SAA8200HL [NXP]

Ensation Base integrated wireless audio baseband; Ensation基地集成无线音频基带处理
SAA8200HL
型号: SAA8200HL
厂家: NXP    NXP
描述:

Ensation Base integrated wireless audio baseband
Ensation基地集成无线音频基带处理

商用集成电路 无线
文件: 总71页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SAA8200HL  
Ensation Base integrated wireless audio baseband  
Rev. 02 — 17 October 2005  
Preliminary data sheet  
1. General description  
The Ensation Base, SAA8200HL, is part of the integrated wireless audio system chip set  
offered by Philips. This chip set enables the development of low cost wireless digital audio  
systems. The chip set contains:  
An integrated wireless audio baseband chip (SAA8200HL)  
An integrated wireless audio radio chip (TEA7000).  
RF  
RF  
CHIP  
CHIP  
TEA7000  
TEA7000  
analog  
analog  
audio/voice SPDIF  
in/out  
audio/voice  
in/out  
BASEBAND  
CHIP  
BASEBAND  
CHIP  
2
2
I S-bus  
I S-bus  
SAA8200  
SAA8200  
2
2
I C-bus  
I C-bus  
data in/out  
data in/out  
GPIO  
GPIO  
peripherals/UI  
peripherals/UI  
001aab062  
Fig 1. Ensation Link system example using two integrated wireless audio baseband and  
radio ICs  
Integrating a wireless audio link in a home theatre system to remove part of the wiring is a  
logical application of wireless audio transmission. A very important property of this  
wireless audio system is the low end-to-end (audio-in at transmit side to audio-out at  
receive side) system latency, which is below 20 ms.  
A second important property is the robustness and reliability of the wireless audio link, the  
SAA8200HL which is handling the signal processing and the system control enables this.  
Furthermore, the SAA8200HL provides the flexibility to allow designers to make trade-offs  
between air bit-rate, number of transported audio channels, audio formats, audio coding  
bit-rates, range, number of receiving-slaves and more.  
Due to its low power consuming design, the SAA8200HL enables battery powered  
applications. The SAA8200HL does this all with a minimum of external components due to  
its high level of integration.  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Together with the TEA7000, the SAA8200HL can be used to implement an indoor wireless  
link for audio applications (system specific). Together with an AV-compliant Bluetooth  
radio module, the SAA8200HL can be used to implement a Bluetooth wireless audio  
functionality.  
The SAA8200HL enables a low power, low cost two-chip solution with a maximum amount  
of functions integrated on the SAA8200HL, taking into account strict time-to-market  
constraints.  
2. Features  
2.1 General  
Programmable baseband processor and system controller for cable replacement  
wireless audio  
Supports various audio compression formats  
Wireless audio protocol can make trade-off between quality, number of channels,  
bandwidth and range  
Supports various transmission frequencies  
High integration allows for two-chip applications  
Embedded ROM with wireless audio software library.  
2.2 Hardware  
Audio PLL and system PLL  
Read-Solomon encoder and decoder  
SPDIF interface  
Low cost low power EPICS7B DSP core with hardware debugger and JTAG interface  
Integrated memories:  
24/6 kWords program ROM/RAM (bit width: 32 bits)  
12 kWords X data RAM (bit width: 24 bits)  
12/2 kWords Y data ROM/RAM (bit width: 12 bits).  
Interrupt controller  
DMA controller  
Oscillator and time base unit with programmable clocks  
Embedded LDO regulators and DC-to-DC converters for on-chip and off-chip supply  
voltage needs  
Power control unit  
Power on and power off switching with battery supply  
Reed-Solomon codec unit  
Serial radio interface unit  
High speed UART  
General purpose digital I/O block with 14 inputs, all of which generate interrupts  
I2C-bus master/slave  
I2C-bus for radio chip control  
Control 10-bit ADC with four inputs  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
2 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Two serial (I2S-bus/Japanese) digital audio inputs with independent clocks and  
word-select  
Two serial (I2S-bus/Japanese) digital audio outputs with shared clock and word-select  
Integrated 16-bit stereo DAC (line output)  
Integrated stereo headphone amplifier  
Programmable Gain Amplifier (PGA) (line input)  
Low noise microphone amplifier (microphone input)  
Integrated 16-bit stereo ADC  
Watchdog timer.  
2.3 Software  
Stereo Sub Band Coding (SBC) encoder/decoder  
Stereo MPEG layer 3 (MP3) decoder  
Reed-Solomon encoder/decoder driver  
Sample rate converter  
I2C-bus master/slave driver  
Serial radio interface driver  
RF radio chip driver  
UART driver  
Control 10-bit ADC driver  
Power consumption management  
ADC, DAC and headphone driver  
Wireless audio protocol library.  
3. Applications  
Wireless front speakers or wireless surround speakers for home theatre  
Wireless indoor headphones  
Wireless second room audio sets  
Wireless headsets.  
4. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
SAA8200HL  
LQFP100  
plastic low profile quad flat package; 100 leads;  
SOT407-1  
body 14 × 14 × 1.4 mm  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
3 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
5. Block diagram  
64  
JTAG_TDI  
65  
JTAG_TMS  
JTAG_TDO  
JTAG_TCK  
JTAG_TRST_N  
HARDWARE  
DEBUGGER  
66  
67  
68  
JTAG  
AUDIO CONFIGURATION  
29  
SPDIF_IN  
SPDIF  
I2SIN_1  
I2SIN_2  
I2SOUT_2  
MEMORIES  
72  
73  
74  
2
3
I2SIN_1_DATA  
I2SIN_1_WS  
I2SIN_1_BCK  
IIC_MS_SCL  
IIC_MS_SDA  
SYSTEM I2C  
RSC  
84  
87  
7
I2SIN_2_DATA  
I2SIN_2_WS  
I2SIN_2_BCK  
94  
95  
96  
97  
98  
99  
SRI_FSYNC_P  
SRI_FSYNC_N  
SRI_GCHCLK_P  
SRI_GCHCLK_N  
SRI_DATA_P  
78  
I2SOUT_2_DATA  
76,  
77  
SRI  
I2SOUT_WS,  
I2SOUT_BCK  
2
SRI_DATA_N  
79  
I2SOUT_1_DATA  
I2SOUT_1  
EPICS7B  
100  
1
IIC_SRI_SCL  
IIC_SRI_SDA  
SRI I2C  
TIMESTAMP  
COUNTER  
39  
40  
41  
42  
ADC10B_GPA0  
ADC10B_GPA1  
ADC10B_GPA2  
ADC10B_GPA3  
CONTROL  
ADC  
14  
15  
DAC_OUTL  
DAC_OUTR  
AUDIO DAC  
WATCHDOG  
16  
20  
HP_OUTL  
HP_OUTR  
HEADPHONE  
AMPLIFIER  
EVENT  
ROUTER  
23  
24  
25  
ADC_INR  
ADC_INL  
PGA  
LNA  
AUDIO ADC  
AUDIO PLL  
80  
81  
82  
83  
ADC_MIC_PGA  
UART_NRTS  
UART_NCTS  
UART_RXS  
UART_TXS  
26  
27  
UART  
ADC_MIC_LNA  
ADC_MIC_IN  
80  
81  
82  
83  
7
GPIO_04  
GPIO_05  
GPIO_06  
GPIO_07  
GPIO_10  
GPIO_11/SRI_INT  
GPIO_12  
GPIO_13  
GPIO_03  
GPIO_02/MODE_1  
GPIO_01/MODE_0  
GPIO_00  
GPIO_08  
GPIO_09  
CGU  
SYSTEM PLL  
8
9
71  
75  
92  
91  
CLK_OUT1  
CLK_OUT2  
XTALH_IN  
IO  
CONFIG-  
URATION  
10  
47  
48  
49  
50  
84  
87  
CRYSTAL  
OSCILLATOR  
XTALH_OUT  
3.3 V/1.8 V SUPPLY  
DC/DC  
CONVERTOR  
4
55  
63  
SAA8200HL  
RSTIN_N  
V
V
BAT(DCDC)  
USB(DCDC)  
001aab054  
Pins 7, 80 to 84 and 87 are multiplexed functions pins.  
Fig 2. Block diagram  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
4 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
6. Pinning information  
6.1 Pinning  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
IIC_SRI_SDA  
IIC_MS_SCL  
IIC_MS_SDA  
RSTIN_N  
CLK_OUT2  
2
I2SIN_1_BCK  
I2SIN_1_WS  
I2SIN_1_DATA  
CLK_OUT1  
3
4
5
V
SSI1  
DDI1  
6
V
V
DDE1  
V
SSE1  
7
GPIO_10/I2SIN_2_BCK  
GPIO_11/SRI_INT  
GPIO_12  
8
JTAG_TRST_N  
JTAG_TCK  
JTAG_TDO  
JTAG_TMS  
JTAG_TDI  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
GPIO_13  
DAC_REFN  
DAC_REFP  
V
SAA8200HL  
V
DDA(3V3_DAC)  
USB(DCDC)  
DAC_OUTL  
DAC_OUTR  
HP_OUTL  
DCDC_OUT3V3  
DCDC_LX1  
V
SS12(DCDC)  
V
DCDC_LX2  
SSA(HP)  
HP_OUTC  
DCDC_SW  
V
DCDC_IN3V3  
DCDC_OUT1V8  
DDA(3V3_HP)  
HP_OUTR  
HP_COM  
V
V
BAT(DCDC)  
SSA(DCDC)  
V
SSA(ADC)  
ADC_INR  
ADC_INL  
DCDC_PLAY  
52 DCDC_STOP  
51  
ADC_MIC_PGA  
DCDC_DOWNSEL  
001aab020  
Fig 3. Pin configuration  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
5 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
6.2 Pin description  
Table 2:  
Symbol  
Pin description  
Pin Special[1] Type  
Description  
Digital supply voltage pins  
VSSI1  
5
VSSI  
core ground  
VDDI1  
6
VDDI  
core supply voltage  
core ground  
VSSE1  
69  
70  
88  
89  
45  
46  
85  
86  
VSSE3V3  
VDDE3V3  
VSSE3V3  
VDDE3V3  
VDDCO  
VSSCO  
VDDCO  
VSSCO  
VDDE1  
core supply voltage  
core ground  
VSSE2  
VDDE2  
core supply voltage  
core supply voltage  
core ground  
VDDI2  
VSSI2  
VDDI3  
core supply voltage  
core ground  
VSSI3  
DC-to-DC converter  
VUSB(DCDC)  
63  
A
VDDCO  
USB supply voltage (linear  
regulator)  
DCDC_OUT3V3  
DCDC_LX1  
62  
61  
60  
A
A
A
VDDCO  
VDDCO  
VSSCO  
3.3 V output voltage  
coil connection for 3.3 V converter  
VSSI2(DCDC)  
ground for switches 1.8 V and 3.3  
V converter  
DCDC_LX2  
DCDC_SW  
59  
58  
57  
56  
55  
54  
A
A
A
A
A
A
VDDCO  
VDDCO  
VDDCO  
VDDCO  
VDDCO  
VSSCO  
coil connection for 1.8 V converter  
switch node  
DCDC_IN3V3  
DCDC_OUT1V8  
VBAT(DCDC)  
3.3 V input voltage  
1.8 V output voltage  
battery supply voltage  
VSSA(DCDC)  
ground double bonded clean and  
substrate  
DCDC_PLAY  
DCDC_STOP  
DCDC_DOWNSEL  
Crystal oscillator  
VSSA(XTALH)  
53  
52  
51  
A
A
A
APIO  
APIO  
APIO  
play button signal  
stop button signal  
one ore two battery selection  
90  
91  
92  
93  
VSSCO  
APIO  
analog ground  
XTALH_OUT  
XTALH_IN  
11.025 MHz clock output  
11.025 MHz clock input  
analog supply voltage  
APIO  
VDDA(1V8_XTALH)  
PLL  
VDDA(1V8_PLL)  
VSSA(PLL)  
VDDCO  
38  
37  
VDDCO  
VSSCO  
analog supply voltage  
analog ground  
Serial radio interface  
SRI_FSYNC_P  
SRI_FSYNC_N  
SRI_GCHCLK_P  
94  
95  
96  
A
A
A
APIO  
APIO  
APIO  
frame sync positive  
frame sync negative  
gated channel clock positive  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
6 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 2:  
Symbol  
Pin description …continued  
Pin Special[1] Type  
Description  
SRI_GCHCLK_N  
97  
98  
99  
A
A
A
APIO  
APIO  
APIO  
gated channel clock negative  
data positive  
SRI_DATA_P  
SRI_DATA_N  
data negative  
Serial radio interface I2C-bus  
IIC_SRI_SCL  
IIC_SRI_SDA  
Audio ADC  
ADC_COM  
ADC_REFP  
ADC_REFN  
ADC_REF  
100  
1
IIC400KT5V  
IIC400KT5V  
clock input  
data input or output  
36  
35  
34  
33  
31  
32  
22  
23  
24  
25  
26  
27  
A
A
A
A
A
A
A
A
A
A
A
A
APIO  
common mode reference voltage  
positive reference voltage  
negative reference voltage  
reference voltage  
APIO  
APIO  
APIO  
VDDA(3V3_ADC)  
VDDA(1V8_ADC)  
VSSA(ADC)  
VDDCO  
VDDCO  
VSSCO  
APIO  
analog supply voltage (3.3 V)  
analog supply voltage (1.8 V)  
analog ground  
ADC_INR  
right input voltage  
ADC_INL  
APIO  
left input voltage  
ADC_MIC_PGA  
ADC_MIC_LNA  
ADC_MIC_IN  
Audio DAC  
DAC_REFN  
DAC_REFP  
VDDA(3V3_DAC)  
DAC_OUTL  
DAC_OUTR  
Headphone  
HP_COM  
APIO  
PGA input for AC coupling  
LNA output for AC coupling  
microphone input  
APIO  
APIO  
11  
12  
13  
14  
15  
A
A
A
A
A
APIO  
negative reference voltage  
positive reference voltage  
analog supply voltage  
left line output voltage  
right line output voltage  
APIO  
VDDCO  
APIO  
APIO  
21  
20  
19  
18  
17  
16  
A
A
A
A
A
A
APIO  
common mode reference voltage  
right output voltage  
HP_OUTR  
APIO  
VDDA(3V3_HP)  
HP_OUTC  
VDDCO  
APIO  
analog supply voltage  
common output voltage  
analog ground  
VSSA(HP)  
VSSCO  
APIO  
HP_OUTL  
left output voltage  
SPDIF  
VDDA(3V3_SPDIF)  
SPDIF_IN  
30  
29  
28  
A
A
A
VDDCO  
APIO  
analog supply voltage  
input voltage  
VSSA(SPDIF)  
I2S-bus input  
I2SIN_1_DATA  
I2SIN_1_WS  
I2SIN_1_BCK  
VSSCO  
analog ground  
72  
I
IPTHT5V  
serial data channel 1  
73 I/O  
74 I/O  
BPTS10THT5V word select channel 1  
BPTS10THT5V bit clock channel 1  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
7 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 2:  
Symbol  
Pin description …continued  
Pin Special[1] Type  
Description  
GPIO_10/I2SIN_2_BCK  
7
I/O  
BPTS10THT5V general purpose IO/I2S-bus input  
bit clock channel 2  
GPIO_09/I2SIN_2_WS  
87 I/O  
BPTS10THT5V general purpose IO/I2S-bus input  
word select channel 1  
GPIO_08/I2SIN_2_DATA 84 I/O  
BPTS10THT5V general purpose IO/I2S-bus input  
serial data channel 2  
I2S-bus output  
I2SOUT_WS  
76 I/O  
77 I/O  
BPTS10THT5V word select  
BPTS10THT5V bit clock  
I2SOUT_BCK  
I2SOUT_2_DATA  
I2SOUT_1_DATA  
Control ADC  
VSSA(ADC10B)  
78  
79  
O
O
OTS10CT5V  
OTS10CT5V  
serial data channel 2  
serial data channel 1  
44  
43  
42  
41  
40  
39  
A
A
A
A
A
A
VSSCO  
VDDCO  
APIO  
analog ground  
VDDA(3V3_ADC10B)  
ADC10B_GPA3  
ADC10B_GPA2  
ADC10B_GPA1  
ADC10B_GPA0  
GPIO  
analog supply voltage  
analog general purpose input 3  
analog general purpose input 2  
analog general purpose input 1  
analog general purpose input 0  
APIO  
APIO  
APIO  
GPIO_13  
10 I/O  
BPTS10THT5V general purpose IO  
BPTS10THT5V general purpose IO  
GPIO_12  
9
8
7
I/O  
I/O  
I/O  
GPIO_11/SRI_INT  
GPIO_10/I2SIN_2_BCK  
<tbd>  
general purpose IO  
BPTS10THT5V general purpose IO/I2S-bus input  
bit clock channel 2  
GPIO_09/I2SIN_2_WS  
87 I/O  
BPTS10THT5V general purpose IO/I2S-bus input  
word select channel 1  
GPIO_08/I2SIN_2_DATA 84 I/O  
BPTS10THT5V general purpose IO/I2S-bus input  
serial data channel 2  
GPIO_07/UART_TXS  
GPIO_06/UART_RXS  
GPIO_05/UART_NCTS  
GPIO_04/UART_NRTS  
GPIO_03  
83 I/O  
82 I/O  
81 I/O  
80 I/O  
47 I/O  
48 I/O  
BPTS10THT5V general purpose IO  
BPTS10THT5V general purpose IO  
BPTS10THT5V general purpose IO  
BPTS10THT5V general purpose IO  
BPTS10THT5V general purpose IO  
GPIO_02/MODE_1  
BPTS10THT5V general purpose IO/boot-up mode  
selection pin 1  
GPIO_01/MODE_0  
49 I/O  
50 I/O  
BPTS10THT5V general purpose IO/boot-up mode  
selection pin 0  
GPIO_00  
BPTS10THT5V general purpose IO  
System I2C-bus  
IIC_MS_SCL  
IIC_MS_SDA  
Other  
2
3
IIC400KT5V  
IIC400KT5V  
clock input or output  
data input or output  
CLK_OUT2  
75  
O
OTS10CT5V  
clock output 2  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
8 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 2:  
Symbol  
Pin description …continued  
Pin Special[1] Type  
Description  
CLK_OUT1  
71  
4
O
I
OTS10CT5V  
IPTHU5V  
clock output 1  
system reset input  
RSTIN_N  
JTAG  
JTAG_TRST_N  
JTAG_TCK  
JTAG_TDI  
JTAG_TMS  
JTAG_TDO  
68  
67  
64  
65  
66  
I
IPTHDT5V  
IPTHDT5V  
IPTHDT5V  
IPTHDT5V  
OTS10CT5V  
reset input  
I
clock input  
I
data input  
I
mode select input  
data output  
O
[1] A = analog.  
I = input.  
O = output.  
Table 3:  
Cell types description  
Definition  
Cell name  
IPTHT5V  
input pad; push pull; TTL with hysteresis; 5 V tolerant  
IPTHU5V  
IPTHDT5V  
OTS10CT5V  
input pad; push pull; TTL with hysteresis; pull-up; 5 V tolerant  
input pad; push pull; TTL with hysteresis; pull-down; 5 V tolerant  
output pad; 3-state; 10 ns slew rate control; 5 V tolerant  
BPTS10THT5V bi-directional pad; plain input; 3-state output; 10 ns slew rate control; TTL with  
hysteresis; 5 V tolerant  
IIC400KT5V  
APIO  
I2C-bus pad; 400 kHz I2C-bus specification; 5 V tolerant  
analog pad; analog input/output  
VDDI  
VDD pad connected to core VDD and internal VDD supply voltage rail in I/O ring  
VDD pad connected to core VDD  
VDDCO  
VDDE3V3  
VSSCO  
VSSE3V3  
VSSI  
VDD pad connected to external 3.3 V VDD supply voltage rail  
VSS pad connected to core VSS  
VSS pad connected to external 3.3 V VSS supply voltage rail  
VSS pad connected to core VSS; internal VSS supply voltage rail in I/O ring and  
substrate rail in I/O ring  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
9 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7. Functional description  
7.1 EPICS7B  
The EPICS7B core has only access to four of the five memory spaces, PMEM, XMEM,  
YMEM and DIO. Memory space IO is only accessible via the DMA. To distinguish between  
the memory spaces, 18-bit addressing is used, of which the two Most Significant (MS) bits  
determine which space the address is in, see Table 4. The EPICS7B only knows about the  
16 least significant bits and uses special instructions to access DIO space.  
EPICS7B access:  
XMEM is accessed by EPICS7B when using X in its instructions  
YMEM is accessed by EPICS7B when using Y in its instructions  
PMEM is accessed by EPICS7B when it is fetching instructions  
DIO is accessed by EPICS7B when using D in its instructions.  
All 18 bits are used when accessing memory via DMA.  
Table 4:  
Memory spaces  
Two MS bits  
Memory space  
XMEM  
00  
01  
10  
11  
YMEM  
PMEM  
DIO or IO  
The memory map of the system is described in Table 5 and Figure 4.  
Table 5:  
Address  
IO  
Memory map  
Type  
Words  
64  
Bits  
0x[3]FFFF  
0x[3]FFFE  
