SPAKXC309VF100A [NXP]

24-BIT, 100MHz, OTHER DSP, PBGA196, 15 X 15 MM, 1 MM PITCH, MOLD ARRAY PROCESS, BGA-196;
SPAKXC309VF100A
型号: SPAKXC309VF100A
厂家: NXP    NXP
描述:

24-BIT, 100MHz, OTHER DSP, PBGA196, 15 X 15 MM, 1 MM PITCH, MOLD ARRAY PROCESS, BGA-196

时钟 外围集成电路
文件: 总112页 (文件大小:2288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Technical Data  
Advance Information  
DSP56309/D  
Rev. 3, 9/2002  
24-Bit Digital Signal  
Processor  
16  
6
6
3
Memory Expansion Area  
Triple  
Timer  
X Data  
RAM  
7168 × 24  
bits  
Y Data  
RAM  
7168 × 24  
bits  
PrograM  
RAM  
20480 × 24  
bits  
HI08  
ESSI  
SCI  
(default)  
(default)  
(default)  
Peripheral  
Expansion Area  
The DSP56309 is  
intended for  
applications benefiting  
from a large amount of  
on-chip memory, such  
as wireless  
YAB  
18  
Address  
External  
XAB  
PAB  
DAB  
Generation  
Unit  
Address  
Bus  
Address  
Switch  
Six-Channel  
DMA Unit  
External  
Bus  
24-Bit  
13  
Interface  
and Inst.  
Cache  
Bootstrap  
ROM  
DSP56300  
Core  
Control  
Control  
infrastructure  
applications.  
DDB  
YDB  
XDB  
PDB  
GDB  
24  
External  
Data Bus  
Switch  
Internal  
Data  
Bus  
Data  
Switch  
Power  
Management  
EXTAL  
XTAL  
Clock  
Generator  
Data ALU  
5
Program  
Interrupt  
Controller  
Program  
Decode  
Program  
Address  
Generator  
+
56-bit MAC  
24 × 24 56  
JTAG  
Two 56-bit Accumulators  
56-bit Barrel Shifter  
PLL  
2
Controller  
OnCE™  
DE  
MODA/IRQA  
MODB/IRQB  
MODC/IRQC  
MODD/IRQD  
RESET  
PINIT/NMI  
Figure 1. DSP56309 Block Diagram  
The DSP56309 is a member of the DSP56300  
core family of programmable CMOS digital  
signal processors (DSPs). The DSP56300 core  
includes a barrel shifter, 24-bit addressing, an  
instruction cache, and direct memory access  
(DMA). The DSP56309 offers 100 MIPS at  
3.0–3.6 V using an internal 100 MHz clock.  
The large on-chip memory is ideal for  
wireless infrastructure and wireless local-loop  
applications. The DSP56300 core family  
offers a new level of performance in speed  
and power provided by its rich instruction set  
and low-power dissipation, thus enabling a  
new generation of wireless, multimedia, and  
telecommunications products.  
Note: This document contains information on a new product. Specifications and information herein are subject to change without notice.  
Table of Contents  
DSP56309 Features............................................................................................................................................ iii  
Target Applications ............................................................................................................................................ iv  
Product Documentation...................................................................................................................................... iv  
Chapter 1  
Signal Connections  
1.1 Signal Groupings.............................................................................................................................................. 1-1  
1.2 Power................................................................................................................................................................ 1-3  
1.3 Ground.............................................................................................................................................................. 1-3  
1.4 Clock ................................................................................................................................................................ 1-4  
1.5 PLL................................................................................................................................................................... 1-4  
1.6 External Memory Expansion Port (Port A)...................................................................................................... 1-5  
1.7 Interrupt and Mode Control ............................................................................................................................. 1-8  
1.8 Host Interface (HI08)....................................................................................................................................... 1-9  
1.9 Enhanced Synchronous Serial Interface 0 (ESSI0)........................................................................................ 1-13  
1.10 Enhanced Synchronous Serial Interface 1 (ESSI1)........................................................................................ 1-14  
1.11 Serial Communication Interface (SCI)........................................................................................................... 1-16  
1.12 Timers............................................................................................................................................................. 1-17  
1.13 JTAG and OnCE Interface ............................................................................................................................. 1-18  
Chapter 2  
Chapter 3  
Chapter 4  
Specifications  
2.1 Introduction...................................................................................................................................................... 2-1  
2.2 Maximum Ratings............................................................................................................................................ 2-1  
2.4 Thermal Characteristics ................................................................................................................................... 2-2  
2.5 DC Electrical Characteristics........................................................................................................................... 2-3  
2.6 AC Electrical Characteristics........................................................................................................................... 2-4  
Packaging  
3.1 Pin-Out and Packages ...................................................................................................................................... 3-1  
3.2 TQFP Package.................................................................................................................................................. 3-2  
3.3 TQFP Package Mechanical Drawing............................................................................................................... 3-9  
3.4 MAP-BGA Package....................................................................................................................................... 3-10  
3.5 MAP-BGA Package Mechanical Drawing .................................................................................................... 3-19  
Design Considerations  
4.1 Thermal Design Considerations....................................................................................................................... 4-1  
4.2 Electrical Design Considerations..................................................................................................................... 4-2  
4.3 Power Consumption Considerations................................................................................................................ 4-4  
4.4 PLL Performance Issues .................................................................................................................................. 4-5  
4.5 Input (EXTAL) Jitter Requirements................................................................................................................. 4-5  
Appendix A  
Index  
Power Consumption Benchmark  
Data Sheet Conventions  
OVERBAR  
“asserted”  
“deasserted”  
Examples:  
Indicates a signal that is active when pulled low (For example, the RESET pin is active when low.)  
Means that a high true (active high) signal is high or that a low true (active low) signal is low  
Means that a high true (active high) signal is low or that a low true (active low) signal is high  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
Voltage  
V /V  
PIN  
PIN  
PIN  
PIN  
IL OL  
False  
Deasserted  
Asserted  
V
V
/V  
IH OH  
True  
/V  
IH OH  
False  
Deasserted  
V /V  
IL OL  
Note: Values for V , V , V , and V are defined by individual product specifications.  
IL  
OL  
IH  
OH  
ii  
DSP56309 Features  
High-Performance DSP56300 Core  
• 100 million instructions per second (MIPS) with a 100 MHz clock at 3.3 V nominal  
• Data Arithmetic Logic Unit (Data ALU) with fully pipelined 24 × 24-bit parallel  
Multiplier-Accumulator (MAC), 56-bit parallel barrel shifter (fast shift and normalization; bit stream  
generation and parsing), conditional ALU instructions, and 24-bit or 16-bit arithmetic support under  
software control  
• Program Control Unit (PCU) with Position Independent Code (PIC) support, addressing modes  
optimized for DSP applications (including immediate offsets), on-chip instruction cache controller,  
on-chip memory-expandable hardware stack, nested hardware DO loops, and fast auto-return interrupts  
• Direct Memory Access (DMA) with six DMA channels supporting internal and external accesses;  
one-, two-, and three-dimensional transfers (including circular buffering); end-of-block-transfer  
interrupts; and triggering from interrupt lines and all peripherals  
• Phase Lock Loop (PLL) allows change of low-power Divide Factor (DF) without loss of lock and  
output clock with skew elimination  
• Hardware debugging support including On-Chip Emulation (OnCE ) module, Joint Test Action  
Group (JTAG) Test Access Port (TAP)  
Internal Peripherals  
• Enhanced 8-bit parallel host interface (HI08) supports a variety of buses (for example, ISA) and  
provides glueless connection to a number of industry-standard microcomputers, microprocessors, and  
DSPs  
• Two enhanced synchronous serial interfaces (ESSI), each with one receiver and three transmitters  
(allows six-channel home theater)  
• Serial communications interface (SCI) with baud rate generator  
• Triple timer module  
• Up to thirty-four programmable general-purpose input/output (GPIO) pins, depending on which  
peripherals are enabled  
Internal Memory  
• 192 × 24-bit bootstrap ROM  
• 128 K RAM total  
• Program RAM, Instruction Cache, X data RAM, and Y data RAM sizes are programmable:  
Program RAM  
Size  
Instruction  
Cache Size  
X Data RAM  
Size  
Y Data RAM  
Size  
Instruction  
Cache  
Switch Mode  
20480 × 24 bits  
19456 × 24 bits  
24576 × 24 bits  
23552 × 24 bits  
0
7168 × 24 bits  
7168 × 24 bits  
5120 × 24 bits  
5120 × 24 bits  
7168 × 24 bits  
7168 × 24 bits  
5120 × 24 bits  
5120 × 24 bits  
disabled  
enabled  
disabled  
enabled  
disabled  
disabled  
enabled  
enabled  
1024 × 24-bit  
0
1024 × 24-bit  
iii  
External Memory Expansion  
• Data memory expansion to two 256 K × 24-bit word memory spaces using the standard external  
address lines  
• Program memory expansion to one 256 K × 24-bit words memory space using the standard external  
address lines  
• External memory expansion port  
• Chip Select Logic for glueless interface to static random access memory (SRAMs)  
• On-chip DRAM Controller for glueless interface to dynamic random access memory (DRAMs)  
Reduced Power Dissipation  
• Very low-power CMOS design  
• Wait and Stop low-power standby modes  
• Fully static design specified to operate down to 0 Hz (dc)  
• Optimized power management circuitry (instruction-dependent, peripheral-dependent, and  
mode-dependent)  
Packaging  
The DSP56309 is available in a 144-pin TQFP package or a 196-pin MAP-BGA package.  
Target Applications  
The DSP56309 is intended for applications benefiting from a large amount of on-chip memory, such as  
wireless infrastructure applications.  
Product Documentation  
The three documents listed in the following table are required for a complete description of the  
DSP56309 and are necessary to design properly with the part. Documentation is available from the  
following sources. (See the back cover for details.)  
• A local Motorola distributor  
• A Motorola semiconductor sales office  
• A Motorola Literature Distribution Center  
• The World Wide Web (WWW)  
Table 1. DSP56309 Documentation  
Name  
Description  
Order Number  
DSP56300 Family  
Manual  
Detailed description of the DSP56300 family processor core and  
instruction set  
DSP56300FM/AD  
DSP56309 User’s  
Manual  
Detailed functional description of the DSP56309 memory  
configuration, operation, and register programming  
DSP56309UM/D  
DSP56309/D  
DSP56309  
Technical Data  
DSP56309 features list and physical, electrical, timing, and  
package specifications  
iv  
Chapter 1  
Signal  
Connections  
1.1 Signal Groupings  
The DSP56309 input and output signals are organized into functional groups as shown in Table 1-1.  
Figure 1-1 diagrams the DSP56309 signals by functional group. The remainder of this chapter describes  
the signal pins in each functional group.  
Table 1-1. DSP56309 Functional Signal Groupings  
Number of Signals  
Functional Group  
MAP-  
TQFP  
BGA  
Power (V  
)
20  
19  
2
20  
66  
2
CC  
Ground (GND)  
Clock  
PLL  
3
3
Address bus  
18  
24  
13  
5
18  
24  
13  
5
1
2
Data bus  
Port A  
Bus control  
Interrupt and mode control  
Host interface (HI08)  
Enhanced synchronous serial interface (ESSI)  
Serial communication interface (SCI)  
Timer  
Port B  
16  
12  
3
16  
12  
3
3
Ports C and D  
4
Port E  
3
3
OnCE/JTAG Port  
6
6
Notes: 1. Port A signals define the external memory interface port, including the external address bus, data  
bus, and control signals.  
2. Port B signals are the HI08 port signals multiplexed with the GPIO signals.  
3. Port C and D signals are the two ESSI port signals multiplexed with the GPIO signals.  
4. Port E signals are the SCI port signals multiplexed with the GPIO signals.  
5. There are 5 signal connections in the MAP-BGA package that are not used. These are designated as  
no connect (NC) in the package description (see Chapter 3).  
Note: This chapter refers to a number of configuration registers used to select individual multiplexed  
signal functionality. Refer to the DSP56309 User’s Manual for details on these configuration  
registers.  
1-1  
Signal Groupings  
After Reset  
IRQA  
During Reset  
MODA  
DSP56309  
MODB  
MODC  
MODD  
RESET  
IRQB  
IRQC  
IRQD  
RESET  
Interrupt/  
Mode Control  
Power Inputs:  
PLL  
Internal Logic  
I/O  
V
CCP  
4
3
V
CCQL  
CCQH  
V
3
4
2
V
Address Bus  
Data Bus  
Bus Control  
HI08  
CCA  
Non-Multiplexed Multiplexed  
Port B  
GPIO  
PB[0–7]  
PB8  
PB9  
PB10  
PB13  
V
CCD  
Bus  
Bus  
8
V
CCC  
H[0–7]  
HA0  
HA1  
HAD[0–7]  
HAS/HAS  
HA8  
V
V
CCH  
2
ESSI/SCI/Timer  
CCS  
Host  
Interface  
4
HA2  
HA9  
Grounds :  
1
(HI08) Port  
HCS/HCS  
Single DS  
HRW  
HDS/HDS  
Single HR  
HREQ/HREQ  
HACK/HACK  
HA10  
GND  
GND  
GND  
PLL  
PLL  
P
Double DS  
HRD/HRD  
HWR/HWR  
Double HR  
HTRQ/HTRQ PB14  
HRRQ/HRRQ PB15  
P1  
4
PB11  
PB12  
Internal Logic  
Address Bus  
Data Bus  
Bus Control  
HI08  
Q
GND  
A
D
C
H
4
2
GND  
GND  
GND  
2
GND  
ESSI/SCI/Timer  
S
Port C GPIO  
PC[0–2]  
PC3  
3
Enhanced  
Synchronous Serial  
Interface Port 0  
SC0[0–2]  
SCK0  
EXTAL  
XTAL  
Clock  
SRD0  
PC4  
2
(ESSI0)  
STD0  
PC5  
CLKOUT  
PCAP  
After  
PLL  
Port D GPIO  
PD[0–2]  
PD3  
PD4  
PD5  
3
Enhanced  
Synchronous Serial  
Interface Port 1  
SC1[0–2]  
SCK1  
SRD1  
During  
Reset  
PINIT  
Reset  
NMI  
2
(ESSI1)  
STD1  
Port A  
18  
External  
Address Bus  
Port E GPIO  
PE0  
PE1  
A[0–17]  
D[0–23]  
Serial  
RXD  
TXD  
SCLK  
Communications  
24  
4
2
External  
Data Bus  
Interface (SCI) Port  
PE2  
Timer GPIO  
TIO0  
TIO1  
AA[0–3]/RAS[0–3]  
External  
Bus  
Control  
RD  
WR  
TA  
TIO0  
TIO1  
TIO2  
3
Timers  
TIO2  
BR  
BG  
BB  
TCK  
TDI  
OnCE/  
TDO  
TMS  
TRST  
DE  
JTAG Port  
CAS  
BCLK  
BCLK  
Notes: 1. The HI08 port supports a non-multiplexed or a multiplexed bus, single or double Data Strobe (DS), and single or  
double Host Request (HR) configurations. Since each of these modes is configured independently, any combination  
of these modes is possible. These HI08 signals can also be configured alternatively as GPIO signals (PB[0–15]).  
Signals with dual designations (for example, HAS/HAS) have configurable polarity.  
2. The ESSI0, ESSI1, and SCI signals are multiplexed with the Port C GPIO signals (PC[0–5]), Port D GPIO signals  
(PD[0–5]), and Port E GPIO signals (PE[0–2]), respectively.  
3. TIO[0–2] can be configured as GPIO signals.  
4. Ground connections shown in this figure are for the TQFP package. In the MAP-BGA package, in addition to the  
GND and GND connections, there are 64 GND connections to a common internal package ground plane.  
P
P1  
Figure 1-1. Signals Identified by Functional Group  
1-2  
Power  
1.2 Power  
Table 1-2. Power Inputs  
Power Name  
Description  
V
V
V
V
V
V
V
V
PLL Power—V dedicated for PLL use. The voltage should be well-regulated and the input  
CC  
CCP  
should be provided with an extremely low impedance path to the V power rail.  
CC  
Quiet Power (core)—An isolated power for the core processing logic. This input must be  
isolated externally from all other chip power inputs.  
CCQL  
CCQH  
CCA  
Quiet External (High) Power—A quiet power source for I/O lines. This input must be tied  
externally to all other chip power inputs, except V  
.
CCQL  
Address Bus Power—An isolated power for sections of the address bus I/O drivers. This  
input must be tied externally to all other chip power inputs, except V  
.
CCQL  
Data Bus Power—An isolated power for sections of the data bus I/O drivers. This input must  
be tied externally to all other chip power inputs, except V  
CCD  
CCC  
CCH  
CCS  
.
CCQL  
Bus Control Power—An isolated power for the bus control I/O drivers. This input must be  
tied externally to all other chip power inputs, except V  
.
CCQL  
Host Power—An isolated power for the HI08 I/O drivers. This input must be tied externally to  
all other chip power inputs, except V  
.
CCQL  
ESSI, SCI, and Timer Power—An isolated power for the ESSI, SCI, and timer I/O drivers.  
This input must be tied externally to all other chip power inputs, except V  
.
CCQL  
Note: The user must provide adequate external decoupling capacitors for all power connections.  
1.3 Ground  
Table 1-3. Grounds1  
Ground  
Description  
Name  
GND  
PLL Ground—Ground-dedicated for PLL use. The connection should be provided with an extremely  
low-impedance path to ground. V should be bypassed to GND by a 0.47 µF capacitor located as  
P
CCP  
P
close as possible to the chip package.  
GND  
GND  
PLL Ground 1—Ground-dedicated for PLL use. The connection should be provided with an extremely  
low-impedance path to ground.  
P1  
2
Quiet Ground—An isolated ground for the internal processing logic. This connection must be tied  
Q
externally to all other chip ground connections, except GND and GND . The user must provide  
P
P1  
adequate external decoupling capacitors.  
Address Bus Ground—An isolated ground for sections of the address bus I/O drivers. This  
connection must be tied externally to all other chip ground connections, except GND and GND . The  
2
GND  
GND  
GND  
GND  
GND  
GND  
A
P
P1  
user must provide adequate external decoupling capacitors.  
Data Bus Ground—An isolated ground for sections of the data bus I/O drivers. This connection must  
be tied externally to all other chip ground connections, except GND and GND . The user must  
2
D
P
P1  
provide adequate external decoupling capacitors.  
Bus Control Ground—An isolated ground for the bus control I/O drivers. This connection must be tied  
externally to all other chip ground connections, except GND and GND . The user must provide  
2
C
P
P1  
adequate external decoupling capacitors.  
Host Ground—An isolated ground for the HI08 I/O drivers. This connection must be tied externally to  
all other chip ground connections, except GND and GND . The user must provide adequate external  
2
H
P
P1  
decoupling capacitors.  
ESSI, SCI, and Timer Ground—An isolated ground for the ESSI, SCI, and timer I/O drivers. This  
connection must be tied externally to all other chip ground connections, except GND and GND . The  
2
S
P
P1  
user must provide adequate external decoupling capacitors.  
3
Ground—Connected to an internal device ground plane.  
Notes: 1. The user must provide adequate external decoupling capacitors for all GND connections.  
2. These connections are only used on the TQFP package.  
3. These connections are common grounds used on the MAP-BGA package.  
1-3  
Clock  
1.4 Clock  
Table 1-4. Clock Signals  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
EXTAL  
Input  
Input  
External Clock/Crystal Input—Interfaces the internal crystal oscillator  
input to an external crystal or an external clock.  
XTAL  
Output  
Chip-driven  
Crystal Output—Connects the internal crystal oscillator output to an  
external crystal. If an external clock is used, leave XTAL unconnected.  
1.5 PLL  
Table 1-5. Phase-Locked Loop Signals  
Signal  
Name  
State During  
Type  
Signal Description  
Reset  
CLKOUT  
Output  
Chip-driven  
Clock Output—Provides an output clock synchronized to the  
internal core clock phase.  
If the PLL is enabled and both the multiplication and division  
factors equal one, then CLKOUT is also synchronized to EXTAL.  
If the PLL is disabled, the CLKOUT frequency is half the  
frequency of EXTAL.  
PCAP  
Input  
Input  
PLL Capacitor—An input connecting an off-chip capacitor to the  
PLL filter. Connect one capacitor terminal to PCAP and the other  
terminal to V  
.
CCP  
If the PLL is not used, PCAP can be tied to V , GND, or left  
CC  
floating.  
PINIT  
NMI  
Input  
Input  
Input  
PLL Initial—During assertion of RESET, the value of PINIT is  
written into the PLL enable (PEN) bit of the PLL control (PCTL)  
register, determining whether the PLL is enabled or disabled.  
Nonmaskable Interrupt—After RESET deassertion and during  
normal instruction processing, this Schmitt-trigger input is the  
negative-edge-triggered NMI request internally synchronized to  
CLKOUT.  
Note: PINIT/NMI can tolerate 5 V.  
1-4  
External Memory Expansion Port (Port A)  
1.6 External Memory Expansion Port (Port A)  
Note: When the DSP56309 enters a low-power standby mode (stop or wait), it releases bus mastership  
and tri-states the relevant Port A signals: A[0–17], D[0–23], AA0/RAS0AA3/RAS3, RD, WR, BB,  
CAS.  
1.6.1 External Address Bus  
Table 1-6. External Address Bus Signals  
State During  
Reset, Stop, or  
Wait  
Signal  
Name  
Type  
Signal Description  
A[0–17]  
Output  
Tri-stated  
Address Bus—When the DSP is the bus master, A[0–17] are  
active-high outputs that specify the address for external  
program and data memory accesses. Otherwise, the signals  
are tri-stated. To minimize power dissipation, A[0–17] do not  
change state when external memory spaces are not being  
accessed.  
1.6.2 External Data Bus  
Table 1-7. External Data Bus Signals  
State  
State  
During  
Reset  
Signal  
Type  
During  
Stop or  
Wait  
Signal Description  
Name  
D[0–23] Input/ Output  
Ignored  
Input  
Last state: Data Bus—When the DSP is the bus master, D[0–23] are  
Input:  
active-high, bidirectional input/outputs that provide the  
bidirectional data bus for external program and data memory  
accesses. Otherwise, D[0–23] drivers are tri-stated. If the last  
Ignored  
Output:  
Last value state is output, these lines have weak keepers to maintain the  
last output state if all drivers are tri-stated.  
1-5  
External Memory Expansion Port (Port A)  
1.6.3 External Bus Control  
Table 1-8. External Bus Control Signals  
State During  
Reset, Stop, or  
Wait  
Signal  
Name  
Type  
Signal Description  
AA[0–3]  
Output Tri-stated  
Address Attribute—When defined as AA, these signals can be used as  
chip selects or additional address lines. The default use defines a  
priority scheme under which only one AA signal can be asserted at a  
time. Setting the AA priority disable (APD) bit (Bit 14) of the Operating  
Mode Register, the priority mechanism is disabled and the lines can be  
used together as four external lines that can be decoded externally into  
16 chip select signals.  
RAS[0–3] Output  
Row Address Strobe—When defined as RAS, these signals can be  
used as RAS for DRAM interface. These signals are tri-statable outputs  
with programmable polarity.  
RD  
WR  
TA  
Output Tri-stated  
Read Enable—When the DSP is the bus master, RD is an active-low  
output that is asserted to read external memory on the data bus  
(D[0–23]). Otherwise, RD is tri-stated.  
Output Tri-stated  
Write Enable—When the DSP is the bus master, WR is an active-low  
output that is asserted to write external memory on the data bus  
(D[0–23]). Otherwise, the signals are tri-stated.  
Input  
Ignored Input  
Transfer Acknowledge—If the DSP56309 is the bus master and there  
is no external bus activity, or the DSP56309 is not the bus master, the  
TA input is ignored. The TA input is a data transfer acknowledge  
(DTACK) function that can extend an external bus cycle indefinitely. Any  
number of wait states (1, 2. . .infinity) can be added to the wait states  
inserted by the bus control register (BCR) by keeping TA deasserted. In  
typical operation, TA is deasserted at the start of a bus cycle, is asserted  
to enable completion of the bus cycle, and is deasserted before the next  
bus cycle. The current bus cycle completes one clock period after TA is  
asserted synchronous to CLKOUT. The number of wait states is  
determined by the TA input or by the BCR, whichever is longer. The  
BCR can be used to set the minimum number of wait states in external  
bus cycles.  
To use the TA functionality, the BCR must be programmed to at least  
one wait state. A zero wait state access cannot be extended by TA  
deassertion; otherwise, improper operation may result. TA can operate  
synchronously or asynchronously depending on the setting of the TAS  
bit in the Operating Mode Register. TA functionality cannot be used  
during DRAM type accesses; otherwise improper operation may result.  
BR  
Output Reset: Output  
(deasserted)  
Bus Request—Asserted when the DSP requests bus mastership. BR is  
deasserted when the DSP no longer needs the bus. BR may be  
asserted or deasserted independently of whether the DSP56309 is a  
bus master or a bus slave. Bus “parking” allows BR to be deasserted  
even though the DSP56309 is the bus master. (See the description of  
bus “parking” in the BB signal description.) The bus request hold (BRH)  
bit in the BCR allows BR to be asserted under software control even  
though the DSP does not need the bus. BR is typically sent to an  
State during  
Stop/Wait depends  
on BRH bit setting:  
• BRH = 0: Output,  
deasserted  
• BRH = 1: Maintains external bus arbitrator that controls the priority, parking, and tenure of  
last state (that is, if  
asserted, remains  
asserted)  
each master on the same external bus. BR is affected only by DSP  
requests for the external bus, never for the internal bus. During  
hardware reset, BR is deasserted and the arbitration is reset to the bus  
slave state.  
1-6  
External Memory Expansion Port (Port A)  
Table 1-8. External Bus Control Signals (Continued)  
State During  
Reset, Stop, or  
Wait  
Signal  
Name  
Type  
Signal Description  
BG  
Input  
Ignored Input  
Bus Grant—Asserted by an external bus arbitration circuit when the  
DSP56309 becomes the next bus master. When BG is asserted, the  
DSP56309 must wait until BB is deasserted before taking bus  
mastership. When BG is deasserted, bus mastership is typically given  
up at the end of the current bus cycle. This may occur in the middle of an  
