SPC5604EEF2MLH [NXP]

MPC5604E Microcontroller;
SPC5604EEF2MLH
型号: SPC5604EEF2MLH
厂家: NXP    NXP
描述:

MPC5604E Microcontroller

PC 微控制器
文件: 总76页 (文件大小:1018K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
Document Number: MPC5604E  
Rev. 6, 11/2019  
MPC5604E  
100 LQFP  
14 mm x 14 mm  
MPC5604E Microcontroller  
Data Sheet  
64 LQFP  
10 mm x 10 mm  
— Quadrature decode with rotation direction flag  
— Double buffer input capture and output compare  
Communications interfaces  
Single issue, 32-bit CPU core complex (e200z0h)  
®
— Compliant with Power Architecture embedded  
category  
Variable Length Encoding (VLE) only  
Memory  
— 2 LINFlex channels (1 × Master/Slave, 1 ×  
Master Only)  
— 3 DSPI controllers with automatic chip select  
generation (up to 2/2/4 chip selects)  
— 512 KB on-chip Code Flash with ECC and  
erase/program controller  
— 1 FlexCAN interface (2.0B Active) with 32  
message buffers  
— additional 64 (4 × 16) KB on-chip Data Flash  
with ECC for EEPROM emulation  
One 10-bit analog-to-digital converter (ADC)  
— 7 input channels  
— 96 KB on-chip SRAM with ECC  
Fail-safe protection  
4 channels routed to the pins  
— Programmable watchdog timer  
— Non-maskable interrupt  
— Fault collection unit  
3 internal connections: 1x temperature  
sensor, 1x core voltage, 1x IO voltage  
— Conversion time < 1 μ s including sampling  
Nexus 2+ interface  
time at full precision  
Interrupts and events  
— 4 analog watchdogs with interrupt capability  
— 16-channel eDMA controller  
— 16 priority level controller  
On-chip CAN/UART bootstrap loader with Boot  
Assist Module (BAM)  
1
— Up to 32 external interrupts for 100-pin LQFP  
On-chip TSENS  
— Upto 22 external interrupts for 64-pin LQFP  
— PIT implements four 32-bit timers  
— 120 interrupts are routed via INTC  
General purpose I/Os  
100 MBit Fast Ethernet Controller (FEC)  
— Supports precision timestamps  
1
— MII on 100-pin LQFP package  
— MII-lite on 64-pin LQFP package  
JPEG/MJPEG 8/12bit Encoder  
— Individually programmable as input, output or  
special function  
6 x stereo channels audio interface  
— 39 on LQFP64  
2
2x I C controller module  
1
— 71 on LQFP100  
CRC module  
1 general purpose eTimer unit  
— 6 timers each with up/down capabilities  
— 16-bit resolution, cascadeable counters  
1.The 100-pin package is not a production package.  
It is used for software development only.  
NXP reserves the right to change or discontinue this product without notice.  
Table of Contents  
1
2
Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
3.14 Analog-to-Digital Converter (ADC) electrical characteristics  
1.1 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Package pinouts and signal descriptions . . . . . . . . . . . . . . . . .6  
2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
2.2 Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.2.1 Power supply and reference voltage pins . . . . . .8  
2.2.2 System pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.2.3 Pin muxing. . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .21  
3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .22  
3.4 Recommended operating conditions . . . . . . . . . . . . . .23  
3.5 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .24  
3.5.1 General notes for specifications at maximum  
junction temperature . . . . . . . . . . . . . . . . . . . . .25  
37  
3.14.1 Input impedance and ADC accuracy . . . . . . . . 37  
3.14.2 ADC conversion characteristics . . . . . . . . . . . . 41  
3.15 Temperature sensor electrical characteristics . . . . . . . 42  
3.16 Flash memory electrical characteristics . . . . . . . . . . . 42  
3.17 NMI filter functional specification. . . . . . . . . . . . . . . . . 44  
3.18 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
3.18.1 Pad AC specifications. . . . . . . . . . . . . . . . . . . . 44  
3.19 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . 47  
3.19.1 Generic timing diagrams . . . . . . . . . . . . . . . . . 47  
3.19.2 RESET pin characteristics . . . . . . . . . . . . . . . . 49  
3.19.3 Nexus and JTAG timing . . . . . . . . . . . . . . . . . . 50  
3.19.4 GPIO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
3.19.5 External interrupt timing (IRQ pin) . . . . . . . . . . 53  
3.19.6 FlexCAN timing . . . . . . . . . . . . . . . . . . . . . . . . 53  
3.19.7 LINFlex timing . . . . . . . . . . . . . . . . . . . . . . . . . 53  
3.19.8 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
3.19.9 Video interface timing. . . . . . . . . . . . . . . . . . . . 59  
3.19.10Fast ethernet interface. . . . . . . . . . . . . . . . . . . 60  
3.19.11I2C timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
3.19.12SAI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
4.1 100 LQFP mechanical outline drawing . . . . . . . . . . . . 66  
4.2 64 LQFP mechanical outline drawing . . . . . . . . . . . . . 70  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
3
3.6 Electromagnetic Interference (EMI) characteristics . . .26  
3.7 Electrostatic Discharge (ESD) characteristics . . . . . . .27  
3.8 Power management electrical characteristics. . . . . . . .27  
3.8.1 Power Management Overview. . . . . . . . . . . . . .27  
3.8.2 Voltage regulator electrical characteristics . . . .30  
3.8.3 Voltage monitor electrical characteristics. . . . . .31  
3.9 Power Up/Down reset sequencing . . . . . . . . . . . . . . . .31  
3.10 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . .33  
3.11 Main oscillator electrical characteristics . . . . . . . . . . . .34  
3.12 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . .35  
3.13 16 MHz RC oscillator electrical characteristics. . . . . . .36  
4
5
6
MPC5604E Microcontroller Data Sheet, Rev. 6  
2
NXP Semiconductors  
Overview  
1
Overview  
This document provides electrical specifications, pin assignments, and package diagrams for the MPC5604E series of  
microcontroller units (MCUs).  
MPC5604E microcontrollers are members of a new family of next generation microcontrollers built on the Power Architecture.  
This document describes the features of the family and options available within the family members, and highlights important  
electrical and physical characteristics of the devices.  
The MPC5604E microcontroller is a gateway system designed to move data from different sources via Ethernet to a receiving  
system and vice versa. The supported data sources and sinks are:  
Video data (with 8/10/12 bits per data word)  
Audio data (6× stereo channels)  
RADAR data (2 × 12 bit with <1μs per sample, digitized externally and read in via SPI)  
Other serial communication interfaces including CAN, LIN, and SPI  
The Ethernet module has a bandwidth of 10/100 Mbits/sec and supports precision time stamps (IEEE1588). Unshielded twisted  
pair cables are used to transfer data (via Ethernet) in the car, resulting in a significant reduction of wiring costs by providing  
inexpensive high bandwidth data links.  
1.1  
Device summary  
The following table summarizes the MPC5604E device.  
NOTE  
The 100-pin package is not a production package. It is used for software development only.  
Table 1. Device summary  
MPC5604E  
Feature  
100-pin LQFP1  
e200z0h, 64 MHz, VLE only, no SPE  
64-pin LQFP  
CPU  
Flash with ECC  
RAM with ECC  
DMA  
CFlash: 512 KB (LC) DFlash: 64 KB (LC, area optimized)  
96 KB  
16 channels  
yes  
PIT  
SWT  
yes  
FCU  
yes  
Ethernet  
100 Mbits MII  
100 Mbits MII-Lite  
Video Encoder  
Audio Interface  
ADC (10-bit)  
Timer I/O (eTimer)  
SCI (LINFlex)  
SPI (DSPI)  
8bpp/12bpp  
6x Stereo (4x synchronous + 2x synchronous/asynchronous)  
1× 4 channels + VDD_IO + VDDCore + TSens  
1×6 channels  
2×  
DSPI_0: 2 chip selects  
DSPI_1: 2 chip selects  
DSPI_2: 4 chip selects  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
3
Overview  
Table 1. Device summary (continued)  
MPC5604E  
Feature  
100-pin LQFP1  
64-pin LQFP  
CAN (FlexCAN)  
IIC  
1×  
2×  
Supply  
3.3 V IO  
1.2V Core with dedicated ballast source pin in two modes:  
• internal ballast or  
• external supply (using power on reset pin)  
Phase Lock Loop (PLL)  
Internal RC Oscillator  
1× FMPLL  
16 MHz  
External crystal  
Oscillator  
4 MHz - 40 MHz  
yes  
CRC  
Debug  
JTAG, Nexus2+  
JTAG  
Ambient Temperature  
–40 to 125 °C  
1
The 100-pin package is not a production package. It is used for software development only.  
1.2  
Block diagram  
Figure 1 shows a top-level block diagram of the MPC5604E MCU.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
4
NXP Semiconductors  
Overview  
Internal and  
External Ballast  
e200z0 Core  
32-bit  
General  
Purpose  
Registers  
1.2 V Regulator  
Control  
Integer  
Execution  
Unit  
Special  
Purpose  
Registers  
Exception  
Handler  
Interrupt  
Controller  
XOSC  
16 MHz  
RC Oscillator  
Variable  
Length  
Encoded  
Instructions  
Instruction  
Unit  
FMPLL  
(System)  
Branch  
Prediction  
Unit  
JTAG  
Nexus2+  
Load/Store  
Unit  
JTAG Port  
Nexus2+  
MII  
eDMA  
16 channels  
Instruction Bus  
(32-bit)  
Data Bus  
(32-bit)  
FEC  
PTP  
Master  
Master  
Master  
Master  
Crossbar Switch (XBAR, AMBA 2.0 v6 AHB)  
video_clk  
Slave  
Slave  
Slave  
Slave  
512 KB  
64 KB  
Data  
96 KB  
SRAM  
(ECC)  
Code  
Flash  
Flash  
(ECC)  
(ECC)  
Peripheral Bridge  
ADC  
10-bit  
4+3 channels  
ADC  
BAM  
CRC  
DSPI  
eDMA  
Analog-to-Digital Converter  
Boot Assist Module  
Cylic Redundancy Check  
Deserial Serial Peripheral Interface  
Enhanced Direct Memory Access  
CGM  
PCU  
RGM  
Clock Generation Module  
Power Control Unit  
Reset Generation Module  
TSENS Temperature sensor  
MJPEG 12-bit Motion JPEG Encoder  
eTimer Enhanced Timer  
PDI  
Parallel Data Interface (image sensor)  
FCD  
FCU  
FEC  
Fractional Clock Divider  
Fault Collection Unit  
Fast Ethernet Controller  
PIT  
PTP  
Periodic Interrupt Timer  
IEEE 1588 Precision Time Stamps  
System Integration Unit  
Static Random-Access Memory  
System Status and Configuration Module  
System Timer Module  
SIUL  
SRAM  
SSCM  
STM  
SWT  
FlexCAN Flexible Controller Area Network  
FMPLL  
I2C  
Frequency-Modulated Phase-Locked Loop  
Inter-Integrated Circuit serial interface  
Serial Audio Interface 6xStereo  
SAI  
Software Watchdog Timer  
LINFlex Serial Communication Interface (LIN support)  
ME  
Mode Entry Module  
Figure 1. MPC5604E block diagram  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
5
Package pinouts and signal descriptions  
2
Package pinouts and signal descriptions  
2.1  
Package pinouts  
The LQFP pinouts are shown in the following figures.  
