SC87C51APN40 [NXP]

CMOS single-chip 8-bit microcontrollers; CMOS单芯片8位微控制器
SC87C51APN40
型号: SC87C51APN40
厂家: NXP    NXP
描述:

CMOS single-chip 8-bit microcontrollers
CMOS单芯片8位微控制器

微控制器
文件: 总30页 (文件大小:414K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
80C31/80C51/87C51  
CMOS single-chip 8-bit microcontrollers  
Product specification  
IC20 Data Handbook  
1996 Aug 16  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
DESCRIPTION  
PIN CONFIGURATIONS  
The Philips 80C31/80C51/87C51 is a high-performance  
microcontroller fabricated with Philips high-density CMOS  
technology. The CMOS 8XC51 is functionally compatible with the  
NMOS 8031/8051 microcontrollers. The Philips CMOS technology  
combines the high speed and density characteristics of HMOS with  
the low power attributes of CMOS. Philips epitaxial substrate  
minimizes latch-up sensitivity.  
P1.0  
P1.1  
40  
V
1
2
3
CC  
P0.0/AD0  
P0.1/AD1  
39  
38  
P1.2  
37 P0.2/AD2  
36  
P1.3  
P1.4  
4
5
P0.3/AD3  
35 P0.4/AD4  
34  
The 8XC51 contains a 4k × 8 ROM (80C51) EPROM (87C51), a 128  
× 8 RAM, 32 I/O lines, two 16-bit counter/timers, a five-source,  
two-priority level nested interrupt structure, a serial I/O port for either  
multi-processor communications, I/O expansion or full duplex UART,  
and on-chip oscillator and clock circuits.  
P1.5  
P1.6  
P1.7  
RST  
6
7
8
9
P0.5/AD5  
33 P0.6/AD6  
32  
31  
30  
P0.7/AD7  
CERAMIC  
AND  
PLASTIC  
DUAL  
IN-LINE  
PACKAGE  
In addition, the device has two software selectable modes of power  
reduction—idle mode and power-down mode. The idle mode freezes  
the CPU while allowing the RAM, timers, serial port, and interrupt  
system to continue functioning. The power-down mode saves the  
RAM contents but freezes the oscillator, causing all other chip  
functions to be inoperative.  
EA/V  
PP  
RxD/P3.0 10  
TxD/P3.1 11  
INT0/P3.2 12  
ALE/PROG  
29 PSEN  
13  
28 P2.7/A15  
27 P2.6/A14  
INT1/P3.3  
T0/P3.4 14  
T1/P3.5 15  
WR/P3.6 16  
RD/P3.7 17  
XTAL2 18  
XTAL1 19  
26  
P2.5/A13  
FEATURES  
25 P2.4/A12  
24 P2.3/A11  
8031/8051 compatible  
4k × 8 ROM (80C51)  
4k × 8 EPROM (87C51)  
ROMless (80C31)  
23  
22  
21  
P2.2/A10  
P2.1/A9  
P2.0/A8  
128 × 8 RAM  
20  
V
SS  
Two 16-bit counter/timers  
Full duplex serial channel  
Boolean processor  
6
1
40  
Memory addressing capability  
64k ROM and 64k RAM  
7
39  
29  
CERAMIC  
AND  
PLASTIC  
LEAD  
CHIP  
CARRIER  
Power control modes:  
Idle mode  
17  
Power-down mode  
CMOS and TTL compatible  
18  
28  
34  
Five speed ranges at V = 5V  
CC  
12MHz  
16MHz  
24MHz  
33MHz  
44  
1
33  
23  
PLASTIC  
QUAD  
FLAT  
Five package styles  
PACK  
Extended temperature ranges  
OTP package available  
11  
12  
22  
SU00001  
SEE PAGE 3 FOR QFP AND LCC PIN FUNCTIONS.  
2
1996 Aug 16  
853–0169 17187  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
CERAMIC AND PLASTIC LEADED CHIP CARRIER  
PIN FUNCTIONS  
PLASTIC QUAD FLAT PACK  
PIN FUNCTIONS  
44  
34  
6
1
40  
7
39  
1
33  
23  
LCC  
PQFP  
11  
17  
29  
18  
28  
12  
22  
Pin  
1
Function  
NC*  
Pin  
Function  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
XTAL2  
Pin  
Function  
P2.7/A15  
PSEN  
Pin  
1
Function  
P1.5  
Pin  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Function  
Pin  
Function  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
V
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
SS  
2
P1.0  
2
P1.6  
NC*  
3
P1.1  
ALE/PROG  
NC*  
3
P1.7  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN  
4
P1.2  
4
RST  
5
P1.3  
EA/V  
PP  
5
P3.0/RxD  
NC*  
6
P1.4  
XTAL1  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
6
7
P1.5  
V
7
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
XTAL2  
XTAL1  
SS  
8
P1.6  
NC*  
8
V
CC  
9
P1.7  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
9
NC*  
P1.0  
P1.1  
P1.2  
P.13  
P1.4  
10  
11  
12  
13  
14  
15  
RST  
10  
11  
12  
13  
14  
15  
P3.0/RxD  
NC*  
ALE/PROG  
NC*  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
V
EA/V  
PP  
CC  
P0.7/AD7  
* DO NOT CONNECT  
* DO NOT CONNECT  
SU00003  
SU00002  
LOGIC SYMBOL  
V
V
SS  
CC  
XTAL1  
ADDRESS AND  
DATA BUS  
XTAL2  
RST  
EA/V  
PP  
PSEN  
ALE/PROG  
RxD  
TxD  
INT0  
INT1  
T0  
ADDRESS BUS  
T1  
WR  
RD  
SU00004  
3
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
ORDERING INFORMATION  
PHILIPS NORTH AMERICA  
DRAWING  
o
TEMPERATURE RANGE C  
Freq  
MHz  
DRAWING  
1
EPROM  
ROMless  
ROM  
NUMBER  
0590B  
1472A  
NUMBER  
AND PACKAGE  
SC87C51CCF40  
SC87C51CCK44  
0 to +70, Ceramic Dual In-line Package, UV  
0 to +70, Ceramic Leaded Chip Carrier, UV  
3.5 to 12  
3.5 to 12  
3.5 to 12  
3.5 to 12  
3.5 to 12  
SC87C51CCN40 SOT129-1 SC80C31BCCN40 SC80C51BCCN40 SOT129-1 0 to +70, Plastic Dual In-line Package, OTP  
SC87C51CCA44 SOT187-2 SC80C31BCCA44 SC80C51BCCA44 SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP  
SC87C51CCB44 SOT307-2 SC80C31BCCB44 SC80C51BCCB44 SOT307-2 0 to +70, Plastic Quad Flat Pack, OTP  
SC87C51ACF40  
0590B  
–40 to +85, Ceramic Dual In-line Package, UV 3.5 to 12  
SC87C51ACN40 SOT129-1 SC80C31BACN40 SC80C51BACN40 SOT129-1 –40 to +85, Plastic Dual In-line Package, OTP 3.5 to 12  
SC87C51ACA44 SOT187-2 SC80C31BACA44 SC80C51BACA44 SOT187-2 –40 to +85, Plastic Leaded Chip Carrier, OTP  
SC87C51ACB44 SOT307-2 SC80C31BACB44 SC80C51BACB44 SOT307-2 –40 to +85, Plastic Quad Flat Pack, OTP  
3.5 to 12  
3.5 to 12  
3.5 to 16  
3.5 to 16  
3.5 to 16  
3.5 to 16  
3.5 to 16  
SC87C51CGF40  
SC87C51CGK44  
0590B  
1472A  
0 to +70, Ceramic Dual In-line Package, UV  
0 to +70, Ceramic Leaded Chip Carrier, UV  
SC87C51CGN40 SOT129-1 SC80C31BCGN40 SC80C51BCGN40 SOT129-1 0 to +70, Plastic Dual In-line Package, OTP  
SC87C51CGA44 SOT187-2 SC80C31BCGA44 SC80C51BCGA44 SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP  
SC87C51CGB44 SOT307-2 SC80C31BCGB44 SC80C51BCGB44 SOT307-2 0 to +70, Plastic Quad Flat Pack, OTP  
SC87C51AGF40  
0590B  
–40 to +85, Ceramic Dual In-line Package, UV 3.5 to 16  
SC87C51AGN40 SOT129-1 SC80C31BAGN40 SC80C51BAGN40 SOT129-1 –40 to +85, Plastic Dual In-line Package, OTP 3.5 to 16  
SC87C51AGA44 SOT187-2 SC80C31BAGA44 SC80C51BAGA44 SOT187-2 –40 to +85, Plastic Leaded Chip Carrier, OTP  
SC87C51AGB44 SOT307-2 SC80C31BAGB44 SC80C51BAGB44 SOT307-2 –40 to +85, Plastic Quad Flat Pack, OTP  
3.5 to 16  
3.5 to 16  
SC87C51CPF40  
SC87C51CPK44  
0590B  
1472A  
