SPC5533MVM80R [NXP]

RISC Microcontroller;
SPC5533MVM80R
型号: SPC5533MVM80R
厂家: NXP    NXP
描述:

RISC Microcontroller

时钟 微控制器 外围集成电路
文件: 总50页 (文件大小:1290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC5533  
Rev. 0.0, 10 Oct 2008  
Freescale Semiconductor  
Data Sheet: Technical Data  
MPC5533  
Microcontroller Data Sheet  
by: Microcontroller Division  
Contents  
This document provides electrical specifications, pin  
assignments, and package diagrams for the MPC5533  
microcontroller device. For functional characteristics,  
refer to the MPC5534 Microcontroller Reference  
Manual.  
1
2
3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.1 Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . 5  
3.3 Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.4 EMI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.5 ESD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.6 VRC and POR Electrical Specifications . . . . . . . . . 9  
3.7 Power-Up/Down Sequencing. . . . . . . . . . . . . . . . . 10  
3.8 DC Electrical Specifications . . . . . . . . . . . . . . . . . 13  
3.9 Oscillator and FMPLL Electrical Characteristics . . 20  
3.10 eQADC Electrical Characteristics . . . . . . . . . . . . . 22  
3.11 H7Fb Flash Memory Electrical Characteristics . . . 23  
3.12 AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.13 AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
1
Overview  
The MPC5533 microcontroller (MCU) is a member of  
the MPC5500 family of microcontrollers built on the  
Power Architecture™ embedded technology. This  
family of parts has many new features coupled with high  
performance CMOS technology to provide substantial  
reduction of cost per feature and significant performance  
improvement over the MPC500 family.  
4
5
Mechanicals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
4.1 MPC5533 208 MAP BGA Pinout. . . . . . . . . . . . . . 43  
4.2 MPC5533 324 PBGA Pinout . . . . . . . . . . . . . . . . . 44  
4.3 MPC5533 208-Pin Package Dimensions. . . . . . . . 45  
4.4 MPC5533 324-Pin Package Dimensions. . . . . . . . 47  
The host processor core of this device complies with the  
Power Architecture embedded category that is 100%  
user-mode compatible (including floating point library)  
with the original Power PC™ user instruction set  
architecture (UISA). The embedded architecture  
enhancements improve the performance in embedded  
applications. The core also has additional instructions,  
including digital signal processing (DSP) instructions,  
beyond the original Power PC instruction set.  
Revision History for the MPC5533 Data Sheet . . . . . . . 49  
© Freescale Semiconductor, Inc., 2008. All rights reserved.  
Overview  
The MPC5500 family of parts contains many new features coupled with high performance CMOS  
technology to provide significant performance improvement over the MPC565.  
The host processor core of the MPC5533 also includes an instruction set enhancement allowing variable  
length encoding (VLE). This allows optional encoding of mixed 16- and 32-bit instructions. With this  
enhancement, it is possible to significantly reduce the code size footprint.  
The MPC5533 has a single-level memory hierarchy consisting of 48-kilobytes (KB) on-chip SRAM and  
768 KB of internal flash memory. Both the SRAM and the flash memory can hold instructions and data.  
The complex input/output timer functions of the MPC5533 are performed by an enhanced time processor  
unit (eTPU) engine. The eTPU engine controls 32 hardware channels. The eTPU has been enhanced over  
the TPU by providing: 24-bit timers, double-action hardware channels, variable number of parameters per  
channel, angle clock hardware, and additional control and arithmetic instructions. The eTPU is  
programmed using a high-level programming language.  
Off-chip communication is performed by a suite of serial protocols including controller area networks  
(FlexCANs), enhanced deserial/serial peripheral interfaces (DSPIs), and an enhanced serial  
communications interface (eSCI).  
The MCU has an on-chip enhanced queued analog-to-digital converter (eQADC) with a 5 V conversion  
range. The 324 package has 40-channels; the 208 package has 34 channels.  
The system integration unit (SIU) performs several chip-wide configuration functions. Pad configuration  
and general-purpose input and output (GPIO) are controlled from the SIU. Interrupts and reset control are  
also determined by the SIU. The internal multiplexer sub-block (IMUX) provides multiplexing of eQADC  
trigger sources and external interrupt signal multiplexing.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
2
Freescale Semiconductor  
Ordering Information  
2
Ordering Information  
5533  
R
VF  
80  
M PC  
M
Qualification status  
Core code  
Device number  
Temperature range  
Package identifier  
Operating frequency (MHz)  
Tape and reel status  
Tape and Reel Status  
R = Tape and reel  
(blank) = Trays  
Operating Frequency  
40 = 40 MHz  
66 = 66 MHz  
Package Identifier  
Temperature Range  
M = –40° C to 125° C  
VF = 208MAPBGA SnPb  
VM = 208MAPBGA Pb-free  
ZQ = 324PBGA SnPb  
VZ = 324PBGA Pb-free  
80 = 80 MHz  
Qualification Status  
P = Pre qualification  
M = Fully spec. qualified, general market flow  
S = Fully spec. qualified, automotive flow  
Note: Not all options are available on all devices. Refer to Table 1.  
Figure 1. MPC5500 Family Part Number Example  
Unless noted in this data sheet, all specifications apply from T to T .  
L
H
Table 1. Orderable Part Numbers  
Operating Temperature 1  
Speed (MHz)  
Freescale Part Number  
Package Description  
Nominal  
Max. 2 (fMAX  
)
Min. (TL)  
Max. (TH)  
MPC5533MVM80  
MPC5533MVM66  
MPC5533MVM40  
MPC5533MVF80  
MPC5533MVF66  
MPC5533MVF40  
MPC5533MVZ80  
MPC5533MVZ66  
MPC5533MVZ40  
MPC5533MZQ80  
MPC5533MZQ66  
MPC5533MZQ40  
80  
66  
40  
80  
66  
40  
80  
66  
40  
80  
66  
40  
82  
68  
42  
82  
68  
42  
82  
68  
42  
82  
68  
42  
MPC5533 208 package  
Lead-free (PbFree)  
–40° C  
125° C  
MPC5533 208 package  
Leaded (SnPb)  
–40° C  
–40° C  
–40° C  
125° C  
125° C  
125° C  
MPC5533 324 package  
Lead-free (PbFree)  
MPC5533 324 package  
Leaded (SnPb)  
1
The lowest ambient operating temperature is referenced by TL; the highest ambient operating temperature is referenced by TH.  
2
Speed is the nominal maximum frequency. Max. speed is the maximum speed allowed including frequency modulation (FM).  
42 MHz parts allow for 40 MHz system clock + 2% FM; 68 MHz parts allow for 66 MHz system clock + 2% FM, and  
82 MHz parts allow for 80 MHz system clock + 2% FM.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
3
Freescale Semiconductor  
Electrical Characteristics  
3
Electrical Characteristics  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and  
AC timing specifications for the MCU.  
3.1  
Maximum Rating  
1
Table 2. Absolute Maximum Ratings  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
1
2
4
5
6
7
8
9
1.5 V core supply voltage 2  
Flash program/erase voltage  
Flash read voltage  
VDD  
VPP  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
1.7  
6.5  
4.6  
1.7  
4.6  
4.6  
4.6  
5.5  
4.6  
6.5  
V
V
V
V
V
V
V
V
V
V
VFLASH  
VSTBY  
VDDSYN  
VDD33  
VRC33  
VDDA  
SRAM standby voltage  
Clock synthesizer voltage  
3.3 V I/O buffer voltage  
Voltage regulator control input voltage  
Analog supply voltage (reference to VSSA  
)
10 I/O supply voltage (fast I/O pads) 3  
11 I/O supply voltage (slow and medium I/O pads) 3  
12 DC input voltage 4  
VDDEH powered I/O pads  
VDDE powered I/O pads  
VDDE  
VDDEH  
VIN  
–1.0 5  
–1.0 5  
6.5 6  
4.6 7  
V
13 Analog reference high voltage (reference to VRL  
)
VRH  
–0.3  
–0.1  
5.5  
0.1  
V
V
V
V
V
V
V
V
14  
15  
V
SS to VSSA differential voltage  
DD to VDDA differential voltage  
VSS – VSSA  
VDD – VDDA  
VRH – VRL  
V
–VDDA  
–0.3  
VDD  
5.5  
16 VREF differential voltage  
17  
18  
V
RH to VDDA differential voltage  
RL to VSSA differential voltage  
VRH – VDDA  
VRL – VSSA  
VDDEH – VDDA  
VDDF – VDD  
–5.5  
5.5  
V
–0.3  
0.3  
19 VDDEH to VDDA differential voltage  
–VDDA  
–0.3  
VDDEH  
0.3  
20  
21  
VDDF to VDD differential voltage  
VRC33 to VDDSYN differential voltage spec has been moved to Table 9 DC Electrical Specifications, Spec 43a.  
22 VSSSYN to VSS differential voltage  
23 RCVSS to VSS differential voltage  
24 Maximum DC digital input current 8  
VSSSYN – VSS  
VRCVSS – VSS  
IMAXD  
–0.1  
–0.1  
–2  
0.1  
0.1  
2
V
V
V
mA  
4
(per pin, applies to all digital pins)  
25 Maximum DC analog input current 9  
(per pin, applies to all analog pins)  
26 Maximum operating temperature range 10  
Die junction temperature  
IMAXA  
TJ  
–3  
TL  
3
mA  
oC  
oC  
150.0  
150.0  
27 Storage temperature range  
TSTG  
–55.0  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
4
Freescale Semiconductor  
Electrical Characteristics  
1
Table 2. Absolute Maximum Ratings (continued)  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
28 Maximum solder temperature 11  
Lead free (Pb-free)  
Leaded (SnPb)  
29 Moisture sensitivity level 12  
TSDR  
MSL  
260.0  
245.0  
oC  
3
1
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only,  
and functional operation at the maxima is not guaranteed. Stress beyond any of the listed maxima can affect device reliability  
or cause permanent damage to the device.  
2
3
4
1.5 V 10% for proper operation. This parameter is specified at a maximum junction temperature of 150 oC.  
All functional non-supply I/O pins are clamped to VSS and VDDE, or VDDEH  
.
AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative duration of  
60 hours over the complete lifetime of the device (injection current not limited for this duration).  
5
6
7
Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met. Keep the negative DC  
