SPC5604CFMMG6R [NXP]

MPC5604B/C Microcontroller Data Sheet;
SPC5604CFMMG6R
型号: SPC5604CFMMG6R
厂家: NXP    NXP
描述:

MPC5604B/C Microcontroller Data Sheet

PC 微控制器
文件: 总109页 (文件大小:1086K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
Document Number: MPC5604BC  
Rev. 14, 11/2017  
MPC5604B/C  
MPC5604B/C  
Microcontroller Data Sheet  
208 MAPBGA (17 x 17 x 1.7 mm)  
144 LQFP (20 x 20 x 1.4 mm)  
100 LQFP (14 x 14 x 1.4 mm)  
64 LQFP (10 x 10 x 1.4 mm)  
Features  
• Up to 6 enhanced full CAN (FlexCAN) modules with  
configurable buffers  
• Single issue, 32-bit CPU core complex (e200z0)  
– Compliant with the Power Architecture® embedded  
category  
• 1 inter IC communication interface (I2C) module  
• Up to 123 configurable general purpose pins supporting  
input and output operations (package dependent)  
• Real Time Counter (RTC) with clock source from128 kHz  
or 16 MHz internal RC oscillator supporting autonomous  
wakeup with 1 ms resolution with max timeout of 2  
seconds  
– Includes an instruction set enhancement allowing  
variable length encoding (VLE) for code size footprint  
reduction. With the optional encoding of mixed 16-bit  
and 32-bit instructions, it is possible to achieve  
significant code size footprint reduction.  
• Up to 512 KB on-chip code flash supported with the flash  
controller and ECC  
• Up to 6 periodic interrupt timers (PIT) with 32-bit counter  
resolution  
• 64 (4 × 16) KB on-chip data flash memory with ECC  
• Up to 48 KB on-chip SRAM with ECC  
• Memory protection unit (MPU) with 8 region descriptors  
and 32-byte region granularity  
• Interrupt controller (INTC) with 148 interrupt vectors,  
including 16 external interrupt sources and 18 external  
interrupt/wakeup sources  
• 1 System Module Timer (STM)  
• Nexus development interface (NDI) per IEEE-ISTO  
5001-2003 Class Two Plus standard  
• Device/board boundary Scan testing supported with per  
Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1)  
• On-chip voltage regulator (VREG) for regulation of  
input supply for all internal levels  
• Frequency modulated phase-locked loop (FMPLL)  
• Crossbar switch architecture for concurrent access to  
peripherals, flash memory, or RAM from multiple bus  
masters  
• Boot assist module (BAM) supports internal flash  
programming via a serial link (CAN or SCI)  
• Timer supports input/output channels providing a range of  
16-bit input capture, output compare, and pulse width  
modulation functions (eMIOS-lite)  
• 10-bit analog-to-digital converter (ADC)  
• 3 serial peripheral interface (DSPI) modules  
• Up to 4 serial communication interface (LINFlex)  
modules  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Table of Contents  
1, Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2.19.1 Program/Erase characteristics . . . . . . . . . . . . . 59  
2.19.2 Flash power supply DC characteristics . . . . . . 60  
2.19.3 Start-up/Switch-off timings . . . . . . . . . . . . . . . . 61  
2.20 Electromagnetic compatibility (EMC) characteristics. . 61  
2.20.1 Designing hardened software to avoid noise  
problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
2.20.2 Electromagnetic interference (EMI) . . . . . . . . . 62  
2.20.3 Absolute maximum ratings (electrical sensitivity)62  
2.21 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
2.22 Slow external crystal oscillator (32 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
2.23 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 68  
2.24 Fast internal RC oscillator (16 MHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
2.25 Slow internal RC oscillator (128 kHz) electrical  
characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
1.1 Document overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . .7  
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
2.2 Pad configuration during reset phases . . . . . . . . . . . . .11  
2.3 Voltage supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.4 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.5 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.6 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.7 Nexus 2+ pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2.8 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . .31  
2.9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.10 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .31  
2.11 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
2.11.1 NVUSRO[PAD3V5V] field description . . . . . . . .32  
2.11.2 NVUSRO[OSCILLATOR_MARGIN] field description  
32  
2
2.26 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . 72  
2.26.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
2.26.2 Input impedance and ADC accuracy . . . . . . . . 72  
2.26.3 ADC electrical characteristics . . . . . . . . . . . . . 77  
2.27 On-chip peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
2.27.1 Current consumption . . . . . . . . . . . . . . . . . . . . 79  
2.27.2 DSPI characteristics. . . . . . . . . . . . . . . . . . . . . 80  
2.27.3 Nexus characteristics . . . . . . . . . . . . . . . . . . . . 86  
2.27.4 JTAG characteristics. . . . . . . . . . . . . . . . . . . . . 87  
Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
3.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 88  
3.1.1 64 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
3.1.2 100 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
3.1.3 144 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
3.1.4 208 MAPBGA. . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
2.11.3 NVUSRO[WATCHDOG_EN] field description . .32  
2.12 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .33  
2.13 Recommended operating conditions . . . . . . . . . . . . . .34  
2.14 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .36  
2.14.1 Package thermal characteristics . . . . . . . . . . . .36  
2.14.2 Power considerations. . . . . . . . . . . . . . . . . . . . .37  
2.15 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . .37  
2.15.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
2.15.2 I/O input DC characteristics. . . . . . . . . . . . . . . .38  
2.15.3 I/O output DC characteristics. . . . . . . . . . . . . . .39  
2.15.4 Output pin transition times. . . . . . . . . . . . . . . . .42  
2.15.5 I/O pad current specification . . . . . . . . . . . . . . .42  
2.16 RESET electrical characteristics. . . . . . . . . . . . . . . . . .48  
2.17 Power management electrical characteristics. . . . . . . .51  
2.17.1 Voltage regulator electrical characteristics . . . .51  
2.17.2 Low voltage detector electrical characteristics .56  
2.18 Power consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
2.19 Flash memory electrical characteristics . . . . . . . . . . . .59  
3
4
5
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
2
NXP Semiconductors  
1
Introduction  
1.1  
Document overview  
This document describes the features of the family and options available within the family members, and highlights important electrical and physical  
characteristics of the device. To ensure a complete understanding of the device functionality, refer also to the device reference manual and errata sheet.  
1.2  
Description  
The MPC5604B/C is a family of next generation microcontrollers built on the Power Architecture® embedded category.  
The MPC5604B/C family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family  
of automotive-focused products designed to address the next wave of body electronics applications within the vehicle. The advanced and cost-efficient host  
processor core of this automotive controller family complies with the Power Architecture embedded category and only implements the VLE (variable-length  
encoding) APU, providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power  
consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating  
systems and configuration code to assist with users implementations.  
1
Table 1. MPC5604B/C device comparison  
Device  
Feature  
MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC5604  
02BxLH 02BxLL 02BxLQ 02CxLH 02CxLL 03BxLH 03BxLL 03BxLQ 03CxLH 03CxLL 04BxLH 04BxLL 04BxLQ 04CxLH 04CxLL BxMG  
CPU  
e200z0h  
Execution  
speed2  
Static – up to 64 MHz  
Code Flash  
Data Flash  
RAM  
256 KB  
36 ch  
384 KB  
512 KB  
64 KB (4 × 16 KB)  
40 KB  
24 KB  
28 ch  
32 KB  
28 KB  
28 ch  
32 KB  
28 ch  
48 KB  
28 ch  
MPU  
8-entry  
ADC (10-bit)  
CTU  
12 ch  
8 ch  
28 ch  
12 ch  
36 ch  
8 ch  
Yes  
28 ch  
12 ch  
36 ch  
8 ch  
36 ch  
Total timer  
12 ch, 28 ch, 56 ch, 12 ch, 28 ch, 12 ch, 28 ch, 56 ch, 12 ch, 28 ch, 12 ch, 28 ch, 56 ch, 12 ch, 28 ch,  
16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit  
56 ch,  
16-bit  
I/O3 eMIOS  
• PWM+MC 2 ch  
+ IC/OC4  
5 ch  
10 ch  
2 ch  
5 ch  
2 ch  
5 ch  
10 ch  
2 ch  
5 ch  
2 ch  
5 ch  
10 ch  
2 ch  
5 ch  
10 ch  
1
Table 1. MPC5604B/C device comparison (continued)  
Device  
Feature  
MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC56 MPC5604  
02BxLH 02BxLL 02BxLQ 02CxLH 02CxLL 03BxLH 03BxLL 03BxLQ 03CxLH 03CxLL 04BxLH 04BxLL 04BxLQ 04CxLH 04CxLL BxMG  
• PWM +  
IC/OC4  
10 ch  
20 ch  
40 ch  
10 ch  
20 ch  
10 ch  
20 ch  
40 ch  
10 ch  
20 ch  
10 ch  
20 ch  
40 ch  
10 ch  
20 ch  
40 ch  
• IC/OC4  
3 ch  
35  
6 ch  
3 ch  
3 ch  
6 ch  
3 ch  
4
3 ch  
6 ch  
3 ch  
6 ch  
SCI (LINFlex)  
SPI (DSPI)  
2
3
2
5
3
6
2
3
2
5
3
2
3
2
5
3
6
CAN  
26  
37  
6
37  
(FlexCAN)  
I2C  
1
32 kHz  
Yes  
oscillator  
GPIO8  
45  
64  
79  
123  
144  
45  
64  
79  
45  
64  
79  
123  
JTAG  
144  
45  
64  
79  
45  
64  
79  
123  
144  
45  
64  
79  
123  
Debug  
Nexus2+  
Package  
100  
100  
100  
100  
100  
100  
208  
LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP LQFP MAPBGA9  
1
Feature set dependent on selected peripheral multiplexing—table shows example implementation.  
Based on 125 °C ambient operating temperature.  
2
3
4
5
6
7
8
9
See the eMIOS section of the device reference manual for information on the channel configuration and functions.  
IC – Input Capture; OC – Output Compare; PWM – Pulse Width Modulation; MC – Modulus counter.  
SCI0, SCI1 and SCI2 are available. SCI3 is not available.  
CAN0, CAN1 are available. CAN2, CAN3, CAN4 and CAN5 are not available.  
CAN0, CAN3 and either CAN1 or CAN4 are available. CAN2, CAN5 and CAN6 are not available  
I/O count based on multiplexing with peripherals.  
208 MAPBGA available only as development package for Nexus2+.  
Introduction  
1.3  
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5604B/C device series.  
SRAM  
48 KB  
Code Flash Data Flash  
512 KB 64 KB  
JTAG  
JTAG port  
Instructions  
Nexus port  
SRAM  
Flash  
controller  
e200z0h  
Nexus 2+  
(Master)  
Nexus  
controller  
Data  
NMI  
(Slave)  
(Master)  
SIUL  
Voltage  
regulator  
(Slave)  
Interrupt requests  
from peripheral  
blocks  
(Slave)  
NMI  
MPU  
registers  
INTC  
Clocks  
CMU  
FMPLL  
RTC  
MC_RGM MC_CGM MC_ME MC_PCU  
SSCM  
STM  
PIT  
BAM  
SWT  
ECSM  
Peripheral bridge  
SIUL  
36 Ch.  
ADC  
2 x  
eMIOS  
4 x  
LINFlex  
3 x  
DSPI  
6 x  
FlexCAN  
2
CTU  
I C  
Reset control  
Interrupt  
request  
External  
interrupt  
request  
IMUX  
WKPU  
GPIO and  
pad control  
Interrupt  
request with  
wakeup  
. . .  
. . .  
. . .  
. . .  
. . .  
I/O  
functionality  
Legend:  
ADC  
BAM  
Analog-to-Digital Converter  
Boot Assist Module  
MC_ME  
MC_PCU Power Control Unit  
MC_RGM Reset Generation Module  
Mode Entry Module  
FlexCAN Controller Area Network  
CMU  
CTU  
DSPI  
Clock Monitor Unit  
Cross Triggering Unit  
Deserial Serial Peripheral Interface  
MPU  
Nexus  
NMI  
Memory Protection Unit  
Nexus Development Interface (NDI) Level  
Non-Maskable Interrupt  
eMIOS  
FMPLL  
I C  
IMUX  
INTC  
JTAG  
Enhanced Modular Input Output System  
Frequency-Modulated Phase-Locked Loop  
Inter-integrated Circuit Bus  
Internal Multiplexer  
Interrupt Controller  
PIT  
RTC  
SIUL  
SRAM  
SSCM  
STM  
Periodic Interrupt Timer  
Real-Time Clock  
System Integration Unit Lite  
Static Random-Access Memory  
System Status Configuration Module  
System Timer Module  
2
JTAG controller  
LINFlex  
ECSM  
Serial Communication Interface (LIN support)  
Error Correction Status Module  
SWT  
WKPU  
Software Watchdog Timer  
Wakeup Unit  
MC_CGM Clock Generation Module  
Figure 1. Block diagram  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
5
Introduction  
Table 2 summarizes the functions of all blocks present in the MPC5604B/C series of microcontrollers.  
Please note that the presence and number of blocks vary by device and package.  
Table 2. MPC5604B/C series block summary  
Block  
Function  
Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter  
Boot assist module (BAM)  
A block of read-only memory containing VLE code which is executed according  
to the boot mode of the device  
Clock monitor unit (CMU)  
Cross triggering unit (CTU)  
Monitors clock source (internal and external) integrity  
Enables synchronization of ADC conversions with a timer event from the eMIOS  
or from the PIT  
Deserial serial peripheral interface Provides a synchronous serial interface for communication with external devices  
(DSPI)  
Error Correction Status Module  
(ECSM)  
Provides a myriad of miscellaneous control functions for the device including  
program-visible information about configuration and revision levels, a reset status  
register, wakeup control for exiting sleep modes, and optional features such as  
information on memory errors reported by error-correcting codes  
Enhanced Direct Memory Access Performs complex data transfers with minimal intervention from a host processor  
(eDMA)  
via “n” programmable channels.  
Enhanced modular input output  
system (eMIOS)  
Provides the functionality to generate or measure events  
Flash memory  
Provides non-volatile storage for program code, constants and variables  
FlexCAN (controller area network) Supports the standard CAN communications protocol  
Frequency-modulated  
Generates high-speed system clocks and supports programmable frequency  
phase-locked loop (FMPLL)  
modulation  
Internal multiplexer (IMUX) SIU  
subblock  
Allows flexible mapping of peripheral interface on the different pins of the device  
Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of  
data exchange between devices  
Interrupt controller (INTC)  
JTAG controller  
Provides priority-based preemptive scheduling of interrupt requests  
Provides the means to test chip functionality and connectivity while remaining  
transparent to system logic when not in test mode  
LINFlex controller  
Manages a high number of LIN (Local Interconnect Network protocol) messages  
efficiently with a minimum of CPU load  
Clock generation module  
(MC_CGM)  
Provides logic and control required for the generation of system and peripheral  
clocks  
Mode entry module (MC_ME)  
Provides a mechanism for controlling the device operational mode and mode  
transition sequences in all functional states; also manages the power control unit,  
reset generation module and clock generation module, and holds the  
configuration, control and status registers accessible for applications  
Power control unit (MC_PCU)  
Reduces the overall power consumption by disconnecting parts of the device  
from the power supply via a power switching device; device components are  
grouped into sections called “power domains” which are controlled by the PCU  
Reset generation module  
(MC_RGM)  
Centralizes reset sources and manages the device reset sequence of the device  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
6
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 2. MPC5604B/C series block summary (continued)  
Block  
Function  
Memory protection unit (MPU)  
Provides hardware access control for all memory references generated in a  
device  
Nexus development interface  
(NDI)  
Provides real-time development support capabilities in compliance with the  
IEEE-ISTO 5001-2003 standard  
Periodic interrupt timer (PIT)  
Real-time counter (RTC)  
Produces periodic interrupts and triggers  
A free running counter used for time keeping applications, the RTC can be  
configured to generate an interrupt at a predefined interval independent of the  
mode of operation (run mode or low-power mode)  
System integration unit (SIU)  
Provides control over all the electrical pad controls and up 32 ports with 16 bits  
of bidirectional, general-purpose input and output signals and supports up to 32  
external interrupts with trigger event configuration  
Static random-access memory  
(SRAM)  
Provides storage for program code, constants, and variables  
System status configuration  
module (SSCM)  
Provides system configuration and status data (such as memory size and status,  
device mode and security status), device identification data, debug status port  
enable and selection, and bus and peripheral abort enable/disable  
System timer module (STM)  
Provides a set of output compare events to support AUTOSAR (Automotive Open  
System Architecture) and operating system tasks  
Software watchdog timer (SWT) Provides protection from runaway code  
Wakeup unit (WKPU)  
The wakeup unit supports up to 18 external sources that can generate interrupts  
or wakeup events, of which 1 can cause non-maskable interrupt requests or  
wakeup events.  
Crossbar (XBAR) switch  
Supports simultaneous connections between two master ports and three slave  
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus  
width.  
2
Package pinouts and signal descriptions  
2.1  
Package pinouts  
The available LQFP pinouts and the 208 MAPBGA ballmap are provided in the following figures. For pin signal descriptions,  
please refer to the device reference manual.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
7
Package pinouts and signal descriptions  
48 PA[11]  
47 PA[10]  
46 PA[9]  
PB[3]  
PC[9]  
PA[2]  
PA[1]  
PA[0]  
1
2
3
45 PA[8]  
4
44 PA[7]  
43 PA[3]  
5
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PC[10]  
6
42 PB[15]  
41 PB[14]  
40 PB[13]  
39 PB[12]  
38 PB[11]  
37 PB[7]  
7
8
64 LQFP  
Top view  
9
10  
11  
12  
13  
14  
15  
16  
36 PB[6]  
35 PB[5]  
34 VDD_HV_ADC  
33 VSS_HV_ADC  
PB[0]  
PB[1]  
PC[6]  
Figure 2. MPC560xB LQFP 64-pin configuration  
48 PA[11]  
47 PA[10]  
46 PA[9]  
PB[3]  
PC[9]  
1
2
PA[2]  
3
45 PA[8]  
PA[1]  
PA[0]  
4
44 PA[7]  
5
43 PF[14]  
42 PF[15]  
41 PG[0]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PC[10]  
PB[0]  
6
7
8
64 LQFP  
Top view  
40 PG[1]  
39 PA[3]  
38 PB[15]  
37 PB[14]  
36 PB[11]  
35 PB[7]  
9
10  
11  
12  
13  
14  
15  
16  
PB[1]  
PC[6]  
34 VDD_HV_ADC  
33 VSS_HV_ADC  
Figure 3. MPC560xC LQFP 64-pin configuration  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
8
NXP Semiconductors  
Package pinouts and signal descriptions  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PA[2]  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PA[11]  
PA[10]  
PA[9]  
PA[8]  
PA[7]  
VDD_HV  
VSS_HV  
PA[3]  
9
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
PD[12]  
PB[11]  
PD[11]  
PD[10]  
PD[9]  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC  
VSS_HV_ADC  
PE[9]  
PE[10]  
PA[0]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PC[11]  
PC[10]  
PB[0]  
100 LQFP  
Top view  
PB[1]  
PC[6]  
Note:  
Availability of port pin alternate functions depends on product selection.  
Figure 4. LQFP 100-pin configuration  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
9
Package pinouts and signal descriptions  
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PG[5]  
PG[4]  
PG[3]  
PG[2]  
PA[2]  
PE[0]  
PA[1]  
PE[1]  
PE[8]  
PE[9]  
PE[10]  
PA[0]  
PE[11]  
VSS_HV  
VDD_HV  
VSS_HV  
RESET  
VSS_LV  
VDD_LV  
VDD_BV  
PG[9]  
1
2
3
4
5
6
7
8
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
PA[11]  
PA[10]  
PA[9]  
PA[8]  
PA[7]  
PE[13]  
PF[14]  
PF[15]  
VDD_HV  
VSS_HV  
PG[0]  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PG[1]  
PH[3]  
PH[2]  
PH[1]  
PH[0]  
PG[12]  
PG[13]  
PA[3]  
144 LQFP  
Top view  
PB[15]  
PD[15]  
PB[14]  
PD[14]  
PB[13]  
PD[13]  
PB[12]  
PD[12]  
PB[11]  
PD[11]  
PD[10]  
PD[9]  
PB[7]  
PB[6]  
PB[5]  
VDD_HV_ADC  
VSS_HV_ADC  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
PG[6]  
PB[0]  
PB[1]  
PF[9]  
PF[8]  
PF[12]  
PC[6]  
74  
73  
Note:  
Availability of port pin alternate functions depends on product selection.  