48 B[11]  
47 VSS_HV  
46 B[10]  
45 B[9]  
NMI  
A[0]  
A[1]  
A[2]  
A[3]  
1
2
3
4
B[8]  
TDO  
TCK  
TMS  
TDI  
B[7]  
V
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
5
V
V
6
SS_LV  
7
DD_LV  
A[4]  
8
A[5]  
A[6]  
9
64 LQFP  
10  
11  
12  
13  
14  
15  
16  
V
V
DD_HV  
DD_HV  
SS_HV  
XTAL  
EXTAL  
RESET  
A[7]  
V
V
V
SS_HV  
SS_LV  
DD_LV  
B[6]  
B[5]  
Note:  
1. All VDD_HV and VSS_HV pins must be shorted on the board. The ADC supply (VDD_HV_ADC) and ground  
(VSS_HV_ADC) should be managed independently from other high-voltage supplies, (it may still be supplied from the same  
high-voltage source, but caution must be taken while routing it on the board.)  
2. All VDD_LV and VSS_LV pins must be shorted on the board.  
Figure 2. 64-pin LQFP pinout (top view)  
MPC5604E Microcontroller Data Sheet, Rev. 6  
6
NXP Semiconductors  
Package pinouts and signal descriptions  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
B[11]  
SS_HV  
B[10]  
D[3]  
E[1]  
B[9]  
D[15]  
E[0]  
B[8]  
TDO  
NMI  
A[0]  
C[7]  
A[1]  
C[8]  
A[2]  
C[9]  
A[3]  
D[0]  
D[8]  
SS_LV  
DD_LV  
D[2]  
D[1]  
A[4]  
A[5]  
A[6]  
DD_HV  
SS_HV  
XTAL  
1
V
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
65 TCK  
64 TMS  
63 TDI  
62 B[7]  
V
V
100 LQFP  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
V
V
V
V
DD_HV  
SS_HV  
SS_LV  
DD_LV  
V
V
D[14]  
B[6]  
B[5]  
EXTAL  
RESET  
A[7]  
C[10]  
C[11]  
D[13]  
D[12]  
D[11]  
D[10]  
1. All VDD_HV and VSS_HV pins must be shorted on the board. The ADC supply (VDD_HV_ADC) and ground  
(VSS_HV_ADC) should be managed independently from other high-voltage supplies, (it may still be supplied from the same  
high-voltage source, but caution must be taken while routing it on the board.)  
2. All VDD_LV and VSS_LV pins must be shorted on the board.  
1
Figure 3. 100-pin LQFP pinout (top view)  
1.The 100-pin package is not a production package. It is used for software development only.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
7
Package pinouts and signal descriptions  
2.2  
Signal descriptions  
The following sections provide signal descriptions and related information about the functionality and configuration of the  
MPC5604E devices.  
2.2.1  
Power supply and reference voltage pins  
Table 2 lists the power supply and reference voltage for the MPC5604E devices.  
Table 2. Supply pins  
Supply  
Pin  
Multi-bonded Power  
Supplies/Ground  
Port Pin  
Description  
64-pin 100-pin1  
VREG control and power supply pins. Pins available on 64-pin and 100-pin package.  
VDD_HV_S_BALLAST0  
VDD_HV_S_BALLAST1  
Ballast Source/Supply Voltage  
Ballast Source/Supply Voltage  
VDD_HV_S_BALLAST  
23  
34  
ADC0 reference and supply voltage. Pins available on 64-pin and 100-pin package.  
ADC0 supply voltage with respect to ground  
VDD_HV_ADC0  
(VSS_HV_ADC  
)
VDD_HV_ADC  
21  
22  
30  
31  
ADC0 high reference voltage with respect  
to ground (VSS_HV_ADC  
VDD_HV_ADC0  
VSS_HV_ADC0  
VSS_HV_ADC0  
)
ADC0 ground voltage with respect to  
ground  
VSS_HV_ADC  
ADC0 low reference voltage with respect to  
ground  
Power supply pins (3.3 V). Pins available on 64-pin and 100-pin package.  
VDD_HV_IO0_0  
VDD_HV_OSC0  
VDD_HV_IO0_2  
VDD_HV_FLA1  
VDD_HV_IO0_3  
VDD_HV_FLA0  
VDD_HV  
Input/output ground voltage  
11  
38  
18  
61  
Crystal oscillator amplifier supply voltage  
3.3 V Input/Output Supply Voltage (supply)  
Code and data flash supply voltage  
3.3 V Input/Output Supply Voltage (supply)  
Code and data flash supply voltage  
HV Supply  
VDD_HV  
55  
-
87  
36  
19  
VSS_HV_IO0_0  
VSS_HV_OSC0  
VSS_HV_IO0_2  
Vss_HV_FLA1  
Vss_IO0_4  
Input/output ground voltage  
12  
Crystal oscillator amplifier ground  
Input/output ground voltage  
37  
60  
VSS_HV  
Code and data flash supply ground  
Input/output ground voltage  
35  
88  
74  
56  
47  
Vss_HV_FLA0  
VSS_HV  
Code and data flash supply voltage  
HV Ground  
MPC5604E Microcontroller Data Sheet, Rev. 6  
8
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 2. Supply pins (continued)  
Supply  
Pin  
Multi-bonded Power  
Supplies/Ground  
Port Pin  
Description  
64-pin 100-pin1  
Power supply pins (1.2 V). Pins available on 64-pin and 100-pin package.  
1.2 V supply pins for core logic and code  
Flash. Decoupling capacitor must be  
connected between these pins and the  
VDD_LV_COR0_3  
7
12  
92  
nearest VSS_LV_COR0_3 pin.  
VDD_LV_PLL0  
VDD_LV_COR0_2  
VDD_LV_FLA0  
1.2 V PLL supply voltage  
1.2 V supply pins for core logic and code  
Flash. Decoupling capacitor must be  
connected between these pins and the  
nearest VSS_LV_COR0_2 pin.  
VDD_LV  
58  
Code and data flash supply voltage  
1.2 V supply pins for core logic and code  
Flash. Decoupling capacitor must be  
connected between these pins and the  
nearest VSS_LV_COR0_1 pin.  
VDD_LV_COR0_1  
35  
-
58  
33  
11  
VDD_LV_FLA1  
VDD_LV  
Code and data flash supply voltage  
Core supply  
1.2 V supply pins for core logic and code  
Flash. Decoupling capacitor must be  
connected betwee.n these pins and the  
nearest VDD_LV_COR0_3 pin.  
VSS_LV_COR0_3  
6
VSS_LV_PLL0  
PLL supply ground  
1.2 V supply pins for core logic and code  
Flash. Decoupling capacitor must be  
connected betwee.n these pins and the  
nearest VDD_LV_COR0_2 pin.  
VSS_LV_COR0_2  
59  
93  
VSS_LV  
VSS_LV_FLA0  
Code and data flash supply ground  
1.2 V supply pins for core logic and data  
Flash. Decoupling capacitor must be  
connected between these pins and the  
nearest VDD_LV_COR0_1 pin.  
VSS_LV_COR0_1  
36  
-
59  
32  
VSS_LV_FLA1  
VSS_LV  
Code and data flash supply ground  
Core ground  
1
The 100-pin package is not a production package. It is used for software development only.  
2.2.2  
System pins  
Table 3 and Table 4 contain information on pin functions for the MPC5604E devices. The pins listed in Table 3 are  
single-function pins. The pins shown in Table 4 are multi-function pins, programmable via their respective Pad Configuration  
Register (PCR) values.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
9
Package pinouts and signal descriptions  
Table 3. System pins  
Direction  
Pad speed1  
Pin  
Symbol  
Description  
SRC = 0 SRC = 1  
64-pin  
100-pin2  
Dedicated pins  
Input only  
NMI  
Non-maskable Interrupt  
Oscillator amplifier output  
Slow  
1
1
XTAL  
Output only  
13  
20  
Input for oscillator amplifier circuit and  
internal clock generator  
EXTAL  
Input only  
14  
21  
TDI3  
TMS3  
TCK3  
TDO3  
JTAG test data input  
JTAG state machine control  
JTAG clock  
Input only  
Input only  
Input only  
Output only  
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
40  
41  
42  
43  
63  
64  
65  
66  
JTAG test data output  
Medium  
Reset pin  
Bidirectional reset with Schmitt trigger  
characteristics and noise filter  
RESET  
Bidirectional  
Input only  
Medium  
15  
31  
22  
45  
POR_B Power-on reset  
1
2
3
SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.  
The 100-pin package is not a production package. It is used for software development only.  
Additional board pull resistors are recommended when JTAG pins are not being used on the board or application.  
2.2.3  
Pin muxing  
Table 4 defines the pin list and muxing for the MPC5604E devices.  
Each row of Table 4 shows all the possible ways of configuring each pin, via “alternate functions”. The default function  
assigned to each pin after reset is the ALT0 function.Pins marked as external interrupt capable can also be used to resume from  
STOP and HALT mode.  
MPC5604E devices provide four main I/O pad types depending of the associated functions:  
Slow pads are the most common, providing a compromise between transition time and low electromagnetic emission.  
Medium pads provide fast enough transition for serial communication channels with controlled current to reduce  
electromagnetic emission.  
Fast pads provide maximum speed. They are used for improved Nexus debugging capability.  