0 to +70, Ceramic Dual In-line Package, UV  
0 to +70, Ceramic Leaded Chip Carrier, UV  
3.5 to 24  
3.5 to 24  
3.5 to 24  
3.5 to 24  
SC87C51CPN40 SOT129-1 SC80C31BCPN40 SC80C51BCPN40 SOT129-1 0 to +70, Plastic Dual In-line Package, OTP  
SC87C51CPA44 SOT187-2 SC80C31BCPA44 SC80C51BCPA44 SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP  
SC87C51APF40  
0590B  
–40 to +85, Ceramic Dual In-line Package, UV  
SC87C51APN40 SOT129-1 SC80C31BAPN40 SC80C51BAPN40 SOT129-1 –40 to +85, Plastic Dual In-line Package, OTP 3.5 to 24  
SC87C51APA44  
SOT187-2 SC80C31BAPA44 SC80C51BAPA44  
SOT187-2 –40 to +85, Plastic Leaded Chip Carrier, OTP  
3.5 to 24  
SC87C51CYF40  
SC87C51CYK44  
0590B  
1472A  
0 to +70, Ceramic Dual In-line Package, UV  
0 to +70, Ceramic Leaded Chip Carrier, UV  
3.5 to 33  
3.5 to 33  
3.5 to 33  
3.5 to 33  
SC87C51CYN40 SOT129-1 SC80C31BCYN40 SC80C51BCYN40 SOT129-1 0 to +70, Plastic Dual In-line Package, OTP  
SC87C51CYA44 SOT187-2 SC80C31BCYA44 SC80C51BCYA44 SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP  
1. OTP = One Time Programmable EPROM. UV = UV Erasable EPROM  
2. SOT311 replaced by SOT307-2.  
4
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
ORDERING INFORMATION (Continued)  
PHILIPS  
DRAWING  
o
ROMless  
(ORDER NUMBER)  
ROMless  
(MARKING NUMBER)  
TEMPERATURE RANGE C  
Freq  
MHz  
1
ROM  
NUMBER  
AND PACKAGE  
PCB80C31-2 N  
PCB80C31-2 A  
PCB80C31BH2-12P  
PCB80C51BH-2P  
SOT129-1 0 to +70, Plastic Dual In-line Package, OTP  
0.5 to 12  
0.5 to 12  
0.5 to 12  
PCB80C31BH2-12WP PCB80C51BH-2WP SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP  
2
PCB80C31BH2-12H  
PCB80C51BH-2H  
SOT307-2 0 to +70, Plastic Quad Flat Pack, OTP  
PCB80C31-3 N  
PCB80C31-3 A  
PCB80C31BH3-16P  
PCB80C51BH-3P  
SOT129-1 0 to +70, Plastic Dual In-line Package, OTP  
1.2 to 16  
1.2 to 16  
1.2 to 16  
PCB80C31BH3-16WP PCB80C51BH-3WP SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP  
2
PCB80C31BH3-16H  
PCB80C51BH-3H  
SOT307-2 0 to +70, Plastic Quad Flat Pack, OTP  
PCF80C31-3 N  
PCF80C31-3 A  
PCF80C31BH3-16P  
PCF80C51BH-3P  
SOT129-1 –40 to +85, Plastic Dual In-line Package, OTP 1.2 to 16  
PCF80C31BH3-16WP PCF80C51BH-3WP SOT187-2 –40 to +85, Plastic Leaded Chip Carrier, OTP  
1.2 to 16  
1.2 to 16  
1.2 to 16  
1.2 to 16  
2
PCF80C31BH3-16H  
PCA80C31BH3-16P  
PCF80C51BH-3H  
PCA80C51BH-3P  
SOT307-2 –40 to +85, Plastic Quad Flat Pack, OTP  
SOT129-1 –40 to +125, Plastic Dual In-line Package  
PCA80C31BH3-16WP PCA80C51BH-3WP SOT187-2 –40 to +125, Plastic Leaded Chip Carrier  
PCB80C31-4 N  
PCB80C31-4 A  
PCB80C31BH4-24P  
PCB80C51BH-4P  
SOT129-1 0 to +70, Plastic Dual In-line Package, OTP  
1.2 to 24  
1.2 to 24  
1.2 to 24  
PCB80C31BH4-24WP PCB80C51BH-4WP SOT187-2 0 to +70, Plastic Leaded Chip Carrier, OTP  
2
PCB80C31BH4-24H  
PCB80C51BH-4H  
SOT307-2 0 to +70, Plastic Quad Flat Pack, OTP  
PCF80C31-4 N  
PCF80C31-4 A  
PCF80C31BH4-24P  
PCF80C51BH-4P  
SOT129-1 –40 to +85, Plastic Dual In-line Package, OTP 1.2 to 24  
PCF80C31BH4-24WP PCF80C51BH-4WP SOT187-2 –40 to +85, Plastic Leaded Chip Carrier, OTP  
1.2 to 24  
1.2 to 24  
2
PCF80C31BH4-24H  
PCF80C51BH-4H  
SOT307-2 –40 to +85, Plastic Leaded Chip Carrier, OTP  
PCB80C31-5 N  
PCB80C31-5 A  
PCB80C31-5 B  
PCB80C31BH5-30P  
PCB80C51BH-5P  
SOT129-1 0 to +70, Plastic Dual In-line Package  
1.2 to 33  
1.2 to 33  
1.2 to 33  
PCB80C31BH5-30WP PCB80C51BH-5WP SOT187-2 0 to +70, Plastic Leaded Chip Carrier  
2
PCB80C31BH5-30H  
PCB80C51BH-5H  
SOT307-2 0 to +70, Plastic Quad Flat Pack  
5
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
BLOCK DIAGRAM  
P0.0–P0.7  
P2.0–P2.7  
PORT 0  
DRIVERS  
PORT 2  
DRIVERS  
V
CC  
V
SS  
RAM ADDR  
REGISTER  
PORT 0  
LATCH  
PORT 2  
LATCH  
ROM/EPROM  
RAM  
B
STACK  
POINTER  
ACC  
REGISTER  
PROGRAM  
ADDRESS  
REGISTER  
TMP1  
TMP2  
BUFFER  
PCON SCON TMOD TCON  
ALU  
TH0  
TL0  
TH1  
TL1  
PC  
INCRE-  
MENTER  
SBUF  
IE  
IP  
PSW  
INTERRUPT, SERIAL  
PORT AND TIMER BLOCKS  
PROGRAM  
COUNTER  
PSEN  
ALE/PROG  
TIMING  
AND  
CONTROL  
DPTR  
EA/V  
PP  
RST  
PORT 1  
LATCH  
PORT 3  
LATCH  
PD  
OSCILLATOR  
PORT 1  
DRIVERS  
PORT 3  
DRIVERS  
XTAL1  
XTAL2  
P1.0–P1.7  
P3.0–P3.7  
SU00005  
6
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
PIN DESCRIPTION  
PIN NO.  
MNEMONIC  
DIP  
20  
LCC  
22  
QFP TYPE  
NAME AND FUNCTION  
V
V
16  
38  
I
I
Ground: 0V reference.  
SS  
40  
44  
Power Supply: This is the power supply voltage for normal, idle, and power-down  
CC  
operation.  
P0.0–0.7  
39–32 43–36 37–30  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to  
them float and can be used as high-impedance inputs. Port 0 is also the multiplexed  
low-order address and data bus during accesses to external program and data memory. In  
this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the  
code bytes during program verification in the 87C51. External pull-ups are required during  
program verification.  
P1.0–P1.7  
P2.0–P2.7  
1–8  
2–9  
40-44,  
1–3  
I/O  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As  
inputs, port 1 pins that are externally pulled low will source current because of the internal  
pull-ups. (See DC Electrical Characteristics: I ). Port 1 also receives the low-order address  
IL  
byte during program memory verification.  
21–28 24–31 18–25  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As  
inputs, port 2 pins that are externally being pulled low will source current because of the  
internal pull-ups. (See DC Electrical Characteristics: I ). Port 2 emits the high-order  
IL  
address byte during fetches from external program memory and during accesses to  
external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it  
uses strong internal pull-ups when emitting 1s. During accesses to external data memory  
that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function  
register.  
P3.0–P3.7  
10–17  
11,  
5,  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As  
inputs, port 3 pins that are externally being pulled low will source current because of the  
13–19 7–13  
pull-ups. (See DC Electrical Characteristics: I ). Port 3 also serves the special features of  
IL  
the 80C51 family, as listed below:  
10  
11  
12  
13  
14  
15  
16  
17  
11  
13  
14  
15  
16  
17  
18  
19  
5
7
8
I
O
I
I
I
I
O
O
RxD (P3.0): Serial input port  
TxD (P3.1): Serial output port  
INT0 (P3.2): External interrupt  