Figure 5. LQFP 144-pin configuration  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
10  
NXP Semiconductors  
Package pinouts and signal descriptions  
1
2
3
4
NC  
5
6
7
8
9
10  
NC  
NC  
NC  
NC  
11  
12  
NC  
13  
PE[15]  
PG[15]  
PE[14]  
PG[10]  
PG[1]  
PH[0]  
VDD_HV  
MDO3  
NC  
14  
15  
NC  
16  
NC  
PC[8]  
PC[9]  
PC[13]  
PB[2]  
NC  
PH[8]  
PE[6]  
PH[7]  
PH[6]  
PH[4]  
PH[5]  
PE[5]  
PE[4]  
PC[5]  
PC[4]  
PE[3]  
PE[2]  
PC[0]  
PH[9]  
VSS_LV  
NC  
PC[2]  
PC[3]  
PA[5]  
PA[6]  
NC  
A
B
C
D
E
F
A
B
C
D
E
F
NC  
PC[12]  
PE[7]  
NC  
PH[10]  
PC[1]  
PG[11]  
NC  
PG[14]  
PE[12]  
PF[14]  
PG[0]  
PH[1]  
NC  
PA[11]  
PA[9]  
PE[13]  
PA[10]  
PA[8]  
PA[7]  
PC[14] VDD_HV  
PB[3]  
PC[15]  
PG[3]  
PA[1]  
PE[10]  
NC  
NC  
VDD_LV VDD_HV  
NC  
PG[4]  
PE[0]  
PE[9]  
PG[5]  
PA[2]  
PE[8]  
PG[2]  
PE[1]  
PA[0]  
NC  
PF[15] VDD_HV  
PH[3]  
NC  
PH[2]  
MSEO  
MDO1  
NC  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
VSS_HV VSS_HV VSS_HV VSS_HV  
G
H
J
G
H
J
VSS_HV PE[11] VDD_HV  
MDO2  
NC  
MDO0  
NC  
RESET VSS_LV  
NC  
NC  
EVTI  
PG[9]  
PG[7]  
PB[1]  
PF[8]  
PF[12]  
NC  
NC  
PG[8]  
PG[6]  
PF[9]  
NC  
VDD_BV VDD_LV  
NC  
PG[12]  
PD[15]  
PD[13]  
PD[10]  
PA[3]  
PD[14]  
PD[12]  
PD[9]  
PB[6]  
PG[13]  
PB[14]  
PB[12]  
PD[11]  
PB[7]  
PB[5]  
PB[4]  
16  
K
L
K
L
NC  
PC[10]  
PB[0]  
PC[7]  
PF[10]  
NC  
EVTO  
PC[11]  
NC  
PB[15]  
PB[13]  
PB[11]  
PD[3]  
PD[4]  
PD[5]  
13  
M
N
P
R
T
M
N
P
R
T
NC  
NC  
PA[4]  
VSS_LV  
VDD_LV  
PA[13]  
PA[12]  
7
EXTAL VDD_HV  
PF[0]  
PF[1]  
PF[3]  
PF[2]  
10  
PF[4]  
PF[5]  
PF[7]  
PF[6]  
11  
NC  
VDD_HV  
_ADC  
NC  
PA[14]  
XTAL  
NC  
NC  
8
PB[10]  
PD[0]  
PD[2]  
PD[1]  
12  
OSC32K  
_XTAL  
VSS_HV  
_ADC  
PC[6]  
NC  
PF[11] VDD_HV PA[15]  
PD[7]  
PD[6]  
OSC32K  
_EXTAL  
MCKO  
NC  
PF[13]  
PD[8]  
1
2
3
4
5
6
9
14  
15  
NC  
Note: 208 MAPBGA available only as development package for Nexus 2+.  
= Not connected  
Figure 6. 208 MAPBGA configuration  
2.2  
Pad configuration during reset phases  
All pads have a fixed configuration under reset.  
During the power-up phase, all pads are forced to tristate.  
After power-up phase, all pads are forced to tristate with the following exceptions:  
PA[9] (FAB) is pull-down. Without external strong pull-up the device starts fetching from flash.  
PA[8] (ABS[0]) is pull-up.  
RESET pad is driven low. This is pull-up only after PHASE2 reset completion.  
JTAG pads (TCK, TMS and TDI) are pull-up whilst TDO remains tristate.  
Precise ADC pads (PB[7:4] and PD[11:0]) are left tristate (no output buffer available).  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
11  
Package pinouts and signal descriptions  
Main oscillator pads (EXTAL, XTAL) are tristate.  
Nexus output pads (MDO[n], MCKO, EVTO, MSEO) are forced to output.  
2.3  
Voltage supply pins  
Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply  
pairs are used for 1.2 V regulator stabilization.  
Table 3. Voltage supply pin descriptions  
Pin number  
Port pin  
Function  
208  
64 LQFP1  
100 LQFP  
144 LQFP  
MAPBGA2  
VDD_HV  
Digital supply voltage  
7, 28, 56 15, 37, 70, 84 19, 51, 100, C2, D9, E16,  
123  
G13, H3, N9,  
R5  
VSS_HV  
Digital ground  
6, 8, 26, 55  
14, 16, 35,  
69, 83  
18, 20, 49, G7, G8, G9,  
99, 122  
G10, H1, H7,  
H8, H9, H10,  
J7, J8, J9,  
J10, K7, K8,  
K9, K10  
VDD_LV  
VSS_LV  
VDD_BV  
1.2V decoupling pins. Decoupling  
11, 23, 57  
10, 24, 58  
19, 32, 85  
18, 33, 86  
23, 46, 124 D8, K4, P7  
capacitor must be connected between  
these pins and the nearest VSS_LV pin.3  
1.2V decoupling pins. Decoupling  
22, 47, 125  
C8, J2, N7  
capacitor must be connected between  
these pins and the nearest VDD_LV pin.3  
Internal regulator supply voltage  
12  
33  
20  
51  
24  
73  
K3  
VSS_HV_ADC Reference ground and analog ground for  
the ADC  
R15  
VDD_HV_ADC Reference voltage and analog supply for  
the ADC  
34  
52  
74  
P14  
1
2
3
Pin numbers apply to both the MPC560xB and MPC560xC packages.  
208 MAPBGA available only as development package for Nexus2+  
A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable  
voltage (see the recommended operating conditions in the device datasheet for details).  
2.4  
Pad types  
In the device the following types of pads are available for system pins and functional port pins:  
1
S = Slow  
1 2  
M = Medium  
1 2  
F = Fast  
1. See the I/O pad electrical characteristics in the device datasheet for details.  
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium (see PCR.SRC  
in section Pad Configuration Registers (PCR0–PCR122) in the device reference manual).  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
12  
NXP Semiconductors  
Package pinouts and signal descriptions  
1
I = Input only with analog feature  
J = Input/Output (‘S’ pad) with analog feature  
X = Oscillator  
2.5  
System pins  
The system pins are listed in Table 4.  
Table 4. System pin descriptions  
Pin number  
Function  
RESET Bidirectional reset with Schmitt-Trigger characteristics  
and noise filter.  
I/O  
M
X
Input, weak  
pull-up only  
after PHASE2  
9
17 21 J1  
EXTAL Analog output of the oscillator amplifier circuit, when the I/O  
oscillator is not in bypass mode.  
Tristate  
27 36 50 N8  
Analog input for the clock generator when the oscillator is  
in bypass mode.3  
XTAL Analog input of the oscillator amplifier circuit. Needs to be  
grounded if oscillator is used in bypass mode.3  
I
X
Tristate  
25 34 48 P8  
1
2
3
Pin numbers apply to both the MPC560xB and MPC560xC packages.  
208 MAPBGA available only as development package for Nexus2+  
See the relevant section of the datasheet  
2.6  
Functional ports  
The functional port pins are listed in Table 5.  
Table 5. Functional port pin descriptions  
Pin number  
PA[0]  
PCR[0] AF0  
GPIO[0]  
E0UC[0]  
CLKOUT  
SIUL  
eMIOS_0 I/O  
CGL  
WKPU  
I/O  
M
Tristate  
5
5
12 16 G4  
AF1  
AF2  
AF3  
O
I
WKPU[19]4  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
13  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PA[1]  
PCR[1] AF0  
GPIO[1]  
E0UC[1]  
SIUL  
eMIOS_0 I/O  
WKPU  
WKPU  
I/O  
S
Tristate  
4
3
4
3
7
5
11 F3  
AF1  
AF2  
AF3  
I
NMI5  
WKPU[2]4  
I
PA[2]  
PA[3]  
PA[4]  
PCR[2] AF0  
GPIO[2]  
E0UC[2]  
SIUL  
eMIOS_0 I/O  
WKPU  
I/O  
S
S
S
Tristate  
Tristate  
Tristate  
9
F2  
AF1  
AF2  
AF3  
I
WKPU[3]4  
PCR[3] AF0  
GPIO[3]  
E0UC[3]  
EIRQ[0]  
SIUL  
eMIOS_0 I/O  
SIUL  
I/O  
43 39 68 90 K15  
AF1  
AF2  
AF3  
I
PCR[4] AF0  
GPIO[4]  
E0UC[4]  
SIUL  
eMIOS_0 I/O  
WKPU  
I/O  
20 20 29 43 N6  
AF1  
AF2  
AF3  
I
WKPU[9]4  
PA[5]  
PA[6]  
PCR[5] AF0  
GPIO[5]  
E0UC[5]  
SIUL  
eMIOS_0 I/O  
I/O  
M
S
Tristate  
Tristate  
51 51 79 118 C11  
52 52 80 119 D11  
AF1  
AF2  
AF3  
PCR[6] AF0  
GPIO[6]  
E0UC[6]  
EIRQ[1]  
SIUL  
eMIOS_0 I/O  
SIUL  
I/O  
AF1  
AF2  
AF3  
I
PA[7]  
PCR[7] AF0  
GPIO[7]  
E0UC[7]  
LIN3TX  
SIUL  
eMIOS_0 I/O  
LINFlex_3  
I/O  
S
Tristate  
44 44 71 104 D16  
AF1  
AF2  
AF3  
O
I
EIRQ[2]  
SIUL  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
14  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PA[8]  
PA[9]  
PCR[8] AF0  
GPIO[8]  
E0UC[8]  
SIUL  
eMIOS_0 I/O  
SIUL  
I/O  
S
S
Input, weak 45 45 72 105 C16  
pull-up  
AF1  
AF2  
AF3  
I
I
I
EIRQ[3]  
ABS[0]  
LIN3RX  
N/A6  
BAM  
LINFlex_3  
PCR[9] AF0  
AF1  
GPIO[9]  
E0UC[9]  
FAB  
SIUL  
eMIOS_0 I/O  
BAM  
I/O  
Pull-down  
46 46 73 106 C15  
AF2  
I
AF3  
N/A6  
PA[10] PCR[10] AF0  
GPIO[10]  
E0UC[10]  
SDA  
SIUL  
eMIOS_0 I/O  
I2C_0  
I/O  
S
S
S
Tristate  
Tristate  
Tristate  
47 47 74 107 B16  
48 48 75 108 B15  
22 22 31 45 T7  
AF1  
AF2  
AF3  
I/O  
PA[11] PCR[11] AF0  
GPIO[11]  
E0UC[11]  
SCL  
SIUL  
eMIOS_0 I/O  
I2C_0  
I/O  
AF1  
AF2  
AF3  
I/O  
PA[12] PCR[12] AF0  
GPIO[12]  
SIN_0  
SIUL  
DSPI0  
I/O  
I
AF1  
AF2  
AF3  
PA[13] PCR[13] AF0  
GPIO[13]  
SOUT_0  
SIUL  
DSPI_0  
I/O  
O
M
M
Tristate  
Tristate  
21 21 30 44 R7  
AF1  
AF2  
AF3  
PA[14] PCR[14] AF0  
GPIO[14]  
SCK_0  
CS0_0  
SIUL  
DSPI_0  
DSPI_0  
I/O  
I/O  
I/O  
I
19 19 28 42 P6  
AF1  
AF2  
AF3  
EIRQ[4]  
SIUL  
PA[15] PCR[15] AF0  
GPIO[15]  
CS0_0  
SIUL  
DSPI_0  
DSPI_0  
I/O  
I/O  
I/O  
I
M
Tristate  
18 18 27 40 R6  
AF1  
AF2  
AF3  
SCK_0  
WKPU[10]4  
WKPU  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
15  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PB[0]  
PB[1]  
PCR[16] AF0  
GPIO[16]  
CAN0TX  
SIUL  
FlexCAN_0  
I/O  
O
M
S
Tristate  
Tristate  
14 14 23 31 N3  
AF1  
AF2  
AF3  
PCR[17] AF0  
GPIO[17]  
SIUL  
I/O  
I
15 15 24 32 N1  
AF1  
AF2  
AF3  
WKPU[4]4  
CAN0RX  
WKPU  
FlexCAN_0  
I
PB[2]  
PB[3]  
PCR[18] AF0  
GPIO[18]  
LIN0TX  
SDA  
SIUL  
LINFlex_0  
I2C_0  
I/O  
O
I/O  
M
S
Tristate  
Tristate  
64 64 100 144 B2  
AF1  
AF2  
AF3  
PCR[19] AF0  
GPIO[19]  
SIUL  
I2C_0  
WKPU  
LINFlex_0  
I/O  
I/O  
I
1
1
1
1
C3  
AF1  
AF2  
AF3  
SCL  
WKPU[11]4  
LIN0RX  
I
PB[4]  
PB[5]  
PB[6]  
PB[7]  
PCR[20] AF0  
GPIO[20]  
GPI[0]  
SIUL  
ADC  
I
I
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
32 32 50 72 T16  
AF1  
AF2  
AF3  
I
PCR[21] AF0  
GPIO[21]  
GPI[1]  
SIUL  
ADC  
I
35  
36  
53 75 R16  
AF1  
AF2  
AF3  
I
PCR[22] AF0  
GPIO[22]  
GPI[2]  
SIUL  
ADC  
I
54 76 P15  
AF1  
AF2  
AF3  
I
PCR[23] AF0  
GPIO[23]  
GPI[3]  
SIUL  
ADC  
I
37 35 55 77 P16  
AF1  
AF2  
AF3  
I
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
16  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PB[8]  
PB[9]  
PCR[24] AF0  
GPIO[24]  
SIUL  
ADC  
SXOSC  
I
I
I
Tristate  
Tristate  
Tristate  
30 30 39 53 R9  
29 29 38 52 T9  
31 31 40 54 P9  
38 36 59 81 N13  
AF1  
AF2  
AF3  
I
ANS[0]  
OSC32K_XTAL7  
I/O  
PCR[25] AF0  
GPIO[25]  
SIUL  
ADC  
SXOSC  
I
AF1  
AF2  
AF3  
I
ANS[1]  
OSC32K_EXTAL7  
I/O  
PB[10] PCR[26] AF0  
GPIO[26]  
SIUL  
ADC  
WKPU  
I/O  
I
J
AF1  
AF2  
AF3  
ANS[2]  
WKPU[8]4  
I
PB[11]8 PCR[27] AF0  
GPIO[27]  
E0UC[3]  
CS0_0  
ANS[3]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
J
J
J
J
Tristate  
Tristate  
Tristate  
Tristate  
AF1  
AF2  
AF3  
I/O  
I
PB[12] PCR[28] AF0  
GPIO[28]  
E0UC[4]  
CS1_0  
ANX[0]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
39  
40  
61 83 M16  
AF1  
AF2  
AF3  
O
I
PB[13] PCR[29] AF0  
GPIO[29]  
E0UC[5]  
CS2_0  
ANX[1]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
63 85 M13  
AF1  
AF2  
AF3  
O
I
PB[14] PCR[30] AF0  
GPIO[30]  
E0UC[6]  
CS3_0  
ANX[2]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
41 37 65 87 L16  
AF1  
AF2  
AF3  
O
I
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
17  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PB[15] PCR[31] AF0  
GPIO[31]  
E0UC[7]  
CS4_0  
ANX[3]  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
J
Tristate  
42 38 67 89 L13  
AF1  
AF2  
AF3  
O
I
PC[0]9 PCR[32] AF0  
GPIO[32]  
SIUL  
JTAGC  
I/O  
I
M
M
M
Input, weak 59 59 87 126 A8  
pull-up  
AF1  
AF2  
AF3  
TDI  
PC[1]9 PCR[33] AF0  
GPIO[33]  
SIUL  
JTAGC  
I/O  
O
Tristate  
Tristate  
54 54 82 121 C9  
AF1  
AF2  
AF3  
TDO10  
PC[2]  
PC[3]  
PCR[34] AF0  
GPIO[34]  
SCK_1  
CAN4TX11  
SIUL  
DSPI_1  
FlexCAN_4  
I/O  
I/O  
O
I
50 50 78 117 A11  
AF1  
AF2  
AF3  
EIRQ[5]  
SIUL  
PCR[35] AF0  
GPIO[35]  
CS0_1  
MA[0]  
SIUL  
DSPI_1  
ADC  
I/O  
I/O  
O
I
S
Tristate  
Tristate  
49 49 77 116 B11  
AF1  
AF2  
AF3  
CAN1RX  
CAN4RX11  
EIRQ[6]  
FlexCAN_1  
FlexCAN_4  
SIUL  
I
I
PC[4]  
PCR[36] AF0  
GPIO[36]  
SIUL  
I/O  
I
M
62 62 92 131 B7  
AF1  
AF2  
AF3  
SIN_1  
DSPI_1  
FlexCAN_3  
CAN3RX11  
I
PC[5]  
PC[6]  
PCR[37] AF0  
GPIO[37]  
SOUT_1  
CAN3TX11  
SIUL  
DSPI1  
FlexCAN_3  
I/O  
O
O
I
M
S
Tristate  
Tristate  
61 61 91 130 A7  
AF1  
AF2  
AF3  
EIRQ[7]  
SIUL  
PCR[38] AF0  
GPIO[38]  
LIN1TX  
SIUL  
LINFlex_1  
I/O  
O
16 16 25 36 R2  
AF1  
AF2  
AF3  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
18  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PC[7]  
PCR[39] AF0  
GPIO[39]  
SIUL  
I/O  
I
S
Tristate  
17 17 26 37 P3  
AF1  
AF2  
AF3  
LIN1RX  
LINFlex_1  
WKPU  
WKPU[12]4  
I
PC[8]  
PC[9]  
PCR[40] AF0  
GPIO[40]  
LIN2TX  
SIUL  
LINFlex_2  
I/O  
O
S
S
Tristate  
Tristate  
63 63 99 143 A1  
AF1  
AF2  
AF3  
PCR[41] AF0  
GPIO[41]  
SIUL  
I/O  
I
2
2
2
2
B1  
AF1  
AF2  
AF3  
LIN2RX  
LINFlex_2  
WKPU  
WKPU[13]4  
I
PC[10] PCR[42] AF0  
GPIO[42]  
CAN1TX  
CAN4TX11  
MA[1]  
SIUL  
FlexCAN_1  
FlexCAN_4  
ADC  
I/O  
O
O
M
S
Tristate  
Tristate  
13 13 22 28 M3  
AF1  
AF2  
AF3  
O
PC[11] PCR[43] AF0  
GPIO[43]  
SIUL  
I/O  
I
21 27 M4  
AF1  
AF2  
AF3  
CAN1RX  
CAN4RX11  
WKPU[5]4  
FlexCAN_1  
FlexCAN_4  
WKPU  
I
I
PC[12] PCR[44] AF0  
GPIO[44]  
E0UC[12]  
SIN_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
I/O  
M
Tristate  
97 141 B4  
AF1  
AF2  
AF3  
I
PC[13] PCR[45] AF0  
GPIO[45]  
E0UC[13]  
SOUT_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
I/O  
S
S
Tristate  
Tristate  
98 142 A2  
AF1  
AF2  
AF3  
O
PC[14] PCR[46] AF0  
GPIO[46]  
E0UC[14]  
SCK_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
SIUL  
I/O  
3
3
C1  
AF1  
AF2  
AF3  
I/O  
I
EIRQ[8]  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
19  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PC[15] PCR[47] AF0  
GPIO[47]  
E0UC[15]  
CS0_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
I/O  
M
I
Tristate  
Tristate  
4
4
D3  
AF1  
AF2  
AF3  
I/O  
PD[0]  
PD[1]  
PD[2]  
PD[3]  
PD[4]  
PD[5]  
PD[6]  
PCR[48] AF0  
GPIO[48]  
GPI[4]  
SIUL  
ADC  
I
41 63 P12  
42 64 T12  
43 65 R12  
44 66 P13  
45 67 R13  
46 68 T13  
47 69 T14  
AF1  
AF2  
AF3  
I
PCR[49] AF0  
GPIO[49]  
GPI[5]  
SIUL  
ADC  
I
I
I
I
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
AF1  
AF2  
AF3  
I
PCR[50] AF0  
GPIO[50]  
GPI[6]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
PCR[51] AF0  
GPIO[51]  
GPI[7]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
PCR[52] AF0  
GPIO[52]  
GPI[8]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
PCR[53] AF0  
GPIO[53]  
GPI[9]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
PCR[54] AF0  
GPIO[54]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
GPI[10]  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
20  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PD[7]  
PD[8]  
PD[9]  
PCR[55] AF0  
GPIO[55]  
SIUL  
ADC  
I
I
I
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
48 70 R14  
49 71 T15  
56 78 N15  
57 79 N14  
58 80 N16  
60 82 M15  
62 84 M14  
64 86 L15  
AF1  
AF2  
AF3  
I
GPI[11]  
PCR[56] AF0  
GPIO[56]  
SIUL  
ADC  
I
AF1  
AF2  
AF3  
I
GPI[12]  
PCR[57] AF0  
GPIO[57]  
SIUL  
ADC  
I
I
AF1  
AF2  
AF3  
I
GPI[13]  
PD[10] PCR[58] AF0  
GPIO[58]  
SIUL  
ADC  
I
I
AF1  
AF2  
AF3  
I
GPI[14]  
PD[11] PCR[59] AF0  
GPIO[59]  
SIUL  
ADC  
I
I
AF1  
AF2  
AF3  
I
GPI[15]  
PD[12]8 PCR[60] AF0  
GPIO[60]  
CS5_0  
E0UC[24]  
SIUL  
DSPI_0  
eMIOS_0 I/O  
ADC  
I/O  
O
J
J
J
AF1  
AF2  
AF3  
I
ANS[4]  
PD[13] PCR[61] AF0  
GPIO[61]  
CS0_1  
