SE5562 [NXP]

Switched-mode power supply control circuit; 开关电源的控制电路
SE5562
型号: SE5562
厂家: NXP    NXP
描述:

Switched-mode power supply control circuit
开关电源的控制电路

开关
文件: 总29页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
DESCRIPTION  
PIN CONFIGURATION  
The NE/SE5562 is a single-output control circuit for switched-mode  
power supplies. This single monolithic IC contains all control and  
protection features needed for full-featured switched-mode power  
supplies.  
D, F, N Packages  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
FEED FORWARD  
GROUND  
OUTPUT  
C
T
The 100mA source/sink output is designed to drive power FETs  
directly. The associated output logic is designed to prevent double  
pulsing or cross-conduction current spiking on the output.  
3
DEMAG OVERVOLT IN  
R
T
4
EXTERNAL MOD IN  
V
S
5
DUTY CYCLE CONTROL  
REMOTE ON/OFF  
C DELAY  
All of the control and protect features work cycle-by-cycle up to the  
maximum operating frequency of 600kHz.  
6
OUT INVERT CONTROL  
7
CURRENT SENSE  
V
I
For ease of interface, all digital inputs are TTL or CMOS compatible.  
FEEDBACK VOLTAGE  
AUX COMP HYSTERESIS  
8
The NE5562 is supplied in 20-pin glass/ceramic (Cerdip), plastic  
DIP, and plastic SO packages. The NE grade part is characterized  
and guaranteed over the commercial ambient temperature range of  
0°C to +70°C and junction temperature range of 0°C to +85°C. The  
SE5562 is supplied in the glass/ceramic (Cerdip) package. The SE  
grade part is characterized and guaranteed over the ambient  
temperature range of -55 to +125°C and junction temperature range  
of -55 to +135°C.  
9
AUX COMP INPUT  
V
Z
ERROR AMP OUT  
EXTERNAL SYNC IN  
10  
TOP VIEW  
SL00388  
Figure 1. Pin Configuration  
Auxiliary comparator, with adjustable hysteresis  
Loop fault protection  
FEATURES  
Demagnetization/overvoltage protection  
Duty cycle adjust and clamp  
Feed-forward control  
Stabilized power supply  
Temperature-compensated reference source  
Sawtooth generator  
External synchronization  
Pulse width modulator  
Total shutdown after adjustable number of overcurrent faults  
Soft-start  
Remote on/off switching  
Current limiting (2 levels)  
ORDERING INFORMATION  
DESCRIPTION  
TEMPERATURE RANGE  
0 to +70°C  
ORDER CODE  
NE5562D  
DWG #  
1021B  
20-Pin Plastic Small Outline (SO) Package  
20-Pin Plastic Dual In-Line Package (DIP)  
20-Pin Ceramic Dual In-Line Package (CERDIP)  
0 to +70°C  
NE5562N  
SOT146-1  
SOT146-1  
-55°C to +125°C  
SE5562F  
1
1994 Aug 31  
853-0811 13721  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
BLOCK DIAGRAM  
1
11  
FEEDFORWARD  
EXTERNAL  
SYNC IN  
+
+
+
S
CLOCK  
Q
TIME  
DELAY  
OSC  
LATCH  
3
2
+
R
DELAYED  
CLOCK  
OFF  
DEMAG/OV  
IN  
OSCILLATOR  
18  
0V  
OFF  
ON  
3.80V  
ON  
1.5V  
DEMAG/OV  
COMP  
REMOTE  
ON/OFF  
6
NORM  
+
ON/OFF  
COMP  
S
ERROR  
AMP  
Q
OUTPUT  
19  
PWM  
COMP  
OUTPUT  
LATCH  
OUT  
10  
3.80V  
+
+
POWR  
OUTPUT  
NOR  
FEEDBACK  
VOLTAGE  
R
8
OUTPUT  
INVERT  
CONTROL  
OC1  
ERROR  
AMP  
15  
+
NORM  
0.955V  
+
OVERCURRENT 1  
COMP  
LOOP FAULT  
COMP  
2k  
0.528V  
0.645V  
CURRENT  
SENSE  
EXTERNAL  
MOD  
14  
4
OVERCURRENT 2  
COMP  
IN  
0.955V  
+
DUTY CYCLE  
CONTROL  
5
OC2  
+
GND  
20  
0.955V  
R
NORM  
SLOW  
START  
COMP  
V
S
17  
START/  
OC1  
0C2  
POWER  
SUPPLY  
CKTS  
CLOCK  
STOP  
Q
LATCH  
S
V
Z
9
OC1-2  
LATCHES  
LV STOP  
OC CHARGE PUMPS  
1:1  
Q
0.528V  
0.645V  
3.80V  
1:1  
TRIP  
SHUT  
DOWN  
LATCH  
3.80V  
NORM  
+
C
DELAY  
16  
S
R
LOW BULK  
OC ACCUM  
COMP  
+V  
OC1  
11µA  
+V  
V
I
7
NORM  
BULK  
+
SENSE 3.80V  
COMP  
OC2  
AUXILIARY  
COMP  
HYSTERESIS  
+
1µA  
80µA  
AUXILIARY  
COMP  
INPUT  
13  
3.80V  
12  
SL00389  
Figure 2. Block Diagram  
2
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
ABSOLUTE MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
RATING  
UNIT  
Supply  
voltage-fed mode (Pin 17)  
V
16  
30  
V
S
I
current-fed mode (Pin 7)  
Output transistor  
mA  
mA  
CC  
100  
output current  
Sync (Pin 11)  
V
S
V
Z
V
S
V
S
V
Z
V
Z
V
S
V
S
V
Z
V
S
V
S
V
V
V
V
V
V
V
V
V
V
V
Duty cycle control (Pin 5)  
Remote on/off (Pin 6)  
Output invert control (Pin 15)  
Feedback pin (Pin 8)  
C
(Pin 16)  
DELAY  
External mod in (Pin 4)  
Feed-forward (Pin 1)  
FF  
Demag/overvoltage in (Pin 18)  
Current sense (Pin 14)  
80Low supply sense and hysteresis  
(Pins 12, 13)  
T
T
T
Operating junction temperature  
Storage temperature range  
135  
-65 to +150  
300  
°C  
°C  
°C  
J
STG  
Lead soldering temperature (10sec)  
SOLD  
NOTES:  
1. Ground Pin 20 must always be the most negative pin.  
2. For power dissipation, see the application section which follows.  
RECOMMENDED OPERATING CONDITIONS  
SYMBOL  
PARAMETER  
RATING  
UNIT  
Supply  
voltage-fed  
current-fed  
10 to 16  
15  
V
mA  
T
A
Ambient temperature range  
NE grade  
0 to +70  
°C  
°C  
SE grade  
-55 to +125  
T
J
Junction temperature range  
NE grade  
0 to +85  
°C  
°C  
SE grade  
-55 to +135  
DC AND AC ELECTRICAL CHARACTERISTICS  
V
CC  
= 12V, specifications apply over temperature, unless otherwise specified.  
SE5562  
Typ  
NE5562  
TEST  
PINS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Min  
Max  
Min  
Typ  
Max  
Internal reference  
V
REF  
V
REF  
Reference voltage  
Reference voltage  
Temperature stability  
Internal  
Internal  
Internal  
T =25°C  
3.76  
3.72  
3.80  
3.8  
30  
3.84  
3.90  
3.76  
3.80  
3.8  
30  
3.84  
V
V
A
Over temp.  
3.725  
3.870  
ppm/°C  
µV/1000  
hrs  
Long-term stability  
Internal  
0.5  
0.5  
3
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
DC AND AC ELECTRICAL CHARACTERISTICS (Continued)  
V
CC  
= 12V, specifications apply over temperature, unless otherwise specified.  
SE5562  
Typ  
NE5562  
TEST  
PINS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Min  
Max  
Min  
Typ  
Max  
Reference  
I =7mA,  
T =25°C  
A
L
V
Zener voltage  
9
7.35  
7.25  
7.60  
7.75  
7.80  
7.35  
7.20  
7.6  
7.75  
7.78  
V
Z
Z
I =7mA,  
L
V
Zener voltage  
9
9
V
Over temp.  
V / T  
Temperature stability  
I <1mA  
L
50  
50  
ppm/°C  
Z
Low supply shutdown  
Comparator threshold  
voltage  
Internal  
T =25°C  
A
8.30  
8.45  
8.75  
8.30  
8.45  
8.75  
V
Comparator threshold  
voltage  
Internal  