voltage greater than –0.6 V on SINB during the internal power-on reset (POR) state.  
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDEH supplies, if the  
maximum injection current specification is met (2 mA for all pins) and VDDEH is within the operating voltage specifications.  
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if the maximum  
injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage specifications.  
Total injection current for all pins (including both digital and analog) must not exceed 25 mA.  
Total injection current for all analog input pins must not exceed 15 mA.  
8
9
10 Lifetime operation at these specification limits is not guaranteed.  
11 Moisture sensitivity profile per IPC/JEDEC J-STD-020D.  
12 Moisture sensitivity per JEDEC test method A112.  
3.2  
Thermal Characteristics  
The shaded rows in the following table indicate information specific to a four-layer board.  
Table 3. MPC5533 Thermal Characteristic  
Package  
Spec  
MPC5533 Thermal Characteristic  
Symbol  
Unit  
208  
324  
MAPBGA  
PBGA  
1
2
3
4
5
6
7
Junction to ambient 1, 2, natural convection (one-layer board)  
Junction to ambient 1, 3, natural convection (four-layer board 2s2p)  
Junction to ambient (@200 ft./min., one-layer board)  
Junction to ambient (@200 ft./min., four-layer board 2s2p)  
Junction to board 4 (four-layer board 2s2p)  
RθJA  
RθJA  
RθJMA  
RθJMA  
RθJB  
RθJC  
ΨJT  
42  
26  
34  
22  
15  
8
34  
23  
28  
20  
15  
10  
2
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to case 5  
Junction to package top 6, natural convection  
2
1
Junction temperature is a function of: on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other board components, and board thermal resistance.  
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board in a horizontal position.  
Per JEDEC JESD51-6 with the board in a horizontal position.  
2
3
4
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
5
Freescale Semiconductor  
Electrical Characteristics  
5
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method  
(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.  
6
The thermal characterization parameter indicates the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2.  
3.2.1  
General Notes for Specifications at Maximum Junction Temperature  
An estimation of the device junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
× P )  
D
J
A
θJA  
where:  
o
T = ambient temperature for the package ( C)  
A
o
R
= junction to ambient thermal resistance ( C/W)  
θJA  
P = power dissipation in the package (W)  
D
The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide  
consistent values for estimations and comparisons. The difference between the values determined for the  
single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground  
plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance  
depends on the:  
Construction of the application board (number of planes)  
Effective size of the board which cools the component  
Quality of the thermal and electrical connections to the planes  
Power dissipated by adjacent components  
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to  
connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal  
performance. When the clearance between the vias leave the planes virtually disconnected, the thermal  
performance is also greatly reduced.  
As a general rule, the value obtained on a single-layer board is within the normal range for the tightly  
packed printed circuit board. The value obtained on a board with the internal planes is usually within the  
normal range if the application board has:  
One oz. (35 micron nominal thickness) internal planes  
Components are well separated  
2
Overall power dissipation on the board is less than 0.02 W/cm  
The thermal performance of any component depends on the power dissipation of the surrounding  
components. In addition, the ambient temperature varies widely within the application. For many natural  
convection and especially closed box applications, the board temperature at the perimeter (edge) of the  
package is approximately the same as the local air temperature near the device. Specifying the local  
ambient conditions explicitly as the board temperature provides a more precise description of the local  
ambient conditions that determine the temperature of the device.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
6
Freescale Semiconductor  
Electrical Characteristics  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
o
T = junction temperature ( C)  
J
o
T = board temperature at the package perimeter ( C/W)  
B
o
R
= junction-to-board thermal resistance ( C/W) per JESD51-8  
θJB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air does not factor into the calculation, an acceptable value  
for the junction temperature is predictable. Ensure the application board is similar to the thermal test  
condition, with the component soldered to a board with internal planes.  
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a  
case-to-ambient thermal resistance:  
R
= R  
+ R  
θJA  
θJC θCA  
where:  
o
R
R
R
= junction-to-ambient thermal resistance ( C/W)  
θJA  
θJC  
θCA  
o
= junction-to-case thermal resistance ( C/W)  
o
= case-to-ambient thermal resistance ( C/W)  
R
is device related and is not affected by other factors. The thermal environment can be controlled to  
θJC  
change the case-to-ambient thermal resistance, R  
. For example, change the air flow around the device,  
θCA  
add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal  
dissipation on the printed circuit board surrounding the device. This description is most useful for  
packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient.  
For most packages, a better model is required.  
A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal  
resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes  
when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The  
junction-to-board thermal resistance describes the thermal performance when most of the heat is  
conducted to the printed circuit board. This model can be used to generate simple estimations and for  
computational fluid dynamics (CFD) thermal models.  
To determine the junction temperature of the device in the application on a prototype board, use the  
thermal characterization parameter (Ψ ) to determine the junction temperature by measuring the  
JT  
temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
o
T = thermocouple temperature on top of the package ( C)  
T
o
Ψ
= thermal characterization parameter ( C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured in compliance with the JESD51-2 specification using  
a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
7
Freescale Semiconductor  
Electrical Characteristics  
so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple  
junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat  
against the package case to avoid measurement errors caused by the cooling effects of the thermocouple  
wire.  
References:  
Semiconductor Equipment and Materials International  
3081 Zanker Rd.  
San Jose, CA., 95134  
(408) 943-6900  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at  
800-854-7179 or 303-397-7956.  
JEDEC specifications are available on the web at http://www.jedec.org.  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an  
Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.  
2. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled  
Applications,” Electronic Packaging and Production, pp. 53–58, March 1998.  
3. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance  
and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999,  
pp. 212–220.  
3.3  
Package  
The MPC5533 is available in packaged form. Read the package options in Section 2, “Ordering  
Information.” Refer to Section 4, “Mechanicals,” for pinouts and package drawings.  
3.4  
EMI (Electromagnetic Interference) Characteristics  
1
Table 4. EMI Testing Specifications  
Spec  
Characteristic  
Minimum  
Typical  
Maximum  
Unit  
1
2
3
4
5
6
Scan range  
0.15  
1000  
fMAX  
MHz  
MHz  
V
Operating frequency  
VDD operating voltages  
1.5  
3.3  
5.0  
VDDSYN, VRC33, VDD33, VFLASH, VDDE operating voltages  
VPP, VDDEH, VDDA operating voltages  
Maximum amplitude  
V
14 2  
32 3  
V
dBuV  
7
Operating temperature  
25  
oC  
1
EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03. Qualification testing was performed on the MPC5554  
and applied to the MPC5500 family as generic EMI performance data.  
2
3
Measured with the single-chip EMI program.  
Measured with the expanded EMI program.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
8
Freescale Semiconductor  
Electrical Characteristics  
3.5  
ESD (Electromagnetic Static Discharge) Characteristics  
1, 2  
Table 5. ESD Ratings  
Characteristic  
Symbol  
Value  
Unit  
ESD for human body model (HBM)  
HBM circuit description  
2000  
1500  
V
Ω
R1  
C
100  
pF  
500 (all pins)  
750 (corner pins)  
ESD for field induced charge model (FDCM)  
V
Number of pulses per pin:  
Positive pulses (HBM)  
Negative pulses (HBM)  
1
1
Interval of pulses  
1
second  
1
All ESD testing conforms to CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.  
2
Device failure is defined as: ‘If after exposure to ESD pulses, the device does not meet the device specification requirements,  
which includes the complete DC parametric and functional testing at room temperature and hot temperature.  
3.6  
Voltage Regulator Controller (V ) and Power-On Reset (POR)  
Electrical Specifications  
RC  
The following table lists the V and POR electrical specifications:  
RC  
Table 6. VRC/POR Electrical Specifications  
Spec  
Characteristic  
Negated (ramp up)  
Symbol  
Min.  
Max. Units  
1.1  
1.1  
1.35  
V
1
1.5 V (VDD) POR 1  
VPOR15  
Asserted (ramp down)  
1.35  
Asserted (ramp up)  