E0UC[25]  
SIUL  
DSPI_1  
eMIOS_0 I/O  
ADC  
I/O  
I/O  
AF1  
AF2  
AF3  
I
ANS[5]  
PD[14] PCR[62] AF0  
GPIO[62]  
CS1_1  
E0UC[26]  
SIUL  
DSPI_1  
eMIOS_0 I/O  
ADC  
I/O  
O
AF1  
AF2  
AF3  
I
ANS[6]  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
21  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PD[15] PCR[63] AF0  
GPIO[63]  
CS2_1  
E0UC[27]  
SIUL  
DSPI_1  
eMIOS_0 I/O  
ADC  
I/O  
O
J
Tristate  
Tristate  
66 88 L14  
AF1  
AF2  
AF3  
I
ANS[7]  
PE[0]  
PCR[64] AF0  
GPIO[64]  
E0UC[16]  
SIUL  
eMIOS_0 I/O  
I/O  
S
6
8
10 F1  
AF1  
AF2  
AF3  
I
CAN5RX11  
WKPU[6]4  
FlexCAN_5  
WKPU  
I
PE[1]  
PE[2]  
PCR[65] AF0  
GPIO[65]  
E0UC[17]  
CAN5TX11  
SIUL  
eMIOS_0 I/O  
FlexCAN_5  
I/O  
M
M
Tristate  
Tristate  
12 F4  
AF1  
AF2  
AF3  
O
PCR[66] AF0  
GPIO[66]  
E0UC[18]  
SIN_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
I/O  
89 128 D7  
AF1  
AF2  
AF3  
I
PE[3]  
PE[4]  
PCR[67] AF0  
GPIO[67]  
E0UC[19]  
SOUT_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
I/O  
M
M
Tristate  
Tristate  
90 129 C7  
93 132 D6  
AF1  
AF2  
AF3  
O
PCR[68] AF0  
GPIO[68]  
E0UC[20]  
SCK_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
SIUL  
I/O  
AF1  
AF2  
AF3  
I/O  
I
EIRQ[9]  
PE[5]  
PE[6]  
PE[7]  
PCR[69] AF0  
GPIO[69]  
E0UC[21]  
CS0_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
ADC  
I/O  
M
M
M
Tristate  
Tristate  
Tristate  
94 133 C6  
95 139 B5  
96 140 C4  
AF1  
AF2  
AF3  
I/O  
O
MA[2]  
PCR[70] AF0  
GPIO[70]  
E0UC[22]  
CS3_0  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
AF1  
AF2  
AF3  
O
O
MA[1]  
PCR[71] AF0  
GPIO[71]  
E0UC[23]  
CS2_0  
SIUL  
eMIOS_0 I/O  
DSPI_0  
ADC  
I/O  
AF1  
AF2  
AF3  
O
O
MA[0]  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
22  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PE[8]  
PE[9]  
PCR[72] AF0  
GPIO[72]  
CAN2TX12  
E0UC[22]  
CAN3TX11  
SIUL  
FlexCAN_2  
eMIOS_0 I/O  
FlexCAN_3  
I/O  
O
M
S
Tristate  
Tristate  
9
13 G2  
AF1  
AF2  
AF3  
O
PCR[73] AF0  
GPIO[73]  
SIUL  
eMIOS_0 I/O  
WKPU  
I/O  
10 14 G1  
AF1  
AF2  
AF3  
E0UC[23]  
WKPU[7]4  
CAN2RX12  
CAN3RX11  
I
I
I
FlexCAN_2  
FlexCAN_3  
PE[10] PCR[74] AF0  
GPIO[74]  
LIN3TX  
CS3_1  
SIUL  
LINFlex_3  
DSPI_1  
I/O  
O
O
I
S
S
Tristate  
Tristate  
11 15 G3  
AF1  
AF2  
AF3  
EIRQ[10]  
SIUL  
PE[11] PCR[75] AF0  
GPIO[75]  
CS4_1  
SIUL  
DSPI_1  
LINFlex_3  
WKPU  
I/O  
O
I
13 17 H2  
AF1  
AF2  
AF3  
LIN3RX  
WKPU[14]4  
I
PE[12] PCR[76] AF0  
GPIO[76]  
SIUL  
eMIOS_1 I/O  
DSPI_2  
SIUL  
I/O  
S
Tristate  
76 109 C14  
AF1  
AF2  
AF3  
E1UC[19]13  
I
I
SIN_2  
EIRQ[11]  
PE[13] PCR[77] AF0  
GPIO[77]  
SOUT2  
E1UC[20]  
SIUL  
DSPI_2  
eMIOS_1 I/O  
I/O  
O
S
S
Tristate  
Tristate  
103 D15  
112 C13  
AF1  
AF2  
AF3  
PE[14] PCR[78] AF0  
GPIO[78]  
SCK_2  
E1UC[21]  
SIUL  
DSPI_2  
eMIOS_1 I/O  
SIUL  
I/O  
I/O  
AF1  
AF2  
AF3  
I
EIRQ[12]  
PE[15] PCR[79] AF0  
GPIO[79]  
CS0_2  
E1UC[22]  
SIUL  
DSPI_2  
eMIOS_1 I/O  
I/O  
I/O  
M
Tristate  
113 A13  
AF1  
AF2  
AF3  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
23  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PF[0]  
PF[1]  
PF[2]  
PF[3]  
PF[4]  
PF[5]  
PF[6]  
PF[7]  
PCR[80] AF0  
GPIO[80]  
E0UC[10]  
CS3_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
ADC  
I/O  
J
J
J
J
J
J
J
J
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
55 N10  
AF1  
AF2  
AF3  
O
I
ANS[8]  
PCR[81] AF0  
GPIO[81]  
E0UC[11]  
CS4_1  
SIUL  
eMIOS_0 I/O  
DSPI_1  
I/O  
56 P10  
57 T10  
58 R10  
59 N11  
60 P11  
61 T11  
62 R11  
AF1  
AF2  
AF3  
O
I
I
ANS[9]  
PCR[82] AF0  
GPIO[82]  
E0UC[12]  
CS0_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC  
I/O  
AF1  
AF2  
AF3  
I/O  
I
ANS[10]  
PCR[83] AF0  
GPIO[83]  
E0UC[13]  
CS1_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC  
I/O  
AF1  
AF2  
AF3  
O
I
ANS[11]  
PCR[84] AF0  
GPIO[84]  
E0UC[14]  
CS2_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC  
I/O  
AF1  
AF2  
AF3  
O
I
ANS[12]  
PCR[85] AF0  
GPIO[85]  
E0UC[22]  
CS3_2  
SIUL  
eMIOS_0 I/O  
DSPI_2  
ADC  
I/O  
AF1  
AF2  
AF3  
O
I
ANS[13]  
PCR[86] AF0  
GPIO[86]  
E0UC[23]  
ANS[14]  
SIUL  
eMIOS_0 I/O  
ADC  
I/O  
AF1  
AF2  
AF3  
I
PCR[87] AF0  
GPIO[87]  
SIUL  
ADC  
I/O  
I
AF1  
AF2  
AF3  
ANS[15]  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
24  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PF[8]  
PF[9]  
PCR[88] AF0  
GPIO[88]  
CAN3TX14  
CS4_0  
SIUL  
FlexCAN_3  
DSPI_0  
I/O  
O
O
M
S
Tristate  
Tristate  
34 P1  
AF1  
AF2  
AF3  
CAN2TX15  
FlexCAN_2  
O
PCR[89] AF0  
GPIO[89]  
SIUL  
DSPI_0  
FlexCAN_2  
FlexCAN_3  
I/O  
O
I
33 N2  
AF1  
AF2  
AF3  
CS5_0  
CAN2RX15  
CAN3RX14  
I
PF[10] PCR[90] AF0  
GPIO[90]  
SIUL  
I/O  
M
S
Tristate  
Tristate  
38 R3  
39 R4  
AF1  
AF2  
AF3  
PF[11] PCR[91] AF0  
GPIO[91]  
SIUL  
WKPU  
I/O  
I
AF1  
AF2  
AF3  
WKPU[15]4  
PF[12] PCR[92] AF0  
GPIO[92]  
E1UC[25]  
SIUL  
eMIOS_1 I/O  
I/O  
M
S
Tristate  
Tristate  
35 R1  
41 T6  
AF1  
AF2  
AF3  
PF[13] PCR[93] AF0  
GPIO[93]  
E1UC[26]  
SIUL  
eMIOS_1 I/O  
WKPU  
I/O  
AF1  
AF2  
AF3  
I
WKPU[16]4  
PF[14] PCR[94] AF0  
GPIO[94]  
CAN4TX11  
E1UC[27]  
CAN1TX  
SIUL  
FlexCAN_4  
eMIOS_1 I/O  
FlexCAN_4  
I/O  
O
M
S
Tristate  
Tristate  
43  
42  
102 D14  
101 E15  
AF1  
AF2  
AF3  
O
PF[15] PCR[95] AF0  
GPIO[95]  
SIUL  
I/O  
I
AF1  
AF2  
AF3  
CAN1RX  
CAN4RX11  
EIRQ[13]  
FlexCAN_1  
FlexCAN_4  
SIUL  
I
I
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
25  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PG[0]  
PG[1]  
PCR[96] AF0  
GPIO[96]  
CAN5TX11  
E1UC[23]  
SIUL  
FlexCAN_5  
eMIOS_1 I/O  
I/O  
O
M
S
Tristate  
Tristate  
41  
98 E14  
AF1  
AF2  
AF3  
PCR[97] AF0  
GPIO[97]  
SIUL  
eMIOS_1 I/O  
I/O  
40  
97 E13  
AF1  
AF2  
AF3  
E1UC[24]  
I
I
CAN5RX11  
EIRQ[14]  
FlexCAN_5  
SIUL  
PG[2]  
PG[3]  
PCR[98] AF0  
GPIO[98]  
E1UC[11]  
SIUL  
eMIOS_1 I/O  
I/O  
M
S
Tristate  
Tristate  
8
7
E4  
E3  
AF1  
AF2  
AF3  
PCR[99] AF0  
GPIO[99]  
E1UC[12]  
SIUL  
eMIOS_1 I/O  
WKPU  
I/O  
AF1  
AF2  
AF3  
I
WKPU[17]4  
PG[4] PCR[100] AF0  
GPIO[100]  
E1UC[13]  
SIUL  
eMIOS_1 I/O  
I/O  
M
S
Tristate  
Tristate  
6
5
E1  
E2  
AF1  
AF2  
AF3  
PG[5] PCR[101] AF0  
GPIO[101]  
E1UC[14]  
SIUL  
eMIOS_1 I/O  
WKPU  
I/O  
AF1  
AF2  
AF3  
I
WKPU[18]4  
PG[6] PCR[102] AF0  
GPIO[102]  
E1UC[15]  
SIUL  
eMIOS_1 I/O  
I/O  
M
M
S
Tristate  
Tristate  
Tristate  
30 M2  
29 M1  
26 L2  
AF1  
AF2  
AF3  
PG[7] PCR[103] AF0  
GPIO[103]  
E1UC[16]  
SIUL  
eMIOS_1 I/O  
I/O  
AF1  
AF2  
AF3  
PG[8] PCR[104] AF0  
GPIO[104]  
E1UC[17]  
CS0_2  
EIRQ[15]  
SIUL  
eMIOS_1 I/O  
DSPI_2  
SIUL  
I/O  
AF1  
AF2  
AF3  
I/O  
I
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
26  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PG[9] PCR[105] AF0  
GPIO[105]  
E1UC[18]  
SIUL  
eMIOS_1 I/O  
DSPI_2  
I/O  
S
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
25 L1  
AF1  
AF2  
AF3  
I/O  
SCK_2  
PG[10] PCR[106] AF0  
GPIO[106]  
E0UC[24]  
SIUL  
eMIOS_0 I/O  
I/O  
114 D13  
115 B12  
92 K14  
91 K16  
110 B14  
111 B13  
93 F13  
AF1  
AF2  
AF3  
PG[11] PCR[107] AF0  
GPIO[107]  
E0UC[25]  
SIUL  
eMIOS_0 I/O  
I/O  
M
M
M
S
AF1  
AF2  
AF3  
PG[12] PCR[108] AF0  
GPIO[108]  
E0UC[26]  
SIUL  
eMIOS_0 I/O  
I/O  
AF1  
AF2  
AF3  
PG[13] PCR[109] AF0  
GPIO[109]  
E0UC[27]  
SIUL  
eMIOS_0 I/O  
I/O  
AF1  
AF2  
AF3  
PG[14] PCR[110] AF0  
GPIO[110]  
E1UC[0]  
SIUL  
eMIOS_1 I/O  
I/O  
AF1  
AF2  
AF3  
PG[15] PCR[111] AF0  
GPIO[111]  
E1UC[1]  
SIUL  
eMIOS_1 I/O  
I/O  
M
M
AF1  
AF2  
AF3  
PH[0] PCR[112] AF0  
GPIO[112]  
E1UC[2]  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
AF1  
AF2  
AF3  
I
SIN1  
PH[1] PCR[113] AF0  
GPIO[113]  
E1UC[3]  
SOUT1  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
M
Tristate  
94 F14  
AF1  
AF2  
AF3  
O
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
27  
Package pinouts and signal descriptions  
Table 5. Functional port pin descriptions (continued)  
Pin number  
PH[2] PCR[114] AF0  
GPIO[114]  
E1UC[4]  
SCK_1  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
M
M
M
S
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
Tristate  
95 F16  
AF1  
AF2  
AF3  
I/O  
PH[3] PCR[115] AF0  
GPIO[115]  
E1UC[5]  
CS0_1  
SIUL  
eMIOS_1 I/O  
DSPI_1  
I/O  
96 F15  
134 A6  
135 B6  
136 D5  
137 C5  
138 A5  
AF1  
AF2  
AF3  
I/O  
PH[4] PCR[116] AF0  
GPIO[116]  
E1UC[6]  
SIUL  
eMIOS_1 I/O  
I/O  
AF1  
AF2  
AF3  
PH[5] PCR[117] AF0  
GPIO[117]  
E1UC[7]  
SIUL  
eMIOS_1 I/O  
I/O  
AF1  
AF2  
AF3  
PH[6] PCR[118] AF0  
GPIO[118]  
E1UC[8]  
SIUL  
eMIOS_1 I/O  
ADC  
I/O  
M
M
M
S
AF1  
AF2  
AF3  
O
MA[2]  
PH[7] PCR[119] AF0  
GPIO[119]  
E1UC[9]  
CS3_2  
SIUL  
eMIOS_1 I/O  
DSPI_2  
ADC  
I/O  
AF1  
AF2  
AF3  
O
O
MA[1]  
PH[8] PCR[120] AF0  
GPIO[120]  
E1UC[10]  
CS2_2  
SIUL  
eMIOS_1 I/O  
DSPI_2  
ADC  
I/O  
AF1  
AF2  
AF3  
O
O
MA[0]  
PH[9]9 PCR[121] AF0  
GPIO[121]  
SIUL  
JTAGC  
I/O  
I
Input, weak 60 60 88 127 B8  
pull-up  
AF1  
AF2  
AF3  
TCK  
PH[10]9 PCR[122] AF0  
GPIO[122]  
SIUL  
JTAGC  
I/O  
I
S
Input, weak 53 53 81 120 B9  
pull-up  
AF1  
AF2  
AF3  
TMS  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
28  
NXP Semiconductors  
Package pinouts and signal descriptions  
Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module.  
PCR.PA = 00 AF0; PCR.PA = 01 AF1; PCR.PA = 10 AF2; PCR.PA = 11 AF3. This is intended to select  
the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the  
values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is  
reported as “—”.  
1
2
Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by  
setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.  
3
4
5
6
208 MAPBGA available only as development package for Nexus2+  
All WKPU pins also support external interrupt capability. See wakeup unit chapter for further details.  
NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.  
“Not applicable” because these functions are available only while the device is booting. Refer to BAM chapter of the  
reference manual for details.  
7
8
Value of PCR.IBE bit must be 0  
Be aware that this pad is used on the MPC5607B 100-pin and 144-pin to provide VDD_HV_ADC and  
VSS_HV_ADC1. Therefore, you should be careful in ensuring compatibility between MPC5604B/C and  
MPC5607B.  
9
Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.  
PC[0:1] are available as JTAG pins (TDI and TDO respectively).  
PH[9:10] are available as JTAG pins (TCK and TMS respectively).  
If the user configures these JTAG pins in GPIO mode the device is no longer compliant with IEEE 1149.1-2001.  
10 The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in  
STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad  
is configured as an input. When no debugger is connected the TDO pad is floating causing additional current  
consumption. To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of  
47–100 kΩ should be added between the TDO pin and VDD_HV. Only in case the TDO pin is used as application  
pin and a pull-up cannot be used then a pull-down resistor with the same value should be used between TDO pin  
and GND instead.  
11 Available only on MPC560xC versions, MPC5603B 64 LQFP, MPC5604B 64 LQFP and MPC5604B 208 MAPBGA  
devices  
12 Not available on MPC5602B devices  
13 Not available in 100 LQFP package  
14 Available only on MPC5604B 208 MAPBGA devices  
15 Not available on MPC5603B 144-pin devices  
2.7  
Nexus 2+ pins  
In the 208 MAPBGA package, eight additional debug pins are available (see Table 6).  
Table 6. Nexus 2+ pin descriptions  
Pin number  
I/O  
direction  
Function  
after reset  
Debug pin  
Function  
Pad type  
100  
144  
208 MAP  
BGA  
LQFP  
LQFP  
MCKO  
MDO0  
MDO1  
MDO2  
MDO3  
Message clock out  
Message data out 0  
Message data out 1  
Message data out 2  
Message data out 3  
O
O
O
O
O
F
T4  
M
M
M
M
H15  
H16  
H14  
H13  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
29  
Package pinouts and signal descriptions  
Table 6. Nexus 2+ pin descriptions (continued)  
Pin number  
I/O  
direction  
Function  
after reset  
Debug pin  
Function  
Pad type  
100  
144  
208 MAP  
BGA  
LQFP  
LQFP  
EVTI  
EVTO  
MSEO  
Event in  
Event out  
I
M
M
M
Pull-up  
K1  
L4  
O
O
Message start/end out  
G16  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
30  
NXP Semiconductors  
Package pinouts and signal descriptions  
2.8  
2.9  
Electrical characteristics  
Introduction  
This section contains electrical characteristics of the device as well as temperature and power  
considerations.  
This product contains devices to protect the inputs against damage due to high static voltages. However,  
it is advisable to take precautions to avoid applying any voltage higher than the specified maximum rated  
voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V ). This  
DD  
SS  
could be done by the internal pull-up and pull-down, which is provided by the product for most general  
purpose pins.  
The parameters listed in the following tables represent the characteristics of the device and its demands on  
the system.  
In the tables where the device logic provides signals with their respective timing characteristics, the  
symbol “CC” for Controller Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to  
the device, the symbol “SR” for System Requirement is included in the Symbol column.  
2.10 Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding, the classifications listed in Table 7 are used and the parameters are tagged  
accordingly in the tables where appropriate.  
Table 7. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
31  
Package pinouts and signal descriptions  
2.11 NVUSRO register  
Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device  
configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as  
digital functionality (watchdog enable/disable after reset).  
For a detailed description of the NVUSRO register, please refer to the device reference manual.  
2.11.1 NVUSRO[PAD3V5V] field description  
The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 8 shows how  
NVUSRO[PAD3V5V] controls the device configuration.  
Table 8. PAD3V5V field description  
Value1  
Description  
0
1
High voltage supply is 5.0 V  
High voltage supply is 3.3 V  
1
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
2.11.2 NVUSRO[OSCILLATOR_MARGIN] field description  
The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value.  
Table 9 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.  
Table 9. OSCILLATOR_MARGIN field description  
Value1  
Description  
0
1
Low consumption configuration (4 MHz/8 MHz)  
High margin configuration (4 MHz/16 MHz)  
1
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
2.11.3 NVUSRO[WATCHDOG_EN] field description  
The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value.  
Table 10 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.  