instruction that requires more than one external bus cycle for execution.  
The default operation of this bit requires a setup and hold time as  
specified in Table 2-14. An alternate mode can be invoked: set the  
asynchronous bus arbitration enable (ABE) bit (Bit 13) in the Operating  
Mode Register. When this bit is set, BG and BB are synchronized  
internally. This eliminates the respective setup and hold time  
requirements but adds a required delay between the deassertion of an  
initial BG input and the assertion of a subsequent BG input.  
BB  
Input/  
Output  
Ignored Input  
Bus Busy—Indicates that the bus is active. Only after BB is deasserted  
can the pending bus master become the bus master (and then assert  
the signal again). The bus master may keep BB asserted after ceasing  
bus activity regardless of whether BR is asserted or deasserted. Called  
“bus parking,” this allows the current bus master to reuse the bus  
without rearbitration until another device requires the bus. BB is  
deasserted by an “active pull-up” method (that is, BB is driven high and  
then released and held high by an external pull-up resistor).  
The default operation of this signal requires a setup and hold time as  
specified in Table 2-14. An alternative mode can be invoked by setting  
the ABE bit (Bit 13) in the Operating Mode Register. When this bit is set,  
BG and BB are synchronized internally. See BG for additional  
information.  
Note: BB requires an external pull-up resistor.  
CAS  
Output Tri-stated  
Output Tri-stated  
Column Address Strobe—When the DSP is the bus master, CAS is an  
active-low output used by DRAM to strobe the column address.  
Otherwise, if the Bus Mastership Enable (BME) bit in the DRAM control  
register is cleared, the signal is tri-stated.  
BCLK  
Bus Clock  
When the DSP is the bus master, BCLK is active when the ATE bit in the  
Operating Mode Register is set. When BCLK is active and synchronized  
to CLKOUT by the internal PLL, BCLK precedes CLKOUT by one-fourth  
of a clock cycle.  
BCLK  
Output Tri-stated  
Bus Clock Not  
When the DSP is the bus master, BCLK is the inverse of the BCLK  
signal. Otherwise, the signal is tri-stated.  
1-7  
Interrupt and Mode Control  
1.7 Interrupt and Mode Control  
The interrupt and mode control signals select the chip operating mode as it comes out of hardware reset.  
After RESET is deasserted, these inputs are hardware interrupt request lines.  
Table 1-9. Interrupt and Mode Control  
State During  
Signal Name  
Type  
Signal Description  
Reset  
Input  
Schmitt-trigger  
Input  
Mode Select A—MODA, MODB, MODC, and MODD select one  
of 16 initial chip operating modes, latched into the Operating  
Mode Register when the RESET signal is deasserted.  
MODA  
Input  
External Interrupt Request A—After reset, this input becomes a  
level-sensitive or negative-edge-triggered, maskable interrupt  
request input during normal instruction processing. If the  
processor is in the STOP or WAIT standby state and IRQA is  
asserted, the processor exits the STOP or WAIT state.  
IRQA  
Input  
Input  
Schmitt-trigger  
Input  
Mode Select B—MODA, MODB, MODC, and MODD select one  
of 16 initial chip operating modes, latched into the Operating  
Mode Register when the RESET signal is deasserted.  
MODB  
IRQB  
External Interrupt Request B—After reset, this input becomes a  
level-sensitive or negative-edge-triggered, maskable interrupt  
request input during normal instruction processing. If the  
processor is in the WAIT standby state and IRQB is asserted, the  
processor exits the WAIT state.  
Input  
Input  
Schmitt-trigger  
Input  
Mode Select C—MODA, MODB, MODC, and MODD select one  
of 16 initial chip operating modes, latched into the Operating  
Mode Register when the RESET signal is deasserted.  
MODC  
IRQC  
External Interrupt Request C—After reset, this input becomes a  
level-sensitive or negative-edge-triggered, maskable interrupt  
request input during normal instruction processing. If the  
processor is in the WAIT standby state and IRQC is asserted, the  
processor exits the WAIT state.  
Input  
Input  
Schmitt-trigger  
Input  
Mode Select D—MODA, MODB, MODC, and MODD select one  
of 16 initial chip operating modes, latched into the Operating  
Mode Register when the RESET signal is deasserted.  
MODD  
IRQD  
External Interrupt Request D—After reset, this input becomes a  
level-sensitive or negative-edge-triggered, maskable interrupt  
request input during normal instruction processing. If the  
processor is in the WAIT standby state and IRQD is asserted, the  
processor exits the WAIT state.  
RESET  
Input  
Schmitt-trigger  
Input  
Reset—Places the chip in the Reset state and resets the internal  
phase generator. The Schmitt-trigger input allows a slowly rising  
input (such as a capacitor charging) to reset the chip reliably.  
When the RESET signal is deasserted, the initial chip operating  
mode is latched from the MODA, MODB, MODC, and MODD  
inputs. The RESET signal must be asserted after powerup.  
Note: These signals are all 5 V tolerant.  
1-8  
Host Interface (HI08)  
1.8 Host Interface (HI08)  
The HI08 provides a fast, 8-bit, parallel data port that connects directly to the host bus. The HI08 supports  
a variety of standard buses and connects directly to a number of industry-standard microcomputers,  
microprocessors, DSPs, and DMA hardware.  
1.8.4 Host Port Usage Considerations  
Careful synchronization is required when the system reads multiple-bit registers that are written by  
another asynchronous system. This is a common problem when two asynchronous systems are connected  
(as they are in the Host port). The considerations for proper operation are discussed in Table 1-10.  
Table 1-10. Host Port Usage Considerations  
Action  
Description  
Asynchronous read of receive  
byte registers  
When reading the receive byte registers, Receive register High (RXH), Receive  
register Middle (RXM), or Receive register Low (RXL), use interrupts or poll the  
Receive register Data Full (RXDF) flag that indicates data is available. This assures  
that the data in the receive byte registers is valid.  
Asynchronous write to transmit Do not write to the transmit byte registers, Transmit register High (TXH), Transmit  
byte registers  
register Middle (TXM), or Transmit register Low (TXL), unless the Transmit register  
Data Empty (TXDE) bit is set indicating that the transmit byte registers are empty.  
This guarantees that the transmit byte registers transfer valid data to the Host  
Receive (HRX) register.  
Asynchronous write to host  
vector  
Change the Host Vector (HV) register only when the Host Command bit (HC) is  
clear. This practice guarantees that the DSP interrupt control logic receives a stable  
vector.  
1.8.5 Host Port Configuration  
HI08 signal functions vary according to the programmed configuration of the interface as determined by  
the 16 bits in the HI08 Port Control Register.  
Table 1-11. Host Interface  
StateDuring  
Signal Name  
Type  
Signal Description  
Reset1,2  
H[0–7]  
Input/Output  
Ignored Input Host Data—When the HI08 is programmed to interface with a  
non-multiplexed host bus and the HI function is selected, these  
signals are lines 0–7 of the bidirectional Data bus.  
HAD[0–7]  
PB[0–7]  
Input/Output  
Host Address—When the HI08 is programmed to interface with a  
multiplexed host bus and the HI function is selected, these signals  
are lines 0–7 of the bidirectional multiplexed Address/Data bus.  
Input or Output  
Port B 0–7—When the HI08 is configured as GPIO through the  
HI08 Port Control Register, these signals are individually  
programmed as inputs or outputs through the HI08 Data Direction  
Register.  
1-9  
Host Interface (HI08)  
Table 1-11. Host Interface (Continued)  
StateDuring  
Signal Name  
Type  
Signal Description  
Reset1,2  
HA0  
Input  
Ignored Input Host Address Input 0—When the HI08 is programmed to  
interface with a nonmultiplexed host bus and the HI function is  
selected, this signal is line 0 of the host address input bus.  
HAS/HAS  
Input  
Host Address Strobe—When the HI08 is programmed to  
interface with a multiplexed host bus and the HI function is  
selected, this signal is the host address strobe (HAS)  
Schmitt-trigger input. The polarity of the address strobe is  
programmable but is configured active-low (HAS) following reset.  
PB8  
Input or Output  
Port B 8—When the HI08 is configured as GPIO through the HI08  
Port Control Register, this signal is individually programmed as an  
input or output through the HI08 Data Direction Register.  
HA1  
Input  
Ignored Input Host Address Input 1—When the HI08 is programmed to  
interface with a nonmultiplexed host bus and the HI function is  
selected, this signal is line 1 of the host address (HA1) input bus.  
HA8  
Input  
Host Address 8—When the HI08 is programmed to interface with  
a multiplexed host bus and the HI function is selected, this signal  
is line 8 of the host address (HA8) input bus.  
PB9  
HA2  
Input or Output  
Input  
Port B 9—When the HI08 is configured as GPIO through the HI08  
Port Control Register, this signal is individually programmed as an  
input or output through the HI08 Data Direction Register.  
Ignored Input Host Address Input 2—When the HI08 is programmed to  
interface with a nonmultiplexed host bus and the HI function is  
selected, this signal is line 2 of the host address (HA2) input bus.  
HA9  
Input  
Host Address 9—When the HI08 is programmed to interface with  
a multiplexed host bus and the HI function is selected, this signal  
is line 9 of the host address (HA9) input bus.  
PB10  
Input or Output  
Input  
Port B 10—When the HI08 is configured as GPIO through the  
HI08 Port Control Register, this signal is individually programmed  
as an input or output through the HI08 Data Direction Register.  
HCS/HCS  
Ignored Input Host Chip Select—When the HI08 is programmed to interface  
with a nonmultiplexed host bus and the HI function is selected, this  
signal is the host chip select (HCS) input. The polarity of the chip  
select is programmable but is configured active-low (HCS) after  
reset.  
HA10  
PB13  
Input  
Host Address 10—When the HI08 is programmed to interface  
with a multiplexed host bus and the HI function is selected, this  
signal is line 10 of the host address (HA10) input bus.  
Input or Output  
Port B 13—When the HI08 is configured as GPIO through the  
HI08 Port Control Register, this signal is individually programmed  
as an input or output through the HI08 Data Direction Register.  
1-10  
Host Interface (HI08)  
Table 1-11. Host Interface (Continued)  
StateDuring  
Signal Name  
Type  
Signal Description  
Reset1,2  
HRW  
Input  
Ignored Input Host Read/Write—When the HI08 is programmed to interface  
with a single-data-strobe host bus and the HI function is selected,  
this signal is the Host Read/Write (HRW) input.  
HRD/HRD  
Input  
Host Read Data—When the HI08 is programmed to interface with  
a double-data-strobe host bus and the HI function is selected, this  
signal is the HRD strobe Schmitt-trigger input. The polarity of the  
data strobe is programmable but is configured as active-low (HRD)  
after reset.  
PB11  
Input or Output  
Port B 11—When the HI08 is configured as GPIO through the  
HI08 Port Control Register, this signal is individually programmed  
as an input or output through the HI08 Data Direction Register.  
HDS/HDS  
Input  
Ignored Input Host Data Strobe—When the HI08 is programmed to interface  
with a single-data-strobe host bus and the HI function is selected,  
this signal is the host data strobe (HDS) Schmitt-trigger input. The  
polarity of the data strobe is programmable but is configured as  
active-low (HDS) following reset.  
HWR/HWR  
Input  
Host Write Data—When the HI08 is programmed to interface with  
a double-data-strobe host bus and the HI function is selected, this  
signal is the host write data strobe (HWR) Schmitt-trigger input.  
The polarity of the data strobe is programmable but is configured  
as active-low (HWR) following reset.  
PB12  
Input or Output  
Output  
Port B 12—When the HI08 is configured as GPIO through the  
HI08 Port Control Register, this signal is individually programmed  
as an input or output through the HI08 Data Direction Register.  
HREQ/HREQ  
Ignored Input Host Request—When the HI08 is programmed to interface with a  
single host request host bus and the HI function is selected, this  
signal is the host request (HREQ) output. The polarity of the host  
request is programmable but is configured as active-low (HREQ)  
following reset. The host request may be programmed as a driven  
or open-drain output.  
HTRQ/HTRQ  
Output  
Transmit Host Request—When the HI08 is programmed to  
interface with a double host request host bus and the HI function is  
selected, this signal is the transmit host request (HTRQ) output.  
The polarity of the host request is programmable but is configured  
as active-low (HTRQ) following reset. The host request may be  
programmed as a driven or open-drain output.  
PB14  
Input or Output  
Port B 14—When the HI08 is configured as GPIO through the  
HI08 Port Control Register, this signal is individually programmed  
as an input or output through the HI08 Data Direction Register.  
1-11  
Host Interface (HI08)  
Table 1-11. Host Interface (Continued)  
StateDuring  
Signal Name  
Type  
Signal Description  
Reset1,2  
HACK/HACK  
Input  
Ignored Input Host Acknowledge—When the HI08 is programmed to interface  
with a single host request host bus and the HI function is selected,  
this signal is the host acknowledge (HACK) Schmitt-trigger input.  
The polarity of the host acknowledge is programmable but is  
configured as active-low (HACK) after reset.  
HRRQ/HRRQ  
Output  
Receive Host Request—When the HI08 is programmed to  
interface with a double host request host bus and the HI function is  
selected, this signal is the receive host request (HRRQ) output.  
The polarity of the host request is programmable but is configured  
as active-low (HRRQ) after reset. The host request may be  
programmed as a driven or open-drain output.  
PB15  
Input or Output  
Port B 15—When the HI08 is configured as GPIO through the  
HI08 Port Control Register, this signal is individually programmed  
as an input or output through the HI08 Data Direction Register.  
Notes: 1. In the Stop state, the signal maintains the last state as follows:  
• If the last state is input, the signal is an ignored input.  
• If the last state is output, the signal is tri-stated.  
2. The Wait processing state does not affect the signal state.  
3. All inputs are 5 V tolerant.  
1-12  
Enhanced Synchronous Serial Interface 0 (ESSI0)  
1.9 Enhanced Synchronous Serial Interface 0 (ESSI0)  
Two synchronous serial interfaces (ESSI0 and ESSI1) provide a full-duplex serial port for serial  
communication with a variety of serial devices, including one or more industry-standard codecs, other  
DSPs, microprocessors, and peripherals that implement the Motorola serial peripheral interface (SPI).  
Table 1-12. Enhanced Synchronous Serial Interface 0  
StateDuring  
Signal Name  
Type  
Signal Description  
Reset1,2  
SC00  
Input or Output Ignored Input Serial Control 0—For asynchronous mode, this signal is used for  
the receive clock I/O (Schmitt-trigger input). For synchronous  
mode, this signal is used either for transmitter 1 output or for serial  
I/O flag 0.  
PC0  
Input or Output  
Port C 0—The default configuration following reset is GPIO input  
PC0. When configured as PC0, signal direction is controlled  
through the Port C Direction Register. The signal can be  
configured as ESSI signal SC00 through the Port C Control  
Register.  
SC01  
PC1  
Input/Output  
Ignored Input Serial Control 1—For asynchronous mode, this signal is the  
receiver frame sync I/O. For synchronous mode, this signal is  
used either for transmitter 2 output or for serial I/O flag 1.  
Input or Output  
Port C 1—The default configuration following reset is GPIO input  
PC1. When configured as PC1, signal direction is controlled  
through the Port C Direction Register. The signal can be  
configured as an ESSI signal SC01 through the Port C Control  
Register.  
SC02  
Input/Output  
Ignored Input Serial Control Signal 2—The frame sync for both the transmitter  
and receiver in synchronous mode, and for the transmitter only in  
asynchronous mode. When configured as an output, this signal is  
the internally generated frame sync signal. When configured as an  
input, this signal receives an external frame sync signal for the  
transmitter (and the receiver in synchronous operation).  
PC2  
Input or Output  
Input/Output  
Port C 2—The default configuration following reset is GPIO input  
PC2. When configured as PC2, signal direction is controlled  
through the Port C Direction Register. The signal can be  
configured as an ESSI signal SC02 through the Port C Control  
Register.  
SCK0  
Ignored Input Serial Clock—Provides the serial bit rate clock for the ESSI. The  
SCK0 is a clock input or output, used by both the transmitter and  
receiver in synchronous modes or by the transmitter in  
asynchronous modes.  
Although an external serial clock can be independent of and  
asynchronous to the DSP system clock, it must exceed the  
minimum clock cycle time of 6T (that is, the system clock  
frequency must be at least three times the external ESSI clock  
frequency). The ESSI needs at least three DSP phases inside  
each half of the serial clock.  
PC3  
Input or Output  
Port C 3—The default configuration following reset is GPIO input  
PC3. When configured as PC3, signal direction is controlled  
through the Port C Direction Register. The signal can be  
configured as an ESSI signal SCK0 through the Port C Control  
Register.  
1-13  
Enhanced Synchronous Serial Interface 1 (ESSI1)  
Table 1-12. Enhanced Synchronous Serial Interface 0 (Continued)  
StateDuring  
Reset1,2  
Signal Name  
Type  
Signal Description  
SRD0  
Input  
Ignored Input Serial Receive Data—Receives serial data and transfers the data  
to the ESSI Receive Shift Register. SRD0 is an input when data is  
received.  
PC4  
Input or Output  
Port C 4—The default configuration following reset is GPIO input  
PC4. When configured as PC4, signal direction is controlled  
through the Port C Direction Register. The signal can be  
configured as an ESSI signal SRD0 through the Port C Control  
Register.  
STD0  
PC5  
Output  
Ignored Input Serial Transmit Data—Transmits data from the Serial Transmit  
Shift Register. STD0 is an output when data is transmitted.  
Input or Output  
Port C 5—The default configuration following reset is GPIO input  
PC5. When configured as PC5, signal direction is controlled  
through the Port C Direction Register. The signal can be  
configured as an ESSI signal STD0 through the Port C Control  
Register.  
Notes: 1. In the Stop state, the signal maintains the last state as follows:  
• If the last state is input, the signal is an ignored input.  
• If the last state is output, the signal is tri-stated.  
2. The Wait processing state does not affect the signal state.  
3. All inputs are 5 V tolerant.  
1.10 Enhanced Synchronous Serial Interface 1 (ESSI1)  
Table 1-13. Enhanced Serial Synchronous Interface 1  
StateDuring  
Signal Name  
Type  
Signal Description  
Reset1,2  
SC10  
Input or Output Ignored Input Serial Control 0—For asynchronous mode, this signal is used for  
the receive clock I/O (Schmitt-trigger input). For synchronous  
mode, this signal is used either for transmitter 1 output or for serial  
I/O flag 0.  
PD0  
Input or Output  
Port D 0—The default configuration following reset is GPIO input  
PD0. When configured as PD0, signal direction is controlled  
through the Port D Direction Register. The signal can be  
configured as an ESSI signal SC10 through the Port D Control  
Register.  
SC11  
PD1  
Input/Output  
Ignored Input Serial Control 1—For asynchronous mode, this signal is the  
receiver frame sync I/O. For synchronous mode, this signal is  
used either for Transmitter 2 output or for Serial I/O Flag 1.  
Input or Output  
Port D 1—The default configuration following reset is GPIO input  
PD1. When configured as PD1, signal direction is controlled  
through the Port D Direction Register. The signal can be  
configured as an ESSI signal SC11 through the Port D Control  
Register.  
1-14  
Enhanced Synchronous Serial Interface 1 (ESSI1)  
Table 1-13. Enhanced Serial Synchronous Interface 1 (Continued)  
StateDuring  
Reset1,2  
Signal Name  
Type  
Signal Description  
SC12  
Input/Output  
Ignored Input Serial Control Signal 2—The frame sync for both the transmitter  
and receiver in synchronous mode and for the transmitter only in  
asynchronous mode. When configured as an output, this signal is  
the internally generated frame sync signal. When configured as an  
input, this signal receives an external frame sync signal for the  
transmitter (and the receiver in synchronous operation).  
PD2  
Input or Output  
Port D 2—The default configuration following reset is GPIO input  
PD2. When configured as PD2, signal direction is controlled  
through the Port D Direction Register. The signal can be  
configured as an ESSI signal SC12 through the Port D Control  
Register.  
SCK1  
Input/Output  
Ignored Input Serial Clock—Provides the serial bit rate clock for the ESSI. The  
SCK1 is a clock input or output used by both the transmitter and  
receiver in synchronous modes or by the transmitter in  
asynchronous modes.  
Although an external serial clock can be independent of and  
asynchronous to the DSP system clock, it must exceed the  
minimum clock cycle time of 6T (that is, the system clock  
frequency must be at least three times the external ESSI clock  
frequency). The ESSI needs at least three DSP phases inside  
each half of the serial clock.  
PD3  
Input or Output  
Port D 3—The default configuration following reset is GPIO input  
PD3. When configured as PD3, signal direction is controlled  
through the Port D Direction Register. The signal can be  
configured as an ESSI signal SCK1 through the Port D Control  
Register.  
SRD1  
PD4  
Input  
Ignored Input Serial Receive Data—Receives serial data and transfers the data  
to the ESSI Receive Shift Register. SRD1 is an input when data is  
being received.  
Input or Output  
Port D 4—The default configuration following reset is GPIO input  
PD4. When configured as PD4, signal direction is controlled  
through the Port D Direction Register. The signal can be  
configured as an ESSI signal SRD1 through the Port D Control  
Register.  
STD1  
PD5  
Output  
Ignored Input Serial Transmit Data—Transmits data from the Serial Transmit  
Shift Register. STD1 is an output when data is being transmitted.  
Input or Output  
Port D 5—The default configuration following reset is GPIO input  
PD5. When configured as PD5, signal direction is controlled  
through the Port D Direction Register. The signal can be  
configured as an ESSI signal STD1 through the Port D Control  
Register.  
Notes: 1. In the Stop state, the signal maintains the last state as follows:  
• If the last state is input, the signal is an ignored input.  
• If the last state is output, the signal is tri-stated.  
2. The Wait processing state does not affect the signal state.  
3. All inputs are 5 V tolerant.  
1-15  
Serial Communication Interface (SCI)  
1.11 Serial Communication Interface (SCI)  
The SCI provides a full duplex port for serial communication with other DSPs, microprocessors, or  
peripherals such as modems.  
Table 1-14. Serial Communication Interface  
StateDuring  
Signal Name  
Type  
Signal Description  
Reset1,2  
RXD  
Input  
Ignored Input Serial Receive Data—Receives byte-oriented serial data and  
transfers it to the SCI Receive Shift Register.  
PE0  
Input or Output  
Port E 0—The default configuration following reset is GPIO input  
PE0. When configured as PE0, signal direction is controlled  
through the Port E Direction Register. The signal can be  
configured as an SCI signal RXD through the Port E Control  
Register.  
TXD  
PE1  
Output  
Ignored Input Serial Transmit Data—Transmits data from the SCI Transmit  
Data Register.  
Input or Output  
Port E 1—The default configuration following reset is GPIO input  
PE1. When configured as PE1, signal direction is controlled  
through the Port E Direction Register. The signal can be  
configured as an SCI signal TXD through the Port E Control  
Register.  
SCLK  
PE2  
Input/Output  
Ignored Input Serial Clock—Provides the input or output clock used by the  
transmitter and/or the receiver.  
Input or Output  
Port E 2—The default configuration following reset is GPIO input  
PE2. When configured as PE2, signal direction is controlled  
through the Port E Direction Register. The signal can be  
configured as an SCI signal SCLK through the Port E Control  
Register.  
Notes: 1. In the Stop state, the signal maintains the last state as follows:  
• If the last state is input, the signal is an ignored input.  
• If the last state is output, the signal is tri-stated.  
2. The Wait processing state does not affect the signal state.  
3. All inputs are 5 V tolerant.  
1-16  
Timers  
1.12 Timers  
The DSP56309 has three identical and independent timers. Each timer can use internal or external  
clocking and can either interrupt the DSP56309 after a specified number of events (clocks) or signal an  
external device after counting a specific number of internal events.  
Table 1-15. Triple Timer Signals  
StateDuring  
Reset1,2  
Signal Name  
Type  
Signal Description  
TIO0  
Input or Output Ignored Input  
Input or Output Ignored Input  
Input or Output Ignored Input  
Timer 0 Schmitt-Trigger Input/Output— When Timer 0 functions  
as an external event counter or in measurement mode, TIO0 is  
used as input. When Timer 0 functions in watchdog, timer, or pulse  
modulation mode, TIO0 is used as output.  
The default mode after reset is GPIO input. TIO0 can be changed  
to output or configured as a timer I/O through the Timer 0  
Control/Status Register (TCSR0).  
TIO1  
Timer 1 Schmitt-Trigger Input/Output— When Timer 1 functions  
as an external event counter or in measurement mode, TIO1 is  
used as input. When Timer 1 functions in watchdog, timer, or pulse  
modulation mode, TIO1 is used as output.  
The default mode after reset is GPIO input. TIO1 can be changed  
to output or configured as a timer I/O through the Timer 1  
Control/Status Register (TCSR1).  
TIO2  
Timer 2 Schmitt-Trigger Input/Output— When Timer 2 functions  
as an external event counter or in measurement mode, TIO2 is  
used as input. When Timer 2 functions in watchdog, timer, or pulse  
modulation mode, TIO2 is used as output.  
The default mode after reset is GPIO input. TIO2 can be changed  
to output or configured as a timer I/O through the Timer 2  
Control/Status Register (TCSR2).  
Notes: 1. In the Stop state, the signal maintains the last state as follows:  
• If the last state is input, the signal is an ignored input.  
• If the last state is output, the signal is tri-stated.  
2. The Wait processing state does not affect the signal state.  
3. All inputs are 5 V tolerant.  
1-17  
JTAG and OnCE Interface  
1.13 JTAG and OnCE Interface  
The DSP56300 family and in particular the DSP56309 support circuit-board test strategies based on the  
IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture, the industry standard  
developed under the sponsorship of the Test Technology Committee of IEEE and the JTAG.  
The OnCE module provides a means to interface nonintrusively with the DSP56300 core and its  