INT1 (P3.3): External interrupt  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
9
10  
11  
12  
13  
RST  
9
10  
4
I
Reset: A high on this pin for two machine cycles while the oscillator is running, resets the  
device. An internal diffused resistor to V permits a power-on reset using only an external  
SS  
capacitor to V  
.
CC  
ALE/PROG  
30  
33  
27  
I/O  
Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the  
address during an access to external memory. In normal operation, ALE is emitted at a  
constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking.  
Note that one ALE pulse is skipped during each access to external data memory. This pin is  
also the program pulse input (PROG) during EPROM programming.  
PSEN  
29  
31  
32  
35  
26  
29  
O
I
Program Store Enable: The read strobe to external program memory. When the device is  
executing code from the external program memory, PSEN is activated twice each machine  
cycle, except that two PSEN activations are skipped during each access to external data  
memory. PSEN is not activated during fetches from internal program memory.  
EA/V  
External Access Enable/Programming Supply Voltage: EA must be externally held low  
to enable the device to fetch code from external program memory locations 0000H to  
0FFFH. If EA is held high, the device executes from internal program memory unless the  
program counter contains an address greater than 0FFFH. This pin also receives the  
PP  
12.75V programming supply voltage (V ) during EPROM programming.  
PP  
XTAL1  
XTAL2  
19  
18  
21  
20  
15  
14  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator  
circuits.  
O
Crystal 2: Output from the inverting oscillator amplifier.  
7
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
Table 1.  
80C52/80C54/80C58 Special Function Registers  
DIRECT  
DESCRIPTION  
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION  
RESET  
VALUE  
SYMBOL  
ADDRESS MSB  
LSB  
ACC*  
AUXR#  
AUXR1#  
B*  
Accumulator  
Auxiliary  
E0H  
8EH  
A2H  
F0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
00H  
AO  
DPS  
F0  
xxxxxxx0B  
xxxx00x0B  
00H  
Auxiliary 1 (Note 2)  
B register  
WUPD  
F3  
0
F7  
F6  
F5  
F4  
F2  
F1  
DPTR:  
DPH  
DPL  
Data Pointer (2 bytes)  
Data Pointer High  
Data Pointer Low  
83H  
82H  
00H  
00H  
AF  
EA  
BF  
AE  
EC  
BE  
AD  
ET2  
BD  
AC  
ES  
BC  
PS  
B4  
AB  
ET1  
BB  
AA  
EX1  
BA  
A9  
ET0  
B9  
A8  
EX0  
B8  
IE*  
Interrupt Enable  
Interrupt Priority  
Interrupt Priority High  
Port 0  
A8H  
B8H  
B7H  
80H  
90H  
A0H  
00H  
IP*  
PT2  
B5  
PT1  
B3  
PX1  
B2  
PT0  
B1  
PX0  
B0  
x0000000B  
x0000000B  
FFH  
B7  
B6  
IPH#  
P0*  
P1*  
P2*  
P3*  
PT2H  
85  
PSH  
84  
PT1H  
83  
PX1H PT0H  
PX0H  
80  
87  
86  
82  
AD2  
92  
81  
AD1  
91  
AD7  
97  
AD6  
96  
AD5  
95  
AD4  
94  
AD3  
93  
AD0  
90  
Port 1  
T2EX  
A1  
T2  
FFH  
A7  
AD15  
B7  
RD  
A6  
AD14  
B6  
WR  
A5  
A4  
A3  
A2  
A0  
Port 2  
AD13  
B5  
AD12  
B4  
AD11  
B3  
AD10  
B2  
AD9  
B1  
AD8  
B0  
FFH  
Port 3  
B0H  
87H  
T1  
T0  
INT1  
INT0  
TxD  
RxD  
FFH  
1
PCON#  
Power Control  
SMOD1  
D7  
SMOD0  
D6  
GF1  
D3  
GF0  
D2  
PD  
D1  
IDL  
D0  
P
00xx0000B  
D5  
F0  
D4  
PSW*  
Program Status Word  
D0H  
CY  
AC  
RS1  
RS0  
OV  
00H  
SADDR#  
SADEN#  
Slave Address  
Slave Address Mask  
A9H  
B9H  
00H  
00H  
SBUF  
Serial Data Buffer  
99H  
xxxxxxxxB  
9F  
9E  
9D  
9C  
9B  
9A  
99  
TI  
98  
RI  
SM0/FE  
SCON*  
SP  
Serial Control  
Stack Pointer  
98H  
81H  
SM1  
SM2  
REN  
TB8  
RB8  
00H  
07H  
8F  
TF1  
CF  
8E  
TR1  
CE  
8D  
TF0  
CD  
8C  
TR0  
CC  
8B  
IE1  
CB  
8A  
IT1  
CA  
89  
IE0  
88  
IT0  
TCON*  
Timer Control  
88H  
00H  
C9  
C8  
T2MOD#  
TH0  
TH1  
TL0  
TL1  
Timer 2 Mode Control  
Timer High 0  
Timer High 1  
Timer Low 0  
Timer Low 1  
C9H  
8CH  
8DH  
8AH  
8BH  
T2OE  
DCEN  
xxxxxx00B  
00H  
00H  
00H  
00H  
TMOD  
Timer Mode  
89H  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
00H  
*
SFRs are bit addressable.  
#
SFRs are modified from or added to the 80C51 SFRs.  
Reserved bits.  
1. Reset value depends on reset source.  
2. Available only on SC80C51.  
8
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
OSCILLATOR CHARACTERISTICS  
IDLE MODE  
XTAL1 and XTAL2 are the input and output, respectively, of an  
inverting amplifier. The pins can be configured for use as an on-chip  
oscillator, as shown in the logic symbol.  
In idle mode, the CPU puts itself to sleep while all of the on-chip  
peripherals stay active. The instruction to invoke the idle mode is the  
last instruction executed in the normal operating mode before the  
idle mode is activated. The CPU contents, the on-chip RAM, and all  
of the special function registers remain intact during this mode. The  
idle mode can be terminated either by any enabled interrupt (at  
which time the process is picked up at the interrupt service routine  
and continued), or by a hardware reset which starts the processor in  
the same manner as a power-on reset.  
To drive the device from an external clock source, XTAL1 should be  
driven while XTAL2 is left unconnected. There are no requirements  
on the duty cycle of the external clock signal, because the input to  
the internal clock circuitry is through a divide-by-two flip-flop.  
However, minimum and maximum high and low times specified in  
the data sheet must be observed.  
POWER-DOWN MODE  
RESET  
In the power-down mode, the oscillator is stopped and the  
instruction to invoke power-down is the last instruction executed.  
Only the contents of the on-chip RAM are preserved. A hardware  
reset is the only way to terminate the power-down mode. the control  
bits for the reduced power modes are in the special function register  
PCON.  
A reset is accomplished by holding the RST pin high for at least two  
machine cycles (24 oscillator periods), while the oscillator is running.  
To insure a good power-up reset, the RST pin must be high long  
enough to allow the oscillator time to start up (normally a few  
milliseconds) plus two machine cycles.  
Table 2 shows the state of I/O ports during low current operating  
modes.  
Table 2. External Pin Status During Idle and Power-Down Modes  
MODE  
PROGRAM MEMORY  
Internal  
ALE  
PSEN  
PORT 0  
Data  
PORT 1  
Data  
PORT 2  
Data  
PORT 3  
Data  
Idle  
Idle  
1
1
0
0
1
1
0
0
External  
Float  
Data  
Address  
Data  
Data  
Power-down  
Power-down  
Internal  
Data  
Data  
Data  
External  
Float  
Data  
Data  
Data  
ROM CODE SUBMISSION  
When submitting ROM code for the 80C51, the following must be specified:  
1. 4k byte user ROM data  
2. 64 byte ROM encryption key (SC80C51 only)  
3. ROM security bits (SC80C51 only).  
ADDRESS  
0000H to 0FFFH  
1000H to 101FH  
1020H  
CONTENT  
DATA  
KEY  
BIT(S)  
7:0  
7:0  
0
COMMENT  
User ROM Data  
ROM Encryption Key  
ROM Security Bit 1  
ROM Security Bit 2  
SEC  
1020H  
SEC  
1
Security Bit 1: When programmed, this bit has two effects on masked ROM parts:  
1. External MOVC is disabled, and  
2. EA# is latched on Reset.  
Security Bit 2: When programmed, this bit inhibits Verify User ROM.  
9
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
Electrical Deviations from Commercial Specifications for Extended Temperature Range (87C51)  
DC and AC parameters not included here are the same as in the commercial temperature range table.  
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= –40°C to +85°C, V = 5V ±10%, V = 0V (Philips North America SC87C51);  
CC SS  
For SC87C51 (33MHz only), T  
= 0°C to +70°C, V = 5V ±5%  
CC  
amb  
T
amb  
= –40°C to +85°C, V = 5V ±10%, V = 0V (PCB80C31/51 and PCF80C31/51 Philips Parts Only)  
CC SS  
TEST  
LIMITS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
0.2V –0.15  
UNIT  
V
V
V
V
V
V
Input low voltage, except EA (Philips North America)  
Input low voltage, except EA (Philips)  
Input low voltage to EA  
IL  
CC  
0.2V –0.25  
V
IL  
CC  
0.2V –0.45  
V
IL1  
IH  
CC  
Input high voltage, except XTAL1, RST  
Input high voltage to XTAL1, RST  
Logical 0 input current, ports 1, 2, 3  
Logical 1-to-0 transition current, ports 1, 2, 3  
Power supply current:  
0.2V +1  
V
CC  
V
CC  
+0.5  
+0.5  
V
CC  
0.7V +0.1  
V
IH1  
CC  
I
I
I
V
= 0.45V  
= 2.0V  
IN  
–75  
µA  
µA  
IL  
IN  
V
–750  
TL  
V
CC  
= 4.5–5.5V  
CC  
1
Active mode @ 16MHz (Philips PCB80C31/51, PCF80C31/51)  
Active mode @ 12MHz (Philips North America SC87C51)  
Idle mode @ 16MHz (Philips PCB80C31/51, PCF80C31/51)  
Idle mode @ 12MHz (Philips North America SC87C51)  
Power-down mode (Philips PCB80C31/51, PCF80C31/51)  
Power-down mode (Philips North America SC87C51)  
25  
20  
6.5  
5
75  
50  
mA  
mA  
mA  
mA  
µA  
2
3
µA  
NOTES:  
1. The operating supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; EA = RST = Port 0 = V  
.
CC  
CC  
2. The idle mode supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; EA = Port 0 = V ; RST = V  
CC CC SS.  
3. The power-down current is measured with all output pins disconnected, XTAL2 not connected, EA = Port 0 = V ; RST = V  
CC  
SS.  
ABSOLUTE MAXIMUM RATINGS1, 2, 3  
PARAMETER  
RATING  
0 to +70 or –40 to +85  
–65 to +150  
0 to +13.0  
–0.5 to +6.5  
15  
UNIT  
Operating temperature under bias  
Storage temperature range  
°C  
°C  
V
Voltage on EA/V pin to V  
PP  
SS  
Voltage on any other pin to V  
V
SS  
Maximum I per I/O pin  
mA  
W
OL  
Power dissipation (based on package heat transfer limitations, not device power consumption)  
1.5  
NOTES:  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise  
SS  
noted.  
10  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±20%, V = 0V (PCB80C31/51 and PCF80C31/51) (12, 16, and 24MHz versions)  
CC SS  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V (87C51 12, 16, and 24MHz versions) (PCB80C31/51 33MHz version);  
CC SS  
For SC87C51 (33MHz only) T  
= 0°C to +70°C, V = 5V ±5%  
amb  
CC  
TEST  
LIMITS  
1
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
–0.5  
0
TYPICAL  
MAX  
0.2V –0.1  
UNIT  
V
7
V
V
V
V
V
V
V
Input low voltage, except EA  
IL  
CC  
7
Input low voltage to EA  
0.2V –0.3  
V
IL1  
IH  
CC  
7
Input high voltage, except XTAL1, RST  
0.2V +0.9  
V
+0.5  
+0.5  
V
CC  
CC  
CC  
7
Input high voltage, XTAL1, RST  
0.7V  
V
V
IH1  
OL  
OL1  
OH  
CC  
11  
2
Output low voltage, ports 1, 2, 3  
I
I
I
= 1.6mA  
0.45  
0.45  
V
OL  
OL  
OH  
11  
2
Output low voltage, port 0, ALE, PSEN  
= 3.2mA  
V
3
Output high voltage, ports 1, 2, 3, ALE, PSEN  
= –60µA,  
= –25µA  
= –10µA  
2.4  
V
V
V
I
I
0.75V  
OH  
OH  
CC  
CC  
0.9V  
V
OH1  
Output high voltage (port 0 in external bus mode)  
I
I
= –800µA,  
= –300µA  
2.4  
V
V
V
OH  
OH  
I
0.75V  
CC  
CC  
= –80µA  
0.9V  
OH  
7
I
I
I
I
Logical 0 input current, ports 1, 2, 3  
V
= 0.45V  
–50  
–650  
±10  
µA  
µA  
µA  
IL  
IN  
7
Logical 1-to-0 transition current, ports 1, 2, 3  
See note 4  
= V or V  
IH  
TL  
LI  
Input leakage current, port 0  
V
IN  
IL  
7
Power supply current:  
See note 6  
CC  
8
5
Active mode @ 12MHz (Philips)  
Active mode @ 12MHz (Philips North America)  
18  
19  
4.4  
4
mA  
mA  
mA  
mA  
µA  
11.5  
9
Idle mode @ 12MHz (Philips)  
Idle mode @ 12MHz (Philips North America)  
Power-down mode (Philips and  
1.3  
3
10  
50  
Philips North America)  
R
C
Internal reset pull-down resistor  
(Philips North America)  
RST  
IO  
50  
50  
300  
150  
kΩ  
kΩ  
(Philips)  
12  
Pin capacitance  
10  
pF  
NOTES:  
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5V.  
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
3. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the 0.9V specification when the  
OH  
CC  
address bits are stabilizing.  
4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when V is approximately 2V.  
IN  
5. I  
at other frequencies (for Philips North America parts) is given by: Active mode: I  
= 1.43 X FREQ + 1.90;  
CCMAX  
CCMAX  
Idle mode: I  
= 0.14 X FREQ +2.31, where FREQ is the external oscillator frequency in MHz. I  
is given in mA. See Figure 8.  
CCMAX  
CCMAX  
6. See Figures 9 through 12 for I test conditions.  
CC  
7. For Philips North America parts when T  
= –40°C to +85°C or Philips parts when T  
= –40°C to +125°C, see DC Electrical  
amb  
amb  
Characteristics table on previous page.  
8. The operating supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; EA = RST = Port 0 = V  
.
CC  
CC  
9. The idle mode supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10ns; V = V + 0.5V;  
r
f
IL  
SS  
V
IH  
= V – 0.5V; XTAL2 not connected; EA = Port 0 = V ; RST = V  
CC CC SS.  
10.The power-down current is measured with all output pins disconnected, XTAL2 not connected, EA = Port 0 = V ; RST = V  
CC  
SS.  
11. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin:  
15mA  
26mA  
67mA  
OL  
Maximum I per 8-bit port:  
Maximum I total for all outputs:  
OL  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
12.Pin capacitance for the ceramic DIP package is 15pF maximum.  
1996 Aug 16  
11  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
DC ELECTRICAL CHARACTERISTICS FOR PHILIPS NORTH AMERICA DEVICES (SC80C31 AND SC80C51)  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%; V = 0V  
CC SS  
LIMITS  
TEST  
CONDITIONS  
SYMBOL  
PARAMETER  
UNIT  
1
MIN  
TYP  
MAX  
0.2V –0.1  
V
V
V
Input low voltage  
4.5V < V < 5.5V  
–0.5  
V
V
V
IL  
CC  
CC  
Input high voltage (ports 0, 1, 2, 3, EA)  
Input high voltage, XTAL1, RST  
0.2V +0.9  
V
CC  
V
CC  
+0.5  
+0.5  
IH  
CC  
0.7V  
IH1  
CC  
V
OL  
= 4.5V  
= 1.6mA  
CC  
8
V
V
V
V
Output low voltage, ports 1, 2, 3  
0.4  
V
V
V
OL  
2
I
I
V
CC  
= 4.5V  
8, 7  
Output low voltage, port 0, ALE, PSEN  
0.4  
OL1  
OH  
2
= 3.2mA  
OL  
V
CC  
= 4.5V  
= –30µA  
3
Output high voltage, ports 1, 2, 3  
V
V
– 0.7  
– 0.7  
CC  
I
OH  
Output high voltage (port 0 in external bus mode),  
V
CC  
= 4.5V  
= –3.2mA  
V
OH1  
CC  
9
3
ALE , PSEN  
I
OH  
I
I
Logical 0 input current, ports 1, 2, 3  
V
V
= 0.4V  
= 2.0V  
–1  
–50  
–650  
±10  
µA  
µA  
µA  
IL  
IN  
IN  
6
Logical 1-to-0 transition current, ports 1, 2, 3  
TL  
See note 4  
I
I
Input leakage current, port 0  
0.45 < V < V – 0.3  
LI  
IN  
CC  
Power supply current (see Figure 8):  
See note 5  
CC  
5
Active mode @ 16MHz  
Idle mode @ 16MHz  
11.5  
1.3  
3
32  
5
50  
µA  
µA  
µA  
µA  
5
Power-down mode  
T
T
amb  
= 0 to +70°C  
amb  
= –40 to +85°C  
75  
R
C
Internal reset pull-down resistor  
40  
225  
15  
kΩ  
RST  
IO  
10  
Pin capacitance (except EA)  
pF  
NOTES:  
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5V.  
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
3. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the (V –0.7) specification when the  
OH  
CC  
address bits are stabilizing.  
4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when V is approximately 2V.  
IN  
5. See Figures 9 through 12 for I test conditions.  
CC  
Active Mode:  
Idle Mode:  
I
I
= 1.5 × FREQ + 8.0;  
= 0.14 × FREQ +2.31; See Figure 8.  
CC  
CC  
6. This value applies to T  
= 0°C to +70°C. For T = –40°C to +85°C, I = –750µA.  
amb TL  
amb  
7. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
8. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin:  
15mA (*NOTE: This is 85°C specification.)  
OL  
Maximum I per 8-bit port:  
26mA  
71mA  
OL  
Maximum total I for all outputs:  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
9. ALE is tested to V  
, except when ALE is off then V is the voltage specification.  
OH  
OH1  
10.Pin capacitance is characterized but not tested. Pin capacitance is less than 25pF. Pin capacitance of ceramic package is less than 15pF  
(except EA it is 25pF).  
12  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
AC ELECTRICAL CHARACTERISTICS FOR SC87C51 12–33MHz PHILIPS NORTH AMERICA DEVICES  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V (SC87C51 12, 16 and 24MHz versions);  
CC SS  
For SC87C51 (33MHz only) T  
= = 0°C to +70°C, V = 5V ±5%  
amb  
CC  
3
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
MIN  
MAX  
UNIT  
Oscillator frequency: Speed Versions  
CLCL  
SC87C51  
C
G
P
Y
3.5  
3.5  
3.5  
3.5  
12  
16  
24  
33  
MHz  
MHz  
MHz  
MHz  
t
t
t
t
t
t
t
t
t
t
t
1
1
1
1
1
1
1
1
1
1
1
ALE pulse width  
2t  
–40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
PSEN pulse width  
t
–13  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
t
–20  
4t  
3t  
–65  
CLCL  
t
–13  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
3t  
CLCL  
–20  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–45  
CLCL  
0
t
–10  
CLCL  
5t  
CLCL  
–55  
10  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
RD pulse width  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
5t  
2t  
–90  
–28  
CLCL  
0
Data float after RD  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
AVDV  
LLWL  
AVWL  
QVWX  
WHQX  
RLAZ  
WHLH  
3t  
–50  
–75  
3t  
CLCL  
+50  
CLCL  
4t  
CLCL  
t
–20  
–20  
CLCL  
CLCL  
t
RD low to address float  
RD or WR high to ALE high  
0
t
–20  
t
+25  
CLCL  
CLCL  
External Clock  
t
t
t
t
5
5
5
5
High time  
Low time  
Rise time  
Fall time  
12  
12  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
20  
20  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. For all Philips North America speed versions only.  
4. Interfacing the 87C51 to devices with float times up to 50ns is permitted. This limited bus contention will not cause damage to port 0 drivers.  
13  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
AC ELECTRICAL CHARACTERISTICS FOR PHILIPS DEVICES  
1, 2, 4, 5  
T
amb  
= 0°C to +70°C, V = 5V ±20%, V = 0V (PCB80C31/51, PCF80C31/51)  
CC SS  
3
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency: Speed Versions  
MIN  
MAX  
UNIT  
CLCL  
PCB8031/51  
–2  
–3  
–4  
–5  
0.5  
1.2  
1.2  
1.2  
12  
16  
24  
33  
MHz  
MHz  
MHz  
MHz  
PCA/PCB/PCF80C31/51  
PCB/PCF80C31/51  
PCB/FB80C31/51  
t
t
t
t
t
t
t
t
t
t
t
1
1
1
1
1
1
1
1
1
1
1
ALE pulse width  
2t  
–40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
PSEN pulse width  
t
t
–25  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
–25  
4t  
3t  
–65  
CLCL  
t
–25  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
3t  
CLCL  
–45  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–60  
CLCL  
0
t
–25  
CLCL  
5t  
CLCL  
–80  
10  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
RD pulse width  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
5t  
2t  
–90  
–28  
CLCL  
0
Data float after RD  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
AVDV  
LLWL  
AVWL  
QVWX  
WHQX  
RLAZ  
WHLH  
3t  
–50  
–75  
3t  
CLCL  
+50  
CLCL  
4t  
CLCL  
t
t
–30  
–25  
CLCL  
CLCL  
RD low to address float  
RD or WR high to ALE high  
0
t
–25  
t
+25  
CLCL  
CLCL  
External Clock  
t
t
t
t
5
5
5
5
High time  
Low time  
Rise time  
Fall time  
15  
15  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
20  
20  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. For all Philips speed versions only.  
4. Interfacing the 80C31/51 to devices with float times up to 30ns is permitted. This limited bus contention will not cause damage to port 0  
drivers.  
5. V = 5V ±10% for 33MHz.  
CC  
14  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
AC ELECTRICAL CHARACTERISTICS FOR PHILIPS NORTH AMERICA DEVICES (SC80C31 AND SC80C51)  
1, 2, 3  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V  
CC SS  
16MHz CLOCK  
VARIABLE CLOCK  
MIN MAX  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency  
MIN  
MAX  
UNIT  
1
CLCL  
Speed versions : C, G  
3.5  
16  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
1
1
1
1
1
1
1
1
1
1
1
ALE pulse width  
85  
22  
32  
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
–40  
–30  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
t
150  
82  
4t  
3t  
–100  
CLCL  
32  
t
–30  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
142  
3t  
–45  
CLCL  
4
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
–105  
CLCL  
0
0
37  
207  
10  
t
–25  
CLCL  
4
Address to valid instruction in  
5t  
–105  
CLCL  
PSEN low to address float  
10  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
3
RD pulse width  
275  
275  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
147  
5t  
–165  
CLCL  
0
0
Data float after RD  
65  
2t  
–60  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
350  
397  
239  
8t  
CLCL  
9t  
CLCL  
–150  
–165  
AVDV  
LLWL  
137  
122  
13  
3t  
–50  
3t  
+50  
CLCL  
CLCL  
4t  
–130  
–50  
AVWL  
QVWX  
WHQX  
QVWH  
RLAZ  
WHLH  
CLCL  
CLCL  
CLCL  
CLCL  
t
13  
t
–50  
Data valid to WR high  
RD low to address float  
RD or WR high to ALE high  
287  
7t  
–150  
2, 3  
2, 3  
0
0
23  
103  
t
–40  
t
+40  
CLCL  
CLCL  
External Clock  
t
t
t
t
5
5
5
5
High time  
Low time  
Rise time  
Fall time  
20  
20  
20  
20  
t
–t  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL CLCX  
t
–t  
CLCL CHCX  
20  
20  
20  
20  
Shift Register  
t
t
t
t
t
4
4
4
4
4
Serial port clock cycle time  
750  
492  
8
12t  
ns  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t  
–133  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
2t  
CLCL  
–117  
0
0
492  
10t  
–133  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. Interfacing the 80C31/51 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0  
drivers.  
4. See application note AN457 for external memory interfacing.  
15  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
AC ELECTRICAL CHARACTERISTICS FOR PHILIPS NORTH AMERICA DEVICES (SC80C31 AND SC80C51)  
1, 2, 3  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V  
CC SS  
4
24MHz CLOCK  
VARIABLE CLOCK  
33MHz CLOCK  
SYMBOL FIGURE  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNIT  
1/t  
CLCL  
1
Oscillator frequency  
3.5  
33  
Speed versions : P (24MHz)  
: Y (33MHz)  
3.5  
24  
MHz  
3.5  
21  
5
33  
t
t
t
t
t
t
t
t
t
t
t
1
1
1
1
1
1
1
1
1
1
1
ALE pulse width  
43  
17  
17  
2t  
–40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
t
–25  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
–25  
102  
65  
4t  
3t  
–65  
–60  
55  
30  
CLCL  
17  
80  
t
–25  
5
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
3t  
CLCL  
–45  
45  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
CLCL  
0
0
0
17  
128  
10  
t
–25  
5
CLCL  
5t  
CLCL  
–80  
70  
10  
10  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
3
RD pulse width  
150  
150  
6t  
–100  
–100  
82  
82  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
118  
5t  
2t  
–90  
–28  
60  
CLCL  
0
0
0
Data float after RD  
55  
32  
90  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
183  
210  
175  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
105  
140  
AVDV  
LLWL  
75  
92  
3t  
–50  
–75  
3t  
CLCL  
+50  
40  
45  
0
CLCL  
4t  
AVWL  
QVWX  
WHQX  
QVWH  
RLAZ  
WHLH  
CLCL  
12  
t
–30  
CLCL  
CLCL  
CLCL  
17  
t
–25  
5
Data valid to WR high  
RD low to address float  
RD or WR high to ALE high  
162  
7t  
–130  
80  
2, 3  
2, 3  
0
0
0
17  
67  
t
–25  
t
+25  
5
55  
CLCL  
CLCL  
External Clock  
t
t
t
t
5
5
5
5
High time  
Low time  
Rise time  
Fall time  
17  
17  
17  
17  
t
–t  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL CLCX  
t
–t  
CLCL CHCX  
5
5
5
5
Shift Register  
t
t
t
t
t
4
4
4
4
4
Serial port clock cycle time  
505  
283  
3
12t  
360  
167  
ns  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t –133  
CLCL  
QVXH  
XHQX  
XHDX  
XHDV  
2t  
CLCL  
–80  
0
0
0
283  
10t  
–133  
167  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. Interfacing the SC80C31/51 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0  
drivers.  
4. Variable clock is specified for oscillator frequencies greater than 16MHz to 33MHz. For frequencies equal or less than 16MHz, see 16MHz  
“AC Electrial Characteristics”, page 15.  
16  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
EXPLANATION OF THE AC SYMBOLS  
Each timing symbol has five characters. The first character is always  
‘t’ (= time). The other characters, depending on their positions,  
indicate the name of a signal or the logical status of that signal. The  
designations are:  
P – PSEN  
Q – Output data  
R – RD signal  
t – Time  
A – Address  
V – Valid  
C – Clock  
W– WR signal  
D – Input data  
H – Logic level high  
X – No longer a valid logic level  
Z – Float  
I – Instruction (program memory contents)  
L – Logic level low, or ALE  
Examples: t  
= Time for address valid to ALE low.  
= Time for ALE low to PSEN low.  
AVLL  
t
LLPL  
t
LHLL  
ALE  
t
t
LLPL  
AVLL  
t
PLPH  
t
LLIV  
t
PLIV  
PSEN  
t
LLAX  
t
PXIZ  
t
PLAZ  
t
PXIX  
A0–A7  
INSTR IN  
A0–A7  
PORT 0  
PORT 2  
t
AVIV  
A0–A15  
A8–A15  
SU00006  
Figure 1. External Program Memory Read Cycle  
ALE  
PSEN  
RD  
t
WHLH  
t
LLDV  
t
t
LLWL  
RLRH  
t
RHDZ  
t
LLAX  
t
t
RLDV  
AVLL  
t
RLAZ  
t
RHDX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA IN  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
t
AVDV  
P2.0–P2.7 OR A8–A15 FROM DPH  
A0–A15 FROM PCH  
SU00007  
Figure 2. External Data Memory Read Cycle  
17  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
ALE  
t
WHLH  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
LLAX  
t
t
WHQX  
t
AVLL  
QVWX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA OUT  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
P2.0–P2.7 OR A8–A15 FROM DPH  
A0–A15 FROM PCH  
SU00008  
Figure 3. External Data Memory Write Cycle  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
t
XLXL  
CLOCK  
t
XHQX  
t
QVXH  
OUTPUT DATA  
0
1
2
3
4
5
6
7
WRITE TO SBUF  
t
XHDX  
t
SET TI  
VALID  
XHDV  
INPUT DATA  
CLEAR RI  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
SU00027  
Figure 4. Shift Register Mode Timing  
V
–0.5  
CC  
0.7V  
CC  
CC  
0.45V  
0.2V  
–0.1  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
CLCL  
SU00009  
Figure 5. External Clock Drive  
18  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
V
–0.5  
CC  
0.2V  
0.2V  
+0.9  
–0.1  
CC  
CC  
0.45V  
NOTE:  
AC inputs during testing are driven at V –0.5 for a logic ‘1’ and 0.45V for a logic ‘0’.  
CC  
Timing measurements are made at V min for a logic ‘1’ and V max for a logic ‘0’.  
IH  
IL  
SU00010  
Figure 6. AC Testing Input/Output  
V
V
+0.1V  
V
V
–0.1V  
TIMING  
REFERENCE  
POINTS  
LOAD  
OH  
+0.1V  
OL  
V
LOAD  
–0.1V  
LOAD  
NOTE:  
For timing purposes, a port is no longer floating when a 100mV change from load voltage occurs,  
and begins to float when a 100mV change from the loaded V /V level occurs. I /I ≥ ±20mA.  
OH OL  
OH OL  
SU00011  
Figure 7. Float Waveform  
MAX ACTIVE MODE  
(I = 1.43 freq + 1.9)  
CCMAX  
45  
40  
35  
30  
TYP ACTIVE MODE  
25  
20  
I
mA  
CC  
15  
10  
5
MAX IDLE MODE  
TYP IDLE MODE  
4MHz  
8MHz  
12MHz  
16MHz  
20MHz  
24MHz  
30MHz 33MHz  
FREQ AT XTAL1  
SU00012  
Figure 8. I vs. FREQ  
CC  
Valid only within frequency specifications of the device under test  
19  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
V
V
CC  
CC  
I
I
CC  
CC  
V
V
CC  
CC  
V
RST  
V
V
CC  
CC  
CC  
P0  
EA  
P0  
EA  
RST  
(NC)  
XTAL2  
XTAL1  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
CLOCK SIGNAL  
V
V
SS  
SS  
SU00719  
SU00720  
Figure 9. I Test Condition, Active Mode  
Figure 10. I Test Condition, Idle Mode  
CC  
CC  
All other pins are disconnected  
All other pins are disconnected  
V
–0.5  
CC  
0.7V  
CC  
0.45V  
0.2V  
–0.1  
CC  
t
CHCX  
t
t
CHCL  
t
CLCX  
CLCH  
t
CLCL  
SU00015  
Figure 11. Clock Signal Waveform for I Tests in Active and Idle Modes  
CC  
t
= t  
CHCL  
= 5ns  
CLCH  
V
CC  
CC  
I
CC  
V
CC  
V
RST  
P0  
EA  
(NC)  
XTAL2  
XTAL1  
V
SS  
SU00016  
Figure 12. I Test Condition, Power Down Mode  
CC  
All other pins are disconnected. V = 2V to 5.5V  
CC  
20  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
EPROM CHARACTERISTICS  
The 87C51 is programmed by using a modified Quick-Pulse  
Programming algorithm. It differs from older methods in the value  
Program Verification  
If security bit 2 has not been programmed, the on-chip program  
memory can be read out for program verification. The address of the  
program memory locations to be read is applied to ports 1 and 2 as  
shown in Figure 15. The other pins are held at the ‘Verify Code Data’  
levels indicated in Table 3. The contents of the address location will  
be emitted on port 0. External pull-ups are required on port 0 for this  
operation.  
used for V (programming supply voltage) and in the width and  
PP  
number of the ALE/PROG pulses.  
The 87C51 contains two signature bytes that can be read and used  
by an EPROM programming system to identify the device. The  
signature bytes identify the device as an 87C51 manufactured by  
Philips Corporation.  
If the encryption table has been programmed, the data presented at  
port 0 will be the exclusive NOR of the program byte with one of the  
encryption bytes. The user will have to know the encryption table  
contents in order to correctly decode the verification data. The  
encryption table itself cannot be read out.  
Table 3 shows the logic levels for reading the signature bytes, and  
for programming the program memory, the encryption table, and the  
security bits. The circuit configuration and waveforms for quick-pulse  
programming are shown in Figures 13 and 14. Figure 15 shows the  
circuit configuration for normal program memory verification.  
Reading the Signature Bytes  
The signature bytes are read by the same procedure as a normal  
verification of locations 030H and 031H, except that P3.6 and P3.7  
need to be pulled to a logic low. The values are:  
(030H) = 15H indicates manufactured by Philips  
(031H) = 92H indicates 87C51  
Quick-Pulse Programming  
The setup for microcontroller quick-pulse programming is shown in  
Figure 13. Note that the 87C51 is running with a 4 to 6MHz  
oscillator. The reason the oscillator needs to be running is that the  
device is executing internal address and program data transfers.  
Program/Verify Algorithms  
Any algorithm in agreement with the conditions listed in Table 3, and  
which satisfies the timing specifications, is suitable.  
The address of the EPROM location to be programmed is applied to  
ports 1 and 2, as shown in Figure 13. The code byte to be  
programmed into that location is applied to port 0. RST, PSEN and  
pins of ports 2 and 3 specified in Table 3 are held at the ‘Program  
Code Data’ levels indicated in Table 3. The ALE/PROG is pulsed  
low 25 times as shown in Figure 14.  
Erasure Characteristics  
Erasure of the EPROM begins to occur when the chip is exposed to  
light with wavelengths shorter than approximately 4,000 angstroms.  
Since sunlight and fluorescent lighting have wavelengths in this  
range, exposure to these light sources over an extended time (about  
1 week in sunlight, or 3 years in room level fluorescent lighting)  
could cause inadvertent erasure. For this and secondary effects,  
it is recommended that an opaque label be placed over the  
window. For elevated temperature or environments where solvents  
are being used, apply Kapton tape Fluorglas part number 2345–5, or  
equivalent.  
To program the encryption table, repeat the 25 pulse programming  
sequence for addresses 0 through 1FH, using the ‘Pgm Encryption  
Table’ levels. Do not forget that after the encryption table is  
programmed, verification cycles will produce only encrypted data.  
To program the security bits, repeat the 25 pulse programming  
sequence using the ‘Pgm Security Bit’ levels. After one security bit is  
programmed, further programming of the code memory and  
encryption table is disabled. However, the other security bit can still  
be programmed.  
The recommended erasure procedure is exposure to ultraviolet light  
(at 2537 angstroms) to an integrated dose of at least 15W-sec/cm .  