Table 10. WATCHDOG_EN field description  
Value1  
Description  
0
1
Disable after reset  
Enable after reset  
1
Default manufacturing value is ‘1’. Value can be programmed by customer in Shadow Flash.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
32  
NXP Semiconductors  
Package pinouts and signal descriptions  
2.12 Absolute maximum ratings  
Table 11. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
VDD  
SR Digital ground on VSS_HV pins  
0
0
V
V
SR Voltage on VDD_HV pins with respect to  
0.3  
6.0  
ground (VSS  
)
VSS_LV SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground  
VSS0.1 VSS+0.1  
V
(VSS  
)
VDD_BV SR Voltage on VDD_BV pin (regulator  
supply) with respect to ground (VSS  
0.3  
0.3  
6.0  
V
V
)
Relative to VDD  
VDD+0.3  
VSS_ADC SR Voltage on VSS_HV_ADC (ADC  
VSS0.1 VSS+0.1  
reference) pin with respect to ground  
(VSS  
)
VDD_ADC SR Voltage on VDD_HV_ADC pin (ADC  
reference) with respect to ground (VSS  
0.3  
6.0  
V
V
)
Relative to VDD  
Relative to VDD  
VDD 0.3 VDD+0.3  
VIN  
SR Voltage on any GPIO pin with respect to  
ground (VSS  
0.3  
6.0  
VDD+0.3  
10  
)
IINJPAD SR Injected input current on any pin during  
overload condition  
10  
mA  
IINJSUM SR Absolute sum of all injected input  
currents during overload condition  
50  
50  
IAVGSEG SR Sum of all the static I/O current within a VDD = 5.0 V 10%, PAD3V5V = 0  
70  
64  
mA  
supply segment  
VDD = 3.3 V 10%, PAD3V5V = 1  
ICORELV SR Low voltage static current sink through  
VDD_BV  
150  
mA  
°C  
TSTORAGE SR Storage temperature  
55  
150  
NOTE  
Stresses exceeding the recommended absolute maximum ratings may cause  
permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification are not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability. During overload conditions (V > V or  
IN  
DD  
V < V ), the voltage on pins with respect to ground (V ) must not  
IN  
SS  
SS  
exceed the recommended values.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
33  
Package pinouts and signal descriptions  
2.13 Recommended operating conditions  
Table 12. Recommended operating conditions (3.3 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect to ground  
3.0  
3.6  
(VSS  
)
2
VSS_LV  
SR Voltage on VSS_LV (low voltage digital supply)  
VSS0.1 VSS+0.1  
3.0 3.6  
V
V
pins with respect to ground (VSS  
)
3
VDD_BV  
SR Voltage on VDD_BV pin (regulator supply) with  
respect to ground (VSS  
)
Relative to VDD VDD0.1 VDD+0.1  
VSS_ADC  
SR Voltage on VSS_HV_ADC (ADC reference) pin  
with respect to ground (VSS  
VSS0.1 VSS+0.1  
V
V
)
VDD_ADC  
SR Voltage on VDD_HV_ADC pin (ADC reference)  
with respect to ground (VSS  
3.05  
3.6  
4
)
Relative to VDD VDD0.1 VDD+0.1  
VIN  
SR Voltage on any GPIO pin with respect to ground  
(VSS  
Relative to VDD  
VSS0.1  
VDD+0.1  
5
V
)
IINJPAD  
IINJSUM  
TVDD  
SR Injected input current on any pin during overload  
condition  
5  
mA  
SR Absolute sum of all injected input currents during  
overload condition  
50  
50  
SR VDD slope to ensure correct power up6  
3.07  
0.25[V/µs] V/s  
)
TA C-Grade Part SR Ambient temperature under bias  
TJ C-Grade Part SR Junction temperature under bias  
TA V-Grade Part SR Ambient temperature under bias  
TJ V-Grade Part SR Junction temperature under bias  
TA M-Grade Part SR Ambient temperature under bias  
TJ M-Grade Part SR Junction temperature under bias  
fCPU 64 MHz  
40  
40  
40  
40  
40  
40  
85  
°C  
110  
105  
130  
125  
150  
1
2
3
100 nF capacitance needs to be provided between each VDD/VSS pair  
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
400 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics).  
4
5
100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical  
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL  
device is reset.  
,
6
7
Guaranteed by device validation.  
Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
34  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 13. Recommended operating conditions (5.0 V)  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
VSS  
SR Digital ground on VSS_HV pins  
0
0
V
V
1
VDD  
SR Voltage on VDD_HV pins with respect to  
Voltage drop2  
4.5  
3.0  
5.5  
5.5  
ground (VSS  
)
3
VSS_LV  
SR Voltage on VSS_LV (low voltage digital  
supply) pins with respect to ground (VSS  
VSS0.1 VSS+0.1  
V
V
)
4
VDD_BV  
SR Voltage on VDD_BV pin (regulator supply)  
with respect to ground (VSS  
4.5  
3.0  
5.5  
5.5  
)
Voltage drop2  
Relative to VDD VDD0.1 VDD+0.1  
VSS_ADC  
SR Voltage on VSS_HV_ADC (ADC reference)  
pin with respect to ground (VSS  
VSS0.1 VSS+0.1  
V
V
5
VDD_ADC  
SR Voltage on VDD_HV_ADC pin (ADC  
4.5  
3.0  
5.5  
5.5  
reference) with respect to ground (VSS  
)
Voltage drop2  
Relative to VDD VDD0.1 VDD+0.1  
VIN  
SR Voltage on any GPIO pin with respect to  
ground (VSS  
Relative to VDD  
VSS0.1  
VDD+0.1  
5
V
)
IINJPAD  
IINJSUM  
SR Injected input current on any pin during  
overload condition  
5  
mA  
SR Absolute sum of all injected input currents  
during overload condition  
50  
50  
TVDD  
SR VDD slope to ensure correct power up6  
SR Ambient temperature under bias  
SR Junction temperature under bias  
SR Ambient temperature under bias  
SR Junction temperature under bias  
SR Ambient temperature under bias  
SR Junction temperature under bias  
3.07  
40  
40  
40  
40  
40  
40  
0.25 V/µs V/s  
TA C-Grade Part  
TJ C-Grade Part  
TA V-Grade Part  
TJ V-Grade Part  
TA M-Grade Part  
TJ M-Grade Part  
fCPU 64 MHz  
85  
°C  
110  
105  
130  
125  
150  
1
2
100 nF capacitance needs to be provided between each VDD/VSS pair.  
Full device operation is guaranteed by design when the voltage drops below 4.5 V down to 3.0 V. However, certain  
analog electrical characteristics will not be guaranteed to stay within the stated limits.  
3
4
330 nF capacitance needs to be provided between each VDD_LV/VSS_LV supply pair.  
100 nF capacitance needs to be provided between VDD_BV and the nearest VSS_LV (higher value may be needed  
depending on external regulator characteristics).  
5
1 µF (electrolithic/tantalum) + 47 nF (ceramic) capacitance needs to be provided between VDD_ADC/VSS_ADC pair.  
Another ceramic cap of 10 nF with low inductance package can be added.  
6
7
Guaranteed by device validation.  
Minimum value of TVDD must be guaranteed until VDD reaches 2.6 V (maximum value of VPORH).  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
35  
Package pinouts and signal descriptions  
NOTE  
RAM data retention is guaranteed with V  
not below 1.08 V.  
DD_LV  
2.14 Thermal characteristics  
2.14.1 Package thermal characteristics  
1
Table 14. LQFP thermal characteristics  
Symbol  
C
Parameter  
Thermal resistance,  
Conditions2  
Pin count Value Unit  
RθJA CC  
D
Single-layer board - 1s  
64  
100  
144  
64  
60  
64  
64  
42  
51  
49  
24  
36  
37  
24  
34  
35  
11  
22  
22  
11  
22  
22  
°C/W  
°C/W  
°C/W  
junction-to-ambient natural  
convection3  
Four-layer board - 2s2p  
Single-layer board - 1s  
Four-layer board - 2s2p  
Single-layer board - 1s  
Four-layer board - 2s2p  
Single-layer board - 1s  
Four-layer board - 2s2p  
100  
144  
64  
RθJB CC  
RθJC CC  
ΨJB CC  
D
D
D
Thermal resistance,  
junction-to-board4  
100  
144  
64  
100  
144  
64  
Thermal resistance,  
junction-to-case5  
100  
144  
64  
100  
144  
64  
Junction-to-board thermal  
characterization parameter,  
natural convection  
TBD °C/W  
100  
144  
64  
33  
34  
TBD  
34  
100  
144  
35  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
36  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 14. LQFP thermal characteristics (continued)  
1
Symbol  
C
Parameter  
Conditions2  
Pin count Value Unit  
ΨJC CC  
D
Junction-to-case thermal  
characterization parameter,  
natural convection  
Single-layer board - 1s  
64  
100  
144  
64  
TBD °C/W  
9
10  
TBD  
9
Four-layer board - 2s2p  
100  
144  
10  
1
2
3
Thermal characteristics are based on simulation.  
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C  
Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test  
board meets JEDEC specification for this package.  
4
5
Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package.  
Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface  
layer.  
2.14.2 Power considerations  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using Equation 1:  
J
T = T + (P x R )  
θJA  
Eqn. 1  
J
A
D
Where:  
T is the ambient temperature in °C.  
A
R
is the package junction-to-ambient thermal resistance, in °C/W.  
θJA  
P is the sum of P  
and P (P = P  
+ P ).  
D
INT  
I/O  
D
INT I/O  
P
P
is the product of I and V , expressed in watts. This is the chip internal power.  
DD DD  
INT  
I/O  
represents the power dissipation on input and output pins; user determined.  
Most of the time for the applications, P < P  
and may be neglected. On the other hand, P may be  
I/O  
INT  
I/O  
significant, if the device is configured to continuously drive external modules and/or memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273 °C)  
Eqn. 2  
Eqn. 3  
D
J
Therefore, solving equations 1 and 2:  
2
K = P x (T + 273 °C) + R  
x P  
D
D
A
θJA  
Where:  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
37  
Package pinouts and signal descriptions  
K is a constant for the particular part, which may be determined from Equation 3 by measuring  
P (at equilibrium) for a known T Using this value of K, the values of P and T may be  
D
A.  
D
J
obtained by solving equations 1 and 2 iteratively for any value of T .  
A
2.15 I/O pad electrical characteristics  
2.15.1 I/O pad types  
The device provides four main I/O pad types depending on the associated alternate functions:  
Slow pads—These pads are the most common pads, providing a good compromise between  
transition time and low electromagnetic emission.  
Medium pads—These pads provide transition fast enough for the serial communication channels  
with controlled current to reduce electromagnetic emission.  
Fast pads—These pads provide maximum speed. There are used for improved Nexus debugging  
capability.  
Input only pads—These pads are associated to ADC channels and the external 32 kHz crystal  
oscillator (SXOSC) providing low input leakage.  
Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of  
reducing AC performance.  
2.15.2 I/O input DC characteristics  
Table 15 provides input DC electrical characteristics as described in Figure 7.  
V
IN  
V
DD  
V
IH  
V
HYS  
V
IL  
PDIx = ‘1’  
(GPDI register of SIUL)  
PDIx = ‘0’  
Figure 7. I/O input DC electrical characteristics definition  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
38  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 15. I/O input DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH SR P Input high level CMOS (Schmitt  
Trigger)  
0.65VDD  
VDD+0.4  
V
VIL SR P Input low level CMOS (Schmitt  
Trigger)  
0.4  
0.35VDD  
VHYS CC C Input hysteresis CMOS (Schmitt  
Trigger)  
0.1VDD  
ILKG CC D Digital input leakage  
No injection  
on adjacent  
pin  
TA = 40 °C  
TA = 25 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
2
2
200  
200  
300  
500  
1000  
40  
nA  
D
D
D
P
5
12  
70  
2
WFI SR P Wakeup input filtered pulse  
ns  
ns  
2
WNFI SR P Wakeup input not filtered pulse  
1000  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and  
voltage.  
2
2.15.3 I/O output DC characteristics  
The following tables provide DC characteristics for bidirectional pads:  
Table 16 provides weak pull figures. Both pull-up and pull-down resistances are supported.  
Table 17 provides output driver characteristics for I/O pads when in SLOW configuration.  
Table 18 provides output driver characteristics for I/O pads when in MEDIUM configuration.  
Table 19 provides output driver characteristics for I/O pads when in FAST configuration.  
Table 16. I/O pull-up/pull-down DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
|IWPU| CC P Weak pull-up current  
VIN = VIL, VDD = 5.0 V 10% PAD3V5V = 0  
10  
150 µA  
250  
absolute value  
C
PAD3V5V = 12 10  
P
VIN = VIL, VDD = 3.3 V 10% PAD3V5V = 1  
10  
10  
10  
10  
150  
|IWPD| CC P Weak pull-down current VIN = VIH, VDD = 5.0 V 10% PAD3V5V = 0  
absolute value  
150 µA  
250  
C
P
PAD3V5V = 1  
VIN = VIH, VDD = 3.3 V 10% PAD3V5V = 1  
150  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified.  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
2
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
39  
Package pinouts and signal descriptions  
Table 17. SLOW configuration output buffer electrical characteristics  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level  
SLOW configuration  
Push Pull IOH = 2 mA,  
0.8VDD  
V
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 2 mA,  
0.8VDD  
VDD = 5.0 V 10%, PAD3V5V = 12  
IOH = 1 mA,  
VDD0.8  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
VOL CC P Output low level  
SLOW configuration  
Push Pull IOL = 2 mA,  
0.1VDD  
V
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OL = 2 mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10%, PAD3V5V = 12  
IOL = 1 mA,  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
2
Table 18. MEDIUM configuration output buffer electrical characteristics  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ Max  
VOH CC C Output high level  
MEDIUM configuration  
Push Pull IOH = 3.8 mA,  
VDD = 5.0 V 10%, PAD3V5V = 0  
0.8VDD  
V
P
I
OH = 2 mA,  
0.8VDD  
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 1 mA,  
0.8VDD  
VDD = 5.0 V 10%, PAD3V5V = 12  
IOH = 1 mA,  
VDD0.8  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
C
I
OH = 100 µA,  
0.8VDD  
VDD = 5.0 V 10%, PAD3V5V = 0  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
40  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 18. MEDIUM configuration output buffer electrical characteristics (continued)  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ Max  
VOL CC C Output low level  
MEDIUM configuration  
Push Pull IOL = 3.8 mA,  
VDD = 5.0 V 10%, PAD3V5V = 0  
0.2VDD  
V
P
I
V
OL = 2 mA,  
DD = 5.0 V 10%, PAD3V5V = 0  
0.1VDD  
(recommended)  
C
C
IOL = 1 mA,  
V
0.1VDD  
0.5  
DD = 5.0 V 10%, PAD3V5V = 12  
IOL = 1 mA,  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
C
I
OL = 100 µA,  
0.1VDD  
VDD = 5.0 V 10%, PAD3V5V = 0  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
Table 19. FAST configuration output buffer electrical characteristics  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VOH CC P Output high level  
FAST configuration  
Push Pull IOH = 14mA,  
0.8VDD  
V
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OH = 7mA,  
0.8VDD  
VDD = 5.0 V 10%, PAD3V5V = 12  
I
OH = 11mA,  
VDD0.8  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
VOL CC P Output low level  
FAST configuration  
Push Pull IOL = 14mA,  
0.1VDD  
V
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
I
OL = 7mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10%, PAD3V5V = 12  
IOL = 11mA,  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but  
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.  
2
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
41  
Package pinouts and signal descriptions  
2.15.4 Output pin transition times  
Table 20. Output pin transition times  
Value  
Symbol C  
Parameter  
Conditions1  
Unit  
Min Typ Max  
ttr CC D Output transition time output CL = 25 pF VDD = 5.0 V 10%, PAD3V5V = 0  
pin2  
50 ns  
100  
125  
50  
T
D
D
T
CL = 50 pF  
SLOW configuration  
CL = 100 pF  
CL = 25 pF VDD = 3.3 V 10%, PAD3V5V = 1  
CL = 50 pF  
100  
125  
10 ns  
20  
D
CL = 100 pF  
ttr CC D Output transition time output CL = 25 pF VDD = 5.0 V 10%, PAD3V5V = 0  
pin2  
SIUL.PCRx.SRC = 1  
T
D
D
T
CL = 50 pF  
MEDIUM configuration  
CL = 100 pF  
40  
CL = 25 pF VDD = 3.3 V 10%, PAD3V5V = 1  
12  
SIUL.PCRx.SRC = 1  
CL = 50 pF  
25  
D
CL = 100 pF  
40  
ttr CC D Output transition time output CL = 25 pF VDD = 5.0 V 10%, PAD3V5V = 0  
4
6
ns  
pin2  
CL = 50 pF  
FAST configuration  
CL = 100 pF  
12  
4
CL = 25 pF VDD = 3.3 V 10%, PAD3V5V = 1  
CL = 50 pF  
7
CL = 100 pF  
12  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
CL includes device and package capacitances (CPKG < 5 pF).  
2.15.5 I/O pad current specification  
The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a  
V
/V supply pair as described in Table 21.  
DD SS  
Table 21. I/O supply segment  
Supply segment  
Package  
1
2
3
4
5
6
208 MAPBGA1  
144 LQFP  
100 LQFP  
64 LQFP  
Equivalent to 144 LQFP segment pad distribution  
pin20–pin49 pin51–pin99 pin100–pin122 pin 123–pin19  
MCKO  
MDOn/MSEO  
pin16–pin35  
pin8–pin26  
pin37–pin69  
pin28–pin55  
pin70–pin83  
pin56–pin7  
pin 84–pin15  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
42  
NXP Semiconductors  
Package pinouts and signal descriptions  
1
208 MAPBGA available only as development package for Nexus2+  
Table 22 provides I/O consumption figures.  
In order to ensure device reliability, the average current of the I/O on a single segment should remain below  
the I  
maximum value.  
AVGSEG  
Table 22. I/O consumption  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min  
Typ Max  
,2  
ISWTSLW CC D Dynamic I/O current for CL = 25 pF  
SLOW configuration  
VDD = 5.0 V 10%,  
PAD3V5V = 0  
20  
16  
29  
17  
mA  
VDD = 3.3 V 10%,  
PAD3V5V = 1  
2
ISWTMED CC D Dynamic I/O current for CL = 25 pF  
VDD = 5.0 V 10%,  
PAD3V5V = 0  
mA  
MEDIUM configuration  
VDD = 3.3 V 10%,  
PAD3V5V = 1  
2
ISWTFST CC D Dynamic I/O current for CL = 25 pF  
VDD = 5.0 V 10%,  
PAD3V5V = 0  
110 mA  
50  
FAST configuration  
VDD = 3.3 V 10%,  
PAD3V5V = 1  
IRMSSLW CC D Root mean square I/O CL = 25 pF, 2 MHz  
VDD = 5.0 V 10%,  
PAD3V5V = 0  
2.3 mA  
3.2  
current for SLOW  
CL = 25 pF, 4 MHz  
configuration  
CL = 100 pF, 2 MHz  
CL = 25 pF, 2 MHz  
CL = 25 pF, 4 MHz  
CL = 100 pF, 2 MHz  
6.6  
VDD = 3.3 V 10%,  
PAD3V5V = 1  
1.6  
2.3  
4.7  
IRMSMED CC D Root mean square I/O CL = 25 pF, 13 MHz VDD = 5.0 V 10%,  
6.6 mA  
13.4  
18.3  
5
current for MEDIUM  
configuration  
PAD3V5V = 0  
CL = 25 pF, 40 MHz  
CL = 100 pF, 13 MHz  
CL = 25 pF, 13 MHz VDD = 3.3 V 10%,  
PAD3V5V = 1  
CL = 25 pF, 40 MHz  
8.5  
CL = 100 pF, 13 MHz  
11  
IRMSFST CC D Root mean square I/O CL = 25 pF, 40 MHz VDD = 5.0 V 10%,  
22  
33  
56  
14  
20  
35  
mA  
current for FAST  
configuration  
PAD3V5V = 0  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
CL = 25 pF, 40 MHz VDD = 3.3 V 10%,  
PAD3V5V = 1  
CL = 25 pF, 64 MHz  
CL = 100 pF, 40 MHz  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
43  
Package pinouts and signal descriptions  
Table 22. I/O consumption (continued)  
Conditions1  
Value  
Symbol  
C
Parameter  
Unit  
Min  
Typ Max  
IAVGSEG SR D Sum of all the static I/O VDD = 5.0 V 10%, PAD3V5V = 0  
current within a supply  
segment  
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to125 °C, unless otherwise specified  
Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.  
70  
65  
mA  
V
DD = 3.3 V 10%, PAD3V5V = 1  
1
2
Table 23 provides the weight of concurrent switching I/Os.  
Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single  
segment must not exceed 100% to ensure device functionality.  