Internal  
Over temp.  
8.00  
25  
8.45  
50  
8.90  
8.00  
8.00  
25  
8.45  
50  
8.90  
800  
V
Hysteresis  
mV  
Oscillator  
Frequency range,  
minimum  
1, 2,  
3, 11  
R =42.7k,  
T
C =0.47µF  
T
f
60  
80  
60  
80  
Hz  
MIN  
Frequency range,  
maximum  
1, 2,  
3, 11  
R =2.87k,  
T
C =380pF  
T
f
600  
600  
kHz  
MAX  
f =52kHz,  
O
1, 2,  
3, 11  
R =16kΩ  
T
and C =0.0015µF,  
T
Initial accuracy  
Voltage stability  
48.6  
54  
59.4  
500  
48.6  
54  
59.4  
500  
kHz  
T =25°C  
A
1, 2, 3,  
11, 17  
10V<V <18V  
-215  
300  
-215  
300  
ppm/V  
S
1, 2,  
3, 11  
Temperature stability  
Sawtooth peak voltage  
ppm/°C  
1
2, 3  
2, 3  
2, 3  
2, 3  
11  
T =25°C  
A
5.00  
4.80  
1.25  
1.0  
5.25  
5.25  
1.70  
1.7  
5.40  
5.60  
2.00  
2.1  
5.00  
4.80  
1.25  
1.25  
2.0  
5.25  
5.25  
1.70  
1.7  
5.40  
5.60  
2.00  
2.0  
V
V
V
V
V
V
Over temp.  
Sawtooth valley voltage  
T =25°C  
A
Over temp.  
Sync. in high level  
Sync. in low level  
2.0  
V
Z
V
Z
11  
0.0  
0.8  
0.0  
0.8  
(Sourced),  
Sync. in bias current  
11  
1
0.50  
2
10.0  
0.50  
2
10.0  
µA  
V
11  
<0.8V  
Feed-forward ratio,  
maximum  
Feed-forward duty cycle  
reduction  
V =2V ,  
FF Z  
T =25°C  
A
1
1
9
1
11  
6
13.5  
13.5  
19  
22  
11  
8
13.5  
19  
22  
%
%
V
Over temp.  
Feed-forward reference  
voltage  
V
Z
V
S
V
Z
V
S
Feed-forward bias current  
2.5  
50.0  
2.5  
50.0  
µA  
4
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
DC AND AC ELECTRICAL CHARACTERISTICS (Continued)  
V
CC  
= 12V, specifications apply over temperature, unless otherwise specified.  
SE5562  
Typ  
NE5562  
TEST  
PINS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Min  
Max  
Min  
Typ  
Max  
Error amp  
I
Input bias current  
8
8, 10  
10  
1.0  
86  
5.0  
1.0  
86  
5.0  
µA  
dB  
V
BIAS  
A
DC open-loop gain  
High output voltage  
Low output voltage  
R >100kΩ  
60  
5
60  
5
VOL  
L
V
V
I
=1mA  
OH  
OL  
SOURCE  
10  
I
=1mA  
2.0  
2.0  
V
SINK  
PSRR from V and V  
Internal  
f <300kHz  
O
-40  
8
-40  
8
dB  
Z
S
Small-signal gain bandwidth  
product  
BW  
MHz  
Feedback resistor range  
Output sink current  
1
240  
10  
1
240  
10  
kΩ  
I
I
V8=V10=5V  
mA  
SINK  
V8=3V,  
V10=1V  
Output source current  
Sawtooth feedthrough  
5
5
mA  
mV  
SOURCE  
A =100,  
V
200  
200  
0% duty cycle  
PWM comparator and modulator  
@V  
f=300kHz  
<,  
COMP  
Minimum duty cycle  
19  
19  
0
0
%
%
@V >,  
COMP  
Maximum duty cycle  
f=300kHz,  
V15=0V  
95  
98  
55  
95  
98  
55  
f=15kHz to  
200kHz,  
A
CC  
Duty cycle  
10, 19  
41  
49  
41  
49  
%
V
IN  
=0.472 V  
Z
Propagation delay to  
output  
t
I
I
2, 19  
4
V
=0  
400  
400  
ns  
PD  
15  
Bias current, external  
modulator input  
(Sourced)  
(Sourced)  
0.20  
20  
0.20  
20  
µA  
BIAS  
BIAS  
Bias current, duty cycle  
control  
5
5
0.20  
20  
0.20  
20  
µA  
Soft-start trip voltage  
.910  
0.955  
0.990  
0.922  
0.955  
0.988  
V
Remote on/off (shutdown)  
Output enabled  
6
6
0
2
0.80  
0
2
0.80  
V
V
Output disabled  
V
Z
V
Z
I
Bias current  
6
1
10  
1
10  
µA  
V
BIAS  
V
Maximum input voltage  
Delay to output(s)  
6
V
Z
V
Z
IN  
6, 19  
400  
400  
ns  
Current limit comparator(s)  
Shutdown, OC2  
14  
14  
14  
16  
16  
16  
16  
.593  
.486  
0.645  
0.528  
0.5  
.697  
.570  
50  
0.593  
0.486  
0.645  
0.528  
0.5  
0.697  
0.570  
50  
V
V
Minimum duty cycle, OC1  
I
Bias current  
(Sourced)  
µA  
µA  
µA  
µA  
V
BIAS  
OC  
C
C
charge current  
charge current  
-18.2  
-770  
0.4  
-13  
-6.5  
-250  
4.0  
-18.2  
-770  
0.8  
-13  
-7.8  
-330  
2.0  
1
DELAY  
DELAY  
OC2  
-550  
1.4  
-550  
1.4  
C
C
Discharge current  
Shut off trip level  
V12=V  
Z
DELAY  
DELAY  
T =25°C  
A
3.75  
3.86  
3.97  
3.75  
3.86  
3.97  
5
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
DC AND AC ELECTRICAL CHARACTERISTICS (Continued)  
V
CC  
= 12V, specifications apply over temperature, unless otherwise specified.  
SE5562  
Typ  
NE5562  
TEST  
PINS  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNIT  
Min  
Max  
Min  
Typ  
Max  
Auxiliary comparator with shutdown  
I
Bias current  
12  
12  
(Sourced)  
1
3.80  
10  
10  
1
3.80  
10  
10  
µA  
V
BIAS  
Threshold voltage  
Discharge current  
Hysteresis  
3.69  
5
3.91  
3.69  
5
3.91  
C
12  
V
IN  
=3V  
mA  
mV  
DELAY  
12, 13  
10  
10  
Demagnetization overvoltage comparator  
I
Bias current  
18  
18  
18  
2
10  
2
10  
µA  
V
BIAS  
Threshold voltage  
Hysteresis  
3.62  
3.80  
10  
3.91  
3.69  
3.80  
10  
3.91  
mV  
Output stage  
V
High output voltage  
19  
19  
I
=100mA  
V -2.5 V -1.9  
V -2.5 V -1.9  
V
V
OH  
SOURCE  
S
S
S
S
I
=2mA  
0.16  
0.4  
2.0  
0.16  
0.4  
2.0  
SINK  
I
I
=100mA,  
T =25°C  
SINK  
19  
19  
1.4  
1.4  
V
V
V
OL  
Low output voltage  
A
=100mA,  
over temp.  
SINK  
2.25  
2.25  
I
I
max  
19  
19  
19  
19  
100  
100  
100  
100  
mA  
mA  
ns  
SINK  
max  
SOURCE  
t
t
Rise time  
Fall time  
C =2000pF  
160  
80  
160  
80  
R
L
C =2000pF  
L
ns  
F
Supply current/voltage  
10V<V <16V  
S
I
Supply current  
Input voltage  
17  
(Voltage-fed mode),  
V <V  
9
15  
9
15  
mA  
V
CC  
I
S
I =15mA,  
I
V
7, 17  
(Current-fed mode)  
14.2  
15.3  
16.7  
14.2  
600  
15.3  
16.7  
S
V =meter  
S
Operating frequency range for all functions but feed-forward working cycle-by-cycle  
R =42.7k,  
T
f
Minimum frequency  
Maximum frequency  
All  
All  
60  
80  
60  
80  
Hz  
MIN  
C =0.47µF  
T
R =2.87k,  
T
f
600  
1000  
1000  
kHz  
MAX  
C =380pF  
T
3
2
10  
10  
T
= 25°C  
A
R
= 2.5kΩ  
T
R
R
= 5kΩ  
T
T
= 10kΩ  
R
R
= 20kΩ  
= 40kΩ  
T
T
1
0
10  
10  
2
2
3
3
4
10  
10  
5 x 10  
10  
5 x 10  
(pF)  
SL00390  
C
T
Figure 3. Frequency vs R , C NE/SE5562  
T
T
6
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
0
–30  
–60  
–90  
–120  
–150  
–180  
TA = 25°C  
PHASE  
40  
CLOSED-LOOP GAIN  
30  
20  
10  
0
100  
1k  
10k  
100k  
FREQUENCY  
1M  
10M  
SL00391  
Figure 4. Error Amplifier Closed-Loop Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
T
= 12V  
CC  
= 25°C  
A
1
2
3
4
5
6
7
8
9
10  
PWM INPUT VOLTAGE (V)  
SL00392  
Figure 5. Duty Cycle vs PWM Input Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
5
6
7
8
9
10  
11  
12  
13  
14  
15  
FEED-FORWARD VOLTAGE (V)  
SL00393  