DSP control register  
32  
32  
32  
EPICS7B instruction register  
0x[3]FFC0 to 0x[3]FFFD user defined  
DIO  
64  
0x[3]FF00 to 0x[3]FF3F DIO registers  
PMEM  
24  
0x[2]8000 to 0x[2]97FF PRAM  
0x[2]0000 to 0x[2]5FFF PROM[1]  
0x[2]0000 to 0x[2]00FF BIOSROM[1]  
YMEM  
6144  
24576  
0x[1]8000 to 0x[1]87FF YRAM  
0x[1]0000 to 0x[1]2FFF YROM  
XMEM  
2048  
12288  
0x[0]FFC0 to 0x[0]FFFF memory mapped registers  
0x[0]0000 to 0x[0]2FFF XRAM  
12288  
[1] DSP control register bit 0 is selecting PROM or BIOSROM.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
10 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
[ ]  
0x 3 FFFF  
DSP control register  
EPICS instruction register  
user defined  
[ ]  
0x 3 FFFE  
[ ]  
0x 3 FFFD  
[ ]  
0x 3 FFC0  
[ ]  
0x 3 FFBF  
IO and DIO  
not used  
[ ]  
0x 3 FF40  
[ ]  
0x 3 FF3F  
DIO register  
not used  
[ ]  
0x 3 FF00  
[ ]  
0x 3 FEFF  
[ ]  
0x 3 0000  
[ ]  
0x 2 FFFF  
not used  
PRAM  
[ ]  
0x 2 9800  
[ ]  
0x 2 97FF  
[ ]  
0x 2 8000  
[ ]  
0x 2 7FFF  
PMEM  
not used  
[ ]  
0x 2 6000  
[ ]  
0x 2 5FFF  
PROM  
[ ]  
0x 2 0100  
[ ]  
0x 2 00FF  
PROM or BIOSROM  
[ ]  
0x 2 0000  
[ ]  
0x 1 FFFF  
not used  
[ ]  
0x 1 8800  
[ ]  
0x 1 87FF  
YRAM  
[ ]  
0x 1 8000  
YMEM  
[ ]  
0x 1 7FFF  
not used  
[ ]  
0x 1 3000  
[ ]  
0x 1 2FFF  
YROM  
[ ]  
0x 1 0000  
[ ]  
0x 0 FFFF  
memory map  
[ ]  
0x 0 FFC0  
[ ]  
0x 0 FFBF  
not used  
XMEM  
[ ]  
0x 0 3000  
[ ]  
0x 0 2FFF  
XRAM  
[ ]  
0x 0 0000  
001aab383  
Fig 4. Memory map  
The control registers are split in two different spaces. One space is accessible only via  
DMA while the other space is accessible both via DMA and the DSP core. This space is  
therefore X-memory mapped.  
The location and definition of the control registers is described in Table 6.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
11 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 6:  
Control registers description  
Register name  
Address  
R/W  
Description  
Reset  
DSP  
PC  
0x0 FFFF  
0x0 FFFE  
0x0 FFFD  
0x0 FFFC  
0x0 FFFB  
0x0 FFFA  
0x3 FFFF  
0x3 FFFE  
W
W
W
W
W
W
W
W
program counter register  
status register 1  
undefined  
undefined  
undefined  
undefined  
0x00 0000  
0x00 0FFD  
0x00 0000  
0x00 0000  
SR1  
SR2  
status register 2  
RTI_STACK  
IO_DIR  
interrupt stack register  
configuration register 1  
configuration register 2  
control register I/O mapped  
EPICS7B instruction register  
IO_MODE  
CR  
EIR  
Interrupt controller  
INTC_POL  
INTC_MODE  
INTC_MASK  
INTC_STATUS  
INTC_TEST  
INTC_SWCLR  
INTC_SLCT  
DMA controller  
DMAC_IC  
0x0 FFF9  
0x0 FFF8  
0x0 FFF7  
0x0 FFF6  
0x0 FFF5  
0x0 FFF4  
0x0 FFF3  
W
W
W
R
polarity select  
mode select  
mask  
0x03 FFFF  
0x03 FFFF  
0x03 FFFF  
undefined  
0x00 0001  
0x00 0000  
0x00 0000  
status  
W
W
W
test  
software clear  
user flag  
0x0 FFF2  
R
IRQ counter value  
0x00 0000  
The interrupts and connection order are described in Table 7.  
Table 7:  
Interrupt flags  
Interrupt flag Symbol  
Description  
0
FI_DMAC  
DMAC interrupt  
1
FI_SRI_DMA_RX_RDY SRI RX DMA block transfer interrupt  
2
FI_FLSTART  
FSL start interrupt  
3
FI_EVENTROUTER  
event router interrupt  
4
FI_SRI_DMA_TX_RDY SRI TX DMA block transfer interrupt  
5
FI_I2SIN_1  
I2S-bus input 1 interrupt  
I2S-bus input 2 interrupt  
SPDIF input interrupt  
6
FI_I2SIN_2  
7
FI_SPDIF  
8
FI_ADC  
ADC input interrupt  
9
FI_DACALL  
FI_RSC_ENCRDY  
FI_RSC_DECRDY  
FI_RSC_DMARDY  
FI_VPB0  
I2S-bus and DAC outputs interrupt  
RSC encoder ready interrupt  
RSC decoder ready interrupt  
10  
11  
12  
13  
14  
15  
16  
17  
RSC DMA block transfer ready interrupt  
VPB0 interrupt  
FI_VBP1  
VPB1 interrupt  
FI_UART  
UART interrupt  
I2C-bus M/S DMA block transfer interrupt  
FI_I2C_DMARDY  
FI_FSLFAST  
FSL fast interrupt  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
12 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
The outputs of the ADC, I2S-bus inputs, SPDIF inputs and VPB buses are mapped to the  
inputs of the EPICS7B.  
Table 8:  
DIO input registers  
DIO input register  
Register name Description  
0
I2SIN_1L  
I2SIN_1R  
I2SIN_2L  
I2SIN_2R  
SPDIF L  
I2S-bus input 1 left channel  
1
I2S-bus input 1 right channel  
I2S-bus input 2 left channel  
I2S-bus input 2 right channel  
SPDIF input left channel  
2
3
4
5
SPDIF R  
SPDIF input right channel  
ADC input left channel  
6
ADC_L  
7
ADC_R  
ADC input right channel  
8
VPB0_DI1  
VPB0_DI2  
VPB1_DI  
VPB0 data input 1 (bit 0 to bit 15)  
VPB0 data input 2 (bit 16 to bit 31)  
VPB1 data input (UART)  
9
10  
11  
12  
13  
14  
15  
16  
17  
TS_COUNTER  
I2SIN_1TS  
I2SIN_2TS  
SPDIF_TS  
ADC_TS  
time stamp counter i2sin1  
time stamp counter i2sin2  
time stamp counter spdif  
time stamp counter adc  
time stamp counter i2sout  
I2SOUT_TS  
TS_COUNTER  
The control of the DAC, I2S-bus outputs and VPB buses are mapped to the outputs of the  
EPICS7B.  
Table 9:  
DIO output registers  
DIO output register Register name Description  
0
I2SOUT_1L  
I2SOUT_1R  
I2SOUT_2L  
I2SOUT_2R  
DAC_L  
I2S-bus output 1 left channel  
I2S-bus output 1 right channel  
I2S-bus output 2 left channel  
I2S-bus output 2 right channel  
DAC output left channel  
1
2
3
4
5
DAC_R  
DAC output right channel  
6
not connected  
not connected  
VPB0_DO1  
VPB0_DO2  
VPB0_ADDR  
VPB1_DO  
7
8
VPB0 data output 1 (bit 0 to bit 15)  
VPB0 data output 2 (bit 16 to bit 31)  
VPB0 address  
9
10  
11  
12  
13  
14  
VPB1 data output (UART)  
VPB1 address  
VPB1_ADDR  
not connected  
not connected  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
13 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 9:  
DIO output registers …continued  
DIO output register Register name Description  
15  
16  
17  
not connected  
not connected  
not connected  
7.1.1 User registers  
The user registers are memory mapped control signals used to control integrated wireless  
audio baseband functionality.  
Table 10: User register description  
Register name  
Address  
R/W  
Description  
Reset  
SRI_TX_ADDR  
0x0 FFDE  
W
serial radio interface DMA  
from MEM start address  
0x000 0000  
SRI_TX_BLKSIZE  
SRI_MODE  
0x0 FFDD  
0x0 FFDC  
0x0FFDB  
0x0 FFDA  
0x0 FFD9  
0x0 FFD8  
0x0 FFD7  
W
W
W
W
W
W
W
serial radio interface DMA  
from MEM block size  
0x000 0000  
0x000 0000  
0x000 0000  
0x000 0000  
0x000 0000  
0x000 0000  
0x000 0000  
serial radio interface mode  
control  
SRIM_TSTART  
SRIM_TLINK  
SRIM_TIDLE  
SRIM_DLLEN  
SRIM_ULLEN  
serial radio interface master  
mode start time  
serial radio interface master  
mode sync-link time  
serial radio interface master  
mode idle time  
serial radio interface master  
mode number downlink words  
serial radio interface master  
mode number uplink words  
FSL_MODE  
0x0 FFD6  
0x0 FFD5  
0x0 FFD4  
0x0 FFD3  
0x0 FFD2  
0x0 FFD1  
W
W
W
R
frame sync lock mode control 0x000 0000  
audio PLL direct control 0x000 0000  
audio PLL direct control select 0x000 0000  
SPDIF status 0x000 0000  
frame sync measured period 0x000 0000  
APLL_CONTROL  
APLL_SELECT  
SPDIF_STATUS  
FSY_INPERIOD  
FSY_REFPERIOD  
R
R
frame sync reference  
measured period  
0x000 0000  
FSY_PHASEDIF  
IWAB_BOOTCFG  
0x0 FFD0  
0x0 FFCF  
R
frame sync phase difference 0x000 0000  
W
SAA8200HL boot mode  
configuration  
0x000 0000  
SRI_STATUS  
APLL_ACK  
0x0 FFCE  
0x0 FFCD  
R
R
serial radio interface status  
0x000 0000  
0x000 0000  
audio PLL direct control  
acknowledge  
RSC_STATUS  
RSC_CONTROL  
RSC_ADDR  
0x0 FFCC  
0x0 FFCB  
0x0 FFCA  
R
Reed-Solomon status  
Reed-Solomon control  
0x000 0000  
0x000 0000  
0x000 0000  
W
W
Reed-Solomon DMA start  
address  
RSC_BLKSIZE  
0x0 FFC9  
W
Reed-Solomon DMA block  
size  
0x000 0000  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
14 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 10: User register description …continued  
Register name  
Address  
R/W  
Description  
Reset  
SRI_RX_ADDR  
SRI_RX_BLKSIZE  
APLL_M  
0x0FFC8  
W
serial radio interface DMA to 0x000 0000  
MEM start address  
0x0FFC7  
0x0FFC6  
0x0FFC5  
0x0FFC4  
0x0FFC3  
W
W
W
W
W
serial radio interface DMA to 0x000 0000  
MEM block size  
direct control of audio PLL M 0x000 0000  
value  
APLL_N  
direct control of audio PLL N 0x000 0000  
value  
I2C_ADDR  
master/slave I2C-bus DMA  
memory address  
0x002 8000  
I2C_BLKSIZE  
master/slave I2C-bus DMA  
block size  
0x000 0000  
I2C_CONTROL  
MPI_DEVADDR  
0x0FFC2  
0x0FFC1  
W
W
master/slave I2C-bus control 0x000 0002  
MPI device address 0x000 0048  
7.2 VPB0 bridge  
Section 7.2 specifies the interfaces and function of the VPB0 bridge. The VPB0 bridge  
acts as a bridge between a range of RTG IP blocks using the VPB bus and the EPICS7B  
DIO interface. Two bridges are used one to connect to several slow blocks and an  
additional one specifically for the UART.  
The VPB0 bridge forms the bridge between the EPICS7B and the clock generation unit,  
SRI I2C-bus, watchdog timer, event router, I/O configuration and the audio configuration  
respectively.  
7.2.1 VPB0 bridge address definitions  
Table 11: VPB0 bridge interface description  
Base address Offset  
0x0000  
0x0000  
Key  
Description  
clock generation unit  
SCR_LP0  
switch control register for system PLL clock  
switch control register for audio PLL clock  
switch control register for DC-to-DC converter clock  
switch control register for SPDIF clock  
switch control register for I2SIN_1 bit clock  
switch control register for I2SIN_2 bit clock  
switch control register for I2SOUT bit clock  
switch control register for SRI gated channel clock  
switch control register for CR output 1 clock  
switch control register for CR output 2 clock  
switch control register for SRI reference channel clock  
frequency select side 1 for system PLL clock  
frequency select side 1 for audio PLL clock  
frequency select side 1 for DC-to-DC converter clock  
frequency select side 1 for SPDIF clock  
0x0004  
SCR_HP0  
0x0008  
SCR_DCDC  
0x000C  
0x0010  
SCR_SPDIF  
SCR_I2SIN_1  
SCR_I2SIN_2  
SCR_I2SOUT  
SCR_SRI_GCHCLK  
SCR_CR_CLK_OUT1  
SCR_CR_CLK_OUT2  
SCR_SRI_CHCLK  
FS1_ LP0  
0x0014  
0x0018  
0x001C  
0x0020  
0x0024  
0x0028  
0x002C  
0x0030  
FS1_ HP0  
0x0034  
FS1_ DCDC  
0x0038  
FS1_ SPDIF  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
15 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 11: VPB0 bridge interface description …continued  
Base address Offset  
0x003C  
0x0040  
0x0044  
0x0048  
0x004C  
0x0050  
0x0054  
0x0058  
0x005C  
0x0060  
0x0064  
0x0068  
0x006C  
0x0070  
0x0074  
0x0078  
0x007C  
0x0080  
0x0084  
0x0088  
0x008C  
0x0090  
0x0094  
0x0098  
0x009C  
0x00A0  
0x00A4  
0x00A8  
Key  
Description  
FS1_ I2SIN_1  
frequency select side 1 for I2SIN_1 bit clock  
frequency select side 1 for I2SIN_2 bit clock  
frequency select side 1 for I2SOUT bit clock  
frequency select side 1 for SRI gated channel clock  
frequency select side 1 for CR output 1 clock  
frequency select side 1 for CR output 2 clock  
frequency select side 1 for SRI reference channel clock  
frequency select side 2 for system PLL clock  
frequency select side 2 for audio PLL clock  
frequency select side 2 for DC-to-DC converter clock  
frequency select side 2 for SPDIF clock  
FS1_ I2SIN_2  
FS1_ I2SOUT  
FS1_ SRI_GCHCLK  
FS1_ CR_CLK_OUT1  
FS1_ CR_CLK_OUT2  
FS1_ SRI_CHCLK  
FS2_ LP0  
FS2_ HP0  
FS2_ DCDC  
FS2_ SPDIF  
FS2_ I2SIN_1  
frequency select side 2 for I2SIN_1 bit clock  
frequency select side 2 for I2SIN_2 bit clock  
frequency select side 2 for I2SOUT bit clock  
frequency select side 2 for SRI gated channel clock  
frequency select side 2 for CR output 1 clock  
frequency select side 2 for CR output 2 clock  
frequency select side 2 for SRI reference channel clock  
frequency select status for system PLL clock  
frequency select status for audio PLL clock  
frequency select status for DC-to-DC converter clock  
frequency select status for SPDIF clock  
FS2_ I2SIN_2  
FS2_ I2SOUT  
FS2_ SRI_GCHCLK  
FS2_ CR_CLK_OUT1  
FS2_ CR_CLK_OUT2  
FS2_ SRI_CHCLK  
SSR_ LP0  
SSR_ HP0  
SSR_ DCDC  
SSR_ SPDIF  
SSR_ I2SIN_1  
SSR_ I2SIN_2  
SSR_ I2SOUT  
SSR_ SRI_GCHCLK  
SSR_ CR_CLK_OUT1  
SSR_ CR_CLK_OUT2  
frequency select status for I2SIN_1 bit clock  
frequency select status for I2SIN_2 bit clock  
frequency select status for I2SOUT bit clock  
frequency select status for SRI gated channel clock  
frequency select status for CR output 1 clock  
frequency select status for CR output 2 clock  
frequency select status for SRI reference channel clock  
power control register for system clock  
0x00AC SSR_ SRI_CHCLK  
0x00B0  
0x00B4  
0x00B8  
PCR_SPD_SYSCLK  
PCR_SYSCLK_DIV4  
PCR_UART_UCLK  
power control register for 0.25 × fs system clock  
power control register for UART clock  
0x00BC PCR_VPB1_PCLK  
power control register for VPB1 bus clock  
power control register for UART bus clock  
power control register for DEBOUNCE bus clock  
power control register for CGU bus clock  
0x00C0  
0x00C4  
0x00C8  
PCR_UART_PCLK  
PCR_DEBOUNCE_PCLK  
PCR_CGU_PCLK  
0x00CC PCR_WDOG_PCLK  
power control register for WDOG bus clock  
power control register for control ADC bus clock  
power control register for IO configuration bus clock  
power control register for event router bus clock  
power control register for SRI I2C-bus clock  
0x00D0  
0x00D4  
0x00D8  
PCR_ADC_PCLK  
PCR_IOCONF_PCLK  
PCR_EVENT_ROUTER_PCLK  
0x00DC PCR_SRI_I2C_PCLK  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
16 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 11: VPB0 bridge interface description …continued  
Base address Offset  
0x00E0  
Key  
Description  
PCR_ADC_CLK  
PCR_I2C_MS_PCLK  
PCR_RSC_PCLK  
power control register for control ADC system clock  
power control register for M/S I2C-bus clock  
power control register for RSC bus clock  
0x00E4  
0x00E8  
0x00EC PCR_EXTDMACNTR_PCLK  
power control register for external DMA controller clock  
power control register for DIO2VPB0 bus clock  
power control register for DIO2VPB1 bus clock  
power control register for I2SIN_1 bus clock  
power control register for I2SIN_2 bus clock  
power control register for I2SOUT_1 bus clock  
power control register for I2SOUT_2 bus clock  
power control register for ADSS bus clock  
power control register for audio configuration bus clock  
power control register for SPDIF bus clock  
power control register for SRI bus clock  
0x00F0  
0x00F4  
0x00F8  
PCR_DIO2VPB0 _PCLK  
PCR_DIO2VPB1_PCLK  
PCR_I2SIN_1 _PCLK  
0x00FC PCR_I2SIN_2 _PCLK  
0x0100  
0x0104  
0x0108  
0x010C  
0x0110  
0x0114  
0x0118  
0x011C  
0x0120  
0x0124  
0x0128  
0x012C  
0x030  
PCR_I2SOUT_1 _PCLK  
PCR_I2SOUT_2_PCLK  
PCR_ADSS _PCLK  
PCR_AUDIO_CONFIG _PCLK  
PCR_SPDIF _PCLK  
PCR_SRI _PCLK  
PCR_FRAMESYNCREF  
PCR_CR_I2SIN_2_BCK  
PCR_CR_I2SIN_1_BCK  
PCR_CR_I2SOUT_BCK  
PCR_CR_I2SIN_2_WS  
PCR_CR_I2SIN_1_WS  
PCR_CR_I2SOUT_WS  
PCR_SDAC_NS_CLK  
PCR_SDAC_DSPCLK  
PCR_SADC_DECCLK  
PCR_SADC_SYSCLK  
power control register for SRI frame sync reference  
power control register for I2SIN_2 bit clock  
power control register for I2SIN_1 bit clock  
power control register for I2SOUT bit clock  
power control register for I2SIN_2 word select  
power control register for I2SIN_1 word select  
power control register for I2SOUT word select  
power control register for SDAC new sample  
power control register for SDAC DSP clock  
power control register for SADC decimation filter clock  
power control register for SADC system clock  
0x0134  
0x0138  
0x013C  
0x0140  
0x0144  
0x0148  
0x014C  
0x0150  
0x0154  
0x0158  
0x015C  
0x0160  
0x0164  
0x0168  
0x016C  
0x0170  
0x0174  
0x0178  
0x017C  
0x0180  
PCR_DCDC_CONVERTER_CLK power control register for DC-to-DC converter clock  
PCR_SPDIF_BCK  
power control register for SPDIF bit clock from pad  
power control register for I2SIN_1 bit clock from pad  
power control register for I2SIN_2 bit clock from pad  
power control register for I2SOUT bit clock from pad  
power control register for SRI gated channel clock from pad  
power control register for crystal output 1 from pad  
power control register for crystal output 2 from pad  
power control register for SRI channel clock  
power status register for system clock  
PCR_I2SIN_1_BCK  
PCR_I2SIN_2_BCK  
PCR_I2SOUT_BCK  
PCR_SRI_GCC_SHO  
PCR_CR_CLK_OUT1  
PCR_CR_CLK_OUT2  
PCR_SRI_CHCLK  
PSR_SPD_SYSCLK  
PSR_SYSCLK_DIV4  
PSR_UART_UCLK  
PSR_VPB1_PCLK  
PSR_UART_PCLK  
PSR_DEBOUNCE_PCLK  
PSR_CGU_PCLK  
power status register for 0.25 × fs system clock  
power status register for UART clock  
power status register for VPB1 bus clock  
power status register for UART bus clock  
power status register for DEBOUNCE bus clock  
power status register for CGU bus clock  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
17 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 11: VPB0 bridge interface description …continued  
Base address Offset  
0x0184  
Key  
Description  
PSR_WDOG_PCLK  
PSR_ADC_PCLK  
power status register for WDOG bus clock  
power status register for control ADC bus clock  
power status register for IO configuration bus clock  
power status register for event router bus clock  
power status register for SRI I2C-bus clock  
power status register for control ADC system clock  
power status register for M/S I2C-bus clock  
power status register for RSC bus clock  
0x0188  
0x018C  
PSR_IOCONF_PCLK  
PSR_EVENT_ROUTER_PCLK  
PSR_SRI_I2C_PCLK  
PSR_ADC_CLK  
0x0190  
0x0194  
0x0198  
0x019C  
PSR_I2C_MS_PCLK  
PSR_RSC_PCLK  
0x01A0  
0x01A4  
PSR_EXTDMACNTR_PCLK  
PSR_DIO2VPB0 _PCLK  
power status register for external DMA controller clock  
power status register for DIO2VPB0 bus clock  
power status register for DIO2VPB1 bus clock  
power status register for I2SIN_1 bus clock  
power status register for I2SIN_2 bus clock  
power status register for I2SOUT_1 bus clock  
power status register for I2SOUT_2 bus clock  
power status register for ADSS bus clock  
power status register for audio configuration bus clock  
power status register for SPDIF bus clock  
power status register for SRI bus clock  
0x01A8  
0x01AC PSR_DIO2VPB1_PCLK  
0x01B0  
0x01B4  
0x01B8  
PSR_I2SIN_1 _PCLK  
PSR_I2SIN_2 _PCLK  
PSR_I2SOUT_1 _PCLK  
0x01BC PSR_I2SOUT_2_PCLK  
0x01C0  
0x01C4  
0x01C8  
PSR_ADSS _PCLK  
PSR_AUDIO_CONFIG _PCLK  
PSR_SPDIF _PCLK  
0x01CC PSR_SRI _PCLK  
0x01D0  
0x01D4  
0x01D8  
PSR_FRAMESYNCREF  
power status register for SRI frame sync reference  
power status register for I2SIN_2 bit clock  
power status register for I2SIN_1 bit clock  
power status register for I2SOUT bit clock  
power status register for I2SIN_2 word select  
power status register for I2SIN_1 word select  
power status register for I2SOUT word select  
power status register for SDAC new sample  
power status register for SDAC DSP clock  
power status register for SADC decimation filter clock  
power status register for SADC system clock  
PSR_CR_I2SIN_2_BCK  
PSR_CR_I2SIN_1_BCK  
0x01DC PSR_CR_I2SOUT_BCK  
0x01E0  
0x01E4  
0x01E8  
PSR_CR_I2SIN_2_WS  
PSR_CR_I2SIN_1_WS  
PSR_CR_I2SOUT_WS  
0x01EC PSR_SDAC_NS_CLK  
0x01F0  
0x01F4  
0x01F8  
PSR_SDAC_DSPCLK  
PSR_SADC_DECCLK  
PSR_SADC_SYSCLK  
0x01FC PSR_DCDC_CONVERTER_CLK power status register for DC-to-DC converter clock  
0x0200  
0x0204  
0x0208  
0x020C  
0x0210  
0x0214  
0x0218  
0x021C  
0x0220  
0x0224  
PSR_SPDIF_BCK  
power status register for SPDIF bit clock from pad  
power status register for I2SIN_1 bit clock from pad  
power status register for I2SIN_2 bit clock from pad  
power status register for I2SOUT bit clock from pad  
power status register for SRI gated channel clock from pad  
power status register for crystal output 1 from pad  
power status register for crystal output 2 from pad  
power status register for SRI channel clock  
PSR_I2SIN_1_BCK  
PSR_I2SIN_2_BCK  
PSR_I2SOUT_BCK  
PSR_SRI_GCC_SHO  
PSR_CR_CLK_OUT1  
PSR_CR_CLK_OUT2  
PSR_SRI_CHCLK  
ESR_SPD_SYSCLK  
ESR_SYSCLK_DIV4  
enable fraction divider for system clock  
enable fraction divider for 0.25 × fs system clock  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
18 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 11: VPB0 bridge interface description …continued  
Base address Offset  
0x0228  
0x022C  
0x0230  
0x0234  
0x0238  
0x023C  
0x0240  
0x0244  
0x0248  
0x024C  
0x0250  
0x0254  
0x0258  
0x025C  
0x0260  
0x0264  
0x0268  
0x026C  
0x0270  
0x0274  
0x0278  
0x027C  
0x0280  
0x0284  
0x0288  
0x028C  
0x0290  
0x0294  
0x0298  
0x029C  
0x02A0  
0x02A4  
0x02A8  
Key  
Description  
ESR_UART_UCLK  
enable fraction divider for UART clock  
ESR_VPB1_PCLK  
enable fraction divider for VPB1 bus clock  
enable fraction divider for UART bus clock  
enable fraction divider for DEBOUNCE bus clock  
enable fraction divider for CGU bus clock  
enable fraction divider for WDOG bus clock  
enable fraction divider for control ADC bus clock  
enable fraction divider for IO configuration bus clock  
enable fraction divider for event router bus clock  
enable fraction divider for SRI I2C-bus clock  
enable fraction divider for control ADC system clock  
enable fraction divider for M/S I2C-bus clock  
enable fraction divider for RSC bus clock  
enable fraction divider for external DMA controller clock  
enable fraction divider for DIO2VPB0 bus clock  
enable fraction divider for DIO2VPB1 bus clock  
enable fraction divider for I2SIN_1 bus clock  
enable fraction divider for I2SIN_2 bus clock  
enable fraction divider for I2SOUT_1 bus clock  
enable fraction divider for I2SOUT_2 bus clock  
enable fraction divider for ADSS bus clock  
enable fraction divider for audio configuration bus clock  
enable fraction divider for SPDIF bus clock  
enable fraction divider for SRI bus clock  
ESR_UART_PCLK  
ESR_DEBOUNCE_PCLK  
ESR_CGU_PCLK  
ESR_WDOG_PCLK  
ESR_ADC_PCLK  
ESR_IOCONF_PCLK  
ESR_EVENT_ROUTER_PCLK  
ESR_SRI_I2C_PCLK  
ESR_ADC_CLK  
ESR_I2C_MS_PCLK  
ESR_RSC_PCLK  
ESR_EXTDMACNTR_PCLK  
ESR_DIO2VPB0 _PCLK  
ESR_DIO2VPB1_PCLK  
ESR_I2SIN_1 _PCLK  
ESR_I2SIN_2 _PCLK  
ESR_I2SOUT_1 _PCLK  
ESR_I2SOUT_2_PCLK  
ESR_ADSS _PCLK  
ESR_AUDIO_CONFIG _PCLK  
ESR_SPDIF _PCLK  
ESR_SRI _PCLK  
ESR_FRAMESYNCREF  
ESR_CR_I2SIN_2_BCK  
ESR_CR_I2SIN_1_BCK  
ESR_CR_I2SOUT_BCK  
ESR_CR_I2SIN_2_WS  
ESR_CR_I2SIN_1_WS  
ESR_CR_I2SOUT_WS  
ESR_SDAC_NS_CLK  
ESR_SDAC_DSPCLK  
enable fraction divider for SRI frame sync reference  
enable fraction divider for I2SIN_2 bit clock  
enable fraction divider for I2SIN_1 bit clock  
enable fraction divider for I2SOUT bit clock  
enable fraction divider for I2SIN_2 word select  
enable fraction divider for I2SIN_1 word select  
enable fraction divider for I2SOUT word select  
enable fraction divider for SDAC new sample  
enable fraction divider for SDAC DSP clock  
enable fraction divider for SADC decimation filter clock  
enable fraction divider for SADC system clock  
0x02AC ESR_SADC_DECCLK  
0x02B0  
0x02B4  
ESR_SADC_SYSCLK  
ESR_DCDC_CONVERTER_CLK enable fraction divider for DC-to-DC converter clock  
ESR_SPDIF_BCK  
ESR_I2SIN_1_BCK  
ESR_I2SIN_2_BCK  
ESR_I2SOUT_BCK  
ESR_SRI_GCC_SHO  
no fractional divider supported for this clock  
no fractional divider supported for this clock  
no fractional divider supported for this clock  
no fractional divider supported for this clock  
no fractional divider supported for this clock  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
19 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 11: VPB0 bridge interface description …continued  
Base address Offset  
Key  
Description  
0x02B8  
ESR_CR_CLK_OUT1  
enable fraction divider for crystal output 1 from pad  
enable fraction divider for crystal output 2 from pad  
enable fraction divider for SRI channel clock  
base control register for system PLL clock  
base control register for audio PLL clock  
0x02BC ESR_CR_CLK_OUT2  
0x02C0  
0x02C4  
0x02C8  
0x2CC  
0x2D0  
ESR_SRI_CHCLK  
BCR_LP0  
BCR_HP0  
FDC_SPD_SYSCLK  
FDC_SYSCLK_DIV4  
FDC_UART_UCLK  
FDC_DEBOUNCE_PCLK  
fractional divider control for system clock  
fractional divider control for 0.25 × fs system clock  
fractional divider control for UART clock  
0x02D4  
0x02D8  
fractional divider control for DEBOUNCE bus clock  
fractional divider control for control ADC system clock  
fractional divider control for DIO interface clock  
fractional divider control for audio bus clock  
fractional divider control for SRI frame sync reference  
fractional divider control for I2SIN_2 bit clock  
fractional divider control for I2SIN_1 bit clock  
fractional divider control for I2SOUT bit clock  
fractional divider control for I2S word select  
fractional divider control for SDAC new sample  
fractional divider control for audio system clock  
0x02DC FDC_ADC_CLK  
0x02E0  
0x02E4  
0x02E8  
FDC_DIO_PCLK  
FDC_AUDIO_PCLK  
FDC_FRAMESYNCREF  
0x02EC FDC_CR_I2SIN_2_BCK  
0x02F0  
0x2F4  
FDC_CR_I2SIN_1_BCK  
FDC_CR_I2SOUT_BCK  
FDC_I2S_WS  
0x02F8  
0x02FC FDC_SDAC_NS_CLK  
0x300  
FDC_AUDIO_SYSCLK  
0x0304  
0x0308  
0x030C  
0x0310  
0x0C00  
0x0C04  
0x0C08  
0xC0C  
0x0C10  
0x0C14  
0x0C18  
FDC_DCDC_CONVERTER_CLK fractional divider control for DC-to-DC converter clock  
FDC_CR_CLK_OUT1  
FDC_CR_CLK_OUT2  
FDC_SRI_CHCLK  
CNF_POWERMODE  
CNF_WD_BARK  
reserved  
fractional divider control for crystal output 1 from pad  
fractional divider control for crystal output 2 from pad  
fractional divider control for SRI channel clock  
power-down CGU  
watchdog bark register  
reserved  
OSC_ON  
activate crystal oscillator  
bypass crystal oscillator  
reset for UART  
OSC_BYPASS  
CNF_UART_RST_N  
0x0C1C CNF_I2SIN_1_RST_N  
reset for I2S input 1  
reset for I2S input 2  
reset for I2S output 1  
reset for I2S output 2  
reset for decimation filter  
reset for interpolation filter  
reset for SPDIF  
0x0C20  
0x0C24  
0x0C28  
CNF_I2SIN_2_RST_N  
CNF_I2SOUT_1_RST_N  
CNF_I2SOUT_2_RST_N  
0x0C2C CNF_DEC_RST_N  
0x0C30  
0x0C34  
0xC38  
CNF_INT_RST_N  
CNF_SPDIF_RST_N  
CNF_EPICS7B_RST_N  
reset for EPICS7B  
0x0C3C CNF_DIO2VPB0_RST_N  
reset for VPB0 bridge  
reset for UART VPB bridge  
reset for M/S I2C-bus  
0x0C40  
0x0C44  
CNF_DIO2VPB1_RST_N  
CNF_MS_I2C_RST_N  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
20 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 11: VPB0 bridge interface description …continued  
Base address Offset  
Key  
Description  
0x0C48  
CNF_SRI _RST_N  
reset for serial radio interface  
reset for Reed-Solomon codec  
reset for SRI I2C-bus  
0x0C4C CNF_RSC_RST_N  
0x0C50  
0x0C54  
0x0C58  
CNF_SRI_I2C_RST_N  
CNF_AD10BIT_RST_N  
CNF_FSL_RST_N  
reset for control ADC  
reset for frame sync lock  
reset for gated channel clock  
preset for control ADC  
0x0C5C CNF_GCC_RST_N  
0x0C60  
0x0C64  
0x0C68  
CNF_AD10BIT_PRST_N  
HP0_FIN_SELECT  
HP0_MDEC  
audio clock PLL input select  
audio clock PLL M divider  
audio clock PLL N divider  
audio clock PLL P divider  
audio clock PLL mode  
0x0C6C HP0_NDEC  
0x0C70  
0x0C74  
0x0C78  
HP0_PDEC  
HP0_MODE  
HP0_STATUS  
audio clock PLL status  
0x0C7C HP0_ACK  
audio clock PLL acknowledge  
audio clock PLL change request  
audio clock PLL input bandwidth selection  
audio clock PLL input bandwidth selection  
audio clock PLL input bandwidth selection  
audio clock PLL input bandwidth selection  
audio clock PLL input bandwidth selection  
audio clock PLL input bandwidth selection  
system clock PLL input select  
system clock PLL power-down  
system clock PLL bypass  
system clock PLL in-lock  
system clock PLL direct CCO control  
system clock PLL M divider  
system clock PLL P divider  
SRI I2C-bus  
0x0C80  
0x0C84  
0x0C88  
HP0_REQ  
HP0_INSELR  
HP0_INSELI  
0x0C8C HP0_INSELP  
0x0C90  
0x0C94  
0x0C98  
HP0_SELR  
HP0_SELI  
HP0_SELP  
0x0C9C LP0_FIN_SELECT  
0x0CA0 LP0_PWD  
0x0CA4 LP0_BYPASS  
0x0CA8 LP0_LOCK  
0x0CAC LP0_DIRECT  
0x0CB0 LP0_MSEL  
0x0CB4 LP0_PSEL  
0x1000  
0x0000  
0x0000  
0x0004  
0x0008  
0x000C  
0x0010  
0x0014  
0x0028  
RX  
receive FIFO  
TX  
transmit FIFO  
STS  
status register  
CTL  
control register  
CLKHI  
CLKLO  
ADDR  
TXS  
clock divisor high  
clock divisor low  
I2C-bus address  
slave transmit FIFO  
0x2000  
control ADC  
0x0000  
0x0004  
0x0008  
ADC_R0  
ADC_R1  
ADC_R2  
ADC data channel 0  
ADC data channel 1  
ADC data channel 2  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
21 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 11: VPB0 bridge interface description …continued  
Base address Offset  
0x000C  
0x0010  
0x0014  
0x0018  
0x001C  
0x0020  
0x0024  
0x0028  
0x002C  
0x0030  
0x3000  
0x0000  
0x0004  
0x0008  
0x000C  
0x0010  
0x0014  
0x0018  
0x001C  
0x003C  
0x4000  
0x0804  
0x0808  
0x080C  
0x0810  
0x0814  
0x0818  
0x081C  
0x0820  
0x0824  
0x0828  
0x082C  
0x0830  
0x0834  
0x0838  
0x0C00  
0x0C20  
0x0C40  
0x6000  
0x0000  
0x0010  
Key  
Description  
ADC_R3  
ADC data channel 3  
ADC_R4  
ADC data channel 4  
ADC_R5  
ADC data channel 5  
ADC_R6  
ADC data channel 6  
ADC_R7  
ADC data channel 7  
ADC_CON  
control register  
ADC_CSEL_RES  
ADC_INT_ENABLE  
ADC_INT_STATUS  
ADC_INT_CLEAR  
channel and resolution selection register  
interrupt enable register  
interrupt status register  
interrupt clear register  
watchdog timer  
IR  
interrupt register  
TCR_REG  
TC  
timer control register  
timer counter  
PR_REG  
PC  
pre-scale register  
pre-scale counter  
MCR  
MR0  
match control register  
match register 0  
MR1  
match register 1  
EMR  
external match register  
event router  
DTR_GP_13_IRQ  
DTR_GP_12_IRQ  
DTR_GP_11_IRQ  
DTR_GP_10_IRQ  
DTR_GP_9_IRQ  
DTR_GP_8_IRQ  
DTR_GP_7_IRQ  
DTR_GP_6_IRQ  
DTR_GP_5_IRQ  
DTR_GP_4_IRQ  
DTR_GP_3_IRQ  
DTR_GP_2_IRQ  
DTR_GP_1_IRQ  
DTR_GP_0_IRQ  
PEND  
de-bounce time register for GP_13_IRQ  
de-bounce time register for GP_12_IRQ  
de-bounce time register for GP_11_IRQ  
de-bounce time register for GP_10_IRQ  
de-bounce time register for GP_9_IRQ  
de-bounce time register for GP_8_IRQ  
de-bounce time register for GP_7_IRQ  
de-bounce time register for GP_6_IRQ  
de-bounce time register for GP_5_IRQ  
de-bounce time register for GP_4_IRQ  
de-bounce time register for GP_3_IRQ  
de-bounce time register for GP_2_IRQ  
de-bounce time register for GP_1_IRQ  
de-bounce time register for GP_0_IRQ  
input event pending status  
interrupt clear  
INT_CLR  
INT_SET  
interrupt set  
input/output configuration  
read pin values  
IOC_PINS  
IOC_MODE0  
load mode 0  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
22 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 11: VPB0 bridge interface description …continued  
Base address Offset  
0x0014  
0x0018  
0x0020  
0x0024  
0x0028  
0x7000  
0x0000  
0x0004  
0x0008  
0x000C  
0x0010  
0x0014  
0x0018  
0x001C  
0x0020  
0x0024  
0x0028  
0x002C  
0x0030  
0x0034  
0x0038  
0x003C  
0x0040  
0x0044  
Key  
Description  
IOC_MODE0_SET  
IOC_MODE0_RESET  
IOC_MODE1  
set mode 0  
reset mode 0  
load mode 1  
IOC_MODE1_SET  
IOC_MODE1_RESET  
set mode 1  
reset mode 1  
audio configuration  
I2S-bus format settings  
I2S-bus multiplexer settings  
I2S_FORMAT_SETTINGS  
I2S_MUX_SETTINGS  
SPDIF_STATUS  
SPDIF status  
SPDIF_IRQ_EN  
SPDIF interrupt enable  
SPDIF_IRQ_STATUS  
SPDIF_IRQ_CLEAR  
SDAC_CTRL_INTI  
SDAC_CTRL_INTO  
SDAC_SETTINGS  
SADC_CTRL_SDC  
SADC_CTRL_ADC  
SADC_CTRL_DECI  
SADC_CTRL_DECO  
E7B_IRQ  
SPDIF interrupt status  
SPDIF interrupt clear  
audio DAC input interpolation filter control  
audio DAC output interpolation filter control  
audio DAC control  
audio ADC amplifiers control  
audio ADC control  
audio ADC input decimation filter control  
audio ADC output decimation filter control  
EPICS7B interrupt request  
power-down control ADC  
DC-to-DC converter adjust output voltage (1.8 V)  
DC-to-DC converter adjust output voltage (3.3 V)  
DC-to-DC converter clock stable signal  
PD_ADC10B  
SET_DCDC1V8_ADJUST  
SET_DCDC3V3_ADJUST  
DCDC_CLOCKSTABLE  
7.3 Clock generation unit  
The Clock Generation Unit (CGU) generates all clock signals required for the  
SAA8200HL, it contains:  
A crystal oscillator  
For low power mode the internal DC-to-DC converter clock can be used as system  
clock  
An audio PLL to generate audio sample frequencies  
A system PLL to generate the clocks for the VPB bus and the DSP subsystem  
A clock switch block  
A configuration register block  
A reset and power block.  
An 11.2896 MHz oscillator or an external 11.025 MHz clock (provided by the TEA7000)  
can be used in combination with the two PLLs and the external clocks to generate the  
system frequencies.  
All PLLs are programmed with the registers in the register configuration block.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
23 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.3.1 Crystal oscillator  
The crystal oscillator is a 50 MHz Pierce crystal oscillator with amplitude control. It can be  
used in many applications e.g. as a digital reference for digital circuits, A/D and D/A  
clocking, etc. It is a robust design and can be used across a large frequency range.  
Features:  
On-chip biasing resistance  
Amplitude controlled  
Large frequency range: 1 MHz to 20 MHz  
Slave mode  
Power-down mode  
Bypass test mode.  
7.3.2 Audio PLL  
The audio PLL is a multi purpose PLL.  
Features:  
Integrated PLL with on-chip Current Controlled Oscillator (CCO), no external  
components for clock generation  
Input frequency range: 100 kHz to 150 MHz  
CCO output frequency: 275 MHz to 550 MHz  
Output frequency range: 4.3 MHz to 550 MHz  
Programmable pre-divider, feedback-divider and post-divider  
On the fly adjustment of the clock possible  
Positive edge locking  
Frequency limiter to avoid hang-up of the PLL  
Lock detector  
Power-down mode  
Possibility to bypass whole PLL, the post-divider or the pre-divider  
Possibility to disable the output clock  
Skew mode  
Free running mode  
Scan mode  
Maximum peak cycle-to-cycle output jitter = 200 ps.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
24 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.3.3 System PLL  
The DSP-PLL works in normal operating mode with feedback-divider and with  
post-divider, this means that the base for the clock signal is the current controlled  
oscillator (fout = fcco/P), running on 264.6 MHz. The output clock (fout) is divided-by-2 to  
generate a 132.3 MHz clock.  
Features:  
Integrated PLL with on-chip Current Controlled Oscillator (CCO), no external  
components for clock generation  
Functional down to 1.2 V (with reduced frequency range)  
10 MHz to 25 MHz input frequency range  
9.75 MHz to 160 MHz selectable output frequency with 50 % output duty cycle  
156 MHz to 320 MHz CCO frequency range  
Power-down mode  
Input clock bypass mode  
Lock detector available  
Current consumption maximum 1 mA  
Maximum peak cycle-to-cycle output jitter = 300 ps.  
7.4 Serial radio interface  
Features:  
Interface between wireless audio baseband processor and wireless audio radio IC  
Bi-directional 3-wire serial interface  
Can be locked to audio sample frequencies  
Enables end-to-end audio clock synchronization  
Supports master and slave modes  
Supports continuous and high speed repetitive burst mode  
Control of the radio IC is handled via a separate I2C-bus interface  
Designed for minimal interference with the radio chip.  
7.5 SRI I2C-bus  
The I2C-bus master/slave module provides a serial interface that meets the I2C-bus  
specification and supports all transfer modes from and to the I2C-bus. It supports the  
following functionality:  
It supports both the normal mode (100 kHz SCL) and the fast mode (400 kHz SCL)  
It has word (32-bit) access from the CPU side  
Interrupt generation on received or sent byte (and some special cases).  
The purpose of the SRI I2C-bus is to allow the download of program code from an external  
EEPROM at start-up, configuration and monitoring of the radio IC (TEA7000), and  
storage/retrieval of application specific parameters in an external data EEPROM.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
25 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.6 System I2C-bus interface  
A master and slave DMA interface to the EPICS7B sub-system and the means to select  
one or the other are provided. The I2C-bus master/slave module provides a serial  
interface that meets the I2C-bus specification and supports all transfer modes from and to  
the I2C-bus.  
Features:  
Supports both the normal mode (100 kHz SCL) and the fast mode (400 kHz SCL)  
32-bit word access from the CPU side  
Interrupt generation on received or sent byte (and some special cases)  
Four modes of operation:  
master transmitter  
master receiver  
slave transmitter  
slave receiver.  
7.7 Control ADC  
This section describes the multi-channel 10-bit control ADC interface module, a module  
that connects an ADC to a DSP. The ADC interface module can be used for observing  
battery voltage.  
The interface can be divided into two main modules; a 10-bit ADC and an ADC controller.  
The 10-bit ADC is a 10-bit successive approximation ADC. The ADC controller module is  
responsible for the communication between the ADC and DSP.  
Features:  
Four analog input channels, selected by an analog multiplexer  
Programmable ADC resolution from 2-bit to 10-bit  
Single ADC scan mode and continuous ADC scan mode  
Converted digital values are stored in a 2 × 10-bit register  
Power-down mode.  
7.8 Watchdog timer  
Once the watchdog is enabled, it will monitor the programmed time out period and  
generates a reset request when the period expires. In normal operation the watchdog is  
triggered periodically, resetting the watchdog counter and ensuring that no reset is  
generated. In the event of a software or hardware failure preventing the CPU from  
triggering the watchdog, the time out will be exceeded and a reset requested from the  
CGU.  
The interrupt pin of this watchdog timer is not connected to the interrupt controller. Instead  
of this, two pins M0 and M1 are used which will generate events. Pins M0 and M1 will  
generate events when their match register matches the Timer Counter (TC) register.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
26 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
The watchdog timer in the SAA8200HL can be used as follows:  
As watchdog, the M1 output is used for generating an event to the CGU, which  
requests a reset.  
As timer, the M0 output is used for generating an event to the event router, which  
generates an interrupt to the interrupt controller.  
As watchdog and as timer, the value of the MCR0 has to be lower than the value of  
MCR1 (otherwise unwanted resets could be generated by the CGU).  
7.9 Reed-Solomon codec  
The Reed-Solomon codec is an essential part of the baseband IC. It allows redundancy to  
be added to the transmitted bits so that transmission errors can be corrected at the  
receiving end. The Reed-Solomon codec will provide some flexibility to the customer to  
choose packet length. For SBC based applications the Reed-Solomon block length will be  
such that it contains one or two SBC-encoded audio frames.  
The Reed-Solomon codec is a hardware block that makes use of a locally attached  
memory for I/O, work space and temporary storage. The communication between this  
local RAM and the EPICS7B X-memory space will happen via the external DMA  
controller.  
Features:  
8-bit; 1-byte symbols  
256-byte blocks  
16 parity bytes  
No interleaving (for latency reduction)  
Automatic zero insertion (virtual zero padding).  
7.10 Event router  
This module can be used in low power systems to request power-up or start a clock on an  
external or internal event. It can also be used to generate interrupts as a result:  
Provides bus-controlled routing of input events to multiple outputs for use as interrupts  
or wake-up signals  
Input events can be used either directly or latched (edge detected) as an interrupt  
source:  
Direct interrupts will disappear when the event becomes inactive  
Latched interrupts will remain active until they are explicitly cleared.  
Interrupt events can be inverted (programmable)  
Each interrupt can be masked on event level  
Interrupt event detect status can be read per interrupt type  
Interrupt detection is fully asynchronous (no active clock required).  
The event router provides bus control over the interrupt system. The event sources can be  
defined, their polarity and activation type selected, also each input can be routed to any  
output(s) at reset.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
27 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 12: Event router connections overview  
Event  
Input  
0
Name  
Description  
SPDIF_IN  
1
GP_13_IRQ  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
interrupt from general purpose pin  
I2C-bus SRI event interrupt  
2
GP_12_IRQ  
3
GP_11_IRQ  
4
GP_10_IRQ  
5
GP_9_IRQ  
6
GP_8_IRQ  
7
GP_7_IRQ  
8
GP_6_IRQ  
9
GP_5_IRQ  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Output  
0
GP_4_IRQ  
GP_3_IRQ  
GP_2_IRQ  
GP_1_IRQ  
GP_0_IRQ  
I2C_SRI_NINTR  
ADC10B_IRQ  
FSL_START_IRQ  
FSL_FAST_IRQ  
XDMA_I2C_DMARDY  
XDMA_MPIARDY  
SRI_TXFIFO_EMPTYLEVEL  
SRI_RXFIFO_FULLLEVEL  
SRI_TXFIFO_UNDERRUN  
SRI_RXFIFO_OVERRUN  
WDT_NINT  
Control ADC event interrupt  
FrameSyncLock (FSL) start of frame  
FrameSyncLock (FSL) fast interrupt for APLL control  
block transfer I2C-bus MS ready  
block transfer I2C-bus MPI ready  
SRI TXFIFO reached empty level  
SRI RXFIFO reached full level  
exception: TXFIFO underrun occurred  
exception: RXFIFO overrun occurred  
watchdog timer event interrupt  
watchdog time match 0  
WDT_M0  
WDT_M1  
watchdog time match 1  
SRI_ULD_REQ  
SRI  
CASCADED_INTERRUPT_0  
WATCHDOG_CAP0_INT  
CGU_WAKEUP  
EPICS7B interrupt  
1
2
CGU wake-up interrupt  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
28 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.11 SPDIF inputs  
One input is provided, this SPDIF input is fed through a bit slicer which is used to  
re-generate the bitstream signal, allowing for a higher robustness of the link.  
The SPDIF input hardware consists of a series connection of a bit slicer, which is an  
analog module, the SPDIF decoder and a SPDIF input block. This SPDIF input block is  
almost the same as the SPDIF input blocks which are connected to the SPDIF input pads.  
The only difference between the SPDIF input blocks is that the input format of the SPDIF  
input block is fixed in hardware to accept only SPD3 format.  
The SPDIF decoder is running on a dedicated clock, which should lie between 36 MHz  
and 69 MHz. In this clock domain signal SPD3_BCK is generated, which is treated by the  
I2S-bus input block as a bit clock. This bit clock is again routed via the CGU to be able to  
insert the test clock during test mode. The SPDIF input decoder latches it’s output data on  
the negative edge of SPD3_BCK. The I2S-bus input will latch the data on the positive  
edge of the bit clock. This guarantees reliable data transfer even though the clock is  
delayed by the path through the CGU.  
The word select from the SPDIF input decoder is routed to the CGU. This makes it  
possible to lock the audio PLL to the incoming SPDIF stream.  
7.12 I2S-bus  
The supported audio formats for the control modes are:  
I2S-bus  
LSB-justified, 16-bit  
LSB-justified, 18-bit  
LSB-justified, 20-bit  
LSB-justified, 24-bit (only for the output interface).  
The bit clock BCK can be up to 128fs, or in other words the BCK frequency is 128 times  
the WS frequency or less: fBCK 128fWS  
.
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
29 of 71  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
RIGHT  
LEFT  
WS  
1
2
3
> = 8  
1
2
3
> = 8  
BCK  
DATA  
MSB B2  
MSB B2  
MSB  
2
I S-BUS FORMAT  
WS  
RIGHT  
LEFT  
16  
15  
2
1
16  
15  
2
1
BCK  
DATA  
MSB B2  
B15 LSB  
LSB-JUSTIFIED FORMAT 16-BIT  
MSB B2  
B15 LSB  
WS  
LEFT  
RIGHT  
18  
17  
16  
15  
2
1
18  
17  
16  
15  
2
1
BCK  
DATA  
B17 LSB  
B17 LSB  
MSB B2  
B3  
B4  
MSB B2  
B3  
B4  
LSB-JUSTIFIED FORMAT 18-BIT  
WS  
LEFT  
20  
RIGHT  
20  
19  
18  
17  
16  
15  
2
1
19  
18  
17  
16  
15  
2
1
BCK  
DATA  
B19 LSB  
B19 LSB  
MSB B2  
B3  
B4  
B5  
B6  
MSB B2  
B3  
B4  
B5  
B6  
LSB-JUSTIFIED FORMAT 20-BIT  
WS  
LEFT  
RIGHT  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
2
1
BCK  
DATA  
MSB B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9 B10  
B23 LSB  
MSB B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9 B10  
B23 LSB  
001aab453  
LSB-JUSTIFIED FORMAT 24-BIT  
The WS edge must coincide with the negative edge of the BCK at all times for proper operation of the digital I/O data interface.  
Fig 5. Serial interface input and output formats  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.12.1 I2S-bus inputs  
Two I2S-bus inputs are provided, one of the two has dedicated pins, the second is  
multiplexed using pin GPIO8 to GPIO10.  
The I2S-bus inputs can be used in slave and master mode. In slave mode an external  
I2S-bus source generates the bit clock and in master mode the SAA8200HL generates the  
bit clock. In slave mode the bit clock arrives on pad I2SIN_x_BCK and is led to the CGU  
input xt_I2SIN_x_BCK. This input should be switched directly to the CGU output  
I2SIN_x_BCK which delivers the bit clock for the I2S-bus blocks.  
In slave mode the audio PLL needs to lock on the incoming source. This can best be done  
on the bit clock or on the word select. The bit clock is the preferred source because of its  
higher frequency. The audio PLL has problems with locking on frequencies below  
100 kHz. If the ratio between the bit clock and the sample frequency is not known, the  
source word select can be used. The digital audio source will put out the data and the  
word select on the negative edge of the bit clock and these will be sampled by the I2S-bus  
block on the positive edge of the bit clock.  
7.12.2 I2S-bus outputs  
Two I2S-bus outputs are provided, both have dedicated data pins but the word select and  
bit clock for both outputs are shared.  
Depending on the application the source of the audio PLL could have an other input, then  
the fractional dividers should be programmed to account for the difference in clock  
frequency.  
The I2S_OUT can only be used in master mode. For this reason the output enable of the  
I2S_OUT_WS and I2S_OUT_BCK pads is always active in functional mode. The bit clock  
generated by the CGU is inverted with respect to the word select, such that word select  
changes on a negative edge of the bit clock.  
7.13 Time stamp counters  
A time stamp counter has been included to allow the software to get an indication of the  
audio clocks.  
The time stamp counter output is hardwired to seven EPICS7B input registers. Each input  
register will be latched by another strobe signal. These strobe signals are generated by  
the audio interfaces I2SIN, SPDIF, ADC, I2SOUT and DAC. This way each sample of each  
audio source and sink can be labeled with a time stamp. The time stamp increases by one  
every DSP clock tick, and will wrap-round at value (224 1).  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
31 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.14 DMA controller  
The purpose of the external DMA controller block is to share the external DMA channel of  
the EPICS7B DSP sub system between a number of external peripherals: the serial radio  
interface, the Reed-Solomon codec, the I2C-bus M/S and MPI. The controller needs to  
arbitrate between those blocks.  
Features:  
Interface between external DMA hardware blocks and the EPICS7B DSP subsystem  
Allows hardware blocks to read/write directly to X-, Y-, P-memory and to internal DSP  
registers.  
Supports single word memory access and memory block transfers of programmable  
length.  
Signals block transfer ready per requesting hardware device  
Arbiter priority schedule between four requesting sources (SRI, I2C-bus M/S, RSC  
and MPI).  
Each requesting hardware block has its own start address and block transfer size  
register  
Dispatches acknowledges and keeps track of progress of each block transfer  
Signals block transfer ready per requesting hardware device.  
7.15 I/O configuration  
The input/output configuration (IOCONF) is designed to provide developers a set of  
registers. This can be used for configuration of various on chip components especially a  
pad multiplexer.  
The IOCONF block is used to provide individual control and visibility for a set of pads. In  
conjunction with a set of pad multiplexers, individual pads can be switched either in  
normal operation mode, or in GPIO mode. In GPIO mode, a pad is fully controllable.  
Through the IOCONF, individual pad levels can be observed in both normal and GPIO  
modes.  
Functional pads can be grouped into function blocks.  
All output values in a function block can be set simultaneously by accessing a single  
register. Changing modes for all pads within a function block requires at most two register  
access. All input values in a function block can be read simultaneously by accessing a  
single register. Input values are not registered and always read directly from the pad’s  
input driver regardless of the mode of the pad.  
For each function block there are two registers holding the control mode. MODE bit 1  
leaves the IOCONF inverted as it is intended to be used as inverted (output-) enable.  
Each register can be written and read, has configurable pad names per bit (maximum 32)  
and provides set and clear access methods (SET/CLEAR bit when ‘1’), and configurable  
reset value. Configurable pad names are provided in order to enhance readability and  
consistency of both HDL and generated C header file.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
32 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 13: Mode settings  
MODE[1:0]  
Pin multiplexer mode  
GPIO; high-impedance  
normal operation; controlled by subsystem  
GPIO drive LOW  
00  
01  
10  
11  
GPIO drive HIGH  
7.16 VPB1 bridge  
This section describes the interfaces and function of the VPB1 bridge. The VPB1 bridge  
acts as a bridge between the UART and the EPICS7B DIO interface. Two bridges are  
used; one to connect to several slow blocks and an additional one specifically for the  
universal synchronous receiver transmitter, which is commonly used to implement a serial  
interface. In any case where a device needs a low overhead, standard, low performance  
interface, a UART can be used. The UART includes advanced features like a fractional  
clock divider.  
Table 14: VPB1 bridge interface description  
Base address Offset  
0x0000  
Key  
Description  
UART  
0x0000  
UART_RBR  
UART_THR  
UART_IER  
UART_IIR  
receive FIFO  
0x0000  
transmit FIFO  
0x0004  
interrupt enable register  
interrupt ID register  
FIFO control register  
line control register  
modem control register  
line status register  
modem status register  
scratch pad register  
divisor latch LSB  
divisor latch MSB  
fractional divider register  
0x0008  
0x0008  
UART_FCR  
UART_LCR  
UART_MCR  
UART_LSR  
UART_MSR  
UART_SCR  
UART_DLL  
UART_DLM  
UART_FDR  
0x000C  
0x0010  
0x0014  
0x0018  
0x001C  
0x0000  
0x0004  
0x0028  
7.17 UART configuration  
The UART interface is used to be implemented as a serial interface to, for example a  
modem and is compatible with the industry standards 16650 UARTs.  
No full modem interface is included, only the CTS and RTS modem signals are available.  
The UART interface can also be configured as an IrDA (InfraRed Digital Association) SIR  
(Serial InfraRed) interface, which has a pulse and polarity compliancy with the IrDA  
Version 1.0 Physical Layer Specification.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
33 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.18 Audio configuration  
The audio configuration block gives access to the following system settings:  
I2S-bus input/output format settings  
Status of SPDIF module  
SPDIF interrupt request  
SDAC control and status registers  
SADC control and status registers  
Interrupt request to EPICS7B; with automatically clearing register  
Power-down of the multi-channel 10-bit control ADC  
DC-to-DC converter output voltage settings  
DC-to-DC clock-stable indicator.  
7.19 Audio input  
7.19.1 ADC analog front-end  
The analog front-end of the ADC consists of one stereo ADC with a selector in front of it.  
Using this selector one can either select the microphone input with the microphone  
amplifier (LNA) with a fixed 30 dB gain or the line input. The microphone input as well as  
the line inputs have a Programmable Gain Amplifier (PGA) that allows gain control from  
0 dB to 24 dB in steps of 3 dB.  
The input impedance of the PGA (line in) is 12 k, for the LNA this is 5 k.  
7.19.1.1 Applications and Power-down modes  
The following Power-down and functional modes are supported:  
Power-down mode in which the current consumption is very low (only leakage  
currents). In this mode there is no reference voltage at the line input.  
Line-in mode, in which the PGA can be used.  
Microphone mode in which the rest of the non-used PGAs and ADCs are powered  
down. In this mode the mono microphone signal can be sent to both left and right  
input of the decimation filter. This is done with a separate multiplexer in front of the  
decimation input. This multiplexer is controlled by bit SEL_MIC in the I2C-bus control  
interface.  
Mixed PGA and LNA mode with one line-in and one microphone input.  
mic  
LNA  
PGA  
PGA  
PGA  
SDC  
SDC  
SDC  
left_out  
ADC  
ADC  
left  
right_out  
right  
001aab455  
Fig 6. Analog front-end  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
34 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.19.1.2 LNA  
LNA, a Low Noise microphone Amplifier with nominal gain of 30 dB.  
7.19.1.3 PGA  
The input signal is amplified with a gain set by control bits CTRL[3:0]. The resulting signal  
will be available at Vout. If control bit CTRL3 = 1 the gain is set to 24 dB independent of the  
other bits. If CTRL3 = 0 the gain is set for other (lower) settings. The PGA is based on an  
inverting amplifier architecture. The feedback resistance exists of a resistor string. By  
switching between different resistors with the use of a 4-bit digital decoder the gain of the  
amplifier can be modified. The gain can be set in steps of 3 dB from 0 dB up to 24 dB (see  
Table 15). The PGA is designed to handle a nominal 1 V (RMS) input level. A systematic  
gain of 1.94 dB is added to accommodate the 800 mV (RMS) input level of a  
single-to-differential converter that is normally connected to the PGA output. The  
power-down signal is controlled by the digital core of the SAA8200HL.  
Table 15: PGA gain settings  
CTRL3  
CTRL2  
CTRL1  
CTRL0  
Gain  
0 dB  
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
X
3 dB  
6 dB  
9 dB  
12 dB  
15 dB  
18 dB  
21 dB  
24 dB  
7.19.1.4 Applications with 2 V (RMS) input  
For the Line-in mode it is preferable to have 0 dB and 6 dB gain setting in order to be able  
to apply both 1 V (RMS) and 2 V (RMS) (using series resistance). For this purpose a PGA  
is used which has 0 dB to 24 dB gain with 3 dB steps.  
external  
resistor  
PGA  
12 kΩ  
12 kΩ  
input signal  
001aab456  
Input signal is 2 V (RMS); VDD = 3 V.  
Fig 7. ADC front-end with PGA (line-in input)  
In applications in which a 2 V (RMS) input signal is used, a 12 kresistor must be used in  
series with the input of the ADC. This forms a voltage divider together with the internal  
ADC resistor and ensures that only 1 V (RMS) maximum is input to the SAA8200HL.  
Using this application for a 2 V (RMS) input signal, the switch must be set to 0 dB. When a  
1 V (RMS) input signal is input to the ADC in the same application, the gain switch must  
be set to 6 dB.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
35 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
An overview of the maximum input voltages allowed against the presence of an external  
resistor and the setting of the gain switch is given in Table 16; the power supply voltage is  
assumed to be 3 V.  
Table 16: Application modes using input gain stage  
Resistor 12 kΩ  
Present  
input gain switch  
maximum input voltage  
2 V (RMS)  
0 dB  
6 dB  
0 dB  
6 dB  
Present  
1 V (RMS)  
Absent  
1 V (RMS)  
Absent  
0.5 V (RMS)  
7.19.1.5 SDC  
The Single-to-Differential Converter (SDC) consists of an inverting amplifier and a filter  
network. The input is DC coupled, which means that decoupling must be done in front of  
this module in case the input signal has a different common mode level than the SDC. For  
optional biasing conditions, the SDC requires a sourcing bias current (into an NMOS  
transistor) that is preferably proportional to the analog supply voltage.  
7.19.2 Decimation filter (ADC)  
The decimation from 128fs is performed in two stages (see Figure 8). The first stage  
realizes sin(x)/x characteristics with decimation factor of 16. The second stage consists of  
three half-band filters, each decimating by a factor of 2. The filter characteristics are  
shown in Table 17.  
Table 17: Filter characteristics  
Description  
Conditions  
Value  
Unit  
Decimation filter  
Pass band ripple  
Stop band  
up to 0.45fs  
from 0.55fs  
DC  
±0.02  
60  
3
dB  
dB  
dB  
dB  
dB  
Overall gain  
Dynamic range  
Droop  
up to 0.45fs  
at 0.45fs  
140  
0.18  
DC blocking filter 1  
Pass band ripple  
Pass band gain  
Droop  
none  
0
dB  
dB  
dB  
dB  
dB  
at 0.00045fs  
up to 0.45fs  
0.5  
DC attenuation  
Dynamic range  
DC blocking filter 2  
Pass band ripple  
Pass band gain  
Droop  
> 40  
> 110  
none  
0
dB  
dB  
dB  
dB  
dB  
at 0.00045fs  
up to 0.45fs  
0.031  
> 40  
> 110  
DC attenuation  
Dynamic range  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
36 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 17: Filter characteristics …continued  
Description  
Conditions  
Value  
Unit  
Interpolation filter  
pass band ripple  
stop band  
up to 0.4535fs  
from 0.5465fs  
pass band  
±0.02  
72  
dB  
dB  
dB  
dB  
gain  
1.1  
>143  
dynamic range  
up to 0.4535fs  
128f  
8f  
8f  
8f  
4f  
2f  
1f  
1f  
s
s
s
s
s
s
s
s
DC  
HPF1  
VOL.  
CTRL  
DC  
HPF2  
COMB  
HB3  
HB2  
HB1  
sound features  
halfband DSP  
001aab457  
Fig 8. Decimator data path  
7.19.2.1 Volume control  
The decimator is equipped with a digital volume control. This volume control is separate  
for left and right and can be set via the SADC_CTRL_DECI register. The range is from  
+24 dB down to 63 dB and mute in steps of 0.5 dB.  
7.19.2.2 DC blocking filter  
Two optional 1st order Infinite Impulse Response (IIR) high-pass filters are provided to  
remove unwanted DC components from the input (DC offset, DC dither) and/or volume  
control output to avoid clipping when using large gain settings. These filters may be  
bypassed by setting bits EN_DCFILTI (SADC_CTRL_DECI[20]) and/or EN_DCFILTO  
(SADC_CTRL_DECI[19]) to a logic 0, which is necessary when fast settling of the  
decimator is required.  
On recovery from power-down or after a reset, the parallel output data on bits dout_l[23:0]  
and DOUT_R[23:0] is held at logic 0 until valid data is available from the decimation filter.  
This time depends on which of the DC-blocking filters is selected and if the ENABLE bit of  
the delay timer is ON (EN_DELAY_DBLIN = SADC_CTRL_DECI[21]):  
EN_DELAY_DBLIN OFF:  
t = 0 s  
DC filter 1 is off, DC filter 2 is off and EN_DELAY_DBLIN is on:  
t = 44/fs; t = 1 ms at fs = 44.1 kHz  
DC filter 1 is ON, DC filter 2 is OFF and EN_DELAY_DBLIN is ON:  
t = 17066/fs; t = 387 ms at fs = 44.1 kHz  
DC filter 2 is ON and EN_DELAY_DBLIN is ON:  
t = 67473/fs; t = 1.53 s at fs = 44.1 kHz.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
37 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.19.2.3 Soft start-up after reset  
After a reset of the decimation filter and if bit EN_DBLIN (SADC_CTRL_DECI[21]) is a  
logic 1, the output gain of the decimator is increased from mute to 63.5 dB and at a rate  
of 0.5 dB per fs period to 0 dB (dB linear) to avoid harsh audible plops. The time required  
for a complete soft start-up if bit EN_DBLIN is a logic 1 for 128 fs periods. This time is  
without the time required if bit EN_DELAY_DBLIN (SADC_CTRL_DECI[21]) is a logic 1,  
e.g. if bit EN_DBLIN and bit EN_DELAY_DBLIN are a logic 1, bit EN_DCFILTI and bit  
EN_DCFILTO are logic 0 the total time required is (44 +128) fs periods (see Table 18). The  
decimator soft start-up function is illustrated in Figure 9.  
Table 18: Required time after reset  
EN_DELAY_DBLIN EN_DBLIN  
EN_DCFILTI EN_DCFILTO Required time  
0
0
1
1
1
1
1
1
0
1
0
0
0
1
1
1
X
X
0
1
X
0
1
X
X
X
0
0
1
0
0
1
0 s  
128 periods of fs  
44 periods of fs  
17066 periods of fs  
67473 periods of fs  
(44 + 128) periods of fs  
(17066 + 128) periods of fs  
(67473 + 128) periods of fs  
44  
128  
periods of f  
periods of f  
s
s
EN_DCFILTI = 0  
EN_DCFILTO = 0  
RESET = 0  
ENABLE_DBLIN = 1  
ABLE_DELAY_DBLIN = 1  
DOUT  
(analog representation)  
001aab463  
For readability, the parallel output data is shown in its analog representation.  
Fig 9. Soft start-up function  
7.19.2.4 Signal polarity  
The polarity of the output signal is controlled by bit EN_POL_INV  
(SADC_CTRL_DECI[17]). When this bit is enabled, the polarity of the output data is  
inverted.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
38 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.19.2.5 Mute  
When the left and right channel of the decimator are muted (bit EN_MUTE is a logic 1),  
the gain in the decimator is decreased linearly to 63.5 dB with a final step to mute at a  
rate of 0.5 dB per fs period (dB linear). This is done to avoid harsh audible plops. The time  
required for a complete mute depends on the initial gain setting. Maximum required time is  
256 fs periods. When a complete mute is achieved for both left and right channels, the bit  
MUTE_STATE (SADC_CTRL_DECO[0]) is made logic 1. When the channels are  
de-muted (bit EN_MUTE is a logic 0) the gain of the decimator is increased at the same  
rate until the programmed gain setting is achieved.  
7.19.2.6 Overflow detection  
The output signal is used to indicate whenever the output data, in either the left or right  
channel, is larger than 1.16 dB of the maximum possible digital swing. When this  
condition is detected the overflow bit (SADC_CTRL_DECO[1]) is forced to a logic 1 for at  
least 512 fs cycles (11.6 ms at fs = 44.1 kHz) allowing even a slow microcontroller to poll  
this event. This time-out is reset for each infringement.  
7.19.2.7 AGC function  
The decimation filter is equipped with an Automatic Gain Control (AGC) block. This  
function is intended, when enabled, to keep the output signal at a constant level.  
The AGC can be used for microphone applications in which the distance to the  
microphone is not always the same.  
The AGC can be enabled via the control register (SADC_CTRL_DECI[23]). In this case it  
bypasses the digital volume control. Other features of the AGC, such as the attack, decay  
and target level can be set via the same register.  
The DC filter in front of the decimation filter must be enabled when AGC is in operation,  
otherwise the output will be disturbed by the DC offset added in the ADC.  
Table 19: AGC enable control  
AGC_EN  
AGC function  
0
disabled, manual gain control via the left/right decimator volume  
control, (default)  
1
enabled, with manual microphone gain settings via PGA  
Table 20: AGC target level settings  
AGC_LEVEL1  
AGC_LEVEL0  
AGC target level value (dB)  
0
0
1
1
0
1
0
1
5.5  
8.0  
11.5  
14.0  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
39 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 21: AGC time constant settings  
AGC_TIME2 AGC_TIME1 AGC_TIME0 AGC setting  
44.1 kHz sampling  
8 kHz sampling  
Attack time (ms) Decay time (ms) Attack time (ms) Decay time (ms)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
11  
16  
11  
16  
21  
11  
16  
21  
100  
100  
200  
200  
200  
400  
400  
400  
61  
551  
88.2  
61  
551  
1102  
1102  
1102  
2205  
2205  
2205  
88.2  
116  
61  
88.2  
116  
7.20 Audio output  
7.20.1 SDAC  
The Stereo Digital-to-Analog Converter (SDAC) is a module with interpolation filters and  
noise shaper for low frequency applications such as audio and TV-audio. In this section  
the analog and digital part is described. The digital part consists of an interpolation filter  
that increases the sample rate from 1fs to 128fs and a third order noise shaper that runs  
on 128fs or 256fs.  
The inputs to the SDAC are two 24-bit parallel input words, left and right, and a  
synchronization signal (DIN_VALID) at fs (fs, the sample rate, is typically 44.1 kHz). The  
output is a stereo analog signal (VOUT_LINEL and VOUT_LINER).  
7.20.1.1 Features of the SDAC  
24-bit data path with 16-bit coefficients  
Full FIR filter implementation for all of the upsampling filter  
Digital dB-linear volume control in 0.25 dB steps  
Digital de-emphasis for 32 kHz, 44.1 kHz, 48 kHz and 96 kHz  
Selection for the 2fs to 8fs upsampling filter characteristics (sharp/slow-roll-off)  
Support for 2fs and 8fs input signals:  
1fs with full feature support, being de-emphasis, master volume control and soft  
mute  
2fs input with master volume and mute support: required for double speed mode  
8fs input no features supported. This is intended for DSD support (grabbing data at  
8fs from an external DSD unit)  
Soft mute with a raised cosine function  
Controlled power-down sequence comprising a raised cosine mute function followed  
by a DC ramp down to zero to avoid audible plops or clicks  
Integrated digital silence detection for left and right with selectable silence detection  
time  
Polarity control  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
40 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Simple switched resistors architecture  
Data-weighted averaging technique reducing distortion  
Large supply voltage range (0.8 V to 3.6 V)  
Low noise (N > 100 dBA).  
SAA8200HL  
V
V
DAC_REFN  
DDA(3V3_DAC)  
V
V
DD  
V
SS  
DAC_REFP  
14 DAC_OUTL  
[
]
DIN_L 23:0  
DAC  
16 HP_OUTL  
18 HP_OUTC  
20 HP_OUTR  
SOUND CONTROL  
INTERPOLATION FILTER  
AND  
DIN_VALID  
HP  
NOISESHAPER  
15 DAC_OUTR  
[
]
DIN_R 23:0  
DAC  
001aab465  
Fig 10. Block diagram of the SDAC  
7.20.1.2 Functional description  
The SDAC comprises the following functions:  
Sound feature processor  
Digital upsampling filter  
Noise shaper  
DAC.  
Digital de-emphasis can be set by a 3-bit control bus (bits CTRL_INTI[18:16]) for the  
range of sample frequencies available (32 kHz, 44.1 kHz, 48 kHz and 96 kHz). The  
de-emphasis filters are only in the signal path for normal speed mode (data input at 1fs).  
In the interpolation filter a three stage linear digital volume control is provided with a range  
from 0 dB to 89 dB and −∞ dB. Down to the attenuation of 50 dB the step size equals  
0.25 dB, from 50 dB to 83 dB it equals 3 dB and the last step to 89 dB is one of 6 dB.  
The attenuation for the left channel is controlled by bits CTRL_INTI[15:8]; the attenuation  
for the right channel is controlled by bits CTRL_INTI[7:0].  
When the left and right channels of the interpolator are muted (bit CTRL_INTI[19] = 1), the  
gain in the interpolator is decreased to −∞ dB conforming to a raised cosine function to  
avoid harsh audible plops (soft mute). This mute function is completed after a period of  
128 samples in normal mode i.e. 2.9 ms at fs = 44.1 kHz. When a complete mute is  
achieved for both left and right channels, the bit CTRL_INTO[0] is made a logic 1. The  
interpolator mute function is illustrated in Figure 11.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
41 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
raised cosine roll-off (128 periods of f )  
s
interpolator  
4-bit output data  
(analog representation)  
[
]
CTRL_INTI 19 (mute)  
[ ]  
TRL_INTO 0 (mute state)  
001aab466  
Fig 11. Interpolator mute signals  
7.20.1.3 Power-down  
640 periods of f  
s
interpolator  
4-bit output data  
(analog representation)  
[
]
CTRL_INTI 25  
[ ]  
CTRL_INTO 1  
[ ]  
TRL_INTO 0 (mute state)  
raised  
cosine roll-off  
DC ramp down  
(512 periods of f )  
s
(128 periods of f )  
s
001aab467  
Fig 12. Interpolator power-up and power-down sequence  
When the interpolator is powered down (bit CTRL_INTI[25] = 1), the gain in the  
interpolator is decreased to −∞ dB to conform to a raised cosine function. This is followed  
by a DC ramp down to zero output data (000000h). The slope of this DC ramp can be set  
by bit CTRL_INTI[24] to either 512 fs periods (default) or 1024 fs periods. The power-up  
follows the reverse procedure, a DC ramp up to mid scale plus DC dither (2 to [6 + 2] to  
[10 + 2] to 17) followed by a gain increase to conform to a raised cosine function. Total  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
42 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
time required for a full power-up or power-down equals 128 fs periods (raised cosine  
function) plus 512 fs periods (DC ramp up/down) making 640 fs periods or 14.5 ms for  
fs = 44.1 kHz. The power-up and power-down function is illustrated in Figure 12.  
7.20.1.4 Silence detection  
The silence detection circuit counts the number of digital input samples equal to zero. It is  
enabled by the control bit CTRL_INTI[30]. The number of zero samples before signalling  
silence detected (bit CTRL_INTO[3] for left channel and bit CTRL_INTO[2] for right  
channel) can be set by bits CTRL_INTI[29:28]. This feature is not used to control the  
SDAC, it is simply a feature that can be used in the system.  
7.20.1.5 Polarity control  
The stereo output signal polarity of the C18INT can be changed by setting the  
CTRL_INTI[26] to logic 1. Note that this single control bit affects both channels.  
7.20.1.6 Digital upsampling filter  
The interpolation from 1fs to 128fs is realized in four stages:  
The first stage is a 99-tap half band filter (HB) which increases the sample rate from  
1fs to 2fs and has a steep transition band to correct for the missing inherent filter  
function of the SDAC.  
The second stage is a 31-tap FIR filter which increases the data rate from 2fs to 8fs,  
scales the signal and compensates for the roll-off caused by the sample-and-hold  
function prior to the noise shaper. For this filter three sets of coefficients can be  
chosen realizing three different transfer characteristics.  
The third stage is a simple hardware linear interpolator (LIN) function that increases  
the sample rate from 8fs to 16fs and removes the 8fs component in the output  
spectrum. The main reason for upsampling to 16fs is the fact that the SDAC only has a  
first order roll-off function.  
The fourth and last stage is a sample-and-hold function increasing the sample rate  
from 16fs to a selectable 128fs or 256fs, depending on the actual input data rate. For  
input sample rates between 8 kHz and 32 kHz the noise shaper and DAC must run on  
256fs instead of the typical 128fs to avoid a significant noise increase in the audible  
frequency band of 0 kHz to 20 kHz.  
1f  
2f  
8f  
16f  
128f  
or  
s
s
s
s
s
normal  
speed  
256f  
s
DEEM  
2
HB  
VC  
MT  
4
FIR  
double  
speed  
2f  
s
s
LIN  
S&H  
8f  
DSD  
001aab468  
Fig 13. Interpolator data path  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
43 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
The SDAC has three modes of operation which are set by the control input bits  
CTRL_INTI[21:20]:  
Normal 1fs input mode used for input data rates between 8 kHz and 96 kHz using  
sharp filter roll-off. De-emphasis (DEEM), volume control (VC) and mute (MT)  
functions are all available in this mode  
2fs input mode which may be used as:  
Double speed input when the data rate is between 96 kHz and 200 kHz  
A means to get slow roll-off by skipping the first half band filter (HB). In this mode  
the de-emphasis (DEEM) is not available  
8fs or DSD input mode, in which case the input is obtained form an external DSD  
block. De-emphasis (DEEM), volume control (VC) and mute (MT) features are  
unavailable in this mode.  
7.20.1.7 Noise shaper  
The 3rd-order noise shaper operates at either 128fs or 256fs depending on the mode of  
operation defined by bits CTRL_INTI[23:20]. It shifts in-band quantization noise to  
frequencies well above the audio band. This noise shaping technique enables high  
signal-to-noise ratios to be achieved at low frequencies. The noise shaper output is  
converted into an analog signal using a 4-bit switched resistor digital-to-analog converter.  
7.20.1.8 SDAC  
The 4-bit SDAC is based on a switched resistor architecture which is merely a controlled  
voltage divider between the positive and negative reference supplies VREF_DACP and  
VREF_DACN. The 4-bit input data from the noise shaper is first decoded to a 15 level  
thermometer code controlling the 15 taps of the converter. Added to the decoding is a  
selectable Data Weighted Averaging (DWA) technique which guarantees that there is no  
correlation between the input signal and the resistors used for that input signal.  
After decoding and DWA the buffers connect the resistors to either the VREF_DACP or  
VREF_DACN. In doing this the reference voltage will be divided depending on the input  
signal. The result is an analog output voltage with a rail-to-rail maximum output swing. The  
output impedance of this DAC is approximately 1 k. By applying an external capacitor of  
3.3 nF to the line output (VOUTLINEL or VOUT_LINER) a low pass post filter is  
introduced with a 3 dB roll off at 48 kHz (dimensioned for fs = 44.1 kHz). This will thus  
reduce the 3rd order noise shaped output spectrum of the DAC to a noise spectrum  
increasing with 2nd order. The value of this capacitor depends on the actual sample  
frequency used.  
7.20.1.9 Data weighting averaging  
The SDAC features two DWA algorithms which can be selected independently for the left  
(bit CTRL_DAC[1]) and right (bit CTRL_DAC[0]) channels. By setting these bits to a  
logic 0 the uni-directional DWA algorithm is chosen which is best suited for good S/N  
figures. By setting these bits to a logic 1 the bi-directional DWA algorithm is chosen which  
is best for low distortion.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
44 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.20.2 Headphone  
7.20.2.1 Headphone driver  
The headphone driver can deliver 22 mW (at 3.0 V power supply) into16 load.  
The headphone driver does not need external DC decoupling capacitors because it can  
be DC-coupled with respect to a special headphone output reference voltage. This saves  
two external capacitors. Changes in the load on the DAC outputs influence the output of  
the headphone. This is because the headphone inputs are directly connected to the DAC  
outputs.  
7.20.2.2 Headphone Limiter  
To protect the headphone amplifier from serious damage due to short-circuiting of the  
outputs (e.g. during the connection of a headphone jack plug) a current limiter is  
incorporated. The activation of this current limiter is signaled by individual logic clip  
signals (CLIP_L, CLIP_R and CLIP_C). The level at which the current limiter is activated  
can be set to four different levels for each amplifier.  
The current level to which the output stage is limited can be set with the bits  
SET_LIMITER_L/R/C[1:0] inputs from 80 mA to 140 mA for the left and right channels and  
from 180 mA to 240 mA for the common channel (see Table 22). The maximum current for  
the common ground channel is larger (double on average) as this channel must be able to  
sink and source the left and right channel output currents. When the current through the  
output stage exceeds the programmed current level, the monitor bit CLIP_L, CLIP_R or  
CLIP_C is set to a logic 1 and the output stage is shut down.  
These values are based on the worst case situation of two in-phase full scale input signals  
of 1.0 V (RMS) and a minimum headphone impedance of 16 . This results in left and  
right channel peak output currents of 1.41 V / 16 = 88.4 mA and a common ground peak  
output current of 2 × 88.4 mA = 176.8 mA. The maximum current that is actually flowing in  
the common ground amplifier is always the sum of the left and right channel maximum  
currents.  
Table 22: Output current limiter settings  
SET_LIMITER_L[1:0],  
SET_LIMITER_R[1:0],  
SET_LIMITER_C[1:0]  
Maximal output current  
Left and right channel  
Common channel  
00  
01  
10  
11  
OFF  
OFF  
100 mA (default)  
120 mA  
200 mA (default)  
220 mA  
140 mA  
240 mA  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
45 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.21 DC-to-DC converter  
The SAA8200HL needs two supply voltages, 3.3 V for analog functions and 1.7 V for  
digital functions. For normal operation one or two batteries of 1.5 V will be used as an  
energy source, from which the DC-to-DC converter must generate the required voltage  
levels, see Figure 14. Two inductive DC-to-DC converters will be used when the chip is  
battery operated. The VDDE pins are externally connected to pin DCDC_OUT3V3, The  
VDDI pins are connected to pin DCDC_OUT1V8. When the SAA8200HL is supplied from  
USB, the outputs of the DC-to-DC converters will be overruled by two linear regulators. In  
that case the supply voltages will be 3.3 V and 1.8 V. This is independent from the USB  
voltage (4.0 V to 5.5 V) so a reference circuit is needed.  
DC  
DCDC_OUT3V3  
V
BAT(DCDC)  
DC  
switching regulator 1  
vin  
LDO1  
vout  
vin  
LDO2  
vout  
V
USB(DCDC)  
LINEAR REGULATOR 1  
LINEAR REGULATOR 2  
vusb_present  
DC  
DCDC_OUT1V8  
DC  
switching regulator 2  
V
< 1.6 V  
BAT(DCDC)  
VDD_ALWAYS  
DC to DC - controller  
ANALOG DIGITAL  
vref  
LOW VOLTAGE  
BANDGAP  
RING OSC  
DELAY  
PLL  
POR  
adjust  
12 MHz  
XOSC  
DIGITAL CORE  
001aac002  
Fig 14. DC-to-DC converter block schematic  
During the start-up sequence the DC-to-DC controller uses the RING OSC to control the  
switching regulators. After start-up the 12 MHz from the digital core is fed to the DC-to-DC  
controller. In battery operation mode the output voltage DCDC_OUT1V8 and  
DCDC_OUT3V3 can be controlled by three adjust bits. Care has to be taken with signal  
levels (level shifters) and the start-up and shut-down from battery to USB and from USB to  
battery transitions. A delay circuit uses RING OSC clocks to generate a delay of about  
1 ms for the RESET_B pulse. In USB mode the delay can be generated otherwise.  
The DC-to-DC converter has to operate from a single or from two batteries. This has no  
consequence for the first DC-to-DC converter, this is always an up converter. In case a  
single battery is used the second converter is also an up converter but it is a down  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
46 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
converter when two batteries are used. Pin DOWNSEL selects the type of converter and  
thus how many batteries are connected. If pin DOWNSEL is HIGH the SAA8200HL  
operates from two batteries and the second DC-to-DC converter is a down converter. If  
pin DOWNSEL is LOW the SAA8200HL operates from one battery and the second  
DC-to-DC converter is an up converter, see Figure 15  
upconverter  
downconverter  
001aac003  
Fig 15. Up and down converter topology  
7.21.1 Controller  
The controller consists of an analog and a digital part. The analog part compares the  
output voltage VOUT[1,2] with a programmable voltage window in eight possible adjust  
settings. The digital part computes the switching time such that the output voltage stays  
within this window. In the analog part is one restive divider with a programmable output,  
see Figure 16.  
Together with reference voltage Vref the voltage window is defined. The output of the  
resistive divider is compared to the reference voltage with comparators with added offset.  
The outputs VTH (voltage too high) and VTL (voltage too low) are based on the  
comparison.  
When VTH is asserted means that VIN is higher than the upper limit of the window,  
indicating to the digital part of the controller that the output voltage must be lowered.  
When VTL is asserted it indicates that VIN is lower than the lower limit of the window,  
indicating to the digital part of the controller that the output voltage must be higher. When  
neither is asserted, VIN is between the lower and upper limit of the window, indicating to  
the digital part of the controller that the output voltage is in the limits of the window and it  
does not have to change the output voltage. This is the normal mode of operating and is  
called continuous mode because the coil continuously carries current.  
In continuous mode the digital part of the controller generates switching cycles at a fixed  
frequency. During the first part of such a cycle (t1) switch 1 will be closed and switch 2 will  
be opened, during the last part of the cycle (t2) switch 2 will be closed and switch 1 will be  
opened. The length of t1 as a fraction of the cycle time is set such that the required output  
voltage is generated. When the output voltage runs outside the window this length is  
updated such that the output voltage falls within the window again.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
47 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
V
BAT(DCDC)  
bias  
clk  
VOUT[1,2] DCDC[1,2]_ADJUST[2  
comparator  
VTH[1,2]  
comparator  
VTL[1,2]  
7 ×  
V
V
V
ss(clean)  
001aac004  
ss  
ref  
Fig 16. Analog part of the controller  
See Figure 17 for a coil current cycle in continuous mode. The average coil current is  
equal to the average current demanded by the load. The lengths of t1 and t2 are  
determined by the battery voltage and the output voltage of the DC-to-DC converter. The  
output voltage is allowed to vary within a certain window. This means that there will be a  
voltage ripple with a frequency that is largely correlated to the frequency content of the  
load current. The peak-to-peak amplitude of the ripple will be more or less equal to the  
window height. There will be ripple at the switching frequency too, this is mainly caused by  
the fact that the coil current will run through parasitic resistances of the load circuit.  
I
L
(A)  
t (s)  
t1  
t2  
t1  
t2  
t1  
001aac005  
Fig 17. Coil current cycle in continuous mode  
Rev. 02 — 17 October 2005  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
48 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
See Figure 18 for a coil current cycle in ramp-up mode. The controller enters this mode  
when there is an increased demand for energy (voltage falls to below the lower limit). By a  
one-time increase of t1 the coil current is increased to a higher average.  
I
L
(A)  
t (s)  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
t1  
t2  
001aac006  
Fig 18. Coil current cycle in ramp-up mode  
See Figure 19 for a coil current cycle in discontinuous mode. In this mode the coil current  
does not flow continuously. Dependent on energy demand a cycle is generated. So  
instead of changing the duty cycle as in continuous mode the frequency is changed. This  
mode is intended for low power operation. During the first phase the battery ramps up the  
current from zero and during the second phase it is ramped down to zero by the load. The  
coil current is made to decrease to zero by opening both switches shortly before the  
current reaches zero. The moment when the switches are to be closed is learned from the  
behavior of the DC-to-DC converter in continuous mode.  
I
L
(A)  
t (s)  
t1  
t2  
t1  
t2  
001aac007  
Fig 19. Coil current cycle in discontinuous mode  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
49 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
The digital part of the controller consists of a state machine that enables the controller to  
switch modes. A decision to jump to a different state is taken on the basis of the outputs of  
the analog part. As a result of some of the jumps, the duration of the first phase of the  
cycle is increased or decreased, see Figure 20.  
sample  
sample  
sample  
VTH  
VTL  
inc. t1  
VTL  
DISCONTINUOUS  
MODE  
CONTINUOUS  
MODE  
RAMP-UP  
MODE  
dec. t1  
VTH  
VTH  
VTL AND VTH  
VTL  
inc. t1  
001aac008  
The controller will be in discontinuous mode if adjusted DCDC_OUT1V8 VBAT(DCDC)  
.
No forward diode from VBAT(DCDC) to DCDC_OUT1V8 allowed.  
Fig 20. Digital part of the controller  
7.21.2 Linear regulators  
The linear regulators will be implemented as Low Drop voltage Output (LDO) regulators  
for a fixed output voltage, see Figure 21. One LDO has to handle input signals in the order  
of 5.0 V so a special construction with thick gate oxide is needed. The other LDO handles  
an input signal of 3.3 V thus a normal construction with thick gate oxide is sufficient. For  
the loop stability the choice is made that the dominant pole lies externally. The series  
resistance of Cext (ESR) gives a zero and degrades the stability and thus limited to a  
maximum value. For an accurate output voltage a reference voltage is needed. This  
voltage can be made with a band gap circuit. A fraction of the output voltage is fed back to  
the operation amplifier. In Stop mode the LDOs should be stable to deliver only small  
currents.  
DCDC_OUT  
VIN  
EF  
ESR  
self-biased  
operational amplifier  
capacitor  
ON  
Cext  
V
V
SS  
SS(clean)  
PCB  
star ground  
001aac009  
The on terminal is connected to VUSB_PRESENT.  
Fig 21. Principle of LDO  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
50 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.21.3 Timing specification  
7.21.3.1 Play and stop with battery supply  
A negative edge at pin DCDC_PLAY starts the DC-to-DC converter, see Figure 22. When  
minimum supply voltages are detected for DCDC_OUT1V8 and DCDC_OUT3V3 by the  
POR, the signal SUPPLY_OK is made logic 1. After about 1 ms signal RESET_B  
becomes logic 1. When the supply voltages are correct the voltages to the application  
control switches rises from VBAT(DCDC) to DCDC_OUT3V3. New negative edges on pin  
DCDC_PLAY has no influence. When pin DCDC_STOP becomes HIGH the DC-to-DC  
converter stops and directly the signal SUPPLY_OK becomes a logic 0.  
V
BAT(DCDC),  
DCDC_OUT3V3  
0
DCDC_PLAY  
DCDC_ON  
SUPPLY_OK  
1 ms  
RESET_B  
PLAYDET  
DCDC_STOP  
001aac010  
Fig 22. Play and stop with battery supply  
The reference circuit, ring oscillator and the POR will be fed by VDD(ALWAYS). Signal  
RESET_B stays at logic 0 for about 1 ms for proper reset. Not shown in Figure 22 is signal  
CLK_STABLE, showing the moment for the core clock to become available to the  
DC-to-DC converters. As soon as a stable core clock is detected the DC-to-DC converters  
will switch to this clock in order to be in-phase with the DAC clock, which will minimize  
interference into the audio signal. The SAA8200HL is started up when this has happened.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
51 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.21.3.2 Play and stop with USB supply  
A start-up from the USB supply gives also a RESET_B pulse, see Figure 23. The signal  
VUSB is shaped by the bonding pad supplies VDDI and VDDE. The disconnection of  
VUSB(DCDC) generates a stop pulse.  
0
V
USB(DCDC)  
DCDC_O  
SUPPLY_OK  
RESET_B  
1 ms  
STOP  
V
USB_PRESENT  
USB_DET  
(internal iwab signal)  
"V  
"
USB  
001aac011  
Fig 23. Play and stop with USB supply  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
52 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
7.21.3.3 Change from battery to USB supply  
Figure 24 shows the timing diagram with a wireless transceiver changed to USB supply.  
The USB supply has the priority. When the USB plug is disconnected the device goes to  
the off state. In Idle mode the supplies DCDC_OUT1V8 and DCDC_OUT3V3 has still to  
be present, but the LDOs have to deliver only a small current. The total device may not  
draw more than 500 mA from the USB supply so a quiescent current of the few active  
circuits has to be less then 100 mA each.  
V
BAT(DCDC)  
0
DCDC_ON  
V
USB(DCDC)  
supply transients from DCDC to LDO and LDO to off  
DCDC_OUT3V3  
DCDC_OUT1V8  
0
SUPPLY_OK  
RESET_B  
V
_
USB PRESENT  
USB_DET  
(internal iwab signal)  
STOP  
PLAY  
PLAYDET  
"V  
"
USB  
DCDC_OUT3V3 and DCDC_OUT1V8  
001aac012  
Fig 24. Change from battery to USB supply  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
53 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
8. Limiting values  
Table 23: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VDDI  
core supply voltage  
(internal)  
0.5  
2.5  
V
VDDE  
core supply voltage  
(external)  
0.5  
4.6  
V
VDDA(1V8)  
VDDA(3V3)  
VI  
1.8 V supply voltage  
3.3 V supply voltage  
input voltage  
0.5  
0.5  
0.5  
0.5  
2.5  
V
V
V
V
4.6  
normal digital input pins  
VDDE + 0.5  
6.0  
5 V tolerant digital input  
pins  
analog input pins  
pin XTALH_IN  
0.5  
0.5  
20  
40  
65  
-
VDDA3v3 + 0.5  
2.0  
V
V
Tamb  
Tj  
ambient temperature  
junction temperature  
storage temperature  
crystal temperature  
+70  
°C  
°C  
°C  
°C  
V
+125  
+125  
150  
Tstg  
Txtal  
VBAT(DCDC) battery voltage  
single battery  
double battery  
0.9  
1.8  
4.0  
1.6  
3.2  
V
VUSB(DCDC) USB voltage range  
5.5  
V
[1]  
[2]  
Vesd  
electrostatic  
discharge voltage  
<tbd> <tbd>  
<tbd> <tbd>  
V
V
[1] Equivalent to discharging a 100 pF capacitor via a 1.5 kseries resistor.  
[2] Equivalent to discharging a 200 pF capacitor via a 0.75 µH series inductor.  
9. Thermal characteristics  
Table 24: Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
K/W  
Rth(j-a)  
thermal resistance from junction to  
ambient  
in free air  
<tbd>  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
54 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
10. Characteristics  
Table 25: Supply voltage characteristics  
Symbol  
VDDI  
Parameter  
Conditions  
Min  
1.7  
1.7  
2.7  
1.7  
3.0  
2.7  
1.7  
2.7  
2.7  
2.7  
4.0  
Typ  
1.8  
3.3  
3.3  
1.8  
3.3  
3.3  
1.8  
3.3  
3.3  
3.3  
5.0  
Max  
2.0  
3.6  
3.6  
2.0  
3.6  
3.6  
2.0  
3.6  
3.6  
3.6  
5.5  
Unit  
V
core supply voltage (internal)  
core supply voltage (external)  
VDDE  
MPMC pins  
other  
V
V
VDDA(1V8_XTALH)  
VDDA(3V3_SPDIF)  
crystal oscillator supply voltage  
SPDIF supply voltage  
V
V
VDDA(3V3_ADC10B) control ADC supply voltage  
V
VDDA(1V8_ADC)  
VDDA(3V3_ADC)  
VDDA(3V3_DAC)  
VDDA(3V3_HP)  
VUSB(DCDC)  
audio ADC supply voltage  
audio ADC supply voltage  
audio DAC supply voltage  
headphone supply voltage  
USB supply voltage  
V
V
V
V
V
Table 26: 5 V tolerant cells characteristics  
Symbol Parameter  
Input circuits  
Conditions  
Min  
Typ  
Max  
Unit  
VIH  
VIL  
HIGH-level input voltage  
2.0  
-
-
-
-
-
V
V
V
LOW-level input voltage  
hysteresis voltage  
0.8  
-
Vhys  
0.4  
Output circuits  
[1]  
[1]  
[1]  
VOH  
VOL  
IOH  
HIGH-level output voltage  
IOH depends on I/O cell type  
IOL depends on I/O cell type  
10 ns slew rate output;  
V
DDE 0.4  
-
-
-
-
V
LOW-level output voltage  
-
0.4  
-
V
HIGH-level output current  
5  
mA  
V
OH = VDDE 0.4 V  
10 ns slew rate output;  
OL = 0.4 V  
HIGH-level short circuit current 10 ns slew rate output;  
OH = 0 V  
LOW-level short circuit current 10 ns slew rate output;  
OL = VDDE  
[1]  
[2]  
[2]  
IOL  
LOW-level output current  
4
-
-
-
-
-
mA  
mA  
mA  
V
Isc(H)  
Isc(L)  
45  
50  
V
-
V
[1] Accounts for 100 mV voltage drop in all supply lines.  
[2] Allowed for a short time period.  
Table 27: Control ADC characteristics  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
REFP 2  
Unit  
VREFN  
VREFP  
fsmpl  
Zi  
negative reference voltage  
positive reference voltage  
sampling rate  
VSSA  
VREFN + 2  
400  
-
-
-
-
-
-
V
V
VDDA  
1500  
39  
V
kHz  
kΩ  
V
input impedance REFN to REFP  
input voltage  
20  
Vi  
VREFN  
-
VREFP  
4.5  
fclk  
clock frequency  
MHz  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
55 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 27: Control ADC characteristics …continued  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
10  
Unit  
bit  
N
resolution  
2
-
-
-
-
-
INL  
DNL  
EOS  
EFS  
tconv  
integral non-linearity  
differential non-linearity  
offset error  
-
±1  
LSB  
LSB  
mV  
mV  
-
±1  
20  
20  
-
+20  
+20  
-
full scale error  
conversion time  
(N + 1)  
cycles  
Table 28: Static audio characteristics  
Symbol  
Audio DAC  
VREFN  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
negative reference voltage  
positive reference voltage  
output voltage  
-
VSSA(DAC)  
-
V
VREFP  
-
VDDA(3V3_DAC)  
-
V
VO  
digital silence  
-
0.5VDDA(3V3_DAC)  
-
V
[1]  
[2]  
[3]  
during power-down  
-
0
1
-
-
V
RO  
output resistance  
load resistance  
0.7  
>75  
-
1.3  
kΩ  
kΩ  
kΩ  
RL  
-
-
RINT  
resistance between VREFP and  
VREFN  
4
Headphone amplifier  
VHP_COM  
VO(cm)  
Voffset  
RL  
reference input voltage  
-
0.5VDDA(3V3_VREFP)  
-
V
common mode output voltage  
input offset voltage  
-
VI(ref)  
-
-
V
10  
16  
80  
180  
+10  
-
mV  
load resistance  
-
Isc  
output current at short circuit  
left and right  
center  
100  
200  
140  
240  
mA  
mA  
Audio ADC  
VADC_REFP positive reference voltage  
VADC_REFN negative reference voltage  
VADC_COM common mode reference voltage  
-
-
-
-
-
VDDA(3V3_ADC)  
-
-
-
-
V
0
V
0.5VDDA(3V3_ADC)  
V
RI  
CI  
input resistance  
12  
24  
kΩ  
pF  
input capacitance  
Low noise amplifier  
RI  
input resistance  
output offset voltage  
3.5  
-
5
-
-
kΩ  
Voffset  
1
mV  
[1] Set headphone amplifier in Power-down mode before setting audio DAC in Power-down mode because the line output is connected to  
the headphone driver the output of the headphone clips towards its analog supply.  
[2] Exclusive the input load of the headphone driver which is 10 k.  
[3] The output of the DAC is already connected with the headphone driver which has an input load of 10 k.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
56 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 29: Dynamic audio characteristics  
VDDA(3V3) = 3.3 V; fi = 1 kHz at 1 dB; Tamb = 25 °C; RL = 100 k; fs = 48 kHz; all voltages measured with respect to ground;  
unless otherwise specified.  
Symbol  
Audio DAC  
Vo(rms)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[1]  
output voltage (RMS  
value)  
at 0 dBFS digital input;  
-
-
1
-
-
V
Vo  
unbalance between  
channels  
<0.1  
dB  
VO  
output voltage  
digital silence  
-
-
-
-
0.5VDDA(3V3_DAC)  
-
-
-
-
V
during power-down  
at 0 dB  
0
V
(THD+N)/S total harmonic  
distortion-plus-noise to  
80  
40  
dB  
dB  
at 60 dB; A-weighted  
signal ratio  
S/N  
signal-to-noise ratio  
code = 0; A-weighted;  
bidirectional DWA  
-
-
100  
90  
-
-
dB  
dB  
αcs  
channel separation  
Headphone amplifier  
Po(rms) output power (RMS  
value)  
(THD+N)/S total harmonic  
distortion-plus-noise to  
at 0 dBFS digital input;  
RL = 16 Ω  
-
35  
-
mW  
at 0 dB; RL = 16 Ω  
at 0 dB; RL = 5 kΩ  
-
-
-
-
-
-
-
62  
82  
35  
97  
52  
dB  
dB  
dB  
dB  
-
-
-
signal ratio  
at 60 dB; A-weighted  
code = 0; A-weighted  
RL = 16 Ω  
S/N  
signal-to-noise ratio  
channel separation  
αcs  
no decoupling capacitors  
with decoupling capacitors  
36  
90  
-
-
dB  
dB  
Audio ADC  
Vi  
unbalance between  
channels  
-
<1  
-
dB  
S/N  
signal-to-noise ratio  
channel separation  
Vi = 0 V; A-weighted  
fripple = 1 kHz;  
-
-
95  
-
-
dB  
dB  
αcs  
110  
PSRR  
power supply rejection  
ratio  
Vripple(p-p) = 30 mV  
VDDA(3V3_ADC)  
VDDA(3V3_REFP)  
-
55  
65  
1  
1  
1  
1  
1  
1  
1  
1  
1  
-
dB  
-
-
dB  
Do  
digital output level  
0 dB setting; Vi(rms) = 1.0 V  
3 dB setting; Vi(rms) = 708 mV  
6 dB setting; Vi(rms) = 501 mV  
9 dB setting; Vi(rms) = 354 mV  
12 dB setting; Vi(rms) = 252 mV  
15 dB setting; Vi(rms) = 178 mV  
18 dB setting; Vi(rms) = 125 mV  
21 dB setting; Vi(rms) = 89 mV  
24 dB setting; Vi(rms) = 63 mV  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1  
1  
1  
1  
1  
1  
1  
1  
1  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
57 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 29: Dynamic audio characteristics …continued  
VDDA(3V3) = 3.3 V; fi = 1 kHz at 1 dB; Tamb = 25 °C; RL = 100 k; fs = 48 kHz; all voltages measured with respect to ground;  
unless otherwise specified.  
Symbol  
(THD+N)/S total harmonic  
distortion-plus-noise to  
signal ratio  
Parameter  
Conditions  
at 1 dBFS  
Min  
Typ  
Max  
Unit  
0 dB setting  
3 dB setting  
6 dB setting  
9 dB setting  
12 dB setting  
15 dB setting  
18 dB setting  
21 dB setting  
at 60 dBFS  
0 dB setting  
3 dB setting  
6 dB setting  
9 dB setting  
12 dB setting  
15 dB setting  
18 dB setting  
21 dB setting  
24 dB setting  
-
-
-
-
-
-
-
-
85  
87  
88  
88  
87  
85  
83  
80  
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
-
-
-
-
-
-
-
-
-
35  
34  
32  
30  
28  
26  
23  
20  
20  
-
-
-
-
-
-
-
-
-
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
LNA plus ADC  
Vi(rms)  
input voltage (RMS  
value)  
at 0 dBFS digital output;  
RS = 2.2 kΩ  
-
-
35  
mV  
(THD+N)/S total harmonic  
distortion-plus-noise to  
Vo = 600 mV  
-
-
75  
25  
-
-
dB  
dB  
at 60 dB; A-weighted  
signal ratio  
S/N  
signal-to-noise ratio  
Vi = 0 V; A-weighted  
-
85  
-
dB  
[1] The output voltage of the DAC is proportional to the DAC power supply voltage and the headphone is in Power-down mode.  
[2] Exclusive the input load of the headphone driver which is 10 k.  
[3] The output of the DAC is already connected with the headphone driver which has an input load of 10 k.  
Table 30: DC-to-DC converter characteristics  
Symbol  
Parameter  
Conditions  
Min  
0.9  
1.8  
4.0  
Typ  
1.35  
2.7  
Max  
1.6  
3.2  
5.5  
Unit  
V
Vbat  
battery voltage  
single battery  
double battery  
V
VUSB  
USB voltage  
5.0  
V
DC-to-DC converter for 3.3 V  
VO  
output voltage  
3.0  
-
3.4  
-
3.7  
V
VO(tol)  
output voltage tolerance  
100  
mV  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
58 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 30: DC-to-DC converter characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IO  
output current  
Vbat = 2.4 V;  
200  
-
-
mA  
RL = 0.3 Ω  
Vbat = 2.0 V;  
150  
-
200  
mA  
RL = 0.3 Ω  
Isu  
start-up current  
switch current  
switching frequency  
clock frequency  
efficiency  
-
-
25  
-
mA  
mA  
MHz  
MHz  
%
Isw  
fswitch  
fclk  
η
-
<tbd>  
-
-
1
-
-
12  
-
Vbat = 2.4 V;  
IO = 100 mA;  
RL = 0.3 Ω  
90  
93  
RP  
PMOST switch on resistance  
NMOST switch on resistance  
maximum ESRC  
-
-
-
0.3  
0.3  
-
-
RN  
-
ESRC  
0.7  
DC-to-DC converter for 1.8 V  
VO  
output voltage  
1.3  
-
1.85  
2.0  
50  
-
V
VO(tol)  
IO  
output voltage tolerance  
output current  
-
-
mV  
mA  
Vbat = 2.4 V;  
100  
RL = 0.3 Ω  
Vbat = 2.0 V;  
50  
-
200  
mA  
RL = 0.3 Ω  
Isu  
start-up current  
switch current  
switching frequency  
clock frequency  
efficiency  
-
-
10  
-
mA  
mA  
MHz  
MHz  
%
Isw  
fswitch  
fclk  
η
-
<tbd>  
-
-
1
-
-
12  
-
Vbat = 2.4 V;  
IO = 50 mA;  
RL = 0.3 Ω  
92  
95  
RP  
PMOST switch on resistance  
NMOST switch on resistance  
maximum ESRC  
-
-
-
0.9  
0.9  
-
-
RN  
-
ESRC  
0.7  
Low-drop-out converter for 3.3 V  
VO  
output voltage  
unloaded  
-
3.5  
-
V
IO = 100 mA  
-
3.4  
-
V
VO(tol)  
IO  
output voltage tolerance  
output current  
-
-
-
-
100  
200  
100  
mV  
mA  
µA  
VUSB = 5 V  
150  
-
IIDLE  
idle current  
Low-drop-out converter for 1.8 V  
VO  
output voltage  
unloaded  
-
1.95  
-
V
IO = 50 mA  
-
1.85  
-
V
VO(tol)  
IO  
output voltage tolerance  
output current  
-
-
-
50  
100  
mV  
mA  
VUSB = 5 V  
50  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
59 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 30: DC-to-DC converter characteristics …continued  
Symbol  
Ring oscillator  
IDDA  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
current consumption  
-
-
-
100  
-
µA  
fOSC  
oscillator output frequency  
12  
MHz  
Table 31: SRI characteristics  
Symbol  
LVDS buffer  
Static  
IDDA  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply current  
-
-
-
-
150  
-
µA  
µA  
pF  
IDDA(pd)  
CL  
power-down supply current  
load capacitor  
-
1
5
-
-
RO  
output voltage as ratio of the digital  
supply voltage  
0.25  
VI(det)  
input voltage required for detection  
-
-
100  
-
-
mV  
Dynamic  
fclk(max)  
maximum clock frequency  
1
MHz  
Table 32: Timing characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Crystal oscillator  
Static  
Ci(XTALH_IN)  
parasitic input capacitance pin  
XTALH_IN  
<tbd>  
<tbd>  
100  
<tbd> <tbd>  
<tbd> <tbd>  
pF  
Ri(XTALH_IN)  
parasitic input resistance pin  
XTALH_IN  
fi = 12 MHz  
Pdrive  
Dynamic  
fosc  
crystal level of driver power  
-
500  
µW  
oscillator frequency  
duty cycle  
-
-
-
12  
-
-
-
MHz  
%
αcl  
50  
tsu  
start-up time  
500  
ms  
Serial interface input and output data timing; see Figure 25  
fBCK  
bit clock frequency  
bit clock cycle time  
-
-
-
-
128fs  
Hz  
s
1
Tcy(BCK)  
Tcy(s) is sample  
frequency cycle  
time  
128Tcy(s)  
tBCKH  
tBCKL  
tr  
bit clock HIGH time  
bit clock LOW time  
rise time  
30  
30  
-
-
-
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
20  
20  
-
tf  
fall time  
-
tsu(WS)  
th(WS)  
tsu(I2SIN)  
th(I2SIN)  
SAA8200HL_2  
word select setup time  
word select hold time  
data input setup time  
data input hold time  
10  
10  
10  
10  
-
-
-
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
60 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Table 32: Timing characteristics …continued  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
-
Unit  
ns  
th(I2SOUT)  
data output hold time  
data output to bit clock delay  
data output to word select delay  
0
-
-
-
-
td(I2SOUT_BCK)  
td(I2SOUT_WS)  
30  
30  
ns  
-
ns  
Standard mode I2C-bus; SDA and SCL lines  
100 kHz mode  
fSCL  
SCL clock frequency  
0
-
-
-
-
-
-
-
100  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
tLOW  
SCL clock LOW period  
SCL clock HIGH period  
hold time start condition  
setup time start condition  
setup time stop condition  
4.7  
4.0  
4.0  
4.7  
4.0  
4.7  
-
-
-
-
-
-
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tBUF  
bus free time between a stop and  
start condition  
tHD;DAT  
tSU;DAT  
tr  
data hold time  
5.0  
-
-
-
-
0.9  
-
µs  
ns  
ns  
ns  
data setup time  
250  
rise time SDA and SCL  
fall time SDA and SCL  
-
-
1000  
300  
tf  
400 kHz mode  
fSCL  
SCL clock frequency  
0
-
-
-
-
-
-
-
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
tLOW  
SCL clock LOW period  
SCL clock HIGH period  
hold time start condition  
setup time repeated start  
setup time stop condition  
1.3  
0.6  
0.6  
0.6  
0.6  
1.3  
-
-
-
-
-
-
tHIGH  
tHD;STA  
tSU;STA  
tSU;STO  
tBUF  
bus free time between a stop and  
start condition  
tHD;DAT  
data hold time  
0
-
-
-
-
-
-
-
µs  
ns  
ns  
ns  
ns  
pF  
tSU;DAT  
data setup time  
100  
-
tr  
rise time SDA and SCL  
fall time SDA and SCL  
pulse width of spikes  
capacitive load for each bus line  
20 + 0.1Cb  
300  
300  
50  
400  
tf  
20 + 0.1Cb  
tSP  
Cb  
0
-
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
61 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
WS  
t
t
t
t
t
h(WS)  
r
f
d(I2SOUT_BCK)  
BCKH  
t
su(WS)  
BCK  
t
BCKL  
t
t
d(I2SOUT_WS)  
h(I2SOUT)  
T
cy(BCK)  
I2SIN  
t
su(I2SIN)  
t
h(I2SIN)  
I2SOUT  
001aab634  
Fig 25. Serial interface input data timing  
Table 33: Filter characteristics  
Description  
Conditions  
Value  
Unit  
Decimation filter  
Pass band ripple  
Stop band  
up to 0.45fs  
from 0.55fs  
DC  
±0.02  
60  
3
dB  
dB  
dB  
dB  
dB  
Overall gain  
Dynamic range  
Droop  
up to 0.45fs  
at 0.45fs  
140  
0.18  
DC blocking filter 1  
Pass band ripple  
Pass band gain  
Droop  
none  
0
dB  
dB  
dB  
dB  
dB  
at 0.00045fs  
up to 0.45fs  
0.5  
DC attenuation  
Dynamic range  
DC blocking filter 2  
Pass band ripple  
Pass band gain  
Droop  
> 40  
> 110  
none  
0
dB  
dB  
dB  
dB  
dB  
at 0.00045fs  
up to 0.45fs  
0.031  
> 40  
> 110  
DC attenuation  
Dynamic range  
Interpolation filter  
pass band ripple  
stop band  
up to 0.4535fs  
from 0.5465fs  
pass band  
±0.02  
72  
dB  
dB  
dB  
dB  
gain  
1.1  
>143  
dynamic range  
up to 0.4535fs  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
62 of 71  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
SDA  
SCL  
t
t
t
t
t
t
SP  
BUF  
LOW  
r
f
HD;STA  
t
HIGH  
t
t
SU;STO  
t
t
SU;STA  
t
SU;DAT  
HD;DAT  
HD;STA  
P
S
P
Sr  
mbc611  
Fig 26. Timing of the I2C-bus transfer  
xxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx x xxxxxxxxxxxxxx xxxxxxxxxx xxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx  
xxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxxxx xxxxxxxxxxxxxxxxxxx  
xxxxxxxxxxxxxxxx xxxxxxxxxxxxxx xxxxxx xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxx xxxxx x x  
V
3.3 V  
1.8 V  
BAT  
56  
62  
59 61 55  
XTALH_IN  
XTALH_OUT  
SRI_INT  
92  
SYSTEM PAR  
EEPROM  
APP CODE  
EEPROM  
91  
8
TX  
FILTER  
IIC_SRI_SCL  
IIC_SRI_SDA  
IIC_MS_SCL  
IIC_MS_SDA  
2
100  
1
2
I C-bus main  
system  
3
TEA7000  
SRI_DATA_N  
SRI_DATA_P  
99  
98  
95  
94  
97  
96  
I2SOUT_WS  
76  
77  
78  
I2SOUT_BCK  
I2SOUT_2_DATA  
2
SRI_FSYNC_N  
SRI_FSYNC_P  
SRI_GCHCLK_N  
SRI_GCHCLK_P  
I S-bus out2  
RX  
FILTER  
I2SOUT_1_DATA  
2
I S-bus out1  
79  
14  
15  
DAC_OUTL  
SPDIF_IN  
SPDIF_in  
SAA8200  
29  
line out  
I2SIN_1_DATA  
I2SIN_1_WS  
I2SIN_1_BCK  
72  
73  
74  
DAC_OUTR  
2
I S-bus1  
HP_OUTL  
HP_OUTC  
HP_OUTR  
16  
18  
20  
I2SIN_2_BCK  
I2SIN_2_DATA  
I2SIN_2_WS  
7
headphone out  
2
I S-bus2  
84  
87  
V
BAT  
ADC_MIC_LNA  
ADC_MIC_PGA  
26  
25  
ADC_INR  
ADC_INL  
23  
24  
line in  
mic in  
UART_TXS  
UART_RXS  
UART_NCTS  
UART_NRTS  
83  
82  
81  
80  
ADC_MIC_IN  
27  
ADC10B_GPA3  
ADC10B_GPA2  
ADC10B_GPA1  
ADC10B_GPA0  
UART  
42  
41  
40  
39  
cmd4  
cmd3  
cmd2  
cmd1  
4 channel  
analog in  
3.3 V  
001aab384  
Fig 27. Ensation Link application diagram  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
12. Package outline  
LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm  
SOT407-1  
y
X
A
51  
75  
50  
26  
(1)  
76  
Z
E
e
H
A
E
2
E
A
(A )  
3
A
1
w M  
p
θ
b
L
p
pin 1 index  
L
detail X  
100  
1
25  
Z
D
v
M
A
B
e
w M  
b
p
D
B
H
v
M
5
D
0
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
θ
1
2
3
p
E
p
D
E
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.27 0.20 14.1 14.1  
0.17 0.09 13.9 13.9  
16.25 16.25  
15.75 15.75  
0.75  
0.45  
1.15 1.15  
0.85 0.85  
mm  
1.6  
0.25  
0.5  
1
0.2 0.08 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-02-01  
03-02-20  
SOT407-1  
136E20  
MS-026  
Fig 28. Package outline SOT407-1 (LQFP100)  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
65 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
13. Handling information  
Inputs and outputs are protected against electrostatic discharge in normal handling.  
However, to be completely safe you must take normal precautions appropriate to handling  
integrated circuits.  
14. Soldering  
14.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account of  
soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages  
(document order number 9398 652 90011).  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
14.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 °C to 270 °C depending on solder paste  
material. The top-surface temperature of the packages should preferably be kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with a  
thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
14.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
66 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
14.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
14.5 Package related soldering information  
Table 34: Suitability of surface mount IC packages for wave and reflow soldering methods  
Package [1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5] [6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
67 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
15. Additional soldering information  
15.1 Lead-free solder  
Lead-free solder can be used for soldering the TEA7000.  
15.2 MSL level  
MSL level: <tbd>  
16. Revision history  
Table 35: Revision history  
Document ID  
SAA8200HL_2  
Modifications:  
Release date Data sheet status  
20051017 Preliminary data sheet  
Audio ADC supply voltages added (Table 25).  
Change notice Doc. number  
Supersedes  
-
-
SAA8200HL_1  
Audio DAC RL value revised; VHP_COM value corrected; VADC_COM value added (Table 28).  
Dynamic audio characteristics revised (Table 29).  
SAA8200HL_1  
20041217  
Objective data sheet  
-
9397 750 13236  
-
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
68 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
17. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
18. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
20. Trademarks  
Notice — All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
I2C-bus — logo is a trademark of Koninklijke Philips Electronics N.V.  
Ensation — is a trademark of Koninklijke Philips Electronics N.V.  
19. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
21. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
69 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
22. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
7.19.2.3 Soft start-up after reset . . . . . . . . . . . . . . . . . 38  
7.19.2.4 Signal polarity. . . . . . . . . . . . . . . . . . . . . . . . . 38  
7.19.2.5 Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.19.2.6 Overflow detection . . . . . . . . . . . . . . . . . . . . . 39  
7.19.2.7 AGC function . . . . . . . . . . . . . . . . . . . . . . . . . 39  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2.1  
2.2  
2.3  
7.20  
7.20.1  
Audio output . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
SDAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
3
4
5
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7.20.1.1 Features of the SDAC . . . . . . . . . . . . . . . . . . 40  
7.20.1.2 Functional description . . . . . . . . . . . . . . . . . . 41  
7.20.1.3 Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
7.20.1.4 Silence detection . . . . . . . . . . . . . . . . . . . . . . 43  
7.20.1.5 Polarity control . . . . . . . . . . . . . . . . . . . . . . . . 43  
7.20.1.6 Digital upsampling filter . . . . . . . . . . . . . . . . . 43  
7.20.1.7 Noise shaper . . . . . . . . . . . . . . . . . . . . . . . . . 44  
7.20.1.8 SDAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
7.20.1.9 Data weighting averaging. . . . . . . . . . . . . . . . 44  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
7
7.1  
7.1.1  
7.2  
7.2.1  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.5  
7.6  
Functional description . . . . . . . . . . . . . . . . . . 10  
EPICS7B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
User registers . . . . . . . . . . . . . . . . . . . . . . . . . 14  
VPB0 bridge . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
VPB0 bridge address definitions . . . . . . . . . . 15  
Clock generation unit . . . . . . . . . . . . . . . . . . . 23  
Crystal oscillator . . . . . . . . . . . . . . . . . . . . . . . 24  
Audio PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
System PLL . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Serial radio interface. . . . . . . . . . . . . . . . . . . . 25  
SRI I2C-bus. . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
System I2C-bus interface . . . . . . . . . . . . . . . . 26  
Control ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . 26  
Reed-Solomon codec . . . . . . . . . . . . . . . . . . . 27  
Event router . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SPDIF inputs. . . . . . . . . . . . . . . . . . . . . . . . . . 29  
I2S-bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
I2S-bus inputs . . . . . . . . . . . . . . . . . . . . . . . . . 31  
I2S-bus outputs . . . . . . . . . . . . . . . . . . . . . . . . 31  
Time stamp counters . . . . . . . . . . . . . . . . . . . 31  
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . 32  
I/O configuration . . . . . . . . . . . . . . . . . . . . . . . 32  
VPB1 bridge . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
UART configuration. . . . . . . . . . . . . . . . . . . . . 33  
Audio configuration. . . . . . . . . . . . . . . . . . . . . 34  
Audio input . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
ADC analog front-end. . . . . . . . . . . . . . . . . . . 34  
7.20.2  
Headphone. . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
7.20.2.1 Headphone driver. . . . . . . . . . . . . . . . . . . . . . 45  
7.20.2.2 Headphone Limiter. . . . . . . . . . . . . . . . . . . . . 45  
7.21  
DC-to-DC converter . . . . . . . . . . . . . . . . . . . . 46  
Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Linear regulators . . . . . . . . . . . . . . . . . . . . . . 50  
Timing specification . . . . . . . . . . . . . . . . . . . . 51  
7.21.1  
7.21.2  
7.21.3  
7.21.3.1 Play and stop with battery supply. . . . . . . . . . 51  
7.21.3.2 Play and stop with USB supply . . . . . . . . . . . 52  
7.21.3.3 Change from battery to USB supply. . . . . . . . 53  
7.7  
7.8  
7.9  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 54  
Thermal characteristics . . . . . . . . . . . . . . . . . 54  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 55  
Application information . . . . . . . . . . . . . . . . . 64  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 65  
Handling information . . . . . . . . . . . . . . . . . . . 66  
7.10  
7.11  
7.12  
7.12.1  
7.12.2  
7.13  
7.14  
7.15  
7.16  
7.17  
7.18  
7.19  
7.19.1  
9
10  
11  
12  
13  
14  
14.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 66  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 66  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 67  
Package related soldering information. . . . . . 67  
14.2  
14.3  
14.4  
14.5  
7.19.1.1 Applications and Power-down modes. . . . . . . 34  
7.19.1.2 LNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.19.1.3 PGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
7.19.1.4 Applications with 2 V (RMS) input . . . . . . . . . 35  
7.19.1.5 SDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
15  
15.1  
15.2  
Additional soldering information. . . . . . . . . . 68  
Lead-free solder. . . . . . . . . . . . . . . . . . . . . . . 68  
MSL level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
16  
17  
18  
19  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 68  
Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 69  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
7.19.2  
Decimation filter (ADC). . . . . . . . . . . . . . . . . . 36  
7.19.2.1 Volume control . . . . . . . . . . . . . . . . . . . . . . . . 37  
7.19.2.2 DC blocking filter. . . . . . . . . . . . . . . . . . . . . . . 37  
continued >>  
SAA8200HL_2  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 02 — 17 October 2005  
70 of 71  
SAA8200HL  
Philips Semiconductors  
Ensation Base integrated wireless audio baseband  
20  
21  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Contact information . . . . . . . . . . . . . . . . . . . . 69  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 17 October 2005  
Document number: SAA8200HL_2  
Published in The Netherlands  

相关型号:

SAA8M16YX6XR4TL

DOUBLE DATA RATE (DDR) SDRAM
ETC

SAA8M16YX6XV4TL

DOUBLE DATA RATE (DDR) SDRAM
ETC

SAA9042

IC TELETEXT DECODER, PDIP40, PLASTIC, SOT-129, DIP-40, Teletext IC
NXP

SAA9050N

Consumer Circuit, Bipolar, PDIP40
PHILIPS

SAA9051

Digital multistandard TV decoder
NXP

SAA9055N

Consumer Circuit, Bipolar, PDIP28
PHILIPS

SAA9055P/8A

Consumer Circuit, Bipolar, PDIP28
PHILIPS

SAA9055P/8E

Consumer Circuit, Bipolar, PDIP28
PHILIPS

SAA9056

IC COLOR SIGNAL DECODER, PDIP28, Color Signal Converter
NXP

SAA9056

Consumer Circuit, PDIP28
PHILIPS

SAA9057A

IC SPECIALTY CONSUMER CIRCUIT, PDIP20, PLASTIC, SOT-146, DIP-20, Consumer IC:Other
NXP