Exposing the EPROM to an ultraviolet lamp of 12,000µW/cm rating  
for 20 to 39 minutes, at a distance of about 1 inch, should be  
sufficient.  
2
Note that the EA/V pin must not be allowed to go above the  
PP  
2
maximum specified V level for any amount of time. Even a narrow  
PP  
glitch above that voltage can cause permanent damage to the  
device. The V source should be well regulated and free of glitches  
PP  
and overshoot.  
Erasure leaves the array in an all 1s state.  
Table 3. EPROM Programming Modes  
MODE  
Read signature  
RST  
PSEN  
ALE/PROG  
EA/V  
P2.7  
P2.6  
P3.7  
P3.6  
PP  
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
1
1
0
0
0
0
1
1
0
1
1
1
1
0
0
1
1
0
1
0
Program code data  
Verify code data  
Pgm encryption table  
Pgm security bit 1  
0*  
1
V
PP  
1
0*  
0*  
0*  
V
PP  
PP  
PP  
V
V
Pgm security bit 2  
NOTES:  
1. ‘0’ = Valid low for that pin, ‘1’ = valid high for that pin.  
2. V = 12.75V +0.25V.  
PP  
3. V = 5V±10% during programming and verification.  
CC  
4. *ALE/PROG receives 25 programming pulses while V is held at 12.75V. Each programming pulse is low for 100µs (±10µs) and high for a  
PP  
minimum of 10µs.  
Trademark phrase of Intel Corporation.  
21  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
+5V  
V
CC  
P0  
A0–A7  
PGM DATA  
P1  
1
1
1
RST  
P3.6  
+12.75V  
EA/V  
PP  
25 100µs PULSES TO GROUND  
ALE/PROG  
PSEN  
0
1
87C51  
P3.7  
XTAL2  
P2.7  
0
P2.6  
4–6MHz  
XTAL1  
A8–A11  
P2.0–P2.3  
V
SS  
SU00017  
Figure 13. Programming Configuration  
25 PULSES  
1
0
ALE/PROG:  
ALE/PROG:  
10µs MIN  
100µs+10  
1
0
SU00018  
Figure 14. PROG Waveform  
+5V  
V
CC  
P0  
A0–A7  
PGM DATA  
P1  
1
1
1
RST  
P3.6  
1
1
EA/V  
PP  
ALE/PROG  
PSEN  
0
87C51  
P3.7  
0 ENABLE  
XTAL2  
P2.7  
0
P2.6  
4–6MHz  
XTAL1  
A8–A11  
P2.0–P2.3  
V
SS  
SU00019  
Figure 15. Program Verification  
22  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS  
T
amb  
= 21°C to +27°C, V = 5V±10%, V = 0V (See Figure 16)  
CC SS  
SYMBOL  
PARAMETER  
MIN  
MAX  
13.0  
50  
UNIT  
V
V
PP  
Programming supply voltage  
Programming supply current  
Oscillator frequency  
12.5  
I
PP  
mA  
MHz  
1/t  
CLCL  
4
6
t
t
t
t
t
t
t
t
t
t
t
t
Address setup to PROG low  
Address hold after PROG  
Data setup to PROG low  
Data hold after PROG  
48t  
AVGL  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
48t  
48t  
48t  
48t  
GHAX  
DVGL  
GHDX  
EHSH  
SHGL  
GHSL  
GLGH  
AVQV  
ELQZ  
EHQZ  
GHGL  
P2.7 (ENABLE) high to V  
PP  
V
PP  
V
PP  
setup to PROG low  
hold after PROG  
10  
10  
90  
µs  
µs  
µs  
PROG width  
110  
Address to data valid  
48t  
CLCL  
CLCL  
CLCL  
ENABLE low to data valid  
Data float after ENABLE  
PROG high to PROG low  
48t  
48t  
0
10  
µs  
PROGRAMMING*  
ADDRESS  
VERIFICATION*  
ADDRESS  
P1.0–P1.7  
P2.0–P2.4  
t
AVQV  
PORT 0  
DATA IN  
DATA OUT  
t
t
t
DVGL  
GHDX  
GHAX  
t
AVGL  
ALE/PROG  
t
t
GLGH  
GHGL  
t
t
SHGL  
GHSL  
LOGIC 1  
LOGIC 1  
EA/V  
PP  
LOGIC 0  
t
t
t
EHSH  
ELQV  
EHQZ  
P2.7  
ENABLE  
SU00020  
NOTE:  
*
FOR PROGRAMMING VERIFICATION SEE FIGURE 13.  
FOR VERIFICATION CONDITIONS SEE FIGURE 15.  
Figure 16. EPROM Programming and Verification  
23  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
0590B  
40-PIN (600 mils wide) CERAMIC DUAL IN-LINE (F) PACKAGE (WITH WINDOW (FA) PACKAGE)  
853–0590B 06688  
24  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
1472A  
44-PIN CERQUAD J-BEND (K) PACKAGE  
853-1472A 05854  
25  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
DIP40: plastic dual in-line package; 40 leads (600 mil)  
SOT129-1  
26  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
PLCC44: plastic leaded chip carrier; 44 leads  
SOT187-2  
27  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
28  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
NOTES  
29  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C31/80C51/87C51  
DEFINITIONS  
Data Sheet Identification  
Product Status  
Definition  
This data sheet contains the design target or goal specifications for product development. Specifications  
may change in any manner without notice.  
Objective Specification  
Formative or in Design  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design  
and supply the best possible product.  
Preliminary Specification  
Product Specification  
Preproduction Product  
Full Production  
This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes  
at any time without notice, in order to improve design and supply the best possible product.  
Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,  
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,  
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only.  
Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
LIFE SUPPORT APPLICATIONS  
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,  
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected  
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips  
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully  
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Sunnyvale, California 94088–3409  
Philips Semiconductors and Philips Electronics North America Corporation register  
eligible circuits under the Semiconductor Chip Protection Act.  
Copyright Philips Electronics North America Corporation 1996  
All rights reserved. Printed in U.S.A.  
Telephone 800-234-7381  

相关型号:

SC87C51AYA44

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

SC87C51AYB44

Microcontroller, 8-Bit, UVPROM, 8051 CPU, 33MHz, CMOS, PQFP44

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
PHILIPS

SC87C51AYF40

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

SC87C51AYK44

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

SC87C51AYN40

8-Bit Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

SC87C51CCA44

Microcontroller, 8-Bit, UVPROM, 8051 CPU, 12MHz, CMOS, PQCC44,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
PHILIPS

SC87C51CCA44

CMOS single-chip 8-bit microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SC87C51CCB44

CMOS single-chip 8-bit microcontrollers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SC87C51CCB44-T

IC 8-BIT, OTPROM, 6 MHz, MICROCONTROLLER, PQFP44, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

SC87C51CCF40

Microcontroller, 8-Bit, UVPROM, 8051 CPU, 12MHz, CMOS, CDIP40,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
PHILIPS