Medium and Fast pads can be used in slow configuration to reduce the electromagnetic emissions, at the cost of reducing AC  
performance.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
10  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 4. Pin muxing  
Pad speed5  
Pin6  
Port  
pin  
PCR  
Alternate  
I/O  
Functions  
Peripheral3  
register function1,2,8  
direction4  
SRC = 0 SRC = 1  
64-pin 100-pin7  
Port A (16-bit)  
A[0]  
PCR[0]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[0]  
D[0]  
D[11]  
SIN  
SIUL  
SAI0  
VID  
I/O  
I/O  
I
Slow  
Medium  
2
2
DSPI 1  
SIUL  
I
I
EIRQ[0]  
A[1]  
A[2]  
PCR[1]  
PCR[2]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[1]  
D[1]  
SOUT  
D[10]  
EIRQ[1]  
SIUL  
SAI0  
DSPI1  
VID  
SIUL  
I/O  
I/O  
O
I
Slow  
Slow  
Medium  
Medium  
3
4
4
6
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[2]  
D[2]  
SCK  
D[0]  
D[9]  
SIUL  
SAI0  
DSPI1  
SAI1  
VID  
I/O  
I/O  
I/O  
I/O  
I
ETC[5]  
EIRQ[2]  
ETIMER0  
SIUL  
I
I
A[3]  
A[4]  
A[5]  
PCR[3]  
PCR[4]  
PCR[5]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[3]  
D[3]  
D[0]  
D[8]  
SIUL  
SAI0  
SAI2  
VID  
I/O  
I/O  
I/O  
I
Slow  
Medium  
Medium  
Fast  
5
8
9
8
SIN  
EIRQ[3]  
DSPI2  
SIUL  
I
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[4]  
SYNC  
SOUT  
D[7]  
ETC[3]  
EIRQ[4]  
SIUL  
SAI0  
DSPI2  
VID  
ETIMER0  
SIUL  
I/O  
I/O  
O
I
Slow  
15  
16  
I
I
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[5]  
SYNC  
SCK  
D[0]  
CLK  
SIUL  
SAI1  
DSPI2  
SAI1  
VID  
I/O  
I/O  
I/O  
I/O  
I
Medium  
ETC[4]  
EIRQ[5]  
ETIMER0  
SIUL  
I
I
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
11  
Package pinouts and signal descriptions  
Table 4. Pin muxing (continued)  
I/O  
Pad speed5  
Pin6  
Port  
pin  
PCR  
Alternate  
Functions  
Peripheral3  
register function1,2,8  
direction4  
SRC = 0 SRC = 1  
64-pin 100-pin7  
A[6]  
PCR[6]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[6]  
SYNC  
CS0  
VSYNC  
D[0]  
SIUL  
SAI2  
DSPI2  
VID  
VID  
I/O  
I/O  
I/O  
I
I
I
I
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
10  
17  
23  
37  
ETC[1]  
EIRQ[6]  
ETIMER0  
SIUL  
A[7]  
PCR[7]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[7]  
BCLK  
CS1  
HREF  
D[1]  
SIUL  
SAI0  
DSPI2  
VID  
VID  
I/O  
I/O  
I/O  
I
I
I
I
16  
ETC[2]  
EIRQ[7]  
ETIMER0  
SIUL  
A[8]  
PCR[8]  
PCR[9]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[8]  
BCLK  
CS0  
D[0]  
D[6]  
SIUL  
SAI1  
DSPI1  
SAI2  
VID  
I/O  
I/O  
I/O  
I/O  
I
24  
RX  
EIRQ[8]  
LIN1  
SIUL  
I
I
A[9]  
ALT0  
ALT1  
ALT2  
ALT3  
GPIO[9]  
BCLK  
CS1  
TX  
D[5]  
SIUL  
SAI2  
DSPI1  
LIN1  
VID  
I/O  
I/O  
I/O  
O
I
I
Slow  
Slow  
Medium  
Medium  
25  
26  
38  
39  
EIRQ[9]  
SIUL  
A[10]  
PCR[10] ALT0  
GPIO[10]  
MCLK  
ETC[5]  
SIUL  
SAI2  
ETIMER0  
I/O  
I/O  
I/O  
I
ALT1  
ALT2  
ALT3  
D[4]  
VID  
SIN  
EIRQ[10]  
DSPI0  
SIUL  
I
I
A[11]  
PCR[11] ALT0  
GPIO[11]  
TX  
CS1  
CS0  
D[3]  
RX  
SIUL  
CAN0  
DSPI0  
DSPI1  
VID  
I/O  
O
O
I/O  
I
Slow  
Medium  
27  
40  
ALT1  
ALT2  
ALT3  
LIN0  
I
RX  
LIN1  
I
MPC5604E Microcontroller Data Sheet, Rev. 6  
12  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 4. Pin muxing (continued)  
I/O  
Pad speed5  
Pin6  
Port  
pin  
PCR  
Alternate  
Functions  
Peripheral3  
register function1,2,8  
direction4  
SRC = 0 SRC = 1  
64-pin 100-pin7  
A[12]  
PCR[12] ALT0  
GPIO[12]  
TX  
CS0  
TX  
D[2]  
SIUL  
LIN0  
DSPI0  
LIN1  
VID  
I/O  
Slow  
Medium  
28  
41  
ALT1  
ALT2  
ALT3  
O
I/O  
O
I
RX  
EIRQ[11]  
CAN0  
SIUL  
I
I
A[13]  
A[14]  
PCR[13] ALT0  
GPIO[13]  
CLK  
F[0]  
CS0  
EIRQ[12]  
SIUL  
IIC1  
FCU0  
DSPI0  
SIUL  
I/O  
I/O  
O
I/O  
I
Slow  
Slow  
Medium  
Medium  
29  
30  
42  
43  
ALT1  
ALT2  
ALT3  
PCR[14] ALT0  
GPIO[14]  
DATA  
F[1]  
CS1  
SIN  
SIUL  
IIC1  
FCU0  
DSPI0  
DSPI0  
SIUL  
I/O  
I/O  
O
O
I
ALT1  
ALT2  
ALT3  
EIRQ[13]  
I
A[15]  
PCR[15] ALT0  
GPIO[15]  
SCK  
PPS3  
MCLK  
SCK  
ETC[0]  
EIRQ[18]  
SIUL  
I/O  
I/O  
O
I/O  
I
Slow  
Medium  
61  
95  
ALT1  
ALT2  
ALT3  
DSPI0  
CE_RTC  
SAI1  
DSPI1  
ETIMER0  
SIUL  
I
I
Port B (16-bit)  
B[0]  
B[1]  
PCR[16] ALT0  
GPIO[16]  
TX  
ALARM2  
BCLK  
SIUL  
CAN0  
I/O  
O
O
I/O  
I
Slow  
Slow  
Medium  
Medium  
17  
18  
26  
27  
ALT1  
ALT2  
ALT3  
CE_RTC  
SAI1  
AN[0]  
ADC08  
PCR[17] ALT0  
GPIO[17]  
D[0]  
AN[1]  
RX  
SIUL  
SAI1  
ADC08  
CAN0  
CE_RTC  
I/O  
I/O  
I
ALT1  
ALT2  
ALT3  
I
I
TRIGGER2  
B[2]  
PCR[18] ALT0  
GPIO[18]  
TX  
PPS2  
ALARM1  
AN[2]  
TRIGGER1  
SIUL  
LIN0  
CE_RTC  
CE_RTC  
ADC08  
CE_RTC  
I/O  
O
O
O
I
Slow  
Medium  
19  
28  
ALT1  
ALT2  
ALT3  
I
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
13  
Package pinouts and signal descriptions  
Table 4. Pin muxing (continued)  
I/O  
Pad speed5  
Pin6  
Port  
pin  
PCR  
Alternate  
Functions  
Peripheral3  
register function1,2,8  
direction4  
SRC = 0 SRC = 1  
64-pin 100-pin7  
B[3]  
PCR[19] ALT0  
GPIO[19]  
ETC[2]  
SOUT  
PPS1  
AN[3]  
RX  
SIUL  
I/O  
I/O  
I/O  
O
I
Slow  
Medium  
20  
29  
ALT1  
ALT2  
ALT3  
ETIMER0  
DSPI0  
CE_RTC  
ADC08  
LIN0  
I
EIRQ[14]  
SIUL  
I
B[4]  
PCR[20] ALT0  
GPI[20]  
RX_DV  
SIUL  
FEC  
I
Slow  
Medium  
32  
50  
ALT1  
ALT2  
ALT3  
I
B[5]  
PCR[21] ALT0  
ALT1  
GPIO[21]  
TX_D0  
DEBUG[0]  
SIUL  
FEC  
SSCM  
I/O  
O
I/O  
Slow  
Slow  
Slow  
Slow  
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
Medium  
Medium  
Medium  
Medium  
33  
34  
39  
44  
45  
46  
48  
49  
55  
56  
62  
67  
70  
73  
75  
76  
ALT2  
ALT3  
B[6]  
PCR[22] ALT0  
ALT1  
GPIO[22]  
TX_D1  
DEBUG[1]  
SIUL  
FEC  
SSCM  
I/O  
O
I/O  
ALT2  
ALT3  
B[7]  
PCR[23] ALT0  
ALT1  
GPIO[23]  
TX_D2  
DEBUG[2]  
SIUL  
FEC  
SSCM  
I/O  
O
I/O  
ALT2  
ALT3  
B[8]  
PCR[24] ALT0  
ALT1  
GPIO[24]  
TX_D3  
DEBUG[3]  
SIUL  
FEC  
SSCM  
I/O  
O
I/O  
ALT2  
ALT3  
B[9]  
PCR[25] ALT0  
ALT1  
GPIO[25]  
TX_EN  
DEBUG[4]  
SIUL  
FEC  
SSCM  
I/O  
O
I/O  
ALT2  
ALT3  
B[10]  
B[11]  
B[12]  
PCR[26] ALT0  
ALT1  
GPIO[26]  
MDC  
DEBUG[5]  
SIUL  
FEC  
SSCM  
I/O  
O
I/O  
ALT2  
ALT3  
PCR[27] ALT0  
ALT1  
GPIO[27]  
MDIO  
DEBUG[6]  
SIUL  
FEC  
SSCM  
I/O  
I/O  
I/O  
ALT2  
ALT3  
PCR[28] ALT0  
GPIO[28]  
DEBUG[7]  
SIUL  
SSCM  
I/O  
I/O  
I
ALT1  
ALT2  
ALT3  
TX_CLK  
FEC  
MPC5604E Microcontroller Data Sheet, Rev. 6  
14  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 4. Pin muxing (continued)  
I/O  
Pad speed5  
Pin6  
Port  
pin  
PCR  
Alternate  
Functions  
Peripheral3  
register function1,2,8  
direction4  
SRC = 0 SRC = 1  
64-pin 100-pin7  
B[13]  
B[14]  
B[15]  
PCR[29] ALT0  
GPI[29]  
RX_D0  
SIUL  
FEC  
I
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
50  
77  
79  
81  
ALT1  
ALT2  
ALT3  
I
PCR[30] ALT0  
GPI[30]  
RX_D1  
SIUL  
FEC  
I
51  
52  
ALT1  
ALT2  
ALT3  
I
PCR[31] ALT0  
GPI[31]  
RX_D2  
SIUL  
FEC  
I
ALT1  
ALT2  
ALT3  
I