1
Table 23. I/O weight  
144/100 LQFP  
Weight 5 V Weight 3.3 V  
SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
64 LQFP  
Supply segment  
Weight 5 V  
Weight 3.3 V  
Pad  
144  
100  
64  
LQFP LQFP LQFP2  
4
4
3
PB[3]  
PC[9]  
PC[14]  
PC[15]  
PG[5]  
PG[4]  
PG[3]  
PG[2]  
PA[2]  
10%  
10%  
9%  
9%  
9%  
9%  
9%  
8%  
8%  
8%  
7%  
7%  
7%  
6%  
6%  
5%  
5%  
12%  
12%  
11%  
11%  
11%  
10%  
10%  
10%  
9%  
10%  
10%  
8%  
12%  
12%  
7%  
3
13%  
12%  
4
12%  
11%  
4
12%  
10%  
8%  
9%  
3
PE[0]  
PA[1]  
9%  
9%  
7%  
9%  
3
PE[1]  
PE[8]  
PE[9]  
PE[10]  
PA[0]  
10%  
9%  
8%  
9%  
8%  
8%  
7%  
7%  
8%  
6%  
7%  
5%  
6%  
PE[11]  
6%  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
44  
NXP Semiconductors  
Package pinouts and signal descriptions  
64 LQFP  
1
Table 23. I/O weight (continued)  
144/100 LQFP  
Supply segment  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Weight 3.3 V  
Pad  
144  
100  
64  
SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
LQFP LQFP LQFP2  
1
1
1
PG[9]  
PG[8]  
PC[11]  
PC[10]  
PG[7]  
PG[6]  
PB[0]  
9%  
9%  
10%  
11%  
11%  
11%  
11%  
12%  
12%  
12%  
12%  
12%  
12%  
12%  
12%  
12%  
11%  
10%  
10%  
9%  
9%  
9%  
13%  
14%  
14%  
14%  
12%  
12%  
12%  
12%  
9%  
13%  
11%  
12%  
1
1
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
9%  
10%  
10%  
14%  
12%  
12%  
12%  
PB[1]  
1
1
PF[9]  
PF[8]  
15%  
15%  
13%  
13%  
PF[12]  
PC[6]  
PC[7]  
PF[10]  
PF[11]  
PA[15]  
PF[13]  
PA[14]  
PA[4]  
10%  
10%  
12%  
12%  
1
1
14%  
12%  
12%  
11%  
9%  
12%  
10%  
11%  
1
1
8%  
8%  
11%  
10%  
8%  
8%  
7%  
7%  
11%  
9%  
9%  
9%  
8%  
10%  
8%  
9%  
PA[13]  
PA[12]  
7%  
10%  
9%  
9%  
10%  
9%  
7%  
8%  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
45  
Package pinouts and signal descriptions  
Supply segment  
1
Table 23. I/O weight (continued)  
144/100 LQFP  
64 LQFP  
Weight 3.3 V  
SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Pad  
144  
100  
64  
LQFP LQFP LQFP2  
2
2
2
PB[9]  
PB[8]  
PB[10]  
PF[0]  
PF[1]  
PF[2]  
PF[3]  
PF[4]  
PF[5]  
PF[6]  
PF[7]  
PD[0]  
PD[1]  
PD[2]  
PD[3]  
PD[4]  
PD[5]  
PD[6]  
PD[7]  
PD[8]  
PB[4]  
PB[5]  
PB[6]  
PB[7]  
PD[9]  
PD[10]  
PD[11]  
PB[11]  
PD[12]  
PB[12]  
PD[13]  
1%  
1%  
6%  
6%  
7%  
7%  
7%  
8%  
8%  
8%  
9%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
11%  
11%  
11%  
10%  
1%  
1%  
7%  
7%  
8%  
8%  
9%  
9%  
10%  
10%  
10%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
1%  
13%  
13%  
13%  
12%  
1%  
1%  
6%  
1%  
1%  
7%  
2
2
1%  
1%  
1%  
1%  
1%  
2%  
2%  
2%  
2
17%  
21%  
2
18%  
21%  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
46  
NXP Semiconductors  
Package pinouts and signal descriptions  
64 LQFP  
1
Table 23. I/O weight (continued)  
144/100 LQFP  
Supply segment  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Weight 3.3 V  
Pad  
144  
100  
64  
SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
LQFP LQFP LQFP2  
2
2
2
2
PB[13]  
PD[14]  
PB[14]  
PD[15]  
PB[15]  
PA[3]  
10%  
10%  
10%  
10%  
9%  
9%  
9%  
9%  
5%  
5%  
5%  
4%  
4%  
3%  
3%  
4%  
4%  
5%  
5%  
5%  
6%  
6%  
7%  
7%  
7%  
7%  
7%  
6%  
6%  
6%  
6%  
12%  
12%  
12%  
11%  
11%  
11%  
10%  
10%  
6%  
6%  
5%  
5%  
4%  
4%  
4%  
5%  
5%  
6%  
6%  
6%  
7%  
8%  
8%  
8%  
8%  
8%  
8%  
8%  
7%  
7%  
7%  
18%  
9%  
21%  
8%  
18%  
21%  
2
18%  
18%  
21%  
21%  
3
2
PG[13]  
PG[12]  
PH[0]  
13%  
12%  
8%  
7%  
6%  
6%  
11%  
11%  
7%  
6%  
6%  
5%  
PH[1]  
PH[2]  
PH[3]  
PG[1]  
PG[0]  
PF[15]  
PF[14]  
PE[13]  
PA[7]  
4%  
4%  
3
5%  
5%  
16%  
16%  
15%  
15%  
14%  
19%  
19%  
18%  
18%  
17%  
PA[8]  
PA[9]  
PA[10]  
PA[11]  
PE[12]  
PG[14]  
PG[15]  
PE[14]  
PE[15]  
PG[10]  
PG[11]  
PC[3]  
2
3
10%  
9%  
9%  
8%  
9%  
8%  
7%  
6%  
9%  
8%  
PC[2]  
8%  
7%  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
47  
Package pinouts and signal descriptions  
Supply segment  
1
Table 23. I/O weight (continued)  
144/100 LQFP  
64 LQFP  
Weight 3.3 V  
SRC3 = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1 SRC = 0 SRC = 1  
Weight 5 V  
Weight 3.3 V  
Weight 5 V  
Pad  
144  
100  
64  
LQFP LQFP LQFP2  
3
4
3
4
2
PA[5]  
PA[6]  
5%  
5%  
4%  
5%  
6%  
7%  
6%  
6%  
6%  
6%  
5%  
5%  
5%  
6%  
7
8%  
7%  
6%  
6%  
5%  
7%  
8
7%  
PH[10]  
PC[1]  
PC[0]  
PH[9]  
PE[2]  
PE[3]  
PC[5]  
PC[4]  
PE[4]  
PE[5]  
PH[4]  
PH[5]  
PH[6]  
PH[7]  
PH[8]  
PE[6]  
PE[7]  
PC[12]  
PC[13]  
PC[8]  
PB[2]  
6%  
5%  
5%  
7%  
6%  
5%  
3
9%  
7%  
8%  
9%  
7
8%  
8
7
7
8
8
3
7%  
10%  
11%  
11%  
12%  
12%  
12%  
13%  
9%  
9%  
8%  
9%  
9%  
8%  
9%  
10%  
10%  
11%  
11%  
11%  
8%  
8%  
11%  
12%  
9%  
10%  
10%  
10%  
8%  
8%  
10%  
10%  
10%  
11%  
11%  
11%  
11%  
11%  
12%  
12%  
12%  
12%  
12%  
12%  
3
9%  
4
9%  
9%  
9%  
13%  
13%  
14%  
14%  
14%  
14%  
12%  
12%  
12%  
12%  
12%  
13%  
9%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
10%  
12%  
12%  
15%  
13%  
15%  
13%  
1
2
3
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to125 °C, unless otherwise specified  
Segments shown apply to MPC560xB devices only  
SRC: “Slew Rate Control” bit in SIU_PCR  
2.16 RESET electrical characteristics  
The device implements a dedicated bidirectional RESET pin.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
48  
NXP Semiconductors  
Package pinouts and signal descriptions  
V
DD  
V
DDMIN  
RESET  
V
IH  
V
IL  
device reset forced by RESET  
device start-up phase  
Figure 8. Start-up reset requirements  
VRESET  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
Figure 9. Noise filtering on reset signal  
Table 24. Reset electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIH  
SR P Input High Level CMOS  
(Schmitt Trigger)  
0.65VDD  
VDD+0.4  
V
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
49  
Package pinouts and signal descriptions  
Table 24. Reset electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VIL SR P Input low Level CMOS  
(Schmitt Trigger)  
0.4  
0.35VDD  
V
V
V
VHYS CC C Input hysteresis CMOS  
(Schmitt Trigger)  
0.1VDD  
VOL CC P Output low level  
Push Pull, IOL = 2mA,  
0.1VDD  
VDD = 5.0 V 10%, PAD3V5V = 0  
(recommended)  
C
C
Push Pull, IOL = 1mA,  
0.1VDD  
0.5  
VDD = 5.0 V 10%, PAD3V5V = 12  
Push Pull, IOL = 1mA,  
VDD = 3.3 V 10%, PAD3V5V = 1  
(recommended)  
ttr  
CC D Output transition time  
output pin3  
CL = 25pF,  
VDD = 5.0 V 10%, PAD3V5V = 0  
10  
20  
40  
12  
25  
40  
40  
ns  
CL = 50pF,  
VDD = 5.0 V 10%, PAD3V5V = 0  
CL = 100pF,  
VDD = 5.0 V 10%, PAD3V5V = 0  
CL = 25pF,  
VDD = 3.3 V 10%, PAD3V5V = 1  
CL = 50pF,  
VDD = 3.3 V 10%, PAD3V5V = 1  
CL = 100pF,  
VDD = 3.3 V 10%, PAD3V5V = 1  
WFRST SR P RESET input filtered  
pulse  
ns  
ns  
µA  
WNFRST SR P RESET input not filtered  
pulse  
1000  
|IWPU  
|
CC P Weak pull-up current  
VDD = 3.3 V 10%, PAD3V5V = 1  
VDD = 5.0 V 10%, PAD3V5V = 0  
VDD = 5.0 V 10%, PAD3V5V = 12  
10  
10  
10  
150  
150  
250  
absolute value  
D
P
1
2
3
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
This transient configuration does not occurs when device is used in the VDD = 3.3 V 10% range.  
CL includes device and package capacitance (CPKG < 5 pF).  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
50  
NXP Semiconductors  
Package pinouts and signal descriptions  
2.17 Power management electrical characteristics  
2.17.1 Voltage regulator electrical characteristics  
The device implements an internal voltage regulator to generate the low voltage core supply V  
from  
DD_LV  
the high voltage ballast supply V  
. The regulator itself is supplied by the common I/O supply V  
.
DD_BV  
DD  
The following supplies are involved:  
HV—High voltage external power supply for voltage regulator module. This must be provided  
externally through VDD_HV power pin.  
BV—High voltage external power supply for internal ballast module. This must be provided  
externally through VDD_BV power pin. Voltage values should be aligned with V  
.
DD  
LV—Low voltage internal power supply for core, FMPLL and flash digital logic. This is generated  
by the internal voltage regulator but provided outside to connect stability capacitor. It is further  
split into four main domains to ensure noise isolation between critical LV modules within the  
device:  
— LV_COR—Low voltage supply for the core. It is also used to provide supply for FMPLL  
through double bonding.  
— LV_CFLA—Low voltage supply for code flash module. It is supplied with dedicated ballast  
and shorted to LV_COR through double bonding.  
— LV_DFLA—Low voltage supply for data flash module. It is supplied with dedicated ballast  
and shorted to LV_COR through double bonding.  
— LV_PLL—Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
51  
Package pinouts and signal descriptions  
C
(LV_COR/LV_CFLA)  
REG2  
VDD_HV  
VSS_LV  
VDD_LV  
VDD_BV  
V
REF  
Voltage Regulator  
DEVICE  
VDD_BV  
VDD_LV  
DEVICE  
VDD_LVn  
VSS_LVn  
I
VSS_LV  
VSS_LV  
VDD_LV  
VSS_HV  
VDD_HV  
C
C
DEC2  
REG3  
(LV_COR/LV_PLL)  
(supply/IO decoupling)  
Figure 10. Voltage regulator capacitance connection  
The internal voltage regulator requires external capacitance (C  
) to be connected to the device in order  
REGn  
to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as  
near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board  
to less than 5 nH.  
Each decoupling capacitor must be placed between each of the three V  
/V  
supply pairs to  
DD_LV SS_LV  
ensure stable voltage (see 2.13, Recommended operating conditions).  
The internal voltage regulator requires a controlled slew rate of both V  
Figure 11.  
and V  
as described in  
DD_HV  
DD_BV  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
52  
NXP Semiconductors  
Package pinouts and signal descriptions  
V
DD_HV  
V
(MAX)  
DD_HV  
d
dt  
VDD  
V
(MIN)  
DD_HV  
POWER UP  
FUNCTIONAL RANGE  
POWER DOWN  
Figure 11. V  
and V  
maximum slope  
DD_BV  
DD_HV  
When STANDBY mode is used, further constraints are applied to the both V  
and V  
in order  
DD_HV  
DD_BV  
to guarantee correct regulator function during STANDBY exit. This is described on Figure 12.  
STANDBY regulator constraints should normally be guaranteed by implementing equivalent of CSTDBY  
capacitance on application board (capacitance and ESR typical values), but would actually depend on  
exact characteristics of application external regulator.  
V
V
V
DD_HV  
DD_HV  
DD_HV  
(MAX)  
ΔVDD(STDBY)  
ΔVDD(STDBY)  
V
(MIN)  
DD_LV  
DD_HV  
d
dt  
VDD(STDBY)  
V
V
(NOMINAL)  
DD_LV  
0V  
Figure 12. V  
and V  
supply constraints during STANDBY mode exit  
DD_BV  
DD_HV  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
53  
Package pinouts and signal descriptions  
Table 25. Voltage regulator electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
CREGn  
RREG  
SR — Internal voltage regulator external  
capacitance  
200  
500  
0.2  
nF  
Ω
SR — Stability capacitor equivalent serial Range:  
resistance  
10 kHz to 20 MHz  
CDEC1  
SR — Decoupling capacitance2 ballast VDD_BV/VSS_LV pair:  
1003 4704  
400  
nF  
V
DD_BV = 4.5 V to 5.5 V  
V
DD_BV/VSS_LV pair:  
VDD_BV = 3 V to 3.6 V  
SR — Decoupling capacitance regulator VDD/VSS pair  
CDEC2  
10  
100  
nF  
supply  
SR — Maximum slope on VDD  
250 mV/µs  
d
VDD  
dt  
VDD(STDBY)  
|
SR — Maximum instant variation on VDD  
during standby exit  
30  
mV  
SR — Maximum slope on VDD during  
standby exit  
15 mV/µs  
d
dt  
VDD(STDBY)  
VMREG  
CC T Main regulator output voltage  
P
Before exiting from  
reset  
1.32  
V
After trimming  
1.16 1.28  
IMREG  
SR — Main regulator current provided to  
VDD_LV domain  
150  
mA  
mA  
IMREGINT  
CC D Main regulator module current  
consumption  
IMREG = 200 mA  
IMREG = 0 mA  
After trimming  
2
1
VLPREG  
ILPREG  
CC P Low power regulator output  
voltage  
1.16 1.28  
V
SR — Low power regulator current  
provided to VDD_LV domain  
5
15  
600  
mA  
µA  
ILPREGINT  
CC D Low power regulator module  
current consumption  
ILPREG = 15 mA;  
TA = 55 °C  
ILPREG = 0 mA;  
TA = 55 °C  
VULPREG  
CC P Ultra low power regulator output  
voltage  
After trimming  
1.16 1.28  
V
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
54  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 25. Voltage regulator electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
IULPREG  
IULPREGINT  
SR — Ultra low power regulator current  
provided to VDD_LV domain  
2
5
mA  
µA  
CC D Ultra low power regulator module IULPREG = 5 mA;  
100  
current consumption  
TA = 55 °C  
IULPREG = 0 mA;  
TA = 55 °C  
IDD_BV  
CC D In-rush average current on VDD_BV  
during power-up5  
3006 mA  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
This capacitance value is driven by the constraints of the external voltage regulator supplying the VDD_BV voltage.  
A typical value is in the range of 470 nF.  
3
4
This value is acceptable to guarantee operation from 4.5 V to 5.5 V  
External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV  
in operating range.  
5
6
In-rush average current is seen only for short time (maximum 20 µs) during power-up and on standby exit. It is  
dependant on the sum of the CREGn capacitances.  
The duration of the in-rush current depends on the capacitance placed on LV pins. BV decoupling capacitors must  
be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.  
The |Δ  
| and dVDD(STDBY)/dt system requirement can be used to define the component used  
for the V supply generation. The following two examples describe how to calculate capacitance size:  
VDD(STDBY)  
DD  
Example 1. No regulator (worst case)  
The |Δ  
| parameter can be seen as the V voltage drop through the ESR resistance of the  
DD  
VDD(STDBY)  
regulator stability capacitor when the I  
current required to load V  
domain during the standby  
DD_BV  
DD_LV  
exit. It is thus possible to define the maximum equivalent resistance ESR  
(MAX) of the total  
STDBY  
capacitance on the V supply:  
DD  
1
ESR  
(MAX) = |Δ  
|/I  
= (30 mV)/(300 mA) = 0.1Ω  
STDBY  
VDD(STDBY) DD_BV  
The dVDD(STDBY)/dt parameter can be seen as the V voltage drop at the capacitance pin (excluding  
DD  
ESR drop) while providing the I  
supply required to load V  
domain during the standby exit. It  
(MIN) of the total capacitance on  
DD_BV  
DD_LV  
STDBY  
is thus possible to define the minimum equivalent capacitance C  
the V supply:  
DD  
C
(MIN) = I  
/dVDD(STDBY)/dt = (300 mA)/(15 mV/µs) = 20 µF  
STDBY  
DD_BV  
This configuration is a worst case, with the assumption no regulator is available.  
1. Based on typical time for standby exit sequence of 20 µs, ESR(MIN) can actually be considered at ~50 kHz.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
55  
Package pinouts and signal descriptions  
Example 2. Simplified regulator  
The regulator should be able to provide significant amount of the current during the standby exit process.  
For example, in case of an ideal voltage regulator providing 200 mA current, it is possible to recalculate  
the equivalent ESR  
(MAX) and C  
(MIN) as follows:  
STDBY  
STDBY  
ESR  
(MAX) = |Δ  
|/(I  
200 mA) = (30 mV)/(100 mA) = 0.3 Ω  
STDBY  
VDD(STDBY) DD_BV  
C
(MIN) = (I  
200 mA)/dVDD(STDBY)/dt = (300 mA 200 mA)/(15 mV/µs) = 6.7 µF  
DD_BV  
STDBY  
In case optimization is required, C  
(MIN) and ESR  
(MAX) should be calculated based on the  
STDBY  
STDBY  
regulator characteristics as well as the board V plane characteristics.  
DD  
2.17.2 Low voltage detector electrical characteristics  
The device implements a Power-on Reset (POR) module to ensure correct power-up initialization, as well  
as four low voltage detectors (LVDs) to monitor the V and the V  
voltage while device is supplied:  
DD  
DD_LV  
POR monitors V during the power-up phase to ensure device is maintained in a safe reset state  
DD  
(refer to RGM Destructive Event Status (RGM_DES) Register flag F_POR in device reference  
manual)  
LVDHV3 monitors V to ensure device reset below minimum functional supply (refer to RGM  
Destructive Event Status (RGM_DES) Register flag F_LVD27 in device reference manual)  
DD  
LVDHV5 monitors V when application uses device in the 5.0 V ± 10% range (refer to RGM  
DD  
Functional Event Status (RGM_FES) Register flag F_LVD45 in device reference manual)  
LVDLVCOR monitors power domain No. 1 (refer to RGM Destructive Event Status (RGM_DES)  
Register flag F_LVD12_PD1 in device reference manual  
LVDLVBKP monitors power domain No. 0 (refer to RGM Destructive Event Status (RGM_DES)  
Register flag F_LVD12_PD0 in device reference manual)  
NOTE  
When enabled, power domain No. 2 is monitored through LVDLVBKP.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
56  
NXP Semiconductors  
Package pinouts and signal descriptions  
V
DD  
V
V
LVDHVxH  
LVDHVxL  
RESET  
Figure 13. Low voltage detector vs reset  
NOTE  
Figure 13 does not apply to LVDHV5 low voltage detector because  
LVDHV5 is automatically disabled during reset and it must be enabled by  
software again. Once the device is forced to reset by LVDHV5, the  
LVDHV5 is disabled and reset is released as soon as internal reset sequence  
is completed regardless of LVDHV5H threshold.  
Table 26. Low voltage detector electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
VPORUP  
VPORH  
SR P Supply for functional POR module  
CC P Power-on reset threshold  
1.0  
1.5  
5.5  
2.6  
V
TA = 25 °C,  
after trimming  
T
1.5  
2.6  
2.95  
2.9  
VLVDHV3H CC T LVDHV3 low voltage detector high threshold  
VLVDHV3L CC P LVDHV3 low voltage detector low threshold  
VLVDHV5H CC T LVDHV5 low voltage detector high threshold  
VLVDHV5L CC P LVDHV5 low voltage detector low threshold  
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold  
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold  
2.6  
4.5  
3.8  
1.08  
1.08  
4.4  
1.16  
1.16  
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
57  
Package pinouts and signal descriptions  
2.18 Power consumption  
Table 27 provides DC electrical characteristics for significant application modes. These values are  
indicative values; actual consumption depends on the application.  