Figure 6. Duty Cycle vs Feed-forward Voltage  
7
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
22  
20  
18  
16  
14  
12  
10  
8
T
= 25°C  
A
6
4
2
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
SUPPLY VOLTAGE (PIN 17)(V)  
SL00394  
Figure 7. Current-Feed Characteristics  
22  
20  
18  
16  
14  
12  
10  
8
T
= 25°C  
A
6
4
2
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
SUPPLY VOLTAGE (PIN 17)(V)  
SL00395  
Figure 8. Voltage-Feed Characteristics  
8
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
THE NE/SE5562 THEORY OF OPERATION  
t
ON  
SW  
WHERE  
d
+
T
INTRODUCTION  
PERIOD  
L
SW  
Switched-mode power conversion relies on the principle of pulsed  
energy storage in an inductive or capacitive element. Capacitive  
switched converters are typically used with low power systems for  
which only tens of milliamperes are required. Medium and high  
power converters tend to use inductive storage elements as shown  
in Figures 9-11 with which a single switch may be moved around to  
create step-up (flyback) positive or negative polarity and step-down  
(forward or buck) conversion from a fixed-voltage source. The  
relationship between input and output voltage in each case is  
controlled by the switching on-to-off ratios, which is termed duty  
cycle. Duty cycle modulation is the common factor in this basic type  
of power control mechanism. By adding a high-gain operational  
amplifier, having one input tied to a stable DC reference voltage,  
configured in a negative feedback loop to maintain a constant output  
voltage as shown in Figure 12, the switched-mode controller  
becomes a dynamic voltage regulator. It is this single-switch  
topology that is most readily adapted to the NE/SE5562 SMPS  
Control IC.  
+
+
D
V
B
V
+
dV  
IN  
C
IN  
O
R
OUT  
L
δ
COM  
SL00398  
Figure 11. Forward Converter (Single Inductor) Step Down  
I
REGULATED  
OUTPUT  
SW  
L
+
+
I
L
V
IN  
PWM  
UNREGULATED  
DC  
C
R
L
The ability to switch inductor currents at rates up to 600kHz with  
state-of-the-art power FETs makes the design of small, efficient  
switching power converters an attainable reality. Protective features  
such as programmable slow-start and cycle-by-cycle current limiting  
allow safe, maintenance-free power supplies to be mass-produced  
at reduced cost to the manufacturer. Integrated technology makes  
long-term reliability a predictably achievable goal.  
V
+
REF  
A
R
R
2
F
SW  
D
O
R
1
SL00399  
* V  
IN  
1 * d  
L
V
C
IN  
R
O
V
+
L
OUT  
δ
Figure 12. The Forward (Buck) Converter (V  
= V (δ))  
IN  
OUT  
+
COM  
SL00396  
Di  
Dt  
E
L
+
MAGNETIZATION  
CURRENT  
Figure 9. Negative Output Flyback Converter  
SWITCH  
CURRENT  
LOAD CURRENT  
L
D
O
+
+
DIODE  
CURRENT  
V
IN  
SW  
V
V
+
C
IN  
R
O
L
OUT  
1 * d  
AVERAGE  
INDUCTOR  
CURRENT  
δ
TOTAL  
INDUCTOR  
CURRENT  
COM  
SL00400  
SL00397  
Figure 10. Positive Output Flyback Converter  
Figure 13. PWM Switching Waveforms  
9
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
FEED-  
FORWARD  
EXT.  
SYNC  
1
11  
+
ACTIVE LOW  
0.8V  
+
I
O
V
Z
(5.25V)  
+7.50V  
+
V
H
R
2
28k  
S
3
2
1
TIME BASE  
SIGNAL  
FF  
(1.70V)  
C
T
R
3
3k  
R
TO DELAY  
CIRCUIT  
+
CURRENT  
STEERING  
SAWTOOTH  
GENERATOR  
DISCH.  
+3.80V  
+
OUTPUT TO  
LATCH RESET  
VOLTAGE  
FEEDBACK  
ERROR  
AMP  
8
10  
PWM  
COMPARATOR  
SL00401  
Figure 14.  
THE NE/SE5562 THEORY OPERATION  
The Sawtooth Oscillator  
The sawtooth oscillator consists of a gated charge-discharge  
capacitor circuit with threshold comparators setting the peak and  
valley voltages of the ramp. The resistor divider R1-3 is supplied  
THE PULSE WIDTH MODULATOR AND ERROR  
AMPLIFIER  
The PWM consists of a multi-input voltage comparator (Figure 15)  
having its positive input tied to the sawtooth ramp voltage and the  
various negative inputs referenced to ORed control signal nodes.  
The primary control signal is the error amplifier output voltage node  
which sets the active duty cycle termination point of the PWM output  
waveform. As the error amplifier input signal derived from the power  
supply load voltage varies, for instance in a negative direction, the  
amplifier output moves upward, raising the PWM comparator toward  
longer duty cycles at the output on Pin 19. The start-up sequence  
begins with zero voltage at the input to the error amplifier. Since this  
could signal an open feedback loop, the loop fault comparator on  
Pin 8 clamps the PWM duty cycle until the feedback voltage  
exceeds 0.955V. A second comparator monitors the duty cycle  
control, Pin 5, with the same threshold level, inhibiting the output via  
the start-stop latch (Figure 16).  
with a source voltage derived from either V (7.50V) minus two  
Z
diode drops, or, when feed-forward is in control, a voltage greater  
than V and proportional to the main supply voltage. The nominal  
Z
upper threshold voltage is 5.25V and the lower threshold 1.70V.  
These then determine the sawtooth peak and valley voltages,  
respectively.  
Operation  
Beginning with the charge cycle, ramp voltage builds up on the  
timing capacitor due to a constant current supplied to the node at  
Pin 2. When capacitor voltage reaches the upper threshold,  
comparator A switches, setting the latching flip-flop. The output of  
the latch goes high, generating a clock pulse. The discharge  
transistor is simultaneously turned on, reducing charge on the timing  
capacitor to the point at which the lower threshold voltage, 1.70V, is  
reached. The lower comparator is then activated, resetting the latch  
and terminating the clock pulse. Note that the discharge transistor is  
referenced to the same return diodes as the threshold resistor  
divider and the discharge current is made to track with the charge  
current. This charge and discharge tracking results in a true  
sawtooth waveform even at extended frequencies. Figure 17 shows  
The charging of the slow-start capacitor provides a controlled  
ramp-up of the output duty cycle and a resultant gradual increase in  
energy fed to the output magnetics.  
The dynamic response of the PWM comparator is shown in the  
simulated waveform drawing of Figure 17. The error amplifier output  
voltage is depicted as sloping positive (increasing) with time as  
referenced to the sawtooth waveform. This causes the duty cycle to  
increase with time. This is an indication of an increasing load on the  
power supply as output voltage is decreasing. The Pin 5 (δ  
)
MAX  
a family of curves which explains the relationship between R , C ,  
and the frequency of the sawtooth generator. The data sheet shows  
the initial accuracy of the oscillator at 60Hz and 600kHz.  
T
T
control voltage is also superimposed midway on the sawtooth,  
indicating the limits of duty cycle increase as the output waveform  
no longer increases in duty cycle after the δ threshold is  
MAX  
crossed. A hypothetical overcurrent pulse (Pin 14) is shown to  
illustrate cycle termination immediately at the output (Pin 19).  
10  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
+V  
Z
35µA  
35µA  
35µA  
DELTA  
MAX  
CONTROL  
V
H
4
5
10  
SAWTOOTH  
(–)  
(–)  
(–)  
(–)  
+
ERROR  
AMP  
OUT  
SAWTOOTH  
UPPER  
THRESHOLD  
MODULATOR  
IN  
9k  
PWM SIGNAL  
TO OUTPUT  
NOR GATE  
2.5k  
100µA  
SL00402  
Figure 15. PWM Comparator  
DELAYED CLOCK  
V
REF  
+3.80V  
S
+
+
δ
R
TO OUTPUT  
STAGE  
OUTPUT  
LATCH  
PWM  
NOR  
8
10  
5
DUTY  
CYCLE  
CONTROL  
SL00403  
Figure 16. The Duty Cycle Control Circuit, Pulse Width Modulator, and Error Amplifier, Reference, and Output Latch  
11  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
SAWTOOTH  
WAVEFORM  
PIN 5  
δ MAX LEVEL  
PWM COMPARATOR  
(INTERNAL)  
FLYBACK PULSE  
(INTERNAL)  
+0.528V  
PIN 14  
CURRENT  
SENSE INPUT  
(OUTPUT)  
PIN 19  
SL00404  
Figure 17. Duty Cycle vs Feedback Error and Overcurrent Sense  
The error amplifier’s non-inverting input is tied to a bandgap  
reference of 3.80V, accurate to ±2% at 25°C. The temperature  
stability of the voltage reference is 30ppm/°C.  
95%. The amplifier can sink 10mA and source 5mA. The nominal  
DC output for 50% duty cycle is 3.55V. Feedback control resistor  
value may range from 1kto 240kwithout overload or instability.  
However, low closed-loop gains must be compensated by lag lead  
network techniques for optimum stability. Loop compensation  
networks may intersect the open-loop gain curve with a slope 2  
closure and must then be compensated to maintain overall phase  
and gain margin (Figure 18).  
The error amplifier is designed for an open-loop gain of 86dB having  
a small-signal unity gain bandwidth of 3MHz. Closed-loop gain is  
stable to 10dB, as shown in Figure 19. The DC output excursion of  
the amplifier is capable of controlling the full PWM range of 0 to  
+V (7.50V)  
Z
V
Z
6k  
2.5k  
V
Z
ERROR AMP  
OUT  
3.80  
V
10  
REF  
30  
N BIAS  
7pF  
FEEDBACK  
SENSE  
8
6k  
6k  
SL00405  
Figure 18. Error Amplifier  
12  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
EST. 3dB  
FREQUENCY  
NE5562  
ERROR AMPLIFIER  
PHASE DELAY  
80  
PHASE/AMPLITUDE  
160°  
143°  
RESPONSE  
70  
60  
50  
40  
30  
20  
10  
0
130°  
98°  
+V  
3.75V  
REF  
+
OFFSET  
ADJUST  
95°  
5k  
(8)  
(10)  
92°  
83°  
80°  
10M  
360  
SLOPE  
= (–)1  
70°  
32°  
50  
SLOPE  
= (–)2  
f
f
P1  
P2  
1
10  
100  
1000  
10000  
100000  
1000000  
FREQUENCY (Hz)  
SL00406  
Figure 19. Error Amp Response  
(7.50V) increases the charge rate on C , causing the duty cycle to  
FEED-FORWARD COMPENSATION (PIN 1)  
T
be terminated earlier for each cycle that input voltage is increased.  
The threshold voltages at the sawtooth limit comparator reference  
inputs are changed with Pin 1 also in order to offset any change in  
oscillator frequency.  
To provide a means of automatically improving line-to-load voltage  
regulation, a technique called feed-forward regulation is made a part  
of the NE/SE5562 active mechanism. Referring back to the diagram  
for the sawtooth oscillator, note that Pin 1 is capable of changing the  
internal supply voltage to the charging circuit for the timing capacitor,  
The secondary benefit of using feed-forward is the attenuation of  
any low-frequency AC riding on the DC supply before it reaches the  
regulated output.  
C .  
t
With a nominal duty cycle of 30%, for instance, increasing Pin 1  
voltage by 1V from 10.3 to 11.3 will reduce the output duty cycle by  
approximately 5%. Thus, a primary voltage change has caused a  
decrease in volt-seconds (duty cycle X primary volts) of 5/30 or 16%  
(Figure 6). The result is a small over-compensation in the output  
energy, but an overall safe margin in transformer flux.  
Note that a start delay circuit is added to the Pin 1 divider in order to  
prevent internal race conditions during initial power-up. Once the  
turn-on transient has decayed, normal operation of the feed-forward  
circuit is assured. Figure 21 shows an RC delay placed in a base  
clamping circuit to provide reliable starting.  
The mechanism which produces inverse duty cycle modulation is  
shown in Figure 20. Increasing Pin 1 voltage beyond the value of V  
z
2V  
Z
V
Z
+
PWM  
COMPARATOR  
V
TH  
V
TH  
T
T
δ
δ
SL00407  
Figure 20. Feed-Forward  
13  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
SYNCHRONIZATION  
The synchronization of the sawtooth oscillator to an external pulse  
of negative-going polarity is shown in Figure 22. When the sync  
input pulse crosses the 1.5V threshold, negative, the sawtooth  
oscillator is prevented from discharging the timing capacitor, causing  
the charge voltage on the capacitor to remain high (5.25V) until the  
sync pulse again goes above 1.5V, allowing reset. This action  
stretches the period of the oscillator and results in a lower frequency  
under-synchronization control than the free-running frequency.  
V
FFWD  
2N3906  
220k  
0.2µF  
1
The following relationship holds—  
ffree*run  
fsync  
NE/SE5562  
1
fsync  
+
t0  
A typical recommended starting point in calculating frequency for  
synchronous operation is to set the free-run frequency  
SL00408  
approximately 10% higher than the sync frequency. Then set the  
Figure 21. Feed-forward Turn-On Delay Circuit  
pulse width, τ, to 10% of t , the free-run period, with the desired new  
0
frequency determined by the sum as above.  
+V  
CC  
T
19  
+
NE/SE5562  
1.5V  
SYNC  
11  
2
d
T
SL00409  
Figure 22. Synchronization Signals  
PIN 11  
SYNC  
SIGNAL  
+1.5V  
τ
SAWTOOTH  
WAVEFORM  
T
O
SL00410  
Figure 23. Sync Signal Relationship to Controlled Sawtooth Waveform  
priority level sensing circuit. The lowest level on Pin 4, 5, or 10 gains  
control of the duty cycle limit. During normal operation, the δ  
DUTY CYCLE LIMIT (PIN 5)  
MAX  
The forward or buck converter, and even the flyback converters,  
may require an automatic duty cycle limit to prevent transformer  
saturation or unstable behavior. A special input provides access to  
the PWM comparator for this purpose. As discussed previously in  
regard to the error amplifier, increasing load demand may drive the  
system current beyond safe limits. A simple solution is the  
placement of a duty cycle limit within the system dynamic response  
before this can occur. Figure 15 shows the PWM comparator with its  
multiple input ports. All are inverting in polarity and provide a lowest  
circuit sends a continuous threshold signal to the PWM comparator,  
setting a fixed limit on how much the error amplifier is allowed to  
increase the duty cycle in response to load demand. Figure 24  
shows the circuit within the NE/SE5562 which actually controls duty  
cycle as listed below:  
1. Duty cycle ramp-up (slow-start) during power-up. Time constant  
controlled by external R, C ramp voltage at Pin 5.  
14  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
2. Slow-start if remote ON/OFF is actuated, if OC2 threshold trips,  
demagnetization/overvoltage is sensed, or low supply voltage to  
the internal regulator is sensed (VS8.45V).  
R = 10k, find R  
2
1
R2  
+ 0.48  
R2  
R1  
3. Note that Pin 8 is monitored by the loop fault comparator. When  
the regulated supply feedback drops below this threshold level  
(0.955V), the duty cycle is clamped by two diodes in series with  
a 2kload across Pin 5 to ground. This implies a minimum duty  
cycle condition as long as the low output level remains.  
R = 0.48 (R + R )  
2
1
2
0.48R = R – 0.48R  
1
2
2
R2(1 * 0.48)  
0.48  
R1  
+
Referring to the graph in Figure 25, the designer may choose a  
10k (0.52)  
0.48  
divider ratio which, when referenced to V , 7.5V, provides an easy  
Z
+
duty cycle limit control. For example, a 50% limit results in a ratio of  
0.48. Setting R at a nominal value between 10 and 20kand  
= 10.8kΩ  
2
solving for R , the proper limit is obtained.  
1
Example:  
A duty cycle limit of 50% is required for a forward converter.  
DELTA  
MAX TO  
PWM COMP  
R
1
SLOW  
START  
CAP  
R
C
2
V
Z
SS  
5
0.9V  
V
Z
ERROR  
AMP IN  
36µA  
8
N BIAS  
1.5V  
0.9V  
9k  
0.955V  
SLOW  
START  
COMP  
50  
SLOW  
START  
COMP  
OUT  
LOOP  
FAULT  
COMP  
2k  
‘A’  
FROM  
START/STOP  
LATCH  
+
STOP  
SL00411  
Figure 24. Duty Cycle Limit Control  
15  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
90  
80  
70  
60  
V
+
7.50V  
Z
50  
40  
30  
20  
10  
0
DUTY  
CYCLE  
CONTROL  
R
2
R
R
2
1
0.1 0.2  
0.6 0.7  
0.3 0.4 0.5  
0.8  
SL00412  
Figure 25. Maximum Duty Cycle  
DEMAG/OV  
SENSE  
TO  
TO  
OUTPUT  
NOR  
OUTPUT  
NOR  
OC2  
REMOTE  
ON/OFF  
SENSE  
V
Z
LOW SUPPLY  
SENSE  
R79  
10k  
1.5V  
R78  
10k  
Q282  
R73  
10k  
R74  
10k  
R75  
18k  
R76 R77  
15k  
10k  
Q262  
Q261  
Q264  
Q265  
Q276  
Q275  
Q284  
Q277  
Q269  
Q279  
C
Q283  
Q266  
Q267  
SS  
DISCHARGE  
Q260  
OC ACCUM  
Q270 Q271 Q272 Q273 Q274  
Q280  
Q278  
Q281  
SLOW-START  
COMPARATOR  
+
Q263  
RESET  
Q268  
Q283B  
Q283A  
SHUTDOWN LATCH  
START STOP LATCH  
BULK  
SENSE  
SIGNAL  
+
GND  
RESET  
0V  
20  
SL00413  
Figure 26. Start-Stop/Shutdown Latches  
16  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
duty cycle. The equivalent circuit at this instant in the start-up cycle  
which exists at Pin 5 is shown in Figure 28.  
THE START-STOP CONTROL SEQUENCE  
The start-up circuit involves a sequential set of conditions which  
progresses as follows: power-up after OFF condition or remote ON  
after OFF. Initially, 0V exist on the supply output, causing zero  
feedback volts on Pin 8. The slow-start capacitor is discharged,  
forcing Pin 5 to 0V, having been clamped by the internal discharge  
transistor. Internal supply regulator input exceeds 8.45V, releasing  
low voltage shutdown condition with Pin 5 below 0.955V. The  
slow-start comparator output goes high, resetting the start/stop  
latch, sending a low output signal to the output stage power NOR  
gate. The PWM signal is then enabled to feed the output drive  
circuits, starting energy flow through the magnetics. However,  
instantaneously the power supply output is still below 0.955V and  
the loop fault comparator forces the PWM to remain at a minimum  
The actual minimum duty cycle is determined by the parallel source  
resistance of R and R combined with the shunt loading internal to  
1
2
Pin 5. High values of divider resistance, 20-30k, will supply less  
shunt current to Pin 5 and create a lower modulator duty cycle, while  
lower values of R and R (5-10k) will generate a higher modulator  
1
2
voltage and a greater resultant minimum duty cycle.  
As the power conversion circuits become active and Pin 8 feedback  
voltage increases above 0.955V, the duty cycle network is  
unclamped; duty cycle increases, controlled by the RC time constant  
R ||R .C , and as output voltage brings the feedback voltage up to  
1
2
SS  
equal the reference voltage, 3.80V, the error amplifier takes control  
and the supply is in regulation.  
+7.50V  
DEMAG  
OC2  
0V  
DISCHARGE  
R
1
5
S
C
SS  
START/  
Q
STOP  
R
2
+
LATCH  
R
0.955V  
SLOW-START  
COMPARATOR  
SL00414  
Figure 27. Slow-Start Comparator  
7.50V  
+
R
1
PWM  
COMP  
MINIMUM  
DUTY CYCLE  
V
MOD  
5
C
SS  
ON  
R
2
0.2V  
FEEDBACK  
VOLTAGE  
SENSE  
5
LOOP FAULT  
COMPARATOR  
1.4V  
2k  
SL00415  
Figure 28. Loop Fault Comparator and Minimum Duty Cycle Clamp  
The stop or shutdown sequence is initiated by any of the following  
conditions:  
c. Remote ON/OFF voltage at Pin 6 greater than 2V.  
d. Sustained OC2 causing C to charge above 3.80V (current  
DLY  
a. Supply voltage (bulk) sense below 3.80V at Pin 12.  
sense on Pin 14 continuously above 0.645V peak).  
b. Pin 17 below 8.45V or Pin 7 current below level (less than  
9mA).  
17  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
If the overcurrent sense feature is not used, it is recommended that  
Pin 14 be tied to ground.  
DUAL-LEVEL OVERCURRENT COMPARATORS  
The overcurrent sensing circuit (Figure 29) consists of a single PNP  
input buffer with emitter-follower tied to V , 7.50V, feeding into the  
Z
When used for sensing current-derived voltage impulses from the  
primary driver, a high-speed, low-impedance transient filter network  
base of an NPN split-emitter transistor. This forms the input node to  
a set of dual-level voltage comparators with references of 0.528 and  
0.645V, respectively. Current sources for the comparator are fixed  
biased NPNs.  
is advised. An example is shown in Figure 30. Keep C close to the  
F
NE/SE5562.  
The typical transition time delay for an overcurrent fault is 300ns.  
Bias current at the input averages 500nA.  
V
= 7.50V  
Z
135µA  
135µA  
135µA  
1.5V  
3k  
OC2  
CURRENT  
SENSE  
INPUT  
14  
REFERENCE  
0.645V  
100µA  
135µA  
1.5V  
3k  
OC1  
0.528V  
0.645V  
REFERENCE  
0.528V  
100µA  
SL00416  
Figure 29. NE/SE5562 Overcurrent Comparator  
THEORY—OC1 AND OC2  
Overcurrent Logic and Delay Capacitor Operations  
The circuit takes a voltage input from Pin 14 and compares the level  
to a dual reference comparator with trips at 0.53 and 0.65V. The  
lower trip point actuates cycle-by-cycle shutdown of the output stage  
with an intrinsic delay of 400ns. The second level actuates the  
slow-start function. In addition, there exists a separate  
+V  
CC  
housekeeping circuit whose function is to terminate operation of the  
output stage if its threshold is exceeded. This involves a time delay  
circuit based on two separate switchable current sources, OC1 and  
OC2. The time delay capacitor allows the user to program shutdown  
of the system after a predetermined number of overcurrent cycles  
have occurred within the period set by the ramp-up of the delay  
capacitor. Once shutdown has occurred in this manner, external  
reset is required to restart the system. Referring to the logic block  
Figure 31, which controls the gating of the two charge pumps into  
the delay capacitor at Pin 16, the complete signal flow may be  
traced. Logic signals from the overcurrent 1 and 2 comparators are  
gated by the clock and delayed clock signals generated by the  
NE/SE5562  
I
500-1000Ω  
10% CARBON  
MAG  
C
R
F
SH  
SL00417  
Figure 30. Transient Suppression  
18  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
sawtooth oscillator. The complete sequence for an overcurrent fault  
may be understood by referring to Figure 32 for OC2. Here it is  
shown that an OC2 signal exists indicating that the 0.65V threshold  
has been exceeded by a signal at Pin 14.  
frame. Consecutive overcurrent pulses of either OC1 or OC2  
magnitude will activate the selected charge pump for the total  
duration that such overcurrent occurs. The charging cycle will  
continue until the delay capacitor reaches the 3.86V trip level.  
Note that an overcurrent pulse within a particular clock frame turns  
on the respective OC2 charge ramp during the entire next clock  
A
C
C
A
A
OC2 IN  
C
A
C
Q
B
B
B
OC2  
LATCH  
OC2 DELAYED  
OC2  
A
A
C
A
C
B
Q
C
B
B
C
B
DELAYED  
CLOCK  
OUT  
C
B
A
C
A
CLOCK  
A
C
C
A
A
A
A
A
C
A
C
C
A
B
A
C
C
Q
B
B
OC1 DLEAYED  
OC1  
LATCH  
OC1  
A
A
B
A
C
C
Q
A
B
C
OC1 IN  
B
SL00418  
Figure 31. Overcurrent Logic  
SAWTOOTH  
CLOCK  
CLOCK  
DELAY  
CLOCK  
LET OC2 GO UP AT ANY TIME BETWEEN DELAY CLOCK RISES AND CLOCK RISES  
OC2  
Q
A
Q
B
R
S
Q
PUMP  
SL00419  
Figure 32. Fault Cycle  
19  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
3.86V  
0.1µF  
0.5µF  
1µF  
C
DELAY  
0.00V  
100  
200  
300  
OC1 DELAY TIME (MILLISECONDS)  
3.66V  
SL00421  
1µF  
5µF  
Figure 34. OC1 Ramp and Shutdown Delay  
10µF  
mode), on the first such pulse. OC2 delays are based on an  
interrupted charging cycle with total cycle time determined by the  
external slow-start delay capacitor duty cycle maximum  
divider—time constant.  
C
DELAY  
30  
For a continuous OC1 overcurrent:  
(13X10*6)(Delay time * sec)  
0.00V  
(1)  
CDLY  
+
10  
20  
40  
50  
60 70  
80  
3.86V  
OC2 DELAY TIME (MILLISECONDS)  
(neglecting recycle dfelay)  
SL00420  
For a continuous OC2 overcurrent:  
(550X10*6)(Delay cycles x 1 fSW  
)
Figure 33. Overcurrent Shutdown Function  
CDLY  
+
3.86V  
(2)  
Some downward adjustment of the OC2 capacitor value may be  
necessary to compensate for the 1-2µA of discharge current at Pin  
16 during the delay cycles.  
CALCULATING THE DELAY CAPACITOR  
Actual delay time for a given capacitor value at Pin 16 may be  
estimated using the graphs in Figure 33 for OC1 and OC2. By first  
determining the allowable overcurrent time product for a particular  
power converter, a capacitor delay value may be calculated.  
Example: A maximum of 100 OC2 current fault cycles is allowed.  
f
=400kHz, find C  
DLY  
SW  
(550X10*6)(100 x 1 4 x 105)  
Note that the OC1 charge pump is typically 13µA while OC2 pumps  
550µA into the capacitor. If the exact value is to be calculated for a  
particular delay requirement, use the following procedure:  
CDLY  
+
3.86V  
=0.036µF  
Example: OC2/C  
1. Determine the level of overcurrent—OC1 or OC2.  
DLY  
2. Find the maximum delay time which the supply may safely sus-  
tain for this continuous overcurrent condition. Note that OC1 may  
be activated on every cycle if OC2 is not reached, causing con-  
tinuous charging of C-Delay. However, OC2 overcurrent detec-  
tion causes the supply to go into slow-start shutdown (hiccup  
Find number of OC1 cycles before shutdown with 0.036µF C  
.
DLY  
20  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
(3.6 X 10*8)(3.86V)  
13 x 10*6A  
adjusted near midway, the line voltage will have to exceed V  
before the supply will restart. The hysteresis control may then be  
calibrated for the desired over-excursion before restart. This  
prevents unstable circuit chatter.  
NOMINAL  
Delay Time +  
=10.7ms  
10.7 X 10*3  
2.5 x 10*6  
The reset switch provides a means for resetting the shutdown latch  
Total cycles shutdown +  
after overcurrent faults have charged C  
to its trip threshold. This  
DLY  
=4280  
also provides a discharge path for the delay capacitor. Figure 36  
shows internal circuit.  
Figure 35 shows an actual OC1 charging cycle for continuous fault  
current sensed at Pin 14 and a DLY = 1µF.  
V
+V  
BULK  
S
BULK-SENSE AUXILIARY COMPARATOR WITH  
SHUTDOWN  
R
1
This circuit is intended to act as an automatic low-line detection  
mechanism. As shown in Figure 35, a voltage divider is connected  
from the main unregulated DC supply to Pin 12. The lower divider  
resistor may be a potentiometer of 5-10kresistance with  
center-tap connected to Pin 13. The comparator which senses Pin  
12 voltage is referenced to 3.80V and Pin 12 divider voltage must be  
greater than this voltage by a sufficient margin to operate within the  
prescribed low-line limits. For instance, if a line voltage drop of 25%  
12  
13  
NE/SE5562  
HYSTERESIS  
ADJUST  
R
2
SL00422  
is considered the shutdown threshold, then V should be calculated  
12  
Figure 35. Bulk-Sense Comparator Divider  
for a nominal operating voltage as shown in Figure 35.  
When the line voltage drops more than 25%, the output stage is  
disabled. With the hysteresis connected as shown and the pot  
1.5V  
++  
V
BULK  
18k  
BULK  
SENSE OUT  
R
A
V
Z
16  
RESET  
C
DELAY  
BULK  
SENSE IN  
25k  
12  
3.80V  
36µA  
N BIAS  
BULK  
R
B
13  
SENSE  
26k  
BULK  
SENSE  
COMP  
POTENTIOMETER  
HYSTERESIS  
26k  
SL00423  
Figure 36. Bulk-Sense Comparator  
power MOS FET gate. This feature protects the output stage from  
inadvertent catastrophic overload.  
THE OUTPUT DRIVE STAGE  
The output stage contains the power NOR inhibit gate, invert logic  
function, and source-sink drivers. The driver stage is capable of  
sourcing and sinking 100mA at frequencies up to 600kHz. The  
output transistors are Schottky clamped to prevent saturation and  
the resultant switching delay due to stored charge. A 2.5current  
sense resistor in the emitter of Q419 serves to drive active clamp  
Q427 when the output sources more than 200mA. This places a limit  
on the peak current available during instantaneous charging of a  
When sinking current, the output is clamped to a maximum of 1.4V.  
Output swing for positive output is typically V -1.9V at 100mA  
S
sourcing. Rise time for a 2000pF load at Pin 19 is typically 160ns  
with a fall time of 80ns.  
The power NOR gate provides a fast response inhibit function to  
shutdown the output in the event of a number of different fault  
21  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
conditions. All inputs are internal to the device and do not appear  
directly on the external pins as is shown on Figure 37.  
means of designing with P-channel power MOS FETs without adding  
external inverters. The invert logic is controlled by a simple logic  
signal at Pin 15. Grounding will cause the output to be a normal  
positive output and a high level gives inverted output.  
The additional flexibility of an invert control allows the polarity at the  
output during duty cycle to be reversed. This provides a simple  
17  
+V  
5
R31  
10k  
R34  
5k  
Q128  
R30  
15  
R33  
5k  
R37  
10k  
Q131  
R38  
1k  
R35  
3k  
R32  
3k  
Q126  
Q129  
Q125  
Q127  
Q132  
Q155  
Q130  
Q156  
Q133  
Q154  
PWM  
Q158  
DEMAG  
0.V  
OUTPUT  
LATCH  
Q157  
R39  
300  
R40  
2.5  
SHUT  
DOWN  
LATCH  
3.80V  
START/STOP  
LATCH  
1.5V  
19  
OUTPUT  
R28  
5k  
R29  
5k  
R30  
1.25k  
Q159  
V
Z
Q142  
Q144  
Q160  
Q141  
Q143  
Q161  
R41  
5k  
P
Q165  
BIAS  
R43  
4k  
Q134  
Q135  
Q136  
Q137  
Q151  
Q162  
Q145 Q146Q147  
Q149  
Q138  
1.5V  
Q153  
Q148  
Q152  
Q163  
Q164  
Q165  
Q139  
Q140  
Q150  
R42  
1k  
INVERT  
15  
OUTPUT NCR  
NORM  
SL00424  
Figure 37. Output Driver Schematic  
20-Pin glass/ceramic—NE5562F/ SE5562F: θ 90°C/W  
THE INTERNAL VOLTAGE REGULATOR  
JA  
The internal regulator is configured to provide for external supply to  
20-Pin SO: -55 to +85°C/W (board-dependent)  
1
the NE/SE5562 from either a voltage feed or a current feed.  
NOTE:  
1. See Figures 7 and 8 for internal Regulator Response Curves.  
For the current-fed mode, a series-dropping resistor may be used to  
power the device from voltages greater than 18V with current supply  
of 15 to 25mA. Note that supply current stated in the data sheet is  
Design Example—An NE5562N is operated at 40°C ambient in the  
voltage-fed mode with V =15V; assume I =22mA average:  
S
S
for the device only without load on the output or V . Drive currents  
Z
also are pulse-related and thus reflect frequency components onto  
the current-feed circuit. These must be filtered out at Pin 7 with  
adequately large capacitors in order to prevent motor-boating (see  
Figure 38 and Figure 39).  
++V  
47-100µF  
35V  
Input current to Pin 7 flows through Zeners Z and Z , and shunt  
1
2
+
regulator transmitter QR. A differential amplifier with 3.80V reference  
provides feedback to regulate V to 15V.  
S
7
In the voltage-fed mode using Pin 17, the Zeners prevent current  
flow through QR for input voltages less than 19V.  
Power dissipation of the device must stay within the allowable  
package limits. These limits are derived from the thermal  
19  
NE/SE5562  
characteristics of the particular package chosen. The NE5562N  
plastic package is capable of operating within the temperature range  
(ambient) of 0 to +70°C. This rating applies to the surface-mount  
product NE5562D also. Obviously, the power dissipation of the “D”  
package is lower than the standard DIP. Thermal resistance for the  
various packages are:  
20  
SL00425  
Figure 38. Current-Feed  
20-Pin plastic—NE5562N/SE5562N: θ 61°C/W  
JA  
22  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
17  
V
S
VOLTAGE  
SOURCE  
7
V
V
I
S
CURRENT  
SOURCE  
790  
FROM BIASING  
NETWORK  
30k  
10k  
Q
R
20k  
REGULATOR  
3.80V  
SL00426  
Figure 39. Internal Voltage Regulator  
-3  
P
D
= (22×10 ) (15)  
=330mW  
Junction temperatures will be 20.1°C above average ambient  
temperatures which is 40°C  
Solving for the temperature rise from ambient to the IC functions:  
Temperature rise = 61°C/W×0.33W  
= 20.1°C  
T =40°C 20.1°C 60.1°C  
J
The allowable maximum junction temperature is 150°C 125°C is  
more conservative. The conditions of this example are safe.  
+25V  
+12–15V  
L
O
10k  
12  
V
Z
17  
C
C
L
O
10k  
15  
19  
4
5
(0.472) V  
Z
IRF530  
NE5562  
3
2
1µF  
1k  
14  
V
REF  
R
SH  
100pF  
6
ERROR  
AMP  
20  
8
10k  
‘A’  
10  
10k  
VARIABLE  
SUPPLY  
0-5V  
NOTES:  
1. Supply will become active as point ‘A’ reaches the level of V  
2. Monitor Pin 19 and Pin 2 on dual-trace scope with voltmeter connected to supply output.  
, 3.80V.  
REF  
SL00427  
Figure 40. Open-Loop Test Setup  
23  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
D
3
L
O
+
+
P
P
S
C
O
1
D
2
1
2
C
V
O
P
n
n
V
IN  
Q
1
NOTE:  
The P clamp winding prevents collector voltage from exceeding 2X V during off time.  
IN  
SL00428  
1
Figure 41. Forward Converter  
+
Flyback Converter Design  
Flyback Converter  
n
Advantages:  
1
Simple circuit. Only one inductive component even with line isola-  
tion.  
m
Economic. Low component count, low cost.  
Work over large input voltage variations.  
Can accommodate multiple outputs.  
To Prevent Core Saturation Due to  
Flux Staircasing  
Disadvantages:  
m
dmax  
1 *  
if m = n δ  
n
< .5  
max  
m
Large output ripple current due to discontinuous energy transfer.  
Large output capacitor; has to supply part of the load current.  
Demagnetization of Core  
Low leakage inductance required to prevent high voltage spikes at  
the switching transistors.  
m
n
Relatively large core volume for the output power. Core driven in  
(V)  
VCEmax + Vimax  
X
m
one direction only.  
Design Parameters for Flyback Inductor  
Maximum Voltage Across Transistor  
SL00429  
Input  
Figure 42. Forward Converter Design Formulas  
Minimum input voltage  
Maximum input voltage  
D
1
Output  
+
+
Output voltage or voltages  
C
P
Output current or currents  
Output load  
C
V
O
O
V
I
Q
1
SL00430  
Figure 43. Isolated Secondary  
24  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
Frequency of Operation  
Estimate of Overall Efficiency. (η)  
+16V  
AUXILIARY  
BOOTSTRAP  
SUPPLY  
(SEE FIGURE 43)  
+V=48V  
0.47µF  
F. FWD  
SENSE  
+V = 12V  
S
3.9  
0.01µF  
10  
D
2N3906  
40k  
0.01µF  
BYV19-35  
220k  
0.22µF  
+V  
BYV26C  
OUT  
1
10k  
C
3
+5V  
L
0
RESET  
[O.C.]  
D
2
3.9  
D
3
12  
1
17  
n
n
T
0.01µF  
1
COM.  
1
3
2
(PIN 9)  
13  
LOW  
CLOCK  
DELAY  
V
HYSTERESIS  
ADJUST  
Z
SUPPLY  
7.50V  
DETECTOR  
5.1k  
570  
pF  
4
13k  
D
R
I
4.7nF  
L
A
T
BUZ41A  
3.26V  
5
6
PWM  
4.7  
19  
18  
15  
V
E
R
C
H
BYV26C  
10k  
C
SS  
Q
1
10  
START/  
STOP  
INVERT  
LA645V  
I
OFF  
CC  
3.80V  
+5V  
REMOTE  
SHUT  
DOWN  
PGM  
IN914  
CL  
1
T
14  
2
0V  
ON  
+
SHUT DOWN  
100pF  
ERROR  
AMP  
13µA  
550µA  
1.3k  
+5  
8
C
T
CL  
2
V
OUT  
100:1  
SENSE  
OC1  
OC2  
Q
1
10 20  
16  
C
1.6k  
PIN  
14  
0.00µF  
PIN  
14  
ALTERNATE  
CIRCUIT  
R
SH  
DELAY  
0.24  
1k  
0.53  
I
+
MAX  
R
SH  
SL00431  
Figure 44. Forward Converter, 100W – 5V  
25  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
+48V  
+17V  
100  
15V  
P
3
n
D40K2  
+V  
O
+5V  
P
2
33k  
n
n/2  
7
1
P
1
NE/SE5562  
n
+3.80V  
220k  
19  
6.8k  
+
0.22µF  
8
10  
20  
R
F
SL00432  
Figure 45. Shunt-Regulated Output With Bootstrap Supply  
26  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
S
+
CURRENT PATH  
WITH SWITCH  
CLOSED  
CURRENT PATH  
WITH SWITCH  
OPEN  
V
V
O
I
+
+
S
CURRENT PATH  
WITH SWITCH  
CLOSED  
CURRENT PATH  
WITH SWITCH  
OPEN  
V
V
O
Negative Output  
I
+
+
+
V
V
O
I
Positive Output  
Development of Practical Flyback Converter Circuit  
TR1 ON OFF  
I
I
O
D1  
nV  
O
i
a
L
i
L
V
T1  
N1  
CE  
V
I
I
I
D1  
L
+
L1  
V
C
O
O
nV  
O
I
C
V
V
V
i
I
i
i
CE  
CE  
b
c
L
L
V
I
L
V
CE  
TR1  
V
L
I
O
T
T
δ
O
T
T
δ
NOTES:  
a. Unlimited choke current  
b. Interrupted choke current  
Flyback Converter and Current and Voltage Waveforms  
Figure 46.  
SL00433  
27  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
48V +V  
S
+5V  
T
COM  
+12  
33k  
+12V  
2N3906  
FEED-  
220k  
FORWARD  
COM  
0.1µF  
0.22µF  
6.8k  
NE5562  
CERAMIC  
1
2
20  
19  
–12  
BUZ41A  
V
SENSE  
+5V  
0’  
570pF  
4.7  
3
4
18  
17  
16  
C
T
R
T
C
DELAY  
5.1k  
5
1k  
6
7
15  
14  
13  
12  
11  
R
O.C.  
HYST.  
1
2
R
3.8V  
SH  
8
100pF  
9
R
F
10  
R
3.5V  
C
SS  
LOW  
SUPPLY  
SENSE  
+V  
S
EXT  
SYNC  
+5  
RESET  
0V–  
NOTE:  
400kHz operation with feed-forward line regulation and cycle-by-cycle current timing.  
SL00434  
Figure 47. NE5562 Flyback Converter  
++V  
(17)  
–V  
OUT  
(10)  
(19)  
R
F
+
(8)  
(9)  
V
ERROR  
AMP  
Z
+7.50V  
(20)  
100  
100  
2N3906  
R
S
+3.80V  
I
S
R
I
I
S
SL00435  
Figure 48. Negative Output Regulator Using Current Mirror  
28  
1994 Aug 31  
Philips Semiconductors  
Product specification  
Switched-mode power supply control circuit  
NE/SE5562  
+48V  
(+)  
+15V  
SLAVED  
OUTPUTS  
17  
(–)  
NE/SE5562  
–15V  
+15V  
+
+
4
PWM  
NE5018  
D/A  
1–5V  
+5V  
–12V  
5k  
NE5034  
A/D  
15  
+
PROGRAMMED  
SUPPLY  
VOLTAGE  
µP  
SL00436  
Figure 49. Microprocessor Controlled SMPS  
3. H. Dean Venable, Stability Analysis Made Simple, Venable  
Industries, Inc., 1981.  
REFERENCES  
1. R.D. Middlebrook and Slobadan Cuk, Advances in Switched  
Mode Power Conversion, Volumes I and II, TESLA Co., Pasa-  
dena, CA, 1983.  
4. J. Jongsma and L.P.M. Bracke, High Frequency Ferrite Power  
Transformer and Choke Design, N. V. Philips ELCOMA Publica-  
tions, Eindhoven, the Netherlands, September 1982.  
2. Rudolf P. Stevens and Gordon E. Bloom, Modern DC to DC  
Switchmode Power Convertor Circuits, Van Nostrand Reinhold/  
Computer Science and Engineering Series, 1985.  
5. Edwin S. Oxner, Power FETs and Their Applications, Prentice-  
Hall, 1982.  
29  
1994 Aug 31  

相关型号:

SE5562F

Switched-mode power supply control circuit
NXP

SE556A

IC DUAL PULSE; RECTANGULAR, TIMER, PDIP14, Analog Waveform Generation Function
NXP

SE556CA

IC DUAL PULSE; RECTANGULAR, TIMER, PDIP14, Analog Waveform Generation Function
NXP

SE556CF

IC TIMER, CDIP14, Analog Waveform Generation Function
NXP

SE556CFK

DUAL PULSE; RECTANGULAR, TIMER, CQCC20, CERAMIC, LCC-20
TI

SE556CJ

DUAL RECTANGULAR, TIMER, CDIP14
TI

SE556CJ/883B

IC,TIMER,BIPOLAR,DIP,14PIN,CERAMIC
TI

SE556CN

Analog Waveform Generation Function, BIPolar, PDIP14,
PHILIPS

SE556CN

IC DUAL PULSE, TIMER, PDIP14, Analog Waveform Generation Function
NXP

SE556CN-B

Analog Waveform Generation Function, BIPolar, PDIP14
PHILIPS

SE556CNSIIA

Analog Waveform Generation Function, BIPolar, PDIP14
PHILIPS

SE556D

GENERAL PURPOSE DUAL BIPOLAR TIMERS
STMICROELECTR