Port C (64-pin: 7-bit; 100-pin: 16-bit)  
C[0]  
C[1]  
PCR[32] ALT0  
GPI[32]  
RX_D3  
SIUL  
FEC  
I
Slow  
Medium  
Medium  
53  
54  
82  
83  
ALT1  
ALT2  
ALT3  
I
PCR[33] ALT0  
GPI[33]  
SIUL  
FEC  
SIUL  
I
Slow  
ALT1  
ALT2  
ALT3  
I
RX_CLK  
EIRQ[15]  
I
C[2]  
C[3]  
PCR[34] ALT0  
GPIO[34]  
ETC[0]  
TX  
PPS1  
D[0]  
SIUL  
I/O  
I/O  
O
O
I
Slow  
Slow  
Medium  
Medium  
57  
60  
91  
94  
ALT1  
ALT2  
ALT3  
ETIMER0  
CAN0  
CE_RTC  
VID  
LIN0  
SIUL  
RX  
EIRQ[16]  
I
I
PCR[35] ALT0  
GPIO[35]  
ETC[1]  
TX  
SYNC  
D[1]  
SIUL  
ETIMER0  
LIN0  
SAI1  
VID  
I/O  
I/O  
O
I/O  
I
ALT1  
ALT2  
ALT3  
RX  
EIRQ[17]  
CAN0  
SIUL  
I
I
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
15  
Package pinouts and signal descriptions  
Table 4. Pin muxing (continued)  
I/O  
Pad speed5  
Pin6  
Port  
pin  
PCR  
Alternate  
Functions  
Peripheral3  
register function1,2,8  
direction4  
SRC = 0 SRC = 1  
64-pin 100-pin7  
C[4]  
PCR[36] ALT0  
GPIO[36]  
CLK_OUT  
ETC[4]  
MCLK  
TRIGGER1  
ABS[0]  
SIUL  
I/O  
O
I/O  
I/O  
I
I
I
Medium  
Fast  
62  
96  
ALT1  
ALT2  
ALT3  
MC_CGL  
ETIMER0  
SAI0  
CE_RTC  
MC_RGM  
SIUL  
EIRQ[19]  
C[5]  
C[6]  
PCR[37] ALT0  
GPIO[37]  
CLK  
ETC[3]  
CS2  
ABS[2]  
EIRQ[20]  
SIUL  
IIC0  
ETIMER0  
DSPI2  
MC_RGM  
SIUL  
I/O  
I/O  
O
I
Slow  
Slow  
Medium  
Medium  
63  
64  
99  
ALT1  
ALT2  
ALT3  
I
PCR[38] ALT0  
GPIO[38]  
DATA  
CS0  
CS3  
FAB  
SIUL  
IIC0  
DSPI1  
DSPI2  
MC_RGM  
SIUL  
I/O  
I/O  
O
I
100  
ALT1  
ALT2  
ALT3  
EIRQ[21]  
I
C[7]  
C[8]  
PCR[39] ALT0  
GPIO[39]  
TXD  
RXD  
SIUL  
LIN0  
LIN1  
I/O  
O
I
Slow  
Slow  
Medium  
Medium  
3
5
ALT1  
ALT2  
ALT3  
PCR[40] ALT0  
GPIO[40]  
TXD  
RXD  
SIUL  
LIN1  
LIN0  
SIUL  
I/O  
O
I
ALT1  
ALT2  
ALT3  
EIRQ[22]  
I
C[9]  
PCR[41] ALT0  
GPI[41]  
SIN  
SIUL  
DSPI0  
SIUL  
I
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
7
ALT1  
ALT2  
ALT3  
I
EIRQ[23]  
I
C[10]  
C[11]  
PCR[42] ALT0  
GPIO[42]  
ETC[5]  
ETC[4]  
SIN  
EIRQ[24]  
SIUL  
I/O  
I/O  
I/O  
I
24  
25  
ALT1  
ALT2  
ALT3  
ETIMER0  
ETIMER0  
DSPI1  
SIUL  
I
PCR[43] ALT0  
ALT1  
GPIO[43]  
ETC[2]  
ETC[1]  
ETC[3]  
SIUL  
I/O  
I/O  
I/O  
I/O  
ETIMER0  
ETIMER0  
ETIMER0  
ALT2  
ALT3  
MPC5604E Microcontroller Data Sheet, Rev. 6  
16  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 4. Pin muxing (continued)  
I/O  
Pad speed5  
Pin6  
Port  
pin  
PCR  
Alternate  
Functions  
Peripheral3  
register function1,2,8  
direction4  
SRC = 0 SRC = 1  
64-pin 100-pin7  
C[12]  
PCR[44] ALT0  
GPIO[44]  
PPS1  
PPS2  
ALARM1  
TRIGGER1  
TRIGGER2  
EIRQ[25]  
SIUL  
I/O  
Slow  
Medium  
44  
ALT1  
ALT2  
ALT3  
CE_RTC  
CE_RTC  
CE_RTC  
CE_RTC  
CE_RTC  
SIUL  
O
O
O
I
I
I
C[13]  
C[14]  
C[15]  
PCR[45] ALT0  
GPIO[45]  
D[1]  
SIUL  
VID  
SIUL  
I/O  
I
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
46  
47  
48  
ALT1  
ALT2  
ALT3  
EIRQ[26]  
I
PCR[46] ALT0  
GPIO[46]  
D[0]  
SIUL  
VID  
SIUL  
I/O  
I
ALT1  
ALT2  
ALT3  
EIRQ[27]  
I
PCR[47] ALT0  
GPI[47]  
COL  
SIUL  
FEC  
I
ALT1  
ALT2  
ALT3  
I
Port D (100-pin package: 16-bit)  
D[0]  
D[1]  
D[2]  
D[3]  
D[4]  
PCR[48] ALT0  
ALT1  
GPIO[48]  
MDO0  
SIUL  
NEXUS  
I/O  
O
Slow  
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
Medium  
9
ALT2  
ALT3  
PCR[49] ALT0  
ALT1  
GPIO[49]  
MCK0  
SIUL  
NEXUS  
I/O  
O
14  
13  
72  
78  
ALT2  
ALT3  
PCR[50] ALT0  
ALT1  
GPIO[50]  
EVTO  
SIUL  
NEXUS  
I/O  
O
ALT2  
ALT3  
PCR[51] ALT0  
ALT1  
GPIO[51]  
MSEO1  
SIUL  
NEXUS  
I/O  
O
ALT2  
ALT3  
PCR[52] ALT0  
ALT1  
GPIO[52]  
MSEO0  
SIUL  
NEXUS  
I/O  
O
ALT2  
ALT3  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
17  
Package pinouts and signal descriptions  
Table 4. Pin muxing (continued)  
I/O  
Pad speed5  
Pin6  
Port  
pin  
PCR  
Alternate  
Functions  
Peripheral3  
register function1,2,8  
direction4  
SRC = 0 SRC = 1  
64-pin 100-pin7  
D[5]  
PCR[53] ALT0  
ALT1  
GPIO[53]  
MDO3  
SIUL  
NEXUS  
I/O  
O
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
80  
84  
98  
10  
ALT2  
ALT3  
D[6]  
D[7]  
D[8]  
PCR[54] ALT0  
ALT1  
GPIO[54]  
MDO2  
SIUL  
NEXUS  
I/O  
O
ALT2  
ALT3  
PCR[55] ALT0  
ALT1  
GPIO[55]  
MDO1  
SIUL  
NEXUS  
I/O  
ALT2  
ALT3  
PCR[56] ALT0  
GPI[56]  
EVTI  
SIUL  
NEXUS  
I
ALT1  
ALT2  
ALT3  
I
D[9]  
PCR[57] ALT0  
GPIO[57]  
ETC[3]  
ETC[2]  
RXD  
EIRQ[28]  
SIUL  
I/O  
I/O  
I/O  
I
Slow  
Medium  
49  
ALT1  
ALT2  
ALT3  
ETIMER0  
ETIMER0  
CAN0  
SIUL  
I
D[10]  
D[11]  
D[12]  
PCR[58] ALT0  
ALT1  
GPIO[58]  
TXD  
SIUL  
CAN0  
I/O  
O
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
51  
52  
53  
ALT2  
ALT3  
PCR[59] ALT0  
ALT1  
GPIO[59]  
ETC[0]  
ETC[5]  
ETC[4]  
SIUL  
I/O  
I/O  
I/O  
I/O  
ETIMER0  
ETIMER0  
ETIMER0  
ALT2  
ALT3  
PCR[60] ALT0  
GPIO[60]  
ETC[1]  
ETC[0]  
SIUL  
I/O  
I/O  
I/O  
I
ALT1  
ALT2  
ALT3  
ETIMER0  
ETIMER0  
SIN  
DSPI0  
D[13]  
PCR[61] ALT0  
GPI[61]  
SIUL  
FEC  
SIUL  
I
Slow  
Medium  
54  
ALT1  
ALT2  
ALT3  
I
CRS  
EIRQ[29]  
I
MPC5604E Microcontroller Data Sheet, Rev. 6  
18  
NXP Semiconductors  
Package pinouts and signal descriptions  
Table 4. Pin muxing (continued)  
I/O  
Pad speed5  
Pin6  
Port  
pin  
PCR  
Alternate  
Functions  
Peripheral3  
register function1,2,8  
direction4  
SRC = 0 SRC = 1  
64-pin 100-pin7  
D[14]  
PCR[62] ALT0  
GPI[62]  
SIUL  
FEC  
SIUL  
I
Slow  
Medium  
57  
ALT1  
ALT2  
ALT3  
I
RX_ER  
EIRQ[30]  
I
D[15]  
PCR[63] ALT0  
ALT1  
GPIO[63]  
F[0]  
SIUL  
FCU0  
I/O  
O
Slow  
Medium  
69  
ALT2  
ALT3  
Port E (100-pin package: 7-bit)  
E[0]  
E[1]  
E[2]  
PCR[64] ALT0  
ALT1  
GPIO[64]  
F[1]  
SIUL  
FCU0  
I/O  
O
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
68  
71  
85  
ALT2  
ALT3  
PCR[65] ALT0  
ALT1  
GPIO[65]  
TX_ER  
SIUL  
FEC  
I/O  
O
ALT2  
ALT3  
PCR[66] ALT0  
GPI[66]  
SIUL  
LIN1  
SIUL  
I
ALT1  
ALT2  
ALT3  
I
RXD  
EIRQ[31]  
I
E[3]  
E[4]  
E[5]  
E[6]  
PCR[67] ALT0  
ALT1  
GPIO[67]  
TXD  
SIUL  
LIN1  
I/O  
O
Slow  
Slow  
Slow  
Slow  
Medium  
Medium  
Medium  
Medium  
86  
89  
90  
97  
ALT2  
ALT3  
PCR[68] ALT0  
ALT1  
GPIO[68]  
CS0  
CS0  
SIUL  
I/O  
I/O  
I/O  
I/O  
DSPI0  
DSPI1  
DSPI2  
ALT2  
ALT3  
CS0  
PCR[69] ALT0  
ALT1  
GPIO[69]  
SCK  
SCK  
SIUL  
I/O  
I/O  
I/O  
I/O  
DSPI0  
DSPI1  
DSPI2  
ALT2  
ALT3  
SCK  
PCR[70] ALT0  
GPIO[70]  
SOUT  
SOUT  
SOUT  
SIN  
SIUL  
I/O  
O
O
O
I
ALT1  
ALT2  
ALT3  
DSPI0  
DSPI1  
DSPI2  
DSPI0  
DSPI2  
DSPI2  
SIN  
SIN  
I
I
1
ALT0 is the primary (default) function for each port after reset.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
19  
Package pinouts and signal descriptions  
2
Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA = 00 ALT0;  
PCR.PA = 01 ALT1; PCR.PA = 10 ALT2; PCR.PA = 11 ALT3. This is intended to select the output functions; to use  
one of the input functions, the PCR.IBE bit must be written to ‘1’, regardless of the values selected in the PCR.PA bitfields.  