Table 27. Power consumption on VDD_BV and VDD_HV  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
115 1403 mA  
Min Typ Max  
2
IDDMAX  
CC D RUN mode maximum  
average current  
4
IDDRUN  
CC T RUNmodetypicalaverage fCPU = 8 MHz  
current5  
7
mA  
T
fCPU = 16 MHz  
18  
29  
40  
51  
8
T
fCPU = 32 MHz  
CPU = 48 MHz  
P
f
100  
125  
15  
P
fCPU = 64 MHz  
IDDHALT  
CC C HALT mode current6  
Slow internal RC oscillator TA = 25 °C  
mA  
(128 kHz) running  
P
TA = 125 °C  
14  
25  
IDDSTOP CC P STOP mode current7  
Slow internal RC oscillator TA = 25 °C  
180 7008 µA  
(128 kHz) running  
D
D
D
P
TA = 55 °C  
500  
1
68  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
mA  
µA  
2
98  
4.5  
30  
75  
180  
128  
100  
IDDSTDBY2 CC P STANDBY2 mode current9 Slow internal RC oscillator TA = 25 °C  
(128 kHz) running  
D
TA = 55 °C  
TA = 85 °C  
D
700  
D
TA = 105 °C  
315 1000  
560 1700  
P
TA = 125 °C  
IDDSTDBY1 CC T STANDBY1 mode  
Slow internal RC oscillator TA = 25 °C  
(128 kHz) running  
20  
45  
60  
µA  
current10  
D
TA = 55 °C  
D
D
D
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
100  
165  
280  
350  
500  
900  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
IDDMAX is drawn only from the VDD_BV pin. Running consumption does not include I/Os toggling which is highly  
dependent on the application. The given value is thought to be a worst case value with all peripherals running, and  
code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly  
reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal  
prescaler, fetch from RAM most used functions, use low power mode when possible.  
3
4
Higher current may be sinked by device during power-up and standby exit. Please refer to in rush current on Table 25.  
IDDRUN is drawn only from the VDD_BV pin. RUN current measured with typical application with accesses on both flash  
and RAM.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
58  
NXP Semiconductors  
Package pinouts and signal descriptions  
5
6
Only for the “P” classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and  
LIN in loop back mode, DSPI as Master, PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and  
running at max frequency, periodic SW/WDG timer reset enabled.  
Data Flash Power Down. Code Flash in Low Power. SIRC (128 kHz) and FIRC (16 MHz) on. 10 MHz XTAL clock.  
FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clock gated. LINFlex:  
instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 clock gated. eMIOS: instance: 0 ON (16  
channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked  
but no communication). RTC/API ON. PIT ON. STM ON. ADC ON but not conversion except 2 analog watchdog.  
7
8
Only for the “P” classification: No clock, FIRC (16 MHz) off, SIRC (128 kHz) on, PLL off, HPvreg off,  
ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.  
When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main  
regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction  
temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the  
maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to  
the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.  
9
Only for the “P” classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum  
consumption, all possible modules switched off.  
10 ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules  
switched off.  
2.19 Flash memory electrical characteristics  
2.19.1 Program/Erase characteristics  
Table 28 shows the program and erase characteristics.  
Table 28. Program and erase specifications  
Value  
Symbol  
C
Parameter  
Unit  
Initial  
max2  
Min  
Typ1  
Max3  
Tdwprogram CC C Double word (64 bits) program time4  
22  
300  
400  
800  
50  
500  
600  
1300  
30  
500  
5000  
5000  
7500  
30  
µs  
ms  
ms  
ms  
µs  
T16Kpperase  
T32Kpperase  
T128Kpperase  
Tesus  
16 KB block preprogram and erase time  
32 KB block preprogram and erase time  
128 KB block preprogram and erase time  
CC D Erase suspend latency  
1
2
3
Typical program and erase times assume nominal supply values and operation at 25 °C.  
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program and erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
4
Actual hardware programming times. This does not include software overhead.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
59  
Package pinouts and signal descriptions  
Table 29. Flash module life  
Conditions  
Value  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
P/E  
CC C Number of program/erase cycles 16 KB blocks  
100,000  
cycles  
per block over the operating  
temperature range (TJ)  
32 KB blocks  
10,000 100,000  
1,000 100,000  
128 KB blocks  
Retention CC C Minimum data retention at 85 °C Blocks with  
average ambient temperature1  
0–1,000 P/E cycles  
20  
10  
5
years  
Blocks with  
1,001–10,000 P/E cycles  
Blocks with  
10,001–100,000 P/E cycles  
1
Ambient temperature averaged over duration of application, not to exceed recommended product operating  
temperature range.  
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability  
results. Some units will experience single bit corrections throughout the life of the product with no impact  
to product reliability.  
Table 30. Flash read access timing  
Symbol  
C
Parameter  
Conditions1  
Max Unit  
fREAD CC P Maximum frequency for Flash reading  
2 wait states  
1 wait state  
0 wait states  
64  
40  
20  
MHz  
C
C
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
2.19.2 Flash power supply DC characteristics  
Table 31 shows the power supply DC characteristics on external supply.  
Table 31. Flash memory power supply DC electrical characteristics  
Value  
Min Typ Max  
Symbol  
C
Parameter  
Conditions1  
Unit  
2
IFREAD CC D Sum of the current consumption on  
Code flash memory module read  
15  
33 mA  
VDD_HV and VDD_BV on read access fCPU = 64 MHz3  
Data flash memory module read  
CPU = 64 MHz3  
15  
33  
f
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
60  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 31. Flash memory power supply DC electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
2
IFMOD CC D Sum of the current consumption on  
VDD_HV and VDD_BV on matrix  
Program/Erase ongoing while  
reading code flash memory  
registers fCPU = 64 MHz3  
15  
33 mA  
modification (program/erase)  
Program/Erase ongoing while  
reading data flash memory  
registers fCPU = 64 MHz3  
15  
33  
IFLPW CC D Sum of the current consumption on  
VDD_HV and VDD_BV  
During code flash memory  
low-power mode  
900 µA  
900  
During data flash memory  
low-power mode  
IFPWD CC D Sum of the current consumption on  
VDD_HV and VDD_BV  
During code flash memory  
power-down mode  
150 µA  
150  
During data flash memory  
power-down mode  
1
2
3
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
This value is only relative to the actual duration of the read cycle  
fCPU 64 MHz can be achieved only at up to 105 °C  
2.19.3 Start-up/Switch-off timings  
Table 32. Start-up time/Switch-off time  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
125  
TFLARSTEXIT CC T Delay for Flash module to exit reset mode  
T
Code Flash  
Data Flash  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
Code Flash  
Data Flash  
µs  
125  
0.5  
0.5  
30  
TFLALPEXIT  
CC T Delay for Flash module to exit low-power  
mode  
T
TFLAPDEXIT  
CC T Delay for Flash module to exit power-down  
mode  
T
30  
TFLALPENTRY CC T Delay for Flash module to enter low-power  
0.5  
0.5  
1.5  
1.5  
mode  
T
TFLAPDENTRY CC T  
Delay for Flash module to enter power-down  
mode  
T
1
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
2.20 Electromagnetic compatibility (EMC) characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
61  
Package pinouts and signal descriptions  
2.20.1 Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical application  
environment and simplified MCU software. It should be noted that good EMC performance is highly  
dependent on the user application and the software in particular.  
Therefore it is recommended that the user apply EMC software optimization and prequalification tests in  
relation with the EMC level requested for his application.  
Software recommendations: The software flowchart must include the management of runaway  
conditions such as:  
— Corrupted program counter  
— Unexpected reset  
— Critical data corruption (control registers...)  
Prequalification trials: Most of the common failures (unexpected reset and program counter  
corruption) can be reproduced by manually forcing a low state on the reset pin or the oscillator pins  
for 1 second.  
To complete these trials, ESD stress can be applied directly on the device. When unexpected  
behavior is detected, the software can be hardened to prevent unrecoverable errors occurring.  
2.20.2 Electromagnetic interference (EMI)  
The product is monitored in terms of emission based on a typical application. This emission test conforms  
to the IEC 61967-1 standard, which specifies the general conditions for EMI measurements.  
1,2  
Table 33. EMI radiated emission measurement  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
Min Typ Max  
SR — Scan range  
0.150  
64  
1000 MHz  
fCPU SR — Operating frequency  
MHz  
V
V
DD_LV SR — LV operating voltages  
1.28  
SEMI CC T Peak level  
VDD = 5 V, TA = 25 °C,  
LQFP144 package  
No PLL frequency  
modulation  
18 dBµV  
Test conforming to IEC 61967-2,  
fOSC = 8 MHz/fCPU = 64 MHz  
2% PLL frequency  
modulation  
14 dBµV  
1
2
EMI testing and I/O port waveforms per IEC 61967-1, -2, -4  
For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your  
local marketing representative.  
2.20.3 Absolute maximum ratings (electrical sensitivity)  
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed  
in order to determine its performance in terms of electrical sensitivity.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
62  
NXP Semiconductors  
Package pinouts and signal descriptions  
2.20.3.1 Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of  
each sample according to each pin combination. The sample size depends on the number of supply pins in  
the device (3 parts*(n+1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.  
1 2  
Table 34. ESD absolute maximum ratings  
Symbol  
C
Ratings  
Conditions  
TA = 25 °C  
Class Max value  
Unit  
VESD(HBM) CC T Electrostatic discharge voltage  
(Human Body Model)  
H1C  
2000  
V
conforming to AEC-Q100-002  
VESD(MM) CC T Electrostatic discharge voltage  
(Machine Model)  
TA = 25 °C  
conforming to AEC-Q100-003  
M2  
200  
VESD(CDM) CC T Electrostatic discharge voltage  
(Charged Device Model)  
TA = 25 °C  
conforming to AEC-Q100-011  
C3A  
500  
750 (corners)  
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
2
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification.  
2.20.3.2 Static latch-up (LU)  
Two complementary static tests are required on six parts to assess the latch-up performance:  
A supply overvoltage is applied to each power supply pin.  
A current injection is applied to each input, output and configurable I/O pin.  
These tests are compliant with the EIA/JESD 78 IC latch-up standard.  
Table 35. Latch-up results  
Symbol  
LU CC  
C
Parameter  
Conditions  
Class  
T Static latch-up class  
TA = 125 °C  
conforming to JESD 78  
II level A  
2.21 Fast external crystal oscillator (4 to 16 MHz) electrical  
characteristics  
The device provides an oscillator/resonator driver. Figure 14 describes a simple model of the internal  
oscillator driver and provides an example of a connection for an oscillator or a resonator.  
Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
63  
Package pinouts and signal descriptions  
EXTAL  
C1  
C2  
EXTAL  
XTAL  
DEVICE  
V
DD  
I
R
EXTAL  
XTAL  
DEVICE  
XTAL  
DEVICE  
Notes:  
1. XTAL/EXTAL must not be directly used to drive external circuits  
2. A series resistor may be required, according to crystal oscillator supplier recommendations.  
Figure 14. Crystal oscillator and resonator connection scheme  
Table 36. Crystal description  
Shunt  
Crystal  
equivalent  
series  
resistance  
ESR Ω  
Crystal  
motional  
capacitance  
(Cm) fF  
Crystal  
motional  
inductance  
(Lm) mH  
Load on  
xtalin/xtalout  
C1 = C2  
capacitance  
between  
xtalout  
Nominal  
frequency  
(MHz)  
NDK crystal  
reference  
(pF)1  
and xtalin  
C02 (pF)  
4
NX8045GB  
NX5032GA  
300  
300  
150  
120  
120  
2.68  
2.46  
2.93  
3.11  
3.90  
591.0  
160.7  
86.6  
21  
17  
15  
15  
10  
2.93  
3.01  
2.91  
2.93  
3.00  
8
10  
12  
16  
56.5  
25.3  
1
2
The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing  
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.  
The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads,  
package, etc.).  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
64  
NXP Semiconductors  
Package pinouts and signal descriptions  
S_MTRANS bit (ME_GS register)  
‘1’  
‘0’  
V
XTAL  
1/f  
FXOSC  
V
FXOSC  
90%  
10%  
V
FXOSCOP  
t
valid internal clock  
FXOSCSU  
Figure 15. Fast external crystal oscillator (4 to 16 MHz) timing diagram  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
65  
Package pinouts and signal descriptions  
Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fFXOSC SR — Fast external crystal  
oscillator frequency  
4.0  
16.0  
MHz  
gmFXOSC CC C Fast external crystal  
VDD = 3.3 V 10%,  
2.2  
2.0  
2.7  
2.5  
8.2  
7.4  
9.7  
9.2  
mA/V  
oscillator transconductance PAD3V5V = 1  
OSCILLATOR_MARGIN = 0  
CC P  
CC C  
CC C  
VDD = 5.0 V 10%,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 0  
V
DD = 3.3 V 10%,  
PAD3V5V = 1  
OSCILLATOR_MARGIN = 1  
V
DD = 5.0 V 10%,  
PAD3V5V = 0  
OSCILLATOR_MARGIN = 1  
VFXOSC CC T Oscillation amplitude at  
EXTAL  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
1.3  
1.3  
V
f
OSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
VFXOSCOP CC C Oscillation operating point  
0.95  
2
3
V
,2  
IFXOSC  
CC T Fast external crystal  
oscillator consumption  
mA  
tFXOSCSU CC T Fast external crystal  
oscillator start-up time  
fOSC = 4 MHz,  
OSCILLATOR_MARGIN = 0  
6
ms  
fOSC = 16 MHz,  
OSCILLATOR_MARGIN = 1  
1.8  
VIH  
VIL  
SR P Input high level CMOS  
(Schmitt Trigger)  
Oscillator bypass mode  
Oscillator bypass mode  
0.65VDD  
0.4  
VDD+0.4  
0.35VDD  
V
V
SR P Input low level CMOS  
(Schmitt Trigger)  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
Stated values take into account only analog module consumption but not the digital contributor (clock tree and  
enabled peripherals)  
2.22 Slow external crystal oscillator (32 kHz) electrical characteristics  
The device provides a low power oscillator/resonator driver.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
66  
NXP Semiconductors  
Package pinouts and signal descriptions  
OSC32K_EXTAL  
OSC32K_EXTAL  
C1  
C2  
OSC32K_XTAL  
OSC32K_XTAL  
DEVICE  
DEVICE  
Note: OSC32K_XTAL/OSC32K_EXTAL must not be directly used to drive external circuits.  
Figure 16. Crystal oscillator and resonator connection scheme  
C0  
Crystal  
Rm  
Lm  
Cm  
C1  
C2  
C1  
C2  
Figure 17. Equivalent circuit of a quartz crystal  
1
Table 38. Crystal motional characteristics  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Typ  
Max  
Lm  
Motional inductance  
Motional capacitance  
18  
11.796  
28  
KH  
fF  
Cm  
2
C1/C2 Load capacitance at OSC32K_XTAL and  
OSC32K_EXTAL with respect to ground2  
pF  
AC coupled @ C0 = 2.85 pF4  
AC coupled @ C0 = 4.9 pF4  
AC coupled @ C0 = 7.0 pF4  
AC coupled @ C0 = 9.0 pF4  
65  
50  
35  
30  
kΩ  
3
Rm  
Motional resistance  
1
Crystal used: Epson Toyocom MC306  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
67  
Package pinouts and signal descriptions  
2
This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to  
ground. It includes all the parasitics due to board traces, crystal and package.  
3
Maximum ESR (Rm) of the crystal is 50 kΩ  
C0 includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K_EXTAL pins  
4
OSCON bit (OSC_CTL register)  
1
0
V
OSC32K_XTAL  
1/f  
SXOSC  
V
SXOSC  
90%  
10%  
T
valid internal clock  
SXOSCSU  
Figure 18. Slow external crystal oscillator (32 kHz) timing diagram  
Table 39. Slow external crystal oscillator (32 kHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
fSXOSC SR — Slow external crystal oscillator frequency  
VSXOSC CC T Oscillation amplitude  
32  
32.768  
2.1  
40  
8
kHz  
V
ISXOSCBIAS CC T Oscillation bias current  
2.5  
µA  
µA  
s
ISXOSC CC T Slow external crystal oscillator consumption  
TSXOSCSU CC T Slow external crystal oscillator start-up time  
22  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified. Values are specified for no  
neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins  
should not toggle.  
Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.  
2.23 FMPLL electrical characteristics  
The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system  
clock from the main oscillator driver.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
68  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 40. FMPLL electrical characteristics  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
fPLLIN SR — FMPLL reference clock2  
4
64  
60  
MHz  
%
ΔPLLIN SR — FMPLL reference clock duty  
40  
cycle2  
fPLLOUT CC D FMPLL output clock frequency  
16  
64  
MHz  
3
fVCO  
CC P VCO frequency without  
frequency modulation  
256  
512 MHz  
C VCO frequency with frequency  
modulation  
245  
533  
fCPU SR — System clock frequency  
fFREE CC P Free-running frequency  
tLOCK CC P FMPLL lock time  
20  
–4  
40  
64  
MHz  
150 MHz  
Stable oscillator (fPLLIN = 16 MHz)  
fsys maximum  
100  
4
µs  
%
ΔtSTJIT CC — FMPLL short term jitter4  
ΔtLTJIT CC — FMPLL long term jitter  
fPLLIN = 16 MHz (resonator),  
fPLLCLK @ 64 MHz, 4000 cycles  
10  
ns  
IPLL  
CC C FMPLL consumption  
TA = 25 °C  
4
mA  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified.  
PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in  
functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and ΔPLLIN  
Frequency modulation is considered 4%  
.
3
4
Short term jitter is measured on the clock rising edge at cycle n and n+4.  
2.24 Fast internal RC oscillator (16 MHz) electrical characteristics  
The device provides a 16 MHz fast internal RC oscillator. This is used as the default clock at the power-up  
of the device.  
Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics  
Value  
Symbol  
fFIRC  
2,  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CC P Fast internal RC oscillator high  
TA = 25 °C, trimmed  
12  
16  
20  
MHz  
frequency  
SR —  
IFIRCRUN CC T Fast internal RC oscillator high  
frequency current in running mode  
TA = 25 °C, trimmed  
200  
µA  
µA  
IFIRCPWD CC D Fast internal RC oscillator high  
frequency current in power down  
mode  
TA = 125 °C  
10  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
69  
Package pinouts and signal descriptions  
Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
IFIRCSTOP CC T Fast internal RC oscillator high  
frequency and system clock current  
in stop mode  
TA = 25 °C sysclk = off  
500  
600  
700  
900  
1250  
1.1  
2.0  
µA  
sysclk = 2 MHz  
sysclk = 4 MHz  
sysclk = 8 MHz  
sysclk = 16 MHz  
tFIRCSU CC C Fast internal RC oscillator start-up VDD = 5.0 V 10%  
time  
µs  
%
%
%
ΔFIRCPRE CC T Fast internal RC oscillator precision TA = 25 °C  
1  
5  
1.6  
+1  
after software trimming of fFIRC  
ΔFIRCTRIM CC T Fast internal RC oscillator trimming TA = 25 °C  
step  
ΔFIRCVAR CC P Fast internal RC oscillator variation  
in over temperature and supply with  
respect to fFIRC at TA = 25 °C in  
+5  
high-frequency configuration  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified.  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
2.25 Slow internal RC oscillator (128 kHz) electrical characteristics  
The device provides a 128 kHz slow internal RC oscillator. This can be used as the reference clock for the  
RTC module.  
Table 42. Slow internal RC oscillator (128 kHz) electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
fSIRC  
CC P Slow internal RC oscillator low  
TA = 25 °C, trimmed  
100  
128  
150  
5
kHz  
frequency  
SR —  
2,  
ISIRC  
CC C Slow internal RC oscillator low  
frequency current  
TA = 25 °C, trimmed  
µA  
µs  
%
tSIRCSU  
CC P Slow internal RC oscillator start-up TA = 25 °C, VDD = 5.0 V 10%  
time  
2  
8
12  
+2  
ΔSIRCPRE CC C Slow internal RC oscillator precision TA = 25 °C  
after software trimming of fSIRC  
ΔSIRCTRIM CC C Slow internal RC oscillator trimming  
2.7  
step  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
70  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 42. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min Typ Max  
ΔSIRCVAR CC C Slow internal RC oscillator variation High frequency configuration  
in temperature and supply with  
10  
+10  
%
respect to fSIRC at TA = 55 °C in high  
frequency configuration  
1
2
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified.  
This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is  
ON.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
71  
Package pinouts and signal descriptions  
2.26 ADC electrical characteristics  
2.26.1 Introduction  
The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.  
Offset error (E )  
Gain error (E )  
G
O
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
4
3
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset error (E )  
O
Figure 19. ADC characteristic and error definitions  
2.26.2 Input impedance and ADC accuracy  
In the following analysis, the input circuit corresponding to the precise channels is considered.  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC  
impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
72  
NXP Semiconductors  
Package pinouts and signal descriptions  
be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to  
attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase,  
when the analog signal source is a high-impedance source.  
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple  
RC filter). The RC filtering may be limited according to the value of source impedance of the transducer  
or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking  
into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input  
impedance of the ADC itself.  