peripherals so that you can examine registers, memory, or on-chip peripherals. Functions of the OnCE  
module are provided through the JTAG TAP signals.  
For programming models, see the chapter on debugging support in the DSP56300 Family Manual.  
Table 1-16. JTAG/OnCE Interface  
State  
During  
Reset  
Signal  
Name  
Type  
Signal Description  
TCK  
Input  
Input  
Test Clock—A test clock input signal to synchronize the JTAG  
test logic.  
TDI  
Input  
Input  
Test Data Input—A test data serial input signal for test  
instructions and data. TDI is sampled on the rising edge of TCK  
and has an internal pull-up resistor.  
TDO  
Output  
Tri-stated  
Test Data Output—A test data serial output signal for test  
instructions and data. TDO is actively driven in the shift-IR and  
shift-DR controller states. TDO changes on the falling edge of  
TCK.  
TMS  
TRST  
DE  
Input  
Input  
Input  
Input  
Input  
Test Mode Select—Sequences the test controller’s state  
machine. TMS is sampled on the rising edge of TCK and has an  
internal pull-up resistor.  
Test Reset—Initializes the test controller asynchronously. TRST  
has an internal pull-up resistor. TRST must be asserted after  
powerup.  
Input/ Output  
(open-drain)  
Debug Event—As an input, initiates Debug mode from an  
external command controller, and, as an open-drain output,  
acknowledges that the chip has entered Debug mode. As an  
input, DE causes the DSP56300 core to finish executing the  
current instruction, save the instruction pipeline information,  
enter Debug mode, and wait for commands to be entered from  
the debug serial input line. This signal is asserted as an output  
for three clock cycles when the chip enters Debug mode as a  
result of a debug request or as a result of meeting a breakpoint  
condition. The DE has an internal pull-up resistor.  
This signal is not a standard part of the JTAG TAP controller.  
The signal connects directly to the OnCE module to initiate  
debug mode directly or to provide a direct external indication that  
the chip has entered Debug mode. All other interface with the  
OnCE module must occur through the JTAG port.  
Note: All inputs are 5 V tolerant.  
1-18  
Chapter 2  
Specifications  
2.1 Introduction  
The DSP56309 is fabricated in high-density CMOS with Transistor-Transistor Logic (TTL) compatible  
inputs and outputs.  
Note: The DSP56309 specifications are preliminary and are from design simulations, and may not be  
fully tested or guaranteed. Finalized specifications will be published after full characterization  
and device qualifications are complete.  
2.2 Maximum Ratings  
CAUTION  
This device contains circuitry protecting  
against damage due to high static voltage or  
electrical fields; however, normal precautions  
should be taken to avoid exceeding maximum  
voltage ratings. Reliability is enhanced if  
unused inputs are tied to an appropriate logic  
voltage level (for example, either GND or V ).  
CC  
Note: In the calculation of timing requirements, adding a maximum value of one specification to a  
minimum value of another specification does not yield a reasonable sum. A maximum  
specification is calculated using a worst case variation of process parameter values in one  
direction. The minimum specification is calculated using the worst case for the same parameters  
in the opposite direction. Therefore, a “maximum” value for a specification never occurs in the  
same device that has a “minimum” value for another specification; adding a maximum to a  
minimum represents a condition that can never exist.  
2-1  
Absolute Maximum Ratings  
2.3 Absolute Maximum Ratings  
Table 2-1. Absolute Maximum Ratings1  
Rating  
Symbol  
Value  
Unit  
Supply Voltage  
V
0.3 to +4.0  
V
V
CC  
All input voltages excluding “5 V tolerant” inputs  
V
GND 0.3 to V + 0.3  
IN  
CC  
2
All “5 V tolerant” input voltages  
V
GND 0.3 to 5.5  
10  
V
IN5  
Current drain per pin excluding V and GND  
I
mA  
°C  
°C  
CC  
Operating temperature range  
T
40 to +100  
55 to +150  
J
Storage temperature  
T
STG  
Notes: 1. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not  
guaranteed. Stress beyond the maximum rating may affect device reliability or cause permanent  
damage to the device.  
2. At power-up, ensure that the voltage difference between the 5 V tolerant pins and the chip V never  
CC  
exceeds 3.5 V.  
2.4 Thermal Characteristics  
Table 2-2. Thermal Characteristics  
MAP-BGA3 MAP-BGA4  
Characteristic  
Symbol TQFP Value  
Unit  
Value  
Value  
1
Junction-to-ambient thermal resistance  
R
R
or θ  
or θ  
49.3  
8.2  
49.4  
12.0  
2.0  
28.5  
°C/W  
°C/W  
°C/W  
θJA  
JA  
JC  
2
Junction-to-case thermal resistance  
θJC  
Thermal characterization parameter  
Ψ
5.5  
JT  
Notes: 1. Junction-to-ambient thermal resistance is based on measurements on a horizontal single-sided printed  
circuit board per JEDEC Specification JESD51-3.  
2. Junction-to-case thermal resistance is based on measurements using a cold plate per SEMI G30-88,  
with the exception that the cold plate temperature is used for the case temperature.  
3. These are simulated values. See note 1 for test board conditions.  
4. These are simulated values. The test board has two 2-ounce signal layers and two 1-ounce solid  
ground planes internal to the test board.  
2-2  
DC Electrical Characteristics  
2.5 DC Electrical Characteristics  
Table 2-3. DC Electrical Characteristics6  
Characteristics  
Symbol  
Min  
Typ  
Max  
Unit  
Supply voltage  
V
3.0  
3.3  
3.6  
V
CC  
Input high voltage  
D[0–23], BG, TA  
BB  
V
V
2.0  
2.3  
2.0  
V
V
5.25  
V
V
V
IH  
IH  
CC  
CC  
1
1
MOD /IRQ , RESET, PINIT/NMI and all  
JTAG/ESSI/SCI/Timer/HI08 pins  
V
V
IHP  
8
EXTAL  
0.8 × V  
V
CC  
V
IHX  
CC  
Input low voltage  
1
1
D[0–23], BG, BB, TA, MOD /IRQ , RESET, PINIT  
V
–0.3  
–0.3  
–0.3  
0.8  
0.8  
0.2 × V  
V
V
V
IL  
All JTAG/ESSI/SCI/Timer/HI08 pins  
V
V
ILP  
ILX  
8
EXTAL  
CC  
Input leakage current  
I
–10  
–10  
10  
10  
µA  
µA  
IN  
High impedance (off-state) input current (@ 2.4 V / 0.4 V)  
I
TSI  
Output high voltage  
V
OH  
5,7  
TTL (I  
CMOS (I = –10 µA)  
= –0.4 mA)  
2.4  
– 0.01  
CC  
V
V
OH  
5
V
OH  
Output low voltage  
V
OL  
5,7  
TTL (I = 1.6 mA, open-drain pins I = 6.7 mA)  
0.4  
0.01  
V
V
OL  
OL  
5
CMOS (I = 10 µA)  
OL  
2
Internal supply current :  
In Normal mode  
I
160  
7.5  
100  
mA  
mA  
µA  
CCI  
3
In Wait mode  
I
CCW  
4
In Stop mode  
I
CCS  
PLL supply current  
1
2.5  
10  
mA  
pF  
5
Input capacitance  
C
IN  
Notes: 1. Refers to MODA/IRQA, MODB/IRQB, MODC/IRQC, and MODD/IRQD pins.  
2. Secton 4.3 Power Consumption Considerations on page 4-4 provides a formula to compute the  
estimated current requirements in Normal mode. In order to obtain these results, all inputs must be  
terminated (that is, not allowed to float). Measurements are based on synthetic intensive DSP  
benchmarks (see Appendix A). The power consumption numbers in this specification are 90 percent  
of the measured results of this benchmark. This reflects typical DSP applications. Typical internal  
supply current is measured with V = 3.3 V at T = 100°C.  
CC  
J
3. In order to obtain these results, all inputs must be terminated (that is, not allowed to float).  
4. In order to obtain these results, all inputs that are not disconnected at Stop mode must be terminated  
(that is, not allowed to float). PLL and XTAL signals are disabled during Stop state.  
5. Periodically sampled and not 100 percent tested.  
6.  
7. This characteristic does not apply to XTAL and PCAP.  
8. Driving EXTAL to the low V or the high V value may cause additional power consumption (DC  
V
= 3.3 V ± 0.3 V; T = –40°C to +100 °C, C = 50 pF  
CC J L  
IHX  
ILX  
current). To minimize power consumption, the minimum V  
should be no lower than  
IHX  
0.9 × V and the maximum V should be no higher than 0.1 × V .  
CC  
ILX  
CC  
2-3  
AC Electrical Characteristics  
2.6 AC Electrical Characteristics  
The timing waveforms shown in the AC electrical characteristics section are tested with a VIL maximum  
of 0.3 V and a VIH minimum of 2.4 V for all pins except EXTAL, which is tested using the input levels  
shown in Note 6 of the previous table. AC timing specifications, which are referenced to a device input  
signal, are measured in production with respect to the 50 percent point of the respective input signal’s  
transition. DSP56309 output levels are measured with the production test machine VOL and VOH  
reference levels set at 0.4 V and 2.4 V, respectively.  
Note: Although the minimum value for the frequency of EXTAL is 0 MHz, the device AC test  
conditions are 15 MHz and rated speed.  
2.6.1 Internal Clocks  
Table 2-4. Internal Clocks, CLKOUT  
Expression1, 2  
Characteristics  
Symbol  
Min  
Typ  
Max  
Internal operation frequency and  
CLKOUT with PLL enabled  
f
(Ef × MF)/  
(PDF × DF)  
Internal operation frequency and  
CLKOUT with PLL disabled  
f
Ef/2  
Internal clock and CLKOUT high  
period  
T
H
With PLL disabled  
With PLL enabled and MF 4  
ET  
C
0.49 × ET  
×
0.51 × ET ×  
C
C
PDF × DF/MF  
0.47 × ET  
PDF × DF/MF  
0.53 × ET  
With PLL enabled and MF > 4  
×
×
C
C
PDF × DF/MF  
PDF × DF/MF  
Internal clock and CLKOUT low  
period  
T
L
With PLL disabled  
With PLL enabled and MF 4  
ET  
C
0.49 × ET  
×
0.51 × ET ×  
C
C
PDF × DF/MF  
0.47 × ET  
PDF × DF/MF  
0.53 × ET  
With PLL enabled and MF > 4  
×
×
C
C
PDF × DF/MF  
PDF × DF/MF  
Internal clock and CLKOUT cycle  
time with PLL enabled  
T
T
ET × PDF ×  
C
C
DF/MF  
Internal clock and CLKOUT cycle  
time with PLL disabled  
2 × ET  
C
C
Instruction cycle time  
I
T
C
CYC  
Notes: 1. DF = Division Factor; Ef = External frequency; ET = External clock cycle; MF = Multiplication Factor;  
C
PDF = Predivision Factor; T = internal clock cycle  
C
2. See the PLL and Clock Generation section in the DSP56300 Family Manual for a detailed discussion  
of the PLL.  
2-4  
AC Electrical Characteristics  
2.6.2 External Clock Operation  
The DSP56309 system clock is derived from the on-chip oscillator or is externally supplied. To use the  
on-chip oscillator, connect a crystal and associated resistor/capacitor components to EXTAL and XTAL;  
examples are shown in Figure 2-1.  
EXTAL  
XTAL  
EXTAL  
XTAL  
R
R2  
C
R1  
Note: Ensure that in  
the PCTL Register:  
XTLD (bit 16) = 0  
Note: Ensure that in  
the PCTL Register:  
XTLD (bit 16) = 0  
C
C
C
XTAL1  
XTAL1  
If f  
200 kHz,  
If f  
> 200 kHz,  
OSC  
OSC  
XTLR (bit 15) = 1  
XTLR (bit 15) = 0  
Fundamental Frequency  
Fork Crystal Oscillator  
Fundamental Frequency  
Crystal Oscillator  
Suggested Component Values:  
Suggested Component Values:  
OSC  
f
= 20 MHz  
f
= 4 MHz  
f
= 32.768 kHz  
OSC  
OSC  
R = 680 kΩ ± 10%  
C = 56 pF ± 20%  
R = 680 kΩ ± 10%  
C = 22 pF ± 20%  
R1 = 3.9 MΩ ± 10%  
C = 22 pF ± 20%  
R2 = 200 kΩ ± 10%  
Calculations are for a 4/20 MHz crystal with the  
following parameters:  
Calculations are for a 32.768 kHz crystal with the  
following parameters:  
C of 30/20 pF,  
L
C of 7/6 pF,  
load capacitance (C ) of 12.5 pF,  
0
L
series resistance of 100/20 , and  
drive level of 2 mW.  
shunt capacitance (C ) of 1.8 pF,  
series resistance of 40 k, and  
drive level of 1 µW.  
0
Figure 2-1. Crystal Oscillator Circuits  
If an externally-supplied square wave voltage source is used, disable the internal oscillator circuit during  
bootup by setting XTLD (PCTL Register bit 16 = 1—see the DSP56309 Users Manual). The external  
square wave source connects to EXTAL; XTAL is not physically connected to the board or socket. Figure  
2-2 shows the relationship between the EXTAL input and the internal clock and CLKOUT.  
V
Midpoint  
IHX  
EXTAL  
ET  
ET  
H
V
L
ILX  
2
3
Note:  
The midpoint is 0.5 (V  
+ V ).  
IHX ILX  
4
ET  
C
5
5
CLKOUT with PLL  
disabled  
7
CLKOUT with PLL  
enabled  
7
6a  
6b  
Figure 2-2. External Clock Timing  
2-5  
AC Electrical Characteristics  
Table 2-5. Clock Operation  
Characteristics  
100 MHz  
No.  
Symbol  
Min  
Max  
1
2
Frequency of EXTAL (EXTAL Pin Frequency)  
The rise and fall time of this external clock should be 3 ns maximum.  
Ef  
0
100.0  
1, 2  
EXTAL input high  
6
With PLL disabled (46.7%–53.3% duty cycle )  
ET  
4.67 ns  
4.25 ns  
H
6
With PLL enabled (42.5%–57.5% duty cycle )  
157.0 µs  
1, 2  
3
4
EXTAL input low  
6
With PLL disabled (46.7%–53.3% duty cycle )  
With PLL enabled (42.5%–57.5% duty cycle )  
ET  
4.67 ns  
4.25 ns  
L
6
157.0 µs  
2
EXTAL cycle time  
With PLL disabled  
With PLL enabled  
ET  
10.00 ns  
10.00 ns  
C
273.1 µs  
5
6
Internal clock change from EXTAL fall with PLL disabled  
4.3 ns  
0.0 ns  
11.0 ns  
1.8 ns  
a.Internal clock rising edge from EXTAL rising edge with PLL enabled  
3,5  
(MF = 1 or 2 or 4, PDF = 1, Ef > 15 MHz)  
b. Internal clock falling edge from EXTAL falling edge with PLL enabled  
(MF 4, PDF 1, Ef / PDF > 15 MHz)  
0.0 ns  
1.8 ns  
3,5  
4
7
Instruction cycle time = I  
= T  
I
CYC  
CYC  
C
(see Figure 2-4) (46.7%–53.3% duty cycle)  
With PLL disabled  
With PLL enabled  
20.0 ns  
10.00 ns  
8.53 µs  
Notes: 1. Measured at 50 percent of the input transition.  
2. The maximum value for PLL enabled is given for minimum VCO frequency (see Table 2-4) and  
maximum MF.  
3. Periodically sampled and not 100 percent tested.  
4. The maximum value for PLL enabled is given for minimum VCO frequency and maximum DF.  
5. The skew is not guaranteed for any other MF value.  
6. The indicated duty cycle is for the specified maximum frequency for which a part is rated. The minimum  
clock high or low time required for correction operation, however, remains the same at lower operating  
frequencies; therefore, when a lower clock frequency is used, the signal symmetry may vary from the  
specified duty cycle as long as the minimum high time and low time requirements are met.  
2.6.3 Phase Lock Loop (PLL) Characteristics  
Table 2-6. PLL Characteristics  
Characteristics  
100 MHz  
Unit  
Min  
Max  
Voltage Controlled Oscillator (VCO) frequency when PLL enabled  
30  
200  
MHz  
(MF × E × 2/PDF)  
f
1
PLL external capacitor (PCAP pin to V  
) (C  
)
PCAP  
CCP  
@ MF 4  
@ MF > 4  
(580 × MF) 100 (780 × MF) 140  
830 × MF 1470 × MF  
pF  
pF  
Note:  
C
is the value of the PLL capacitor (connected between the PCAP pin and V  
) computed using the  
PCAP  
CCP  
appropriate expression listed above.  
2-6  
AC Electrical Characteristics  
2.6.4 Reset, Stop, Mode Select, and Interrupt Timing  
Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing6  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
3
8
Delay from RESET assertion to all pins at reset value  
26.0  
ns  
4
9
Required RESET duration  
Power on, external clock generator, PLL disabled  
Power on, external clock generator, PLL enabled  
Power on, internal oscillator  
During STOP, XTAL disabled (PCTL Bit 16 = 0)  
During STOP, XTAL enabled (PCTL Bit 16 = 1)  
During normal operation  
50 × ET  
1000 × ET  
75000 × ET  
75000 × ET  
500.0  
10.0  
0.75  
0.75  
25.0  
25.0  
ns  
µs  
ms  
ms  
ns  
C
C
C
C
2.5 × T  
2.5 × T  
C
C
ns  
10 Delay from asynchronous RESET deassertion to first external address  
5
output (internal reset deassertion)  
Minimum  
Maximum  
3.25 × T + 2.0  
34.5  
212.5  
ns  
ns  
C
20.25 × T + 10  
C
11 Synchronous reset set-up time from RESET deassertion to CLKOUT  
Transition 1  
Minimum  
Maximum  
T
5.9  
10.0  
ns  
ns  
C
12 Synchronous reset deasserted, delay time from the CLKOUT Transition 1  
to the first external address output  
Minimum  
Maximum  
3.25 × T + 1.0  
33.5  
203.5  
ns  
ns  
C
20.25 × T + 1.0  
C
13 Mode select setup time  
30.0  
0.0  
ns  
ns  
ns  
ns  
14 Mode select hold time  
15 Minimum edge-triggered interrupt request assertion width  
16 Minimum edge-triggered interrupt request deassertion width  
6.6  
6.6  
17 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory  
access address out valid  
Caused by first interrupt instruction fetch  
Caused by first interrupt instruction execution  
4.25 × T + 2.0  
7.25 × T + 2.0  
C
44.5  
74.5  
ns  
ns  
C
18 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to general-purpose  
transfer output valid caused by first interrupt instruction execution  
10 × T + 5.0  
105.0  
ns  
C
19 Delay from address output valid caused by first interrupt instruction  
(WS + 3.75) × T – 10.94  
Note 8  
ns  
C
1,  
execute to interrupt request deassertion for level sensitive fast interrupts  
7, 8  
20 Delay from RD assertion to interrupt request deassertion for level  
(WS + 3.25) × T – 10.94  
Note 8  
ns  
C
1, 7, 8  
sensitive fast interrupts  
21 Delay from WR assertion to interrupt request deassertion for level  
1, 7, 8  
sensitive fast interrupts  
DRAM for all WS  
SRAM WS = 1  
SRAM WS = 2, 3  
SRAM WS 4  
(WS + 3.5) × T – 10.94  
Note 8  
Note 8  
Note 8  
Note 8  
ns  
ns  
ns  
ns  
C
(WS + 3.5) × T – 10.94  
C
(WS + 3) × T – 10.94  
C
(WS + 2.5) × T – 10.94  
C
22 Synchronous interrupt set-up time from IRQA, IRQB, IRQC, IRQD, NMI  
assertion to the CLKOUT Transition 2  
5.9  
T
ns  
C
23 Synchronous interrupt delay time from the CLKOUT Transition 2 to the  
first external address output valid caused by the first instruction fetch after  
coming out of Wait Processing state  
Minimum  
Maximum  
8.25 × T + 1.0  
83.5  
252.5  
ns  
ns  
C
24.75 × T + 5.0  
C
24 Duration for IRQA assertion to recover from Stop state  
5.9  
ns  
2-7  
AC Electrical Characteristics  
Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing6 (Continued)  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
25 Delay from IRQA assertion to fetch of first instruction (when exiting  
2, 3  
Stop)  
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is  
enabled (Operating Mode Register Bit 6 = 0)  
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not  
enabled (Operating Mode Register Bit 6 = 1)  
PLC × ET × PDF + (128 K −  
1.3  
9.1  
ms  
ns  
C
PLC/2) × T  
C
PLC × ET × PDF + (23.75 ± 232.5 ns 12.3 ms  
C
0.5) × T  
C
PLL is active during Stop (PCTL Bit 17 = 1) (Implies No Stop Delay)  
(8.25 ± 0.5) × T  
87.5  
97.5  
C
26 Duration of level sensitive IRQA assertion to ensure interrupt service  
2, 3  
(when exiting Stop)  
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is  
enabled (Operating Mode Register Bit 6 = 0)  
PLL is not active during Stop (PCTL Bit 17 = 0) and Stop delay is not  
enabled (Operating Mode Register Bit 6 = 1)  
PLC × ET × PDF + (128K −  
13.6  
12.3  
55.0  
ms  
ms  
ns  
C
PLC/2) × T  
C
PLC × ET × PDF +  
C
(20.5 ± 0.5) × T  
C
PLL is active during Stop (PCTL Bit 17 = 1) (implies no Stop delay)  
5.5 × T  
C
27 Interrupt Requests Rate  
Maximum:  
12 × T  
HI08, ESSI, SCI, Timer  
DMA  
IRQ, NMI (edge trigger)  
IRQ, NMI (level trigger)  
120.0  
80.0  
80.0  
ns  
ns  
ns  
ns  
C
8 × T  
8 × T  
C
C
12 × T  
120.0  
C
28 DMA Requests Rate  
Maximum:  
Data read from HI08, ESSI, SCI  
Data write to HI08, ESSI, SCI  
Timer  
6 × T  
7 × T  
2 × T  
3 × T  
60.0  
70.0  
20.0  
30.0  
ns  
ns  
ns  
ns  
C
C
C
C
IRQ, NMI (edge trigger)  
29 Delay from IRQA, IRQB, IRQC, IRQD, NMI assertion to external memory  
(DMA source) access address out valid  
Minimum:  
4.25 × T + 2.0  
30.3  
ns  
C
2-8  
AC Electrical Characteristics  
Table 2-7. Reset, Stop, Mode Select, and Interrupt Timing6 (Continued)  
100 MHz  
Min Max  
No.  
Characteristics  
Expression  
Unit  
Notes: 1. When fast interrupts are used and IRQA, IRQB, IRQC, and IRQD are defined as level-sensitive, timings 19 through 21 apply to  
prevent multiple interrupt service. To avoid these timing restrictions, the deasserted Edge-triggered mode is recommended when  
fast interrupts are used. Long interrupts are recommended for Level-sensitive mode.  
2. This timing depends on several settings:  
• For PLL disable, using internal oscillator (PLL Control Register (PCTL) Bit 16 = 0) and oscillator disabled during Stop (PCTL Bit  
17 = 0), a stabilization delay is required to assure that the oscillator is stable before programs are executed. Resetting the Stop  
delay (Operating Mode Register Bit 6 = 0) provides the proper delay. While Operating Mode Register Bit 6 = 1 can be set, it is not  
recommended, and these specifications do not guarantee timings for that case.  
• For PLL disable, using internal oscillator (PCTL Bit 16 = 0) and oscillator enabled during Stop (PCTL Bit 17=1), no stabilization  
delay is required and recovery is minimal (Operating Mode Register Bit 6 setting is ignored).  
• For PLL disable, using external clock (PCTL Bit 16 = 1), no stabilization delay is required and recovery time is defined by the  
PCTL Bit 17 and Operating Mode Register Bit 6 settings.  
• For PLL enable, if PCTL Bit 17 is 0, the PLL is shutdown during Stop. Recovering from Stop requires the PLL to get locked. The  
PLL lock procedure duration, PLL Lock Cycles (PLC), may be in the range of 0 to 1000 cycles. This procedure occurs in parallel  
with the stop delay counter, and stop recovery ends when the last of these two events occurs. The stop delay counter completes  
count or PLL lock procedure completion.  
• PLC value for PLL disable is 0.  
• The maximum value for ET is 4096 (maximum MF) divided by the desired internal frequency (that is, for 66 MHz it is 4096/66  
C
MHz = 62 µs). During the stabilization period, T , T and T is not constant, and their width may vary, so timing may vary as  
C
H,  
L
well.  
3. Periodically sampled and not 100 percent tested.  
4. Value depends on clock source:  
• For an external clock generator, RESET duration is measured while RESET is asserted, V is valid, and the EXTAL input is  
CC  
active and valid.  
• For an internal oscillator, RESET duration is measured while RESET is asserted and V is valid. The specified timing reflects  
CC  
the crystal oscillator stabilization time after power-up. This number is affected both by the specifications of the crystal and other  
components connected to the oscillator and reflects worst case conditions.  
• When the V is valid, but the other “required RESET duration” conditions (as specified above) have not been yet met, the  
CC  
device circuitry is in an uninitialized state that can result in significant power consumption and heat-up. Designs should minimize  
this state to the shortest possible duration.  
5. If PLL does not lose lock.  
6.  
V
= 3.3 V ± 0.3 V; T = –40°C to +100°C, C = 50 pF.  
CC J L  
7. WS = number of wait states (measured in clock cycles, number of T ).  
C
8. Use the expression to compute a maximum value.  
V
IH  
RESET  
9
10  
8
All Pins  
Reset Value  
First Fetch  
A[0–17]  
Figure 2-3. Reset Timing  
2-9  
AC Electrical Characteristics  
CLKOUT  
RESET  
11  
12  
A[0–17]  
Figure 2-4. Synchronous Reset Timing  
First Interrupt Instruction  
Execution/Fetch  
A[0–17]  
RD  
20  
21  
WR  
17  
19  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O  
18  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
b) General-Purpose I/O  
Figure 2-5. External Fast Interrupt Timing  
2-10  
AC Electrical Characteristics  
IRQA, IRQB,  
IRQC, IRQD, NMI  
15  
16  
IRQA, IRQB,  
IRQC, IRQD, NMI  
Figure 2-6. External Interrupt Timing (Negative Edge-Triggered)  
CLKOUT  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
22  
23  
A[0–17]  
Figure 2-7. Synchronous Interrupt from Wait State Timing  
V
IH  
RESET  
13  
14  
V
V
IH  
IH  
MODA, MODB,  
MODC, MODD,  
PINIT  
IRQA, IRQB,  
IRQC, IRQD, NMI  
V
V
IL  
IL  
Figure 2-8. Operating Mode Select Timing  
2-11  
AC Electrical Characteristics  
24  
IRQA  
25  
First Instruction Fetch  
A[0–17]  
Figure 2-9. Recovery from Stop State Using IRQA  
26  
IRQA  
25  
First IRQA Interrupt  
Instruction Fetch  
A[0–17]  
Figure 2-10. Recovery from Stop State Using IRQA Interrupt Service  
DMA Source Address  
A[0–17]  
RD  
WR  
29  
IRQA, IRQB,  
IRQC, IRQD,  
NMI  
First Interrupt Instruction Execution  
Figure 2-11. External Memory Access (DMA Source) Timing  
2-12  
AC Electrical Characteristics  
2.6.5 External Memory Expansion Port (Port A)  
2.6.5.1 SRAM Timing  
Table 2-8. SRAM Read and Write Accesses  
Expression1  
100 MHz  
No.  
Characteristics  
Symbol  
Unit  
Min Max  
2
100 Address valid and AA assertion pulse width  
101 Address and AA valid to WR assertion  
102 WR assertion pulse width  
t
, t  
(WS + 1) × T 4.0  
16.0  
56.0  
ns  
ns  
ns  
RC WC  
C
[1 WS 3]  
(WS + 2) × T 4.0  
C
[4 WS 7]  
(WS + 3) × T 4.0  
106.0  
C
[WS 8]  
t
0.25 × T 2.0  
0.5  
5.5  
ns  
ns  
ns  
AS  
C
[WS = 1]  
0.75 × T 2.0  
C
[2 WS 3]  
1.25 × T 2.0  
10.5  
C
[WS 4]  
t
1.5 × T 4.0  
11.0  
16.0  
31.0  
ns  
ns  
ns  
WP  
C
[WS = 1]  
WS × T 4.0  
C
[2 WS 3]  
(WS 0.5) × T 4.0  
C
[WS 4]  
103 WR deassertion to address not valid  
t
0.25 × T 2.0  
[1 WS 3]  
0.5  
8.5  
ns  
ns  
ns  
WR  
C
1.25 × T 4.0  
C
[4 WS 7]  
2.25 × T 4.0  
18.5  
C
[WS 8]  
104 Address and AA valid to input data valid  
105 RD assertion to input data valid  
t
, t  
(WS + 0.75) × T 5.0  
12.5  
7.5  
ns  
ns  
ns  
ns  
ns  
AA AC  
C
[WS 1]  
t
(WS + 0.25) × T – 5.0  
OE  
C
[WS 1]  
106 RD deassertion to data not valid (data hold  
time)  
t
0.0  
13.5  
4.5  
OHZ  
2
107 Address valid to WR deassertion  
t
(WS + 0.75) × T 4.0  
AW  
C
[WS 1]  
108 Data valid to WR deassertion (data setup  
time)  
t
(t  
)
(WS 0.25) × T 3.0  
DS DW  
C
[WS 1]  
109 Data hold time from WR deassertion  
t
0.25 × T 2.0  
[1 WS 3]  
0.5  
ns  
ns  
ns  
DH  
C
1.25 × T 2.0  
10.5  
20.5  
C
[4 WS 7]  
2.25 × T 2.0  
C
[WS 8]  
110 WR assertion to data active  
0.75 × T 3.7  
3.8  
ns  
ns  
ns  
C
[WS = 1]  
0.25 × T – 3.7  
–1.2  
–6.2  
C
[2 WS 3]  
0.25 × T 3.7  
C
[WS 4]  
2-13  
AC Electrical Characteristics  
Table 2-8. SRAM Read and Write Accesses (Continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression1  
Unit  
Min Max  
111 WR deassertion to data high impedance  
112 Previous RD deassertion to data active (write)  
113 RD deassertion time  
0.25 × T + 0.2  
2.7  
ns  
ns  
ns  
C
[1 WS 3]  
1.25 × TC + 0.2  
[4 WS 7]  
12.7  
22.7  
2.25 × T + 0.2  
C
[WS > 8]  
1.25 × T – 4.0  
8.5  
ns  
ns  
ns  
C
[1 WS 3]  
2.25 × T – 4.0  
18.5  
28.5  
C
[4 WS 7]  
3.25 × T – 4.0  
C
[WS > 8]  
0.75 × T 4.0  
3.5  
ns  
ns  
ns  
C
[1 WS 3]  
1.75 × T 4.0  
13.5  
23.5  
C
[4 WS 7]  
2.75 × T 4.0  
C
[WS 8]  
114 WR deassertion time  
0.5 × T 4.0  
1.0  
6.0  
ns  
ns  
ns  
ns  
C
[WS = 1]  
T
4.0  
C
[2 WS 3]  
2.5 × T 4.0  
21.0  
31.0  
C
[4 WS 7]  
3.5 × T 4.0  
C
[WS 8]  
115 Address valid to RD assertion  
116 RD assertion pulse width  
0.5 × T 4.0  
1.0  
8.5  
0.5  
ns  
ns  
ns  
C
(WS + 0.25) × T 4.0  
C
117 RD deassertion to address not valid  
0.25 × T − 2.0  
C
[1 WS 3]  
1.25 × T 2.0  
[4 WS 7]  
10.5  
20.5  
ns  
ns  
C
2.25 × T 2.0  
C
[WS 8]  
4
118 TA setup before RD or WR deassertion  
0.25 × T + 2.0  
4.5  
0
ns  
ns  
C
119 TA hold after RD or WR deassertion  
Notes: 1. WS is the number of wait states specified in the BCR. An expression is used to compute the number  
listed as the minimum or maximum value, as appropriate.  
2. Timings 100, 107 are guaranteed by design, not tested.  
3. All timings for 100 MHz are measured from 0.5 × Vcc to 0.5 × Vcc.  
4. Timing 118 is relative to the deassertion edge of RD or WR even if TA remains asserted.  
5.  
V
= 3.3 V ± 0.3 V; T = –40°C to +100°C, C = 50 pF  
CC J L  
2-14  
AC Electrical Characteristics  
100  
A[0–17]  
AA[0–3]  
117  
106  
113  
116  
RD  
105  
WR  
104  
118  
119  
TA  
Data  
In  
D[0–23]  
Note: Address lines A[0–17] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-12. SRAM Read Access  
100  
A[0–17]  
AA[0–3]  
107  
101  
102  
103  
WR  
RD  
114  
119  
118  
TA  
108  
109  
Data  