For this reason, the value corresponding to an input only function is reported as “—”.  
3
Module included on the MCU.  
4
Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the  
values of the PSMIO.PADSELx bitfields inside the SIUL module.  
5
Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.  
6
Additional board pull resistors are recommended when JTAG pins are not being used on the board or application.  
7
The 100-pin package is not a production package. It is used for software development only.  
8
Do not use ALT multiplexing when ADC channels are used.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
20  
NXP Semiconductors  
Electrical characteristics  
3
Electrical characteristics  
3.1  
Introduction  
This section contains electrical characteristics of the device as well as temperature and power considerations.  
This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take  
precautions to avoid application of any voltage higher than the specified maximum rated voltages.  
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V or V ). This can be done by the  
DD  
SS  
internal pull-up or pull-down, which is provided by the product for most general purpose pins.  
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
CAUTION  
All of the following figures are indicative and must be confirmed during either silicon validation, silicon characterization or  
silicon reliability trial.  
3.2  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding, the classifications listed in Table 5 are used and the parameters are tagged accordingly in the tables where  
appropriate.  
Table 5. Parameter classifications  
Classification tag  
Tag description  
P
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
C
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
T
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
21  
Electrical characteristics  
3.3  
Absolute maximum ratings  
1
Table 6. Absolute Maximum Ratings  
Symbol  
Parameter  
SR Device ground  
Conditions  
Min  
Max2  
Unit  
VSS  
VSS  
VSS  
V
SR 3.3 V Input/Output Supply Voltage  
(supply).  
VDD_HV_IO  
VSS _ 0.3  
VSS _ 0.1  
VSS + 6.0  
V
V
Code Flash supply with VDD_HV_IO3  
and Data Flash with VDD_HV_IO2  
SR 3.3 VInput/Output Supply Voltage  
(ground).  
VSS + 0.1  
VSS_HV_IO  
Code Flash ground with VSS_HV_IO3  
and Data Flash with VSS_HV_IO2  
SR 3.3 V Crystal Oscillator Amplifier  
Supply voltage (supply)  
The oscillator and flash supply segments are  
double-bounded with the VDD_HV_IO segments. See  
VDD_HV_OSC  
VSS_HV_OSC  
VDD_HV_ADC0  
VDD_HV_IO and VSS_HV_IO specifications.  
SR 3.3 V Crystal Oscillator Amplifier  
Supply voltage (ground)  
SR 3.3 V ADC_0 Supply and High  
Reference voltage  
VSS _ 0.3  
3
V
SS + 6.0  
V
V
SR 3.3 V ADC_0 Ground and Low  
Reference voltage  
VSS_HV_ADC0  
VDD_HV_REG  
TVDD  
VSS _ 0.1  
VSS _ 0.3  
VSS + 0.1  
SR 3.3 V Voltage Regulator Supply  
voltage  
VSS + 6.0  
V
SR Slope characteristics on all VDD  
during power up4  
0.1  
V/us  
V
SR 1.2 V supply pins for core logic  
(supply)  
VSS _ 0.3  
VDD_LV_COR  
VSS_LV_COR  
VIN  
VSS + 1.4  
VSS + 0.1  
DD_HV_IO +0.5  
10  
SR 1.2 V supply pins for core logic  
(ground)  
VSS _ 0.1  
V
SR Voltage on any pin with respect to  
V
SS_HV_IO _ 0.3  
V
V
ground (VSS_HV_IO  
)
SR Input current on any pin during  
overload condition  
IINJPAD  
–10  
–50  
mA  
mA  
SR Absolute sum of all input currents  
during overload condition  
IINJSUM  
50  
TSTORAGE  
TJ  
SR Storage temperature  
–55  
–40  
–40  
150  
150  
125  
°C  
°C  
°C  
SR Junction temperature under bias  
SR Ambient temperature under bias  
fCPU<64 MHz  
fCPU<64 MHz  
Video use  
case with  
TA  
–40  
105  
°C  
internal supply  
1
Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress  
ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect  
device reliability or cause permanent damage to the device.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
22  
NXP Semiconductors  
Electrical characteristics  
Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device  
2
3
4
stress have not yet been determined.  
MPC5604E’s I/O, flash, and oscillator circuit supplies are interconnected. The ADC supply managed independently  
from other supplies.  
Guaranteed by device validation.  
3.4  
Recommended operating conditions  
Table 7. Recommended operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max1  
Unit  
VSS  
SR Device ground  
VSS  
3.0  
0
VSS  
3.6  
0
V
V
V
VDD_HV_IO  
VSS_HV_IO  
SR 3.3 V input/output supply voltage  
SR Input/output ground voltage  
SR 3.3 V Crystal Oscillator Amplifier Supply  
voltage (supply)  
The oscillator and flash supply segments  
are double-bounded with the VDD_HV_IOx  
segments. See VDD_HV_IOx and  
VSS_HV_IOx specifications.  
VDD_HV_OSC  
VSS_HV_OSC  
SR 3.3 V Crystal Oscillator Amplifier Supply  
voltage (ground)  
SR 3.3 V ADC_0 Supply and High Reference  
voltage  
2
VDD_HV_ADC0  
3.0  
3.6  
V
VDD_HV_REG  
SR 3.3 V voltage regulator supply voltage  
3.0  
1.15  
3.6  
1.32  
V
V
VDD_LV_EXTCOR SR Externally supplied core voltage  
VDD_LV_REGCOR SR Internal supply voltage  
VSS_LV_REGCOR SR Internal reference voltage  
V
0
0
V
VDD_LV_COR  
VSS_LV_COR  
VSS_HV_ADC0  
TJ  
SR Internal supply voltage  
V
SR Internal reference voltage  
0
0
V
SR Ground and Low Reference voltage  
SR Junction temperature under bias  
SR Ambient temperature under bias  
0
0
V
–40  
–40  
150  
125  
°C  
°C  
fCPU<64 MHz  
f
CPU<64 MHz  
TA  
Video use case  
with internal  
supply  
–40  
105  
°C  
1
2
Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics  
and I/Os DC electrical specification may not be guaranteed.  
MPC5604E’s I/O, flash, and oscillator circuit supplies are interconnected. The ADC supply managed independently  
from other supplies.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
23  
Electrical characteristics  
3.5  
Thermal characteristics  
1
Table 8. Thermal characteristics for 100-pin LQFP  
Typical  
value  
Symbol  
Parameter  
Conditions  
Unit  
Thermal resistance junction-to-ambient,  
natural convection2  
Single layer board—1s  
Four layer board—2s2p  
51  
38  
°C/W  
°C/W  
RθJA  
Thermal resistance junction-to-ambient2  
@ 200 ft./min.3, single layer  
board—1s  
41  
32  
°C/W  
°C/W  
RθJMA  
@ 200 ft./min.3, four layer  
board—2s2p  
RθJB  
Thermal resistance junction to board4  
23  
11  
2
°C/W  
°C/W  
°C/W  
RθJCtop Thermal resistance junction to case (top)5  
ΨJT  
Junction to package top natural convection6  
1
2
Thermal characteristics are targets based on simulation that are subject to change per device  
characterization.  
Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test  
board meets JEDEC specification for this package.  
3
4
Flow rate of forced air flow.  
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package.  
5
6
Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface  
layer.  
Thermal characterization parameter indicating the temperature difference between the package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written as Psi-JT.  
1
Table 9. Thermal characteristics for 64-pin LQFP  
Typical  
value  
Symbol  
Parameter  
Conditions  
Unit  
Thermal resistance junction-to-ambient,  
natural convection2  
Single layer board—1s  
Four layer board—2s2p  
64  
45  
°C/W  
°C/W  
RθJA  
Thermal resistance junction-to-ambient2  
@ 200 ft./min.3, single layer  
board—1s  
52  
39  
°C/W  
°C/W  
RθJMA  
@ 200 ft./min.3, four layer  
board—2s2p  
RθJB  
Thermal resistance junction to board4  
28  
14  
3
°C/W  
°C/W  
°C/W  
RθJCtop Thermal resistance junction to case (top)5  
ΨJT  
Junction to package top natural convection6  
1
2
Thermal characteristics are targets based on simulation that are subject to change per device  
characterization.  
Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test  
board meets JEDEC specification for this package.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
24  
NXP Semiconductors  
Electrical characteristics  
3
4
Flow rate of forced air flow.  
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package.  
5
6
Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface  
layer.  
Thermal characterization parameter indicating the temperature difference between the package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal  
characterization parameter is written as Psi-JT.  