In fact a current sink contributor is represented by the charge sharing effects with the sampling  
capacitance: being C and C substantially two switched capacitances, with a frequency equal to the  
S
p2  
conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a  
conversion rate of 1 MHz, with C +C equal to 3 pF, a resistance of 330 kΩ is obtained (R = 1 /  
S
p2  
EQ  
(f × (C +C )), where f represents the conversion rate at the considered channel). To minimize the error  
c
S
p2  
c
induced by the voltage partitioning between this resistance (sampled voltage on C +C ) and the sum of  
S
p2  
R + R , the external circuit must be designed to respect the Equation 4:  
S
F
Eqn. 4  
R + R  
S
F
1
2
V -------------------- < -- LSB  
A
R
EQ  
Equation 4 generates a constraint for external network design, in particular on a resistive path.  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
C
S
A
F
P1  
P2  
R : Source impedance  
S
R : Filter resistance  
F
C : Filter capacitance  
F
R : Current limiter resistance  
L
R
R
: Channel selection switch impedance  
: Sampling switch impedance  
SW1  
AD  
C : Pin capacitance (two contributions, C and C )  
P2  
P
P1  
C : Sampling capacitance  
S
Figure 20. Input equivalent circuit (precise channels)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
73  
Package pinouts and signal descriptions  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Selection  
Extended  
Switch  
Sampling  
Source  
R
Filter  
Current Limiter  
R
R
R
R
L
R
AD  
SW2  
S
F
SW1  
C
S
C
V
C
C
C
P2  
A
F
P1  
P3  
R : Source impedance  
S
R : Filter resistance  
F
C : Filter capacitance  
F
R : Current limiter resistance  
L
R
R
: Channel selection switch impedance (two contributions, R  
: Sampling switch impedance  
and R  
)
SW1  
SW1  
SW2  
AD  
C : Pin capacitance (two contributions, C , C and C )  
P3  
P
P1  
P2  
C : Sampling capacitance  
S
Figure 21. Input equivalent circuit (extended channels)  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances  
C , C and C are initially charged at the source voltage V (refer to the equivalent circuit in Figure 20):  
F
P1  
P2  
A
A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).  
Voltage transient on CS  
V
CS  
V
A
ΔV < 0.5 LSB  
V
A2  
1
2
τ1 < (RSW + RAD) CS << ts  
V
A1  
τ2 = RL (CS + CP1 + CP2)  
t
t
s
Figure 22. Transient behavior during sampling phase  
In particular two different transient periods can be distinguished:  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
74  
NXP Semiconductors  
Package pinouts and signal descriptions  
1. A first and quick charge transfer from the internal capacitance C and C to the sampling  
P1  
P2  
capacitance C occurs (C is supposed initially completely discharged): considering a worst case  
S
S
(since the time constant in reality would be faster) in which C is reported in parallel to C (call  
P2  
P1  
C = C + C ), the two capacitances C and C are in series, and the time constant is  
P
P1  
P2  
P
S
Eqn. 5  
C C  
P
S
τ
= (R  
+ R  
) • --------------------  
AD  
1
SW  
C + C  
P
S
Equation 5 can again be simplified considering only C as an additional worst condition. In reality,  
S
the transient is faster, but the A/D converter circuitry has been designed to be robust also in the  
very worst case: the sampling time t is always much longer than the internal time constant:  
s
Eqn. 6  
τ < (R  
+ R  
) C « t  
AD S s  
1
SW  
The charge of C and C is redistributed also on C , determining a new value of the voltage V  
P1  
P2  
S
A1  
on the capacitance according to Equation 7:  
Eqn. 7  
V
(C + C + C ) = V (C + C  
P1 P2 P1  
)
P2  
A1  
S
A
2. A second charge transfer involves also C (that is typically bigger than the on-chip capacitance)  
F
through the resistance R : again considering the worst case in which C and C were in parallel  
L
P2  
S
to C (since the time constant in reality would be faster), the time constant is:  
P1  
Eqn. 8  
τ < R (C + C + C )  
P1 P2  
2
L
S
In this case, the time constant depends on the external circuit: in particular imposing that the  
transient is completed well before the end of sampling time t , a constraints on R sizing is  
s
L
obtained:  
Eqn. 9  
8.5 τ = 8.5 R (C + C + C ) < ts  
2
L
S
P1  
P2  
Of course, R shall be sized also according to the current limitation constraints, in combination  
L
with R (source impedance) and R (filter resistance). Being C definitively bigger than C , C  
S
F
F
P1 P2  
and C , then the final voltage V (at the end of the charge transfer transient) will be much higher  
S
A2  
than V . Equation 10 must be respected (charge balance assuming now C already charged at  
A1  
S
V ):  
A1  
Eqn. 10  
V
(C + C + C + C ) = V C + V (C + C + C )  
P1 P2 A1 P1 P2  
A2  
S
F
A
F
S
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
75  
Package pinouts and signal descriptions  
The two transients above are not influenced by the voltage source that, due to the presence of the R C  
F F  
filter, is not able to provide the extra charge to compensate the voltage drop on C with respect to the ideal  
S
source V ; the time constant R C of the filter is very high with respect to the sampling time (t ). The filter  
A
F F  
s
is typically designed to act as anti-aliasing.  
Analog source bandwidth (VA)  
Noise  
tc < 2 RFCF (conversion rate vs. filter pole)  
fF = f0 (anti-aliasing filtering condition)  
2 f0 < fC (Nyquist)  
f0  
f
Anti-aliasing filter (fF = RC filter pole)  
Sampled signal spectrum (fC = conversion rate)  
fF  
f0  
fC  
f
f
Figure 23. Spectral representation of input signal  
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the  
0
anti-aliasing filter, f ), according to the Nyquist theorem the conversion rate f must be at least 2f ; it  
F
C
0
means that the constant time of the filter is greater than or at least equal to twice the conversion period (t ).  
c
Again the conversion period t is longer than the sampling time t , which is just a portion of it, even when  
c
s
fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in  
conclusion it is evident that the time constant of the filter R C is definitively much higher than the  
F F  
sampling time t , so the charge level on C cannot be modified by the analog signal source during the time  
s
S
in which the sampling switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy  
error due to the voltage drop on C ; from the two charge balance equations above, it is simple to derive  
S
Equation 11 between the ideal and real sampled voltage on C :  
S
Eqn. 11  
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A2  
P1  
F
V
C
+ C + C + C  
A
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept  
A
a maximum error of half a count, a constraint is evident on C value:  
F
Eqn. 12  
C
> 2048 C  
F
S
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
76  
NXP Semiconductors  
Package pinouts and signal descriptions  
2.26.3 ADC electrical characteristics  
Table 43. ADC input leakage current  
Value  
Unit  
Symbol C  
Parameter  
Conditions  
Min  
Typ  
Max  
ILKG CC D Input leakage current TA = 40 °C No current injection on adjacent pin  
1
1
70  
70  
nA  
D
D
D
P
TA = 25 °C  
TA = 85 °C  
TA = 105 °C  
TA = 125 °C  
3
100  
200  
400  
8
45  
Table 44. ADC conversion characteristics  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
0.1  
VSS_ADC SR — Voltage on  
VSS_HV_ADC (ADC  
0.1  
V
reference) pin with  
respect to ground  
2
(VSS  
)
VDD_ADC SR — Voltage on  
VDD_HV_ADC pin  
VDD0.1  
VDD+0.1  
V
V
(ADC reference) with  
respect to ground  
(VSS  
)
VAINx SR — Analog input voltage3  
VSS_ADC0.1  
VDD_ADC+0.1  
fADC SR — ADC analog frequency  
6
32 + 4% MHz  
Δ
ADC_SYS SR — ADC digital clock duty ADCLKSEL = 14  
45  
55  
50  
4
%
µA  
mA  
cycle (ipg_clk)  
IADCPWD SR — ADC0 consumption in  
power down mode  
IADCRUN SR — ADC0 consumption in  
running mode  
tADC_PU SR — ADC power up delay  
0.5  
1.5  
µs  
µs  
ts  
CC  
T
Sampling time5  
fADC = 32 MHz, INPSAMP = 17  
fADC = 6 MHz, INPSAMP = 255  
fADC = 32 MHz, INPCMP = 2  
42  
tc  
CC  
P
Conversion time6  
0.625  
µs  
CS  
CC D ADC input sampling  
capacitance  
3
3
1
pF  
CP1  
CP2  
CC D ADC input pin  
capacitance 1  
pF  
pF  
CC D ADC input pin  
capacitance 2  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
77  
Package pinouts and signal descriptions  
Table 44. ADC conversion characteristics (continued)  
Value  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
CP3  
CC D ADC input pin  
capacitance 3  
1
pF  
kΩ  
kΩ  
kΩ  
mA  
RSW1 CC D Internal resistance of  
analog source  
5  
5  
3
2
2
5
5
RSW2 CC D Internal resistance of  
analog source  
RAD CC D Internal resistance of  
analog source  
IINJ  
SR — Input current Injection Current  
VDD =  
injection on one 3.3 V 10%  
ADC input,  
VDD  
=
different from  
the converted  
one  
5.0 V 10%  
| INL | CC  
| DNL | CC  
T
T
Absolute value for  
integral non-linearity  
No overload  
0.5  
0.5  
1.5  
1.0  
LSB  
LSB  
Absolute differential  
non-linearity  
No overload  
| EO  
| EG  
|
|
CC  
CC  
T
T
P
T
Absolute offset error  
2  
3  
0.5  
0.6  
0.6  
2
LSB  
LSB  
LSB  
Absolute gain error  
TUEp CC  
Total unadjusted error7 Without current injection  
for precise channels,  
With current injection  
input only pins  
3
TUEx CC  
T
T
Total unadjusted error7 Without current injection  
3  
4  
1
3
4
LSB  
for extended channel  
With current injection  
1
2
3
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified.  
Analog and digital VSS must be common (to be tied together externally).  
VAINx may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the  
conversion will be clamped respectively to 0x000 or 0x3FF.  
4
5
Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured  
by internal divider by 2.  
During the sampling time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within ts. After the end of  
the sampling time ts, changes of the analog input voltage have no effect on the conversion result. Values for the  
sample clock ts depend on programming.  
6
7
This parameter does not include the sampling time ts, but only the time for determining the digital result and the time  
to load the result’s register with the conversion result.  
Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a  
combination of Offset, Gain and Integral Linearity errors.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
78  
NXP Semiconductors  
Package pinouts and signal descriptions  
2.27 On-chip peripherals  
2.27.1 Current consumption  
1
Table 45. On-chip peripherals current consumption  
Symbol  
C
Parameter  
Conditions  
Typical value2 Unit  
IDD_BV(CAN)  
CC T CAN (FlexCAN) supply  
current on VDD_BV  
Bitrate:  
500 Kbyte/s consumption:  
Total (static + dynamic)  
8 * fperiph + 85  
µA  
• FlexCAN in loop-back  
mode  
• XTAL @ 8 MHz used as  
CAN engine clock source  
• Message sending period is  
580 µs  
Bitrate:  
125 Kbyte/s  
8 * fperiph + 27  
IDD_BV(eMIOS) CC T eMIOS supply current on  
VDD_BV  
Static consumption:  
• eMIOS channel OFF  
• Global prescaler enabled  
29 * fperiph  
µA  
Dynamic consumption:  
3
• It does not change varying the frequency  
(0.003 mA)  
IDD_BV(SCI)  
CC T SCI (LINFlex) supply  
current on VDD_BV  
Total (static + dynamic) consumption:  
• LIN mode  
• Baudrate: 20 Kbyte/s  
5 * fperiph + 31  
µA  
µA  
IDD_BV(SPI)  
CC T SPI (DSPI) supply current Ballast static consumption (only clocked)  
1
on VDD_BV  
Ballast dynamic consumption (continuous  
16 * fperiph  
communication):  
• Baudrate: 2 Mbit/s  
Transmission every 8 µs  
• Frame: 16 bits  
IDD_BV(ADC)  
CC T ADC supply current on  
VDD_BV  
VDD = 5.5 V Ballast static consumption  
(no conversion)  
41 * fperiph  
5 * fperiph  
2 * fperiph  
µA  
µA  
Ballast dynamic consumption  
(continuous conversion)3  
IDD_HV_ADC(ADC) CC T ADC supply current on  
VDD_HV_ADC  
VDD = 5.5 V Analog static consumption  
(no conversion)  
Analog dynamic consumption 75 * fperiph + 32  
(continuous conversion)  
IDD_HV(FLASH) CC T Code Flash + Data Flash  
supply current on VDD_HV  
VDD = 5.5 V  
VDD = 5.5 V  
8.21  
mA  
µA  
IDD_HV(PLL)  
CC T PLL supply current on  
VDD_HV  
30 * fperiph  
1
2
3
Operating conditions: TA = 25 °C, fperiph = 8 MHz to 64 MHz  
fperiph is an absolute value.  
During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e.,  
(41 + 5) * fperiph  
.
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
79  
Package pinouts and signal descriptions  
2.27.2 DSPI characteristics  
1
Table 46. DSPI characteristics  
DSPI0/DSPI1  
DSPI2  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
Min  
Typ  
Max  
1
tSCK  
SR D SCK cycle time  
Master mode  
(MTFE = 0)  
125  
333  
ns  
D
D
D
Slave mode  
(MTFE = 0)  
125  
83  
333  
125  
125  
Master mode  
(MTFE = 1)  
Slave mode  
(MTFE = 1)  
83  
fDSPI  
SR D DSPI digital controller frequency  
fCPU  
1302  
fCPU  
153  
MHz  
ns  
ΔtCSC CC D Internal delay between pad Master mode  
associated to SCK and pad  
associated to CSn in  
master mode for CSn10  
ΔtASC CC D Internal delay between pad Master mode  
associated to SCK and pad  
1303  
1303  
ns  
associated to CSn in  
master mode for CSn11  
4
2
3
4
tCSCext SR D CS to SCK delay  
Slave mode  
Slave mode  
Master mode  
Slave mode  
Slave mode  
32  
32  
ns  
ns  
ns  
5
tASCext SR D After SCK delay  
1/fDSPI + 5  
tSCK/2  
1/fDSPI + 5  
tSDC  
CC D SCK duty cycle  
SR D  
tSCK/2  
7
tSCK/2  
7
tSCK/2  
5
6
7
8
9
tA  
SR D Slave access time  
1/fDSPI + 70  
1/fDSPI + 130  
ns  
ns  
ns  
ns  
ns  
tDI  
SR D Slave SOUT disable time Slave mode  
32  
52  
tPCSC SR D PCSx to PCSS time  
tPASC SR D PCSS to PCSx time  
0
0
0
0
tSUI  
SR D Data setup time for inputs Master mode  
Slave mode  
43  
5
145  
5
10  
11  
12  
tHI  
SR D Data hold time for inputs  
Master mode  
Slave mode  
0
0
ns  
ns  
ns  
26  
0
26  
0
7
tSUO  
CC D Data valid after SCK edge Master mode  
Slave mode  
50  
160  
7
tHO  
CC D Data hold time for outputs Master mode  
Slave mode  
8
13  
1
2
Operating conditions: CL = 10 to 50 pF, SlewIN = 3.5 to 15 ns.  
Maximum value is reached when CSn pad is configured as SLOW pad while SCK pad is configured as MEDIUM. A positive value means that SCK  
starts before CSn is asserted. DSPI2 has only SLOW SCK available.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
80  
NXP Semiconductors  
Package pinouts and signal descriptions  
3
4
5
Maximum value is reached when CSn pad is configured as MEDIUM pad while SCK pad is configured as SLOW. A positive value means that CSn is  
deasserted before SCK. DSPI0 and DSPI1 have only MEDIUM SCK available.  
The tCSC delay value is configurable through a register. When configuring tCSC (using PCSSCK and CSSCK fields in DSPI_CTARx registers), delay  
between internal CS and internal SCK must be higher than ΔtCSC to ensure positive tCSCext  
The tASC delay value is configurable through a register. When configuring tASC (using PASC and ASC fields in DSPI_CTARx registers), delay between  
internal CS and internal SCK must be higher than ΔtASC to ensure positive tASCext  
.
.
6
7
This delay value corresponds to SMPL_PT = 00b which is bit field 9 and 8 of the DSPI_MCR.  
SCK and SOUT configured as MEDIUM pad  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
81  
Package pinouts and signal descriptions  
2
3
PCSx  
1
4
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
10  
9
Last Data  
SIN  
First Data  
First Data  
Data  
Data  
12  
11  
Last Data  
SOUT  
Note: Numbers shown reference Table 46.  
Figure 24. DSPI classic SPI timing – master, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
10  
SCK Output  
(CPOL = 1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Numbers shown reference Table 46.  
Figure 25. DSPI classic SPI timing – master, CPHA = 1  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
82  
NXP Semiconductors  
Package pinouts and signal descriptions  
3
2
SS  
1
4
SCK Input  
(CPOL = 0)  
4
SCK Input  
(CPOL = 1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Numbers shown reference Table 46.  
Figure 26. DSPI classic SPI timing – slave, CPHA = 0  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Numbers shown reference Table 46.  
Figure 27. DSPI classic SPI timing – slave, CPHA = 1  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
83  
Package pinouts and signal descriptions  
3
PCSx  
4
1
2
SCK Output  
(CPOL = 0)  
4
SCK Output  
(CPOL = 1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Note: Numbers shown reference Table 46.  
Figure 28. DSPI modified transfer format timing – master, CPHA = 0  
PCSx  
SCK Output  
(CPOL = 0)  
SCK Output  
(CPOL = 1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Numbers shown reference Table 46.  
Figure 29. DSPI modified transfer format timing – master, CPHA = 1  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
84  
NXP Semiconductors  
Package pinouts and signal descriptions  
3
2
SS  
1
SCK Input  
(CPOL = 0)  
4
4
SCK Input  
(CPOL = 1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Numbers shown reference Table 46.  
Figure 30. DSPI modified transfer format timing – slave, CPHA = 0  
SS  
SCK Input  
(CPOL = 0)  
SCK Input  
(CPOL = 1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Numbers shown reference Table 46.  
Figure 31. DSPI modified transfer format timing – slave, CPHA = 1  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
85  
Package pinouts and signal descriptions  
8
7
PCSS  
PCSx  
Note: Numbers shown reference Table 46.  
Figure 32. DSPI PCS strobe (PCSS) timing  
2.27.3 Nexus characteristics  
Table 47. Nexus characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
2
tTCYC  
tMCYC  
tMDOV  
tMSEOV CC D MCKO low to MSEO_b data valid  
CC D TCK cycle time  
64  
32  
15  
15  
5
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CC D MCKO cycle time  
3
CC D MCKO low to MDO data valid  
4
8
5
tEVTOV  
tNTDIS  
CC D MCKO low to EVTO data valid  
CC D TDI data setup time  
8
10  
tNTMSS CC D TMS data setup time  
tNTDIH CC D TDI data hold time  
tNTMSH CC D TMS data hold time  
11  
5
12  
13  
tTDOV  
tTDOI  
CC D TCK low to TDO data valid  
CC D TCK low to TDO data invalid  
35  
6
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
86  
NXP Semiconductors  
Package pinouts and signal descriptions  
TCK  
10  
11  
TMS, TDI  
12  
TDO  
Note: Numbers shown reference Table 47.  
Figure 33. Nexus TDI, TMS, TDO timing  
2.27.4 JTAG characteristics  
Table 48. JTAG characteristics  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Max  
1
2
3
4
5
6
7
tJCYC  
tTDIS  
CC D TCK cycle time  
CC D TDI setup time  
CC D TDI hold time  
64  
15  
5
33  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tTDIH  
tTMSS  
tTMSH  
tTDOV  
tTDOI  
CC D TMS setup time  
CC D TMS hold time  
CC D TCK low to TDO valid  
CC D TCK low to TDO invalid  
15  
5
6
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
87  
Package characteristics  
TCK  
2/4  
3/5  
INPUT DATA VALID  
DATA INPUTS  
6
DATA OUTPUTS  
OUTPUT DATA VALID  
7
DATA OUTPUTS  
Note: Numbers shown reference Table 48.  
Figure 34. Timing diagram – JTAG boundary scan  
3
Package characteristics  
3.1  
Package mechanical data  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
88  
NXP Semiconductors  
Package characteristics  
3.1.1  
64 LQFP  
Figure 35. 64 LQFP package mechanical drawing (1 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
89  
Package characteristics  
Figure 36. 64 LQFP package mechanical drawing (2 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
90  
NXP Semiconductors  
Package characteristics  
Figure 37. 64 LQFP package mechanical drawing (3 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
91  
Package characteristics  
3.1.2  
100 LQFP  
Figure 38. 100 LQFP package mechanical drawing (1 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
92  
NXP Semiconductors  
Package characteristics  
Figure 39. 100 LQFP package mechanical drawing (2 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
93  
Package characteristics  
Figure 40. 100 LQFP package mechanical drawing (3 of 3)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
94  
NXP Semiconductors  
Package characteristics  
3.1.3  
144 LQFP  
Figure 41. 144 LQFP package mechanical drawing (1 of 2)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
95  
Package characteristics  
Figure 42. 144 LQFP package mechanical drawing (2 of 2)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
96  
NXP Semiconductors  
Package characteristics  
3.1.4  
208 MAPBGA  
Figure 43. 208 MAPBGA package mechanical drawing (1 of 2)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
97  
Package characteristics  
Figure 44. 208 MAPBGA package mechanical drawing (2 of 2)  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
98  
NXP Semiconductors  
Ordering information  
4
Ordering information  
Figure 45. Commercial product code structure  
Example code:  
M
PC  
56  
0
4
B
F1  
M
LL  
4
R
Qualification Status  
PowerPC Core  
Automotive Platform  
Core Version  
Flash Size (core dependent)  
Product  
Fab and Mask Indicator  
Temperature spec.  