Negated (ramp up)  
Asserted (ramp down)  
Negated (ramp down)  
0.0  
2.0  
2.0  
0.0  
0.30  
2.85  
2.85  
0.30  
2
3.3 V (VDDSYN) POR 1  
VPOR33  
V
Negated (ramp up)  
2.0  
2.0  
2.85  
2.85  
RESET pin supply  
(VDDEH6) POR 1, 2  
3
4
5
VPOR5  
V
Asserted (ramp down)  
Before VRC allows the pass  
transistor to start turning on  
VTRANS_START  
VTRANS_ON  
1.0  
2.0  
2.0  
V
V
When VRC allows the pass transistor  
to completely turn on 3, 4  
2.85  
V
RC33 voltage  
When the voltage is greater than the  
voltage at which the VRC keeps the  
1.5 V supply in regulation 5, 6  
– 40o C  
25o C  
6
7
8
VVRC33REG  
3.0  
V
Current can be sourced  
by VRCCTL at Tj:  
11.0  
9.0  
mA  
mA  
mA  
7
IVRCCTL  
150o C  
7.5  
Voltage differential during power up such that:  
VDD33 can lag VDDSYN or VDDEH6, before VDDSYN and VDDEH6 reach the  
VPOR33 and VPOR5 minimums respectively.  
VDD33_LAG  
1.0  
V
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
9
Freescale Semiconductor  
Electrical Characteristics  
Spec  
Table 6. VRC/POR Electrical Specifications (continued)  
Characteristic  
Symbol  
Min.  
Max. Units  
9
Absolute value of slew rate on power supply pins  
35  
40  
50  
50  
V/ms  
Required gain at Tj:  
IDD ÷ IVRCCTL (@ fsys = fMAX  
– 40o C  
25o C  
)
BETA10  
10  
150o C  
500  
6, 7, 8, 9  
1
On power up, assert RESET before VPOR15, VPOR33, and VPOR5 negate (internal POR). RESET must remain asserted until  
the power supplies are within the operating conditions as specified in Table 9 DC Electrical Specifications. On power down,  
assert RESET before any power supplies fall outside the operating conditions and until the internal POR asserts.  
2
3
4
5
6
VIL_S (Table 9, Spec15) is guaranteed to scale with VDDEH6 down to VPOR5  
.
Supply full operating current for the 1.5 V supply when the 3.3 V supply reaches this range.  
It is possible to reach the current limit during ramp up—do not treat this event as short circuit current.  
At peak current for device.  
Requires compliance with Freescale’s recommended board requirements and transistor recommendations. Board signal  
traces/routing from the VRCCTL package signal to the base of the external pass transistor and between the emitter of the pass  
transistor to the VDD package signals must have a maximum of 100 nH inductance and minimal resistance  
(less than 1 Ω). VRCCTL must have a nominal 1 μF phase compensation capacitor to ground. VDD must have a 20 μF (nominal)  
bulk capacitor (greater than 4 μF over all conditions, including lifetime). Place high-frequency bypass capacitors consisting of  
eight 0.01 μF, two 0.1 μF, and one 1 μF capacitors around the package on the VDD supply signals.  
7
8
9
IVRCCTL is measured at the following conditions: VDD = 1.35 V, VRC33 = 3.1 V, VVRCCTL = 2.2 V.  
Refer to Table 1 for the maximum operating frequency.  
Values are based on IDD from high-use applications as explained in the IDD Electrical Specification.  
10 BETA represents the worst-case external transistor. It is measured on a per-part basis and calculated as (IDD ÷ IVRCCTL).  
3.7  
Power-Up/Down Sequencing  
Power sequencing between the 1.5 V power supply and V  
or the RESET power supplies is required  
DDSYN  
if using an external 1.5 V power supply with V  
tied to ground (GND). To avoid power-sequencing,  
RC33  
V
must be powered up within the specified operating range, even if the on-chip voltage regulator  
RC33  
controller is not used. Refer to Section 3.7.2, “Power-Up Sequence (VRC33 Grounded),and  
Section 3.7.3, “Power-Down Sequence (VRC33 Grounded).”  
Power sequencing requires that V  
must reach a certain voltage where the values are read as ones  
DD33  
before the POR signal negates. Refer to Section 3.7.1, “Input Value of Pins During POR Dependent on  
VDD33.”  
Although power sequencing is not required between V  
and V  
during power up, V  
must  
RC33  
RC33  
DDSYN  
not lead V  
by more than 600 mV or lag by more than 100 mV for the V stage turn-on to operate  
DDSYN  
RC  
within specification. Higher spikes in the emitter current of the pass transistor occur if V  
leads or lags  
RC33  
V
by more than these amounts. The value of that higher spike in current depends on the board power  
DDSYN  
supply circuitry and the amount of board level capacitance.  
Furthermore, when all of the PORs negate, the system clock starts to toggle, adding another large increase  
of the current consumed by V . If V lags V by more than 100 mV, the increase in current  
RC33  
RC33  
DDSYN  
consumed can drop V low enough to assert the 1.5 V POR again. Oscillations are possible when the  
DD  
1.5 V POR asserts and stops the system clock, causing the voltage on V to rise until the 1.5 V POR  
DD  
negates again. All oscillations stop when V  
is powered sufficiently.  
RC33  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
10  
Freescale Semiconductor  
Electrical Characteristics  
When powering down, V  
and V  
have no delta requirement to each other, because the bypass  
RC33  
DDSYN  
capacitors internal and external to the device are already charged. When not powering up or down, no delta  
between V and V is required for the V to operate within specification.  
RC33  
DDSYN  
RC  
There are no power up/down sequencing requirements to prevent issues such as latch-up, excessive current  
spikes, and so on. Therefore, the state of the I/O pins during power up and power down varies depending  
on which supplies are powered.  
Table 7 gives the pin state for the sequence cases for all pins with pad type pad_fc (fast type).  
Table 7. Pin Status for Fast Pads During the Power Sequence  
Pin Status for Fast Pad Output Driver  
VDDE  
VDD33  
VDD  
POR  
pad_fc (fast)  
Low  
Asserted  
Asserted  
Asserted  
Asserted  
Asserted  
Negated  
Low  
VDDE  
VDDE  
VDDE  
VDDE  
VDDE  
Low  
Low  
VDD  
Low  
VDD  
VDD  
High  
High  
Low  
VDD33  
VDD33  
VDD33  
High impedance (Hi-Z)  
Hi-Z  
Functional  
Table 8 gives the pin state for the sequence cases for all pins with pad type pad_mh (medium type) and  
pad_sh (slow type).  
Table 8. Pin Status for Medium and Slow Pads During the Power Sequence  
Pin Status for Medium and Slow Pad Output Driver  
VDDEH  
VDD  
POR  
pad_mh (medium) pad_sh (slow)  
Low  
Asserted  
Asserted  
Asserted  
Negated  
Low  
High impedance (Hi-Z)  
Hi-Z  
VDDEH  
VDDEH  
VDDEH  
Low  
VDD  
VDD  
Functional  
The values in Table 7 and Table 8 do not include the effect of the weak-pull devices on the output pins  
during power up.  
Before exiting the internal POR state, the pins go to a high-impedance state until POR negates. When the  
internal POR negates, the functional state of the signal during reset applies and the weak-pull devices (up  
or down) are enabled as defined in the device reference manual. If V is too low to correctly propagate  
DD  
the logic signals, the weak-pull devices can pull the signals to V  
and V  
.
DDE  
DDEH  
To avoid this condition, minimize the ramp time of the V supply to a time period less than the time  
DD  
required to enable the external circuitry connected to the device outputs.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
11  
Freescale Semiconductor  
Electrical Characteristics  
3.7.1  
Input Value of Pins During POR Dependent on VDD33  
When powering up the device, V  
must not lag the latest V  
or RESET power pin (V  
) by  
DD33  
DDSYN  
DDEH6  
more than the V  
lag specification listed in Table 6, spec 8. This avoids accidentally selecting the  
DD33  
bypass clock mode because the internal versions of PLLCFG[0:1] and RSTCFG are not powered and  
therefore cannot read the default state when POR negates. V can lag V or the RESET power  
DD33  
DDSYN  
pin (V  
), but cannot lag both by more than the V  
lag specification. This V  
lag specification  
DDEH6  
DD33  
DD33  
applies during power up only. V  
has no lead or lag requirements when powering down.  
DD33  
3.7.2  
Power-Up Sequence (VRC33 Grounded)  
The 1.5 V V power supply must rise to 1.35 V before the 3.3 V V  
power supply and the RESET  
DDSYN  
DD  
power supply rises above 2.0 V. This ensures that digital logic in the PLL for the 1.5 V power supply does  
not begin to operate below the specified operation range lower limit of 1.35 V. Because the internal 1.5 V  
POR is disabled, the internal 3.3 V POR or the RESET power POR must hold the device in reset. Since  
they can negate as low as 2.0 V, V must be within specification before the 3.3 V POR and the RESET  
DD  
POR negate.  
VDDSYN and RESET Power  
VDD  
2.0 V  
1.35 V  
VDD must reach 1.35 V before VDDSYN and the RESET power reach 2.0 V  
Figure 2. Power-Up Sequence (V  
Grounded)  
RC33  
3.7.3  
Power-Down Sequence (VRC33 Grounded)  
The only requirement for the power-down sequence with V  
grounded is if V decreases to less than  
DD  
RC33  
its operating range, V  
or the RESET power must decrease to less than 2.0 V before the V power  
DDSYN  
DD  
increases to its operating range. This ensures that the digital 1.5 V logic, which is reset only by an ORed  
POR and can cause the 1.5 V supply to decrease less than its specification value, resets correctly.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
12  
Freescale Semiconductor  
Electrical Characteristics  
3.8  
DC Electrical Specifications  
Table 9. DC Electrical Specifications (T = T – T )  
A
L
H
Spec  
Characteristic  
Symbol  
Min  
Max.  
Unit  
1
2
3
4
5
6
8
9
Core supply voltage (average DC RMS voltage)  
Input/output supply voltage (fast input/output) 1  
Input/output supply voltage (slow and medium input/output)  
3.3 V input/output buffer voltage  
VDD  
VDDE  
1.35  
1.62  
3.0  
3.0  
3.0  
4.5  
4.5  
3.0  
0.8  
3.0  
1.65  
3.6  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDDEH  
VDD33  
VRC33  
VDDA  
5.25  
3.6  
Voltage regulator control input voltage  
Analog supply voltage 2  
3.6  
5.25  
Flash programming voltage 3  
VPP  
5.25  
Flash read voltage  
VFLASH  
VSTBY  
VDDSYN  
VIH_F  
3.6  
10 SRAM standby voltage 4  
1.2  
11 Clock synthesizer operating voltage  
12 Fast I/O input high voltage  
3.6  
0.65 × VDDE  
VSS – 0.3  
VDDE + 0.3  
0.35 × VDDE  
VDDEH + 0.3  
0.35 × VDDEH  
13 Fast I/O input low voltage  
VIL_F  
14 Medium and slow I/O input high voltage  
15 Medium and slow I/O input low voltage  
16 Fast input hysteresis  
VIH_S  
VIL_S  
0.65 × VDDEH  
VSS – 0.3  
VHYS_F  
VHYS_S  
VINDC  
VOH_F  
0.1 × VDDE  
0.1 × VDDEH  
17 Medium and slow I/O input hysteresis  
18 Analog input voltage  
VSSA – 0.3  
VDDA + 0.3  
19 Fast output high voltage ( IOH_F = –2.0 mA )  
0.8 × VDDE  
20 Slow and medium output high voltage  
IOH_S = –2.0 mA  
VOH_S  
VOL_F  
VOL_S  
0.80 × VDDEH  
0.85 × VDDEH  
V
IOH_S = –1.0 mA  
21 Fast output low voltage ( IOL_F = 2.0 mA )  
0.2 × VDDE  
V
V
22 Slow and medium output low voltage  
IOL_S = 2.0 mA  
0.20 × VDDEH  
0.15 × VDDEH  
IOL_S = 1.0 mA  
23 Load capacitance (fast I/O) 5  
DSC (SIU_PCR[8:9] ) = 0b00  
10  
20  
30  
50  
pF  
pF  
pF  
pF  
= 0b01  
= 0b10  
= 0b11  
CL  
24 Input capacitance (digital pins)  
25 Input capacitance (analog pins)  
CIN  
7
pF  
pF  
CIN_A  
10  
26 Input capacitance:  
(Shared digital and analog pins AN[12]_MA[0]_SDS,  
AN[13]_MA[1]_SDO, AN[14]_MA[2]_SDI, and AN[15]_FCK)  
CIN_M  
12  
pF  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
13  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. DC Electrical Specifications (T = T – T ) (continued)  
A
L
H
Spec  
Characteristic  
Symbol  
Min  
Max.  
Unit  
27a Operating current 1.5 V supplies @ 82 MHz: 6, 7  
VDD (including VDDF max current) @1.65 V high use 8, 9, 10, 11, 12  
VDD (including VDDF max current) @1.35 V high use 8, 9, 10, 11, 12  
IDD  
IDD  
250  
180  
mA  
mA  
27b Operating current 1.5 V supplies @ 68 MHz: 13, 14  
VDD (including VDDF max current) @1.65 V high use15, 16, 17  
VDD (including VDDF max current) @1.35 V high use 15, 16, 17  
IDD  
IDD  
210  
160  
mA  
mA  
27c Operating current 1.5 V supplies @ 42 MHz: 13, 14  
VDD (including VDDF max current) @1.65 V high use 15, 16, 17  
VDD (including VDDF max current) @1.35 V high use 15, 16, 17  
IDD  
IDD  
130  
110  
mA  
mA  
27d Refer to Figure 3 for an interpolation of this data.18  
IDD_STBY @ 25o C  
V
STBY @ 0.8 V  
IDD_STBY  
IDD_STBY  
IDD_STBY  
20  
30  
50  
μA  
μA  
μA  
VSTBY @ 1.0 V  
VSTBY @ 1.2 V  
IDD_STBY @ 60o C  
VSTBY @ 0.8 V  
VSTBY @ 1.0 V  
VSTBY @ 1.2 V  
IDD_STBY  
IDD_STBY  
IDD_STBY  
70  
100  
200  
μA  
μA  
μA  
IDD_STBY @ 150o C (Tj)  
VSTBY @ 0.8 V  
IDD_STBY  
IDD_STBY  
IDD_STBY  
1200  
1500  
2000  
μA  
μA  
μA  
VSTBY @ 1.0 V  
VSTBY @ 1.2 V  
28 Operating current 3.3 V supplies @ fMAX MHz  
19  
VDD33  
IDD_33  
2 + (values  
derived from  
procedure of  
mA  
footnote 19  
)
VFLASH  
IVFLASH  
IDDSYN  
10  
15  
mA  
mA  
VDDSYN  
29 Operating current 5.0 V supplies (12 MHz ADCLK):  
VDDA (VDDA0 + VDDA1  
Analog reference supply current (VRH, VRL  
VPP  
)
IDD_A  
IREF  
IPP  
20.0  
1.0  
25.0  
mA  
mA  
mA  
)
30 Operating current VDDE supplies: 20  
VDDEH1  
VDDE2  
VDDE3  
VDDEH4  
VDDE5  
VDDEH6  
VDDE7  
VDDEH8  
VDDEH9  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
IDD8  
IDD9  
Refer to  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Footnote 20  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
14  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. DC Electrical Specifications (T = T – T ) (continued)  
A
L
H
Spec  
Characteristic  
Symbol  
Min  
Max.  
Unit  
31 Fast I/O weak pullup current 21  
1.62–1.98 V  
2.25–2.75 V  
3.00–3.60 V  
10  
20  
20  
110  
130  
170  
μA  
μA  
μA  
IACT_F  
Fast I/O weak pulldown current 21  
1.62–1.98 V  
10  
20  
20  
100  
130  
170  
μA  
μA  
μA  
2.25–2.75 V  
3.00–3.60 V  
32 Slow and medium I/O weak pullup/down current 21  
3.0–3.6 V  
4.5–5.5 V  
IACT_S  
10  
20  
150  
170  
μA  
μA  
33 I/O input leakage current 22  
34 DC injection current (per pin)  
35 Analog input current, channel off 23  
IINACT_D  
IIC  
–2.5  
–2.0  
–150  
2.5  
2.0  
μA  
mA  
nA  
IINACT_A  
150  
35a Analog input current, shared analog / digital pins  
(AN[12], AN[13], AN[14], AN[15])  
IINACT_AD  
–2.5  
2.5  
μA  
36  
V
SS to VSSA differential voltage 24  
VSS – VSSA  
VRL  
VRL – VSSA  
VRH  
–100  
VSSA – 0.1  
–100  
VDDA – 0.1  
4.5  
100  
VSSA + 0.1  
100  
mV  
V
37 Analog reference low voltage  
38 VRL differential voltage  
mV  
V
39 Analog reference high voltage  
VDDA + 0.1  
5.25  
40 VREF differential voltage  
VRH – VRL  
V
41 VSSSYN to VSS differential voltage  
42 VRCVSS to VSS differential voltage  
43 VDDF to VDD differential voltage  
VSSSYN – VSS  
VRCVSS – VSS  
VDDF – VDD  
VRC33 – VDDSYN  
VIDIFF  
–50  
50  
mV  
mV  
mV  
V
–50  
50  
–100  
–0.1  
100  
43a VRC33 to VDDSYN differential voltage  
44 Analog input differential signal range (with common mode 2.5 V)  
45 Operating temperature range, ambient (packaged)  
46 Slew rate on power-supply pins  
0.1 25  
2.5  
–2.5  
V
TA = (TL to TH)  
TL  
TH  
οC  
V/ms  
50  
1
2
3
4
5
6
7
8
9
VDDE2 and VDDE3 are limited to 2.25–3.6 V only if EBTS = 0; VDDE2 and VDDE3 have a range of 1.6–3.6 V if EBTS = 1.  
| VDDA0 – VDDA1 | must be < 0.1 V.  
VPP can drop to 3.0 V during read operations.  
If standby operation is not required, connect VSTBY to ground.  
Applies to CLKOUT, external bus pins, and Nexus pins.  
Maximum average RMS DC current.  
Figure 3 shows an illustration of the IDD_STBY values interpolated for these temperature values.  
Average current measured on Automotive benchmark.  
Peak currents can be higher on specialized code.  
10 High use current measured while running optimized SPE assembly code with all channels of the eTPU running autonomously, plus  
the eDMA transferring data continuously from SRAM to SRAM.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
15  
Freescale Semiconductor  
Electrical Characteristics  
11 Power requirements for the VDD33 supply depend on the frequency of operation, load of all I/O pins, and the voltages on the I/O  
segments. Refer to Table 11 for values to calculate power dissipation for specific operation.  
12 Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O  
segment, and the voltage of the I/O segment. Refer to Table 10 for values to calculate power dissipation for specific operation. The  
total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment.  
13 Maximum average RMS DC current.  
14 Figure 3 shows an illustration of the IDD_STBY values interpolated for these temperature values.  
15 Average current measured on automotive benchmark.  
16 Peak currents can be higher on specialized code.  
17 High use current measured while running optimized SPE assembly code with all channels of the eTPU running autonomously, plus  
the eDMA transferring data continuously from SRAM to SRAM.  
18 Figure 3 shows an illustration of the IDD_STBY values interpolated for these temperature values.  
19 Power requirements for the VDD33 supply depend on the frequency of operation, load of all I/O pins, and the voltages on the I/O  
segments. Refer to Table 11 for values to calculate the power dissipation for a specific operation.  
20 Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O  
segment, and the voltage of the I/O segment. Refer to Table 10 for values to calculate power dissipation for specific operation. The  
total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment.  
21 Absolute value of current, measured at VIL and VIH.  
22 Weak pullup/down inactive. Measured at VDDE = 3.6 V and VDDEH = 5.25 V. Applies to pad types: pad_fc, pad_sh, and pad_mh.  
23 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 oC  
to 12 oC, in the ambient temperature range of 50 oC to 125 oC. Applies to pad types: pad_a and pad_ae.  
24  
V
refers to both VSSA0 and VSSA1. | VSSA0 – VSSA1 | must be < 0.1 V.  
SSA  
25 Up to 0.6 V during power up and power down.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
16  
Freescale Semiconductor  
Electrical Characteristics  
Figure 3 shows an approximate interpolation of the I  
worst-case specification to estimate values at  
STBY  
different voltages and temperatures. The vertical lines shown at 25 οC, 60 οC, and 150 οC in Figure 3 are  
the I  
specifications (27d) listed in Table 9.  
DD_STBY  
Istby vs. Junction Temp  
2000  
1900  
1800  
1700  
1600  
1500  
1400  
1300  
1200  
1100  
1000  
900  
0.8V  
1.0V  
1.2V  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100 110 120 130 140 150  
Temp (C)  
Figure 3. I  
Worst-case Specifications  
STBY  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
17  
Freescale Semiconductor  
Electrical Characteristics  
3.8.1  
I/O Pad Current Specifications  
The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The  
power consumption is the sum of all output pin currents for a segment. The output pin current can be  
calculated from Table 10 based on the voltage, frequency, and load on the pin. Use linear scaling to  
calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in  
Table 10.  
1
Table 10. I/O Pad Average DC Current (T = T – T )  
A
L
H
Drive Select /  
Slew Rate  
Control Setting  
Frequency  
(MHz)  
Spec  
Pad Type  
Symbol  
Load2 (pF)  
Voltage (V)  
Current (mA)  
1
25  
10  
2
50  
50  
50  
200  
50  
50  
50  
200  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
3.6  
11  
01  
00  
00  
11  
01  
00  
00  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
8.0  
3.2  
0.7  
2.4  
17.3  
6.5  
1.1  
3.9  
2.8  
5.2  
8.5  
11.0  
1.6  
2.9  
4.2  
6.7  
2.4  
4.4  
7.2  
9.3  
1.3  
2.5  
3.5  
5.7  
1.7  
3.1  
5.1  
6.6  
1.0  
1.8  
2.5  
4.0  
2
Slow  
IDRV_SH  
3
4
2
5
50  
20  
3.33  
3.33  
66  
66  
66  
66  
66  
66  
66  
66  
56  
56  
56  
56  
56  
56  
56  
56  
40  
40  
40  
40  
40  
40  
40  
40  
6
Medium  
IDRV_MH  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
3.6  
3.6  
3.6  
3.6  
Fast  
IDRV_FC  
1.98  
1.98  
1.98  
1.98  
3.6  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
1
2
These values are estimates from simulation and are not tested. Currents apply to output pins only.  
All loads are lumped.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
18  
Freescale Semiconductor  
Electrical Characteristics  
3.8.2  
I/O Pad VDD33 Current Specifications  
The power consumption of the V  
supply dependents on the usage of the pins on all I/O segments. The  
DD33  
power consumption is the sum of all input and output pin V  
currents for all I/O segments. The output  
DD33  
pin V  
current can be calculated from Table 11 based on the voltage, frequency, and load on all fast  
DD33  
(pad_fc) pins. The input pin V  
current can be calculated from Table 11 based on the voltage,  
DD33  
frequency, and load on all pad_sh and pad_mh pins. Use linear scaling to calculate pin currents for voltage,  
frequency, and load parameters that fall outside the values given in Table 11.  
1
Table 11. V  
Pad Average DC Current (T = T – T )  
DD33  
A
L
H
Frequency  
(MHz)  
Load 2  
(pF)  
VDD33  
(V)  
VDDE  
(V)  
Drive  
Select  
Current  
(mA)  
Spec  
Pad Type  
Symbol  
Inputs  
1
2
Slow  
I33_SH  
I33_MH  
66  
66  
0.5  
0.5  
3.6  
3.6  
5.5  
5.5  
NA  
NA  
0.003  
0.003  
Medium  
Outputs  
3
66  
66  
66  
66  
66  
66  
66  
66  
56  
56  
56  
56  
56  
56  
56  
56  
40  
40  
40  
40  
40  
40  
40  
40  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0.35  
0.53  
0.62  
0.79  
0.35  
0.44  
0.53  
0.70  
0.30  
0.45  
0.52  
0.67  
0.30  
0.37  
0.45  
0.60  
0.21  
0.31  
0.37  
0.48  
0.21  
0.27  
0.32  
0.42  
4
5
3.6  
6
3.6  
7
1.98  
1.98  
1.98  
1.98  
3.6  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
3.6  
3.6  
3.6  
Fast  
I33_FC  
1.98  
1.98  
1.98  
1.98  
3.6  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
1
2
These values are estimated from simulation and not tested. Currents apply to output pins for the fast pads only and to input  
pins for the slow and medium pads only.  
All loads are lumped.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
19  
Freescale Semiconductor  
Electrical Characteristics  
3.9  
Oscillator and FMPLL Electrical Characteristics  
Table 12. FMPLL Electrical Specifications  
(VDDSYN = 3.0–3.6 V; VSS = VSSSYN = 0.0 V; TA = TL to TH)  
Spec  
Characteristic  
Symbol  
Minimum  
Maximum  
Unit  
PLL reference frequency range: 1  
Crystal reference  
fref_crystal  
fref_ext  
8
8
20  
20  
1
MHz  
External reference  
Dual controller (1:1 mode)  
fref_1:1  
24  
fsys ÷ 2  
3
2
3
4
5
System frequency 2  
fsys  
tCYC  
f
ICO(MIN) ÷ 2RFD  
fMAX  
MHz  
ns  
System clock period  
100  
7.4  
1 ÷ fsys  
1000  
17.5  
Loss of reference frequency 4  
Self-clocked mode (SCM) frequency 5  
EXTAL input high voltage crystal mode 6  
fLOR  
kHz  
MHz  
V
fSCM  
VIHEXT  
VXTAL + 0.4 V  
6
7
All other modes  
[dual controller (1:1), bypass, external reference]  
VIHEXT  
VILEXT  
(VDDE5 ÷ 2) + 0.4 V  
V
V
EXTAL input low voltage crystal mode 7  
V
XTAL – 0.4 V  
All other modes  
[dual controller (1:1), bypass, external reference]  
VILEXT  
IXTAL  
0.8  
(VDDE5 ÷ 2) – 0.4 V  
V
8
9
XTAL current 8  
3
mA  
pF  
pF  
pF  
Total on-chip stray capacitance on XTAL  
Total on-chip stray capacitance on EXTAL  
CS_XTAL  
CS_EXTAL  
CL  
1.5  
1.5  
10  
Crystal manufacturer’s recommended capacitive  
load  
Refer to crystal  
specification  
Refer to crystal  
specification  
11  
12  
Discrete load capacitance to connect to EXTAL  
Discrete load capacitance to connect to XTAL  
PLL lock time 10  
CL_EXTAL  
(2 × CL)CS_EXTAL  
– CPCB_EXTAL  
pF  
pF  
9
CL_XTAL  
(2 × CL) – CS_XTAL  
13  
14  
15  
9
– CPCB_XTAL  
tlpll  
750  
2
μs  
Dual controller (1:1) clock skew  
tskew  
–2  
ns  
(between CLKOUT and EXTAL) 11, 12  
16  
17  
18  
Duty cycle of reference  
Frequency unLOCK range  
Frequency LOCK range  
tDC  
fUL  
40  
60  
4.0  
2.0  
%
–4.0  
–2.0  
% fSYS  
% fSYS  
fLCK  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
20  
Freescale Semiconductor  
Electrical Characteristics  
Table 12. FMPLL Electrical Specifications (continued)  
(VDDSYN = 3.0–3.6 V; VSS = VSSSYN = 0.0 V; TA = TL to TH)  
Spec  
Characteristic  
Symbol  
Minimum  
Maximum  
Unit  
CLKOUT period jitter, measured at fSYS max: 13, 14  
Peak-to-peak jitter (clock edge to clock edge)  
Long term jitter (averaged over a 2 ms interval)  
CJITTER  
%
fCLKOUT  
19  
5.0  
0.01  
Frequency modulation range limit 15  
(do not exceed fsys maximum)  
%fSYS  
20  
CMOD  
0.8  
2.4  
ICO frequency  
21  
22  
fico = [ fref_crystal × (MFD + 4) ] ÷ (PREDIV + 1) 16  
fico = [ fref_ext × (MFD + 4) ] ÷ (PREDIV + 1)  
fico  
48  
4
8017  
MHz  
MHz  
Predivider output frequency (to PLL)  
fPREDIV  
20 18  
1
Nominal crystal and external reference values are worst-case not more than 1%. The device operates correctly if the frequency  
remains within 5% of the specification limit. This tolerance range allows for a slight frequency drift of the crystals over time.  
The designer must thoroughly understand the drift margin of the source clock.  
2
3
4
All internal registers retain data at 0 Hz.  
Up to the maximum frequency rating of the device (refer to Table 1).  
Loss of reference frequency is defined as the reference frequency detected internally, which transitions the PLL into self-clocked  
mode.  
5
The PLL operates at self-clocked mode (SCM) frequency when the reference frequency falls below fLOR. SCM frequency is  
measured on the CLKOUT ball with the divider set to divide-by-two of the system clock.  
NOTE: In SCM, the MFD and PREDIV have no effect and the RFD is bypassed.  
6
7
Use the EXTAL input high voltage parameter when using the FlexCAN oscillator in crystal mode (no quartz crystals or  
resonators). (Vextal – Vxtal) must be 400 mV for the oscillator’s comparator to produce the output clock.  
Use the EXTAL input low voltage parameter when using the FlexCAN oscillator in crystal mode (no quartz crystals or  
resonators). (Vxtal – Vextal) must be 400 mV for the oscillator’s comparator to produce the output clock.  
Ixtal is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.  
8
9
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.  
10 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the  
synthesizer control register (SYNCR). From power up with crystal oscillator reference, the lock time also includes the crystal  
startup time.  
11 PLL is operating in 1:1 PLL mode.  
12  
V
= 3.0–3.6 V.  
DDE  
13 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the jitter percentage  
for a given interval. CLKOUT divider is set to divide-by-two.  
14 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of (jitter + Cmod).  
15 Modulation depth selected must not result in fsys value greater than the fsys maximum specified value.  
16 f = f ÷ (2RFD  
)
sys  
ico  
17 The ICO frequency can be higher than the maximum allowable system frequency. For this case, set the FMPLL synthesizer  
control register reduced frequency divider (FMPLL_SYNCR[RFD]) to divide-by-two (RFD = 0b001). Therefore, for a 40 MHz  
maximum device (system frequency), program the FMPLL to generate 80 MHz at the ICO output and then divide-by-two the  
RFD to provide the 40 MHz clock.  
18 Maximum value for dual controller (1:1) mode is (fMAX ÷ 2) with the predivider set to 1 (FMPLL_SYNCR[PREDIV] = 0b001).  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
21  
Freescale Semiconductor  
Electrical Characteristics  
3.10 eQADC Electrical Characteristics  
Table 13. eQADC Conversion Specifications (TA = TL to TH)  
Spec  
Characteristic  
ADC clock (ADCLK) frequency 1  
Symbol  
Minimum  
Maximum  
Unit  
1
FADCLK  
CC  
1
12  
MHz  
Conversion cycles  
Differential  
ADCLK  
cycles  
2
13 + 2 (15)  
14 + 2 (16)  
13 + 128 (141)  
14 + 128 (142)  
Single ended  
3
4
5
6
7
8
9
Stop mode recovery time 2  
Resolution 3  
TSR  
10  
1.25  
–4  
4
μs  
mV  
INL: 6 MHz ADC clock  
INL: 12 MHz ADC clock  
DNL: 6 MHz ADC clock  
DNL: 12 MHz ADC clock  
Offset error with calibration  
INL6  
Counts 3  
Counts  
Counts  
Counts  
Counts  
Counts  
mA  
INL12  
DNL6  
DNL12  
OFFWC  
GAINWC  
IINJ  
–8  
8
–3 4  
–6 4  
–4 5  
–8 6  
–1  
3 4  
6 4  
4 5  
8 6  
1
10 Full-scale gain error with calibration  
11 Disruptive input injection current 7, 8, 9, 10  
Incremental error due to injection current. All channels are  
10 kΩ < Rs <100 kΩ  
12  
EINJ  
–4  
4
Counts  
Channel under test has Rs = 10 kΩ,  
IINJ = IINJMAX, IINJMIN  
Total unadjusted error (TUE) for single ended conversions  
13  
TUE  
–4  
4
Counts  
with calibration 11, 12, 13, 14, 15  
1
2
Conversion characteristics vary with FADCLK rate. Reduced conversion accuracy occurs at maximum FADCLK rate. The  
maximum value is based on 800 KS/s and the minimum value is based on 20 MHz oscillator clock frequency divided by a  
maximum 16 factor.  
Stop mode recovery time begins when the ADC control register enable bits are set until the ADC is ready to perform  
conversions.  
3
4
5
6
7
At VRH – VRL = 5.12 V, one least significant bit (LSB) = 1.25, mV = one count.  
Guaranteed 10-bit mono tonicity.  
The absolute value of the offset error without calibration 100 counts.  
The absolute value of the full scale gain error without calibration 120 counts.  
Below disruptive current conditions, the channel being stressed has conversion values of: 0x3FF for analog inputs greater than  
VRH, and 0x000 for values less than VRL. This assumes that VRH VDDA and VRL VSSA due to the presence of the sample  
amplifier. Other channels are not affected by non-disruptive conditions.  
8
9
Exceeding the limit can cause a conversion error on both stressed and unstressed channels. Transitions within the limit do not  
affect device reliability or cause permanent damage.  
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use the larger of the calculated values.  
10 This condition applies to two adjacent pads on the internal pad.  
11 The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to canceling errors.  
12 TUE does not apply to differential conversions.  
13 Measured at 6 MHz ADC clock. TUE with a 12 MHz ADC clock is: –16 counts < TUE < 16 counts.  
14 TUE includes all internal device errors such as internal reference variation (75% Ref, 25% Ref).  
15 Depending on the input impedance, the analog input leakage current (Table 9. DC Electrical Specifications, spec 35a) can  
affect the actual TUE measured on analog channels AN[12], AN[13], AN[14], AN[15].  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
22  
Freescale Semiconductor  
Electrical Characteristics  
3.11 H7Fb Flash Memory Electrical Characteristics  
Spec  
Table 14. Flash Program and Erase Specifications (T = T to T )  
A
L
H
Initial  
Spec  
Flash Program Characteristic  
Symbol  
Min.  
Typical 1  
Max. 3 Unit  
Max. 2  
3
4
Doubleword (64 bits) program time 4  
Page program time 4  
Tdwprogram  
Tpprogram  
10  
500  
500  
μs  
μs  
22  
44 5  
525  
525  
675  
1800  
7
16 KB block pre-program and erase time  
48 KB block pre-program and erase time  
64 KB block pre-program and erase time  
128 KB block pre-program and erase time  
T16kpperase  
T48kpperase  
T64kpperase  
T128kpperase  
325  
435  
525  
675  
5000  
5000  
5000  
7500  
ms  
ms  
ms  
ms  
9
10  
8
Minimum operating frequency for program and erase  
operations 6  
11  
25  
MHz  
Typical program and erase times are calculated at 25 oC operating temperature using nominal supply values.  
Initial factory condition: 100 program/erase cycles, 25 oC, using a typical supply voltage measured at a minimum system  
1
2
frequency of 80 MHz.  
3
The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is characterized  
but not guaranteed.  
4
5
6
Actual hardware programming times. This does not include software overhead.  
Page size is 128 bits (4 words).  
The read frequency of the flash can range up to the maximum operating frequency. There is no minimum read frequency  
condition.  
Table 15. Flash EEPROM Module Life (T = T to T )  
A
L
H
Spec  
Characteristic  
Symbol  
Min.  
Typical 1 Unit  
cycles  
100,000 cycles  
Number of program/erase cycles per block for 16 KB, 48 KB, and  
64 KB blocks over the operating temperature range (TJ)  
1a  
P/E  
100,000  
Number of program/erase cycles per block for 128 KB blocks over the  
operating temperature range (TJ)  
1b  
2
P/E  
1000  
Data retention  
Retention  
Blocks with 0–1,000 P/E cycles  
Blocks with 1,001–100,000 P/E cycles  
20  
5
years  
1
Typical endurance is evaluated at 25o C. Product qualification is performed to the minimum specification. For additional  
information on the Freescale definition of typical endurance, refer to engineering bulletin EB619 Typical Endurance for  
Nonvolatile Memory.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
23  
Freescale Semiconductor  
Electrical Characteristics  
Table 16 shows the FLASH_BIU settings versus frequency of operation. Refer to the device reference  
manual for definitions of these bit fields.  
1
Table 16. FLASH_BIU Settings vs. Frequency of Operation  
DPFEN 2  
Target Maximum Frequency (MHz)  
APC  
RWSC  
WWSC  
IPFEN 2  
PFLIM 3  
BFEN 2  
Up to and including 27 MHz 4, 5  
0b000  
0b000  
0b01  
0b0  
0b1  
0b0  
0b1  
0b000  
to  
0b0  
0b1  
0b010  
Up to and including 52 MHz 6  
Up to and including 77 MHz 7  
Up to and including 82 MHz 8  
Reset values:  
0b001  
0b010  
0b011  
0b111  
0b001  
0b010  
0b011  
0b111  
0b01  
0b01  
0b01  
0b11  
0b0  
0b1  
0b0  
0b1  
0b000  
to  
0b010  
0b0  
0b1  
0b0  
0b1  
0b0  
0b1  
0b000  
to  
0b010  
0b0  
0b1  
0b0  
0b1  
0b0  
0b1  
0b000  
to  
0b010  
0b0  
0b1  
0b0  
0b0  
0b000  
0b0  
1
Illegal combinations exist. Use entries from the same row in this table.  
For maximum flash performance, set to 0b1.  
2
3
4
5
6
7
8
For maximum flash performance, set to 0b010.  
27 MHz parts allow for 25 MHz system clock + 2% frequency modulation (FM).  
The APC, RWSC, and WWSC combination requires setting the PRD bit to 1 in the flash MCR register.  
52 MHz parts allow for 50 MHz system clock + 2% FM.  
77 MHz parts allow for 75 MHz system clock + 2% FM.  
82 MHz parts allow for 80 MHz system clock + 2% FM.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
24  
Freescale Semiconductor  
Electrical Characteristics  
3.12 AC Specifications  
3.12.1 Pad AC Specifications  
1
Table 17. Pad AC Specifications (VDDEH = 5.0 V, VDDE = 1.8 V)  
2, 3, 4  
SRC / DSC  
(binary)  
Out Delay  
(ns)  
Rise / Fall 4, 5  
(ns)  
Load Drive  
(pF)  
Spec  
Pad  
26  
82  
15  
60  
50  
200  
50  
11  
01  
00  
11  
01  
00  
75  
40  
1
Slow high voltage (SH)  
137  
377  
476  
16  
80  
200  
50  
200  
260  
8
200  
50  
43  
30  
200  
50  
34  
15  
2
3
Medium high voltage (MH)  
61  
35  
200  
50  
192  
239  
100  
125  
2.7  
2.5  
2.4  
2.3  
7500  
9000  
200  
10  
00  
01  
10  
11  
20  
Fast  
3.1  
30  
50  
4
5
Pullup/down (3.6 V max)  
Pullup/down (5.5 V max)  
50  
50  
1
These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at:  
VDD = 1.35–1.65 V; VDDE = 1.62–1.98 V; VDDEH = 4.5–5.25 V; VDD33 and VDDSYN = 3.0–3.6 V; and TA = TL to TH.  
2
3
This parameter is supplied for reference and is guaranteed by design (not tested).  
The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock,  
add a maximum of one system clock to the output delay.  
4
5
The output delay and rise and fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization rather than 100% tested.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
25  
Freescale Semiconductor  
Electrical Characteristics  
Table 18. Derated Pad AC Specifications (VDDEH = 3.3 V, VDDE = 3.3 V)  
1
2, 3, 4  
SRC/DSC  
(binary)  
Out Delay  
(ns)  
Rise / Fall 3, 5  
(ns)  
Load Drive  
(pF)  
Spec  
Pad  
39  
120  
101  
188  
507  
597  
23  
23  
87  
50  
200  
50  
11  
01  
00  
11  
01  
00  
52  
1
Slow high voltage (SH)  
111  
248  
312  
12  
200  
50  
200  
50  
64  
44  
200  
50  
50  
22  
2
3
Medium high voltage (MH)  
90  
50  
200  
50  
261  
305  
123  
156  
2.4  
2.2  
2.1  
2.1  
7500  
9500  
200  
10  
00  
01  
10  
11  
20  
Fast  
3.2  
30  
50  
4
5
Pullup/down (3.6 V max)  
Pullup/down (5.5 V max)  
50  
50  
1
These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at:  
VDD = 1.35–1.65 V; VDDE = 3.0–3.6 V; VDDEH = 3.0–3.6 V; VDD33 and VDDSYN = 3.0–3.6 V; and TA = TL to TH.  
2
3
4
This parameter is supplied for reference and guaranteed by design (not tested).  
The output delay, and the rise and fall, are calculated to 20% or 80% of the respective signal.  
The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock, add a maximum of one  
system clock to the output delay.  
5
This parameter is guaranteed by characterization rather than 100% tested.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
26  
Freescale Semiconductor  
Electrical Characteristics  
VDD ÷ 2  
Pad  
internal data  
input signal  
Rising-edge  
out  
Falling-edge  
out  
delay  
delay  
VOH  
Pad  
output  
VOL  
Figure 4. Pad Output Delay  
3.13 AC Timing  
3.13.1 Reset and Configuration Pin Timing  
1
Table 19. Reset and Configuration Pin Timing  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
1
2
3
4
RESET pulse width  
tRPW  
tGPW  
tRCSU  
tRCH  
10  
2
tCYC  
tCYC  
tCYC  
tCYC  
RESET glitch detect pulse width  
PLLCFG, BOOTCFG, WKPCFG, RSTCFG setup time to RSTOUT valid  
PLLCFG, BOOTCFG, WKPCFG, RSTCFG hold time from RSTOUT valid  
10  
0
1
Reset timing specified at: VDDEH = 3.0–5.25 V and TA = TL to TH.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
27  
Freescale Semiconductor  
Electrical Characteristics  
2
RESET  
1
RSTOUT  
3
PLLCFG  
BOOTCFG  
RSTCFG  
WKPCFG  
4
Figure 5. Reset and Configuration Pin Timing  
3.13.2 IEEE 1149.1 Interface Timing  
1
Table 20. JTAG Pin AC Electrical Characteristics  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
1
2
3
4
5
6
7
8
9
TCK cycle time  
tJCYC  
tJDC  
100  
40  
5
60  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width (measured at VDDE ÷ 2)  
TCK rise and fall times (40% to 70%)  
TMS, TDI data setup time  
tTCKRISE  
tTMSS, TDIS  
tTMSH, TDIH  
tTDOV  
tTDOI  
t
20  
20  
50  
50  
50  
TMS, TDI data hold time  
t
25  
0
TCK low to TDO data valid  
TCK low to TDO data invalid  
TCK low to TDO high impedance  
JCOMP assertion time  
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
100  
40  
50  
50  
10 JCOMP setup time to TCK low  
11 TCK falling-edge to output valid  
12 TCK falling-edge to output valid out of high impedance  
13 TCK falling-edge to output high impedance (Hi-Z)  
14 Boundary scan input valid to TCK rising-edge  
15 TCK rising-edge to boundary scan input invalid  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
1
These specifications apply to JTAG boundary scan only. JTAG timing specified at: VDDE = 3.0–3.6 V and TA = TL to TH.  
Refer to Table 21 for Nexus specifications.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
28  
Freescale Semiconductor  
Electrical Characteristics  
TCK  
2
3
3
2
1
Figure 6. JTAG Test Clock Input Timing  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 7. JTAG Test Access Port Timing  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
29  
Freescale Semiconductor  
Electrical Characteristics  
TCK  
10  
JCOMP  
9
Figure 8. JTAG JCOMP Timing  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
30  
Freescale Semiconductor  
Electrical Characteristics  
TCK  
11  
13  
Output  
signals  
12  
Output  
signals  
14  
15  
Input  
signals  
Figure 9. JTAG Boundary Scan Timing  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
31  
Freescale Semiconductor  
Electrical Characteristics  
3.13.3 Nexus Timing  
1
Table 21. Nexus Debug Port Timing  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
1
2
3
4
5
6
7
8
9
MCKO cycle time  
tMCYC  
tMDC  
1 2  
40  
8
tCYC  
%
MCKO duty cycle  
60  
3.0  
3.0  
3.0  
MCKO low to MDO data valid 3  
MCKO low to MSEO data valid 3  
MCKO low to EVTO data valid 3  
EVTI pulse width  
tMDOV  
–1.5  
–1.5  
–1.5  
4.0  
1
ns  
tMSEOV  
tEVTOV  
ns  
ns  
tEVTIPW  
tEVTOPW  
tTCYC  
tTCYC  
tMCYC  
tCYC  
%
EVTO pulse width  
TCK cycle time  
4 4  
TCK duty cycle  
tTDC  
40  
60  
10 TDI, TMS data setup time  
11 TDI, TMS data hold time  
TCK low to TDO data valid  
t
NTDIS, tNTMSS  
8
ns  
t
NTDIH, tNTMSH  
tJOV  
5
ns  
12  
VDDE = 2.25–3.0 V  
DDE = 3.0–3.6 V  
13 RDY valid to MCKO 5  
0
0
12  
10  
ns  
ns  
V
1
JTAG specifications apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of  
MCKO and 50% of the respective signal. Nexus timing specified at VDD = 1.35–1.65 V, VDDE = 2.25–3.6 V,  
VDD33 and VDDSYN = 3.0–3.6 V, TA = TL to TH, and CL = 30 pF with DSC = 0b10.  
2
3
4
The Nexus AUX port runs up to 82 MHz.  
MDO, MSEO, and EVTO data is held valid until the next MCKO low cycle occurs.  
Limit the maximum frequency to approximately 16 MHz (VDDE = 2.25–3.0 V) or 20 MHz (VDDE = 3.0–3.6 V) to meet the timing  
specification for tJOV of [0.2 x tJCYC] as outlined in the IEEE-ISTO 5001-2003 specification.  
5
The RDY pin timing is asynchronous to MCKO and is guaranteed by design to function correctly.  
1
2
MCKO  
4
5
3
MDO  
MSEO  
EVTO  
Output Data Valid  
Figure 10. Nexus Output Timing  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
32  
Freescale Semiconductor  
Electrical Characteristics  
TCK  
10  
11  
TMS, TDI  
12  
TDO  
Figure 11. Nexus TDI, TMS, TDO Timing  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
33  
Freescale Semiconductor  
Electrical Characteristics  
3.13.4 External Bus Interface (EBI) Timing  
Table 22 lists the timing information for the external bus interface (EBI).  
1, 2  
Table 22. External Bus Operation Timing  
External Bus Frequency 3  
Characteristic  
and  
Spec  
Symbol  
Unit  
Notes  
20 MHz  
33 MHz  
40 MHz  
Description  
Min.  
Max  
Min.  
Max  
Min.  
Max  
Signalsaremeasured at  
1
CLKOUT period  
TC  
24.4  
17.5  
14.9  
ns  
50% VDDE  
.
2
3
4
CLKOUT duty cycle  
CLKOUT rise time  
CLKOUT fall time  
tCDC  
tCRT  
tCFT  
tCOH  
45%  
55%  
45%  
55%  
45%  
55%  
TC  
ns  
ns  
4
4
4
4
4
1.06  
1.06  
1.06  
CLKOUT positive edge to  
output signal invalid or  
Hi-Z (hold time)  
EBTS = 0  
EBTS = 1  
ns  
1.5  
1.5  
1.5  
External bus interface  
CS[0:3]  
Hold time selectable via  
SIU_ECCR  
ADDR[8:31]  
DATA[0:15]  
RD_WR  
BDIP  
[EBTS] bit.  
5 5  
WE/BE[0:1]  
OE  
TS  
TA  
CLKOUT positive edge to  
output signal valid  
(output delay)  
tCOV  
10.06  
11.0  
10.06  
11.0  
10.06  
11.0  
EBTS = 0  
EBTS = 1  
ns  
External bus interface  
CS[0:3]  
ADDR[8:31]  
DATA[0:15]  
RD_WR  
BDIP  
Output valid time  
selectable via  
SIU_ECCR  
6 5  
[EBTS] bit.  
WE/BE[0:1]  
OE  
TS  
TA  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
34  
Freescale Semiconductor  
Electrical Characteristics  
1, 2  
Table 22. External Bus Operation Timing  
External Bus Frequency 3  
20 MHz 33 MHz  
(continued)  
Max  
Characteristic  
and  
Spec  
Symbol  
Unit  
Notes  
40 MHz  
Description  
Min.  
Max  
Min.  
Max  
Min.  
Input signal valid to  
CLKOUT positive edge  
(setup time)  
External bus interface  
7 5  
tCIS  
10.0  
10.0  
10.0  
ns  
ADDR[8:31]  
DATA[0:15]  
RD_WR  
TS  
TA  
CLKOUT positive edge to  
input signal invalid (hold  
time)  
External bus interface  
8 5  
tCIH  
1.0  
1.0  
1.0  
ns  
ADDR[8:31]  
DATA[0:15]  
RD_WR  
TS  
TA  
1
2
3
EBI timing specified at VDDE = 1.6–3.6 V (unless stated otherwise), TA = TL to TH, and CL = 30 pF with DSC = 0b10.  
The external bus is limited to half the speed of the internal bus.  
Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM).  
42 MHz parts allow for 40 MHz system clock + 2% FM; 68 MHz parts allow for a 66 MHz system clock + 2% FM, and  
82 MHz parts allow for 80 MHz system clock + 2% FM.  
4
5
6
Refer to fast pad timing in Table 17 and Table 18 (different values for 1.8 V and 3.3 V).  
Available on the 324 package only; not available on the 208 package.  
EBTS = 0 timings are tested and valid at VDDE = 2.25–3.6 V only; EBTS = 1 timings are tested and valid at VDDE = 1.6–3.6 V.  
3.13.5 External Interrupt Timing (IRQ Signals)  
1
Table 23. External Interrupt Timing  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
1
2
3
IRQ pulse-width low  
IRQ pulse-width high  
IRQ edge-to-edge time 2  
tIPWL  
TIPWH  
tICYC  
3
3
6
tCYC  
tCYC  
tCYC  
1
2
IRQ timing specified at: VDDEH = 3.0–5.25 V and TA = TL to TH.  
Applies when IRQ signals are configured for rising-edge or falling-edge events, but not both.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
35  
Freescale Semiconductor  
Electrical Characteristics  
IRQ  
2
1
3
Figure 12. External Interrupt Timing  
3.13.6 eTPU Timing  
1
Table 24. eTPU Timing  
Spec  
Characteristic  
eTPU input channel pulse width  
eTPU output channel pulse width  
Symbol  
Min.  
Max  
Unit  
1
2
tICPW  
4
2 2  
tCYC  
tCYC  
tOCPW  
1
2
eTPU timing specified at: VDDEH = 3.0–5.25 V and TA = TL to TH.  
This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise  
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).  
2
eTPU  
output  
eTPU input  
and TCRCLK  
1
Figure 13. eTPU Timing  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
36  
Freescale Semiconductor  
Electrical Characteristics  
3.13.7 DSPI Timing  
1, 2  
Table 25. DSPI Timing  
40 MHz  
66 MHz  
Min.  
80 MHz  
Unit  
Spec  
Characteristic  
SCK cycle time 3, 4  
PCS to SCK delay5  
After SCK delay6  
SCK duty cycle  
Symbol  
Min.  
Max  
Max  
Min.  
Max  
1
2
3
tSCK  
tCSC  
tASC  
48.8 ns  
46  
5.8 ms  
28.4 ns  
26  
3.5 ms  
24.4 ns  
22  
2.9 ms  
ns  
ns  
45  
25  
21  
(tSCK ÷ 2) (tSCK ÷ 2)  
(tSCK ÷ 2)  
– 2 ns  
(tSCK ÷ 2) (tSCK ÷ 2) (tSCK ÷ 2)  
4
5
tSDC  
tA  
ns  
ns  
– 2 ns  
+ 2 ns  
+ 2 ns  
– 2 ns  
+ 2 ns  
Slave access time  
(SS active to SOUT driven)  
25  
25  
25  
Slave SOUT disable time  
(SS inactive to SOUT Hi-Z, or  
invalid)  
6
tDIS  
25  
25  
25  
ns  
7
8
PCSx to PCSS time  
PCSS to PCSx time  
tPCSC  
tPASC  
tSUI  
4
5
4
5
4
5
ns  
ns  
Data setup time for inputs  
Master (MTFE = 0)  
20  
2
–4  
20  
20  
2
6
20  
2
8
ns  
ns  
ns  
ns  
9
Slave  
Master (MTFE = 1, CPHA = 0)7  
Master (MTFE = 1, CPHA = 1)  
20  
20  
Data hold time for inputs  
Master (MTFE = 0)  
tHI  
tSUO  
tHO  
–4  
7
45  
–4  
–4  
7
25  
–4  
–4  
7
21  
–4  
ns  
ns  
ns  
ns  
10  
11  
12  
Slave  
Master (MTFE = 1, CPHA = 0)7  
Master (MTFE = 1, CPHA = 1)  
Data valid (after SCK edge)  
Master (MTFE = 0)  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
5
25  
45  
5
5
25  
25  
5
5
25  
21  
5
ns  
ns  
ns  
ns  
Data hold time for outputs  
Master (MTFE = 0)  
–5  
5.5  
8
–5  
5.5  
4
–5  
5.5  
3
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
–5  
–5  
–5  
1
All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type M or MH. DSPI signals using pad types of  
S or SH have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3.0–5.25 V, TA = TL to TH, and  
CL = 50 pF with SRC = 0b11.  
2
3
Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM).  
42 MHz parts allow for 40 MHz system clock + 2% FM; 68 MHz parts allow for a 66 MHz system clock + 2% FM, and  
82 MHz parts allow for 80 MHz system clock + 2% FM.  
The minimum SCK cycle time restricts the baud rate selection for the given system clock rate.  
These numbers are calculated based on two MPC55xx devices communicating over a DSPI link.  
4
5
6
7
The actual minimum SCK cycle time is limited by pad performance.  
The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK].  
The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].  
This number is calculated using the SMPL_PT field in DSPI_MCR set to 0b10.  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
37  
Freescale Semiconductor  
Electrical Characteristics  
2
3
PCSx  
1
4
SCK output  
(CPOL=0)  
4
SCK output  
(CPOL=1)  
10  
9
Last data  
SIN  
First data  
Data  
Data  
12  
11  
First data  
Last data  
SOUT  
Figure 14. DSPI Classic SPI Timing—Master, CPHA = 0  
PCSx  
SCK output  
(CPOL=0)  
10  
SCK output  
(CPOL=1)  
9
Data  
Data  
First data  
Last data  
SIN  
12  
11  
SOUT  
Last data  
First data  
Figure 15. DSPI Classic SPI Timing—Master, CPHA = 1  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
38  
Freescale Semiconductor  
Electrical Characteristics  
3
2
SS  
1
4
SCK input  
(CPOL=0)  
4
SCK input  
(CPOL=1)  
5
11  
12  
Data  
6
First data  
Last data  
SOUT  
9
10  
First data  
Data  
Last data  
SIN  
Figure 16. DSPI Classic SPI Timing—Slave, CPHA = 0  
SS  
SCK input  
(CPOL=0)  
SCK input  
(CPOL=1)  
11  
5
6
12  
Last data  
Data  
Data  
SOUT  
SIN  
First data  
10  
9
Last data  
First data  
Figure 17. DSPI Classic SPI Timing—Slave, CPHA = 1  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
39  
Freescale Semiconductor  
Electrical Characteristics  
3
PCSx  
4
1
2
SCK output  
(CPOL=0)  
4
SCK output  
(CPOL=1)  
9
10  
SIN  
First data  
Last data  
Last data  
Data  
12  
11  
SOUT  
First data  
Data  
Figure 18. DSPI Modified Transfer Format Timing—Master, CPHA = 0  
PCSx  
SCK output  
(CPOL=0)  
SCK output  
(CPOL=1)  
10  
9
SIN  
Last data  
First data  
Data  
12  
Data  
11  
First data  
Last data  
SOUT  
Figure 19. DSPI Modified Transfer Format Timing—Master, CPHA = 1  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
40  
Freescale Semiconductor  
Electrical Characteristics  
3
2
SS  
1
SCK input  
(CPOL=0)  
4
4
SCK input  
(CPOL=1)  
12  
11  
6
5
First data  
9
Data  
Data  
Last data  
10  
SOUT  
Last data  
First data  
SIN  
Figure 20. DSPI Modified Transfer Format Timing—Slave, CPHA = 0  
SS  
SCK input  
(CPOL=0)  
SCK input  
(CPOL=1)  
11  
5
6
12  
Last data  
First data  
10  
Data  
Data  
SOUT  
SIN  
9
First data  
Last data  
Figure 21. DSPI Modified Transfer Format Timing—Slave, CPHA = 1  
8
7
PCSS  
PCSx  
Figure 22. DSPI PCS Strobe (PCSS) Timing  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
41  
Freescale Semiconductor  
Electrical Characteristics  
3.13.8 eQADC SSI Timing  
Table 26. EQADC SSI Timing Characteristics  
Spec  
Rating  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
1, 2  
2
3
4
5
6
7
8
FCK period (tFCK = 1 ÷ fFCK  
Clock (FCK) high time  
Clock (FCK) low time  
SDS lead / lag time  
)
tFCK  
2
17  
tSYS_CLK  
ns  
tFCKHT  
tFCKLT  
tSDS_LL  
tSDO_LL  
tEQ_SU  
tEQ_HO  
tSYS_CLK 6.5  
9 × (tSYS_CLK + 6.5)  
tSYS_CLK 6.5  
8 × (tSYS_CLK + 6.5)  
ns  
–7.5  
–7.5  
22  
+7.5  
+7.5  
ns  
SDO lead / lag time  
ns  
EQADC data setup time (inputs)  
EQADC data hold time (inputs)  
ns  
1
ns  
1
2
SS timing specified at VDDEH = 3.0–5.25 V, TA = TL to TH, and CL = 25 pF with SRC = 0b11. Maximum operating frequency  
varies depending on track delays, master pad delays, and slave pad delays.  
FCK duty cycle is not 50% when it is generated through the division of the system clock by an odd number.  
2
3
4
FCK  
SDS  
5
6
4
5
25th  
1st (MSB)  
2nd  
26th  
SDO  
External device data sample at  
FCK falling-edge  
8
7
1st (MSB) 2nd  
25th  
26th  
SDI  
EQADC data sample at  
FCK rising-edge  
Figure 23. EQADC SSI Timing  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
42  
Freescale Semiconductor  
Mechanicals  
4
Mechanicals  
4.1  
MPC5533 208 MAP BGA Pinout  
Figure 24 is a pinout for the MPC5533 208 MAP BGA package.  
NOTES  
V
and V  
are connected internally on the 208-ball package and  
DDEH10  
DDEH6  
are listed as V  
.
DDEH6  
The MPC5500 devices are pin compatible for software portability and use  
the primary function names to label the pins in the BGA diagram. Although  
some devices do not support all the primary functions shown in the BGA  
diagram, the muxed and GPIO signals on those pins remain available. See  
the signals chapter in the device reference manual for the signal muxing.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
VSSA1 AN1  
AN5  
VRH  
VRL  
AN27 VSSA0 AN12 MDO2 MDO0 VDD33 VSS  
VSS VDD  
VSS MSEO0 TCK  
A
B
C
D
E
F
VSS  
AN9  
AN11 VDDA1  
AN38 AN21  
A
B
C
D
E
F
REF  
BYPC  
AN22 AN25 AN28 VDDA0 AN13 MDO3 MDO1  
VDD  
VSS  
AN0  
AN4  
AN3  
AN6  
AN7  
AN23 AN32 AN33 AN14 AN15  
VDDEH  
VSTBY VDD  
VSS  
VDD  
AN37  
AN17 AN34 AN16  
AN24 AN30 AN31 AN35  
VSS  
TMS  
TDI  
EVTO TEST  
EVTI MSEO1  
VDD33 AN39  
ETPUA ETPUA  
VSS  
VDD  
AN36  
AN18  
AN2  
9
VDDE7  
30  
31  
ETPUA ETPUA ETPUA  
28 29 26  
VDDEH  
6
TDO MCKO JCOMP  
ETPUA ETPUA ETPUA ETPUA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SOUTB PCSB3 SINB PCSB0  
PCSA3 PCSB4 PCSB2 PCSB1  
PCSB5 TXDA PCSA2 SCKB  
G
H
J
G
H
J
24  
27  
25  
21  
ETPUA ETPUA ETPUA ETPUA  
23 22 17 18  
ETPUA ETPUA ETPUA ETPUA  
20 19 14 13  
ETPUA ETPUA ETPUA VDDEH  
CNTXC RXDA RSTOUT VPP  
WKP  
K
L
K
L
16  
15  
7
1
ETPUA ETPUA ETPUA TCRCLK  
TXDB CNRXC  
RESET  
12 11  
6
A
CFG  
ETPUA ETPUA ETPUA ETPUA  
PLL  
BOOT  
VSS  
SYN  
RXDB  
M
N
P
R
T
M
N
P
R
T
10  
9
1
5
CFG0 CFG1  
ETPUA ETPUA ETPUA  
EMIOS EMIOS VDDEH EMIOS EMIOS  
VRC  
CTL  
PLL  
CFG1  
VDD33  
VDDE2  
VDD33 VSS  
CNTXA VDD  
EXTAL  
VSS  
VDD  
8
4
0
2
10  
4
12  
21  
ETPUA ETPUA  
GPIO  
207  
EMIOS EMIOS EMIOS EMIOS EMIOS  
VSS VRC33 XTAL  
VSS  
VDD  
3
2
6
8
16 17 22  
GPIO EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
206  
VDD  
CNRXA CNRXB VDD  
VSS  
CS0  
VSS  
VDD  
4
3
9
11  
14  
19  
23  
SYN  
VSS  
16  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
0
4
ENG  
CNTXB VDDE5  
CLK  
VDD  
15  
VSS  
1
VDD  
2
OE  
3
1
5
5
6
7
7
13  
8
15  
9
18  
10  
20  
11  
12  
13  
14  
Figure 24. MPC5533 208 Package  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
43  
Freescale Semiconductor  
Mechanicals  
4.2  
MPC5533 324 PBGA Pinout  
Figure 25 is a pinout for the MPC5533 324 PBGA package.  
NOTE  
The MPC5500 devices are pin compatible for software portability and use  
the primary function names to label the pins in the BGA diagram. Although  
some devices do not support all the primary functions shown in the BGA  
diagram, the muxed and GPIO signals on those pins remain available. See  
the signals chapter in the device reference manual for the signal muxing.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
AN35 VSSA0 AN12 MDO11 MDO10 MDO8  
AN32 VSSA0 AN13 MDO9 MDO7 MDO4 MDO0  
15  
16  
17  
18  
19  
20  
21  
22  
VSSA1 AN1  
AN5  
VRH  
VRL  
AN27 AN28  
AN26 AN31  
VDD VDD33 VSS  
A
B
VSS  
VDD VSTBY AN37  
AN11 VDDA1  
A
REF  
BYPC  
AN16  
AN20  
AN9  
AN0  
AN4  
AN3  
AN23  
AN22  
AN6  
VSS VDDE7  
VDD33 VSS  
VDD  
VSS  
AN36  
VDD  
VSS  
AN39  
AN8  
AN19  
AN17  
AN38  
B
ETPUA ETPUA  
30  
AN21  
AN7  
AN2  
AN25 AN30 AN33 VDDA0 AN14 MDO5 MDO2 MDO1  
VDDEH  
VSS VDDE7 VDD  
C
D
E
C
D
E
31  
ETPUA ETPUA ETPUA  
28 29 26  
AN10 AN18  
AN24 AN29  
AN34  
AN15 MDO6 MDO3  
VSS VDDE7 TCK  
VDDE7 TMS TDO  
VDDE7 JCOMP EVTI  
TDI  
VDD  
9
ETPUA ETPUA ETPUA ETPUA  
24 27 25 21  
TEST  
EVTO  
ETPUA ETPUA ETPUA ETPUA  
23  
F
F
22  
17  
18  
ETPUA ETPUA ETPUA ETPUA  
RDY MCKO MSEO0 MSEO1  
G
H
J
G
H
J
20  
19  
14  
13  
ETPUA ETPUA ETPUA VDDEH  
VDDEH GPIO GPIO  
SINB  
16 15 10  
1
10  
203  
204  
ETPUA ETPUA ETPUA ETPUA  
12 11  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDE7  
SOUTB PCSB3 PCSB0 PCSB1  
PCSA3 PCSB4 SCKB PCSB2  
PCSB5 SOUTA SINA SCKA  
PCSA1 PCSA0 PCSA2 VPP  
PCSA4 TXDA PCSA5 VFLASH  
6
9
ETPUA ETPUA ETPUA ETPUA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
K
8
7
2
5
ETPUA ETPUA ETPUA ETPUA  
L
L
4
3
0
1
TCRCLK  
A
VDDE2 VDDE2 VSS  
M
N
P
BDIP  
CS1  
CS0  
M
N
P
VSS  
VSS  
VSS VDDE2 VSS  
VSS VDDE2 VSS  
CS3  
CS2  
WE1  
WE0  
ADDR ADDR  
RST  
CNTXC RXDA RSTOUT  
CFG  
RD_WR  
VDDE2  
VDD33  
TA  
16  
17  
ADDR ADDR  
WKP  
CNRXC TXDB RESET  
CFG  
R
T
R
T
18  
19  
ADDR ADDR ADDR  
20 21 12  
BOOT  
CFG1  
VSS  
SYN  
VRC  
VSS  
RXDB  
TS  
NC  
Note:  
No connect. Reserved (W18 & Y19 are shorted to each other)  
ADDR ADDR ADDR ADDR  
VDDEH PLL  
BOOT  
EXTAL  
XTAL  
U
V
U
V
22  
23  
13  
14  
6
CFG1 CFG0  
ADDR ADDR ADDR ADDR  
VRC  
CTL  
PLL  
CFG0  
VDD  
24  
25  
15  
31  
ADDR  
26  
ADDR  
30  
DATA DATA DATA EMIOS EMIOS VDDEH EMIOS EMIOS  
VDD  
SYN  
VDDE2 VDD33 VDDE2  
VDDE5  
NC  
VSS  
NC  
VDD VRC33  
VSS  
W
Y
VDDE2  
VSS  
VDD  
W
Y
11  
12  
14  
2
8
4
12  
21  
ADDR ADDR  
28  
DATA DATA DATA GPIO DATA DATA EMIOS EMIOS EMIOS EMIOS EMIOS  
VDDE2  
CNTXA VDDE5  
VDD VDD33  
VSS  
VDD  
VDD  
27  
8
9
10  
207  
13  
15  
6
10  
15  
13  
17  
16  
22  
ADDR  
29  
DATA  
1
GPIO DATA DATA  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
VDDE2  
VDDE2  
VDDE2  
CNRXA VDDE5 CLKOUT VSS  
VDD  
AA  
VSS  
AA  
AB  
206  
5
7
OE  
9
3
5
9
19  
23  
DATA DATA DATA DATA DATA  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
ENG  
CNTXB CNRXB VDDE5  
CLK  
VSS  
22  
AB VSS  
1
VDD VDDE2  
0
2
3
4
6
0
1
4
7
11  
14  
18  
20  
2
3
4
5
6
7
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Figure 25. MPC5533 324 Package  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
44  
Freescale Semiconductor  
Mechanicals  
4.3  
MPC5533 208-Pin Package Dimensions  
The package drawings of the MPC5533 208-pin MAP BGA are shown in Figure 26.  
Figure 26. MPC5533 208-Pin Package  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
45  
Freescale Semiconductor  
Mechanicals  
Figure 26. MPC5533 208 MAP BGA Package (continued)  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
46  
Freescale Semiconductor  
Mechanicals  
4.4  
MPC5533 324-Pin Package Dimensions  
The package drawings of the MPC5533 324-pin TEPBGA package are shown in Figure 27.  
Figure 27. MPC5533 324 TEPBGA Package  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
47  
Freescale Semiconductor  
Mechanicals  
Figure 27. MPC5533 324 TEPBGA Package (continued)  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
48  
Freescale Semiconductor  
Revision History for the MPC5533 Data Sheet  
5
Revision History for the MPC5533 Data Sheet  
Table 27 provides a revision history of the MPC5533 Data Sheet.  
Table 27. Revision History for the MPC5533 Data Sheet  
Substantive Change(s)  
Version  
Initial version for MPC5533.  
Rev. 0.0  
MPC5533 Microcontroller Data Sheet, Rev. 0.0  
49  
Freescale Semiconductor  
How to Reach Us:  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
Semiconductor was negligent regarding the design or manufacture of the part.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
© Freescale Semiconductor, Inc. 2008. All rights reserved.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MPC5533  
Rev. 0.0  
10 Oct 2008  

相关型号:

SPC5533MVZ80R

RISC Microcontroller
NXP

SPC5534MVZ80

MPC5534 Microcontroller Data Sheet
FREESCALE

SPC5553MVM132

SPC5553MVM132
NXP

SPC5553MVZ132

Freescale 32-bit MCU, Power Arch, 1.5MB Flash, 132MHz, -40/+125degC, Automotive Grade, PBGA 324
NXP

SPC5553MVZ132R

SPC5553MVZ132R
NXP

SPC5553MVZ80

Freescale 32-bit MCU, Power Arch, 1.5MB Flash, 80MHz, -40/+125degC, Automotive Grade, PBGA 324
NXP

SPC5553MZP80

SPC5553MZP80
NXP

SPC5553MZP80R

SPC5553MZP80R
NXP

SPC5554MVR132

Freescale 32-bit MCU, Power Arch core, 2MB Flash, 132MHz, -40/+125degC, Automotive Grade, PBGA 416
NXP

SPC5554MZP80

SPC5554MZP80
NXP

SPC5554MZP80R2

SPC5554MZP80R2
NXP

SPC5561MVZ112R

Microcontroller Data Sheet
NXP