SAA7167AH [NXP]

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-313-2, LQFP-48, Consumer IC:Other;
SAA7167AH
型号: SAA7167AH
厂家: NXP    NXP
描述:

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-313-2, LQFP-48, Consumer IC:Other

文件: 总21页 (文件大小:121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
SAA7167AH  
YUV-to-RGB digital-to-analog  
converter  
Product specification  
2004 Jun 29  
Supersedes data of 1996 Aug 14  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
FEATURES  
On-chip mixing of digital video data and analog  
RGB signals  
Supports video input format of YUV 4 : 2 : 2, 4 : 1 : 1,  
2 : 1 : 1 and RGB 5 : 6 : 5  
a voltage output amplifier, capable of converting digital  
video data to analog RGB video, and then mixing video  
and external analog RGB inputs.  
Video input rate up to 66 MHz  
Allows for both binary and twos complement video  
input data  
The video data path contains a data re-formatter,  
YUV-to-RGB colour space matrix as well as triple DACs for  
video data processing. An analog mixer performs  
multiplexing between DAC outputs of the video path and  
external analog RGB inputs.  
Triple 8-bit DACs for video output  
Built-in voltage output amplifier  
Provides keying control with external key and internal  
8-bit, 2 × 8-bit and 3 × 8-bit pixel colour key  
Programmable via the I2C-bus  
The final analog outputs are buffered with built-in voltage  
output amplifiers to provide the direct driving capability for  
a 150 load.  
5 V CMOS device; LQFP48 package.  
GENERAL DESCRIPTION  
The operation of SAA7167AH is controlled via the I2C-bus.  
The SAA7167AH is a mixed-mode designed IC containing  
a video data path, keying control block, analog mixer, and  
QUICK REFERENCE DATA  
SYMBOL  
VDDD  
PARAMETER  
MIN.  
4.75  
MAX.  
5.25  
UNIT  
digital supply voltage  
analog supply voltage  
ambient temperature  
V
VDDA  
Tamb  
4.75  
0
5.25  
70  
V
°C  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SAA7167AH  
LQFP48  
plastic low profile quad flat package; 48 leads; body 7 × 7 × 1.4 mm  
SOT313-2  
2004 Jun 29  
2
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
BLOCK DIAGRAM  
B_IN R_IN  
G_IN  
V
V
V
V
V V  
SSA1 DDA1  
DDD  
7
SSD  
SSA2 DDA2  
C_REF(H)  
36  
8
26  
27  
34  
35  
29 31 33  
32  
MIXER  
MIXER  
MIXER  
OPAMP  
R_OUT  
G_OUT  
B_OUT  
38 to 45  
[
]
]
YUV 7:0  
8
8
46 to 48,  
1 to 5  
YUV-  
TO-  
RGB  
30  
28  
8-BIT  
DAC  
(3×)  
OPAMP  
OPAMP  
RE-  
FORMATTER  
[
UV 7:0  
MUX  
MATRIX  
9
HREF  
22  
23  
24  
SDA  
SCL  
2
I C-BUS  
CLOCK  
GENERATOR  
SAA7167AH  
KEYING CONTROL  
8
CONTROL  
RES_N  
11  
12  
25, 37  
6
10  
21  
13 to 20  
001aaa392  
[ ]  
P 7:0  
AP  
SP n.c.  
VCLK  
PCLK  
EXTKEY  
Fig.1 Block diagram.  
2004 Jun 29  
3
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
PINNING  
SYMBOL  
PIN  
TYPE(1)  
DESCRIPTION  
UV[4]  
1
I
digital video UV (of YUV format 4 : 1 : 1 and 4 : 2 : 2) input data, or digital G and R  
input data  
UV[3]  
UV[2]  
UV[1]  
UV[0]  
2
3
4
5
I
I
I
I
digital video UV (of YUV format 4 : 1 : 1 and 4 : 2 : 2) input data, or digital G and R  
input data  
digital video UV (of YUV format 4 : 1 : 1 and 4 : 2 : 2) input data, or digital G and R  
input data  
digital video UV (of YUV format 4 : 1 : 1 and 4 : 2 : 2) input data, or digital G and R  
input data  
digital video UV (of YUV format 4 : 1 : 1 and 4 : 2 : 2) input data, or digital G and R  
input data  
VCLK  
VDDD  
VSSD  
HREF  
PCLK  
AP  
6
I
S
S
I
video clock input  
7
digital supply voltage  
8
digital ground  
9
horizontal reference input signal  
pixel clock input  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
I
I
test pin, normally connected to ground  
test pin, normally connected to ground  
pixel bus input 7 (for keying control)  
pixel bus input 6 (for keying control)  
pixel bus input 5 (for keying control)  
pixel bus input 4 (for keying control)  
pixel bus input 3 (for keying control)  
pixel bus input 2 (for keying control)  
pixel bus input 1 (for keying control)  
pixel bus input 0 (for keying control)  
external key signal input  
SP  
I
P[7]  
I
P[6]  
I
P[5]  
I
P[4]  
I
P[3]  
I
P[2]  
I
P[1]  
I
P[0]  
I
EXTKEY  
SDA  
I
I/O  
I
I2C-bus data line  
I2C-bus clock line  
resetting the I2C-bus (active LOW)  
SCL  
RES_N  
n.c.  
I
S
S
O
I
not connected  
VSSA2  
VDDA2  
B_OUT  
B_IN  
G_OUT  
G_IN  
R_OUT  
R_IN  
VSSA1  
VDDA1  
C_REF(H)  
analog ground 2  
analog supply voltage 2  
analog blue signal output  
analog blue signal input  
O
I
analog green signal output  
analog green signal input  
analog red signal output  
O
I
analog red signal input  
S
S
S
analog ground 1  
analog supply voltage 1  
de-coupling capacitor for internal reference voltage (2.25 V)  
2004 Jun 29  
4
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
SYMBOL  
PIN  
TYPE(1)  
DESCRIPTION  
n.c.  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
I
not connected  
YUV[7]  
YUV[6]  
YUV[5]  
YUV[4]  
YUV[3]  
YUV[2]  
YUV[1]  
YUV[0]  
UV[7]  
digital video Y or UV (of YUV format 2 : 1 : 1) input data, or digital G and B input data  
digital video Y or UV (of YUV format 2 : 1 : 1) input data, or digital G and B input data  
digital video Y or UV (of YUV format 2 : 1 : 1) input data, or digital G and B input data  
digital video Y or UV (of YUV format 2 : 1 : 1) input data, or digital G and B input data  
digital video Y or UV (of YUV format 2 : 1 : 1) input data, or digital G and B input data  
digital video Y or UV (of YUV format 2 : 1 : 1) input data, or digital G and B input data  
digital video Y or UV (of YUV format 2 : 1 : 1) input data, or digital G and B input data  
digital video Y or UV (of YUV format 2 : 1 : 1) input data, or digital G and B input data  
I
I
I
I
I
I
I
I
digital video UV (of YUV format 4 : 1 : 1 and 4 : 2 : 2) input data, or digital G and R  
input data  
UV[6]  
UV[5]  
47  
48  
I
I
digital video UV (of YUV format 4 : 1 : 1 and 4 : 2 : 2) input data, or digital G and R  
input data  
digital video UV (of YUV format 4 : 1 : 1 and 4 : 2 : 2) input data, or digital G and R  
input data  
Note  
1. I = input; I/O = input or output; O = output; S = supply.  
[ ]  
UV 4  
1
2
3
4
5
6
7
8
9
36 C_REF(H)  
[ ]  
UV 3  
35  
34  
V
V
DDA1  
SSA1  
[ ]  
UV 2  
[ ]  
UV 1  
33 R_IN  
[ ]  
UV 0  
32 R_OUT  
31 G_IN  
VCLK  
SAA7167AH  
V
30 G_OUT  
29 B_IN  
DDD  
V
SSD  
HREF  
28 B_OUT  
PCLK 10  
AP 11  
27  
26  
V
DDA2  
SSA2  
V
SP 12  
25 n.c.  
001aaa395  
Fig.2 Pin configuration.  
5
2004 Jun 29  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
FUNCTIONAL DESCRIPTION  
Table 2 Pixel byte sequence of 4 : 1 : 1  
The SAA7167AH contains a video data path, 3 analog  
mixers and voltage output amplifiers for the RGB channels  
respectively, a keying control block as well as an I2C-bus  
control block.  
INPUT  
PIXEL BYTE SEQUENCE OF 4 : 1 : 1  
YUV0  
YUV1  
YUV2  
YUV3  
YUV4  
YUV5  
YUV6  
YUV7  
UV0  
Y0 Y0 Y0 Y0 Y0 Y0 Y0 Y0  
Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1  
Y2 Y2 Y2 Y2 Y2 Y2 Y2 Y2  
Y3 Y3 Y3 Y3 Y3 Y3 Y3 Y3  
Y4 Y4 Y4 Y4 Y4 Y4 Y4 Y4  
Y5 Y5 Y5 Y5 Y5 Y5 Y5 Y5  
Y6 Y6 Y6 Y6 Y6 Y6 Y6 Y6  
Y7 Y7 Y7 Y7 Y7 Y7 Y7 Y7  
Video data path  
The video data path includes a video data re-formatter, a  
YUV-to-RGB colour space conversion matrix, and triple  
8-bit DACs.  
RE-FORMATTER  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
The re-formatter de-multiplexes the different video formats  
YUV 4 : 1 : 1, 4 : 2 : 2 or 2 : 1 : 1 to internal YUV 4 : 4 : 4,  
which can then be processed by the RGB matrix. The pixel  
byte sequences of those video input formats are shown in  
Tables 1 to 4.  
UV1  
UV2  
UV3  
UV4  
V6 V4 V2 V0 V6 V4 V2 V0  
V7 V5 V3 V1 V7 V5 V3 V1  
U6 U4 U2 U0 U6 U4 U2 U0  
U7 U5 U3 U1 U7 U5 U3 U1  
UV5  
Table 1 Pixel byte sequence of 4 : 2 : 2  
UV6  
PIXEL BYTE SEQUENCE OF  
INPUT  
UV7  
4 : 2 : 2  
Y data  
UV data  
0
0
1
0
2
0
3
0
4
4
5
4
6
4
7
4
YUV0 (LSB)  
YUV1  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
U0  
U1  
U2  
U3  
U4  
U5  
U6  
U7  
0
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
V0  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
1
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
U0  
U1  
U2  
U3  
U4  
U5  
U6  
U7  
2
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
V0  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
3
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
U0  
U1  
U2  
U3  
U4  
U5  
U6  
U7  
4
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
V0  
V1  
V2  
V3  
V4  
V5  
V6  
V7  
5
YUV2  
Table 3 Pixel byte sequence of 2 : 1 : 1  
YUV3  
INPUT  
YUV0  
YUV1  
YUV2  
YUV3  
YUV4  
YUV5  
YUV6  
YUV7  
Y data  
UV data  
PIXEL BYTE SEQUENCE OF 2 : 1 : 1  
YUV4  
U0 Y0 V0 Y0 U0 Y0 V0 Y0  
U1 Y1 V1 Y1 U1 Y1 V1 Y1  
U2 Y2 V2 Y2 U2 Y2 V2 Y2  
U3 Y3 V3 Y3 U3 Y3 V3 Y3  
U4 Y4 V4 Y4 U4 Y4 V4 Y4  
U5 Y5 V5 Y5 U5 Y5 V5 Y5  
U6 Y6 V6 Y6 U6 Y6 V6 Y6  
U7 Y7 V7 Y7 U7 Y7 V7 Y7  
YUV5  
YUV6  
YUV7 (MSB)  
UV0 (LSB)  
UV1  
UV2  
UV3  
UV4  
X
0
0
X
0
2
X
4
4
X
4
6
UV5  
X
X
X
X
UV6  
UV7 (MSB)  
Y data  
UV data  
0
0
2
2
4
4
2004 Jun 29  
6
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
Table 4 Pixel byte sequence of 5 : 6 : 5  
Analog mixers and keying control  
The analog mixers are controlled to switch between the  
outputs from the video DACs and analog RGB inputs by a  
keying signal. The analog RGB inputs need to interface  
with analog mixers in the way of DC-coupling, also these  
RGB inputs are limited to RGB signals without a sync level  
pedestal. The keying control can be enabled by setting  
I2C-bus bit KEN = 1. Two kinds of keying are possible to  
generate: one is external key (from EXTKEY pin when  
KMOD[2:0] are all logic 0), and the other is the internal  
pixel colour key (when KMOD[2:0] are not all logic 0)  
generated by comparing the input pixel data with the  
internal I2C-bus register value KD[7:0]. Controlled by  
KMOD[2:0] bits, there are 4 ways to compare the pixel  
data (see Table 5).  
PIXEL BYTE SEQUENCE OF RGB  
INPUT  
5 : 6 : 5  
UV7  
G0  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
B4  
B3  
B2  
B1  
B0  
0
G0  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
B4  
B3  
B2  
B1  
B0  
1
G0  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
B4  
B3  
B2  
B1  
B0  
2
G0  
R4  
R3  
R2  
R1  
R0  
G5  
G4  
G3  
G2  
G1  
B4  
B3  
B2  
B1  
B0  
3
UV6  
UV5  
UV4  
UV3  
UV2  
UV1  
UV0  
YUV7  
YUV6  
YUV5  
YUV4  
YUV3  
YUV2  
YUV1  
YUV0  
RGB data  
Table 5 KMOD[2:0]  
KMOD[2:0] PIXEL TYPE  
REMARK  
100  
101  
8-bit pixel  
pseudo colour mode  
2 × 8-bit pixel high colour mode 1 with  
pixels given at both rising  
and falling edges of PCLK  
110  
111  
2 × 8-bit pixel high colour mode 2 with  
pixels given only at rising  
edges of PCLK  
For RGB 5 : 6 : 5 video inputs, the video data are just  
directly bypassed to triple DACs.  
3 × 8-bit pixel true colour mode  
The input video data can be selected to either twos  
complement (I2C-bus bit DRP = 0) or binary offset  
(I2C-bus bit DRP = 1). The video input format is selected  
by I2C-bus bits FMTC[1:0].  
Since only one control register KD[7:0] provides the data  
value for pixel data comparison, when at 2 × 8-bit or  
3 × 8-bit pixel input modes, it is presumed that all input  
bytes (lower, middle or higher) of each pixel must be the  
same as KD[7:0] in order to make graphics colour key  
active.  
The rising edge of HREF input defines the start of active  
video data. When HREF is inactive, the video output will be  
blanked.  
The polarity of EXTKEY can be selected with KINV. With  
KINV = 0, EXTKEY = HIGH switches analog mixers to  
select DAC outputs. Before the internal keying signal  
switches the analog multiplexers, it can be further delayed  
up to 7 PCLK cycles with the control bits KDLY[2:0].  
YUV-TO-RGB MATRIX  
The matrix converts YUV data, in accordance with  
ITU-R BT.601, to RGB data with approximately 1.5 LSB  
deviation to the theoretical values for 8-bit resolution.  
TRIPLE 8-BIT DACS  
Three identical DACs for R, G and B video outputs are  
designed with voltage-drive architecture to provide  
high-speed operation of up to 66 MHz conversion data  
rate. Pin C_REF(H) is provided to allow for one external  
de-coupling capacitor to be connected between the  
internal reference voltage source and ground.  
2004 Jun 29  
7
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
Voltage output amplifiers  
The output voltage level of DAC ranges from the lowest  
level 0.2 V (zero code) to the highest level 1.82 V (all one  
code).  
Before the analog input enters the analog mixers, it passes  
through voltage output amplifiers. Level shifters are used  
internally to provide an offset of 0.2 V and an amplifier gain  
of 2 for analog inputs to match with the output levels from  
DACs. After buffering with voltage output amplifiers, the  
final RGB outputs can drive a 150 load directly (25 Ω  
internal resistor, 47 external serial resistor, and 75 Ω  
load resistor) at the monitor side (see Fig.9).  
With the digital input YUV video data in accordance with  
ITU-R BT.601, the RGB output of 8-bit DAC actually  
ranges from the 16th step (black) to the 235th step (white).  
Therefore, after the voltage divider with external serial  
resistor and monitor load resistor, the output voltage range  
to a monitor is approximately 0.7 V (p-p).  
I2C-bus control  
Only one control byte is needed for the SAA7167AH. The I2C-bus format is shown in Table 6.  
Table 6 I2C-bus format  
S(1)  
SLAVE ADDRESS(2)  
A(3)  
SUBADDRESS(4)  
A(3)  
DATA(5)  
A(3)  
P(6)  
Notes  
1. S = START condition.  
2. SLAVE ADDRESS = 1011111X; X = R/W control bit. X = 0: order to write. X = 1: order to read (not used for  
SAA7167AH).  
3. A = acknowledge; generated by the slave.  
4. SUBADDRESS = subaddress byte.  
5. DATA = data byte.  
6. P = STOP condition.  
Table 7 Control data byte  
SUBADDRESS  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
00  
01  
02  
KMOD2  
0
KMOD1  
0
KMOD0  
0
DRP  
0
KEN  
0
KINV  
KDLY2  
KD2  
FMTC1  
KDLY1  
KD1  
FMTC0  
KDLY0  
KD0  
KD7  
KD6  
KD5  
KD4  
KD3  
2004 Jun 29  
8
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
Table 8 Bit functions in data byte; notes 1 and 2  
BIT  
DESCRIPTION  
FMTC[1:0]  
video format control:  
00: YUV 4 : 2 : 2  
01: YUV 4 : 1 : 1  
10: YUV 2 : 1 : 1/ITU-R BT.656  
11: RGB 5 : 6 : 5  
KINV  
key polarity:  
KINV = 0: pin EXTKEY = HIGH for analog mixer to select DAC outputs  
KINV = 1: pin EXTKEY = HIGH for analog mixer to select analog RGB inputs  
KEN  
key enable:  
0 = disable  
1 = enable  
DRP  
UV input data code:  
0 = twos complement  
1 = binary offset  
KMOD[2:0]  
keying mode:  
000: external key  
100: 8-bit pixel colour key  
101: 2 × 8-bit pixel colour key (with two-edge clock latching for pixel input)  
110: 2 × 8-bit pixel colour key (with one-edge clock latching for pixel input)  
111: 3 × 8-bit pixel colour key (with one-edge clock latching for pixel input)  
all other combinations are reserved  
added keying delay cycles (from 0 to 7 PCLK cycles)  
the data value compared for 8, 16 or 24-bit pixel colour key  
KDLY[2:0]  
KD[7:0]  
Notes  
1. All I2C-bus control bits are initialized to logic 0 after RES_N is activated.  
2. PCLK should be active in any event to allow for correct operation of I2C-bus programming.  
2004 Jun 29  
9
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134); all ground pins and all supply pins connected  
together.  
SYMBOL  
PARAMETER  
digital supply voltage  
CONDITIONS  
MIN.  
0.5  
MAX.  
+7.0  
UNIT  
VDDD  
VDDA  
VI(D)  
VI(A)  
Vdiff  
V
analog supply voltage  
0.5  
0.5  
0.5  
+7.0  
+7.0  
+7.0  
100  
V
digital input voltage  
V
analog input voltage  
V
voltage difference between VSS pins  
storage temperature  
mV  
°C  
°C  
V
Tstg  
65  
0
+150  
70  
Tamb  
Vesd  
ambient temperature  
electrostatic discharge voltage  
human body model; note 1  
machine model; note 2  
±2000  
±200  
V
Notes  
1. Class 2 according to EIA/JESD22-114-B.  
2. Class B according to EIA/JESD22-115-A.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
TYP.  
67(1)  
UNIT  
Rth(j-a)  
thermal resistance from junction to  
ambient  
in free air  
K/W  
Note  
1. The overall Rth(j-a) value can vary depending on the board layout. To minimize the effective Rth(j-a) all power and  
ground pins must be connected to the power and ground layers directly. An ample copper area direct under the  
SAA7167AH with a number of through-hole plating, which connect to the ground layer (four-layer board: second  
layer), can also reduce the effective Rth(j-a). Please do not use any solder-stop varnish under the chip. In addition the  
usage of soldering glue with thermal conductance after curing is recommended.  
DC CHARACTERISTICS  
Tamb = 0 °C to 70 °C.  
SYMBOL  
PARAMETER  
digital supply voltage  
CONDITIONS  
MIN.  
4.75  
TYP.  
MAX.  
5.25  
UNIT  
VDDD  
VDDA  
IDDtot  
VIH(SDA)  
VIL(SDA)  
VIH  
5.0  
5.0  
V
analog supply voltage  
4.75  
5.25  
V
total supply current  
fclk = 66 MHz  
105  
mA  
V
HIGH-level input voltage on pin SDA  
LOW-level input voltage on pin SDA  
HIGH-level digital input voltage  
LOW-level digital input voltage  
full-scale analog RGB at input pins  
3
VDDD + 0.5  
0.5  
2
+1.5  
V
V
VIL  
0.8  
V
Vi  
0.7  
V
2004 Jun 29  
10  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
SYMBOL  
Vo  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
full-scale analog RGB at output pins with 150 Ω  
1.4  
1
1
V
external load  
DNL  
INL  
differential non-linearity error of video  
output  
LSB  
LSB  
integral non-linearity error of video  
output  
AC CHARACTERISTICS  
Tamb = 0 °C to 70 °C.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VCLK  
fclk  
video clock rate  
66  
60  
MHz  
δ
duty factor of VCLK  
40  
50  
%
PCLK  
fclk  
pixel clock rate:  
8-bit pixel colour key  
see Fig.4  
77.5  
50  
MHz  
MHz  
MHz  
MHz  
%
2 × 8-bit pixel colour key; mode 1 see Fig.5  
2 × 8-bit pixel colour key; mode 2 see Fig.6  
80  
3 × 8-bit pixel colour key  
see Fig.7  
77.5  
60  
δ
duty factor of PCLK  
40  
3
50  
tsu1  
digital input set-up time to VCLK  
rising edge  
ns  
th1  
digital input hold time to VCLK  
rising edge  
2
0
ns  
ns  
ns  
ns  
ns  
ns  
tsu2  
th2  
tsu3  
th3  
digital input set-up time to PCLK  
rising edge  
digital input hold time to PCLK  
rising edge  
4.2  
1  
6
digital input set-up time to PCLK  
falling edge  
digital input hold time to PCLK  
falling edge  
tsw  
switching time between video DAC note 1  
outputs and analog inputs  
15  
Tgroup  
overall group delay from digital  
video inputs to analog outputs:  
see Fig.8  
YUV video input mode  
RGB video input mode  
20TVCLK + tPD  
12TVCLK + tPD  
3.5  
ns  
ns  
ns  
ns  
tr  
tf  
DAC analog output rise time  
DAC analog output fall time  
see Fig.8; note 2  
see Fig.8; note 2  
3.5  
2004 Jun 29  
11  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
SYMBOL  
PARAMETER  
CONDITIONS  
see Fig.8; note 3  
see Fig.8; note 4  
MIN.  
TYP.  
MAX.  
UNIT  
ns  
ts  
DAC analog output settling time  
16.5  
20  
tPD  
DAC analog output propagation  
delay  
ns  
Analog outputs from analog inputs  
Gv  
B
voltage gain  
bandwidth  
slew rate  
2.0  
at 3 dB  
160  
100  
MHz  
SR  
110  
V/µs  
Notes  
1. Switching time measured from the 50 % point of the EXTKEY transition edge to the 50 % point of the selected analog  
output transition.  
2. DAC output rise and fall times measured between the 10 % and 90 % points of full-scale transition.  
3. DAC settling time measured from the 50 % point of full-scale transition to the output remaining within ±1 LSB.  
4. DAC analog output propagation delay measured from the 50 % point of the rising edge of VCLK to the 50 % point of  
full-scale transition.  
VCLK  
t
su1  
HREF  
t
h1  
YUV  
t
su1  
UV  
MGB745  
Fig.3 Video data input timing.  
2004 Jun 29  
12  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
PCLK  
t
su2  
t
h2  
[
]
P 7:0  
pixel 1  
pixel 2  
pixel 3  
pixel 4  
pixel 5  
pixel 6  
pixel 7  
001aaa394  
Fig.4 Pixel data input timing; 8-bit pixel colour key.  
PCLK  
t
t
su3  
su2  
t
t
h3  
h2  
[
]
P 7:0  
pixel 1  
pixel 2  
pixel 3  
001aaa396  
Fig.5 Pixel data input timing; 2 × 8-bit pixel colour key; mode 1.  
2004 Jun 29  
13  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
PCLK  
t
su2  
t
h2  
[
]
P 7:0  
pixel 1  
pixel 2  
pixel 3  
001aaa397  
Fig.6 Pixel data input timing; 2 × 8-bit pixel colour key; mode 2.  
PCLK  
t
su2  
t
h2  
[
]
P 7:0  
pixel 1  
pixel 2  
001aaa398  
Fig.7 Pixel data input timing; 3 × 8-bit pixel colour key.  
2004 Jun 29  
14  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
VCLK  
T
group  
YUV and UV  
(full-scale transition)  
t
s
t
PD  
R_OUT, G_OUT, B_OUT  
t , t  
r
001aaa399  
f
Fig.8 DAC output timing.  
APPLICATION INFORMATION  
digital YUV video data inputs  
8
C_REF(H)  
38 to 45  
36  
[
]
YUV 7:0  
0.1 µF  
8
46 to 48,  
1 to 5  
[
]
UV 7:0  
to PC monitor  
analog inputs from VGA  
47 Ω  
R_IN  
R_OUT  
33  
32  
75 Ω  
75 Ω  
75 Ω  
SAA7167AH  
47 Ω  
47 Ω  
G_IN  
B_IN  
G_OUT  
B_OUT  
31  
29  
30  
28  
75 Ω  
75 Ω  
75 Ω  
001aaa393  
cable  
monitor side  
Fig.9 Typical application diagram for analog circuits.  
15  
2004 Jun 29  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
PACKAGE OUTLINE  
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm  
SOT313-2  
c
y
X
36  
25  
A
E
37  
24  
Z
E
e
H
E
A
2
A
(A )  
3
A
1
w
p
M
θ
pin 1 index  
b
L
p
L
13  
48  
detail X  
1
12  
Z
v
M
M
D
A
e
w
M
b
p
D
B
H
v
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.20 1.45  
0.05 1.35  
0.27 0.18 7.1  
0.17 0.12 6.9  
7.1  
6.9  
9.15 9.15  
8.85 8.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
1.6  
mm  
0.25  
0.5  
1
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
03-02-25  
SOT313-2  
136E05  
MS-026  
2004 Jun 29  
16  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
SOLDERING  
To overcome these problems the double-wave soldering  
method was specifically developed.  
Introduction to soldering surface mount packages  
If wave soldering is used the following conditions must be  
observed for optimal results:  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Driven by legislation and environmental forces the  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 270 °C depending on solder paste material. The  
top-surface temperature of the packages should  
preferably be kept:  
Typical dwell time of the leads in the wave ranges from  
3 to 4 seconds at 250 °C or 265 °C, depending on solder  
material applied, SnPb or Pb-free respectively.  
below 225 °C (SnPb process) or below 245 °C (Pb-free  
process)  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
– for all BGA, HTSSON-T and SSOP-T packages  
Manual soldering  
– for packages with a thickness 2.5 mm  
– for packages with a thickness < 2.5 mm and a  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
volume 350 mm3 so called thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free  
process) for packages with a thickness < 2.5 mm and a  
volume < 350 mm3 so called small/thin packages.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Moisture sensitivity precautions, as indicated on packing,  
must be respected at all times.  
Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
2004 Jun 29  
17  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE(1)  
WAVE  
not suitable  
REFLOW(2)  
BGA, HTSSON..T(3), LBGA, LFBGA, SQFP, SSOP..T(3), TFBGA,  
USON, VFBGA  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON,  
HTQFP, HTSSOP, HVQFN, HVSON, SMS  
PLCC(5), SO, SOJ  
not suitable(4)  
suitable  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(5)(6) suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L(8), PMFP(9), WQCCN..L(8)  
not recommended(7)  
suitable  
not suitable  
not suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account  
be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature  
exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature  
must be kept as low as possible.  
4. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
5. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
6. Wave soldering is suitable for LQFP, TQFP and QFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
7. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
8. Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted  
on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar  
soldering process. The appropriate soldering profile can be provided on request.  
9. Hot bar or manual soldering is suitable for PMFP packages.  
2004 Jun 29  
18  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2004 Jun 29  
19  
Philips Semiconductors  
Product specification  
YUV-to-RGB digital-to-analog  
converter  
SAA7167AH  
PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
2004 Jun 29  
20  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2004  
SCA76  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R21/02/pp21  
Date of release: 2004 Jun 29  
Document order number: 9397 750 12771  

相关型号:

SAA7167AH/00

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, PLASTIC, SOT-313-2, LQFP-48, Consumer IC:Other
NXP

SAA7167AHB

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, PLASTIC, SOT-313-2, LQFP-48, Consumer IC:Other
NXP

SAA7167AHB-S

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, PLASTIC, SOT-313-2, LQFP-48, Consumer IC:Other
NXP

SAA7167H/00

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, PLASTIC, SOT-313-2, LQFP-48, Consumer IC:Other
NXP

SAA7174

Analog TV video and stereo decoder for computing and consumer applications in Europe
NXP

SAA7182

Digital Video Encoder EURO-DENC
NXP

SAA7182A

Digital Video Encoder EURO-DENC2
NXP

SAA7182AGP

IC COLOR SIGNAL ENCODER, PQFP80, 14 X 20 MM, 2.80 MM HEIGHT, PLASTIC, SOT-318-2, QFP-80, Color Signal Converter
NXP

SAA7182AGP-T

暂无描述
NXP

SAA7182AWP

Digital Video Encoder EURO-DENC2
NXP

SAA7182AWP-T

IC COLOR SIGNAL ENCODER, PQCC84, PLASTIC, SOT-189-2, LCC-84, Color Signal Converter
NXP

SAA7182BH/00

IC COLOR SIGNAL ENCODER, PQCC84, PLASTIC, SOT-189-2, LCC-84, Color Signal Converter
NXP