Package Code  
Frequency  
R = Tape & Reel (blank if Tray)  
Qualification Status  
Flash Size (z0 core)  
2 = 256 KB  
3 = 384 KB  
Temperature spec.  
C = 40 to 85 °C  
V = 40 to 105 °C  
M = 40 to 125 °C  
M = MC status  
S = Auto qualified  
P = PC status  
4 = 512 KB  
Automotive Platform  
56 = PPC in 90nm  
Product  
B = Body  
Package Code  
LH = 64 LQFP  
C = Gateway  
LL = 100 LQFP  
LQ = 144 LQFP  
MG = 208 MAPBGA  
Core Version  
0 = e200z0  
1
Fab and Mask Indicator  
F = ATMC Fab  
K = TSMC Fab  
1 = Maskset Revision  
Frequency  
4 = Up to 48 MHz  
6 = Up to 64 MHz  
Note: Not all options are available on all devices.  
1
208 MAPBGA available only as development package for Nexus2+  
5
Document revision history  
Table 49 summarizes revisions to this document.  
Table 49. Revision history  
Revision  
Date  
Description of Changes  
1
04-Apr-2008 Initial release.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
99  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
2
06-Mar-2009 Made minor editing and formatting changes to improve readability  
Harmonized oscillator naming throughout document  
Features:  
—Replaced 32 KB with 48 KB as max SRAM size  
—Updated description of INTC  
—Changed max number of GPIO pins from 121 to 123  
Updated Section 1.2, Description  
Updated Table 3  
Added Section 2, Block diagram  
Section 3, Package pinouts and signal descriptions: Removed signal descriptions (these  
are found in the device reference manual)  
Updated Figure 5:  
—Replaced VPP with VSS_HV on pin 18  
—Added MA[1] as AF3 for PC[10] (pin 28)  
—Added MA[0] as AF2 for PC[3] (pin 116)  
—Changed description for pin 120 to PH[10] / GPIO[122] / TMS  
—Changed description for pin 127 to PH[9] / GPIO[121] / TCK  
—Replaced NMI[0] with NMI on pin 11  
Updated Figure 4:  
—Replaced VPP with VSS_HV on pin 14  
—Added MA[1] as AF3 for PC[10] (pin 22)  
—Added MA[0] as AF2 for PC[3] (pin 77)  
—Changed description for pin 81 to PH[10] / GPIO[122] / TMS  
—Changed description for pin 88 to PH[9] / GPIO[121] / TCK  
—Removed E1UC[19] from pin 76  
—Replaced [11] with WKUP[11] for PB[3] (pin 1)  
—Replaced NMI[0] with NMI on pin 7  
Updated Figure 6:  
—Changed description for ball B8 from TCK to PH[9]  
—Changed description for ball B9 from TMS to PH[10]  
—Updated descriptions for balls R9 and T9  
Added 2.10, Parameter classification and tagged parameters in tables where appropriate  
Added 2.11, NVUSRO register  
Updated Table 11  
2.13, Recommended operating conditions: Added note on RAM data retention to end of  
section  
Updated Table 12 and Table 13  
Added 2.14.1, Package thermal characteristics  
Updated 2.14.2, Power considerations  
Updated Figure 7  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
100  
NXP Semiconductors  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
2 (cont.) 06-Mar-2009 Updated Table 15, Table 16, Table 17, Table 18 and Table 19  
Added 2.15.4, Output pin transition times  
Updated Table 22  
Updated Figure 8  
Updated Table 24  
2.17.1, Voltage regulator electrical characteristics: Amended description of LV_PLL  
Figure 10: Exchanged position of symbols CDEC1 and CDEC2  
Updated Table 25  
Added Figure 13  
Updated Table 26 and Table 27  
Updated 2.19, Flash memory electrical characteristics  
Added 2.20, Electromagnetic compatibility (EMC) characteristics  
Updated 2.21, Fast external crystal oscillator (4 to 16 MHz) electrical characteristics  
Updated 2.22, Slow external crystal oscillator (32 kHz) electrical characteristics  
Updated Table 40, Table 41 and Table 42  
Added 2.27, On-chip peripherals  
Added Table 43  
Updated Table 44  
Updated Table 47  
Added Appendix A, Abbreviations  
4
06-Aug-2009 Updated Figure 6  
Table 11  
• VDD_ADC: changed min value for “relative to VDD” condition  
• VIN: changed min value for “relative to VDD” condition  
• ICORELV: added new row  
Table 13  
TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part  
:
added new rows  
• Changed capacitance value in footnote  
Table 20  
• MEDIUM configuration: added condition for PAD3V5V = 0  
Updated Figure 10  
Table 25  
• CDEC1: changed min value  
• IMREG: changed max value  
• IDD_BV: added max value footnote  
Table 26  
• VLVDHV3H: changed max value  
• VLVDHV3L: added max value  
• VLVDHV5H: changed max value  
• VLVDHV5L: added max value  
Updated Table 27  
Table 29  
• Retention: deleted min value footnote for “Blocks with 100,000 P/E cycles“  
Table 37  
• IFXOSC: added typ value  
Table 39  
• VSXOSC: changed typ value  
• TSXOSCSU: added max value footnote  
Table 40  
ΔtLTJIT: added max value  
Updated Figure 38  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
101  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
5
02-Nov-2009 In the “MPC5604B/C series block summary” table, added a new row.  
In the “Absolute maximum ratings” table, changed max value of VDD_BV, VDD_ADC, and  
VIN.  
In the “Recommended operating conditions (3.3 V)” table, deleted min value of TVDD  
.
In the “Reset electrical characteristics” table, changed footnotes 3 and 5.  
In the “Voltage regulator electrical characteristics” table:  
• CREGn: changed max value.  
• CDEC1: split into 2 rows.  
• Updated voltage values in footnote 4  
In the “Low voltage monitor electrical characteristics” table:  
• Updated column Conditions.  
• VLVDLVCORL, VLVDLVBKPL: changed min/max value.  
In the “Program and erase specifications” table, added initial max value of Tdwprogram  
In the “Flash module life” table, changed min value for blocks with 100K P/E cycles  
In the “Flash power supply DC electrical characteristics” table:  
• IFREAD, IFMOD: added typ value.  
.
• Added footnote 1.  
Added “NVUSRO[WATCHDOG_EN] field description” section.  
Section 4.18: “ADC electrical characteristics” has been moved up in hierarchy (it was  
Section 4.18.5).  
In the “ADC conversion characteristics” table, changed initial max value of RAD  
.
In the “On-chip peripherals current consumption” table:  
• Removed min/max from the heading.  
• Changed unit of measurement and consequently rounded the values.  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
102  
NXP Semiconductors  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
6
15-Mar-2010 In the “Introduction” section, relocated a note.  
In the “MPC5604B/C device comparison” table, added footnote regarding SCI and CAN.  
In the “Absolute maximum ratings” table, removed the min value of VIN relative to VDD  
.
In the “Recommended operating conditions (3.3 V)” table:  
TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part  
added new rows.  
:
• TVDD: made single row.  
In the “LQFP thermal characteristics” table, added more rows.  
Removed “208 MAPBGA thermal characteristics” table.  
In the “I/O consumption” table:  
• Removed IDYNSEG row.  
• Added “I/O weight” table.  
In the “Voltage regulator electrical characteristics” table:  
• Updated the values.  
• Removed IVREGREF and IVREDLVD12  
• Added a note about IDD_BC  
.
.
In the “Low voltage monitor electrical characteristics” table:  
• Updated VPORH values.  
• Updated VLVDLVCORL value.  
Entirely updated the “Low voltage power domain electrical characteristics” table.  
In the “Program and erase specifications” table, inserted Teslat row.  
Entirely updated the “Flash power supply DC electrical characteristics” table.  
Entirely updated the “Start-up time/Switch-off time” table.  
In the “Crystal oscillator and resonator connection scheme” figure, relocated a note.  
In the “Slow external crystal oscillator (32 kHz) electrical characteristics” table:  
• Removed gmSXOSC row.  
• Inserted values of ISXOSCBIAS  
.
Entirely updated the “Fast internal RC oscillator (16 MHz) electrical characteristics” table.  
In the “ADC conversion characteristics” table: updated the description of the conditions of  
tADC_PU and tADC_S.  
Entirely updated the “DSPI characteristics” table.  
In the “Orderable part number summary” table, modified some orderable part number.  
Updated the “Commercial product code structure” figure.  
Removed the note about the condition from “Flash read access timing” table  
Removed the notes that assert the values need to be confirmed before validation  
Exchanged the order of “LQFP 100-pin configuration” and “LQFP 144-pin configuration”  
Exchanged the order of “LQFP 100-pin package mechanical drawing” and “LQFP 144-pin  
package mechanical drawing”  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
103  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
7
05-Jul-2010 Added 64 LQFP package information  
Updated the “Features” section.  
Figures “LQFP 100-pin configuration” and “LQFP 100-pin configuration”: removed  
alternate function information  
Added “Functional port pin descriptions” table  
Added eDMA block in the “MPC5604B/C series block diagram” figure  
Deleted the “NVUSRO[WATCHDOG_EN] field description” section  
In the “Recommended operating conditions (3.3 V)” and “Recommended operating  
conditions (5.0 V)” tables, deleted the conditions of TA C-Grade Part, TA V-Grade Part, TA M-Grade  
Part  
In the “LQFP thermal characteristics” table, rounded the values.  
In the “RESET electrical characteristics” section, replaced “nRSTIN” with “RESET”.  
In the “I/O input DC electrical characteristics” table:  
• WFI: inserted a footnote  
• WNFI: inserted a footnote  
In the “Low voltage monitor electrical characteristics” table:  
• changed min value VLVDHV3L, from 2.7 to 2.6  
• Inserted max value of VLVDLVCORL  
In the “FMPLL electrical characteristics” table, rounded the values of fVCO.  
In the “DSPI characteristics” table:  
• Added ΔtASC row  
• Update values of tA  
In the “ADC conversion characteristics” table, added “IADCPWD” and “IADCRUN” rows  
Removed “Orderable part number summary” table.  
8
25-Nov-2010 Editorial changes and improvements.  
In the “MPC5604B/C device comparison” table, changed the temperature value from 105  
to 125 °C, in the footnote regarding “Execution speed”.  
In the “Recommended operating conditions (3.3 V)” and “Recommended operating  
conditions (5.0 V)” tables, restored the conditions of TA C-Grade Part, TA V-Grade Part, TA  
M-Grade Part  
In the “LQFP thermal characteristics” table, added values concerning 64 LQFP package.  
In the “MEDIUM configuration output buffer electrical characteristics” table: fixed a typo in  
last row of conditions column, there was IOH that now is IOL  
.
In the “Reset electrical characteristics” table, changed the parameter classification tag for  
VOL and |IWPU|.  
In the “Low voltage monitor electrical characteristics” table, changed the max value of  
VLVDLVCORL from 1.5V to 1.15V.  
In the “Program and erase specifications” table, replaced “Teslat” with “Tesus”.  
In the “FMPLL electrical characteristics” table, changed the parameter classification tag  
for fVCO  
.
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
104  
NXP Semiconductors  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
9
16 June 2011 Formatting and minor editorial changes throughout  
Harmonized oscillator nomenclature  
Removed all instances of note “All 64 LQFP information is indicative and must be  
confirmed during silicon validation.”  
Device comparison table: changed temperature value in footnote 2 from 105 °C to 125 °C  
MPC560xB LQFP 64-pin configuration and MPC560xC LQFP 64-pin configuration:  
renamed pin 6 from VPP_TEST to VSS_HV  
Removed “Pin Muxing” section; added sections “Pad configuration during reset phases”,  
“Voltage supply pins”, “Pad types”, “System pins,Functional ports”, and “Nexus 2+  
pins”  
Section “NVUSRO register”: edited content to separate configuration into electrical  
parameters and digital functionality; updated footnote describing default value of ‘1’ in  
field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN]  
Added section “NVUSRO[WATCHDOG_EN] field description”  
Recommended operating conditions (3.3 V) and Recommended operating conditions  
(5.0 V): updated conditions for ambient and junction temperature characteristics  
I/O input DC electrical characteristics: updated ILKG characteristics  
Section “I/O pad current specification”: removed content referencing the IDYNSEG  
maximum value  
I/O consumption: replaced instances of “Root medium square” with “Root mean square”  
I/O weight: replaced instances of bit “SRE” with “SRC”; added pads PH[9] and PH[10];  
added supply segments; removed weight values in 64-pin LQFP for pads that do not  
exist in that package  
Reset electrical characteristics: updated parameter classification for |IWPU  
|
Updated Voltage regulator electrical characteristics  
Section “Low voltage detector electrical characteristics”: changed title (was “Voltage  
monitor electrical characteristics”); added event status flag names found in RGM  
chapter of device reference manual to POR module and LVD descriptions; replaced  
instances of “Low voltage monitor” with “Low voltage detector”; updated values for  
VLVDLVBKPL and VLVDLVCORL; replaced “LVD_DIGBKP” with “LVDLVBKP” in note  
Updated section “Power consumption”  
Fast external crystal oscillator (4 to 16 MHz) electrical characteristics: updated parameter  
classification for VFXOSCOP  
Crystal oscillator and resonator connection scheme: added footnote about possibility of  
adding a series resistor  
Slow external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1  
FMPLL electrical characteristics: added short term jitter characteristics; inserted “—” in  
empty min value cell of tlock row  
Section “Input impedance and ADC accuracy”: changed “VA/VA2” to “VA2/VA” in  
Equation 11  
ADC input leakage current: updated ILKG characteristics  
ADC conversion characteristics: updated symbols  
On-chip peripherals current consumption: changed “supply current on “VDD_HV_ADC” to  
“supply current on” VDD_HV” in IDD_HV(FLASH) row; updated IDD_HV(PLL) value—was  
3 * fperiph, is 30 * fperiph; updated footnotes  
DSPI characteristics: added rows tPCSC and tPASC  
Added DSPI PCS strobe (PCSS) timing diagram  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
105  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
10  
15 Oct 2012 Table 2 (Bolero 512K device comparison), added footnote for MPC5603BxLH and  
MPC5604BxLH about FlexCAN availability.  
Table 2 (MPC5604B/C series block summary), replaced “System watchdog timer” with  
“Software watchdog timer” and specified AUTOSAR (Automotive Open System  
Architecture)  
Table 5 (Functional port pin descriptions):  
replaced footnote “Available only on MPC560xC versions and MPC5604B 208  
MAPBGA devices” with “Available only on MPC560xC versions, MPC5603B 64 LQFP,  
MPC5604B 64 LQFP and MPC5604B 208 MAPBGA devices”,  
replaced VDD with VDD_HV  
Figure 10 (Voltage regulator capacitance connection), updated pin name appearance  
Renamed Figure 11 (VDD_HV and VDD_BV maximum slope) (was “VDD and VDD_BV  
maximum slope”)  
Renamed Figure 12 (VDD_HV and VDD_BV supply constraints during STANDBY mode exit)  
(was “VDD and VDD_BV supply constraints during STANDBY mode exit”)  
Table 12 (Recommended operating conditions (3.3 V)), added minimum value of TVDD  
and footnote about it.  
Table 13 (Recommended operating conditions (5.0 V)), added minimum value of TVDD  
and footnote about it.  
Section 2.17.1, “Voltage regulator electrical characteristics:  
replaced “slew rate of VDD/VDD_BV” with “slew rate of both VDD_HV and VDD_BV  
replaced “When STANDBY mode is used, further constraints apply to the VDD/VDD_BV  
in order to guarantee correct regulator functionality during STANDBY exit.with “When  
STANDBY mode is used, further constraints are applied to the both VDD_HV and  
VDD_BV in order to guarantee correct regulator function during STANDBY exit.”  
Table 27 (Power consumption on VDD_BV and VDD_HV), updated footnotes of IDDMAX  
and IDDRUN stating that both currents are drawn only from the VDD_BV pin.  
Table 31 (Flash memory power supply DC electrical characteristics), in the parameter  
column replaced VDD_BV and VDD_HV respectively with VDD_BV and VDD_HV.  
Table 45 (On-chip peripherals current consumption), in the parameter column replaced  
VDD_BV, VDD_HV and VDD_HV_ADC respectively with VDD_BV, VDD_HV and  
VDD_HV_ADC  
Updated Section 2.26.2, “Input impedance and ADC accuracy  
Table 46 (DSPI characteristics), modified symbol for tPCSC and tPASC  
11  
14 Nov 2012 In the cover feature list:  
added “and ECC” at the end of “Up to 512 KB on-chip code flash supported with the  
flash controller”  
added “with ECC” at the end of “Up to 48 KB on-chip SRAM”  
Table 12 (Recommended operating conditions (3.3 V)), removed minimum value of TVDD  
and relative footnote.  
Table 13 (Recommended operating conditions (5.0 V)), removed minimum value of TVDD  
and relative footnote.  
12  
19 Mar 2014 Added “K=TSMC Fab” against the Fab and mask indicator in Figure 45 (Commercial  
product code structure).  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
106  
NXP Semiconductors  
Document revision history  
Table 49. Revision history (continued)  
Description of Changes  
Revision  
Date  
13  
19 Jan 2015 In Table 1 (MPC5604B/C device comparison):  
• changed the MPC5604BxLH entry for CAN (FlexCAN) from 37 to 26.  
• updated tablenote 7.  
In Table 13 (Recommended operating conditions (5.0 V)), updated tablenote 5 to: “1 µF  
(electrolithic/tantalum) + 47 nF (ceramic) capacitance needs to be provided between  
VDD_ADC/VSS_ADC pair. Another ceramic cap of 10nF with low inductance package can be  
added”.  
In Section 2.17.2, “Low voltage detector electrical characteristics, added a note on  
LVHVD5 detector.  
In Section 4, “Ordering information, added a note: “Not all options are available on all  
devices”.  
14  
30 oct 2017 In Table 1 (MPC5604B/C device comparison) for MPC56 04BxLH changed the CAN from  
2 to 3.  
In Table 12 (Recommended operating conditions (3.3 V)) added Min value for TVDD  
In Table 13 (Recommended operating conditions (5.0 V)) added Min value for TVDD  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
NXP Semiconductors  
107  
Abbreviations  
Appendix A Abbreviations  
Table A-1 lists abbreviations used but not defined elsewhere in this document.  
Table A-1. Abbreviations  
Abbreviation  
Meaning  
CMOS  
CPHA  
CPOL  
CS  
Complementary metal–oxide–semiconductor  
Clock phase  
Clock polarity  
Peripheral chip select  
Event out  
EVTO  
MCKO  
MDO  
MSEO  
MTFE  
SCK  
Message clock out  
Message data out  
Message start/end out  
Modified timing format enable  
Serial communications clock  
Serial data out  
SOUT  
TBD  
To be defined  
TCK  
Test clock input  
TDI  
Test data input  
TDO  
Test data output  
TMS  
Test mode select  
MPC5604B/C Microcontroller Data Sheet, Rev. 14  
108  
NXP Semiconductors  
How to Reach Us:  
Home Page:  
nxp.com  
Information in this document is provided solely to enable system and  
software implementers to use NXP products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any  
integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products  
herein.  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suit-  
ability of its products for any particular purpose, nor does NXP assume  
any liability arising out of the application or use of any product or circuit,  
and specifically disclaims any and all liability, including without limita-  
tion consequential or incidental damages. “Typical” parameters that may  
be provided in NXP data sheets and/or specifications can and do vary in  
different applications, and actual performance may vary over time. All  
operating parameters, including “typicals,” must bevalidated for each  
customer application by customer's technical experts. NXP does not con-  
vey any license under its patent rights nor the rights of others. NXP sells  
products pursuant to standard terms and conditions of sale, which can  
befound at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER  
WORLD, COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE,  
JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE  
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE,  
MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C.5, CodeTEST,  
CodeWarrior, ColdFire, ColdFire+, C.Ware, the Energy Efficient Solutions logo,  
Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert,  
QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,  
Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC,  
Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and  
UMEMS are trademarks of NXP B.V. All other product or service names are the  
property of their respective owners. Arm, AMBA, Arm Powered, Artisan, Cortex,  
Jazelle, Keil, SecurCore, Thumb, TrustZone, and ÏVision are registered trademarks  
of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9,  
Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON,  
POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited  
(or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and  
Java are registered trademarks of Oracle and/or its affiliates. The Power Architec-  
ture and Power.org word marks and the Power and Power.org logos and related  
marks are trademarks and service marks licensed by Power.org.  
© 2017 NXP B.V.  
Document Number: MPC5604BC  
Rev. 14  
11/2017  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX