0100 0001’ (41H; note 2)  
ACK-s  
acknowledge generated by the slave  
acknowledge generated by the master  
subaddress byte; see Tables 151 and 152  
ACK-m  
SUBADDRESS  
DATA  
data byte; see Table 152; if more than one byte DATA is transmitted the subaddress pointer is  
automatically incremented  
P
X
STOP condition  
read/write control bit (LSB slave address); X = 0, order to write (the circuit is slave receiver);  
X = 1, order to read (the circuit is slave transmitter)  
Notes  
1. The SAA7108AE; SAA7109AE supports the ‘fast mode’ I2C-bus specification extension (data rate up to 400 kbits/s).  
2. If pin RTCO is strapped to VDDD via a 3.3 kresistor.  
2004 Jun 29  
136  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 151 Subaddress description and access  
SUBADDRESS  
DESCRIPTION  
ACCESS (READ/WRITE)  
00H  
chip version  
reserved  
read only  
F0H to FFH  
Video decoder: 01H to 2FH  
01H to 05H  
06H to 19H  
1AH to 1EH  
1FH  
front-end part  
read and write  
decoder part  
reserved  
read and write  
read only  
video decoder status byte  
reserved  
20H to 2FH  
Audio clock generation: 30H to 3FH  
30H to 3AH  
3BH to 3FH  
audio clock generator  
reserved  
read and write  
General purpose VBI data slicer: 40H to 7FH  
40H to 5EH  
5FH  
VBI data slicer  
reserved  
read and write  
read only  
60H to 62H  
63H to 7FH  
VBI data slicer status  
reserved  
X port, I port and the scaler: 80H to EFH  
80H to 8FH  
90H to BFH  
C0H to EFH  
task independent global settings  
read and write  
read and write  
read and write  
task A definition  
task B definition  
2004 Jun 29  
137  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
Table 152 I2C-bus receiver/transmitter overview  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Chip version: register 00H  
Chip version (read only)  
00  
ID7  
ID6  
ID5  
ID4  
Video decoder: registers 01H to 2FH  
FRONT-END PART: REGISTERS 01H TO 05H  
(1)  
(1)  
(1)  
(1)  
Increment delay  
01  
02  
03  
04  
05  
IDEL3  
MODE3  
HOLDG  
GAI13  
IDEL2  
MODE2  
GAFIX  
GAI12  
GAI22  
IDEL1  
MODE1  
GAI28  
GAI11  
GAI21  
IDEL0  
MODE0  
GAI18  
GAI10  
GAI20  
Analog input control 1  
Analog input control 2  
Analog input control 3  
Analog input control 4  
FUSE1  
FUSE0  
HLNRS  
GAI16  
GAI26  
GUDL1  
VBSL  
GUDL0  
WPOFF  
GAI14  
(1)  
GAI17  
GAI27  
GAI15  
GAI25  
GAI24  
GAI23  
DECODER PART: REGISTERS 06H TO 2FH  
Horizontal sync start  
Horizontal sync stop  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
HSB7  
HSS7  
HSB6  
HSS6  
HSB5  
HSS5  
HSB4  
HSS4  
HSB3  
HSS3  
HSB2  
HSS2  
HSB1  
HSS1  
HSB0  
HSS0  
Sync control  
AUFD  
FSEL  
FOET  
HTC1  
HTC0  
HPLL  
VNOI1  
LUFI1  
DBRI1  
DCON1  
DSAT1  
VNOI0  
LUFI0  
Luminance control  
BYPS  
YCOMB  
DBRI6  
DCON6  
DSAT6  
HUEC6  
CSTD2  
CGAIN6  
OFFU0  
RTP1  
LDEL  
LUBW  
LUFI3  
LUFI2  
Luminance brightness control  
Luminance contrast control  
Chrominance saturation control  
Chrominance hue control  
Chrominance control 1  
Chrominance gain control  
Chrominance control 2  
Mode/delay control  
DBRI7  
DCON7  
DSAT7  
HUEC7  
CDTO  
ACGC  
OFFU1  
COLO  
RTSE13  
RTCE  
DBRI5  
DCON5  
DSAT5  
HUEC5  
CSTD1  
CGAIN5  
OFFV1  
HDEL1  
RTSE11  
XRVS1  
AOSL1  
DBRI4  
DCON4  
DSAT4  
HUEC4  
CSTD0  
CGAIN4  
OFFV0  
HDEL0  
RTSE10  
XRVS0  
AOSL0  
DBRI3  
DCON3  
DSAT3  
HUEC3  
DCVF  
DBRI2  
DCON2  
DSAT2  
HUEC2  
FCTC  
DBRI0  
DCON0  
DSAT0  
HUEC0  
CCOMB  
CGAIN0  
LCBW0  
YDEL0  
RTSE00  
OFTS0  
APCK0  
HUEC1  
(1)  
CGAIN3  
CHBW  
RTP0  
CGAIN2  
LCBW2  
YDEL2  
RTSE02  
OFTS2  
OLDSB  
CGAIN1  
LCBW1  
YDEL1  
RTSE01  
OFTS1  
APCK1  
RT signal control  
RTSE12  
XRHS  
RTSE03  
HLSEL  
XTOUTE  
RT/X port output control  
Analog/ADC/compatibility  
control  
CM99  
UPTCV  
VGATE start, FID change  
VGATE stop  
15  
16  
VSTA7  
VSTO7  
VSTA6  
VSTO6  
VSTA5  
VSTO5  
VSTA4  
VSTO4  
VSTA3  
VSTO3  
VSTA2  
VSTO2  
VSTA1  
VSTO1  
VSTA0  
VSTO0  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
Miscellaneous,  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(1)  
(1)  
(1)  
17  
LLCE  
LLC2E  
VGPS  
VSTO8  
VSTA8  
VGATE configuration and MSBs  
Raw data gain control  
Raw data offset control  
Reserved  
18  
19  
RAWG7  
RAWG6  
RAWG5  
RAWG4  
RAWG3  
RAWG2  
RAWG1  
RAWG0  
RAWO7  
RAWO6  
RAWO5  
RAWO4  
RAWO3  
RAWO2  
RAWO1  
RAWO0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
1A to 1E  
1F  
Status byte video decoder  
(read only, OLDSB = 0)  
INTL  
HLVLN  
FIDT  
GLIMT  
GLIMB  
WIPA  
COPRO  
RDCAP  
Status byte video decoder  
(read only, OLDSB = 1)  
1F  
INTL  
HLCK  
FIDT  
GLIMT  
GLIMB  
WIPA  
SLTCA  
CODE  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
20 to 2F  
Audio clock generator part: registers 30H to 3FH  
Audio master clock cycles per  
field  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
ACPF7  
ACPF6  
ACPF5  
ACPF4  
ACPF3  
ACPF2  
ACPF1  
ACPF9  
ACPF0  
ACPF8  
ACPF15  
ACPF14  
ACPF13  
ACPF12  
ACPF11  
ACPF10  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
ACPF17  
ACPF16  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
Audio master clock nominal  
increment  
ACNI7  
ACNI6  
ACNI5  
ACNI4  
ACNI3  
ACNI2  
ACNI1  
ACNI9  
ACNI0  
ACNI8  
ACNI15  
ACNI14  
ACNI13  
ACNI12  
ACNI11  
ACNI10  
(1)  
(1)  
ACNI21  
ACNI20  
ACNI19  
ACNI18  
ACNI17  
ACNI16  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
Clock ratio AMXCLK to ASCLK  
Clock ratio ASCLK to ALRCLK  
SDIV5  
SDIV4  
SDIV3  
LRDIV3  
APLL  
SDIV2  
LRDIV2  
AMVR  
SDIV1  
LRDIV1  
LRPH  
SDIV0  
LRDIV0  
SCPH  
LRDIV5  
LRDIV4  
(1)  
(1)  
Audio clock generator basic  
set-up  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
3B to 3F  
General purpose VBI data slicer part: registers 40H to 7FH  
(1)  
(1)  
(1)  
(1)  
(1)  
Slicer control 1  
40  
41 to 57  
58  
HAM_N  
LCRn_6  
FC6  
FCE  
LCRn_5  
FC5  
HUNT_N  
LCRn_4  
FC4  
LCR2 to LCR24 (n = 2 to 24)  
Programmable framing code  
Horizontal offset for slicer  
Vertical offset for slicer  
LCRn_7  
FC7  
LCRn_3  
FC3  
LCRn_2  
FC2  
LCRn_1  
FC1  
LCRn_0  
FC0  
59  
HOFF7  
VOFF7  
HOFF6  
VOFF6  
HOFF5  
VOFF5  
HOFF4  
VOFF4  
HOFF3  
VOFF3  
HOFF2  
VOFF2  
HOFF1  
VOFF1  
HOFF0  
VOFF0  
5A  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
(1)  
(1)  
Field offset and MSBs for  
5B  
FOFF  
RECODE  
VOFF8  
HOFF10  
HOFF9  
HOFF8  
horizontal and vertical offset  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved (for testing)  
5C  
5D  
Header and data identification  
(DID) code control  
FVREF  
DID5  
DID4  
DID3  
DID2  
DID1  
DID0  
(1)  
(1)  
(1)  
Sliced data identification (SDID)  
code  
5E  
SDID5  
SDID4  
SDID3  
SDID2  
SDID1  
SDID0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
5F  
60  
Slicer status byte 0 (read only)  
Slicer status byte 1 (read only)  
Slicer status byte 2 (read only)  
Reserved  
FC8V  
FC7V  
VPSV  
LN8  
PPV  
LN7  
CCV  
LN6  
61  
F21_N  
LN5  
LN4  
62  
LN3  
(1)  
LN2  
(1)  
LN1  
(1)  
LN0  
(1)  
DT3  
(1)  
DT2  
(1)  
DT1  
(1)  
DT0  
(1)  
63 to 7F  
X port, I port and the scaler part: registers 80H to EFH  
TASK INDEPENDENT GLOBAL SETTINGS: 80H TO 8FH  
(1)  
Global control 1  
Reserved  
80  
SMOD  
(1)  
TEB  
(1)  
TEA  
(1)  
ICKS3  
(1)  
ICKS2  
(1)  
ICKS1  
(1)  
ICKS0  
(1)  
(1)  
81 and  
82  
(1)  
(1)  
(1)  
X port I/O enable and output  
clock phase control  
83  
XPCK1  
XPCK0  
XRQT  
XPE1  
XPE0  
I port signal definitions  
I port signal polarities  
84  
85  
86  
IDG01  
ISWP1  
VITX1  
IDG00  
ISWP0  
VITX0  
IDG11  
ILLV  
IDG10  
IG0P  
IDV1  
IG1P  
FFL1  
IDV0  
IRVP  
FFL0  
IDH1  
IRHP  
FEL1  
IDH0  
IDQP  
FEL0  
I port FIFO flag control and  
arbitration  
IDG02  
IDG12  
(1)  
(1)  
I port I/O enable, output clock  
and gated clock phase control  
87  
IPCK3  
IPCK2  
IPCK1  
IPCK0  
IPE1  
IPE0  
(1)  
(1)  
Power save control  
Reserved  
88  
89 to 8E  
8F  
CH4EN  
CH2EN  
SWRST  
DPROG  
SLM3  
(1)  
SLM1  
(1)  
SLM0  
(1)  
(1)  
(1)  
(1)  
(1)  
Status information scaler part  
XTRI  
ITRI  
FFIL  
FFOV  
PRDON  
ERROF  
FIDSCI  
FIDSCO  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TASK A DEFINITION: REGISTERS 90H TO BFH  
Basic settings and acquisition window definition  
Task handling control  
90  
91  
92  
CONLH  
CONLV  
XFDV  
OFIDC  
HLDFV  
XFDH  
FSKP2  
SCSRC1  
XDV1  
FSKP1  
SCSRC0  
XDV0  
FSKP0  
SCRQE  
XCODE  
RPTSK  
FSC2  
XDH  
STRC1  
FSC1  
XDQ  
STRC0  
FSC0  
X port formats and configuration  
X port input reference signal  
definitions  
XCKS  
I port output formats and  
configuration  
93  
ICODE  
I8_16  
FYSK  
FOI1  
FOI0  
FSI2  
FSI1  
FSI0  
Horizontal input window start  
Horizontal input window length  
Vertical input window start  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
XO7  
(1)  
XO6  
(1)  
XO5  
(1)  
XO4  
(1)  
XO3  
XO11  
XS3  
XO2  
XO10  
XS2  
XO1  
XO9  
XS1  
XS9  
YO1  
YO9  
YS1  
YS9  
XD1  
XD9  
YD1  
YD9  
XO0  
XO8  
XS0  
XS8  
YO0  
YO8  
YS0  
YS8  
XD0  
XD8  
YD0  
YD8  
XS7  
(1)  
XS6  
(1)  
XS5  
(1)  
XS4  
(1)  
XS11  
YO3  
XS10  
YO2  
YO7  
(1)  
YO6  
(1)  
YO5  
(1)  
YO4  
(1)  
YO11  
YS3  
YO10  
YS2  
Vertical input window length  
Horizontal output window length  
Vertical output window length  
YS7  
(1)  
YS6  
(1)  
YS5  
(1)  
YS4  
(1)  
YS11  
XD3  
YS10  
XD2  
XD7  
(1)  
XD6  
(1)  
XD5  
(1)  
XD4  
(1)  
XD11  
YD3  
XD10  
YD2  
YD7  
(1)  
YD6  
(1)  
YD5  
(1)  
YD4  
(1)  
YD11  
YD10  
FIR filtering and prescaling  
Horizontal prescaling  
Accumulation length  
(1)  
(1)  
(1)  
(1)  
A0  
A1  
A2  
XPSC5  
XACL5  
PFY1  
XPSC4  
XACL4  
PFY0  
XPSC3  
XACL3  
XC2_1  
XPSC2  
XACL2  
XDCG2  
XPSC1  
XACL1  
XDCG1  
XPSC0  
XACL0  
XDCG0  
Prescaler DC gain and FIR  
prefilter control  
PFUV1  
PFUV0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
A3  
A4  
A5  
A6  
A7  
Luminance brightness control  
Luminance contrast control  
Chrominance saturation control  
Reserved  
BRIG7  
BRIG6  
BRIG5  
BRIG4  
BRIG3  
BRIG2  
BRIG1  
BRIG0  
CONT7  
CONT6  
CONT5  
CONT4  
CONT3  
CONT2  
CONT1  
CONT0  
SATN7  
SATN6  
SATN5  
SATN4  
SATN3  
SATN2  
SATN1  
SATN0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Horizontal phase scaling  
Horizontal luminance scaling  
increment  
A8  
A9  
AA  
XSCY7  
XSCY6  
XSCY5  
XSCY4  
XSCY12  
XPHY4  
XSCY3  
XSCY11  
XPHY3  
XSCY2  
XSCY10  
XPHY2  
XSCY1  
XSCY9  
XPHY1  
XSCY0  
XSCY8  
XPHY0  
(1)  
(1)  
(1)  
Horizontal luminance phase  
offset  
XPHY7  
XPHY6  
XPHY5  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
AB  
AC  
AD  
AE  
Horizontal chrominance scaling  
increment  
XSCC7  
XSCC6  
XSCC5  
XSCC4  
XSCC12  
XPHC4  
XSCC3  
XSCC11  
XPHC3  
XSCC2  
XSCC10  
XPHC2  
XSCC1  
XSCC9  
XPHC1  
XSCC0  
XSCC8  
XPHC0  
(1)  
(1)  
(1)  
Horizontal chrominance phase  
offset  
XPHC7  
XPHC6  
XPHC5  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
AF  
Vertical scaling  
Vertical luminance scaling  
increment  
B0  
B1  
YSCY7  
YSCY15  
YSCC7  
YSCY6  
YSCY14  
YSCC6  
YSCY5  
YSCY13  
YSCC5  
YSCY4  
YSCY12  
YSCC4  
YSCC12  
YSCY3  
YSCY11  
YSCC3  
YSCY2  
YSCY10  
YSCC2  
YSCY1  
YSCY9  
YSCC1  
YSCY0  
YSCY8  
YSCC0  
YSCC8  
Vertical chrominance scaling  
increment  
B2  
B3  
YSCC15  
YSCC14  
YSCC13  
YSCC11  
YSCC10  
YSCC9  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Vertical scaling mode control  
Reserved  
B4  
YMIR  
(1)  
YMODE  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
B5 to B7  
B8  
Vertical chrominance phase  
offset ‘00’  
YPC07  
YPC06  
YPC05  
YPC04  
YPC14  
YPC24  
YPC34  
YPY04  
YPY14  
YPY24  
YPC03  
YPC02  
YPC01  
YPC00  
YPC10  
YPC20  
YPC30  
YPY00  
YPY10  
YPY20  
Vertical chrominance phase  
offset ‘01’  
B9  
BA  
BB  
BC  
BD  
BE  
YPC17  
YPC27  
YPC37  
YPY07  
YPY17  
YPY27  
YPC16  
YPC26  
YPC36  
YPY06  
YPY16  
YPY26  
YPC15  
YPC25  
YPC35  
YPY05  
YPY15  
YPY25  
YPC13  
YPC23  
YPC33  
YPY03  
YPY13  
YPY23  
YPC12  
YPC22  
YPC32  
YPY02  
YPY12  
YPY22  
YPC11  
YPC21  
YPC31  
YPY01  
YPY11  
YPY21  
Vertical chrominance phase  
offset ‘10’  
Vertical chrominance phase  
offset ‘11’  
Vertical luminance phase  
offset ‘00’  
Vertical luminance phase  
offset ‘01’  
Vertical luminance phase  
offset ‘10’  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Vertical luminance phase  
offset ‘11’  
BF  
YPY37  
YPY36  
YPY35  
YPY34  
YPY33  
YPY32  
YPY31  
YPY30  
TASK B DEFINITION REGISTERS C0H TO EFH  
Basic settings and acquisition window definition  
Task handling control  
C0  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
CONLH  
CONLV  
XFDV  
OFIDC  
HLDFV  
XFDH  
I8_16  
FSKP2  
SCSRC1  
XDV1  
FSKP1  
SCSRC0  
XDV0  
FSKP0  
SCRQE  
XCODE  
FOI0  
RPTSK  
FSC2  
XDH  
FSI2  
XO2  
STRC1  
FSC1  
XDQ  
FSI1  
XO1  
XO9  
XS1  
STRC0  
FSC0  
XCKS  
FSI0  
XO0  
XO8  
XS0  
X port formats and configuration  
Input reference signal definition  
I port formats and configuration  
Horizontal input window start  
ICODE  
FYSK  
FOI1  
XO7  
(1)  
XO6  
(1)  
XO5  
(1)  
XO4  
(1)  
XO3  
XO11  
XS3  
XO10  
XS2  
Horizontal input window length  
Vertical input window start  
XS7  
(1)  
XS6  
(1)  
XS5  
(1)  
XS4  
(1)  
XS11  
YO3  
XS10  
YO2  
XS9  
XS8  
YO7  
(1)  
YO6  
(1)  
YO5  
(1)  
YO4  
(1)  
YO1  
YO9  
YS1  
YO0  
YO11  
YS3  
YO10  
YS2  
YO8  
Vertical input window length  
Horizontal output window length  
Vertical output window length  
YS7  
(1)  
YS6  
(1)  
YS5  
(1)  
YS4  
(1)  
YS0  
YS11  
XD3  
YS10  
XD2  
YS9  
YS8  
XD7  
(1)  
XD6  
(1)  
XD5  
(1)  
XD4  
(1)  
XD1  
XD9  
YD1  
YD9  
XD0  
XD8  
YD0  
YD8  
XD11  
YD3  
XD10  
YD2  
YD7  
(1)  
YD6  
(1)  
YD5  
(1)  
YD4  
(1)  
YD11  
YD10  
FIR filtering and prescaling  
(1)  
(1)  
(1)  
(1)  
Horizontal prescaling  
Accumulation length  
D0  
D1  
D2  
XPSC5  
XACL5  
PFY1  
XPSC4  
XACL4  
PFY0  
XPSC3  
XACL3  
XC2_1  
XPSC2  
XACL2  
XDCG2  
XPSC1  
XACL1  
XDCG1  
XPSC0  
XACL0  
XDCG0  
Prescaler DC gain and FIR  
prefilter control  
PFUV1  
PFUV0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
D3  
D4  
D5  
D6  
D7  
Luminance brightness control  
Luminance contrast control  
Chrominance saturation control  
Reserved  
BRIG7  
BRIG6  
BRIG5  
BRIG4  
BRIG3  
BRIG2  
BRIG1  
BRIG0  
CONT7  
CONT6  
CONT5  
CONT4  
CONT3  
CONT2  
CONT1  
CONT0  
SATN7  
SATN6  
SATN5  
SATN4  
SATN3  
SATN2  
SATN1  
SATN0  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Horizontal phase scaling  
Horizontal luminance scaling  
increment  
D8  
D9  
DA  
XSCY7  
XSCY6  
XSCY5  
XSCY4  
XSCY12  
XPHY4  
XSCY3  
XSCY11  
XPHY3  
XSCY2  
XSCY10  
XPHY2  
XSCY1  
XSCY9  
XPHY1  
XSCY0  
XSCY8  
XPHY0  
(1)  
(1)  
(1)  
Horizontal luminance phase  
offset  
XPHY7  
XPHY6  
XPHY5  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
DB  
DC  
DD  
DE  
Horizontal chrominance scaling  
increment  
XSCC7  
XSCC6  
XSCC5  
XSCC4  
XSCC12  
XPHC4  
XSCC3  
XSCC11  
XPHC3  
XSCC2  
XSCC10  
XPHC2  
XSCC1  
XSCC9  
XPHC1  
XSCC0  
XSCC8  
XPHC0  
(1)  
(1)  
(1)  
Horizontal chrominance phase  
offset  
XPHC7  
XPHC6  
XPHC5  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Reserved  
DF  
Vertical scaling  
Vertical luminance scaling  
increment  
E0  
E1  
YSCY7  
YSCY15  
YSCC7  
YSCY6  
YSCY14  
YSCC6  
YSCY5  
YSCY13  
YSCC5  
YSCY4  
YSCY12  
YSCC4  
YSCC12  
YSCY3  
YSCY11  
YSCC3  
YSCY2  
YSCY10  
YSCC2  
YSCY1  
YSCY9  
YSCC1  
YSCY0  
YSCY8  
YSCC0  
YSCC8  
Vertical chrominance scaling  
increment  
E2  
E3  
YSCC15  
YSCC14  
YSCC13  
YSCC11  
YSCC10  
YSCC9  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
Vertical scaling mode control  
Reserved  
E4  
YMIR  
(1)  
YMODE  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
(1)  
E5 to E7  
E8  
Vertical chrominance phase  
offset ‘00’  
YPC07  
YPC06  
YPC05  
YPC04  
YPC14  
YPC24  
YPC34  
YPY04  
YPC03  
YPC02  
YPC01  
YPC00  
YPC10  
YPC20  
YPC30  
YPY00  
Vertical chrominance phase  
offset ‘01’  
E9  
EA  
EB  
EC  
YPC17  
YPC27  
YPC37  
YPY07  
YPC16  
YPC26  
YPC36  
YPY06  
YPC15  
YPC25  
YPC35  
YPY05  
YPC13  
YPC23  
YPC33  
YPY03  
YPC12  
YPC22  
YPC32  
YPY02  
YPC11  
YPC21  
YPC31  
YPY01  
Vertical chrominance phase  
offset ‘10’  
Vertical chrominance phase  
offset ‘11’  
Vertical luminance phase  
offset ‘00’  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
SUB  
REGISTER FUNCTION  
ADDR.  
(HEX)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Vertical luminance phase  
offset ‘01’  
ED  
EE  
EF  
YPY17  
YPY27  
YPY37  
YPY16  
YPY26  
YPY36  
YPY15  
YPY25  
YPY35  
YPY14  
YPY24  
YPY34  
YPY13  
YPY23  
YPY33  
YPY12  
YPY22  
YPY32  
YPY11  
YPY21  
YPY31  
YPY10  
YPY20  
YPY30  
Vertical luminance phase  
offset ‘10’  
Vertical luminance phase  
offset ‘11’  
Note  
1. All unused control bits must be programmed with logic 0 to ensure compatibility to future enhancements.  
18.2.2 I2C-BUS DETAIL  
18.2.2.1 Subaddress 00H  
Table 153 Chip version (CV) identification; 00H[7:4]; read only register  
LOGIC LEVELS  
FUNCTION  
ID7  
ID6  
ID5  
ID4  
CV0  
Chip Version (CV)  
CV3  
CV2  
CV1  
18.2.2.2 Subaddress 01H  
The programming of the horizontal increment delay is used to match internal processing delays to the delay of the ADC. Use recommended position  
only.  
Table 154 Horizontal increment delay; 01H[3:0]  
FUNCTION  
IDEL3  
IDEL2  
IDEL1  
IDEL0  
No update  
1
1
1
0
1
1
0
0
1
1
0
0
1
0
0
0
Minimum delay  
Recommended position  
Maximum delay  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.3 Subaddress 02H  
Table 155 Analog input control 1 (AICO1); 02H[7:0]  
BIT  
DESCRIPTION  
SYMBOL VALUE  
FUNCTION  
7 and 6 analog function select;  
see Fig.15  
FUSE[1:0]  
00  
01  
10  
11  
00  
01  
10  
11  
amplifier plus anti-alias filter bypassed  
amplifier active  
amplifier plus anti-alias filter active  
5 and 4 update hysteresis for  
9-bit gain; see Fig.16  
GUDL[1:0]  
off  
±1 LSB  
±2 LSB  
±3 LSB  
3 to 0 mode selection  
MODE[3:0] 0000 Mode 0: CVBS (automatic gain) from AI11 (pin P13);  
see Fig.59  
0001 Mode 1: CVBS (automatic gain) from AI12 (pin P11);  
see Fig.60  
0010 Mode 2: CVBS (automatic gain) from AI21 (pin P10);  
see Fig.61  
0011 Mode 3: CVBS (automatic gain) from AI22 (pin P9);  
see Fig.62  
0100 Mode 4: CVBS (automatic gain) from AI23 (pin P7);  
see Fig.63  
0101 Mode 5: CVBS (automatic gain) from AI24 (pin P6);  
see Fig.64  
0110 Mode 6: Y (automatic gain) from AI11 (pin P13) + C (gain  
adjustable via GAI28 to GAI20) from AI21 (pin P10);  
note 1; see Fig.65  
0111 Mode 7: Y (automatic gain) from AI12 (pin P11) + C (gain  
adjustable via GAI28 to GAI20) from AI22 (pin P9); note 1;  
see Fig.66  
1000 Mode 8: Y (automatic gain) from AI11 (pin P13) + C (gain  
adapted to Y gain) from AI21 (pin P10); note 1; see Fig.67  
1001 Mode 9: Y (automatic gain) from AI12 (pin P11) + C (gain  
adapted to Y gain) from AI22 (pin P9); note 1; see Fig.68  
1010 Modes 10 to 15: reserved  
to  
1111  
Note  
1. To take full advantage of the Y/C modes 6 to 9 the I2C-bus bit BYPS (subaddress 09H, bit 7) should be set to logic 1  
(full luminance bandwidth).  
2004 Jun 29  
146  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
AI24  
AI23  
AI22  
AI21  
AI24  
AI23  
AI22  
AI21  
AD2  
AD1  
AD2  
CHROMA  
CHROMA  
LUMA  
AI12  
AI11  
LUMA  
AD1  
AI12  
AI11  
MHB559  
MHB560  
Fig.59 Mode 0; CVBS (automatic gain).  
Fig.60 Mode 1; CVBS (automatic gain).  
AI24  
AI24  
AI23  
AI22  
AI21  
AI23  
AI22  
AI21  
AD2  
AD1  
AD2  
AD1  
CHROMA  
CHROMA  
LUMA  
LUMA  
AI12  
AI11  
AI12  
AI11  
MHB561  
MHB562  
Fig.61 Mode 2; CVBS (automatic gain).  
Fig.62 Mode 3; CVBS (automatic gain).  
AI24  
AI24  
AI23  
AI22  
AI21  
AI23  
AI22  
AI21  
AD2  
AD1  
AD2  
AD1  
CHROMA  
CHROMA  
LUMA  
LUMA  
AI12  
AI11  
AI12  
AI11  
MHB563  
MHB564  
Fig.63 Mode 4; CVBS (automatic gain).  
Fig.64 Mode 5; CVBS (automatic gain).  
2004 Jun 29  
147  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
AI24  
AI23  
AI22  
AI21  
AI24  
AI23  
AI22  
AI21  
AD2  
AD1  
AD2  
CHROMA  
CHROMA  
LUMA  
AI12  
AI11  
LUMA  
AD1  
AI12  
AI11  
MHB565  
MHB566  
I2C-bus bit BYPS (subaddress 09H, bit 7) should be set to logic 1  
(full luminance bandwidth).  
I2C-bus bit BYPS (subaddress 09H, bit 7) should be set to logic 1  
(full luminance bandwidth).  
Fig.65 Mode 6; Y + C (gain channel 2 adjusted via  
GAI2).  
Fig.66 Mode 7; Y + C (gain channel 2 adjusted via  
GAI2).  
AI24  
AI24  
AI23  
AI22  
AI21  
AI23  
AI22  
AI21  
AD2  
AD2  
CHROMA  
CHROMA  
LUMA  
LUMA  
AI12  
AI11  
AI12  
AI11  
AD1  
AD1  
MHB567  
MHB568  
I2C-bus bit BYPS (subaddress 09H, bit 7) should be set to logic 1  
(full luminance bandwidth).  
I2C-bus bit BYPS (subaddress 09H, bit 7) should be set to logic 1  
(full luminance bandwidth).  
Fig.67 Mode 8; Y + C (gain channel 2 adapted to Y  
gain).  
Fig.68 Mode 9; Y + C (gain channel 2 adapted to Y  
gain).  
2004 Jun 29  
148  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.4 Subaddress 03H  
Table 156 Analog input control 2 (AICO2); 03H[6:0]  
BIT  
DESCRIPTION  
SYMBOL VALUE  
FUNCTION  
6
HL not reference select  
HLNRS  
0
1(1)  
0
normal clamping if decoder is in unlocked state  
reference select if decoder is in unlocked state  
5
AGC hold during vertical  
blanking period  
VBSL  
short vertical blanking (AGC disabled during equalization  
and serration pulses)  
1
long vertical blanking (AGC disabled from start of  
pre-equalization pulses until start of active video (line 22 for  
60 Hz, line 24 for 50 Hz)  
4
3
2
white peak control off  
WPOFF  
HOLDG  
GAFIX  
0(1)  
1
white peak control active  
white peak control off  
automatic gain control  
integration  
0
AGC active  
1
AGC integration hold (freeze)  
automatic gain controlled by MODE3 to MODE0  
gain is user programmable via GAI[17:10] and GAI[27:20]  
see Table 158  
gain control fix  
0
1
1
0
static gain control channel 2  
sign bit  
GAI28  
GAI18  
static gain control channel 1  
sign bit  
see Table 157  
Note  
1. HLNRS = 1 should not be used in combination with WPOFF = 0.  
18.2.2.5 Subaddress 04H  
Table 157 Analog input control 3 (AICO3); static gain control channel 1; 03H[0] and 04H[7:0]  
SIGN BIT  
03H[0]  
CONTROL BITS 7 TO 0  
DECIMAL  
VALUE  
GAIN  
(dB)  
GAI18  
GAI17  
GAI16  
GAI15  
GAI14  
GAI13  
GAI12  
GAI11  
GAI10  
0...  
3  
0
0
0
0
1
0
1
1
1
0
0
0
1
0
0
0
1
0
1
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
...144  
145...  
...511  
0
+6  
18.2.2.6 Subaddress 05H  
Table 158 Analog input control 4 (AICO4); static gain control channel 2; 03H[1] and 05H[7:0]  
SIGN BIT  
03H[1]  
CONTROL BITS 7 TO 0  
DECIMAL  
VALUE  
GAIN  
(dB)  
GAI28  
GAI27  
GAI26  
GAI25  
GAI24  
GAI23  
GAI22  
GAI21  
GAI20  
0...  
3  
0
0
0
0
1
0
1
1
1
0
0
0
1
0
0
0
1
0
1
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
1
1
...144  
145...  
...511  
0
+6  
2004 Jun 29  
149  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.7 Subaddress 06H  
Table 159 Horizontal sync start; 06H[7:0]  
CONTROL BITS 7 TO 0  
HSB4 HSB3  
forbidden (outside available central counter range)  
DELAY TIME  
(STEP SIZE = 8/LLC)  
HSB7  
HSB6  
HSB5  
HSB2  
HSB1  
HSB0  
128...109 (50 Hz)  
128...108 (60 Hz)  
108 (50 Hz)...  
107 (60 Hz)...  
...108 (50 Hz)  
1
1
0
0
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
0
1
0
1
0
1
...107 (60 Hz)  
109...127 (50 Hz)  
108...127 (60 Hz)  
forbidden (outside available central counter range)  
18.2.2.8 Subaddress 07H  
Table 160 Horizontal sync stop; 07H[7:0]  
CONTROL BITS 7 TO 0  
DELAY TIME  
(STEP SIZE = 8/LLC)  
HSS7  
HSS6  
HSS5  
HSS4  
HSS3  
HSS2  
HSS1  
HSS0  
128...109 (50 Hz)  
128...108 (60 Hz)  
forbidden (outside available central counter range)  
108 (50 Hz)...  
107 (60 Hz)...  
...108 (50 Hz)  
1
1
0
0
0
0
1
1
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
0
1
0
1
0
1
...107 (60 Hz)  
109...127 (50 Hz)  
108...127 (60 Hz)  
forbidden (outside available central counter range)  
2004 Jun 29  
150  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.9 Subaddress 08H  
Table 161 Sync control; 08H[7:0]  
BIT  
DESCRIPTION  
SYMBOL VALUE  
FUNCTION  
7
automatic field detection  
AUFD  
FSEL  
FOET  
0
1
0
1
0
1
field state directly controlled via FSEL  
automatic field detection; recommended setting  
50 Hz, 625 lines  
6
5
field selection  
60 Hz, 525 lines  
forced ODD/EVEN  
toggle  
ODD/EVEN signal toggles only with interlaced source  
ODD/EVEN signal toggles fieldwise even if source is  
non-interlaced  
4 and 3 horizontal time constant HTC[1:0]  
selection  
00  
01  
TV mode, recommended for poor quality TV signals only; do  
not use for new applications  
VTR mode, recommended if a deflection control circuit is  
directly connected to the SAA7108AE; SAA7109AE  
10  
11  
0
reserved  
fast locking mode; recommended setting  
PLL closed  
2
horizontal PLL  
HPLL  
1
PLL open; horizontal frequency fixed  
normal mode; recommended setting  
1 and 0 vertical noise reduction VNOI[1:0]  
00  
01  
fast mode, applicable for stable sources only; automatic field  
detection (AUFD) must be disabled  
10  
11  
free running mode  
vertical noise reduction bypassed  
2004 Jun 29  
151  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.10 Subaddress 09H  
Table 162 Luminance control; 09H[7:0]  
BIT  
DESCRIPTION  
SYMBOL VALUE  
FUNCTION  
7
chrominance trap/comb  
filter bypass  
BYPS  
0
chrominance trap or luminance comb filter active;  
default for CVBS mode  
1
chrominance trap or luminance comb filter bypassed;  
default for S-video mode  
6
5
adaptive luminance comb YCOMB  
filter  
0
1
0
1
disabled (= chrominance trap enabled, if BYPS = 0)  
active, if BYPS = 0  
processing delay in non  
comb filter mode  
LDEL  
processing delay is equal to internal pipelining delay  
one (NTSC standards) or two (PAL standards) video  
lines additional processing delay  
4
remodulation bandwidth  
for luminance; see  
Figs 21 to 24  
LUBW  
0
1
small remodulation bandwidth (narrow chrominance  
notch  
large remodulation bandwidth (wider chrominance  
notch smaller luminance bandwidth)  
higher luminance bandwidth)  
3 to 0  
sharpness control,  
luminance filter  
characteristic; see Fig.25  
LUFI[3:0]  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0000  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
resolution enhancement filter; 8.0 dB at 4.1 MHz  
resolution enhancement filter; 6.8 dB at 4.1 MHz  
resolution enhancement filter; 5.1 dB at 4.1 MHz  
resolution enhancement filter; 4.1 dB at 4.1 MHz  
resolution enhancement filter; 3.0 dB at 4.1 MHz  
resolution enhancement filter; 2.3 dB at 4.1 MHz  
resolution enhancement filter; 1.6 dB at 4.1 MHz  
plain  
low-pass filter; 2 dB at 4.1 MHz  
low-pass filter; 3 dB at 4.1 MHz  
low-pass filter; 3 dB at 3.3 MHz; 4 dB at 4.1 MHz  
low-pass filter; 3 dB at 2.6 MHz; 8 dB at 4.1 MHz  
low-pass filter; 3 dB at 2.4 MHz; 14 dB at 4.1 MHz  
low-pass filter; 3 dB at 2.2 MHz; notch at 3.4 MHz  
low-pass filter; 3 dB at 1.9 MHz; notch at 3.0 MHz  
low-pass filter; 3 dB at 1.7 MHz; notch at 2.5 MHz  
18.2.2.11 Subaddress 0AH  
Table 163 Luminance brightness control: decoder part; 0AH[7:0]  
CONTROL BITS 7 TO 0  
OFFSET  
DBRI7  
DBRI6  
DBRI5  
DBRI4  
DBRI3  
DBRI2  
DBRI1  
DBRI0  
255 (bright)  
128 (ITU level)  
0 (dark)  
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
2004 Jun 29  
152  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.12 Subaddress 0BH  
Table 164 Luminance contrast control: decoder part; 0BH[7:0]  
CONTROL BITS 7 TO 0  
DCON7 DCON6 DCON5 DCON4 DCON3 DCON2 DCON1 DCON0  
GAIN  
1.984 (maximum)  
1.063 (ITU level)  
1.0  
0
0
0
0
1
1
1
1
1
0
1
0
1
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
0 (luminance off)  
1 (inverse luminance)  
2 (inverse luminance)  
18.2.2.13 Subaddress 0CH  
Table 165 Chrominance saturation control: decoder part; 0CH[7:0]  
CONTROL BITS 7 TO 0  
GAIN  
DSAT7  
DSAT6  
DSAT5  
DSAT4  
DSAT3  
DSAT2  
DSAT1  
DSAT0  
1.984 (maximum)  
1.0 (ITU level)  
0
0
0
1
1
1
1
0
1
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0 (colour off)  
1 (inverse chrominance)  
2 (inverse chrominance)  
18.2.2.14 Subaddress 0DH  
Table 166 Chrominance hue control: 0DH[7:0]  
CONTROL BITS 7 TO 0  
HUE PHASE (DEG)  
HUEC7  
HUEC6  
HUEC5  
HUEC4  
HUEC3  
HUEC2  
HUEC1  
HUEC0  
+178.6...  
...0...  
0
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
...180  
2004 Jun 29  
153  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.15 Subaddress 0EH  
Table 167 Chrominance control 1; 0EH[7:0]  
FUNCTION  
BIT  
DESCRIPTION  
clear DTO  
SYMBOL  
VALUE  
50 Hz/625 LINES  
disabled  
60 Hz/525 LINES  
7
CDTO  
0
1
Every time CDTO is set, the internal subcarrier DTO  
phase is reset to 0° and the RTCO output generates a  
logic 0 at time slot 68 (see document “RTC Functional  
Description”, available on request). So an identical  
subcarrier phase can be generated by an external device  
(e.g. an encoder).  
6 to 4 colour standard selection CSTD[2:0]  
000  
001  
010  
PAL BGDHI (4.43 MHz)  
NTSC 4.43 (50 Hz)  
NTSC M (3.58 MHz)  
PAL 4.43 (60 Hz)  
Combination-PAL N  
(3.58 MHz)  
NTSC 4.43 (60 Hz)  
011  
100  
101  
110  
111  
0
NTSC N (3.58 MHz)  
reserved  
PAL M (3.58 MHz)  
NTSC-Japan (3.58 MHz)  
reserved  
SECAM  
reserved; do not use  
reserved; do not use  
3
disable chrominance  
vertical filter and PAL  
phase error correction  
DCVF  
chrominance vertical filter and PAL phase error  
correction on (during active video lines)  
1
chrominance vertical filter and PAL phase error  
correction permanently off  
2
0
fast colour time constant FCTC  
0
1
0
1
nominal time constant  
fast time constant for special applications  
adaptive chrominance  
comb filter  
CCOMB  
disabled  
active  
18.2.2.16 Subaddress 0FH  
Table 168 Chrominance gain control; 0FH[7:0]  
BIT  
DESCRIPTION  
SYMBOL  
VALUE  
FUNCTION  
7
automatic chrominance  
gain control  
ACGC  
0
1
on  
programmable gain via CGAIN6 to CGAIN0; need to be  
set for SECAM standard  
6 to 0 chrominance gain value  
(if ACGC is set to logic 1)  
CGAIN[6:0] 000 0000 minimum gain (0.5)  
010 0100 nominal gain (1.125)  
111 1111 maximum gain (7.5)  
2004 Jun 29  
154  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.17 Subaddress 10H  
Table 169 Chrominance control 2; 10H[7:0]  
BIT  
DESCRIPTION  
SYMBOL  
VALUE  
FUNCTION  
7 and 6  
fine offset adjustment B Y component  
OFFU[1:0]  
00  
01  
10  
11  
00  
01  
10  
11  
0
0 LSB  
14 LSB  
12 LSB  
34 LSB  
0 LSB  
14 LSB  
12 LSB  
34 LSB  
small  
5 and 4  
fine offset adjustment R Y component  
OFFV[1:0]  
3
chrominance bandwidth;  
see Figs 19 and 20  
CHBW  
1
wide  
2 to 0  
combined luminance/chrominance  
bandwidth adjustment; see Figs 19 to 25  
LCBW[2:0]  
000  
smallest chrominance bandwidth or  
largest luminance bandwidth  
...  
... to ...  
111  
largest chrominance bandwidth or  
smallest luminance bandwidth  
18.2.2.18 Subaddress 11H  
Table 170 Mode/delay control; 11H[7:0]  
BIT  
DESCRIPTION  
SYMBOL  
VALUE  
FUNCTION  
7
colour on  
COLO  
0
1
automatic colour killer enabled  
colour forced on  
6
polarity of RTS1 output signal  
RTP1  
0
non inverted  
1
inverted  
5 and 4  
fine position of HS (steps in 2/LLC)  
HDEL[1:0]  
00  
01  
10  
11  
0
0
1
2
3
3
polarity of RTS0 output signal  
RTP0  
non inverted  
inverted  
4...  
1
2 to 0  
luminance delay compensation (steps in YDEL[2:0]  
2/LLC)  
100  
000  
011  
...0...  
...3  
2004 Jun 29  
155  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.19 Subaddress 12H  
Table 171 RT signal control: RTS0 output; 12H[3:0]  
The polarity of any signal on RTS0 can be inverted via RTP0[11H[3]].  
RTS0 OUTPUT  
RTSE03 RTSE02 RTSE01 RTSE00  
3-state  
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
Constant LOW  
CREF (13.5 MHz toggling pulse; see Fig.32)  
CREF2 (6.75 MHz toggling pulse; see Fig.32)  
HL; horizontal lock indicator (note 1):  
HL = 0: unlocked  
HL = 1: locked  
VL; vertical and horizontal lock:  
VL = 0: unlocked  
0
0
1
1
0
1
1
0
VL = 1: locked  
DL; vertical and horizontal lock and colour detected:  
DL = 0: unlocked  
DL = 1: locked  
Reserved  
0
1
1
0
1
0
1
0
HREF, horizontal reference signal; indicates 720 pixels valid data on the  
expansion port. The positive slope marks the beginning of a new active line.  
HREF is also generated during the vertical blanking interval; see Fig.32.  
HS:  
1
0
0
1
programmable width in LLC8 steps via HSB[7:0] 06H[7:0] and HSS[7:0]  
07H[7:0]  
fine position adjustment in LLC2 steps via HDEL[1:0] 11H[5:4]; see Fig.32  
HQ; HREF gated with VGATE  
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
Reserved  
V123; vertical sync; see vertical timing diagrams Figs 30 and 31  
VGATE; programmable via VSTA[8:0] 17H[0] 15H[7:0], VSTO[8:0] 17H[1]  
16H[7:0] and VGPS[17H[2]]  
LSBs of the 9-bit ADC’s  
1
1
1
1
1
1
0
1
FID; position programmable via VSTA[8:0] 17H[0] 15H[7:0];  
see vertical timing diagrams Figs 30 and 31  
Note  
1. Function of HL is selectable via HLSEL[13H[3]]:  
a) HLSEL = 0: HL is standard horizontal lock indicator.  
b) HLSEL = 1: HL is fast horizontal lock indicator (use is not recommended for sources with unstable timebase e.g.  
VCRs).  
2004 Jun 29  
156  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 172 RT signal control: RTS1 output; 12H[7:4]  
The polarity of any signal on RTS1 can be inverted via RTP1[11H[6]].  
RTS1 OUTPUT CONTROL  
RTSE13 RTSE12 RTSE11 RTSE10  
3-state  
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
Constant LOW  
CREF (13.5 MHz toggling pulse; see Fig.32)  
CREF2 (6.75 MHz toggling pulse; see Fig.32)  
HL; horizontal lock indicator (note 1):  
HL = 0: unlocked  
HL = 1: locked  
VL; vertical and horizontal lock:  
VL = 0: unlocked  
0
0
1
1
0
1
1
0
VL = 1: locked  
DL; vertical and horizontal lock and colour detected:  
DL = 0: unlocked  
DL = 1: locked  
Reserved  
0
1
1
0
1
0
1
0
HREF, horizontal reference signal: indicates 720 pixels valid data on the  
expansion port. The positive slope marks the beginning of a new active line.  
HREF is also generated during the vertical blanking interval; see Fig.32.  
HS:  
1
0
0
1
programmable width in LLC8 steps via HSB[7:0] 06H[7:0] and HSS[7:0]  
07H[7:0]  
fine position adjustment in LLC2 steps via HDEL[1:0] 11H[5:4]; see Fig.32  
HQ; HREF gated with VGATE  
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
Reserved  
V123; vertical sync; see vertical timing diagrams Figs 30 and 31  
VGATE; programmable via VSTA[8:0] 17H[0] 15H[7:0], VSTO[8:0] 17H[1]  
16H[7:0] and VGPS[17H[2]]  
Reserved  
1
1
1
1
1
1
0
1
FID; position programmable via VSTA[8:0] 17H[0] 15H[7:0];  
see vertical timing diagrams Figs 30 and 31  
Note  
1. Function of HL is selectable via HLSEL[13H[3]]:  
a) HLSEL = 0: HL is standard horizontal lock indicator.  
b) HLSEL = 1: HL is fast horizontal lock indicator (use is not recommended for sources with unstable timebase e.g.  
VCRs).  
2004 Jun 29  
157  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.20 Subaddress 13H  
Table 173 RT/X port output control; 13H[7:0]  
BIT  
DESCRIPTION  
SYMBOL VALUE  
FUNCTION  
7
RTCO output enable  
RTCE  
0
1
0
1
3-state  
enabled  
6
X port XRH output  
selection  
XRHS  
HREF; see Fig.32  
HS:  
programmable width in LLC8 steps via HSB[7:0] 06H[7:0]  
and HSS[7:0] 07H[7:0]  
fine position adjustment in LLC2 steps via HDEL[1:0]  
11H[5:4]; see Fig.32  
5 and 4 X port XRV output  
selection  
XRVS[1:0]  
00  
01  
10  
11  
0
V123; see Figs 30 and 31  
ITU 656 related field ID; see Figs 30 and 31  
inverted V123  
inverted ITU 656 related field ID  
copy of inverted HLCK status bit (default)  
fast horizontal lock indicator (for special applications only)  
ITU 656  
3
horizontal lock indicator  
selection  
HLSEL  
1
2 to 0 XPD7 to XPD0 (port  
output format selection);  
see Section 10.4  
OFTS[2:0]  
000  
001  
ITU 656 like format with modified field blanking according  
to VGATE position (programmable via VSTA[8:0] 17H[0]  
15H[7:0], VSTO[8:0] 17H[1] 16H[7:0] and VGPS[17H[2]])  
010  
011  
100  
Y-CB-CR 4 : 2 : 2 8-bit format (no SAV/EAV codes inserted)  
reserved  
multiplexed AD2/AD1 bypass (bits 8 to 1) dependent on  
mode settings; if both ADCs are selected AD2 is output at  
CREF = 1 and AD1 is output at CREF = 0  
101  
multiplexed AD2/AD1 bypass (bits 7 to 0) dependent on  
mode settings; if both ADCs are selected AD2 is output at  
CREF = 1 and AD1 is output at CREF = 0  
110  
111  
reserved  
multiplexed ADC MSB/LSB bypass dependent on mode  
settings; only one ADC should be selected at a time;  
ADx8 to ADx1 are outputs at CREF = 1 and ADx7 to ADx0  
are outputs at CREF = 0  
2004 Jun 29  
158  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.21 Subaddress 14H  
Table 174 Analog/ADC/compatibility control; 14H[7:0]  
BIT  
DESCRIPTION  
SYMBOL VALUE  
FUNCTION  
7
compatibility bit for  
SAA7199  
CM99  
0
1
off (default)  
on (to be set only if SAA7199 is used for re-encoding in  
conjunction with RTCO active)  
6
update time interval for  
AGC value  
UPTCV  
0
1
horizontal update (once per line)  
vertical update (once per field)  
AOUT connected to internal test point 1  
AOUT connected to input AD1  
AOUT connected to input AD2  
AOUT connected to internal test point 2  
pin P4 (XTOUTd) 3-stated  
5 and 4 analog test select  
AOSL[1:0]  
00  
01  
10  
11  
0
3
2
XTOUTd output enable  
XTOUTE  
OLDSB  
1
pin P4 (XTOUTd) enabled  
decoder status byte  
0
standard  
selection; see Table 180  
1
backward compatibility to SAA7112  
application dependent  
1 and 0 ADC sample clock  
phase delay  
APCK[1:0]  
00  
01  
10  
11  
2004 Jun 29  
159  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
18.2.2.22 Subaddress 15H  
Table 175 VGATE start; FID polarity change; 17H[0] and 15H[7:0]  
Start of VGATE pulse (LOW-to-HIGH transition) and polarity change of FID pulse, VGPS = 0; see Figs 30 and 31.  
MSB  
17H[0]  
CONTROL BITS 7 TO 0  
FRAME LINE  
COUNTING  
DECIMAL  
VALUE  
FIELD  
VSTA8  
VSTA7  
VSTA6  
VSTA5  
VSTA4  
VSTA3  
VSTA2  
VSTA1 VSTA0  
50 Hz  
1st  
2nd  
1st  
1
312  
0...  
1
0
0
1
1
1
0
0
0
1
1
0
0
0
0
1
0
0
1
314  
2
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
1
0
1
2nd  
1st  
315  
312  
625  
4
...310  
262  
2nd  
1st  
60 Hz  
2nd  
1st  
267  
5
0...  
2nd  
1st  
268  
265  
3
...260  
2nd  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
18.2.2.23 Subaddress 16H  
Table 176 VGATE stop; 17H[1] and 16H[7:0]  
Stop of VGATE pulse (HIGH-to-LOW transition), VGPS = 0; see Figs 30 and 31.  
MSB  
17H[1]  
CONTROL BITS 7 TO 0  
FRAME LINE  
COUNTING  
DECIMAL  
VALUE  
FIELD  
VSTO8  
VSTO7 VSTO6 VSTO5 VSTO4 VSTO3 VSTO2 VSTO1 VSTO0  
50 Hz  
1st  
2nd  
1st  
1
312  
0...  
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
0
0
0
1
1
0
1
0
0
1
1
0
0
0
0
1
0
0
1
314  
2
0
1
1
0
1
2nd  
1st  
315  
312  
625  
4
...310  
262  
2nd  
1st  
60 Hz  
2nd  
1st  
267  
5
0...  
2nd  
1st  
268  
265  
3
...260  
2nd  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.24 Subaddress 17H  
Table 177 Miscellaneous/VGATE MSBs; 17H[7:6] and 17H[2:0]  
BIT  
DESCRIPTION  
SYMBOL VALUE  
FUNCTION  
7
LLC output enable  
LLCE  
LLC2E  
VGPS  
0
1
0
1
0
1
enable  
3-state  
enable  
3-state  
6
2
LLC2 output enable  
alternative VGATE  
position  
VGATE position according to Tables 175 and 176  
VGATE occurs one line earlier during field 2  
see Table 176  
1
0
MSB VGATE stop  
MSB VGATE start  
VSTO8  
VSTA8  
see Table 175  
18.2.2.25 Subaddress 18H  
Table 178 Raw data gain control; RAWG[7:0] 18H[7:0]; see Fig.27  
CONTROL BITS 7 TO 0  
GAIN  
RAWG7 RAWG6 RAWG5 RAWG4 RAWG3 RAWG2 RAWG1 RAWG0  
255 (double amplitude)  
128 (nominal level)  
0 (off)  
0
0
0
1
1
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
18.2.2.26 Subaddress 19H  
Table 179 Raw data offset control; RAWO[7:0] 19H[7:0]; see Fig.27  
CONTROL BITS 7 TO 0  
RAWO7 RAWO6 RAWO5 RAWO4 RAWO3 RAWO2 RAWO1 RAWO0  
OFFSET  
128 LSB  
0 LSB  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
+128 LSB  
2004 Jun 29  
162  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.2.27 Subaddress 1FH  
Table 180 Status byte video decoder; 1FH[7:0]; read only register  
I2C-BUS  
CONTROL  
BIT  
OLDSB  
14H[2]  
BIT  
DESCRIPTION  
VALUE  
FUNCTION  
7
status bit for interlace detection  
INTL  
HLVLN  
HLCK  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
non-interlaced  
interlaced  
both loops locked  
unlocked  
locked  
6
status bit for horizontal and vertical loop  
status bit for locked horizontal frequency  
identification bit for detected field frequency  
unlocked  
50 Hz  
5
4
3
2
1
FIDT  
60 Hz  
gain value for active luminance channel is  
limited; maximum (top)  
GLIMT  
GLIMB  
WIPA  
not active  
active  
gain value for active luminance channel is  
limited; minimum (bottom)  
not active  
active  
white peak loop is activated  
not active  
active  
copy protected source detected according to  
Macrovision version up to 7.01  
COPRO  
SLTCA  
RDCAP  
CODE  
not active  
active  
slow time constant active in WIPA mode  
not active  
active  
0
ready for capture (all internal loops locked)  
not active  
active  
colour signal in accordance with selected  
standard has been detected  
not active  
active  
18.2.3 PROGRAMMING REGISTER AUDIO CLOCK GENERATION  
See equations in Section 9.6 and examples in Tables 35 and 36.  
18.2.3.1 Subaddresses 30H to 32H  
Table 181 Audio master clock (AMCLK) cycles per field  
SUBADDRESS  
CONTROL BITS 7 TO 0  
30H  
31H  
32H  
ACPF7  
ACPF15  
ACPF6  
ACPF14  
ACPF5  
ACPF13  
ACPF4  
ACPF12  
ACPF3  
ACPF11  
ACPF2  
ACPF10  
ACPF1  
ACPF9  
ACPF17  
ACPF0  
ACPF8  
ACPF16  
2004 Jun 29  
163  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.3.2 Subaddresses 34H to 36H  
Table 182 Audio master clock (AMCLK) nominal increment  
SUBADDRESS  
CONTROL BITS 7 TO 0  
34H  
35H  
36H  
ACNI7  
ACNI15  
ACNI  
ACNI14  
ACNI5  
ACNI13  
ACNI21  
ACNI4  
ACNI12  
ACNI20  
ACNI3  
ACNI11  
ACNI19  
ACNI2  
ACNI10  
ACNI18  
ACNI1  
ACNI9  
ACNI17  
ACNI0  
ACNI8  
ACNI16  
18.2.3.3 Subaddress 38H  
Table 183 Clock ratio audio master clock (AMXCLK) to serial bit clock (ASCLK)  
SUBADDRESS  
CONTROL BITS 7 TO 0  
SDIV4 SDIV3  
38H  
SDIV5  
SDIV2  
SDIV1  
SDIV0  
18.2.3.4 Subaddress 39H  
Table 184 Clock ratio serial bit clock (ASCLK) to channel select clock (ALRCLK)  
SUBADDRESS  
CONTROL BITS 7 TO 0  
LRDIV4 LRDIV3  
39H  
LRDIV5  
LRDIV2  
LRDIV1  
LRDIV0  
18.2.3.5 Subaddress 3AH  
Table 185 Audio clock control; 3AH[3:0]  
BIT  
DESCRIPTION  
SYMBOL VALUE  
FUNCTION  
3
audio PLL modes  
APLL  
0
1
0
1
PLL active, AMCLK is field-locked  
PLL open, AMCLK is free-running  
2
audio master clock  
vertical reference  
AMVR  
vertical reference pulse is taken from internal decoder  
vertical reference is taken from XRV input  
(expansion port)  
1
0
ALRCLK phase  
ASCLK phase  
LRPH  
SCPH  
0
1
0
1
ALRCLK edges triggered by falling edges of ASCLK  
ALRCLK edges triggered by rising edges of ASCLK  
ASCLK edges triggered by falling edges of AMCLK  
ASCLK edges triggered by rising edges of AMCLK  
18.2.4 PROGRAMMING REGISTER VBI DATA SLICER  
18.2.4.1 Subaddress 40H  
Table 186 Slicer control 1; 40H[6:4]  
BIT  
DESCRIPTION  
Hamming check  
SYMBOL VALUE  
FUNCTION  
6
HAM_N  
0
Hamming check for 2 bytes after framing code,  
dependent on data type (default)  
1
0
1
0
1
no Hamming check  
5
4
framing code error  
amplitude searching  
FCE  
one framing code error allowed  
no framing code errors allowed  
amplitude searching active (default)  
amplitude searching stopped  
HUNT_N  
2004 Jun 29  
164  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.4.2 Subaddresses 41H to 57H  
Table 187 Line control register; LCR2 to LCR24 (41H to 57H); see Sections 9.2 and 9.4  
BITS 7 TO 4  
BITS 3 TO 0  
(41H TO 57H)  
(41H TO 57H)  
NAME  
DESCRIPTION  
FRAMING CODE  
DT[3:0] 62H[3:0] DT[3:0] 62H[3:0]  
(FIELD 1)  
(FIELD 2)  
WST625  
CC625  
VPS  
teletext EuroWST, CCST  
European Closed Caption  
video programming service  
wide screen signalling bits  
US teletext (WST)  
27H  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
001  
9951H  
WSS  
1E3C1FH  
WST525  
CC525  
Test line  
Intercast  
27H  
US Closed Caption (line 21)  
video component signal, VBI region  
raw data  
001  
General text teletext  
programmable  
VITC625  
VITC525  
Reserved  
NABTS  
Japtext  
JFS  
VITC/EBU time codes (Europe)  
programmable  
VITC/SMPTE time codes (USA)  
reserved  
programmable  
US NABTS  
programmable (A7H)  
programmable  
MOJI (Japanese)  
Japanese format switch (L20/22)  
Active video video component signal, active video  
region (default)  
18.2.4.3 Subaddress 58H  
Table 188 Programmable framing code; slicer set 58H[7:0]; see Tables 28 and 187  
FRAMING CODE FOR PROGRAMMABLE DATA TYPES  
Default value  
CONTROL BITS 7 TO 0  
FC[7:0] = 40H  
18.2.4.4 Subaddress 59H  
Table 189 Horizontal offset for slicer; slicer set 59H and 5BH  
HORIZONTAL OFFSET  
Recommended value  
CONTROL BITS 5BH[2:0]  
CONTROL BITS 59H[7:0]  
HOFF[10:8] = 3H  
HOFF[7:0] = 47H  
2004 Jun 29  
165  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.4.5 Subaddress 5AH  
Table 190 Vertical offset for slicer; slicer set 5AH and 5BH  
CONTROL BIT 5BH[4]  
CONTROL BITS 5AH[7:0]  
VOFF[7:0]  
VERTICAL OFFSET  
Minimum value 0  
VOFF8  
0
1
0
0
00H  
38H  
03H  
06H  
Maximum value 312  
Value for 50 Hz 625 lines input  
Value for 60 Hz 525 lines input  
18.2.4.6 Subaddress 5BH  
Table 191 Field offset, and MSBs for horizontal and vertical offsets; slicer set 5BH[7:6]  
See Sections 18.2.4.4 and 18.2.4.5 for HOFF[10:8] 5BH[2:0] and VOFF8[5BH[4]].  
BIT  
DESCRIPTION SYMBOL VALUE  
FUNCTION  
7
field offset  
FOFF  
0
no modification of internal field indicator (default for 50 Hz  
625 lines input sources)  
1
0
1
invert field indicator (default for 60 Hz 525 lines input sources)  
let data unchanged (default)  
6
recode  
RECODE  
convert 00H and FFH data bytes into 03H and FCH  
18.2.4.7 Subaddress 5DH  
Table 192 Header and data identification (DID; ITU 656) code control; slicer set 5DH[7:0]  
BIT  
DESCRIPTION  
SYMBOL VALUE  
FUNCTION  
7
field ID and V-blank  
selection for text output  
(F and V reference  
selection)  
FVREF  
0
1
F and V output of slicer is LCR table dependent  
F and V output is taken from decoder real time  
signals EVEN_ITU and VBLNK_ITU  
5 to 0  
default; DID[5:0] = 00H  
DID[5:0]  
00 0000 ANC header framing; see Fig.39 and Table 34  
11 1110 DID[5:0] = 3EH SAV/EAV framing, with FVREF = 1  
11 1111 DID[5:0] = 3FH SAV/EAV framing, with FVREF = 0  
special cases of DID  
programming  
18.2.4.8 Subaddress 5EH  
Table 193 Sliced data identification (SDID) code; slicer set 5EH[5:0]  
BIT  
DESCRIPTION  
SDID codes  
SYMBOL VALUE  
SDID[5:0] 00H  
FUNCTION  
5 to 0  
default  
2004 Jun 29  
166  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.4.9 Subaddress 60H  
Table 194 Slicer status byte 0; 60H[6:2]; read only register  
BIT  
DESCRIPTION  
SYMBOL VALUE  
FUNCTION  
6
framing code valid  
FC8V  
FC7V  
VPSV  
PPV  
0
1
0
1
0
1
0
1
0
1
no framing code (0 error) in the last frame detected  
framing code with 0 error detected  
no framing code (1 error) in the last frame detected  
framing code with 1 error detected  
no VPS in the last frame  
5
4
3
2
framing code valid  
VPS valid  
VPS detected  
PALplus valid  
no PALplus in the last frame  
PALplus detected  
Closed Caption valid  
CCV  
no Closed Caption in the last frame  
Closed Caption detected  
18.2.4.10 Subaddresses 61H and 62H  
Table 195 Slicer status byte 1; 61H[5:0] and slicer status byte 2; 62H[7:0]; read only registers  
SUBADDRESS  
BIT  
5
SYMBOL  
F21_N  
DESCRIPTION  
field ID as seen by the VBI slicer; for field 1: bit 5 = 0  
line number  
61H  
4 to 0  
7 to 4  
3 to 0  
LN[8:4]  
LN[3:0]  
DT[3:0]  
62H  
data type; according to Table 28  
18.2.5 PROGRAMMING REGISTER INTERFACES AND SCALER PART  
18.2.5.1 Subaddress 80H  
Table 196 Global control 1; global set 80H[6:4]  
SWRST moved to subaddress 88H[5]; note 1.  
CONTROL BITS 6 TO 4  
TASK ENABLE CONTROL  
SMOD  
TEB  
TEA  
Task of register set A is disabled  
Task of register set A is enabled  
Task of register set B is disabled  
Task of register set B is enabled  
X
X
X
X
0
X
X
0
0
1
X
X
X
1
The scaler window defines the F and V timing of the scaler  
output  
X
VBI data slicer defines the F and V timing of the scaler output  
1
X
X
Note  
1. X = don’t care.  
2004 Jun 29  
167  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 197 Global control 1; global set 80H[3:0]; note 1  
CONTROL BITS 3 TO 0  
I PORT AND SCALER BACK-END CLOCK SELECTION  
ICKS3  
ICKS2  
ICKS1  
ICKS0  
ICLK output and back-end clock is line-locked clock LLC from decoder  
ICLK output and back-end clock is XCLK from X port  
ICLK output is LLC and back-end clock is LLC2 clock  
Back-end clock is the ICLK input  
X
X
X
X
X
X
0
X
X
X(2)  
0
0
0
1
1
0
X
1
1
IDQ pin carries the data qualifier  
0
X
X
X
X
X
X
X
X
IDQ pin carries a gated back-end clock (IDQ AND CLK)  
IDQ generation only for valid data  
1
X
IDQ qualifies valid data inside the scaling region and all data outside the  
scaling region  
1
X
Notes  
1. Although the ICLKO I/O is independent of ICKS2 and ICKS3, this selection can only be used if ICKS2 = 1.  
2. X = don’t care.  
18.2.5.2 Subaddresses 83H to 87H  
Table 198 X port I/O enable and output clock phase control; global set 83H[5:4]  
CONTROL BITS 5 AND 4  
OUTPUT CLOCK PHASE CONTROL  
XPCK1  
XPCK0  
XCLK default output phase, recommended value  
XCLK output inverted  
0
0
1
1
0
1
0
1
XCLK phase shifted by about 3 ns  
XCLK output inverted and shifted by about 3 ns  
Table 199 X port I/O enable and output clock phase control; global set 83H[2:0]  
CONTROL BITS 2 TO 0  
X PORT I/O ENABLE  
XRQT  
XPE1  
XPE0  
X port output is disabled by software  
X(1)  
X
0
0
1
1
X
X
0
1
0
1
X
X
X port output is enabled by software  
X port output is enabled by pin XTRI at logic 0  
X port output is enabled by pin XTRI at logic 1  
XRDY output signal is A/B task flag from event handler (A = 1)  
X
X
0
XRDY output signal is ready signal from scaler path (XRDY = 1 means  
SAA7108AE; SAA7109AE is ready to receive data)  
1
Note  
1. X = don’t care  
2004 Jun 29  
168  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 200 I port signal definitions; global set 84H[7:6] and 86H[5]  
CONTROL BITS  
I PORT SIGNAL DEFINITIONS  
86H[5]  
84H[7:6]  
IDG02 IDG01 IDG00  
IGP0 is output field ID, as defined by OFIDC[90H[6]]  
IGP0 is A/B task flag, as defined by CONLH[90H[7]]  
IGP0 is sliced data flag, framing the sliced VBI data at the I port  
IGP0 is set to logic 0 (default polarity)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IGP0 is the output FIFO almost filled flag  
IGP0 is the output FIFO overflow flag  
IGP0 is the output FIFO almost full flag, level to be programmed in subaddress 86H  
IGP0 is the output FIFO almost empty flag, level to be programmed in subaddress 86H  
Table 201 I port signal definitions; global set 84H[5:4] and 86H[4]  
CONTROL BITS  
I PORT SIGNAL DEFINITIONS  
86H[4]  
84H[5:4]  
IDG12 IDG11 IDG10  
IGP1 is output field ID, as defined by OFIDC[90H[6]]  
IGP1 is A/B task flag, as defined by CONLH[90H[7]]  
IGP1 is sliced data flag, framing the sliced VBI data at the I port  
IGP1 is set to logic 0 (default polarity)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IGP1 is the output FIFO almost filled flag  
IGP1 is the output FIFO overflow flag  
IGP1 is the output FIFO almost full flag, level to be programmed in subaddress 86H  
IGP1 is the output FIFO almost empty flag, level to be programmed in subaddress 86H  
Table 202 I port output signal definitions; global set 84H[3:0]; note 1  
CONTROL BITS 3 TO 0  
I PORT OUTPUT SIGNAL DEFINITIONS  
IDV1  
IDV0  
IDH1  
IDH0  
IGPH is a H gate signal, framing the scaler output  
X
X
X
0
0
0
1
IGPH is an extended H gate (framing H gate during scaler output and scaler input  
H reference outside the scaler window)  
X
IGPH is a horizontal trigger pulse, on active going edge of H gate  
IGPH is a horizontal trigger pulse, on active going edge of extended H gate  
IGPV is a V gate signal, framing scaled output lines  
X
X
0
0
1
1
X
X
0
1
0
1
1
1
0
1
X
X
X
X
X
X
X
X
IGPV is the V reference signal from scaler input  
IGPV is a vertical trigger pulse, derived from V gate  
IGPV is a vertical trigger pulse derived from input V reference  
Note  
1. X = don’t care.  
2004 Jun 29  
169  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 203 X port signal definitions text slicer; global set 85H[7:5]; note 1  
CONTROL BITS 7 TO 5  
X PORT SIGNAL DEFINITIONS TEXT SLICER  
ISWP1  
ISWP0  
ILLV  
Video data limited to range 1 to 254  
X
X
0
X
X
0
0
1
Video data limited to range 8 to 247  
Dword byte swap, influences serial output timing  
X
D0 D1 D2 D3  
D1 D0 D3 D2  
D2 D3 D0 D1  
D3 D2 D1 D0  
FF 00 00 SAV CB0 Y0 CR0 Y1  
00 FF SAV 00 Y0 CB0 Y1 CR0  
00 SAV FF 00 CR0 Y1 CB0 Y0  
SAV 00 00 FF Y1 CR0 Y0 CB0  
0
1
1
1
0
1
X
X
X
Note  
1. X = don’t care.  
Table 204 I port reference signal polarities; global set 85H[4:0]; note 1  
CONTROL BITS 4 TO 0  
I PORT REFERENCE SIGNAL POLARITIES  
IG0P  
IG1P  
IRVP  
X
IRHP  
IDQP  
0
IDQ at default polarity (1 = active)  
IDQ is inverted  
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
0
X
X
0
X
1
IGPH at default polarity (1 = active)  
IGPH is inverted  
X
X
X
1
X
IGPV at default polarity (1 = active)  
IGPV is inverted  
0
X
X
X
X
X
X
X
1
X
IGP1 at default polarity  
IGP1 is inverted  
X
X
1
X
X
IGP0 at default polarity  
IGP0 is inverted  
X
X
X
X
1
X
X
Note  
1. X = don’t care.  
2004 Jun 29  
170  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 205 I port FIFO flag control and arbitration; global set 86H[7:4]; note 1  
CONTROL BITS 7 TO 4  
FUNCTION  
VITX1  
VITX0  
IDG02  
IDG12  
See subaddress 84H: IDG11 and IDG10  
See subaddress 84H: IDG01 and IDG00  
X
X
X
X
X
X
X
X
X
X
0
1
0
1
X
X
I port signal definitions  
I port data output inhibited  
0
0
1
1
0
1
0
1
X
X
X
X
X
X
X
X
Only video data are transferred  
Only text data are transferred (no EAV, SAV will occur)  
Text and video data are transferred, text has priority  
Note  
1. X = don’t care.  
Table 206 I port FIFO flag control and arbitration; global set 86H[3:0]; note 1  
CONTROL BITS 3 TO 0  
I PORT FIFO FLAG CONTROL AND ARBITRATION  
FFL1  
FFL0  
FEL1  
FEL0  
FAE FIFO flag almost empty level  
<16 Dwords  
X
X
X
X
X
X
X
X
0
0
1
1
0
1
0
1
<8 Dwords  
<4 Dwords  
0 Dwords  
FAF FIFO flag almost full level  
16 Dwords  
0
0
1
1
0
1
0
1
X
X
X
X
X
X
X
X
24 Dwords  
28 Dwords  
32 Dwords  
Note  
1. X = don’t care.  
2004 Jun 29  
171  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 207 I port I/O enable, output clock and gated clock phase control; global set 87H[7:4]; note 1  
CONTROL BITS 7 TO 4  
OUTPUT CLOCK AND GATED CLOCK PHASE CONTROL  
IPCK3(2) IPCK2(2)  
IPCK1  
IPCK0  
ICLK default output phase  
ICLK phase shifted by 12 clock cycle  
X
X
X
X
0
0
0
1
recommended for ICKS1 = 1  
and ICKS0 = 0 (subaddress 80H)  
ICLK phase shifted by about 3 ns  
ICLK phase shifted by 12 clock cycle + approximately  
3 ns alternatively to setting ‘01’  
X
X
X
X
1
1
0
1
IDQ = gated clock default output phase  
IDQ = gated clock phase shifted by 12 clock cycle  
0
0
0
1
X
X
X
X
recommended  
for gated clock output  
IDQ = gated clock phase shifted by approximately 3 ns  
IDQ = gated clock phase shifted by 12 clock cycle + approximately  
1
1
0
1
X
X
X
X
3 ns  
alternatively to setting ‘01’  
Notes  
1. X = don’t care.  
2. IPCK3 and IPCK2 only affects the gated clock (subaddress 80H, bit ICKS2 = 1).  
Table 208 I port I/O enable, output clock and gated clock phase control; global set 87H[1:0]  
CONTROL BITS 1 AND 0  
I PORT I/O ENABLE  
IPE1  
IPE0  
I port output is disabled by software  
0
0
1
1
0
1
0
1
I port output is enabled by software  
I port output is enabled by pin ITRI at logic 0  
I port output is enabled by pin ITRI at logic 1  
2004 Jun 29  
172  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.5.3 Subaddress 88H  
Table 209 Power save control; global set 88H[7:4]; note 1  
CONTROL BITS 7 TO 4  
POWER SAVE CONTROL  
CH4EN  
CH2EN SWRST(2) DPROG  
DPROG = 0 after reset  
X
X
X
X
X
X
0
1
DPROG = 1 can be used to assign that the device has been  
programmed; this bit can be monitored in the scalers status byte,  
bit PRDON; if DPROG was set to logic 1 and PRDON status bit  
shows a logic 0, a power-up or start-up fail has occurred  
Scaler path is reset to its idle state, software reset  
Scaler is switched back to operation  
AD1x analog channel is in Power-down mode  
AD1x analog channel is active  
X
X
X
X
0
X
X
0
0
1
X
X
X
X
X
X
X
X
X
X
1
AD2x analog channel is in Power-down mode  
AD2x analog channel is active  
X
X
1
Notes  
1. X = don’t care.  
2. Bit SWRST is now located here.  
Table 210 Power save control; global set 88H[3] and 88H[1:0]; note 1  
CONTROL BITS 3, 1 AND 0  
POWER SAVE CONTROL  
SLM3  
SLM1  
SLM0  
Decoder and VBI slicer are in operational mode  
X
X
X
X
0
1
Decoder and VBI slicer are in Power-down mode; scaler only operates, if scaler  
input and ICLK source is the X port (refer to subaddresses 80H and 91H/C1H)  
Scaler is in operational mode  
X
X
0
0
1
X
X
X
X
Scaler is in Power-down mode; scaler in power-down stops I port output  
Audio clock generation active  
X
X
Audio clock generation in power-down and output disabled  
1
Note  
1. X = don’t care.  
2004 Jun 29  
173  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.5.4 Subaddress 8FH  
Table 211 Status information scaler part; 8FH[7:0]; read only register  
I2C-BUS  
STATUS BIT  
BIT  
FUNCTION(1)  
7
XTRI  
status on input pin XTRI, if not used for 3-state control, usable as hardware flag for  
software use  
6
ITRI  
status on input pin ITRI, if not used for 3-state control, usable as hardware flag for  
software use  
5
4
3
2
FFIL  
status of the internal ‘FIFO almost filled’ flag  
FFOV  
status of the internal ‘FIFO overflow’ flag  
PRDON  
ERROF  
copy of bit DPROG, can be used to detect power-up and start-up fails  
error flag of scalers output formatter, normally set, if the output processing needs to be  
interrupted, due to input/output data rate conflicts, e.g. if output data rate is much too low  
and all internal FIFO capacity used  
1
0
FIDSCI  
status of the field sequence ID at the scalers input  
FIDSCO  
status of the field sequence ID at the scalers output, scaler processing dependent  
Note  
1. Status information is unsynchronized and shows the actual status at the time of I2C-bus read.  
18.2.5.5 Subaddresses 90H and C0H  
Table 212 Task handing control; register set A [90H[7:6]] and B [C0H[7:6]]; note 1  
CONTROL BITS 7 AND 6  
EVENT HANDLER CONTROL  
Output field ID is field ID from scaler input  
CONLH  
OFIDC  
X
X
0
1
Output field ID is task status flag, which changes every time an selected task  
is activated (not synchronized to input field ID)  
Scaler SAV/EAV byte bit 7 and task flag = 1, default  
0
1
X
X
Scaler SAV/EAV byte bit 7 and task flag = 0  
Note  
1. X = don’t care.  
Table 213 Task handling control; register set A [90H[5:3]] and B [C0H[5:3]]  
CONTROL BITS 5 TO 3  
EVENT HANDLER CONTROL  
FSKP2  
FSKP1  
FSKP0  
Active task is carried out directly  
0
0
0
0
0
1
1 field is skipped before active task is carried out  
... fields are skipped before active task is carried out  
6 fields are skipped before active task is carried out  
7 fields are skipped before active task is carried out  
...  
1
...  
1
...  
0
1
1
1
2004 Jun 29  
174  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 214 Task handling control; register set A [90H[2:0]] and B [C0H[2:0]]; note 1  
CONTROL BITS 2 TO 0  
EVENT HANDLER CONTROL  
RPTSK  
STRC1  
STRC0  
Event handler triggers immediately after finishing a task  
Event handler triggers with next V-sync  
X
X
X
X
0
0
0
1
1
X
X
0
1
0
1
X
X
Event handler triggers with field ID = 0  
Event handler triggers with field ID = 1  
If active task is finished, handling is taken over by the next task  
Active task is repeated once, before handling is taken over by the next task  
1
Note  
1. X = don’t care.  
18.2.5.6 Subaddresses 91H to 93H  
Table 215 X port formats and configuration; register set A [91H[7:3]] and B [C1H[7:3]]; note 1  
CONTROL BITS 7 TO 3  
HLDFV SCSRC1 SCSRC0 SCRQE  
SCALER INPUT FORMAT AND CONFIGURATION SOURCE  
SELECTION  
CONLV  
Only if XRQT[83H[2]] = 1: scaler input source reacts on  
SAA7108AE; SAA7109AE request  
X
X
X
X
0
Scaler input source is a continuous data stream, which cannot  
be interrupted (must be logic 1 if SAA7108AE; SAA7109AE  
decoder part is source of scaler or XRQT[83H[2]] = 0)  
X
X
X
X
X
1
Scaler input source is data from decoder, data type is  
provided according to Table 28  
X
0
0
X
Scaler input source is Y-CB-CR data from X port  
X
X
X
X
0
1
1
0
X
X
Scaler input source is raw digital CVBS from selected analog  
channel, for backward compatibility only, further use is not  
recommended  
Scaler input source is raw digital CVBS (or 16-bit Y + CB-CR, if  
no 16-bit output are active) from X port  
X
X
X
0
X
0
1
X
X
X
X
1
X
X
X
X
X
X
X
X
X
SAV/EAV code bits 6 and 5 (F and V) may change between  
SAV and EAV  
SAV/EAV code bits 6 and 5 (F and V) are synchronized to  
scalers output line start  
1
SAV/EAV code bit 5 (V) and V gate on pin IGPV as generated  
by the internal processing; see Fig.45  
X
X
SAV/EAV code bit 5 (V) and V gate are inverted  
1
Note  
1. X = don’t care.  
2004 Jun 29  
175  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 216 X port formats and configuration; register set A [91H[2:0]] and B [C1H[2:0]]; note 1  
CONTROL BITS 2 TO 0  
SCALER INPUT FORMAT AND CONFIGURATION FORMAT  
CONTROL  
FSC2(2)  
FSC1(2)  
FSC0  
Input is Y-CB-CR 4 : 2 : 2 like sampling scheme  
Input is Y-CB-CR 4 : 1 : 1 like sampling scheme  
Chroma is provided every line, default  
Chroma is provided every 2nd line  
X
X
0
0
1
1
X
X
0
1
0
1
0
1
X
X
X
X
Chroma is provided every 3rd line  
Chroma is provided every 4th line  
Notes  
1. X = don’t care.  
2. FSC2 and FSC1 only to be used, if X port input source don’t provide chroma information for every input line. X port  
input stream must contain dummy chroma bytes.  
Table 217 X port input reference signal definitions; register set A [92H[7:4]] and B [C2H[7:4]]; note 1  
CONTROL BITS 7 TO 4  
X PORT INPUT REFERENCE SIGNAL DEFINITIONS  
XFDV  
XFDH  
XDV1  
XDV0  
Rising edge of XRV input and decoder V123 is vertical reference  
Falling edge of XRV input and decoder V123 is vertical reference  
XRV is a V-sync or V gate signal  
X
X
X
X
X
X
X
X
X
X
0
1
0
1
X
X
XRV is a frame sync, V pulses are generated internally on both edges of  
FS input  
X port field ID is state of XRH at reference edge on XRV (defined by  
XFDV)  
X
0
X
X
Field ID (decoder and X port field ID) is inverted  
X
0
1
1
X
X
X
X
X
X
X
X
Reference edge for field detection is falling edge of XRV  
Reference edge for field detection is rising edge of XRV  
Note  
1. X = don’t care.  
2004 Jun 29  
176  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 218 X port input reference signal definitions; register set A [92H[3:0]] and B [C2H[3:0]]; note 1  
CONTROL BITS 3 TO 0  
X PORT INPUT REFERENCE SIGNAL DEFINITIONS  
XCODE  
XDH  
XDQ  
XCKS  
XCLK input clock and XDQ input qualifier are needed  
Data rate is defined by XCLK only, no XDQ signal used  
Data are qualified at XDQ input at logic 1  
X
X
X
X
X
X
0
X
X
X
X
0
X
X
0
0
1
X
X
X
X
X
X
Data are qualified at XDQ input at logic 0  
1
Rising edge of XRH input is horizontal reference  
Falling edge of XRH input is horizontal reference  
Reference signals are taken from XRH and XRV  
Reference signals are decoded from EAV and SAV  
X
X
X
X
1
X
X
1
Note  
1. X = don’t care.  
Table 219 I port output format and configuration; register set A [93H[7:5]] and B [C3H[7:5]]; note 1  
CONTROL BITS 7 TO 5  
I PORT OUTPUT FORMATS AND CONFIGURATION  
ICODE  
I8_16  
FYSK  
All lines will be output  
X
X
X
X
X
X
0
1
0
1
Skip the number of leading Yonly lines, as defined by FOI1 and FOI0  
Dwords are transferred byte wise, see subaddress 85H bits ISWP1 and ISWP0  
X
X
Dwords are transferred 16-bit word wise via IPD and HPD, see subaddress 85H bits  
ISWP1 and ISWP0  
No ITU 656 like SAV/EAV codes are available  
0
1
X
X
X
X
ITU 656 like SAV/EAV codes are inserted in the output data stream, framed by a  
qualifier  
Note  
1. X = don’t care.  
2004 Jun 29  
177  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 220 I port output format and configuration; register set A [93H[4:0]] and B [C3H[4:0]]; note 1  
CONTROL BITS 4 TO 0  
I PORT OUTPUT FORMATS AND CONFIGURATION  
FOI1  
FOI0  
FSI2  
FSI1  
FSI0  
4 : 2 : 2 Dword formatting  
4 : 1 : 1 Dword formatting  
X
X
X
X
X
X
0
0
0
0
0
1
0
1
0
4 : 2 : 0, only every 2nd line Y + CB-CR output, in between  
Yonly output  
4 : 1 : 0, only every 4th line Y + CB-CR output, in between  
Yonly output  
X
X
0
1
1
Yonly  
X
X
X
X
0
0
1
1
X
X
X
X
0
1
0
1
1
1
0
0
0
1
Not defined  
Not defined  
1
1
0
Not defined  
1
1
1
No leading Yonly line, before 1st Y + CB-CR line is output  
1 leading Y only line, before 1st Y + CB-CR line is output  
2 leading Y only lines, before 1st Y + CB-CR line is output  
3 leading Y only lines, before 1st Y + CB-CR line is output  
X
X
X
X
X
X
X
X
X
X
X
X
Note  
1. X = don’t care.  
18.2.5.7 Subaddresses 94H to 9BH  
Table 221 Horizontal input window start; register set A [94H[7:0]; 95H[3:0]] and B [C4H[7:0]; C5H[3:0]]  
CONTROL BITS  
HORIZONTAL INPUT  
ACQUISITION WINDOW  
DEFINITION OFFSET IN  
X (HORIZONTAL) DIRECTION(1)  
A [95H[3:0]]  
B [C5H[3:0]]  
A [94H[7:0]]  
B [C4H[7:0]]  
XO11 XO10 XO9 XO8 XO7 XO6 XO5 XO4 XO3 XO2 XO1 XO0  
A minimum of 2 should be kept, due  
to a line counting mismatch  
0
0
0
0
0
0
0
0
0
0
1
0
Odd offsets are changing the  
CB-CR sequence in the output  
stream to CR-CB sequence  
0
0
0
0
0
0
0
0
0
0
1
1
Maximum possible pixel  
offset = 4095  
1
1
1
1
1
1
1
1
1
1
1
1
Note  
1. Reference for counting are luminance samples.  
2004 Jun 29  
178  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 222 Horizontal input window length; register set A [96H[7:0]; 97H[3:0]] and B [C6H[7:0]; C7H[3:0]]  
CONTROL BITS  
A [96H[7:0]]  
HORIZONTAL INPUT  
ACQUISITION WINDOW  
DEFINITION INPUT WINDOW  
LENGTH IN X (HORIZONTAL)  
DIRECTION(1)  
A [97H[3:0]]  
B [C7H[3:0]]  
B [C6H[7:0]]  
XS11 XS10 XS9 XS8 XS7 XS6 XS5 XS4 XS3 XS2 XS1 XS0  
No output  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Odd lengths are allowed, but will be  
rounded up to even lengths  
Maximum possible number of input  
pixels = 4095  
1
1
1
1
1
1
1
1
1
1
1
1
Note  
1. Reference for counting are luminance samples.  
Table 223 Vertical input window start; register set A [98H[7:0]; 99H[3:0]] and B [C8H[7:0]; C9H[3:0]]  
CONTROL BITS  
VERTICAL INPUT ACQUISITION  
WINDOW DEFINITION OFFSET IN  
Y (VERTICAL) DIRECTION(1)  
A [99H[3:0]]  
B [C9H[3:0]]  
A [98H[7:0]]  
B [C8H[7:0]]  
YO11 YO10 YO9 YO8 YO7 YO6 YO5 YO4 YO3 YO2 YO1 YO0  
Line offset = 0  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
Line offset = 1  
Maximum line offset = 4095  
Note  
1. For trigger condition: STRC[1:0] 90H[1:0] = 00; YO + YS > (number of input lines per field 2), will result in field  
dropping. Other trigger conditions: YO > (number of input lines per field 2), will result in field dropping.  
Table 224 Vertical input window length; register set A [9AH[7:0]; 9BH[3:0]] and B [CAH[7:0]; CBH[3:0]]  
CONTROL BITS  
VERTICAL INPUT ACQUISITION  
WINDOW DEFINITION INPUT  
WINDOW LENGTH IN  
Y (VERTICAL) DIRECTION(1)  
A [9BH[3:0]]  
B [CBH[3:0]]  
A [9AH[7:0]]  
B [CAH[7:0]]  
YS11 YS10 YS9 YS8 YS7 YS6 YS5 YS4 YS3 YS2 YS1 YS0  
No input lines  
1 input line  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
Maximum possible number of input  
lines = 4095  
Note  
1. For trigger condition: STRC[1:0] 90H[1:0] = 00; YO + YS > (number of input lines per field 2), will result in field  
dropping. Other trigger conditions: YS > (number of input lines per field 2), will result in field dropping.  
2004 Jun 29  
179  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.5.8 Subaddresses 9CH to 9FH  
Table 225 Horizontal output window length; register set A [9CH[7:0]; 9DH[3:0]] and B [CCH[7:0]; CDH[3:0]]  
CONTROL BITS  
A [9CH[7:0]]  
HORIZONTAL OUTPUT  
ACQUISITION WINDOW  
DEFINITION NUMBER OF  
DESIRED OUTPUT PIXEL IN  
X (HORIZONTAL) DIRECTION(1)  
A [9DH[3:0]]  
B [CDH[3:0]]  
B [CCH[7:0]]  
XD11 XD10 XD9 XD8 XD7 XD6 XD5 XD4 XD3 XD2 XD1 XD0  
No output  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Odd lengths are allowed, but will be  
filled up to even lengths  
Maximum possible number of input  
pixels = 4095; note 2  
1
1
1
1
1
1
1
1
1
1
1
1
Notes  
1. Reference for counting are luminance samples.  
2. If the desired output length is greater than the number of scaled output pixels, the last scaled pixel is repeated.  
Table 226 Vertical output window length; register set A [9EH[7:0]; 9FH[3:0]] and B [CEH[7:0]; CFH[3:0]]  
CONTROL BITS  
VERTICAL OUTPUT ACQUISITION  
WINDOW DEFINITION NUMBER  
OF DESIRED OUTPUT LINES IN  
Y (VERTICAL) DIRECTION  
A [9FH[3:0]]  
B [CFH[3:0]]  
A [9EH[7:0]]  
B [CEH[7:0]]  
YD11 YD10 YD9 YD8 YD7 YD6 YD5 YD4 YD3 YD2 YD1 YD0  
No output  
1 pixel  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
Maximum possible number of output  
lines = 4095; note 1  
Note  
1. If the desired output length is greater than the number of scaled output lines, the processing is cut.  
18.2.5.9 Subaddresses A0H to A2H  
Table 227 Horizontal prescaling; register set A [A0H[5:0]] and B [D0H[5:0]]  
CONTROL BITS 5 TO 0  
HORIZONTAL INTEGER PRESCALING RATIO (XPSC)  
XPSC5 XPSC4 XPSC3 XPSC2 XPSC1 XPSC0  
Not allowed  
Downscale = 1  
Downscale = 12  
...  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
Downscale = 163  
2004 Jun 29  
180  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 228 Accumulation length; register set A [A1H[5:0]] and B [D1H[5:0]]  
CONTROL BITS 5 TO 0  
HORIZONTAL PRESCALER ACCUMULATION  
SEQUENCE LENGTH (XACL)  
XACL5 XACL4 XACL3 XACL2 XACL1 XACL0  
Accumulation length = 1  
Accumulation length = 2  
...  
0
0
0
0
0
0
0
0
0
0
0
1
...  
1
...  
1
...  
1
...  
1
...  
1
...  
1
Accumulation length = 64  
Table 229 Prescaler DC gain and FIR prefilter control; register set A [A2H[7:4]] and B [D2H[7:4]]; note 1  
CONTROL BITS 7 TO 4  
FIR PREFILTER CONTROL  
PFUV1  
PFUV0  
PFY1  
PFY0  
Luminance FIR filter bypassed  
H_y(z) = 14 (1 2 1)  
H_y(z) = 18 (1 1 1.75 4.5 1.75 1 1)  
H_y(z) = 18 (1 2 2 2 1)  
X
X
X
X
0
0
1
1
X
X
X
X
0
1
0
1
0
0
0
1
1
0
1
1
Chrominance FIR filter bypassed  
H_uv(z) = 14 (1 2 1)  
H_uv(z) = 132 (3 8 10 8 3)  
H_uv(z) = 18 (1 2 2 2 1)  
X
X
X
X
X
X
X
X
Note  
1. X = don’t care.  
Table 230 Prescaler DC gain and FIR prefilter control; register set A [A2H[3:0]] and B [D2H[3:0]]; note 1  
CONTROL BITS 3 TO 0  
PRESCALER DC GAIN  
XC2_1  
XDCG2  
XDCG1  
XDCG0  
Prescaler output is renormalized by gain factor = 1  
Prescaler output is renormalized by gain factor = 12  
Prescaler output is renormalized by gain factor = 14  
Prescaler output is renormalized by gain factor = 18  
Prescaler output is renormalized by gain factor = 116  
Prescaler output is renormalized by gain factor = 132  
Prescaler output is renormalized by gain factor = 164  
Prescaler output is renormalized by gain factor = 1128  
Weighting of all accumulated samples is factor 1;  
X
X
X
X
X
X
X
X
0
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
X
e.g. XACL = 4  
sequence 1 + 1 + 1 + 1 + 1  
Weighting of samples inside sequence is factor 2;  
1
X
X
X
e.g. XACL = 4  
sequence 1 + 2 + 2 + 2 + 1  
Note  
1. X = don’t care.  
2004 Jun 29  
181  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
18.2.5.10 Subaddresses A4H to A6H  
Table 231 Luminance brightness control; register set A [A4H[7:0]] and B [D4H[7:0]]  
CONTROL BITS 7 TO 0  
LUMINANCE  
BRIGHTNESS CONTROL  
BRIG7  
BRIG6  
BRIG5  
BRIG4  
BRIG3  
BRIG2  
BRIG1  
BRIG0  
Value = 0  
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
Nominal value = 128  
Value = 255  
Table 232 Luminance contrast control; register set A [A5H[7:0]] and B [D5H[7:0]]  
CONTROL BITS 7 TO 0  
CONT7 CONT6 CONT5 CONT4 CONT3 CONT2 CONT1 CONT0  
LUMINANCE CONTRAST  
CONTROL  
Gain = 0  
Gain = 164  
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
1
0
1
Nominal gain = 64  
Gain = 127  
64  
Table 233 Chrominance saturation control; register set A [A6H[7:0]] and B [D6H[7:0]]  
CONTROL BITS 7 TO 0  
CHROMINANCE  
SATURATION CONTROL  
SATN7  
SATN6  
SATN5  
SATN4  
SATN3  
SATN2  
SATN1  
SATN0  
Gain = 0  
Gain = 164  
0
0
0
0
0
0
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
1
0
1
Nominal gain = 64  
Gain = 127  
64  
18.2.5.11 Subaddresses A8H to AEH  
Table 234 Horizontal luminance scaling increment; register set A [A8H[7:0]; A9H[7:0]] and B [D8H[7:0]; D9H[7:0]]  
CONTROL BITS  
HORIZONTAL LUMINANCE SCALING  
INCREMENT  
A [A9H[7:4]]  
B [D9H[7:4]]  
A [A9H[3:0]]  
B [D9H[3:0]]  
A [A8H[7:4]]  
B [D8H[7:4]]  
A [A8H[3:0]]  
B [D8H[3:0]]  
XSCY[15:12](1)  
XSCY[11:8]  
XSCY[7:4]  
XSCY[3:0]  
Scale = 10241 (theoretical) zoom  
0000  
0000  
0000  
0001  
0000  
0010  
0000  
0110  
Scale = 1024  
data path structure  
Scale = 1024  
1023 zoom  
Scale = 1, equals 1024  
294, lower limit defined by  
0000  
0000  
0000  
0001  
0011  
0100  
0100  
1111  
1111  
0000  
0000  
1111  
1111  
0000  
0001  
1111  
Scale = 1024  
Scale = 1024  
1025 downscale  
8191 downscale  
Note  
1. Bits XSCY[15:13] are reserved and are set to logic 0.  
2004 Jun 29  
182  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 235 Horizontal luminance phase offset; register set A [AAH[7:0]] and B [DAH[7:0]]  
CONTROL BITS 7 TO 0  
HORIZONTAL LUMINANCE PHASE  
OFFSET  
XPHY7 XPHY6 XPHY5 XPHY4 XPHY3 XPHY2 XPHY1 XPHY0  
Offset = 0  
Offset = 132 pixel  
Offset = 32  
Offset = 255  
0
0
0
1
0
0
0
1
0
0
1
1
0
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
0
1
0
1
32 = 1 pixel  
32 pixel  
Table 236 Horizontal chrominance scaling increment; register set A [ACH[7:0]; ADH[7:0]] and B [DCH[7:0]; DDH[7:0]]  
CONTROL BITS  
HORIZONTAL CHROMINANCE  
SCALING INCREMENT  
A [ADH[7:4]]  
B [DDH[7:4]]  
A [ADH[3:0]]  
B [DDH[3:0]]  
A [ACH[7:4]]  
B [DCH[7:4]]  
A [ACH[3:0]]  
B [DCH[3:0]]  
XSCC[15:12](1)  
XSCC[11:8]  
XSCC[7:4]  
XSCC[3:0]  
This value must be set to the  
luminance value 12XSCY[15:0]  
0000  
0000  
0001  
0000  
0000  
1111  
0000  
0000  
1111  
0000  
0001  
1111  
Note  
1. Bits XSCC[15:13] are reserved and are set to logic 0.  
Table 237 Horizontal chrominance phase offset; register set A [AEH[7:0]] and B [DEH[7:0]]  
CONTROL BITS 7 TO 0  
HORIZONTAL CHROMINANCE  
PHASE OFFSET  
XPHC7 XPHC6 XPHC5 XPHC4 XPHC3 XPHC2 XPHC1 XPHC0  
This value must be set to 12XPHY[7:0]  
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
0
1
1
18.2.5.12 Subaddresses B0H to BFH  
Table 238 Vertical luminance scaling increment; register set A [B0H[7:0]; B1H[7:0]] and B [E0H[7:0]; E1H[7:0]]  
CONTROL BITS  
VERTICAL LUMINANCE SCALING  
INCREMENT  
A [B1H[7:4]]  
B [E1H[7:4]]  
A [B1H[3:0]]  
B [E1H[3:0]]  
A [B0H[7:4]]  
B [E0H[7:4]]  
A [B0H[3:0]]  
B [E0H[3:0]]  
YSCY[15:12]  
YSCY[11:8]  
YSCY[7:4]  
YSCY[3:0]  
Scale = 10241 (theoretical) zoom  
0000  
0000  
0000  
0000  
1111  
0000  
0011  
0100  
0100  
1111  
0000  
1111  
0000  
0000  
1111  
0001  
1111  
0000  
0001  
1111  
Scale = 1024  
Scale = 1, equals 1024  
Scale = 1024  
1025 downscale  
1023 zoom  
Scale = 163.999 downscale  
2004 Jun 29  
183  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 239 Vertical chrominance scaling increment; register set A [B2H[7:0]; B3H[7:0]] and B [E2H[7:0]; E3H[7:0]]  
CONTROL BITS  
VERTICAL CHROMINANCE  
SCALING INCREMENT  
A [B3H[7:4]]  
B [E3H[7:4]]  
A [B3H[3:0]]  
B [E3H[3:0]]  
A [B2H[7:4]]  
B [E2H[7:4]]  
A [B2H[3:0]]  
B [E2H[3:0]]  
YSCC[15:12]  
YSCC[11:8]  
YSCC[7:4]  
YSCC[3:0]  
This value must be set to the  
luminance value YSCY[15:0]  
0000  
1111  
0000  
1111  
0000  
1111  
0001  
1111  
Table 240 Vertical scaling mode control; register set A [B4H[4 and 0]] and B [E4H[4 and 0]]; note 1  
CONTROL BITS 4 AND 0  
VERTICAL SCALING MODE CONTROL  
YMIR  
YMODE  
Vertical scaling performs linear interpolation between lines  
X
X
0
1
Vertical scaling performs higher order accumulating interpolation, better alias  
suppression  
No mirroring  
0
1
X
X
Lines are mirrored  
Note  
1. X = don’t care.  
Table 241 Vertical chrominance phase offset ‘00’; register set A [B8H[7:0]] and B [E8H[7:0]]  
CONTROL BITS 7 TO 0  
VERTICAL CHROMINANCE PHASE  
OFFSET  
YPC07 YPC06 YPC05 YPC04 YPC03 YPC02 YPC01 YPC00  
Offset = 0  
Offset = 32  
Offset = 255  
0
0
1
0
0
1
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
32 = 1 line  
32 lines  
Table 242 Vertical luminance phase offset ‘00’; register set A [BCH[7:0]] and B [ECH[7:0]]  
CONTROL BITS 7 TO 0  
VERTICAL LUMINANCE PHASE  
OFFSET  
YPY07 YPY06 YPY05 YPY04 YPY03 YPY02 YPY01 YPY00  
Offset = 0  
Offset = 32  
Offset = 255  
0
0
1
0
0
1
0
1
1
0
0
1
0
0
1
0
0
1
0
0
1
0
0
1
32 = 1 line  
32 lines  
2004 Jun 29  
184  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
19 PROGRAMMING START SET-UP OF DIGITAL VIDEO DECODER PART  
19.1 Decoder part  
The given values force the following behaviour of the SAA7108AE; SAA7109AE decoder part:  
The analog input AI11 expects an NTSC M, PAL B, D, G, H and I or SECAM signal in CVBS format; analog anti-alias  
filter and AGC active  
Automatic field detection enabled  
Standard ITU 656 output format enabled on the expansion port  
Contrast, brightness and saturation control in accordance with ITU standards  
Adaptive comb filter for luminance and chrominance activated  
Pins LLC, LLC2, XTOUTd, RTS0, RTS1 and RTCO are set to 3-state.  
Table 243 Decoder part start set-up values for the three main standards  
VALUES (HEX)  
SUB  
ADDRESS  
(HEX)  
REGISTER  
FUNCTION  
BIT NAME(1)  
PAL B, D,  
G, H AND I  
NTSC M  
SECAM  
00  
01  
02  
chip version  
ID7 to ID4  
read only  
08  
increment delay  
X, X, X, X, IDEL3 to IDEL0  
08  
08  
analog input control 1  
FUSE1, FUSE0, GUDL1, GUDL0 and  
MODE3 to MODE0  
C0  
C0  
C0  
03  
analog input control 2  
X, HLNRS, VBSL, WPOFF, HOLDG,  
GAFIX, GAI28 and GAI18  
10  
10  
10  
04  
05  
06  
07  
08  
analog input control 3  
analog input control 4  
horizontal sync start  
horizontal sync stop  
sync control  
GAI17 to GAI10  
GAI27 to GAI20  
HSB7 to HSB0  
HSS7 to HSS0  
90  
90  
EB  
E0  
98  
90  
90  
EB  
E0  
98  
90  
90  
EB  
E0  
98  
AUFD, FSEL, FOET, HTC1, HTC0,  
HPLL, VNOI1 and VNOI0  
09  
0A  
0B  
0C  
luminance control  
BYPS, YCOMB, LDEL, LUBW and  
LUFI3 to LUFI0  
40  
80  
44  
40  
40  
80  
44  
40  
1B  
80  
44  
40  
luminance brightness  
control  
DBRI7 to DBRI0  
DCON7 to DCON0  
DSAT7 to DSAT0  
luminance contrast  
control  
chrominance saturation  
control  
0D  
0E  
chrominance hue control HUEC7 to HUEC0  
chrominance control 1 CDTO, CSTD2 to CSTD0, DCVF, FCTC,  
X and CCOMB  
chrominance gain control ACGC and CGAIN6 to CGAIN0  
00  
89  
00  
81  
00  
D0  
0F  
10  
2A  
0E  
2A  
06  
80  
00  
chrominance control 2  
OFFU1, OFFU0, OFFV1, OFFV0,  
CHBW and LCBW2 to LCBW0  
11  
mode/delay control  
COLO, RTP1, HDEL1, HDEL0, RTP0  
and YDEL2 to YDEL0  
00  
00  
00  
2004 Jun 29  
185  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
VALUES (HEX)  
PAL B, D,  
SUB  
ADDRESS  
(HEX)  
REGISTER  
FUNCTION  
BIT NAME(1)  
NTSC M  
SECAM  
G, H AND I  
12  
13  
14  
RT signal control  
RTSE13 to RTSE10 and  
RTSE03 to RTSE00  
00  
00  
00  
RT/X port output control  
RTCE, XRHS, XRVS1, XRVS0, HLSEL  
and OFTS2 to OFTS0  
00  
00  
00  
00  
00  
00  
analog/ADC/compatibility CM99, UPTCV, AOSL1, AOSL0,  
control XTOUTE, OLDSB, APCK1 and APCK0  
VGATE start, FID change VSTA7 to VSTA0  
15  
16  
17  
11  
FE  
40  
11  
FE  
40  
11  
FE  
40  
VGATE stop  
VSTO7 to VSTO0  
miscellaneous, VGATE  
configuration and MSBs  
LLCE, LLC2E, X, X, X, VGPS,  
VSTO8 and VSTA8  
18  
19  
raw data gain control  
raw data offset control  
RAWG7 to RAWG0  
RAWO7 to RAWO0  
X, X, X, X, X, X, X, X  
40  
80  
00  
40  
80  
40  
80  
00  
1A to 1E reserved  
1F  
00  
status byte video decoder INTL, HLVLN, FIDT, GLIMT, GLIMB,  
(OLDSB = 0) WIPA, COPRO and RDCAP  
read only  
Note  
1. All X values must be set to logic 0.  
2004 Jun 29  
186  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
19.2 Audio clock generation part  
The given values force the following behaviour of the SAA7108AE; SAA7109AE audio clock generation part:  
Used crystal is 24.576 MHz  
Expected field frequency is 59.94 Hz (e.g. NTSC M standard)  
Generated audio master clock frequency at pin AMCLK is 256 × 44.1 kHz = 11.2896 MHz  
AMCLK is externally connected to AMXCLK (short-cut between pins K12 and J12)  
ASCLK = 32 × 44.1 kHz = 1.4112 MHz  
ALRCLK is 44.1 kHz.  
Table 244 Audio clock part set-up values  
SUB  
ADDRESS  
(HEX)  
START VALUES  
REGISTER FUNCTION  
BIT NAME(1)  
ACPF7 to ACPF0  
7
6
5
4
3
2
1
0
HEX  
30  
31  
32  
audio master clock cycles per  
field; bits 7 to 0  
1
0
1
1
1
1
0
0
BC  
audio master clock cycles per  
field; bits 15 to 8  
ACPF15 to ACPF8  
1
0
1
0
0
0
1
0
1
0
1
0
1
1
1
0
DF  
02  
audio master clock cycles per  
field; bits 17 and 16  
X, X, X, X, X, X, ACPF17 and  
ACPF16  
33  
34  
reserved  
X, X, X, X, X, X, X, X  
ACNI7 to ACNI0  
0
1
0
1
0
0
0
0
0
1
0
1
0
0
0
1
00  
audio master clock nominal  
increment; bits 7 to 0  
CD  
35  
36  
audio master clock nominal  
increment; bits 15 to 8  
ACNI15 to ACNI8  
1
0
1
0
0
1
0
1
1
1
1
0
0
1
0
0
CC  
3A  
audio master clock nominal  
increment; bits 21 to 16  
X, X, ACNI21 to ACNI16  
37  
38  
39  
3A  
reserved  
X, X, X, X, X, X, X, X  
X, X, SDIV5 to SDIV0  
X, X, LRDIV5 to LRDIV0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
00  
03  
10  
00  
clock ratio AMXCLK to ASCLK  
clock ratio ASCLK to ALRCLK  
audio clock generator basic  
set-up  
X, X, X, X, APLL, AMVR,  
LRPH, SCPH  
3B to 3F reserved  
X, X, X, X, X, X, X, X  
0
0
0
0
0
0
0
0
00  
Note  
1. All X values must be set to logic 0.  
2004 Jun 29  
187  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
19.3 Data slicer and data type control part  
The given values force the following behaviour of the SAA7108AE; SAA7109AE VBI data slicer part:  
Closed captioning data is expected at line 21 of field 1 (60 Hz/525 line system)  
All other lines are processed as active video  
Sliced data are framed by ITU 656 like SAV/EAV sequence (DID[5:0] = 3EH  
MSB of SAV/EAV = 1).  
Table 245 Data slicer start set-up values  
SUB  
ADDRESS  
(HEX)  
START VALUES  
REGISTER FUNCTION  
BIT NAME(1)  
7
6
5
4
3
2
1
0
HEX  
40  
slicer control 1  
X, HAM_N, FCE, HUNT_N, X, X,  
X, X  
0
1
0
0
0
0
0
0
40  
41 to 53 line control register 2 to 20  
54 line control register 21  
LCRn_7 to LCRn_0 (n = 2 to 20)  
LCR21_7 to LCR21_0  
1
0
1
0
0
0
1
1
1
1
0
1
0
0
1
0
1
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
0
0
0
1
1
1
0
1
1
0
1
1
1
0
1
1
1
1
1
1
0
1
0
1
FF  
5F  
55 to 57 line control register 22 to 24 LCRn_7 to LCRn_0 (n = 22 to 24)  
FF  
58  
59  
5A  
5B  
programmable framing code FC7 to FC0  
00  
horizontal offset for slicer  
vertical offset for slicer  
field offset and MSBs for  
HOFF7 to HOFF0  
47  
VOFF7 to VOFF0  
06(2)  
83(2)  
FOFF, RECODE, X, VOFF8, X,  
horizontal and vertical offset HOFF10 to HOFF8  
5C  
5D  
reserved  
X, X, X, X, X, X, X, X  
0
0
0
0
0
1
0
1
0
1
0
1
0
1
0
0
00  
3E  
header and data  
FVREF, X, DID5 to DID0  
identification code control  
5E  
5F  
60  
sliced data identification code X, X, SDID5 to SDID0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
00  
00  
reserved  
X, X, X, X, X, X, X, X  
slicer status byte 0  
, FC8V, FC7V, VPSV, PPV, CCV,  
, −  
read-only register  
61  
62  
slicer status byte 1  
slicer status byte 2  
, , F21_N, LN8 to LN4  
read-only register  
read-only register  
LN3 to LN0, DT3 to DT0  
Notes  
1. All X values must be set to logic 0.  
2. Changes for 50 Hz/625 line systems: subaddress 5AH = 03H and subaddress 5BH = 03H.  
2004 Jun 29  
188  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
19.4 Scaler and interfaces  
19.4.1 TRIGGER CONDITION  
Table 246 shows some examples for the scaler  
programming where:  
For trigger condition STRC[1:0] 90H[1:0] not equal ‘00’.  
If the value of (YO + YS) is 262 (NTSC), and 312 (PAL)  
the output field rate is reduced to 30 Hz and 25 Hz  
respectively.  
prsc = prescale ratio  
fisc = fine scale ratio  
vsc = vertical scale ratio.  
Horizontal and vertical offsets (XO and YO) have to be  
used to adjust the displayed video in the display window.  
As this adjustment is application dependent, the listed  
values are only dummy values.  
number of input pixel  
number of output pixel  
The ratio is defined as:  
----------------------------------------------------------  
In the following settings the VBI data slicer is inactive.  
To activate the VBI data slicer, VITX[1:0] 86H[7:6] has to  
be set to ‘11’. Depending on the VBI data slicer settings,  
the sliced VBI data is inserted after the end of the scaled  
video lines, if the regions of the VBI data slicer and scaler  
overlap.  
19.4.2 MAXIMUM ZOOM FACTOR  
The maximum zoom factor is dependent on the back-end  
data rate and is therefore back-end clock and data format  
dependent (8 or 16-bit output). The maximum horizontal  
zoom is limited to approximately 3.5, due to internal data  
path restrictions.  
To compensate for the running-in of the vertical scaler, the  
vertical input window lengths are extended by  
2 to 290 lines, respectively 242 lines for XS, but the scaler  
increment calculations are done with 288, respectively  
240 lines.  
19.4.3 EXAMPLES  
Table 246 Example of configurations  
EXAMPLE  
NUMBER  
INPUT  
WINDOW WINDOW  
OUTPUT  
SCALE  
RATIOS  
SCALER SOURCE AND REFERENCE EVENTS  
1
analog input to 8-bit I port output, with SAV/EAV codes, 8-bit  
serial byte stream decoder output at X port; acquisition trigger  
at falling edge vertical and rising edge horizontal reference  
signal; H and V gates on IGPH and IGPV, IGP0 = VBI sliced  
data flag, IGP1 = FIFO almost full, level 24, IDQ qualifier  
logic 1 active  
720 × 240 720 × 240 prsc = 1;  
fisc = 1;  
vsc = 1  
2
3
4
analog input to 16-bit output, without SAV/EAV codes, Yon  
I port, CB-CR on H port and decoder output at X port;  
acquisition trigger at falling edge vertical and rising edge  
horizontal reference signal; H and V pulses on IGPH and IGPV,  
output FID on IGP0, IGP1 fixed to logic 1, IDQ qualifier logic 0  
active  
704 × 288 768 × 288 prsc = 1;  
fisc = 0.91667;  
vsc = 1  
X port input 8 bit with SAV/EAV codes, no reference signals on 720 × 240 352 × 288 prsc = 2;  
XRH and XRV, XCLK as gated clock; field detection and  
acquisition trigger on different events; acquisition triggers at  
rising edge vertical and rising edge horizontal; I port output  
8-bit with SAV/EAV codes like example number 1;  
see Table 247  
fisc = 1.022;  
vsc = 0.8333  
X port and H port for 16-bit Y-CB-CR 4 : 2 : 2 input (if no 16-bit 720 × 288 200 × 80 prsc = 2;  
output selected); XRH and XRV as references; field detection  
and acquisition trigger at falling edge of vertical and rising edge  
of horizontal; I port output 8-bit with SAV/EAV codes, but Yonly  
output  
fisc = 1.8;  
vsc = 3.6  
2004 Jun 29  
189  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
Table 247 Scaler and interface configuration examples  
I2C-BUS  
ADDRESS  
(HEX)  
EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4  
HEX DEC HEX DEC HEX DEC HEX DEC  
MAIN FUNCTION  
Global settings  
80  
task enable, IDQ and back-end clock  
definition  
10  
01  
10  
10  
10  
83  
84  
85  
XCLK output phase and X port output enable  
01  
C5  
09  
00  
A0  
10  
00  
A0  
10  
IGPH, IGPV, IGP0 and IGP1 output definition A0  
signal polarity control and I port byte  
swapping  
10  
86  
FIFO flag thresholds and video/text  
arbitration  
45  
40  
45  
45  
87  
88  
ICLK and IDQ output phase and I port enable 01  
power save control and software reset F0  
01  
F0  
01  
F0  
01  
F0  
Task A: scaler input configuration and output format settings  
90  
91  
92  
93  
task handling  
00  
08  
10  
80  
00  
08  
10  
40  
00  
18  
10  
80  
00  
38  
10  
84  
scaler input source and format definition  
reference signal definition at scaler input  
I port output formats and configuration  
Input and output window definition  
94  
95  
96  
97  
98  
99  
9A  
9B  
9C  
9D  
9E  
9F  
horizontal input offset (XO)  
10  
00  
D0  
02  
0A  
00  
F2  
00  
D0  
02  
F0  
00  
16  
10  
00  
C0  
02  
0A  
00  
22  
01  
00  
03  
20  
01  
16  
10  
00  
D0  
02  
0A  
00  
F2  
00  
60  
01  
20  
01  
16  
10  
00  
D0  
02  
0A  
00  
22  
01  
C8  
00  
50  
00  
16  
horizontal input (source) window length (XS)  
vertical input offset (YO)  
720  
704  
720  
720  
10  
10  
10  
10  
vertical input (source) window length (YS)  
242  
290  
242  
290  
horizontal output (destination) window length  
(XD)  
720  
768  
352  
200  
vertical output (destination) window length  
(YD)  
240  
288  
288  
80  
Prefiltering and prescaling  
A0  
A1  
A2  
A4  
A5  
A6  
integer prescale (value ‘00’ not allowed)  
01  
00  
00  
80  
40  
40  
01  
00  
00  
80  
40  
40  
02  
02  
AA  
80  
40  
40  
02  
03  
F2  
80  
11  
11  
accumulation length for prescaler  
FIR prefilter and prescaler DC normalization  
scaler brightness control  
128  
64  
64  
128  
64  
64  
128  
64  
64  
128  
17  
17  
scaler contrast control  
scaler saturation control  
2004 Jun 29  
190  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
I2C-BUS  
ADDRESS  
(HEX)  
EXAMPLE 1 EXAMPLE 2 EXAMPLE 3 EXAMPLE 4  
HEX DEC HEX DEC HEX DEC HEX DEC  
MAIN FUNCTION  
Horizontal phase scaling  
A8  
A9  
AA  
AC  
AD  
AE  
horizontal scaling increment for luminance  
00  
04  
00  
00  
02  
00  
1024 AA  
938  
18  
04  
00  
0C  
02  
00  
1048  
34  
07  
00  
9A  
03  
00  
1844  
03  
00  
D5  
01  
00  
horizontal phase offset luminance  
horizontal scaling increment for chrominance  
512  
469  
524  
922  
horizontal phase offset chrominance  
Vertical scaling  
B0  
B1  
B2  
B3  
B4  
vertical scaling increment for luminance  
00  
04  
00  
04  
00  
1024  
00  
04  
00  
04  
00  
1024  
55  
03  
55  
03  
00  
853  
66  
0E  
66  
0E  
01  
3686  
1024  
1024  
3686  
vertical scaling increment for chrominance  
vertical scaling mode control  
853  
B8 to BF vertical phase offsets luminance and  
chrominance (needs to be used for interlace the interlaced scaled output optimize according to  
correct scaled output) Section 9.3.3.2  
start with B8 to BF at 00H, if there are no problems with  
2004 Jun 29  
191  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
20 PACKAGE OUTLINE  
BGA156: plastic ball grid array package; 156 balls; body 15 x 15 x 1.15 mm  
SOT472-1  
B
D
A
D
1
ball A1  
index area  
A
2
A
E
E
1
A
1
detail X  
C
e
1
y
y
b
1/2  
e
e
v
M
M
C
C
A B  
C
1
w
P
N
M
L
e
K
J
H
G
F
e
2
1/2  
e
E
D
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
shape  
optional (4x)  
X
10 mm  
0
5
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
E
e
e
1
e
2
y
y
1
D
D
E
v
w
1
1
2
1
max.  
0.5  
0.3  
1.25  
1.05  
0.6  
0.4  
15.2 13.7 15.2 13.7  
14.8 13.0 14.8 13.0  
mm  
1.75  
0.15 0.35  
13  
13  
1
0.3  
0.1  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
144E  
00-03-04  
03-01-22  
SOT472-1  
MS-034  
- - -  
2004 Jun 29  
192  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
21 SOLDERING  
To overcome these problems the double-wave soldering  
method was specifically developed.  
21.1 Introduction to soldering surface mount  
packages  
If wave soldering is used the following conditions must be  
observed for optimal results:  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
21.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Driven by legislation and environmental forces the  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 270 °C depending on solder paste material. The  
top-surface temperature of the packages should  
preferably be kept:  
Typical dwell time of the leads in the wave ranges from  
3 to 4 seconds at 250 °C or 265 °C, depending on solder  
material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
below 225 °C (SnPb process) or below 245 °C (Pb-free  
process)  
– for all BGA, HTSSON-T and SSOP-T packages  
21.4 Manual soldering  
– for packages with a thickness 2.5 mm  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
– for packages with a thickness < 2.5 mm and a  
volume 350 mm3 so called thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free  
process) for packages with a thickness < 2.5 mm and a  
volume < 350 mm3 so called small/thin packages.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Moisture sensitivity precautions, as indicated on packing,  
must be respected at all times.  
21.3 Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
2004 Jun 29  
193  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
21.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(2)  
not suitable suitable  
PACKAGE(1)  
BGA, HTSSON..T(3), LBGA, LFBGA, SQFP, SSOP..T(3), TFBGA,  
USON, VFBGA  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON,  
HTQFP, HTSSOP, HVQFN, HVSON, SMS  
not suitable(4)  
suitable  
PLCC(5), SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(5)(6) suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L(8), PMFP(9), WQCCN..L(8)  
not recommended(7)  
suitable  
not suitable  
not suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account  
be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature  
exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature  
must be kept as low as possible.  
4. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
5. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
6. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
7. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
8. Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted  
on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar  
soldering process. The appropriate soldering profile can be provided on request.  
9. Hot bar or manual soldering is suitable for PMFP packages.  
2004 Jun 29  
194  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
22 DATA SHEET STATUS  
DATA SHEET  
LEVEL  
PRODUCT  
STATUS(2)(3)  
DEFINITION  
STATUS(1)  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
23 DEFINITIONS  
24 DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2004 Jun 29  
195  
Philips Semiconductors  
Product specification  
HD-CODEC  
SAA7108AE; SAA7109AE  
25 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
2004 Jun 29  
196  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2004  
SCA76  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R21/02/pp197  
Date of release: 2004 Jun 29  
Document order number: 9397 750 13425  

相关型号:

SAA7109AE

HD-CODEC
NXP

SAA7109AE/V1/G,518

IC SPECIALTY CONSUMER CIRCUIT, PBGA156, 15 X 15 MM, 1.05 MM HEIGHT, PLASTIC, MO-192, SOT-700-1, BGA-156, Consumer IC:Other
NXP

SAA7109E

PC-CODEC
NXP

SAA7110

One Chip Front-end 1 OCF1
NXP

SAA7110/7110A

One Chip Frontend 1 (OCF1) Product Specification
ETC

SAA7110A

One Chip Front-end 1 OCF1
NXP

SAA7110AWP

IC COLOR SIGNAL DECODER, PQCC68, Color Signal Converter
NXP

SAA7110AWP-T

IC COLOR SIGNAL DECODER, PQCC68, Color Signal Converter
NXP

SAA7110AWPA

IC COLOR SIGNAL DECODER, PQCC68, Color Signal Converter
NXP

SAA7110AWPA-T

IC COLOR SIGNAL DECODER, PQCC68, Color Signal Converter
NXP

SAA7110WP-T

IC COLOR SIGNAL DECODER, PQCC68, Color Signal Converter
NXP

SAA7110WPA

IC COLOR SIGNAL DECODER, PQCC68, Color Signal Converter
NXP