Out  
D[0–23]  
Note: Address lines A[0–17] hold their state after a  
read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-13. SRAM Write Access  
2-15  
AC Electrical Characteristics  
2.6.5.2 DRAM Timing  
The selection guides in Figure 2-14 and Figure 2-17 are for primary selection only. Final selection  
should be based on the timing in the following tables. For example, the selection guide suggests that four  
wait states must be used for 100 MHz operation with Page Mode DRAM. However, consulting the  
appropriate table, a designer can evaluate whether fewer wait states might suffice by determining which  
timing prevents operation at 100 MHz, running the chip at a slightly lower frequency (for example, 95  
MHz), using faster DRAM (if it becomes available), and manipulating control factors such as capacitive  
and resistive load to improve overall system performance.  
Note:  
This figure should be used for primary selection. For exact  
and detailed timings, see the following tables.  
DRAM type  
(tRAC ns)  
100  
80  
70  
60  
Chip frequency  
(MHz)  
50  
120  
40  
66  
80  
100  
1 Wait states  
2 Wait states  
3 Wait states  
4 Wait states  
Figure 2-14. DRAM Page Mode Wait State Selection Guide  
2-16  
AC Electrical Characteristics  
Table 2-9. DRAM Page Mode Timings, Three Wait States1,2,3  
Expression4  
100 MHz  
No.  
Characteristics  
Symbol  
Unit  
Min Max  
131 Page mode cycle time for two consecutive accesses of the  
same direction  
4 × T  
40.0  
ns  
C
Page mode cycle time for mixed (read and write) accesses  
132 CAS assertion to data valid (read)  
t
3.5 × T  
35.0  
14.3  
24.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PC  
C
t
2 × T 5.7  
C
CAC  
133 Column address valid to data valid (read)  
134 CAS deassertion to data not valid (read hold time)  
135 Last CAS assertion to RAS deassertion  
136 Previous CAS deassertion to RAS deassertion  
137 CAS assertion pulse width  
t
3 × T 5.7  
AA  
C
t
0.0  
OFF  
RSH  
t
2.5 × T 4.0  
21.0  
41.0  
16.0  
C
t
4.5 × T 4.0  
RHCP  
C
t
2 × T 4.0  
CAS  
C
5
138 Last CAS deassertion to RAS assertion  
t
CRP  
BRW[1–0] = 00, 01—not applicable  
BRW[1–0] = 10  
BRW[1–0] = 11  
41.5  
61.5  
ns  
ns  
4.75 × T 6.0  
C
6.75 × T 6.0  
C
139 CAS deassertion pulse width  
t
1.5 × T 4.0  
11.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CP  
C
140 Column address valid to CAS assertion  
141 CAS assertion to column address not valid  
142 Last column address valid to RAS deassertion  
143 WR deassertion to CAS assertion  
144 CAS deassertion to WR assertion  
145 CAS assertion to WR deassertion  
146 WR assertion pulse width  
t
T 4.0  
C
ASC  
t
2.5 × T 4.0  
21.0  
36.0  
8.5  
CAH  
C
t
4 × T 4.0  
RAL  
RCS  
RCH  
C
t
1.25 × T 4.0  
C
t
0.75 × T 4.0  
3.5  
C
t
2.25 × T 4.2  
18.3  
30.5  
33.2  
28.2  
0.5  
WCH  
C
t
3.5 × T 4.5  
WP  
C
147 Last WR assertion to RAS deassertion  
148 WR assertion to CAS deassertion  
149 Data valid to CAS assertion (write)  
150 CAS assertion to data not valid (write)  
151 WR assertion to CAS assertion  
t
3.75 × T 4.3  
RWL  
CWL  
C
t
3.25 × T 4.3  
C
t
0.5 × T – 4.5  
DS  
C
t
2.5 × T 4.0  
21.0  
8.2  
DH  
C
t
1.25 × T 4.3  
WCS  
C
152 Last RD assertion to RAS deassertion  
153 RD assertion to data valid  
t
3.5 × T 4.0  
31.0  
ROH  
C
t
2.5 × T 5.7  
19.3  
GA  
C
6
154 RD deassertion to data not valid  
t
0.0  
GZ  
155 WR assertion to data active  
0.75 × T – 1.5  
6.0  
C
156 WR deassertion to data high impedance  
0.25 × T  
2.5  
C
Notes: 1. The number of wait states for Page mode access is specified in the DRAM Control Register.  
2. The refresh period is specified in the DRAM Control Register.  
3. The asynchronous delays specified in the expressions are valid for the DSP56309.  
4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for  
example, t equals 4 × T for read-after-read or write-after-write sequences). An expression is used to  
PC  
C
compute the number listed as the minimum or maximum value listed, as appropriate.  
5. BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each  
DRAM out-of page-access.  
6. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t  
and not t  
.
GZ  
OFF  
2-17  
AC Electrical Characteristics  
Table 2-10. DRAM Page Mode Timings, Four Wait States1,2,3  
Expression4  
100 MHz  
No.  
Characteristics  
Symbol  
Unit  
Min Max  
131 Page mode cycle time for two consecutive accesses of the  
same direction  
5 × T  
50.0  
ns  
C
Page mode cycle time for mixed (read and write) accesses  
132 CAS assertion to data valid (read)  
t
4.5 × T  
45.0  
21.8  
31.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PC  
C
t
2.75 × T 5.7  
C
CAC  
133 Column address valid to data valid (read)  
134 CAS deassertion to data not valid (read hold time)  
135 Last CAS assertion to RAS deassertion  
136 Previous CAS deassertion to RAS deassertion  
137 CAS assertion pulse width  
t
3.75 × T 5.7  
AA  
C
t
0.0  
OFF  
RSH  
t
3.5 × T 4.0  
31.0  
56.0  
21.0  
C
t
6 × T 4.0  
RHCP  
C
t
2.5 × T 4.0  
CAS  
C
5
138 Last CAS deassertion to RAS assertion  
t
CRP  
BRW[1–0] = 00, 01—Not applicable  
BRW[1–0] = 10  
BRW[1–0] = 11  
46.5  
66.5  
ns  
ns  
5.25 × T 6.0  
C
7.25 × T 6.0  
C
139 CAS deassertion pulse width  
t
2 × T 4.0  
16.0  
6.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CP  
C
140 Column address valid to CAS assertion  
141 CAS assertion to column address not valid  
142 Last column address valid to RAS deassertion  
143 WR deassertion to CAS assertion  
144 CAS deassertion to WR assertion  
145 CAS assertion to WR deassertion  
146 WR assertion pulse width  
t
T 4.0  
C
ASC  
t
3.5 × T 4.0  
31.0  
46.0  
8.5  
CAH  
C
t
5 × T 4.0  
RAL  
RCS  
RCH  
C
t
1.25 × T 4.0  
C
t
1.25 × T – 3.7  
8.8  
C
t
3.25 × T 4.2  
28.3  
40.5  
43.2  
33.2  
0.5  
WCH  
C
t
4.5 × T 4.5  
WP  
C
147 Last WR assertion to RAS deassertion  
148 WR assertion to CAS deassertion  
149 Data valid to CAS assertion (write)  
150 CAS assertion to data not valid (write)  
151 WR assertion to CAS assertion  
t
4.75 × T 4.3  
RWL  
CWL  
C
t
3.75 × T 4.3  
C
t
0.5 × T – 4.5  
DS  
C
t
3.5 × T 4.0  
31.0  
8.2  
DH  
C
t
1.25 × T 4.3  
WCS  
C
152 Last RD assertion to RAS deassertion  
153 RD assertion to data valid  
t
4.5 × T 4.0  
41.0  
ROH  
C
t
3.25 × T 5.7  
26.8  
GA  
C
6
154 RD deassertion to data not valid  
t
0.0  
GZ  
155 WR assertion to data active  
0.75 × T – 1.5  
6.0  
C
156 WR deassertion to data high impedance  
0.25 × T  
2.5  
C
Notes: 1. The number of wait states for Page mode access is specified in the DRAM Control Register.  
2. The refresh period is specified in the DRAM Control Register.  
3. The asynchronous delays specified in the expressions are valid for the DSP56309.  
4. All the timings are calculated for the worst case. Some of the timings are better for specific cases (for  
example, t equals 3 × T for read-after-read or write-after-write sequences). An expressions is used to  
PC  
C
calculate the maximum or minimum value listed, as appropriate.  
5. BRW[1–0] (DRAM control register bits) defines the number of wait states that should be inserted in each  
DRAM out-of-page access.  
6. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t  
and not t  
.
GZ  
OFF  
2-18  
AC Electrical Characteristics  
RAS  
CAS  
136  
135  
131  
137  
139  
138  
142  
140  
151  
141  
Column  
Address  
Last Column  
Address  
Column  
Address  
Row  
Add  
A[0–17]  
144  
145  
147  
148  
WR  
RD  
146  
155  
156  
150  
149  
D[0–23]  
Data Out  
Data Out  
Data Out  
Figure 2-15. DRAM Page Mode Write Accesses  
RAS  
CAS  
136  
135  
131  
137  
140  
139  
141  
138  
142  
Row  
Add  
Last Column  
Address  
Column  
Address  
Column  
Address  
A[0–17]  
WR  
143  
132  
133  
153  
152  
RD  
134  
154  
D[0–23]  
Data In  
Data In  
Data In  
Figure 2-16. DRAM Page Mode Read Accesses  
2-19  
AC Electrical Characteristics  
DRAM Type  
(tRAC ns)  
Note:  
This figure should be used for primary selection. For exact and  
detailed timings, see the following tables.  
100  
80  
70  
60  
50  
Chip Frequency  
(MHz)  
120  
40  
66  
80  
100  
4 Wait States  
8 Wait States  
11 Wait States  
15 Wait States  
Figure 2-17. DRAM Out-of-Page Wait State Selection Guide  
Table 2-11. DRAM Out-of-Page and Refresh Timings, Eleven Wait States1,2  
100 MHz  
No.  
Characteristics  
Symbol  
Expression3  
Unit  
Min Max  
157 Random read or write cycle time  
t
12 × T  
120.0  
55.5  
30.5  
38.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
C
158 RAS assertion to data valid (read)  
159 CAS assertion to data valid (read)  
160 Column address valid to data valid (read)  
161 CAS deassertion to data not valid (read hold time)  
162 RAS deassertion to RAS assertion  
163 RAS assertion pulse width  
t
6.25 × T 7.0  
C
RAC  
t
3.75 × T 7.0  
CAC  
C
t
4.5 × T 7.0  
AA  
C
t
0.0  
OFF  
t
4.25 × T 4.0  
38.5  
73.5  
48.5  
58.5  
33.5  
21.0  
13.5  
53.5  
36.5  
RP  
C
t
7.75 × T 4.0  
RAS  
RSH  
CSH  
C
164 CAS assertion to RAS deassertion  
165 RAS assertion to CAS deassertion  
166 CAS assertion pulse width  
t
t
5.25 × T 4.0  
C
6.25 × T 4.0  
C
t
3.75 × T 4.0  
CAS  
RCD  
C
167 RAS assertion to CAS assertion  
168 RAS assertion to column address valid  
169 CAS deassertion to RAS assertion  
170 CAS deassertion pulse width  
t
2.5 × T ± 4.0  
29.0  
21.5  
C
t
1.75 × T ± 4.0  
C
RAD  
t
5.75 × T 4.0  
C
CRP  
t
4.25 × T – 6.0  
CP  
C
2-20  
AC Electrical Characteristics  
Table 2-11. DRAM Out-of-Page and Refresh Timings, Eleven Wait States1,2 (Continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression3  
Unit  
Min Max  
171 Row address valid to RAS assertion  
172 RAS assertion to row address not valid  
173 Column address valid to CAS assertion  
174 CAS assertion to column address not valid  
175 RAS assertion to column address not valid  
176 Column address valid to RAS deassertion  
177 WR deassertion to CAS assertion  
t
4.25 × T 4.0  
38.5  
13.5  
3.5  
93.0  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ASR  
C
t
1.75 × T 4.0  
C
RAH  
t
0.75 × T 4.0  
C
ASC  
t
5.25 × T 4.0  
48.5  
73.5  
56.0  
26.0  
13.8  
0.5  
CAH  
C
t
7.75 × T 4.0  
C
AR  
t
6 × T 4.0  
C
RAL  
RCS  
RCH  
RRH  
t
3.0 × T 4.0  
C
4
178 CAS deassertion to WR assertion  
t
t
1.75 × T – 3.7  
C
4
179 RAS deassertion to WR assertion  
0.25 × T 2.0  
C
180 CAS assertion to WR deassertion  
181 RAS assertion to WR deassertion  
182 WR assertion pulse width  
t
t
5 × T 4.2  
45.8  
70.8  
110.5  
113.2  
98.2  
53.5  
48.5  
73.5  
60.7  
11.0  
23.5  
111.0  
WCH  
WCR  
C
7.5 × T 4.2  
C
t
11.5 × T 4.5  
C
WP  
183 WR assertion to RAS deassertion  
184 WR assertion to CAS deassertion  
185 Data valid to CAS assertion (write)  
186 CAS assertion to data not valid (write)  
187 RAS assertion to data not valid (write)  
188 WR assertion to CAS assertion  
189 CAS assertion to RAS assertion (refresh)  
190 RAS deassertion to CAS assertion (refresh)  
191 RD assertion to RAS deassertion  
192 RD assertion to data valid  
t
11.75 × T 4.3  
C
RWL  
CWL  
t
10.25 × T 4.3  
C
t
5.75 × T 4.0  
C
DS  
t
5.25 × T 4.0  
C
DH  
t
7.75 × T 4.0  
DHR  
WCS  
C
t
6.5 × T 4.3  
C
t
1.5 × T 4.0  
C
CSR  
t
2.75 × T 4.0  
C
RPC  
t
11.5 × T 4.0  
C
ROH  
t
10 × T 7.0  
C
GA  
5
193 RD deassertion to data not valid  
t
0.0  
GZ  
194 WR assertion to data active  
0.75 × T – 1.5  
6.0  
C
195 WR deassertion to data high impedance  
0.25 × T  
C
Notes: 1. The number of wait states for an out-of-page access is specified in the DRAM Control Register.  
2. The refresh period is specified in the DRAM Control Register.  
3. Use the expression to compute the maximum or minimum value listed (or both if the expression includes ±).  
4. Either t or t must be satisfied for read cycles.  
RCH  
RRH  
5. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t  
and not t  
.
GZ  
OFF  
2-21  
AC Electrical Characteristics  
Table 2-12. DRAM Out-of-Page and Refresh Timings, Fifteen Wait States1,2  
100 MHz  
No.  
Characteristics  
Symbol  
Expression3  
Unit  
Min Max  
157 Random read or write cycle time  
t
16 × T  
160.0  
76.8  
41.8  
49.3  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
C
158 RAS assertion to data valid (read)  
159 CAS assertion to data valid (read)  
160 Column address valid to data valid (read)  
161 CAS deassertion to data not valid (read hold time)  
162 RAS deassertion to RAS assertion  
163 RAS assertion pulse width  
t
8.25 × T 5.7  
C
RAC  
t
4.75 × T 5.7  
CAC  
C
t
5.5 × T 5.7  
AA  
C
t
0.0  
0.0  
OFF  
t
6.25 × T 4.0  
58.5  
93.5  
58.5  
78.5  
43.5  
33.0  
25.5  
73.5  
56.5  
58.5  
23.5  
3.5  
RP  
C
t
9.75 × T 4.0  
RAS  
RSH  
CSH  
C
164 CAS assertion to RAS deassertion  
165 RAS assertion to CAS deassertion  
166 CAS assertion pulse width  
t
t
6.25 × T 4.0  
C
8.25 × T 4.0  
C
t
4.75 × T 4.0  
CAS  
RCD  
C
167 RAS assertion to CAS assertion  
t
3.5 × T ± 2  
37.0  
29.5  
C
168 RAS assertion to column address valid  
169 CAS deassertion to RAS assertion  
170 CAS deassertion pulse width  
t
2.75 × T ± 2  
C
RAD  
t
7.75 × T 4.0  
C
CRP  
t
6.25 × T – 6.0  
CP  
C
171 Row address valid to RAS assertion  
172 RAS assertion to row address not valid  
173 Column address valid to CAS assertion  
174 CAS assertion to column address not valid  
175 RAS assertion to column address not valid  
176 Column address valid to RAS deassertion  
177 WR deassertion to CAS assertion  
t
6.25 × T 4.0  
ASR  
RAH  
C
t
2.75 × T 4.0  
C
t
0.75 × T 4.0  
ASC  
C
t
6.25 × T 4.0  
58.5  
93.5  
66.0  
46.2  
13.8  
0.5  
CAH  
C
t
9.75 × T 4.0  
AR  
C
t
7 × T 4.0  
RAL  
RCS  
RCH  
RRH  
C
t
5 × T 3.8  
C
4
178 CAS deassertion to WR assertion  
t
t
1.75 × T – 3.7  
C
4
179 RAS deassertion to WR assertion  
0.25 × T 2.0  
C
180 CAS assertion to WR deassertion  
181 RAS assertion to WR deassertion  
182 WR assertion pulse width  
t
t
6 × T 4.2  
55.8  
90.8  
150.5  
153.2  
138.2  
83.5  
58.5  
93.5  
90.7  
11.0  
43.5  
151.0  
WCH  
WCR  
C
9.5 × T 4.2  
C
t
15.5 × T 4.5  
WP  
C
183 WR assertion to RAS deassertion  
184 WR assertion to CAS deassertion  
185 Data valid to CAS assertion (write)  
186 CAS assertion to data not valid (write)  
187 RAS assertion to data not valid (write)  
188 WR assertion to CAS assertion  
189 CAS assertion to RAS assertion (refresh)  
190 RAS deassertion to CAS assertion (refresh)  
191 RD assertion to RAS deassertion  
192 RD assertion to data valid  
t
15.75 × T 4.3  
RWL  
CWL  
C
t
14.25 × T 4.3  
C
t
8.75 × T 4.0  
DS  
DH  
C
t
6.25 × T 4.0  
C
t
9.75 × T 4.0  
DHR  
WCS  
C
t
9.5 × T 4.3  
C
t
1.5 × T 4.0  
CSR  
C
t
4.75 × T 4.0  
RPC  
C
t
15.5 × T 4.0  
ROH  
C
t
14 × T 5.7  
134.3  
GA  
C
5
193 RD deassertion to data not valid  
t
0.0  
GZ  
194 WR assertion to data active  
0.75 × T – 1.5  
6.0  
C
195 WR deassertion to data high impedance  
0.25 × T  
2.5  
C
2-22  
AC Electrical Characteristics  
Table 2-12. DRAM Out-of-Page and Refresh Timings, Fifteen Wait States1,2 (Continued)  
100 MHz  
No.  
Characteristics  
Symbol  
Expression3  
Unit  
Min Max  
Notes: 1. The number of wait states for an out-of-page access is specified in the DRAM Control Register.  
2. The refresh period is specified in the DRAM Control Register.  
3. Use the expression to compute the maximum or minimum value listed (or both if the expression includes ±).  
4. Either t or t must be satisfied for read cycles.  
RCH  
RRH  
5. RD deassertion always occurs after CAS deassertion; therefore, the restricted timing is t  
and not t  
.
GZ  
OFF  
157  
163  
162  
162  
165  
RAS  
167  
168  
164  
169  
170  
166  
CAS  
171  
173  
174  
175  
Row Address  
172  
Column Address  
176  
A[0–17]  
177  
179  
191  
WR  
RD  
178  
160  
159  
158  
193  
192  
161  
Data  
In  
D[0–23]  
Figure 2-18. DRAM Out-of-Page Read Access  
2-23  
AC Electrical Characteristics  
157  
162  
163  
162  
165  
RAS  
167  
164  
169  
168  
166  
170  
CAS  
173  
172  
171  
174  
176  
Row Address  
Column Address  
A[0–17]  
181  
175  
188  
180  
182  
WR  
184  
183  
187  
RD  
186  
195  
185  
194  
Data Out  
D[0–23]  
Figure 2-19. DRAM Out-of-Page Write Access  
157  
162  
162  
163  
RAS  
190  
170  
177  
165  
189  
CAS  
WR  
Figure 2-20. DRAM Refresh Access  
2-24  
AC Electrical Characteristics  
2.6.5.3 Synchronous Timings  
Table 2-13. External Bus Synchronous Timings1,2  
100 MHz  
Min Max  
No.  
Characteristics  
Expression3,4,5  
Unit  
6
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
CLKOUT high to address, and AA valid  
0.25 × T + 4.0  
6.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
6
CLKOUT high to address, and AA invalid  
TA valid to CLKOUT high (set-up time)  
CLKOUT high to TA invalid (hold time)  
CLKOUT high to data out active  
0.25 × T  
2.5  
4.0  
0.0  
2.5  
C
0.25 × T  
C
CLKOUT high to data out valid  
0.25 × T + 4.0  
6.5  
C
CLKOUT high to data out invalid  
0.25 × T  
0.25 × T  
2.5  
C
C
CLKOUT high to data out high impedance  
Data in valid to CLKOUT high (set-up)  
CLKOUT high to data in invalid (hold)  
CLKOUT high to RD assertion  
2.5  
4.0  
0.0  
6.7  
0.0  
5.0  
maximum: 0.75 × T + 2.5  
10.0  
4.0  
9.3  
C
CLKOUT high to RD deassertion  
2
CLKOUT high to WR assertion  
maximum: 0.5 × T + 4.3  
C
for WS = 1 or WS 4  
for 2 WS 3  
0.0  
0.0  
4.3  
3.8  
ns  
ns  
211  
CLKOUT high to WR deassertion  
Notes: 1. Use external bus synchronous timings only for reference to the clock and not for relative timings.  
2. Synchronous Bus Arbitration is not recommended. Use Asynchronous mode whenever possible.  
3. WS is the number of wait states specified in the BCR.  
4. If WS > 1, WR assertion refers to the next rising edge of CLKOUT.  
5. Use the expression to compute the maximum or minimum value listed, as appropriate. For timing  
210, the minimum is an absolute value.  
6. T198 and T199 are valid for Address Trace mode if the ATE bit in the Operating Mode Register is set.  
when this mode is enabled, use the status of BR (See T212) to determine whether the access  
referenced by A[0–17] is internal or external.  
2-25  
AC Electrical Characteristics  
198  
CLKOUT  
A[0–17]  
AA[0–3]  
199  
201  
200  
TA  
211  
WR  
205  
210  
203  
204  
D[0–23]  
Data Out  
208  
202  
209  
RD  
207  
206  
D[0–23]  
Data In  
Note: Address lines A[0–17] hold their state after a read or write operation. AA[0–3] do not hold their state  
after a read or write operation.  
Figure 2-21. Synchronous Bus Timings 1 WS (BCR Controlled)  
CLKOUT  
A[0–17]  
AA[0–3]  
199  
201  
198  
201  
200  
211  
TA  
200  
WR  
210  
205  
203  
202  
204  
Data Out  
D[0–23]  
208  
209  
RD  
207  
206  
Data In  
D[0–23]  
Note: Address lines A[0–17] hold their state after a read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-22. Synchronous Bus Timings 2 WS (TA Controlled)  
2-26  
AC Electrical Characteristics  
2.6.5.4 Arbitration Timings  
Table 2-14. Arbitration Bus Timings1  
100 MHz  
Min Max  
No.  
Characteristics  
Expression2  
Unit  
3
212  
213  
CLKOUT high to BR assertion/deassertion  
0.0  
4.0  
ns  
BG asserted/deasserted to CLKOUT high  
(setup)  
4.0  
ns  
214  
CLKOUT high to BG deasserted/asserted  
(hold)  
0.0  
ns  
215  
216  
217  
218  
219  
220  
221  
BB deassertion to CLKOUT high (input set-up)  
CLKOUT high to BB assertion (input hold)  
CLKOUT high to BB assertion (output)  
CLKOUT high to BB deassertion (output)  
BB high to BB high impedance (output)  
CLKOUT high to address and controls active  
4.0  
0.0  
0.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4.0  
4.0  
4.5  
0.25 × T  
0.75 × T  
2.5  
C
C
CLKOUT high to address and controls high  
impedance  
7.5  
222  
223  
224  
CLKOUT high to AA active  
0.25 × T  
2.5  
2.0  
ns  
ns  
ns  
C
CLKOUT high to AA deassertion  
CLKOUT high to AA high impedance  
maximum: 0.25 × T + 4.0  
6.5  
7.5  
C
0.75 × T  
C
Notes: 1. Synchronous Bus Arbitration is not recommended. Use Asynchronous mode whenever possible.  
2. An expression is used to compute the maximum or minimum value listed, as appropriate. For timing  
223, the minimum is an absolute value.  
3. T212 is valid for Address Trace mode when the ATE bit in the Operating Mode Register is set. BR is  
deasserted for internal accesses and asserted for external accesses.  
2-27  
AC Electrical Characteristics  
CLKOUT  
BR  
214  
216  
212  
213  
215  
BG  
BB  
217  
220  
A[0–17]  
RD, WR  
222  
AA[0–3]  
Note: Address lines A[0–17] hold their state after a read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-23. Bus Acquisition Timings  
CLKOUT  
BR  
214  
213  
212  
BG  
219  
218  
BB  
221  
A[0–17]  
RD, WR  
224  
223  
AA[0–3]  
Note: Address lines A[0–17] hold their state after a read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-24. Bus Release Timings Case 1 (BRT Bit in Operating Mode Register Cleared)  
2-28  
AC Electrical Characteristics  
CLKOUT  
BR  
212  
214  
213  
BG  
BB  
219  
218  
221  
A[0–17]  
RD, WR  
224  
223  
AA[0–3]  
Note: Address lines A[0–17] hold their state after a read or write operation. AA[0–3] do not hold their  
state after a read or write operation.  
Figure 2-25. Bus Release Timings Case 2 (BRT Bit in Operating Mode Register Set)  
2-29  
AC Electrical Characteristics  
2.6.5.5 Asynchronous Bus Arbitration Timings  
Table 2-15. Asynchronous Bus Timings1, 2  
100 MHz4  
No.  
Characteristics  
Expression3  
Unit  
Min Max  
5
250 BB assertion window from BG input deassertion  
2.5 × Tc + 5  
2 × Tc + 5  
30  
ns  
ns  
5
251 Delay from BB assertion to BG assertion  
25  
Notes: 1. Bit 13 in the Operating Mode Register must be set to enter Asynchronous Arbitration mode.  
2. If Asynchronous Arbitration mode is active, none of the timings in Table 2-14 is required.  
3. An expression is used to compute the maximum or minimum value listed, as appropriate.  
4. Asynchronous Arbitration mode is recommended for operation at 100 MHz.  
5. In order to guarantee timings 250, and 251, BG inputs must be asserted to different DSP56300  
devices on the same bus in the non-overlap manner shown in Figure 2-26.  
BG1  
BB  
250  
BG2  
251  
250+251  
Figure 2-26. Asynchronous Bus Arbitration Timing  
The asynchronous bus arbitration is enabled by internal synchronization circuits on BG and BB inputs.  
These synchronization circuits add delay from the external signal until it is exposed to internal logic. As a  
result of this delay, a DSP56300 part may assume mastership and assert BB, for some time after BG is  
deasserted. This is the reason for timing 250.  
Once BB is asserted, there is a synchronization delay from BB assertion to the time this assertion is  
exposed to other DSP56300 components that are potential masters on the same bus. If BG input is  
asserted before that time, and BG is asserted and BB is deasserted, another DSP56300 component may  
assume mastership at the same time. Therefore, some non-overlap period between one BG input active to  
another BG input active is required. Timing 251 ensures that overlaps are avoided.  
2-30  
AC Electrical Characteristics  
2.6.6 Host Interface Timing  
Table 2-16. Host Interface Timings1,2,12  
100 MHz  
No.  
Characteristic10  
Expression  
Unit  
Min Max  
5
317 Read data strobe assertion width  
HACK assertion width  
T
+ 9.9  
19.9  
ns  
ns  
ns  
C
5
318 Read data strobe deassertion width  
HACK deassertion width  
9.9  
5
319 Read data strobe deassertion width after “Last Data Register”  
2.5 × T + 6.6  
31.6  
C
8,11  
3
reads  
, or between two consecutive CVR, ICR, or ISR reads  
HACK deassertion width after “Last Data Register” reads  
8,11  
6
320 Write data strobe assertion width  
ns  
13.2  
8
321 Write data strobe deassertion width  
HACK write deassertion width  
after ICR, CVR and “Last Data Register” writes  
2.5 × T + 6.6  
31.8  
16.5  
ns  
ns  
C
after IVR writes, or  
after TXH:TXM:TXL writes (with HLEND= 0), or  
after TXL:TXM:TXH writes (with HLEND = 1)  
322 HAS assertion width  
9.9  
0.0  
9.9  
3.3  
3.3  
ns  
ns  
ns  
ns  
ns  
4
323 HAS deassertion to data strobe assertion  
6
324 Host data input setup time before write data strobe deassertion  
6
325 Host data input hold time after write data strobe deassertion  
326 Read data strobe assertion to output data active from high  
5
impedance  
HACK assertion to output data active from high impedance  
5
327 Read data strobe assertion to output data valid  
24.5  
9.9  
ns  
ns  
ns  
HACK assertion to output data valid  
5
328 Read data strobe deassertion to output data high impedance  
HACK deassertion to output data high impedance  
5
329 Output data hold time after read data strobe deassertion  
3.3  
Output data hold time after HACK deassertion  
5
330 HCS assertion to read data strobe deassertion  
T
+ 9.9  
19.9  
9.9  
ns  
ns  
ns  
ns  
ns  
C
6
331 HCS assertion to write data strobe deassertion  
332 HCS assertion to output data valid  
19.3  
4
333 HCS hold time after data strobe deassertion  
0.0  
4.6  
334 Address (HAD[0–7]) setup time before HAS deassertion  
(HMUX=1)  
335 Address (HAD[0–7]) hold time after HAS deassertion (HMUX=1)  
3.3  
ns  
336 HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/W setup time  
4
before data strobe assertion  
Read  
Write  
0
4.6  
ns  
ns  
337 HA[8–10] (HMUX=1), HA[0–2] (HMUX=0), HR/W hold time after  
3.3  
ns  
4
data strobe deassertion  
2-31  
AC Electrical Characteristics  
Table 2-16. Host Interface Timings1,2,12 (Continued)  
Characteristic10  
100 MHz  
No.  
Expression  
Unit  
Min Max  
338 Delay from read data strobe deassertion to host request assertion  
T
+ 5.3  
15.3  
20.3  
ns  
ns  
ns  
ns  
C
5, 7, 8  
for “Last Data Register” read  
339 Delay from write data strobe deassertion to host request assertion  
1.5 × T + 5.3  
C
6, 7, 8  
for “Last Data Register” write  
340 Delay from data strobe assertion to host request deassertion for  
19.3  
300.0  
4, 7, 8  
“Last Data Register” read or write (HROD=0)  
341 Delay from data strobe assertion to host request deassertion for  
“Last Data Register” read or write (HROD=1, open drain host  
4, 7, 8, 9  
request)  
Notes: 1. See the Programmer’s Model section in the chapter on the HI08 in the DSP56309User’s Manual.  
2. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is  
programmable.  
3. This timing is applicable only if two consecutive reads from one of these registers are executed.  
4. The data strobe is Host Read (HRD) or Host Write (HWR) in the Dual Data Strobe mode and Host  
Data Strobe (HDS) in the Single Data Strobe mode.  
5. The read data strobe is HRD in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.  
6. The write data strobe is HWR in the Dual Data Strobe mode and HDS in the Single Data Strobe mode.  
7. The host request is HREQ in the Single Host Request mode and HRRQ and HTRQ in the Double Host  
Request mode.  
8. The “Last Data Register” is the register at address $7, which is the last location to be read or written in  
data transfers. This is RXL/TXL in the Big Endian mode (HLEND = 0; HLEND is the Interface Control  
Register bit 7—ICR[7]), or RXH/TXH in the Little Endian mode (HLEND = 1).  
9. In this calculation, the host request signal is pulled up by a 4.7 kresistor in the Open-drain mode.  
10.  
V
= 3.3 V ± 0.3 V; T = –40°C to +100 °C, C = 50 pF  
CC J L  
11. This timing is applicable only if a read from the “Last Data Register” is followed by a read from the  
RXL, RXM, or RXH registers without first polling RXDF or HREQ bits, or waiting for the assertion of the  
HREQ signal.  
12. After the external host writes a new value to the ICR, the HI08 is ready for operation after three DSP  
clock cycles (3 × Tc).  
317  
318  
HACK  
328  
327  
329  
326  
H[0–7]  
HREQ  
Note: The IVR is only read by an MC680xx host processor using non-multiplexed mode.  
Figure 2-27. Host Interrupt Vector Register (IVR) Read Timing Diagram  
2-32  
AC Electrical Characteristics  
HA[2–0]  
336  
337  
333  
337  
330  
HCS  
HRW  
HDS  
336  
317  
318  
328  
332  
327  
319  
329  
326  
341  
H[7–0]  
338  
340  
HREQ (single host request)  
HRRQ (double host request)  
Figure 2-28. Read Timing Diagram, Non-Multiplexed Bus, Single Data Strobe  
HA[2–0]  
336  
337  
333  
330  
HCS  
317  
HRD  
318  
328  
332  
327  
319  
329  
326  
341  
H[7–0]  
338  
340  
HREQ (single host request)  
HRRQ (double host request)  
Figure 2-29. Read Timing Diagram, Non-Multiplexed Bus, Double Data Strobe  
2-33  
AC Electrical Characteristics  
HA[2–0]  
336  
337  
333  
337  
331  
HCS  
HRW  
HDS  
336  
320  
321  
324  
325  
H[7–0]  
339  
340  
341  
HREQ (single host request)  
HTRQ (double host request)  
Figure 2-30. Write Timing Diagram, Non-Multiplexed Bus, Single Data Strobe  
HA[2–0]  
336  
337  
333  
331  
HCS  
320  
HWR  
321  
324  
325  
H[7–0]  
339  
340  
341  
HREQ (single host request)  
HTRQ (double host request)  
Figure 2-31. Write Timing Diagram, Non-Multiplexed Bus, Double Data Strobe  
2-34  
AC Electrical Characteristics  
,
HA[10–8]  
336  
337  
322  
HAS  
323  
336  
337  
HRW  
317  
HDS  
334  
318  
319  
335  
327  
328  
329  
HAD[7–0]  
Address  
Data  
326  
338  
340  
341  
HREQ (single host request)  
HRRQ (double host request)  
Figure 2-32. Read Timing Diagram, Multiplexed Bus, Single Data Strobe  
HA[10–8]  
336  
337  
322  
HAS  
323  
317  
HRD  
334  
318  
319  
335  
327  
328  
329  
HAD[7–0]  
Address  
Data  
326  
338  
340  
341  
HREQ (single host request)  
HRRQ (double host request)  
Figure 2-33. Read Timing Diagram, Multiplexed Bus, Double Data Strobe  
2-35  
AC Electrical Characteristics  
HA[10–8]  
336  
337  
337  
322  
HAS  
HRW  
HDS  
323  
336  
320  
334  
324  
321  
325  
335  
HAD[7–0]  
Data  
340  
Address  
339  
341  
HREQ (single host request)  
HTRQ (double host request)  
Figure 2-34. Write Timing Diagram, Multiplexed Bus, Single Data Strobe  
,
HA[10–8]  
336  
337  
322  
HAS  
323  
320  
HWR  
334  
324  
321  
325  
335  
HAD[7–0]  
Data  
340  
Address  
339  
341  
HREQ (single host request)  
HTRQ (double host request)  
Figure 2-35. Write Timing Diagram, Multiplexed Bus, Double Data Strobe  
2-36  
AC Electrical Characteristics  
2.6.7 SCI Timing  
Table 2-17. SCI Timings  
100 MHz  
No.  
Characteristics1  
Symbol  
Expression  
Unit  
Min  
Max  
2
400 Synchronous clock cycle  
t
8 × T  
53.3  
16.7  
16.7  
8.0  
ns  
ns  
ns  
ns  
SCC  
C
401 Clock low period  
402 Clock high period  
t
t
/2 10.0  
/2 10.0  
SCC  
SCC  
403 Output data setup to clock falling edge  
(internal clock)  
t
/4 + 0.5 × T 17.0  
SCC C  
404 Output data hold after clock rising edge  
(internal clock)  
t
/4 0.5 × T  
15.0  
50.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCC  
C
405 Input data setup time before clock rising  
edge (internal clock)  
t
/4 + 0.5 × T + 25.0  
SCC C  
406 Input data not valid before clock rising  
edge (internal clock)  
t
/4 + 0.5 × T 5.5  
19.5  
32.0  
SCC  
C
407 Clock falling edge to output data valid  
(external clock)  
408 Output data hold after clock rising edge  
(external clock)  
T
+ 8.0  
18.0  
0.0  
9.0  
C
409 Input data setup time before clock rising  
edge (external clock)  
410 Input data hold time after clock rising edge  
(external clock)  
3
411 Asynchronous clock cycle  
412 Clock low period  
t
64 × T  
640.0  
310.0  
310.0  
290.0  
ns  
ns  
ns  
ns  
ACC  
C
t
t
t
/2 10.0  
/2 10.0  
/2 30.0  
ACC  
ACC  
ACC  
413 Clock high period  
414 Output data setup to clock rising edge  
(internal clock)  
415 Output data hold after clock rising edge  
(internal clock)  
t
/2 30.0  
290.0  
ns  
ACC  
Notes: 1.  
2.  
V
= 3.3 V ± 0.3 V; T = 40°C to +100 °C, C = 50 pF.  
CC J L  
t
= synchronous clock cycle time (For internal clock, t  
is determined by the SCI clock control  
SCC  
SCC  
register and T ).  
C
3.  
t
= asynchronous clock cycle time; value given for 1X Clock mode (for internal clock, t  
is  
ACC  
ACC  
determined by the SCI clock control register and T ).  
C
4. An expression is used to compute the number listed as the minimum or maximum value as  
appropriate.  
2-37  
AC Electrical Characteristics  
400  
402  
404  
401  
SCLK  
(Output)  
403  
Data Valid  
405  
TXD  
RXD  
406  
Data  
Valid  
a) Internal Clock  
400  
402  
401  
SCLK  
(Input)  
407  
408  
TXD  
RXD  
Data Valid  
409  
410  
Data Valid  
b) External Clock  
Figure 2-36. SCI Synchronous Mode Timing  
411  
413  
415  
412  
414  
1X SCLK  
(Output)  
TXD  
Data Valid  
Figure 2-37. SCI Asynchronous Mode Timing  
2-38  
AC Electrical Characteristics  
2.6.8 ESSI0/ESSI1 Timing  
Table 2-18. ESSI Timings  
100 MHz  
Cond-  
No.  
Characteristics4, 5, 7 Symbol Expression9  
Unit  
ition5  
Min Max  
1
430 Clock cycle  
t
3 × T  
4 × T  
30.0  
40.0  
x ck  
i ck  
ns  
SSICC  
C
C
431 Clock high period  
For internal clock  
For external clock  
2 × T - 10.0 10.0  
ns  
ns  
C
1.5 × T  
15.0  
C
432 Clock low period  
For internal clock  
For external clock  
2 × T 10.0 10.0  
ns  
ns  
C
1.5 × T  
15.0  
C
433 RXC rising edge to FSR out (bit-length) high  
434 RXC rising edge to FSR out (bit-length) low  
435 RXC rising edge to FSR out (word-length-relative)  
37.0  
22.0  
x ck  
i ck a  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
37.0  
22.0  
x ck  
i ck a  
39.0  
37.0  
x ck  
i ck a  
2
high  
436 RXC rising edge to FSR out (word-length-relative)  
39.0  
37.0  
x ck  
i ck a  
2
low  
437 RXC rising edge to FSR out (word-length) high  
438 RXC rising edge to FSR out (word-length) low  
36.0  
21.0  
x ck  
i ck a  
37.0  
22.0  
x ck  
i ck a  
439 Data in setup time before RXC (SCK in  
Synchronous mode) falling edge  
10.0  
19.0  
x ck  
i ck  
440 Data in hold time after RXC falling edge  
5.0  
3.0  
x ck  
i ck  
2
441 FSR input (bl, wr) high before RXC falling edge  
1.0  
23.0  
x ck  
i ck a  
442 FSR input (wl) high before RXC falling edge  
443 FSR input hold time after RXC falling edge  
444 Flags input setup before RXC falling edge  
445 Flags input hold time after RXC falling edge  
446 TXC rising edge to FST out (bit-length) high  
447 TXC rising edge to FST out (bit-length) low  
448 TXC rising edge to FST out (word-length-relative)  
3.5  
23.0  
x ck  
i ck a  
3.0  
0.0  
x ck  
i ck a  
5.5  
19.0  
x ck  
i ck s  
6.0  
0.0  
x ck  
i ck s  
29.0  
15.0  
x ck  
i ck  
31.0  
17.0  
x ck  
i ck  
31.0  
17.0  
x ck  
i ck  
2
high  
449 TXC rising edge to FST out (word-length-relative)  
33.0  
19.0  
x ck  
i ck  
2
low  
2-39  
AC Electrical Characteristics  
Table 2-18. ESSI Timings (Continued)  
Characteristics4, 5, 7 Symbol Expression9  
100 MHz  
Cond-  
ition5  
No.  
Unit  
Min Max  
450 TXC rising edge to FST out (word-length) high  
30.0  
16.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
451 TXC rising edge to FST out (word-length) low  
31.0  
17.0  
x ck  
i ck  
452 TXC rising edge to data out enable from high  
impedance  
31.0  
17.0  
x ck  
i ck  
453 TXC rising edge to Transmitter #0 drive enable  
assertion  
34.0  
20.0  
x ck  
i ck  
8
454 TXC rising edge to data out valid  
20.0  
10.0  
x ck  
i ck  
3
455 TXC rising edge to data out high impedance  
31.0  
16.0  
x ck  
i ck  
456 TXC rising edge to Transmitter #0 drive enable  
34.0  
20.0  
x ck  
i ck  
3
deassertion  
457 FST input (bl, wr) setup time before TXC falling  
2.0  
21.0  
x ck  
i ck  
2
edge  
458 FST input (wl) to data out enable from high  
impedance  
27.0  
459 FST input (wl) to Transmitter #0 drive enable  
assertion  
31.0  
460 FST input (wl) setup time before TXC falling edge  
461 FST input hold time after TXC falling edge  
462 Flag output valid after TXC rising edge  
2.5  
21.0  
x ck  
i ck  
4.0  
0.0  
x ck  
i ck  
32.0  
18.0  
x ck  
i ck  
Notes: 1. For the internal clock, the external clock cycle is defined by Icyc (see Timing 7) and the ESSI control  
register.  
2. The word-length-relative frame sync signal waveform operates the same way as the bit-length frame  
sync signal waveform, but spreads from one serial clock before the first bit clock (same as the Bit  
Length Frame Sync signal) until the one before last bit clock of the first word in the frame.  
3. Periodically sampled and not 100 percent tested  
4.  
V
= 3.3 V ± 0.3 V; T = 40°C to +100 °C, C = 50 pF  
CC J L  
5. TXC (SCK Pin) = Transmit Clock  
RXC (SC0 or SCK Pin) = Receive Clock  
FST (SC2 Pin) = Transmit Frame Sync  
FSR (SC1 or SC2 Pin) Receive Frame Sync  
6. i ck = Internal Clock  
x ck = External Clock  
i ck a = Internal Clock, Asynchronous Mode  
(asynchronous implies that TXC and RXC are two different clocks)  
i ck s = Internal Clock, Synchronous Mode  
(synchronous implies that TXC and RXC are the same clock)  
7. bl = bit length; wl = word length; wr = word length relative  
8. If the DSP core writes to the transmit register during the last cycle before causing an underrun error,  
the delay is 20 ns + (0.5 × T ).  
C
9. An expression is used to compute the number listed as the minimum or maximum value as  
appropriate.  
2-40  
AC Electrical Characteristics  
430  
431  
432  
TXC  
(Input/  
Output)  
446  
447  
FST (Bit)  
Out  
450  
451  
FST (Word)  
Out  
454  
452  
454  
455  
Data Out  
First  
Last  
459  
Transmitter  
#0 Drive  
Enable  
457  
453  
456  
461  
460  
FST (Bit) In  
458  
461  
FST (Word)  
In  
462  
See Note  
Flags Out  
Note:  
In Network mode, output flag transitions can occur at the start of each time slot within the  
frame. In Normal mode, the output flag state is asserted for the entire frame period.  
Figure 2-38. ESSI Transmitter Timing  
2-41  
AC Electrical Characteristics  
430  
431  
432  
RXC  
(Input/  
Output)  
433  
434  
FSR (Bit)  
Out  
437  
438  
FSR  
(Word)  
Out  
440  
439  
443  
Data In  
Last Bit  
First Bit  
441  
FSR (Bit)  
In  
443  
445  
442  
FSR  
(Word)  
In  
444  
Flags In  
Figure 2-39. ESSI Receiver Timing  
2-42  
AC Electrical Characteristics  
2.6.9 Timer Timing  
Table 2-19. Timer Timing1  
100 MHz  
Unit  
No.  
Characteristics  
Expression2  
Min  
Max  
480  
481  
482  
2 × T + 2.0  
22.0  
22.0  
9.0  
ns  
ns  
ns  
TIO Low  
C
TIO High  
2 × T + 2.0  
C
Timer set-up time from TIO (Input) assertion  
to CLKOUT rising edge  
10.0  
483  
484  
485  
Synchronous timer delay time from CLKOUT  
rising edge to the external memory access  
address out valid caused by first interrupt  
instruction execution  
10.25 × T + 1.0  
103.5  
ns  
C
CLKOUT rising edge to TIO (Output)  
assertion  
0.5 × T + 0.5  
5.5  
24.8  
ns  
ns  
C
Minimum  
Maximum  
0.5 × T + 19.8  
C
CLKOUT rising edge to TIO (Output)  
deassertion  
0.5 × T + 0.5  
5.5  
24.8  
ns  
ns  
C
Minimum  
Maximum  
0.5 × T + 19.8  
C
Notes: 1.  
V
= 3.3 V ± 0.3 V; T = 40°C to +100 °C, C = 50 pF  
CC J L  
2. An expression is used to compute the number listed as the minimum or maximum value as  
appropriate.  
480  
TIO  
481  
Figure 2-40. TIO Timer Event Input Restrictions  
CLKOUT  
TIO (Input)  
482  
Address  
483  
First Interrupt Instruction Execution  
Figure 2-41. Timer Interrupt Generation  
CLKOUT  
TIO (Output)  
484  
485  
Figure 2-42. External Pulse Generation  
2-43  
AC Electrical Characteristics  
2.6.10 GPIO Timing  
Table 2-20. GPIO Timing  
100 MHz  
No.  
Characteristics  
Expression  
Unit  
Min  
Max  
490  
0.0  
8.5  
0.0  
67.5  
8.5  
ns  
ns  
ns  
ns  
ns  
CLKOUT edge to GPIO out valid (GPIO out delay time)  
491 CLKOUT edge to GPIO out not valid (GPIO out hold time)  
492 GPIO In valid to CLKOUT edge (GPIO in set-up time)  
493 CLKOUT edge to GPIO in not valid (GPIO in hold time)  
494 Fetch to CLKOUT edge before GPIO change  
Minimum: 6.75 × T  
C
Note:  
V
= 3.3 V ± 0.3 V; T = 40°C to +100 °C, C = 50 pF  
CC  
J
L
CLKOUT  
(Output)  
490  
491  
GPIO  
(Output)  
492  
493  
GPIO  
(Input)  
Valid  
A[0–17]  
494  
Fetch the instruction MOVE X0,X:(R0); X0 contains the new value of GPIO  
and R0 contains the address of the GPIO data register.  
Figure 2-43. GPIO Timing  
2-44  
AC Electrical Characteristics  
2.6.11 JTAG Timing  
Table 2-21. JTAG Timing  
All frequencies  
Unit  
No.  
Characteristics  
Min  
Max  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
TCK frequency of operation  
TCK cycle time in Crystal mode  
0.0  
45.0  
20.0  
0.0  
22.0  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
3.0  
Boundary scan input data setup time  
Boundary scan input data hold time  
TCK low to output data valid  
TCK low to output high impedance  
TMS, TDI data setup time  
5.0  
24.0  
0.0  
40.0  
40.0  
0.0  
5.0  
TMS, TDI data hold time  
25.0  
0.0  
TCK low to TDO data valid  
44.0  
44.0  
TCK low to TDO high impedance  
TRST assert time  
0.0  
100.0  
40.0  
TRST setup time to TCK low  
Notes: 1.  
V
= 3.3 V ± 0.3 V; T = –40°C to +100 °C, C = 50 pF  
CC J L  
2. All timings apply to OnCE module data transfers because it uses the JTAG port as an interface.  
501  
502  
502  
V
TCK  
(Input)  
IH  
V
M
V
IL  
503  
503  
Figure 2-44. Test Clock Input Timing Diagram  
2-45  
AC Electrical Characteristics  
V
TCK  
(Input)  
IH  
V
IL  
504  
505  
Data  
Inputs  
Input Data Valid  
506  
507  
506  
Data  
Outputs  
Output Data Valid  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 2-45. Boundary Scan (JTAG) Timing Diagram  
V
IH  
TCK  
(Input)  
V
IL  
509  
508  
Input Data Valid  
TDI  
TMS  
(Input)  
510  
TDO  
(Output)  
Output Data Valid  
511  
TDO  
(Output)  
510  
TDO  
(Output)  
Output Data Valid  
Figure 2-46. Test Access Port Timing Diagram  
TCK  
(Input)  
513  
TRST  
(Input)  
512  
Figure 2-47. TRST Timing Diagram  
2-46  
AC Electrical Characteristics  
2.6.12 OnCE Module TimIng  
Table 2-22. OnCE Module Timing  
Characteristics Expression  
No.  
Min  
Max  
Unit  
500 TCK frequency of operation  
Max 22.0 MHz  
1.5 × T + 10.0  
0.0  
20.0  
22.0  
MHz  
ns  
514 DE assertion time in order to enter Debug mode  
C
515 Response time when DSP56309 is executing NOP  
instructions from internal memory  
5.5 × T + 30.0  
67.0  
ns  
C
516 Debug acknowledge assertion time  
3 × T + 5.0  
25.0  
ns  
C
Note:  
V
= 3.3 V ± 0.3 V; T = –40°C to +100 °C, C = 50 pF  
CC J L  
DE  
514  
515  
516  
Figure 2-48. OnCE—Debug Request  
2-47  
AC Electrical Characteristics  
2-48  
Chapter 3  
Packaging  
3.1 Pin-Out and Packages  
This section includes diagrams of the DSP56309 package pin-outs and tables showing how the  
signals described in Chapter 1 are allocated for each package.  
The DSP56309 is available in two package types:  
• 144-pin Thin Quad Flat Pack (TQFP)  
• 196-pin Molded Array Process-Ball Grid Array (MAP-BGA)  
3-1  
TQFP Package  
3.2 TQFP Package  
Top and bottom views of the TQFP package are shown in Figure 3-1 and Figure 3-2 with their pin-outs.  
109  
A0  
BG  
D7  
D8  
(Top View)  
AA0  
AA1  
RD  
VCCD  
GNDD  
D9  
WR  
GND  
D10  
D11  
D12  
C
V
CCC  
BB  
BR  
TA  
BCLK  
BCLK  
D13  
D14  
VCCD  
GNDD  
D15  
D16  
CLKOUT  
GND  
D17  
C
V
D18  
CCC  
V
D19  
CCQL  
EXTAL  
VCCQL  
GNDQ  
D20  
VCCD  
GNDD  
D21  
GND  
Q
XTAL  
CAS  
AA2  
AA3  
D22  
V
CCQH  
D23  
GND  
GND  
P1  
P
MODD  
MODC  
MODB  
MODA  
TRST  
TDO  
TDI  
TCK  
TMS  
SC12  
SC11  
PCAP  
V
CCP  
RESET  
HAD0  
HAD1  
HAD2  
HAD3  
Orientation Mark  
GND  
H
V
CCH  
HAD4  
37  
Notes: Because of size constraints in this figure, only one name is shown for multiplexed pins. Refer to Table 3-1 and Table  
3-2 for detailed information about pin functions and signal names.  
Figure 3-1. DSP56309 Thin Quad Flat Pack (TQFP), Top View  
3-2  
TQFP Package  
A0  
BG  
109  
D7  
D8  
(Bottom View)  
VCCD  
GNDD  
D9  
AA0  
AA1  
RD  
WR  
GNDC  
VCCC  
D10  
D11  
D12  
D13  
D14  
VCCD  
GNDD  
BB  
BR  
TA  
BCLK  
D15  
D16  
D17  
D18  
BCLK  
CLKOUT  
GNDC  
VCCC  
D19  
VCCQL  
VCCQL  
GNDQ  
EXTAL  
GNDQ  
D20  
VCCD  
XTAL  
CAS  
GNDD  
D21  
D22  
D23  
MODD  
MODC  
MODB  
MODA  
TRST  
TDO  
TDI  
TCK  
TMS  
SC12  
SC11  
AA2  
AA3  
VCCQH  
GNDP1  
GNDP  
PCAP  
VCCP  
RESET  
HAD0  
HAD1  
HAD2  
HAD3  
Orientation Mark  
(on top side)  
GND  
H
VCC  
H
37  
HAD4  
Notes: Because of size constraints in this figure, only one name is shown for multiplexed pins. Refer to Table 3-1 and Table  
3-2 for detailed information about pin functions and signal names.  
Figure 3-2. DSP56309 Thin Quad Flat Pack (TQFP), Bottom View  
3-3  
TQFP Package  
Table 3-1. DSP56309 TQFP Signal Identification by Pin Number  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
1
2
3
4
5
6
7
8
9
SRD1 or PD4  
26 GND  
27 TIO2  
28 TIO1  
29 TIO0  
51 AA2/RAS2  
52 CAS  
S
STD1 or PD5  
SC02 or PC2  
SC01 or PC1  
DE  
53 XTAL  
54 GND  
Q
30 HCS/HCS, HA10, or PB13  
31 HA2, HA9, or PB10  
32 HA1, HA8, or PB9  
33 HA0, HAS/HAS, or PB8  
34 H7, HAD7, or PB7  
35 H6, HAD6, or PB6  
36 H5, HAD5, or PB5  
37 H4, HAD4, or PB4  
55 EXTAL  
PINIT/NMI  
SRD0 or PC4  
56  
57  
V
V
CCQL  
CCC  
V
58 GND  
C
CCS  
GND  
59 CLKOUT  
60 BCLK  
61 BCLK  
62 TA  
S
10 STD0 or PC5  
11 SC10 or PD0  
12 SC00 or PC0  
13 RXD or PE0  
14 TXD or PE1  
15 SCLK or PE2  
16 SCK1 or PD3  
17 SCK0 or PC3  
38  
V
63 BR  
CCH  
39 GND  
64 BB  
H
40 H3, HAD3, or PB3  
41 H2, HAD2, or PB2  
42 H1, HAD1, or PB1  
43 H0, HAD0, or PB0  
44 RESET  
65  
V
CCC  
66 GND  
67 WR  
68 RD  
C
18  
V
CCQL  
19 GND  
69 AA1/RAS1  
70 AA0/RAS0  
71 BG  
Q
20  
V
45  
V
CCP  
CCQH  
21 HDS/HDS, HWR/HWR, or  
PB12  
46 PCAP  
22 HRW, HRD/HRD, or PB11  
47 GND  
48 GND  
72 A0  
73 A1  
P
23 HACK/HACK,  
P1  
HRRQ/HRRQ, or PB15  
24 HREQ/HREQ,  
49  
V
74  
V
CCA  
CCQH  
HTRQ/HTRQ, or PB14  
25  
V
50 AA3/RAS3  
75 GND  
A
CCS  
3-4  
TQFP Package  
Table 3-1. DSP56309 TQFP Signal Identification by Pin Number (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
76 A2  
77 A3  
78 A4  
79 A5  
99 A17  
100 D0  
101 D1  
102 D2  
122 D16  
123 D17  
124 D18  
125 D19  
80  
V
103  
V
126  
V
CCQL  
CCA  
CCD  
81 GND  
82 A6  
83 A7  
84 A8  
85 A9  
104 GND  
105 D3  
106 D4  
107 D5  
108 D6  
109 D7  
110 D8  
127 GND  
128 D20  
A
D
D
D
Q
129  
V
CCD  
130 GND  
131 D21  
132 D22  
133 D23  
D
86  
V
CCA  
87 GND  
88 A10  
89 A11  
90 GND  
A
111  
V
134 MODD/IRQD  
135 MODC/IRQC  
136 MODB/IRQB  
137 MODA/IRQA  
138 TRST  
CCD  
112 GND  
113 D9  
Q
91  
V
114 D10  
115 D11  
116 D12  
117 D13  
118 D14  
CCQL  
92 A12  
93 A13  
94 A14  
139 TDO  
140 TDI  
95  
V
141 TCK  
CCQH  
96 GND  
97 A15  
98 A16  
119  
V
142 TMS  
A
CCD  
120 GND  
121 D15  
143 SC12 or PD2  
144 SC11 or PD1  
Notes: Signal names are based on configured functionality. Most pins supply a single signal. Some pins provide a  
signal with dual functionality, such as the MODx/IRQx pins that select an operating mode after RESET is  
deasserted but act as interrupt lines during operation. Some signals have configurable polarity; these  
names are shown with and without overbars, such as HAS/HAS. Some pins have two or more configurable  
functions; names assigned to these pins indicate the function for a specific configuration. For example, Pin  
34 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in multiplexed bus mode, or GPIO  
line PB7 when the GPIO function is enabled for this pin.  
3-5  
TQFP Package  
Table 3-2. DSP56309 TQFP Signal Identification by Name  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
A0  
A1  
72  
73  
88  
89  
92  
93  
94  
97  
98  
99  
76  
77  
78  
79  
82  
83  
84  
85  
70  
69  
51  
50  
64  
60  
61  
BG  
BR  
71  
D7  
D8  
109  
110  
113  
5
63  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A2  
CAS  
CLKOUT  
D0  
52  
D9  
59  
DE  
100  
101  
114  
115  
116  
117  
118  
121  
122  
123  
124  
125  
102  
128  
131  
132  
133  
105  
106  
107  
108  
EXTAL  
55  
D1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
75  
A
A
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D2  
81  
87  
A
96  
A
58  
C
C
D
D
D
D
H
P
66  
A3  
104  
112  
120  
130  
39  
A4  
A5  
A6  
A7  
A8  
47  
A9  
D20  
D21  
D22  
D23  
D3  
GND  
48  
P1  
AA0  
AA1  
AA2  
AA3  
BB  
GND  
GND  
GND  
GND  
19  
Q
Q
Q
Q
54  
90  
127  
9
D4  
GND  
GND  
H0  
S
S
BCLK  
BCLK  
D5  
26  
D6  
43  
3-6  
TQFP Package  
Table 3-2. DSP56309 TQFP Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
H1  
H2  
42  
41  
40  
37  
36  
35  
34  
33  
32  
30  
31  
32  
31  
23  
43  
42  
41  
40  
37  
36  
35  
34  
33  
30  
21  
HRD/HRD  
HREQ/HREQ  
HRRQ/HRRQ  
HRW  
22  
24  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PCAP  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PE0  
PE1  
PE2  
PINIT  
RAS0  
RAS1  
37  
36  
35  
34  
33  
32  
12  
4
H3  
23  
H4  
22  
H5  
HTRQ/HTRQ  
HWR/HWR  
IRQA  
24  
H6  
21  
H7  
137  
136  
135  
134  
137  
136  
135  
134  
6
HA0  
IRQB  
HA1  
IRQC  
3
HA10  
HA2  
IRQD  
17  
7
MODA  
MODB  
MODC  
MODD  
NMI  
HA8  
10  
46  
11  
144  
143  
16  
1
HA9  
HACK/HACK  
HAD0  
HAD1  
HAD2  
HAD3  
HAD4  
HAD5  
HAD6  
HAD7  
HAS/HAS  
HCS/HCS  
HDS/HDS  
PB0  
43  
PB1  
42  
PB10  
31  
PB11  
22  
2
PB12  
21  
13  
14  
15  
6
PB13  
30  
PB14  
24  
PB15  
23  
PB2  
41  
70  
69  
PB3  
40  
3-7  
TQFP Package  
Table 3-2. DSP56309 TQFP Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
RAS2  
RAS3  
RD  
51  
50  
68  
44  
13  
12  
4
STD1  
TA  
2
V
V
V
V
V
111  
119  
129  
38  
45  
20  
49  
95  
18  
56  
91  
126  
8
CCD  
CCD  
CCD  
CCH  
CCP  
62  
TCK  
TDI  
141  
140  
139  
29  
RESET  
RXD  
TDO  
TIO0  
TIO1  
TIO2  
TMS  
TRST  
TXD  
SC00  
SC01  
SC02  
SC10  
SC11  
SC12  
SCK0  
SCK1  
SCLK  
SRD0  
SRD1  
STD0  
V
V
V
CCQH  
CCQH  
CCQH  
28  
3
27  
11  
144  
143  
17  
16  
15  
7
142  
138  
14  
V
V
V
V
CCQL  
CCQL  
CCQL  
CCQL  
V
V
V
V
V
V
74  
CCA  
CCA  
CCA  
CCC  
CCC  
CCD  
80  
V
CCS  
CCS  
86  
V
25  
67  
53  
57  
WR  
1
65  
XTAL  
10  
103  
3-8  
TQFP Package Mechanical Drawing  
3.3 TQFP Package Mechanical Drawing  
0.20 T L-M N  
0.20 T L-M N  
4X  
4X 36 TIPS  
Pin 1  
ident  
144  
109  
1
108  
4X  
P
J1  
J1  
M
L
C
L
V
B
X
X=L, M or N  
140X  
G
B1  
V1  
View Y  
View Y  
36  
73  
Notes:  
1. Dimensions and tolerancing per ASME  
Y14.5, 1994.  
2. Dimensions in millimeters.  
3. Datums L, M and N to be determined at the  
seating plane, datum T.  
37  
72  
N
4. Dimensions S and V to be determined at  
the seating plane, datum T.  
A1  
S1  
5. Dimensions A and B do not include mold  
protrusion. Allowable protrusionis0.25per  
side. Dimensions A and B do include mold  
mismatch and are determined at datum  
plane H.  
A
S
6. Dimension D does not include dambar  
protrusion. Allowable dambar protrusion  
shall not cause the D dimension to exceed  
0.35.  
View AB  
C
144X  
0.1 T  
θ2  
θ2  
Millimeters  
MIN  
MAX  
DIM  
A
A1  
B
B1  
C
Seating  
plane  
20.00 BSC  
10.00 BSC  
20.00 BSC  
10.00 BSC  
T
1.40  
C1 0.05  
C2 1.35  
1.60  
0.15  
1.45  
0.27  
0.75  
0.23  
Plating  
D
E
F
G
J
0.17  
0.45  
0.17  
J
C2  
AA  
F
0.05  
0.50 BSC  
R2  
0.09  
0.20  
θ
K
P
0.50 REF  
0.25 BSC  
R1  
R1 0.13  
R2 0.13  
0.20  
0.20  
S
S1  
V
V1  
Y
22.00 BSC  
11.00 BSC  
22.00 BSC  
11.00 BSC  
0.25 REF  
1.00 REF  
Base  
metal  
0.25  
Gage plane  
D
M
0.08  
T L-M N  
Z
Section J1-J1  
(rotated 90)  
144 PL  
(K)  
E
AA 0.09  
θ
θ1  
θ2  
0.16  
C1  
0°  
0°  
7°  
θ 1  
(Y)  
View AB  
11°  
13°  
(Z)  
CASE 918-03  
ISSUE C  
Figure 3-3. DSP56309 Mechanical Information, 144-pin TQFP Package  
3-9  
MAP-BGA Package  
3.4 MAP-BGA Package  
Top and bottom views of the MAP-BGA package are shown in Figure 3-4 and Figure 3-5 with their  
pin-outs.  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
A
B
NC  
SC11  
TMS  
TDO MODB  
TRST MODD  
D23  
V
D19  
D16  
D14  
D11  
D9  
D7  
NC  
CCD  
SRD1 SC12  
SC02 STD1  
PINIT SC01  
TDI  
D21  
D22  
D20  
D17  
D18  
D15  
D13  
D12  
D10  
D8  
D6  
D5  
D3  
NC  
D4  
TCK MODA MODC  
V
V
V
CCD  
C
CCQL  
CCD  
DE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PB0  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
EXTAL  
CAS  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
BCLK  
BCLK  
TA  
GND  
D1  
D2  
V
CCD  
D
E
F
STD0  
RXD  
V
SRD0 GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
WR  
A17  
A16  
A14  
D0  
CCS  
SC10 SC00  
GND  
GND  
V
A15  
A12  
A11  
A9  
CCQH  
G
SCK1 SCLK  
TXD  
A13  
V
CCQL  
V
V
SCK0 GND  
V
A10  
H
J
CCQH  
CCQL  
CCA  
HACK HRW  
HDS  
GND  
GND  
GND  
A8  
A7  
A5  
K
V
HREQ TIO2  
V
A6  
CCS  
CCA  
HCS  
HA1  
H6  
TIO1  
HA2  
H7  
TIO0  
HA0  
H4  
V
A3  
A4  
L
CCA  
CLK  
OUT  
M
V
V
V
RD  
A1  
A2  
CCH  
CCP  
CCQH  
N
P
H2  
H1  
RESET GND  
AA3  
V
BR  
V
AA0  
BG  
A0  
P
CCQL  
CCC  
NC  
H5  
H3  
PCAP GND  
AA2  
XTAL  
V
BB  
AA1  
NC  
P1  
CCC  
Figure 3-4. DSP56309 Molded Array Process-Ball Grid Array (MAP-BGA), Top View  
3-10  
MAP-BGA Package  
Bottom View  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B
NC  
D7  
D9  
D11  
D14  
D16  
D19  
V
D23  
MODB TDO  
MODD TRST  
TMS  
SC11  
NC  
CCD  
NC  
D4  
D5  
D3  
D8  
D6  
D10  
D13  
D12  
D15  
D17  
D18  
D20  
D21  
D22  
TDI  
SC12 SRD1  
STD1 SC02  
SC01 PINIT  
V
V
V
MODC MODA TCK  
C
CCD  
CCD  
CCQL  
V
D2  
D1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
BCLK  
BCLK  
TA  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
EXTAL  
CAS  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
PB0  
GND  
DE  
D
E
F
CCD  
D0  
A16  
A14  
A17  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
WR  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND SRD0  
V
STD0  
RXD  
CCS  
A15  
A12  
A11  
A9  
V
GND  
GND  
SC00 SC10  
CCQH  
G
V
A13  
TXD  
SCLK SCK1  
CCQL  
A10  
V
GND SCK0  
V
V
CCQH  
H
J
CCA  
CCQL  
A7  
A5  
A8  
GND  
GND  
GND  
HDS  
HRW HACK  
K
A6  
V
TIO2 HREQ  
V
CCS  
CCA  
A4  
A3  
V
TIO0  
HA0  
H4  
TIO1  
HA2  
H7  
HCS  
HA1  
H6  
L
CCA  
CLK  
OUT  
M
A2  
A1  
RD  
V
V
V
CCH  
CCQH  
CCP  
N
P
A0  
AA0  
BG  
V
BR  
V
AA3  
GND  
RESET  
PCAP  
H2  
H1  
CCC  
CCQL  
P
NC  
AA1  
BB  
V
XTAL  
AA2 GND  
H3  
H5  
NC  
CCC  
P1  
Figure 3-5. DSP56309 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View  
3-11  
MAP-BGA Package  
Table 3-3. DSP56309 MAP-BGA Signal Identification by Pin Number  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
A1 Not Connected (NC), reserved B12  
D8  
D5  
D9  
D10  
D11  
D12  
D13  
D14  
E1  
GND  
GND  
GND  
D1  
A2  
A3  
SC11 or PD1  
TMS  
B13  
B14  
C1  
NC  
A4  
TDO  
SC02 or PC2  
STD1 or PD5  
TCK  
A5  
MODB/IRQB  
D23  
C2  
D2  
A6  
C3  
V
CCD  
A7  
V
C4  
MODA/IRQA  
MODC/IRQC  
D22  
STD0 or PC5  
CCD  
A8  
D19  
D16  
C5  
E2  
V
CCS  
A9  
C6  
E3  
SRD0 or PC4  
GND  
A10  
A11  
A12  
A13  
A14  
B1  
D14  
C7  
V
E4  
CCQL  
D11  
C8  
D18  
E5  
GND  
D9  
C9  
V
E6  
GND  
CCD  
D7  
C10  
C11  
C12  
C13  
C14  
D1  
D12  
E7  
GND  
NC  
V
E8  
GND  
CCD  
SRD1 or PD4  
SC12 or PD2  
TDI  
D6  
E9  
GND  
B2  
D3  
D4  
E10  
E11  
E12  
E13  
E14  
F1  
GND  
B3  
GND  
B4  
TRST  
MODD/IRQD  
D21  
PINIT/NMI  
SC01 or PC1  
DE  
A17  
B5  
D2  
A16  
B6  
D3  
D0  
B7  
D20  
D4  
GND  
RXD or PE0  
SC10 or PD0  
SC00 or PC0  
GND  
B8  
D17  
D5  
GND  
F2  
B9  
D15  
D6  
GND  
F3  
B10  
B11  
D13  
D7  
GND  
F4  
D10  
D8  
GND  
F5  
GND  
3-12  
MAP-BGA Package  
Table 3-3. DSP56309 MAP-BGA Signal Identification by Pin Number (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
F6  
F7  
F8  
GND  
GND  
GND  
H3  
H4  
H5  
SCK0 or PC3  
GND  
J14  
K1  
A9  
V
CCS  
GND  
K2  
HREQ/HREQ,  
HTRQ/HTRQ, or PB14  
F9  
F10  
F11  
F12  
F13  
F14  
G1  
GND  
GND  
GND  
H6  
H7  
GND  
GND  
GND  
GND  
GND  
GND  
K3  
K4  
TIO2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
H8  
K5  
V
H9  
K6  
CCQH  
A14  
A15  
H10  
H11  
H12  
H13  
H14  
J1  
K7  
K8  
SCK1 or PD3  
SCLK or PE2  
TXD or PE1  
GND  
V
K9  
CCA  
G2  
A10  
A11  
K10  
K11  
K12  
G3  
G4  
HACK/HACK,  
V
CCA  
HRRQ/HRRQ, or PB15  
G5  
G6  
GND  
GND  
J2  
J3  
HRW, HRD/HRD, or PB11  
K13  
K14  
A5  
A6  
HDS/HDS, HWR/HWR, or  
PB12  
G7  
G8  
GND  
GND  
GND  
GND  
GND  
A13  
J4  
J5  
GND  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
P1  
P2  
P3  
HCS/HCS, HA10, or PB13  
GND  
TIO1  
G9  
J6  
GND  
TIO0  
G10  
G11  
G12  
G13  
G14  
H1  
J7  
GND  
GND  
J8  
GND  
GND  
J9  
GND  
GND  
V
J10  
J11  
J12  
J13  
M13  
M14  
N1  
GND  
GND  
GND  
CCQL  
A12  
GND  
V
A8  
GND  
CCQH  
H2  
V
A7  
GND  
CCQL  
L11  
L12  
L13  
GND  
A1  
A2  
NC  
V
H5, HAD5, or PB5  
H3, HAD3, or PB3  
CCA  
A3  
H6, HAD6, or PB6  
3-13  
MAP-BGA Package  
Table 3-3. DSP56309 MAP-BGA Signal Identification by Pin Number (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
L14  
M1  
A4  
N2  
N3  
H7, HAD7, or PB7  
H4, HAD4, or PB4  
H2, HAD2, or PB2  
RESET  
P4  
P5  
H1, HAD1, or PB1  
PCAP  
HA1, HA8, or PB9  
HA2, HA9, or PB10  
HA0, HAS/HAS, or PB8  
M2  
N4  
P6  
GND  
P1  
M3  
N5  
P7  
AA2/RAS2  
XTAL  
M4  
V
N6  
GND  
P8  
CCH  
P
M5  
H0, HAD0, or PB0  
N7  
AA3/RAS3  
CAS  
P9  
V
CCC  
M6  
V
N8  
P10  
P11  
P12  
P13  
P14  
TA  
BB  
CCP  
M7  
V
N9  
V
CCQL  
CCQH  
M8  
EXTAL  
CLKOUT  
BCLK  
WR  
N10  
N11  
N12  
N13  
N14  
BCLK  
BR  
AA1/RAS1  
BG  
M9  
M10  
M11  
M12  
V
NC  
CCC  
AA0/RAS0  
A0  
RD  
Notes: Signal names are based on configured functionality. Most connections supply a single signal.  
Some connections provide a signal with dual functionality, such as the MODx/IRQx pins that  
select an operating mode after RESET is deasserted but act as interrupt lines during operation.  
Some signals have configurable polarity; these names are shown with and without overbars,  
such as HAS/HAS. Some connections have two or more configurable functions; names  
assigned to these connections indicate the function for a specific configuration. For example,  
connection N2 is data line H7 in non-multiplexed bus mode, data/address line HAD7 in  
multiplexed bus mode, or GPIO line PB7 when the GPIO function is enabled for this pin. Unlike  
in the TQFP package, most of the GND pins are connected internally in the center of the  
connection array and act as heat sink for the chip. Therefore, except for GNDP and GNDP1 that  
support the PLL, other GND signals do not support individual subsystems in the chip.  
3-14  
MAP-BGA Package  
Table 3-4. DSP56309 MAP-BGA Signal Identification by Name  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
A0  
A1  
N14  
M13  
H13  
H14  
G14  
G12  
F13  
F14  
E13  
E12  
M14  
L13  
L14  
K13  
K14  
J13  
J12  
J14  
N13  
P12  
P7  
BG  
BR  
P13  
N11  
N8  
D7  
D8  
A13  
B12  
A12  
D3  
M8  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
E4  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A2  
CAS  
CLKOUT  
D0  
D9  
M9  
DE  
E14  
D12  
B11  
A11  
C10  
B10  
A10  
B9  
EXTAL  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D1  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D2  
A3  
A4  
A9  
A5  
B8  
A6  
C8  
E5  
A7  
A8  
E6  
A8  
D13  
B7  
E7  
A9  
D20  
D21  
D22  
D23  
D3  
E8  
AA0  
AA1  
AA2  
AA3  
BB  
B6  
E9  
C6  
E10  
E11  
F4  
A6  
N7  
C13  
C14  
B13  
C12  
P11  
M10  
N10  
D4  
F5  
BCLK  
BCLK  
D5  
F6  
D6  
F7  
3-15  
MAP-BGA Package  
Table 3-4. DSP56309 MAP-BGA Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
F8  
F9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J9  
J10  
J11  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
L4  
H4  
H5  
N3  
P2  
N1  
N2  
M3  
M1  
L1  
F10  
F11  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
J4  
H6  
H7  
HA0  
HA1  
HA10  
HA2  
M2  
M1  
M2  
J1  
HA8  
HA9  
HACK/HACK  
HAD0  
M5  
P4  
N4  
P3  
N3  
P2  
N1  
N2  
M3  
L1  
L5  
HAD1  
L6  
HAD2  
L7  
HAD3  
L8  
HAD4  
L9  
HAD5  
L10  
L11  
N6  
P6  
M5  
P4  
N4  
P3  
HAD6  
HAD7  
GND  
HAS/HAS  
HCS/HCS  
HDS/HDS  
HRD/HRD  
HREQ/HREQ  
HRRQ/HRRQ  
P
GND  
H0  
P1  
J5  
J3  
J6  
H1  
J2  
J7  
H2  
K2  
J1  
J8  
H3  
3-16  
MAP-BGA Package  
Table 3-4. DSP56309 MAP-BGA Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
HRW  
HTRQ/HTRQ  
HWR/HWR  
IRQA  
IRQB  
IRQC  
IRQD  
MODA  
MODB  
MODC  
MODD  
NC  
J2  
K2  
J3  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PB8  
PB9  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PCAP  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PE0  
PE1  
PE2  
PINIT  
N4  
P3  
N3  
P2  
N1  
N2  
M3  
M1  
F3  
D2  
C1  
H3  
E3  
E1  
P5  
F2  
A2  
B2  
G1  
B1  
C2  
F1  
G3  
G2  
D1  
RAS0  
RAS1  
RAS2  
RAS3  
RD  
N13  
P12  
P7  
N7  
M12  
N5  
F1  
C4  
A5  
C5  
B5  
C4  
A5  
C5  
B5  
A1  
A14  
B14  
P1  
P14  
D1  
M5  
P4  
M2  
J2  
RESET  
RXD  
SC00  
SC01  
SC02  
SC10  
SC11  
SC12  
SCK0  
SCK1  
SCLK  
SRD0  
SRD1  
STD0  
STD1  
TA  
F3  
D2  
C1  
F2  
A2  
B2  
H3  
G1  
G2  
E3  
B1  
E1  
C2  
P10  
C3  
B3  
A4  
L3  
NC  
NC  
NC  
NC  
NMI  
PB0  
PB1  
PB10  
PB11  
PB12  
PB13  
PB14  
PB15  
J3  
TCK  
L1  
TDI  
K2  
J1  
TDO  
TIO0  
3-17  
MAP-BGA Package  
Table 3-4. DSP56309 MAP-BGA Signal Identification by Name (Continued)  
Pin  
No.  
Pin  
No.  
Pin  
No.  
Signal Name  
Signal Name  
Signal Name  
TIO1  
TIO2  
TMS  
TRST  
TXD  
L2  
K3  
V
V
V
V
V
V
V
P9  
A7  
V
M7  
C7  
CCC  
CCD  
CCD  
CCD  
CCD  
CCH  
CCP  
CCQH  
V
V
V
V
CCQL  
CCQL  
CCQL  
CCQL  
A3  
C9  
G13  
H2  
B4  
C11  
D14  
M4  
M6  
F12  
H1  
G3  
N9  
V
V
V
V
H12  
K12  
L12  
N12  
V
E2  
CCA  
CCA  
CCA  
CCC  
CCS  
CCS  
V
K1  
V
WR  
M11  
P8  
CCQH  
CCQH  
V
XTAL  
3-18  
MAP-BGA Package Mechanical Drawing  
3.5 MAP-BGA Package Mechanical Drawing  
Figure 3-6. DSP56309 Mechanical Information, 196-pin MAP-BGA Package  
3-19  
MAP-BGA Package Mechanical Drawing  
3-20  
Chapter 4  
Design  
Considerations  
4.1 Thermal Design Considerations  
An estimate of the chip junction temperature, TJ, in °C can be obtained from  
this equation:  
Equation 1: TJ = TA + (PD × RθJA  
)
Where:  
TA  
=
=
=
ambient temperature °C  
RθJA  
PD  
package junction-to-ambient thermal resistance °C/W  
power dissipation in package  
Historically, thermal resistance has been expressed as the sum of a  
junction-to-case thermal resistance and a case-to-ambient thermal resistance,  
as in this equation:  
Equation 2: RθJA = RθJC + RθCA  
Where:  
RθJA  
RθJC  
RθCA  
=
=
=
package junction-to-ambient thermal resistance °C/W  
package junction-to-case thermal resistance °C/W  
package case-to-ambient thermal resistance °C/W  
RθJC is device-related and cannot be influenced by the user. The user controls  
the thermal environment to change the case-to-ambient thermal resistance,  
RθCA. For example, the user can change the air flow around the device, add a  
heat sink, change the mounting arrangement on the printed circuit board  
(PCB) or otherwise change the thermal dissipation capability of the area  
surrounding the device on a PCB. This model is most useful for ceramic  
packages with heat sinks; some 90 percent of the heat flow is dissipated  
through the case to the heat sink and out to the ambient environment. For  
ceramic packages, in situations where the heat flow is split between a path to  
the case and an alternate path through the PCB, analysis of the device thermal  
performance may need the additional modeling capability of a system-level  
thermal simulation tool.  
The thermal performance of plastic packages is more dependent on the  
temperature of the PCB to which the package is mounted. Again, if the  
estimates obtained from RθJA do not satisfactorily answer whether the thermal  
performance is adequate, a system-level model may be appropriate.  
4-1  
Electrical Design Considerations  
A complicating factor is the existence of three common ways to determine the junction-to-case thermal  
resistance in plastic packages.  
To minimize temperature variation across the surface, the thermal resistance is measured from the  
junction to the outside surface of the package (case) closest to the chip mounting area when that surface  
has a proper heat sink.  
To define a value approximately equal to a junction-to-board thermal resistance, the thermal resistance  
is measured from the junction to the point at which the leads attach to the case.  
If the temperature of the package case (TT) is determined by a thermocouple, thermal resistance is  
computed from the value obtained by the equation (TJ – TT)/PD.  
As noted earlier, the junction-to-case thermal resistances quoted in this data sheet are determined using  
the first definition. From a practical standpoint, that value is also suitable to determine the junction  
temperature from a case thermocouple reading in forced convection environments. In natural convection,  
the use of the junction-to-case thermal resistance to estimate junction temperature from a thermocouple  
reading on the case of the package will yield an estimate of a junction temperature slightly higher than  
actual temperature. Hence, the new thermal metric, thermal characterization parameter or ΨJT, has been  
defined to be (TJ – TT)/PD. This value gives a better estimate of the junction temperature in natural  
convection when the surface temperature of the package is used. Remember that surface temperature  
readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the  
surface and to errors caused by heat loss to the sensor. The recommended technique is to attach a  
40-gauge thermocouple wire and bead to the top center of the package with thermally conductive epoxy.  
4.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to  
guard against damage due to high static  
voltage or electrical fields. However, normal  
precautions are advised to avoid application  
of any voltages higher than maximum rated  
voltages to this high-impedance circuit.  
Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage  
level (for example, either GND or V ).  
CC  
4-2  
Electrical Design Considerations  
Use the following list of recommendations to ensure correct DSP operation.  
Provide a low-impedance path from the board power supply to each VCC pin on the DSP and from the  
board ground to each GND pin.  
Use at least six 0.01–0.1 µF bypass capacitors positioned as close as possible to the four sides of the  
package to connect the VCC power source to GND.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VCC and GND  
pins are less than 0.5 inch per capacitor lead.  
Use at least a four-layer PCB with two inner layers for VCC and GND.  
Because the DSP output signals have fast rise and fall times, PCB trace lengths should be minimal.  
This recommendation particularly applies to the address and data buses as well as the IRQA, IRQB,  
IRQC, IRQD, TA, and BG pins. Maximum PCB trace lengths on the order of 6 inches are recommended.  
Consider all device loads as well as parasitic capacitance due to PCB traces when you calculate  
capacitance. This is especially critical in systems with higher capacitive loads that could create higher  
transient currents in the VCC and GND circuits.  
Take special care to minimize noise levels on the VCCP, GNDP, and GNDP1 pins.  
Use the following guidelines during power-up to ensure correct operation:  
RESET must be asserted when power is applied to the device and held low (asserted) until the  
proper conditions are met.  
— The input clock must be applied and stabilized before RESET is deasserted (pulled high).  
— Ensure that the PLL Initial pin (PINIT) is pulled up or down, as appropriate, to determine whether  
PLL is enabled or disabled before deasserting RESET.  
— Ensure that the mode pins (MOD[A–D]) are pulled up or down, as appropriate, to select the desired  
boot mode before deasserting RESET.  
— All inputs must be terminated (that is, not allowed to float) by CMOS levels except for the five  
pins with internal pull-up resistors (TMS, TDI, TCK, TRST and DE).  
— During power-up, ensure that the voltage difference between the 5 V-tolerant pins and the chip  
VCC never exceeds 3.5 V.  
— The duration of the required RESET assertion depends on the clock source:  
For an external clock generator, the minimum RESET duration is measured while RESET is  
asserted, VCC is valid, and the EXTAL input is active and valid.  
For an internal oscillator, the minimum RESET duration is measured while RESET is asserted  
and VCC is valid. Specified timing reflects the crystal oscillator stabilization time after  
power-up. Both the crystal specifications and those for other components connected to the  
oscillator affect this number, and it reflects worst case conditions.  
When the VCC is valid, but the other “required RESET duration” conditions (as specified  
previously) are not yet met, the device circuitry is in an uninitialized state that can result in  
significant power consumption and heat-up. Designs should minimize this state to the shortest  
possible duration.  
Note: Failure to comply with any of these requirements may cause high current consumption during or  
after power-up or prevent the correct device initialization.  
If multiple DSP devices are on the same board, check for cross-talk or excessive spikes on the supplies  
due to synchronous operation of the devices.  
The Port A data bus (D[0–23]) uses internal keepers to maintain the last output value even when the  
internal signal is tri-stated. Typically, no pull-up or pull-down resistors should be used with these  
signal lines.  
4-3  
Power Consumption Considerations  
4.3 Power Consumption Considerations  
Power dissipation is a key issue in portable DSP applications. Some of the factors affecting current  
consumption are described in this section. Most of the current consumed by CMOS devices is alternating  
current (ac), which is charging and discharging the capacitances of the pins and internal nodes.  
Current consumption is described by this formula:  
Equation 3: I = C × V × f  
Where:  
C
V
f
=
=
=
node/pin capacitance  
voltage swing  
frequency of node/pin toggle  
Example 4-1. Current Consumption  
For a Port A address pin loaded with 50 pF capacitance, operating at 3.3 V, with a 66 MHz clock, toggling at its  
maximum possible rate (33 MHz), the current consumption is expressed in Equation 4.  
Equation 4: I = 50 × 1012 × 3.3 × 33 × 106 = 5.48 mA  
The maximum internal current (ICCImax) value reflects the typical possible switching of the internal  
buses on best-case operation conditions—not necessarily a real application case. The typical internal  
current (ICCItyp) value reflects the average switching of the internal buses on typical operating conditions.  
Perform the following steps for applications that require very low current consumption:  
1.  
Set the EBD bit in the Operating Mode Register (OMR) to disable the external memory bus when  
you are not accessing external memory. See the DSP56309 Users Manual for details.  
Minimize external memory accesses, and use internal memory accesses.  
Minimize the number of pins that are switching.  
Minimize the capacitive load on the pins.  
Connect the unused inputs to pull-up or pull-down resistors.  
Disable unused peripherals.  
2.  
3.  
4.  
5.  
6.  
7.  
Disable unused pin activity (for example, CLKOUT, XTAL).  
One way to evaluate power consumption is to use a current-per-MIPS measurement methodology to  
minimize specific board effects (that is, to compensate for measured board current not caused by the  
DSP). A benchmark power consumption test algorithm is listed in Appendix A. Use the test algorithm,  
specific test current measurements, and the following equation to derive the current-per-MIPS value.  
Equation 5: I MIPS = I MHz = (ItypF2 ItypF1) ⁄ (F2 – F1)  
Where:  
ItypF2  
ItypF1  
=
=
current at F2  
current at F1  
F2  
F1  
=
=
high frequency (any specified operating frequency)  
low frequency (any specified operating frequency lower than F2)  
Note: F1 should be significantly less than F2. For example, F2 could be 66 MHz and F1 could be 33  
MHz. The degree of difference between F1 and F2 determines the amount of precision with  
which the current rating can be determined for an application.  
4-4  
PLL Performance Issues  
4.4 PLL Performance Issues  
The following explanations should be considered as general observations on expected PLL behavior.  
There is no test that replicates these exact numbers. These observations were measured on a limited  
number of parts and were not verified over the entire temperature and voltage ranges.  
4.4.1 Phase Skew Performance  
The phase skew of the PLL is defined as the time difference between the falling edges of EXTAL and  
CLKOUT for a given capacitive load on CLKOUT, over the entire process, temperature and voltage ranges.  
As defined in Figure 2-2, External Clock Timing, on page 2-5 for input frequencies greater than 15 MHz  
and the MF 4, this skew is greater than or equal to 0.0 ns and less than 1.8 ns; otherwise, this skew is  
not guaranteed. However, for MF < 10 and input frequencies greater than 10 MHz, this skew is between  
1.4 ns and +3.2 ns.  
4.4.2 Phase Jitter Performance  
The phase jitter of the PLL is defined as the variations in the skew between the falling edges of EXTAL  
and CLKOUT for a given device in specific temperature, voltage, input frequency, MF, and capacitive  
load on CLKOUT. These variations are a result of the PLL locking mechanism. For input frequencies  
greater than 15 MHz and MF 4, this jitter is less than ±0.6 ns; otherwise, this jitter is not guaranteed.  
However, for MF < 10 and input frequencies greater than 10 MHz, this jitter is less than ±2 ns.  
4.4.3 Frequency Jitter Performance  
The frequency jitter of the PLL is defined as the variation of the frequency of CLKOUT. For small MF  
(MF < 10) this jitter is smaller than 0.5 percent. For mid-range MF (10 < MF < 500) this jitter is between  
0.5 percent and approximately 2 percent. For large MF (MF > 500), the frequency jitter is 2–3 percent.  
4.5 Input (EXTAL) Jitter Requirements  
The allowed jitter on the frequency of EXTAL is 0.5 percent. If the rate of change of the frequency of  
EXTAL is slow (that is, it does not jump between the minimum and maximum values in one cycle) or the  
frequency of the jitter is fast (that is, it does not stay at an extreme value for a long time), then the allowed  
jitter can be 2 percent. The phase and frequency jitter performance results are valid only if the input jitter  
is less than the prescribed values.  
4-5  
Input (EXTAL) Jitter Requirements  
4-6  
Appendix A  
Power  
Consumption  
Benchmark  
The following benchmark program evaluates DSP56309 power use in a test situation. It enables the PLL,  
disables the external clock, and uses repeated multiply-accumulate (MAC) instructions with a set of  
synthetic DSP application data to emulate intensive sustained DSP operation.  
;**************************************************************************  
;**************************************************************************  
;*  
*
*
*
;* CHECKS  
;*  
Typical Power Consumption  
;**************************************************************************  
page  
nolist  
200,55,0,0,0  
I_VEC EQU $000000; Interrupt vectors for program debug only  
START EQU $8000; MAIN (external) program starting address  
INT_PROG EQU $100 ; INTERNAL program memory starting address  
INT_XDAT EQU $0; INTERNAL X-data memory starting address  
INT_YDAT EQU $0; INTERNAL Y-data memory starting address  
INCLUDE "ioequ.asm"  
INCLUDE "intequ.asm"  
list  
org  
P:START  
;
movep #$0243FF,x:M_BCR ;; BCR: Area 3 = 2 w.s (SRAM)  
; Default: 2w.s (SRAM)  
;
movep  
#$0d0000,x:M_PCTL  
; XTAL disable  
; PLL enable  
; CLKOUT disable  
;
; Load the program  
;
move  
move  
do  
move  
move  
nop  
#INT_PROG,r0  
#PROG_START,r1  
#(PROG_END-PROG_START),PLOAD_LOOP  
p:(r1)+,x0  
x0,p:(r0)+  
PLOAD_LOOP  
;
; Load the X-data  
;
move  
move  
do  
move  
move  
#INT_XDAT,r0  
#XDAT_START,r1  
#(XDAT_END-XDAT_START),XLOAD_LOOP  
p:(r1)+,x0  
x0,x:(r0)+  
XLOAD_LOOP  
;
; Load the Y-data  
;
move  
move  
do  
move  
move  
#INT_YDAT,r0  
#YDAT_START,r1  
#(YDAT_END-YDAT_START),YLOAD_LOOP  
p:(r1)+,x0  
x0,y:(r0)+  
YLOAD_LOOP  
;
jmp  
PROG_START  
INT_PROG  
move  
#$0,r0  
#$0,r4  
#$3f,m0  
#$3f,m4  
move  
move  
move  
;
clr  
a
A-1  
Power Consumption Benchmark  
clr  
b
move  
move  
move  
move  
bset  
#$0,x0  
#$0,x1  
#$0,y0  
#$0,y1  
#4,omr  
; ebd  
;
sbr  
dor  
mac  
mac  
add  
mac  
mac  
move  
#60,_end  
x0,y0,ax:(r0)+,x1  
x1,y1,ax:(r0)+,x0  
a,b  
x0,y0,ax:(r0)+,x1  
x1,y1,a  
y:(r4)+,y1  
y:(r4)+,y0  
y:(r4)+,y0  
b1,x:$ff  
_end  
bra  
nop  
nop  
nop  
nop  
sbr  
PROG_END  
nop  
nop  
XDAT_START  
;
org  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
x:0  
$262EB9  
$86F2FE  
$E56A5F  
$616CAC  
$8FFD75  
$9210A  
$A06D7B  
$CEA798  
$8DFBF1  
$A063D6  
$6C6657  
$C2A544  
$A3662D  
$A4E762  
$84F0F3  
$E6F1B0  
$B3829  
$8BF7AE  
$63A94F  
$EF78DC  
$242DE5  
$A3E0BA  
$EBAB6B  
$8726C8  
$CA361  
$2F6E86  
$A57347  
$4BE774  
$8F349D  
$A1ED12  
$4BFCE3  
$EA26E0  
$CD7D99  
$4BA85E  
$27A43F  
$A8B10C  
$D3A55  
$25EC6A  
$2A255B  
$A5F1F8  
$2426D1  
$AE6536  
$CBBC37  
$6235A4  
$37F0D  
$63BEC2  
$A5E4D3  
$8CE810  
$3FF09  
$60E50E  
$CFFB2F  
$40753C  
$8262C5  
$CA641A  
A-2  
Power Consumption Benchmark  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
$EB3B4B  
$2DA928  
$AB6641  
$28A7E6  
$4E2127  
$482FD4  
$7257D  
$E53C72  
$1A8C3  
$E27540  
XDAT_END  
YDAT_START  
;
org  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
dc  
y:0  
$5B6DA  
$C3F70B  
$6A39E8  
$81E801  
$C666A6  
$46F8E7  
$AAEC94  
$24233D  
$802732  
$2E3C83  
$A43E00  
$C2B639  
$85A47E  
$ABFDDF  
$F3A2C  
$2D7CF5  
$E16A8A  
$ECB8FB  
$4BED18  
$43F371  
$83A556  
$E1E9D7  
$ACA2C4  
$8135AD  
$2CE0E2  
$8F2C73  
$432730  
$A87FA9  
$4A292E  
$A63CCF  
$6BA65C  
$E06D65  
$1AA3A  
$A1B6EB  
$48AC48  
$EF7AE1  
$6E3006  
$62F6C7  
$6064F4  
$87E41D  
$CB2692  
$2C3863  
$C6BC60  
$43A519  
$6139DE  
$ADF7BF  
$4B3E8C  
$6079D5  
$E0F5EA  
$8230DB  
$A3B778  
$2BFE51  
$E0A6B6  
$68FFB7  
$28F324  
$8F2E8D  
$667842  
$83E053  
$A1FD90  
$6B2689  
$85B68E  
$622EAF  
$6162BC  
$E4A245  
YDAT_END  
;**************************************************************************  
A-3  
Power Consumption Benchmark  
;
;
;
;
;
EQUATES for DSP56309 I/O registers and ports  
Last update: June 11 1995  
;**************************************************************************  
page  
opt  
132,55,0,0,0  
mex  
ioequ  
ident  
1,0  
;------------------------------------------------------------------------  
;
;
;
EQUATES for I/O Port Programming  
;------------------------------------------------------------------------  
;
Register Addresses  
M_HDR EQU $FFFFC9  
M_HDDR EQU $FFFFC8  
M_PCRC EQU $FFFFBF  
M_PRRC EQU $FFFFBE  
M_PDRC EQU $FFFFBD  
M_PCRD EQU $FFFFAF  
M_PRRD EQU $FFFFAE  
M_PDRD EQU $FFFFAD  
M_PCRE EQU $FFFF9F  
M_PRRE EQU $FFFF9E  
M_PDRE EQU $FFFF9D  
M_OGDB EQU $FFFFFC  
; Host port GPIO data Register  
; Host port GPIO direction Register  
; Port C Control Register  
; Port C Direction Register  
; Port C GPIO Data Register  
; Port D Control register  
; Port D Direction Data Register  
; Port D GPIO Data Register  
; Port E Control register  
; Port E Direction Register  
; Port E Data Register  
; OnCE GDB Register  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Host Interface  
;------------------------------------------------------------------------  
;
Register Addresses  
M_HCR EQU $FFFFC2  
M_HSR EQU $FFFFC3  
M_HPCR EQU $FFFFC4  
M_HBAR EQU $FFFFC5  
M_HRX EQU $FFFFC6  
M_HTX EQU $FFFFC7  
; Host Control Register  
; Host Status Register  
; Host Polarity Control Register  
; Host Base Address Register  
; Host Receive Register  
; Host Transmit Register  
;
HCR bits definition  
M_HRIE EQU $0  
M_HTIE EQU $1  
M_HCIE EQU $2  
M_HF2 EQU $3  
M_HF3 EQU $4  
; Host Receive interrupts Enable  
; Host Transmit Interrupt Enable  
; Host Command Interrupt Enable  
; Host Flag 2  
; Host Flag 3  
;
HSR bits definition  
M_HRDF EQU $0  
M_HTDE EQU $1  
M_HCP EQU $2  
M_HF0 EQU $3  
M_HF1 EQU $4  
; Host Receive Data Full  
; Host Receive Data Empty  
; Host Command Pending  
; Host Flag 0  
; Host Flag 1  
;
HPCR bits definition  
M_HGEN EQU $0  
M_HA8EN EQU $1  
M_HA9EN EQU $2  
M_HCSEN EQU $3  
M_HREN EQU $4  
M_HAEN EQU $5  
M_HEN EQU $6  
M_HOD EQU $8  
M_HDSP EQU $9  
M_HASP EQU $A  
M_HMUX EQU $B  
M_HD_HS EQU $C  
M_HCSP EQU $D  
M_HRP EQU $E  
M_HAP EQU $F  
; Host Port GPIO Enable  
; Host Address 8 Enable  
; Host Address 9 Enable  
; Host Chip Select Enable  
; Host Request Enable  
; Host Acknowledge Enable  
; Host Enable  
; Host Request Open Drain mode  
; Host Data Strobe Polarity  
; Host Address Strobe Polarity  
; Host Multiplexed bus select  
; Host Double/Single Strobe select  
; Host Chip Select Polarity  
; Host Request Polarity  
; Host Acknowledge Polarity  
A-4  
Power Consumption Benchmark  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Serial Communications Interface (SCI)  
;------------------------------------------------------------------------  
;
Register Addresses  
M_STXH EQU $FFFF97  
M_STXM EQU $FFFF96  
M_STXL EQU $FFFF95  
M_SRXH EQU $FFFF9A  
M_SRXM EQU $FFFF99  
M_SRXL EQU $FFFF98  
M_STXA EQU $FFFF94  
M_SCR EQU $FFFF9C  
M_SSR EQU $FFFF93  
M_SCCR EQU $FFFF9B  
; SCI Transmit Data Register (high)  
; SCI Transmit Data Register (middle)  
; SCI Transmit Data Register (low)  
; SCI Receive Data Register (high)  
; SCI Receive Data Register (middle)  
; SCI Receive Data Register (low)  
; SCI Transmit Address Register  
; SCI Control Register  
; SCI Status Register  
; SCI Clock Control Register  
;
SCI Control Register Bit Flags  
M_WDS EQU $7  
M_WDS0 EQU 0  
M_WDS1 EQU 1  
M_WDS2 EQU 2  
M_SSFTD EQU 3  
M_SBK EQU 4  
; Word Select Mask (WDS0-WDS3)  
; Word Select 0  
; Word Select 1  
; Word Select 2  
; SCI Shift Direction  
; Send Break  
M_WAKE EQU 5  
M_RWU EQU 6  
; Wakeup Mode Select  
; Receiver Wakeup Enable  
; Wired-OR Mode Select  
; SCI Receiver Enable  
; SCI Transmitter Enable  
; Idle Line Interrupt Enable  
; SCI Receive Interrupt Enable  
; SCI Transmit Interrupt Enable  
; Timer Interrupt Enable  
; Timer Interrupt Rate  
; SCI Clock Polarity  
M_WOMS EQU 7  
M_SCRE EQU 8  
M_SCTE EQU 9  
M_ILIE EQU 10  
M_SCRIE EQU 11  
M_SCTIE EQU 12  
M_TMIE EQU 13  
M_TIR EQU 14  
M_SCKP EQU 15  
M_REIE EQU 16  
; SCI Error Interrupt Enable (REIE)  
;
SCI Status Register Bit Flags  
M_TRNE EQU 0  
M_TDRE EQU 1  
M_RDRF EQU 2  
M_IDLE EQU 3  
M_OR EQU 4  
; Transmitter Empty  
; Transmit Data Register Empty  
; Receive Data Register Full  
; Idle Line Flag  
; Overrun Error Flag  
M_PE EQU 5  
; Parity Error  
M_FE EQU 6  
M_R8 EQU 7  
; Framing Error Flag  
; Received Bit 8 (R8) Address  
;
SCI Clock Control Register  
M_CD EQU $FFF  
M_COD EQU 12  
M_SCP EQU 13  
M_RCM EQU 14  
M_TCM EQU 15  
; Clock Divider Mask (CD0-CD11)  
; Clock Out Divider  
; Clock Prescaler  
; Receive Clock Mode Source Bit  
; Transmit Clock Source Bit  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Synchronous Serial Interface (SSI)  
;------------------------------------------------------------------------  
;
;
Register Addresses Of SSI0  
M_TX00 EQU $FFFFBC  
M_TX01 EQU $FFFFBB  
M_TX02 EQU $FFFFBA  
M_TSR0 EQU $FFFFB9  
M_RX0 EQU $FFFFB8  
M_SSISR0 EQU $FFFFB7  
M_CRB0 EQU $FFFFB6  
M_CRA0 EQU $FFFFB5  
M_TSMA0 EQU $FFFFB4  
M_TSMB0 EQU $FFFFB3  
M_RSMA0 EQU $FFFFB2  
M_RSMB0 EQU $FFFFB1  
; SSI0 Transmit Data Register 0  
; SSIO Transmit Data Register 1  
; SSIO Transmit Data Register 2  
; SSI0 Time Slot Register  
; SSI0 Receive Data Register  
; SSI0 Status Register  
; SSI0 Control Register B  
; SSI0 Control Register A  
; SSI0 Transmit Slot Mask Register A  
; SSI0 Transmit Slot Mask Register B  
; SSI0 Receive Slot Mask Register A  
; SSI0 Receive Slot Mask Register B  
A-5  
Power Consumption Benchmark  
;
Register Addresses Of SSI1  
M_TX10 EQU $FFFFAC  
M_TX11 EQU $FFFFAB  
M_TX12 EQU $FFFFAA  
M_TSR1 EQU $FFFFA9  
M_RX1 EQU $FFFFA8  
M_SSISR1 EQU $FFFFA7  
M_CRB1 EQU $FFFFA6  
M_CRA1 EQU $FFFFA5  
M_TSMA1 EQU $FFFFA4  
M_TSMB1 EQU $FFFFA3  
M_RSMA1 EQU $FFFFA2  
M_RSMB1 EQU $FFFFA1  
; SSI1 Transmit Data Register 0  
; SSI1 Transmit Data Register 1  
; SSI1 Transmit Data Register 2  
; SSI1 Time Slot Register  
; SSI1 Receive Data Register  
; SSI1 Status Register  
; SSI1 Control Register B  
; SSI1 Control Register A  
; SSI1 Transmit Slot Mask Register A  
; SSI1 Transmit Slot Mask Register B  
; SSI1 Receive Slot Mask Register A  
; SSI1 Receive Slot Mask Register B  
;
SSI Control Register A Bit Flags  
M_PM EQU $FF  
; Prescale Modulus Select Mask (PM0-PM7)  
; Prescaler Range  
M_PSR EQU 11  
M_DC EQU $1F000  
M_ALC EQU 18  
M_WL EQU $380000  
M_SSC1 EQU 22  
; Frame Rate Divider Control Mask (DC0-DC7)  
; Alignment Control (ALC)  
; Word Length Control Mask (WL0-WL7)  
; Select SC1 as TR #0 drive enable (SSC1)  
;
SSI Control Register B Bit Flags  
M_OF EQU $3  
; Serial Output Flag Mask  
; Serial Output Flag 0  
; Serial Output Flag 1  
M_OF0 EQU 0  
M_OF1 EQU 1  
M_SCD EQU $1C  
M_SCD0 EQU 2  
M_SCD1 EQU 3  
M_SCD2 EQU 4  
M_SCKD EQU 5  
M_SHFD EQU 6  
M_FSL EQU $180  
M_FSL0 EQU 7  
M_FSL1 EQU 8  
M_FSR EQU 9  
M_FSP EQU 10  
M_CKP EQU 11  
M_SYN EQU 12  
M_MOD EQU 13  
M_SSTE EQU $1C000  
M_SSTE2 EQU 14  
M_SSTE1 EQU 15  
M_SSTE0 EQU 16  
M_SSRE EQU 17  
M_SSTIE EQU 18  
M_SSRIE EQU 19  
M_STLIE EQU 20  
M_SRLIE EQU 21  
M_STEIE EQU 22  
M_SREIE EQU 23  
; Serial Control Direction Mask  
; Serial Control 0 Direction  
; Serial Control 1 Direction  
; Serial Control 2 Direction  
; Clock Source Direction  
; Shift Direction  
; Frame Sync Length Mask (FSL0-FSL1)  
; Frame Sync Length 0  
; Frame Sync Length 1  
; Frame Sync Relative Timing  
; Frame Sync Polarity  
; Clock Polarity  
; Sync/Async Control  
; SSI Mode Select  
; SSI Transmit enable Mask  
; SSI Transmit #2 Enable  
; SSI Transmit #1 Enable  
; SSI Transmit #0 Enable  
; SSI Receive Enable  
; SSI Transmit Interrupt Enable  
; SSI Receive Interrupt Enable  
; SSI Transmit Last Slot Interrupt Enable  
; SSI Receive Last Slot Interrupt Enable  
; SSI Transmit Error Interrupt Enable  
; SI Receive Error Interrupt Enable  
;
SSI Status Register Bit Flags  
M_IF EQU $3  
M_IF0 EQU 0  
M_IF1 EQU 1  
M_TFS EQU 2  
M_RFS EQU 3  
M_TUE EQU 4  
M_ROE EQU 5  
M_TDE EQU 6  
M_RDF EQU 7  
; Serial Input Flag Mask  
; Serial Input Flag 0  
; Serial Input Flag 1  
; Transmit Frame Sync Flag  
; Receive Frame Sync Flag  
; Transmitter Underrun Error FLag  
; Receiver Overrun Error Flag  
; Transmit Data Register Empty  
; Receive Data Register Full  
;
SSI Transmit Slot Mask Register A  
M_SSTSA EQU $FFFF  
; SSI Transmit Slot Bits Mask A (TS0-TS15)  
; SSI Transmit Slot Bits Mask B (TS16-TS31)  
; SSI Receive Slot Bits Mask A (RS0-RS15)  
; SSI Receive Slot Bits Mask B (RS16-RS31)  
;
SSI Transmit Slot Mask Register B  
M_SSTSB EQU $FFFF  
;
SSI Receive Slot Mask Register A  
M_SSRSA EQU $FFFF  
;
SSI Receive Slot Mask Register B  
M_SSRSB EQU $FFFF  
A-6  
Power Consumption Benchmark  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Exception Processing  
;------------------------------------------------------------------------  
;
Register Addresses  
M_IPRC EQU $FFFFFF  
M_IPRP EQU $FFFFFE  
; Interrupt Priority Register Core  
; Interrupt Priority Register Peripheral  
;
Interrupt Priority Register Core (IPRC)  
M_IAL EQU $7  
; IRQA Mode Mask  
M_IAL0 EQU 0  
; IRQA Mode Interrupt Priority Level (low)  
; IRQA Mode Interrupt Priority Level (high)  
; IRQA Mode Trigger Mode  
M_IAL1 EQU 1  
M_IAL2 EQU 2  
M_IBL EQU $38  
M_IBL0 EQU 3  
; IRQB Mode Mask  
; IRQB Mode Interrupt Priority Level (low)  
; IRQB Mode Interrupt Priority Level (high)  
; IRQB Mode Trigger Mode  
M_IBL1 EQU 4  
M_IBL2 EQU 5  
M_ICL EQU $1C0  
M_ICL0 EQU 6  
; IRQC Mode Mask  
; IRQC Mode Interrupt Priority Level (low)  
; IRQC Mode Interrupt Priority Level (high)  
; IRQC Mode Trigger Mode  
M_ICL1 EQU 7  
M_ICL2 EQU 8  
M_IDL EQU $E00  
M_IDL0 EQU 9  
; IRQD Mode Mask  
; IRQD Mode Interrupt Priority Level (low)  
; IRQD Mode Interrupt Priority Level (high)  
; IRQD Mode Trigger Mode  
M_IDL1 EQU 10  
M_IDL2 EQU 11  
M_D0L EQU $3000  
M_D0L0 EQU 12  
M_D0L1 EQU 13  
M_D1L EQU $C000  
M_D1L0 EQU 14  
M_D1L1 EQU 15  
M_D2L EQU $30000  
M_D2L0 EQU 16  
M_D2L1 EQU 17  
M_D3L EQU $C0000  
M_D3L0 EQU 18  
M_D3L1 EQU 19  
M_D4L EQU $300000  
M_D4L0 EQU 20  
M_D4L1 EQU 21  
M_D5L EQU $C00000  
M_D5L0 EQU 22  
M_D5L1 EQU 23  
; DMA0 Interrupt priority Level Mask  
; DMA0 Interrupt Priority Level (low)  
; DMA0 Interrupt Priority Level (high)  
; DMA1 Interrupt Priority Level Mask  
; DMA1 Interrupt Priority Level (low)  
; DMA1 Interrupt Priority Level (high)  
; DMA2 Interrupt priority Level Mask  
; DMA2 Interrupt Priority Level (low)  
; DMA2 Interrupt Priority Level (high)  
; DMA3 Interrupt Priority Level Mask  
; DMA3 Interrupt Priority Level (low)  
; DMA3 Interrupt Priority Level (high)  
; DMA4 Interrupt priority Level Mask  
; DMA4 Interrupt Priority Level (low)  
; DMA4 Interrupt Priority Level (high)  
; DMA5 Interrupt priority Level Mask  
; DMA5 Interrupt Priority Level (low)  
; DMA5 Interrupt Priority Level (high)  
;
Interrupt Priority Register Peripheral (IPRP)  
M_HPL EQU $3  
M_HPL0 EQU 0  
M_HPL1 EQU 1  
M_S0L EQU $C  
M_S0L0 EQU 2  
M_S0L1 EQU 3  
M_S1L EQU $30  
M_S1L0 EQU 4  
M_S1L1 EQU 5  
M_SCL EQU $C0  
M_SCL0 EQU 6  
M_SCL1 EQU 7  
M_T0L EQU $300  
M_T0L0 EQU 8  
M_T0L1 EQU 9  
; Host Interrupt Priority Level Mask  
; Host Interrupt Priority Level (low)  
; Host Interrupt Priority Level (high)  
; SSI0 Interrupt Priority Level Mask  
; SSI0 Interrupt Priority Level (low)  
; SSI0 Interrupt Priority Level (high)  
; SSI1 Interrupt Priority Level Mask  
; SSI1 Interrupt Priority Level (low)  
; SSI1 Interrupt Priority Level (high)  
; SCI Interrupt Priority Level Mask  
; SCI Interrupt Priority Level (low)  
; SCI Interrupt Priority Level (high)  
; TIMER Interrupt Priority Level Mask  
; TIMER Interrupt Priority Level (low)  
; TIMER Interrupt Priority Level (high)  
;------------------------------------------------------------------------  
;
;
;
EQUATES for TIMER  
;------------------------------------------------------------------------  
;
Register Addresses Of TIMER0  
M_TCSR0 EQU $FFFF8F ; Timer 0 Control/Status Register  
A-7  
Power Consumption Benchmark  
M_TLR0 EQU $FFFF8E  
M_TCPR0 EQU $FFFF8D  
M_TCR0 EQU $FFFF8C  
; TIMER0 Load Reg  
; TIMER0 Compare Register  
; TIMER0 Count Register  
;
Register Addresses Of TIMER1  
M_TCSR1 EQU $FFFF8B  
M_TLR1 EQU $FFFF8A  
M_TCPR1 EQU $FFFF89  
M_TCR1 EQU $FFFF88  
; TIMER1 Control/Status Register  
; TIMER1 Load Reg  
; TIMER1 Compare Register  
; TIMER1 Count Register  
;
Register Addresses Of TIMER2  
M_TCSR2 EQU $FFFF87  
M_TLR2 EQU $FFFF86  
M_TCPR2 EQU $FFFF85  
M_TCR2 EQU $FFFF84  
M_TPLR EQU $FFFF83  
M_TPCR EQU $FFFF82  
; TIMER2 Control/Status Register  
; TIMER2 Load Reg  
; TIMER2 Compare Register  
; TIMER2 Count Register  
; TIMER Prescaler Load Register  
; TIMER Prescalar Count Register  
;
Timer Control/Status Register Bit Flags  
M_TE EQU 0  
; Timer Enable  
M_TOIE EQU 1  
M_TCIE EQU 2  
M_TC EQU $F0  
M_INV EQU 8  
M_TRM EQU 9  
M_DIR EQU 11  
M_DI EQU 12  
M_DO EQU 13  
M_PCE EQU 15  
M_TOF EQU 20  
M_TCF EQU 21  
; Timer Overflow Interrupt Enable  
; Timer Compare Interrupt Enable  
; Timer Control Mask (TC0-TC3)  
; Inverter Bit  
; Timer Restart Mode  
; Direction Bit  
; Data Input  
; Data Output  
; Prescaled Clock Enable  
; Timer Overflow Flag  
; Timer Compare Flag  
;
Timer Prescaler Register Bit Flags  
M_PS EQU $600000  
M_PS0 EQU 21  
M_PS1 EQU 22  
; Prescaler Source Mask  
;
Timer Control Bits  
M_TC0 EQU 4  
M_TC1 EQU 5  
M_TC2 EQU 6  
M_TC3 EQU 7  
; Timer Control 0  
; Timer Control 1  
; Timer Control 2  
; Timer Control 3  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Direct Memory Access (DMA)  
;------------------------------------------------------------------------  
;
Register Addresses Of DMA  
M_DSTR EQU FFFFF4 ; DMA Status Register  
M_DOR0 EQU $FFFFF3 ; DMA Offset Register 0  
M_DOR1 EQU $FFFFF2 ; DMA Offset Register 1  
M_DOR2 EQU $FFFFF1 ; DMA Offset Register 2  
M_DOR3 EQU $FFFFF0 ; DMA Offset Register 3  
;
Register Addresses Of DMA0  
M_DSR0 EQU $FFFFEF ; DMA0 Source Address Register  
M_DDR0 EQU $FFFFEE ; DMA0 Destination Address Register  
M_DCO0 EQU $FFFFED ; DMA0 Counter  
M_DCR0 EQU $FFFFEC ; DMA0 Control Register  
;
Register Addresses Of DMA1  
M_DSR1 EQU $FFFFEB ; DMA1 Source Address Register  
M_DDR1 EQU $FFFFEA ; DMA1 Destination Address Register  
M_DCO1 EQU $FFFFE9 ; DMA1 Counter  
M_DCR1 EQU $FFFFE8 ; DMA1 Control Register  
;
Register Addresses Of DMA2  
M_DSR2 EQU $FFFFE7 ; DMA2 Source Address Register  
A-8  
Power Consumption Benchmark  
M_DDR2 EQU $FFFFE6 ; DMA2 Destination Address Register  
M_DCO2 EQU $FFFFE5 ; DMA2 Counter  
M_DCR2 EQU $FFFFE4 ; DMA2 Control Register  
;
Register Addresses Of DMA4  
M_DSR3 EQU $FFFFE3 ; DMA3 Source Address Register  
M_DDR3 EQU $FFFFE2 ; DMA3 Destination Address Register  
M_DCO3 EQU $FFFFE1 ; DMA3 Counter  
M_DCR3 EQU $FFFFE0 ; DMA3 Control Register  
;
Register Addresses Of DMA4  
M_DSR4 EQU $FFFFDF ; DMA4 Source Address Register  
M_DDR4 EQU $FFFFDE ; DMA4 Destination Address Register  
M_DCO4 EQU $FFFFDD ; DMA4 Counter  
M_DCR4 EQU $FFFFDC ; DMA4 Control Register  
;
Register Addresses Of DMA5  
M_DSR5 EQU $FFFFDB ; DMA5 Source Address Register  
M_DDR5 EQU $FFFFDA ; DMA5 Destination Address Register  
M_DCO5 EQU $FFFFD9 ; DMA5 Counter  
M_DCR5 EQU $FFFFD8 ; DMA5 Control Register  
;
DMA Control Register  
M_DSS EQU $3  
M_DSS0 EQU 0  
M_DSS1 EQU 1  
M_DDS EQU $C  
M_DDS0 EQU 2  
M_DDS1 EQU 3  
; DMA Source Space Mask (DSS0-Dss1)  
; DMA Source Memory space 0  
; DMA Source Memory space 1  
; DMA Destination Space Mask (DDS-DDS1)  
; DMA Destination Memory Space 0  
; DMA Destination Memory Space 1  
M_DAM EQU $3f0 ; DMA Address Mode Mask (DAM5-DAM0)  
M_DAM0 EQU 4 ; DMA Address Mode 0  
M_DAM1 EQU 5 ; DMA Address Mode 1  
M_DAM2 EQU 6 ; DMA Address Mode 2  
M_DAM3 EQU 7 ; DMA Address Mode 3  
M_DAM4 EQU 8 ; DMA Address Mode 4  
M_DAM5 EQU 9 ; DMA Address Mode 5  
M_D3D EQU 10  
; DMA Three Dimensional Mode  
M_DRS EQU $F800; DMA Request Source Mask (DRS0-DRS4)  
M_DCON EQU 16 ; DMA Continuous Mode  
M_DPR EQU $60000; DMA Channel Priority  
M_DPR0 EQU 17 ; DMA Channel Priority Level (low)  
M_DPR1 EQU 18 ; DMA Channel Priority Level (high)  
M_DTM EQU $380000; DMA Transfer Mode Mask (DTM2-DTM0)  
M_DTM0 EQU 19 ; DMA Transfer Mode 0  
M_DTM1 EQU 20 ; DMA Transfer Mode 1  
M_DTM2 EQU 21 ; DMA Transfer Mode 2  
M_DIE EQU 22  
M_DE EQU 23  
; DMA Interrupt Enable bit  
; DMA Channel Enable bit  
;
DMA Status Register  
M_DTD EQU $3F ; Channel Transfer Done Status MASK (DTD0-DTD5)  
M_DTD0 EQU 0  
M_DTD1 EQU 1  
M_DTD2 EQU 2  
M_DTD3 EQU 3  
M_DTD4 EQU 4  
M_DTD5 EQU 5  
M_DACT EQU  
; DMA Channel Transfer Done Status 0  
; DMA Channel Transfer Done Status 1  
; DMA Channel Transfer Done Status 2  
; DMA Channel Transfer Done Status 3  
; DMA Channel Transfer Done Status 4  
; DMA Channel Transfer Done Status 5  
; DMA Active State  
8
M_DCH EQU $E00; DMA Active Channel Mask (DCH0-DCH2)  
M_DCH0 EQU  
M_DCH1 EQU 10 ; DMA Active Channel 1  
M_DCH2 EQU 11 ; DMA Active Channel 2  
9
; DMA Active Channel 0  
;------------------------------------------------------------------------  
;
;
;
EQUATES for Phase Locked Loop (PLL)  
;------------------------------------------------------------------------  
;
Register Addresses Of PLL  
M_PCTL EQU $FFFFFD ; PLL Control Register  
PLL Control Register  
;
A-9  
Power Consumption Benchmark  
M_MF EQU $FFF : Multiplication Factor Bits Mask (MF0-MF11)  
M_DF EQU $7000 ; Division Factor Bits Mask (DF0-DF2)  
M_XTLR EQU 15 ; XTAL Range select bit  
M_XTLD EQU 16 ; XTAL Disable Bit  
M_PSTP EQU 17 ; STOP Processing State Bit  
M_PEN EQU 18  
; PLL Enable Bit  
M_PCOD EQU 19 ; PLL Clock Output Disable Bit  
M_PD EQU $F00000; PreDivider Factor Bits Mask (PD0-PD3)  
;------------------------------------------------------------------------  
;
;
;
EQUATES for BIU  
;------------------------------------------------------------------------  
;
Register Addresses Of BIU  
M_BCR EQU $FFFFFB; Bus Control Register  
M_DCR EQU $FFFFFA; DRAM Control Register  
M_AAR0 EQU $FFFFF9; Address Attribute Register 0  
M_AAR1 EQU $FFFFF8; Address Attribute Register 1  
M_AAR2 EQU $FFFFF7; Address Attribute Register 2  
M_AAR3 EQU $FFFFF6; Address Attribute Register 3  
M_IDR EQU $FFFFF5 ; ID Register  
;
Bus Control Register  
M_BA0W EQU $1F ; Area 0 Wait Control Mask (BA0W0-BA0W4)  
M_BA1W EQU $3E0; Area 1 Wait Control Mask (BA1W0-BA14)  
M_BA2W EQU $1C00; Area 2 Wait Control Mask (BA2W0-BA2W2)  
M_BA3W EQU $E000; Area 3 Wait Control Mask (BA3W0-BA3W3)  
M_BDFW EQU $1F0000 ; Default Area Wait Control Mask (BDFW0-BDFW4)  
M_BBS EQU 21  
M_BLH EQU 22  
M_BRH EQU 23  
; Bus State  
; Bus Lock Hold  
; Bus Request Hold  
;
DRAM Control Register  
M_BCW EQU $3  
M_BRW EQU $C  
; In Page Wait States Bits Mask (BCW0-BCW1)  
; Out Of Page Wait States Bits Mask (BRW0-BRW1)  
M_BPS EQU $300 ; DRAM Page Size Bits Mask (BPS0-BPS1)  
M_BPLE EQU 11 ; Page Logic Enable  
M_BME EQU 12  
M_BRE EQU 13  
; Mastership Enable  
; Refresh Enable  
M_BSTR EQU 14 ; Software Triggered Refresh  
M_BRF EQU $7F8000; Refresh Rate Bits Mask (BRF0-BRF7)  
M_BRP EQU 23  
; Refresh prescaler  
;
Address Attribute Registers  
M_BAT EQU $3  
M_BAAP EQU 2  
M_BPEN EQU 3  
M_BXEN EQU 4  
M_BYEN EQU 5  
M_BAM EQU 6  
M_BPAC EQU 7  
; Ext. Access Type and Pin Def. Bits Mask (BAT0-BAT1)  
; Address Attribute Pin Polarity  
; Program Space Enable  
; X Data Space Enable  
; Y Data Space Enable  
; Address Muxing  
; Packing Enable  
M_BNC EQU $F00 ; Number of Address Bits to Compare Mask (BNC0-BNC3)  
M_BAC EQU $FFF000; Address to Compare Bits Mask (BAC0-BAC11)  
;
control and status bits in SR  
M_CP EQU $c00000; mask for CORE-DMA priority bits in SR  
M_CA EQU 0  
M_V EQU 1  
M_Z EQU 2  
M_N EQU 3  
M_U EQU 4  
M_E EQU 5  
M_L EQU 6  
M_S EQU 7  
M_I0 EQU 8  
M_I1 EQU 9  
M_S0 EQU 10  
M_S1 EQU 11  
M_SC EQU 13  
M_DM EQU 14  
; Carry  
; Overflow  
; Zero  
; Negative  
; Unnormalized  
; Extension  
; Limit  
; Scaling Bit  
; Interupt Mask Bit 0  
; Interupt Mask Bit 1  
; Scaling Mode Bit 0  
; Scaling Mode Bit 1  
; Sixteen_Bit Compatibility  
; Double Precision Multiply  
A-10  
Power Consumption Benchmark  
M_LF EQU 15  
M_FV EQU 16  
M_SA EQU 17  
M_CE EQU 19  
M_SM EQU 20  
M_RM EQU 21  
M_CP0 EQU 22  
M_CP1 EQU 23  
; DO-Loop Flag  
; DO-Forever Flag  
; Sixteen-Bit Arithmetic  
; Instruction Cache Enable  
; Arithmetic Saturation  
; Rounding Mode  
; bit 0 of priority bits in SR  
; bit 1 of priority bits in SR  
;
control and status bits in OMR  
M_CDP EQU $300 ; mask for CORE-DMA priority bits in OMR  
M_MA  
M_MB  
M_MC  
M_MD  
equ0  
; Operating Mode A  
equ1  
; Operating Mode B  
equ2  
equ3  
; Operating Mode C  
; Operating Mode D  
M_EBD EQU 4  
M_SD EQU 6  
; External Bus Disable bit in OMR  
; Stop Delay  
M_MS EQU 7  
; Memory Switch bit in OMR  
; bit 0 of priority bits in OMR  
; bit 1 of priority bits in OMR  
M_CDP0 EQU 8  
M_CDP1 EQU 9  
M_BEN  
EQU 10 ; Burst Enable  
M_TAS EQU 11 ; TA Synchronize Select  
M_BRT EQU 12 ; Bus Release Timing  
M_ATE EQU 15  
M_XYS EQU 16  
M_EUN EQU 17  
M_EOV EQU 18  
M_WRP EQU 19  
M_SEN EQU 20  
; Address Tracing Enable bit in OMR.  
; Stack Extension space select bit in OMR.  
; Extensed stack UNderflow flag in OMR.  
; Extended stack OVerflow flag in OMR.  
; Extended WRaP flag in OMR.  
; Stack Extension Enable bit in OMR.  
;*************************************************************************  
;
;
;
;
;
EQUATES for DSP56309 interrupts  
Last update: June 11 1995  
;*************************************************************************  
page  
opt  
132,55,0,0,0  
mex  
intequ ident  
if  
1,0  
@DEF(I_VEC)  
;leave user definition as is.  
else  
I_VEC EQU $0  
endif  
;------------------------------------------------------------------------  
; Non-Maskable interrupts  
;------------------------------------------------------------------------  
I_RESET EQU I_VEC+$00 ; Hardware RESET  
I_STACK EQU I_VEC+$02 ; Stack Error  
I_ILL EQU I_VEC+$04  
I_DBG EQU I_VEC+$06  
I_TRAP EQU I_VEC+$08  
I_NMI EQU I_VEC+$0A  
; Illegal Instruction  
; Debug Request  
; Trap  
; Non Maskable Interrupt  
;------------------------------------------------------------------------  
; Interrupt Request Pins  
;------------------------------------------------------------------------  
I_IRQA EQU I_VEC+$10  
I_IRQB EQU I_VEC+$12  
I_IRQC EQU I_VEC+$14  
I_IRQD EQU I_VEC+$16  
; IRQA  
; IRQB  
; IRQC  
; IRQD  
;------------------------------------------------------------------------  
; DMA Interrupts  
;------------------------------------------------------------------------  
I_DMA0 EQU I_VEC+$18  
I_DMA1 EQU I_VEC+$1A  
I_DMA2 EQU I_VEC+$1C  
I_DMA3 EQU I_VEC+$1E  
; DMA Channel 0  
; DMA Channel 1  
; DMA Channel 2  
; DMA Channel 3  
A-11  
Power Consumption Benchmark  
I_DMA4 EQU I_VEC+$20  
I_DMA5 EQU I_VEC+$22  
; DMA Channel 4  
; DMA Channel 5  
;------------------------------------------------------------------------  
; Timer Interrupts  
;------------------------------------------------------------------------  
I_TIM0C EQU I_VEC+$24 ; TIMER 0 compare  
I_TIM0OF EQU I_VEC+$26; TIMER 0 overflow  
I_TIM1C EQU I_VEC+$28 ; TIMER 1 compare  
I_TIM1OF EQU I_VEC+$2A; TIMER 1 overflow  
I_TIM2C EQU I_VEC+$2C ; TIMER 2 compare  
I_TIM2OF EQU I_VEC+$2E; TIMER 2 overflow  
;------------------------------------------------------------------------  
; ESSI Interrupts  
;------------------------------------------------------------------------  
I_SI0RD EQU I_VEC+$30 ; ESSI0 Receive Data  
I_SI0RDE EQU I_VEC+$32; ESSI0 Receive Data w/ exception Status  
I_SI0RLS EQU I_VEC+$34; ESSI0 Receive last slot  
I_SI0TD EQU I_VEC+$36 ; ESSI0 Transmit data  
I_SI0TDE EQU I_VEC+$38; ESSI0 Transmit Data w/ exception Status  
I_SI0TLS EQU I_VEC+$3A; ESSI0 Transmit last slot  
I_SI1RD EQU I_VEC+$40 ; ESSI1 Receive Data  
I_SI1RDE EQU I_VEC+$42; ESSI1 Receive Data w/ exception Status  
I_SI1RLS EQU I_VEC+$44  
I_SI1TD EQU I_VEC+$46  
; ESSI1 Receive last slot  
; ESSI1 Transmit data  
I_SI1TDE EQU I_VEC+$48; ESSI1 Transmit Data w/ exception Status  
I_SI1TLS EQU I_VEC+$4A; ESSI1 Transmit last slot  
;------------------------------------------------------------------------  
; SCI Interrupts  
;------------------------------------------------------------------------  
I_SCIRD EQU I_VEC+$50  
I_SCIRDE EQU I_VEC+$52  
I_SCITD EQU I_VEC+$54  
I_SCIIL EQU I_VEC+$56  
I_SCITM EQU I_VEC+$58  
; SCI Receive Data  
; SCI Receive Data With Exception Status  
; SCI Transmit Data  
; SCI Idle Line  
; SCI Timer  
;------------------------------------------------------------------------  
; HOST Interrupts  
;------------------------------------------------------------------------  
I_HRDF EQU I_VEC+$60  
I_HTDE EQU I_VEC+$62  
I_HC EQU I_VEC+$64  
; Host Receive Data Full  
; Host Transmit Data Empty  
; Default Host Command  
;------------------------------------------------------------------------  
; INTERRUPT ENDING ADDRESS  
;------------------------------------------------------------------------  
I_INTEND EQU I_VEC+$FF  
; last address of interrupt vector space  
A-12  
Index  
controller iv  
out of page  
A
read access 2-23  
wait states selection guide 2-20  
write access 2-24  
ac electrical characteristics 2-4  
address bus 1-1  
Address Trace mode 2-25, 2-27  
applications iv  
Page mode  
read accesses 2-19  
wait states selection guide 2-16  
write accesses 2-19  
arbitration bus timings 2-27  
B
refresh access 2-24  
benchmark test algorithm A-1  
block diagram i  
bootstrap ROM iii  
Boundary Scan (JTAG Port) timing diagram 2-46  
bus  
DSP56300  
Family Manual iv  
DSP56309  
block diagram i  
Technical Data iv  
User’s Manual iv  
acquisition timings 2-28  
address 1-2  
control 1-1  
data 1-2  
E
electrical  
design considerations 4-2, 4-3  
external address 1-5  
external data 1-5  
multiplexed 1-2  
non-multiplexed 1-2  
release timings 2-28, 2-29  
Enhanced Synchronous Serial Interface (ESSI) iii,  
1-1, 1-2, 1-13, 1-14  
receiver timing 2-42  
transmitter timing 2-41  
C
external address bus 1-5  
external bus control 1-5, 1-6, 1-7  
external bus synchronous timings (SRAM  
access) 2-25  
external clock operation 2-4  
external data bus 1-5  
external interrupt timing (negative  
edge-triggered) 2-11  
external level-sensitive fast interrupt timing 2-10  
external memory access (DMA Source)  
timing 2-12  
clock 1-1, 1-4  
external 2-4  
clocks  
internal 2-4  
crystal oscillator circuits 2-5  
D
data bus 1-1  
data memory expansion iv  
Data Strobe (DS) 1-2  
dc electrical characteristics 2-3  
DE signal 1-18  
Debug Event signal (DE signal) 1-18  
Debug mode  
External Memory Expansion Port 2-13  
external memory expansion port 1-5  
F
functional groups 1-2  
functional signal groups 1-1  
entering 1-18  
external indication 1-18  
Debug support iii  
description, general i  
design considerations  
electrical 4-2, 4-3  
PLL 4-5  
G
general description i  
General-Purpose Input/Output (GPIO) iii, 1-2  
ground 1-1, 1-3  
PLL 1-3  
power consumption 4-4  
thermal 4-1  
documentation list iv  
Double Data Strobe 1-2  
DRAM  
Index-1  
Index  
memory expansion port iii  
mode control 1-8  
Mode select timing 2-7  
multiplexed bus 1-2  
multiplexed bus timings  
read 2-35  
H
Host Interface (HI08) iii, 1-1, 1-2, 1-9, 1-10,  
1-11, 1-12  
Host Port Control Register (HPCR) 1-10,  
1-12  
write 2-36  
host port  
configuration 1-9  
usage considerations 1-9  
Host Port Control Register (HPCR) 1-10, 1-12  
Host Request  
Double 1-2  
Single 1-2  
Host Request (HR) 1-2  
N
non-multiplexed bus 1-2  
non-multiplexed bus timings  
read 2-33  
write 2-34  
O
I
off-chip memory iii  
OnCE module iii  
information sources iv  
instruction cache iii  
internal clocks 2-4  
interrupt and mode control 1-1, 1-8  
interrupt control 1-8  
Debug request 2-47  
on-chip DRAM controller iv  
On-Chip Emulation (OnCE) module  
interface 1-18  
On-Chip Emulation module iii  
on-chip memory iii  
interrupt timing 2-7  
external level-sensitive fast 2-10  
external negative edge-triggered 2-11  
synchronous from Wait state 2-11  
operating mode select timing 2-11  
P
J
package  
Joint Test Action Group (JTAG)  
interface 1-18  
144-pin TQFP 3-1  
196-pin MAP-BGA 3-1  
MAP-BGA description 3-10, 3-11, 3-12,  
3-15, 3-19  
JTAG iii  
JTAG Port  
reset timing diagram 2-46  
timing 2-46  
JTAG/OnCE Interface signals  
Debug Event signal (DE signal) 1-18  
JTAG/OnCE port 1-1, 1-2  
TQFP description 3-2, 3-3, 3-4, 3-6, 3-9  
Phase-Lock Loop (PLL) 1-1, 2-6  
design considerations 4-5  
performance issues 4-5  
PLL 1-4  
Port A 1-1, 1-5, 2-13  
Port B 1-1, 1-2, 1-11  
K
Port C 1-1, 1-2, 1-13  
keeper circuit  
Port D 1-1, 1-2, 1-14  
Port E 1-1  
design considerations 4-3  
M
power 1-1, 1-2, 1-3  
power consumption  
MAP-BGA 3-1  
design considerations 4-4  
power consumption benchmark test A-1  
power management iv  
power-up sequence guidelines 4-3  
program memory expansion iv  
program RAM iii  
ball list by name 3-15  
ball list by number 3-12  
mechanical drawing 3-19  
molded array process-ball grid drawing  
(bottom) 3-11  
molded array process-ball grid drawing  
(top) 3-10  
maximum ratings 2-1, 2-2  
Index-2  
Index  
mechanical drawing 3-9  
pin list by name 3-6  
R
pin list by number 3-4  
pin-out drawing (bottom) 3-3  
pin-out drawing (top) 3-2  
recovery from Stop state using IRQA 2-12  
reset  
clock signals 1-4  
interrupt signals 1-8  
JTAG signals 1-18  
mode control 1-8  
OnCE signals 1-18  
PLL signals 1-4  
W
Wait mode iv  
World Wide Web iv  
Reset timing 2-7, 2-9  
synchronous 2-10  
ROM, bootstrap iii  
X
X-data RAM iii  
Y
S
Serial Communication Interface (SCI) iii, 1-1,  
1-2, 1-16  
Y-data RAM iii  
Asynchronous mode timing 2-38  
Synchronous mode timing 2-38  
signal groupings 1-1  
signals 1-1  
functional grouping 1-2  
Single Data Strobe 1-2  
SRAM  
read access 2-15  
support iv  
write access 2-15  
Stop mode iv  
Stop state  
recovery from 2-12  
Stop timing 2-7  
supply voltage 2-2  
Switch mode iii  
synchronous bus timings  
SRAM  
2 wait states 2-26  
SRAM 1 wait state (BCR controlled) 2-26  
synchronous interrupt from Wait state timing 2-11  
synchronous Reset timing 2-10  
T
target applications iv  
Test Access Port (TAP) iii  
timing diagram 2-46  
Test Clock (TCLK) input timing diagram 2-45  
thermal  
design considerations 4-1  
Timer  
event input restrictions 2-43  
Timers 1-1, 1-2, 1-17  
interrupt generation 2-43  
TQFP 3-1  
Index-3  
Ordering Information  
Consult a Motorola Semiconductor sales office or authorized distributor to determine product availability and place an order.  
Core  
Frequency  
(MHz)  
Supply  
Voltage  
Pin  
Count  
Part  
Package Type  
Order Number  
DSP56309  
3.3 V I/O Thin Quad Flat Pack (TQFP)  
Molded Array Process-Ball Grid Array (MAP-BGA)  
144  
196  
100  
100  
DSP56309PV100  
DSP56309VF100  
HOW TO REACH US:  
Information in this document is provided solely to enable system and software implementers to use  
Motorola products. There are no express or implied copyright licenses granted hereunder to design  
or fabricate any integrated circuits or integrated circuits based on the information in this document.  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217  
1-303-675-2140 or 1-800-441-2447  
Motorola reserves the right to make changes without further notice to any products herein. Motorola  
makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Motorola assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters which may be provided in Motorola data  
sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. Motorola does not convey any license under its patent  
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other applications intended to  
support or sustain life, or for any other application in which the failure of the Motorola product could  
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola  
products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or  
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,  
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
JAPAN:  
Motorola Japan Ltd.; SPS, Technical Information Center,  
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan  
81-3-3440-3569  
ASIA/PACIFIC:  
Motorola Semiconductors H.K. Ltd.; Silicon Harbour  
Centre, 2 Dai King Street, Tai Po Industrial Estate,  
Tai Po, N.T., Hong Kong  
852-26668334  
TECHNICAL INFORMATION CENTER:  
1-800-521-6274  
HOME PAGE:  
http://www.motorola.com/semiconductors  
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. OnCE and  
digital dna are trademarks of Motorola, Inc. All other product or service names are the property of their  
respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
© Motorola, Inc. 1996, 2002  
DSP56309/D  

相关型号:

SPAKXC309VL100A

24-BIT, 100 MHz, OTHER DSP, PBGA196, 15 X 15 MM, 1 MM PITCH, MOLD ARRAY PROCESS, BGA-196
NXP

SPAKXCF333CFT16

32-BIT, FLASH, 16.78MHz, MICROCONTROLLER, PQFP16, PLASTIC, SMT-160
MOTOROLA

SPAKXCF333CFT20

Microcontroller, 32-Bit, FLASH, 20MHz, CMOS, PQFP16, PLASTIC, SMT-160
MOTOROLA

SPAKXCF333CFT25

32-BIT, FLASH, 25MHz, MICROCONTROLLER, PQFP16, PLASTIC, SMT-160
MOTOROLA

SPAKXCF333MFT16

32-BIT, FLASH, 16.78MHz, MICROCONTROLLER, PQFP16, PLASTIC, SMT-160
MOTOROLA

SPAKXCF333MFT20

Microcontroller, 32-Bit, FLASH, 20MHz, CMOS, PQFP16, PLASTIC, SMT-160
MOTOROLA

SPAKXCF333VFT16

Microcontroller, 32-Bit, FLASH, 16.78MHz, CMOS, PQFP16, PLASTIC, SMT-160
MOTOROLA

SPAKXCF333VFT25

32-BIT, FLASH, 25MHz, MICROCONTROLLER, PQFP16, PLASTIC, SMT-160
MOTOROLA

SPAL-001T-P0.5

Crimping tools and machines
ETC

SPAL-002T-P0.5

Crimping tools and machines
ETC

SPAN02

2W SIP Package DC-DC Regulated Converter
MEANWELL

SPAN02A-03

2W SIP Package DC-DC Regulated Converter
MEANWELL