3.5.1  
General notes for specifications at maximum junction temperature  
An estimation of the chip junction temperature, T , can be obtained from Equation 1:  
J
T = T + (R  
* P )  
Eqn. 1  
J
A
θJA  
D
where:  
T
= ambient temperature for the package (°C)  
A
R
= junction to ambient thermal resistance (°C/W)  
= power dissipation in the package (W)  
θJA  
P
D
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal  
performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a  
board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer  
to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board  
is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually  
appropriate if the board has low power dissipation and the components are well separated.  
When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case thermal resistance  
and a case to ambient thermal resistance:  
R
= R  
+ R  
θCA  
Eqn. 2  
θJA  
θJC  
where:  
R
R
R
= junction to ambient thermal resistance (°C/W)  
= junction to case thermal resistance (°C/W)  
= case to ambient thermal resistance (°C/W)  
θJA  
θJC  
θCA  
R
is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to  
θJC  
ambient thermal resistance, R  
. For instance, the user can change the size of the heat sink, the air flow around the device, the  
θCA  
interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit  
board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal  
Characterization Parameter (Ψ ) can be used to determine the junction temperature with a measurement of the temperature at  
JT  
the top center of the package case using Equation 3:  
T = T + (Ψ x P )  
Eqn. 3  
J
T
JT  
D
where:  
T
= thermocouple temperature on top of the package (°C)  
= thermal characterization parameter (°C/W)  
= power dissipation in the package (W)  
T
Ψ
JT  
P
D
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
25  
Electrical characteristics  
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied  
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the  
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects  
of the thermocouple wire.  
References:  
Semiconductor Equipment and Materials International  
3081 Zanker Road  
San Jose, CA 95134  
(408) 943-6900  
U.S.A.  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or  
303-397-7956.  
JEDEC specifications are available on the WEB at http://www.jedec.org.  
1. C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller  
Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.  
2. G. Kromann, S. Shidore, and S. Addison, Thermal Modeling of a PBGA for Air-Cooled Applications, Electronic  
Packaging and Production, pp. 53-58, March 1998.  
3. B. Joiner and V. Adams, Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in  
Thermal Modeling, Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.  
3.6  
Electromagnetic Interference (EMI) characteristics  
1
Table 10. EMI Testing Specifications  
Frequency  
Range  
Level  
(Typ)  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V  
Clocks  
Unit  
Radiated  
emissions  
VEME  
Oscillator Frequency = 8 150 kHz–50 MHz  
2
14  
11  
7
TA = +25 °C  
MHz;  
50–150 MHz  
System Bus Frequency =  
dBμV  
Device  
64 MHz;  
150–500 MHz  
500–1000 MHz  
Configuration, test  
conditions and EM  
testing per standard  
IEC61967-2.  
CPU Freq = 64MHZ  
No PLL Frequency  
Modulation  
IEC Level  
M
ExternalOscillatorFreq= 150 kHz–50 MHz  
1
11  
7
8 MHz  
System Bus Freq = 64  
50–150 MHz  
dBμV  
MHz  
150–500 MHz  
500–1000 MHz  
CPU Freq = 64MHZ  
1
2% PLL Freq Modulation  
IEC Level  
N
1
EMI testing and I/O port waveforms per standard IEC61967-2.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
26  
NXP Semiconductors  
Electrical characteristics  
3.7  
Electrostatic Discharge (ESD) characteristics  
1,2  
Table 11. ESD ratings  
Symbol  
Parameter  
Conditions  
Value  
Unit  
VESD(HBM)  
SR Electrostatic discharge (Human Body Model)  
2000  
V
Electrostatic discharge (Charged Device Model)  
SR  
750 (corners)  
500 (other)  
VESD(CDM)  
V
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification requirements. Complete DC parametric and functional testing shall be performed per applicable  
device specification at room temperature followed by hot temperature, unless specified otherwise in the device  
specification  
3.8  
Power management electrical characteristics  
Power Management Overview  
3.8.1  
The device supports the following power modes:  
Internal voltage regulation mode  
External voltage regulation mode  
3.8.1.1  
Internal voltage regulation mode  
In this mode, the following supplies are involved:  
V
(3.3V) — This is the main supply provided externally.  
DD_HV_IO  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
27  
Electrical characteristics  
(1.2V) — This is the core logic supply. In the internal regulation mode, the core supply is derived from  
V
DD_LV_COR  
the main supply via an on-chip linear regulator driving an internal PMOS ballast transistor. The PMOS ballast  
transistors are located in the pad ring and their source connectors are directly bonded to a dedicated pin. See Figure 4.  
Pads Pins  
Vss_HV_IO0_X  
3.3V  
Vdd_HV_IO0_X  
Vdd_HV_S_Ballast0/1  
POR_B  
Vreg  
LVD  
Vdd_LV_REGCOR0  
1.2V  
Vdd_LV_COR0_X  
(3 supply pairs)  
Vss_LV_COR0_X  
Figure 4. Internal Regulation Mode  
The core supply can also be provided externally. Table 12 shows how to connect V  
external core supply mode.  
pin for internal and  
DD_HV_S_BALLAST  
NOTE  
V
pin is the supply pin, which carries the entire core logic current in the  
DD_HV_S_BALLAST  
internal regulation mode, while in external regulation mode it is used as a signal to bypass  
the regulator.  
Table 12. Core Supply Select  
Mode  
VDD_HV_S_Ballast  
VDD_HV_IO (3.3V)  
Internal supply mode (via internal PMOS ballast  
transistors)  
External supply mode (e.g., via external switched  
regulator)  
VDD_LV_COR (1.2V)  
MPC5604E Microcontroller Data Sheet, Rev. 6  
28  
NXP Semiconductors  
Electrical characteristics  
3.8.1.2  
External voltage regulation mode  
In the external regulation mode, the core supply is provided externally using a switched regulator. This saves on-chip power  
consumption by avoiding the voltage drop over the ballast transistor. The external supply mode is selected via a board level  
supply change at the V  
pin.  
DD_HV_S_BALLAST  
Pads Pins  
Vss_HV_IO0_X  
Vdd_HV_IO0_X  
3.3V  
Power  
Vdd_HV_S_Ballast0/1  
1.2V  
Supply, e.g.,  
switched or  
linear  
(1.15V-1.32V)  
POR_B  
Vreg  
relaxed  
LVD  
Vdd_LV_REGCOR0  
1.2V  
Vdd_LV_COR0_X  
(3 supply pairs)  
Vss_LV_COR0_X  
Figure 5. External Regulation Mode  
NOTE  
"In external regulation mode, POR_B pin should be used to control the power on RESET for  
the device. POR_B should be kept low (asserted) as long as the input supplies are unstable  
or below the specified operating range. Failure to do so may lead to unexpected device  
operation and erratic reset recovery"  
1
3.8.1.3  
Recommended power supply sequencing  
For MPC5604E, the external supplies need to be maintained as per the following relations:  
V
V
V
should be always greater or equal to V  
DD_HV_IO  
DD_HV_IO  
DD_HV_IO  
DD_HV_S_Ballast  
DD_LV_COR0_X  
DD_HV_ADC  
should be always greater than V  
should be always greater than V  
1.Investigations are in process to relax power supply sequencing recommendation.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
29  
Electrical characteristics  
3.8.2  
Voltage regulator electrical characteristics  
\
C
(LV_COR/LV_CFLA)  
600 nF  
REG2  
GND  
V
DD_HV_IO  
V
V
V
DD_LV_COR0_2  
SS_LV_COR0_2  
DD_HV_S_BALLAST0  
-
V
REF  
V
DD_HV_S_BALLAST1  
+
V
DD_LV_COR0_3  
DEVICE  
V
DD_LV_COR0_0  
Voltage Regulator  
I
V
SS_HV_IO  
GND  
DEVICE  
V
V
C
V
SS_LV_COR0_0  
V
SS_HV_IO  
SS_LV_COR0_1  
600 nF  
DD_HV_IO  
V
DD_LV_COR0_1  
GND  
GND  
C
(supply/IO decoupling)  
(LV_COR/LV_PLL)  
DEC2  
REG3  
Figure 6. Voltage regulator capacitance connection  
Table 13. Voltage regulator electrical characteristics  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
Internal voltage regulator external  
capacitance  
2
CREGn  
SR —  
SR —  
200  
600  
nF  
Stability capacitor equivalent serial  
resistance  
RREG  
CDEC1  
CDEC2  
0.05  
0.2  
Ω
Decoupling capacitance3 ballast  
1004  
400  
SR —  
SR —  
4705  
nF  
Decoupling capacitance regulator  
supply  
1 μF  
100 nF  
Main regulator output voltage  
Before exiting from  
reset  
T
1.15  
1.32  
1.28  
VMREG  
CC  
V
P
After trimming  
1.32  
150  
Main regulator current provided to  
VDD_LV domain  
IMREG  
SR —  
mA  
MPC5604E Microcontroller Data Sheet, Rev. 6  
30  
NXP Semiconductors  
Electrical characteristics  
Table 13. Voltage regulator electrical characteristics (continued)  
Value  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
Main regulator module current  
consumption  
IMREG = 200 mA  
IMREG = 0 mA  
2
1
IMREGINT CC D  
mA  
mA  
In-rush current on VDD_BV during  
power-up6  
IDD_BV  
CC D  
407  
1
2
3
VDD = 3.3 V 10%, TA = 40 to 125 °C, unless otherwise specified  
It is required by the device in internal voltage regulation mode only.  
This capacitance value is driven by the constraints of the external voltage regulator that supplies the VDD_BV  
voltage. A typical value is in the range of 470 nF. This capacitance should be placed close to the device pin.  
4
5
This value is acceptable to guarantee operation from 3.0 V to 3.6 V  
External regulator and capacitance circuitry must be capable of providing IDD_BV while maintaining supply VDD_BV  
in operating range.  
6
7
In-rush current is seen only for short time during power-up and on standby exit (max 20 µs, depending on external  
LV capacitances to be load)  
The duration of the in-rush current depends on the capacitance placed on LV pins. BV decaps must be sized  
accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.  
3.8.3  
Voltage monitor electrical characteristics  
The device implements a POR module to ensure correct power-up initialization, as well as three low voltage detectors to  
monitor the V and the V voltage while device is supplied:  
DD_HV  
DD_LV  
POR monitors V  
during the power-up phase to ensure device is maintained in a safe reset state  
DD_HV  
LVDHV3 monitors V  
to ensure device reset below minimum functional supply  
DD_HV  
LVDLVCOR monitors low voltage digital power domain  
Table 14. Low voltage monitor electrical characteristics  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
Max  
VPORH  
T
D
P
P
P
P
Power-on reset threshold  
1.5  
1.0  
2.7  
V
V
V
V
V
V
VPORUP  
Supply for functional POR module  
TA = 25°C  
VDDHVLVDMOK_H  
VDDHVLVDMOK_L  
VMLVDDOK_H  
VMLVDDOK_L  
VDD_HV low voltage detector high threshold  
VDD_HV low voltage detector low threshold  
Digital supply low voltage detector high  
Digital supply low voltage detector low  
2.95  
2.6  
1.135  
1.095  
1
VDD_HV = 3.3V 10% TA = –40 °C to TA MAX, unless otherwise specified  
3.9  
Power Up/Down reset sequencing  
The MPC5604E implements a precise sequence to ensure each module is started only when all conditions for switching it ON  
are available. This prevents overstress event or miss-functionality within and outside the device:  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
31  
Electrical characteristics  
A POR module working on voltage regulator supply is controlling the correct start-up of the regulator. This is a key  
module ensuring safe configuration for all Voltage regulator functionality when supply is below 1.5 V. Associated POR  
(or POR) signal is active low.  
Several Low Voltage Detectors, working on voltage regulator supply are monitoring the voltage of the critical modules  
(Voltage regulator, I/Os, Flash and Low voltage domain). LVDs are gated low when POWER_ON is active.  
A POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active  
high and released to all modules including I/Os, Flash and RC16 oscillator needed during power-up phase and reset  
phase. When POWER_OK is low the associated module are set into a safe state.  
VLVDHV3H  
VPORH  
3.3V  
VDD_HV_REG  
VPOR_UP  
0V  
3.3V  
POWER_ON  
LVDM (HV)  
0V  
3.3V  
0V  
VMLVDOK_H  
VDD_LV_REGCOR  
1.2V  
0V  
3.3V  
LVDD (LV)  
0V  
3.3V  
POWER_OK  
0V  
RC16MHz Oscillator  
1.2V  
0V  
~1us  
1.2V  
0V  
Internal Reset Generation Module  
FSM  
P0  
P1  
Figure 7. Power-up typical sequence  
VLVDHV3L  
3.3V  
VPORH  
VDD_HV_REG  
0V  
3.3V  
LVDM (HV)  
POWER_ON  
0V  
3.3V  
0V  
1.2V  
0V  
VDD_LV_REGCOR  
LVDD (LV)  
3.3V  
0V  
3.3V  
POWER_OK  
0V  
RC16MHz Oscillator  
1.2V  
0V  
Internal Reset Generation Module  
FSM  
1.2V  
0V  
IDLE  
P0  
Figure 8. Power-down typical sequence  
MPC5604E Microcontroller Data Sheet, Rev. 6  
32  
NXP Semiconductors  
Electrical characteristics  
3.10 DC electrical characteristics  
Table 15 gives the DC electrical characteristics at 3.3 V (3.0 V < V  
< 3.6 V).  
DD_HV_IO  
1
Table 15. DC electrical characteristics (3.3 V)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIL  
VIL  
VIH  
D
P
P
Minimum low level input voltage  
Maximum low level input voltage  
Minimum high level input voltage  
–0.42  
0.35 VDD_HV_IO  
V
V
V
0.65 VDD_HV_IO  
Maximum high level input  
voltage  
VIH  
D
V
DD_HV_IO + 0.42  
V
VHYS  
VOL_S  
VOH_S  
VOL_M  
T
P
P
P
Schmitt trigger hysteresis  
0.1 VDD_HV_IO  
V
V
V
V
Slow, low level output voltage  
Slow, high level output voltage  
Medium, low level output voltage  
IOL = 2 mA  
IOH = –2 mA  
IOL = 2 mA  
0.8VDD_HV_IO  
0.1VDD_HV_IO  
0.1VDD_HV_IO  
Medium, high level output  
voltage  
VOH_M  
P
IOH = –3 mA  
0.8VDD_HV_IO  
V
VOL_F  
VOH_F  
IPU  
P
P
P
P
Fast, high level output voltage  
Fast, high level output voltage  
Equivalent pull-up current  
IOL = 11 mA  
IOH = –11 mA  
VIN = VIL  
0.8VDD_HV_IO  
–95  
0.1VDD_HV_IO  
V
V
95  
µA  
IPD  
Equivalent pull-down current  
VIN = VIH  
Input leakage current  
(all bidirectional ports)  
TA = –40 to  
125 °C  
IIL  
P
P
D
P
P
D
1
µA  
µA  
V
Input leakage current  
(all ADC input-only ports)  
TA = –40 to  
125 °C  
IIL  
0.5  
Minimum RESET, low level input  
voltage  
VILR  
VILR  
VIHR  
VIHR  
–0.42  
Maximum RESET, low level  
input voltage  
0.35 VDD_HV_IO  
V
Minimum RESET, high level  
input voltage  
0.65 VDD_HV_IO  
VDD_HV_IO + 0.42  
V
Maximum RESET, high level  
input voltage  
V
RESET, Schmitt trigger  
hysteresis  
VHYSR  
VOLR  
IPU  
CIN  
D
D
0.1 VDD_HV_IO  
V
V
RESET, low level output voltage IOL = 0.5 mA  
–130  
0.1VDD_HV_IO  
RESET, equivalent pull-up  
current  
VIN = VIL  
VIN = VIH  
–10  
10  
D
µA  
pF  
D
Input capacitance  
1
2
These specifications are design targets and subject to change per device characterization.  
“SR” parameter values must not exceed the absolute maximum ratings shown in Table 6.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
33  
Electrical characteristics  
Symbol  
Table 16. Supply current  
Conditions  
Value1  
Typ  
Parameter  
Unit  
Min  
Max  
I
RUN Mode, I/O currents not included,  
worst case over temperature for  
system clock  
DD_LV_CORE  
C
P
75  
120  
HALT Mode2  
V
DD_LV_CORx  
4
4
25  
25  
externally forced at 1.3 V  
V
STOP Mode3  
DD_LV_CORx  
P
externally forced at 1.3 V  
IDD_FLASH  
Code Flash  
FLASH supply current  
during read  
VDD_HV_IO at 3.3 V  
4
9
7
FLASH supply current  
during erase operation  
on 1 Flash module  
VDD_HV_IO at 3.3 V  
Supply  
current  
14  
mA  
C
Data Flash  
DD_HV_IO at 3.3 V  
FLASH supply current  
during read  
V
3.5  
7.5  
6
FLASH supply current  
during erase operation  
on 1 Flash module  
VDD_HV_IO at 3.3 V  
12  
IDD_ADC  
ADC supply current  
VDD_HV_ADC0 at 3.3 V  
ADC Freq = 16MHz  
C
1.8  
3
4
I
OSC supply current  
VDD_HV_OSC at 3.3 V  
16 MHz  
DD_OSC  
C
0.74  
1
All values to be confirmed after characterization/data collection.  
2
Halt mode configurations: Code fetched from SRAM, Code Flash and Data Flash in low power mode, OSC/PLL0 are OFF, Core  
clock frozen, all peripherals are disabled.  
3
STOP "P" mode DUT configuration: Code fetched from SRAM, Code Flash and Data Flash off, OSC/PLL0 are OFF, Core clock  
frozen, all peripherals are disabled.  
3.11 Main oscillator electrical characteristics  
The MPC5604E provides an oscillator/resonator driver.  
Table 17. Main oscillator electrical characteristics  
Symbol  
fOSC SR Oscillator frequency  
gm  
VOSC  
tOSCSU  
Parameter  
Min  
Max  
Unit  
4
4
40  
MHz  
P
T
T
Transconductance  
15.846 mA/V  
Oscillation amplitude on XTAL pin  
Start-up time1,2  
1.3  
2.25  
5
V
ms  
MPC5604E Microcontroller Data Sheet, Rev. 6  
34  
NXP Semiconductors  
Electrical characteristics  
1
2
The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive  
loads can cause long start-up time.  
Value captured when amplitude reaches 90% of XTAL  
Table 18. Input clock characteristics  
Symbol  
fOSC SR Oscillator frequency  
Parameter  
Min  
Typ  
Max  
Unit  
4
50  
40  
100  
1
MHz  
MHz  
ns  
fCLK  
trCLK  
tDC  
SR Frequency in bypass  
SR Rise/fall time in bypass  
SR Duty cycle  
47.5  
52.5  
%
3.12 FMPLL electrical characteristics  
1
Table 19. PLLMRFM electrical specifications  
(V  
= 3.0 V to 3.6 V, V = V  
= 0 V, T = T to T )  
DDPLL  
SS  
SSPLL  
A
L
H
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min  
Max  
fref_crystal  
fref_ext  
PLL reference frequency range2  
Crystal reference  
D
D
D
D
4
40  
MHz  
MHz  
MHz  
MHz  
Phase detector input frequency range  
(after pre-divider)  
fpll_in  
4
4
4
16  
fFMPLL_0  
Clock frequency range in normal  
mode  
128  
256  
PCS  
fFMPLL_0  
PLL output frequency  
_CLK  
fVCO  
fsys  
P
D
D
VCO frequency  
256  
16  
512  
64  
MHz  
MHz  
ns  
On-chip PLL frequency2  
System clock period  
tCYC  
1 / fsys  
Self-clocked mode frequency  
fSCM  
D
20  
-500  
-6  
150  
500  
6
MHz  
ps  
(VCO free running frequency)3,4  
CLKOUT  
period  
Peak-to-peak (clock  
edge to clock edge)  
fSYS Maximum  
CLKOU  
TJITTER  
T
jitter5,6,7,8  
Long-term jitter (avg.  
over 2 ms interval)  
ns  
tlpll  
tdc  
D
D
D
PLL lock time 9, 10  
40  
–6  
200  
60  
6
μs  
Duty cycle of reference  
Frequency LOCK range  
%
fLCK  
% fsys  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
35  
Electrical characteristics  
1
Table 19. PLLMRFM electrical specifications  
(V  
= 3.0 V to 3.6 V, V = V  
= 0 V, T = T to T ) (continued)  
DDPLL  
SS  
SSPLL  
A
Conditions  
L
H
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
fUL  
D
D
D
Frequency un-LOCK range  
Modulation Depth  
–18  
0.25  
–0.5  
18  
% fsys  
%fsys  
kHz  
Center spread  
Down Spread  
4.011  
–8.0  
100  
fCS  
fDS  
fMOD  
Modulation frequency12  
1
2
3
4
5
6
All values given are initial design targets and subject to change.  
Considering operation with PLL not bypassed.  
Self clocked mode frequency is the frequency that the PLL operates at when the PLL reference frequency falls.  
fscm represents PLL0 VCO frequency in free running (when the PLL reference clock is disconnected).  
This value is determined by the crystal manufacturer and board design.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum  
fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock  
signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency  
increase the CJITTER percentage for a given interval.  
7
8
Proper PC board layout procedures must be followed to achieve specifications.  
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and  
either fCS or fDS (depending on whether center spread or down spread modulation is enabled).  
9
This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for  
this PLL, load capacitors should not exceed these limits.  
10 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits  
in the synthesizer control register (SYNCR).  
11 This value is true when operating at frequencies above 60 MHz, otherwise fCS is 2% (above 64 MHz).  
12 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.  
3.13 16 MHz RC oscillator electrical characteristics  
Table 20. 16 MHz RC oscillator electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
fRC  
C
P
RC oscillator frequency  
TA = 25 °C  
8.5  
16  
24  
MHz  
Fast internal RC oscillator variation in  
temperature and supply with respect to  
fRC at TA = 55 °C in high-frequency  
configuration  
ΔRCMVAR  
ΔRCMTRIM  
–5  
5
%
Post Trim Accuracy: The variation of the  
PTF1 from the 16 MHz oscillator  
T
TA = 25 °C  
–2  
2
%
1
PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and  
temperature  
MPC5604E Microcontroller Data Sheet, Rev. 6  
36  
NXP Semiconductors  
Electrical characteristics  
3.14 Analog-to-Digital Converter (ADC) electrical characteristics  
The device provides a 10-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.  
Offset Error OSE  
Gain Error GE  
1023  
1022  
1021  
1020  
1019  
1 LSB ideal = V  
/ 1024  
DD_ADC  
1018  
(2)  
code out  
7
(1)  
6
5
(1) Example of an actual transfer curve  
(2) The ideal transfer curve  
(5)  
(3) Differential non-linearity error (DNL)  
(4) Integral non-linearity error (INL)  
(5) Center of a step of the actual transfer curve  
4
3
(4)  
(3)  
2
1
1 LSB (ideal)  
0
1
2
3
4
5
6
7
1017 1018 1019 1020 1021 1022 1023  
(LSB  
V
)
ideal  
in(A)  
Offset Error OSE  
Figure 9. ADC characteristics and error definitions  
3.14.1 Input impedance and ADC accuracy  
To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor  
with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as  
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge  
during the sampling phase, when the analog signal source is a high-impedance source.  
A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC  
filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
37  
Electrical characteristics  
be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal  
(bandwidth) and the equivalent input impedance of the ADC itself.  
In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C being  
S
substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path  
to ground. For instance, assuming a conversion rate of 1 MHz, with C equal to 3 pF, a resistance of 330 kΩ is obtained (R  
S
EQ  
= 1 / (fc×C ), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage  
S
partitioning between this resistance (sampled voltage on C ) and the sum of R + R + R + R + R , the external circuit  
S
S
F
L
SW  
AD  
must be designed to respect the Equation 4:  
R + R + R + R  
+ R  
S
F
L
SW  
AD  
1
2
--------------------------------------------------------------------------  
V •  
< -- LSB  
Eqn. 4  
A
R
EQ  
Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R  
SW  
and R ) can be neglected with respect to external resistances.  
AD  
EXTERNAL CIRCUIT  
INTERNAL CIRCUIT SCHEME  
V
DD  
Channel  
Sampling  
Selection  
Source  
Filter  
Current Limiter  
R
R
R
R
R
AD  
S
F
L
SW1  
V
C
C
C
P2  
A
F
P1  
R
Source Impedance  
Filter Resistance  
Filter Capacitance  
Current Limiter Resistance  
Channel Selection Switch Impedance  
Sampling Switch Impedance  
Pin Capacitance (two contributions, C and C  
P1  
Sampling Capacitance  
S
F
F
L
R
C
R
R
R
C
C
SW1  
AD  
P
)
P2  
S
Figure 10. Input equivalent circuit  
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C , C and C are  
F
P1  
P2  
initially charged at the source voltage V (refer to the equivalent circuit reported in Figure 10): A charge sharing phenomenon  
A
is installed when the sampling phase is started (A/D switch close).  
MPC5604E Microcontroller Data Sheet, Rev. 6  
38  
NXP Semiconductors  
Electrical characteristics  
Voltage Transient on CS  
V
CS  
V
A
ΔV < 0.5 LSB  
V
A2  
1
2
τ1 < (RSW + RAD) CS << TS  
V
A1  
τ2 = RL (CS + CP1 + CP2)  
T
t
S
Figure 11. Transient behavior during sampling phase  
In particular two different transient periods can be distinguished:  
A first and quick charge transfer from the internal capacitance C and C to the sampling capacitance C occurs (C  
P1 P2 S S  
is supposed initially completely discharged): considering a worst case (since the time constant in reality would be  
faster) in which C is reported in parallel to C (call C = C + C ), the two capacitances C and C are in series,  
P2  
P1  
P
P1  
P2  
P
S
and the time constant is  
C C  
P
S
--------------------  
τ
= (R  
+ R  
) •  
Eqn. 5  
1
SW  
AD  
C + C  
P
S
Equation 5 can again be simplified considering only C as an additional worst condition. In reality, the transient is  
S
faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T  
is always much longer than the internal time constant:  
S
τ
< (R  
+ R  
) C « T  
S
Eqn. 6  
1
SW  
AD  
S
The charge of C and C is redistributed also on C , determining a new value of the voltage V on the capacitance  
P1  
P2  
S
A1  
according to Equation 7:  
V
(C + C + C ) = V (C + C )  
P2  
Eqn. 7  
A1  
S
P1  
P2  
A
P1  
A second charge transfer involves also C (that is typically bigger than the on-chip capacitance) through the resistance  
F
R : again considering the worst case in which C and C were in parallel to C (since the time constant in reality  
L
P2  
S
P1  
would be faster), the time constant is:  
τ
< R (C + C + C )  
P1 P2  
Eqn. 8  
2
L
S
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed  
well before the end of sampling time T , a constraints on R sizing is obtained:  
S
L
10 τ = 10 R (C + C + C ) < T  
P1 P2 S  
Eqn. 9  
2
L
S
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
39  
Electrical characteristics  
Of course, R shall be sized also according to the current limitation constraints, in combination with R (source  
L
S
impedance) and R (filter resistance). Being C definitively bigger than C , C and C , then the final voltage V  
F
F
P1 P2  
S
A2  
(at the end of the charge transfer transient) will be much higher than V . Equation 10 must be respected (charge  
A1  
balance assuming now C already charged at V ):  
S
A1  
V
(C + C + C + C ) = V C + V (C + C + C )  
P1 P2 A1 P1 P2  
Eqn. 10  
A2  
S
F
A
F
S
The two transients above are not influenced by the voltage source that, due to the presence of the R C filter, is not able to  
F
F
provide the extra charge to compensate the voltage drop on C with respect to the ideal source V ; the time constant R C of  
S
A
F F  
the filter is very high with respect to the sampling time (T ). The filter is typically designed to act as anti-aliasing.  
S
Analog Source Bandwidth (V )  
A
T
f
2 R C (Conversion Rate vs. Filter Pole)  
F F  
C
Noise  
= f (Anti-aliasing Filtering Condition)  
F
0
2 f f (Nyquist)  
0
C
f
0
f
Anti-Aliasing Filter (f = RC Filter pole)  
Sampled Signal Spectrum (f = conversion Rate)  
C
F
f
f
f
C
F
0
f
f
Figure 12. Spectral representation of input signal  
Calling f the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f ),  
0
F
according to the Nyquist theorem the conversion rate f must be at least 2f ; it means that the constant time of the filter is greater  
C
0
than or at least equal to twice the conversion period (T ). Again the conversion period T is longer than the sampling time T ,  
C
C
S
which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a  
specific channel): in conclusion it is evident that the time constant of the filter R C is definitively much higher than the  
F
F
sampling time T , so the charge level on C cannot be modified by the analog signal source during the time in which the  
S
S
sampling switch is closed.  
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage  
drop on C ; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled  
S
voltage on C :  
S
V
C
+ C + C  
P2  
----------- = -------------------------------------------------------  
A
P1  
F
Eqn. 11  
V
C
+ C + C + C  
A2  
P1  
P2 S  
F
From this formula, in the worst case (when V is maximum, that is for instance 5 V), assuming to accept a maximum error of  
A
half a count, a constraint is evident on C value:  
F
C
> 2048 C  
Eqn. 12  
F
S
MPC5604E Microcontroller Data Sheet, Rev. 6  
40  
NXP Semiconductors  
Electrical characteristics  
3.14.2 ADC conversion characteristics  
Table 21. ADC conversion characteristics  
Value  
Symbol  
Parameter  
Conditions1  
Unit  
Min  
Typ  
Max  
ADC clock frequency  
(depends on ADC  
fCK  
SR configuration)  
1
64  
MHz  
(The duty cycle depends on  
ADCClk2 frequency)  
fs  
SR Sampling frequency  
Sample time3  
1.53  
MHz  
ns  
fADC = 20 MHz,  
500  
ADC_conf_sample_input = 17  
tADC_S  
D
fADC = 9 MHz,  
500  
28.2  
µs  
ns  
pF  
INPSAMP = 255  
Conversion time4  
P
fADC = 20 MHz5,  
ADC_conf_comp = 3  
tADC_C  
ADC input sampling  
capacitance  
6
CS  
D
2.5  
6
CP1  
D
D
ADC input pin capacitance 1  
ADC input pin capacitance 2  
0.87  
1
pF  
pF  
6
CP2  
Internal resistance of analog  
source  
6
RSW1  
D
D
0.6  
2
kΩ  
kΩ  
Internal resistance of analog  
source  
6
RAD  
Input current injection  
Current injection on one ADC input,  
different from the converted one.  
Remains within TUE specification  
IINJ  
T
–5  
5
mA  
INL  
DNL  
OFS  
GNE  
P
P
T
T
Integral Non Linearity  
Differential Non Linearity  
Offset error  
No overload  
–1.5  
–1.0  
1
1.5  
1.0  
LSB  
LSB  
LSB  
LSB  
No overload  
Gain error  
1
Total unadjusted error  
without current injection  
TUE  
P
–3  
–3  
3
3
LSB  
LSB  
Total unadjusted error with  
current injection  
TUE  
TUE  
T
P
Total unadjusted error  
–3  
-2  
3
2
LSB  
LSB  
Total Unadjusted Error for  
precise channels, input only  
pins  
No overload  
TUEP CC  
TUEX CC  
overload conditions on adjacent  
channel  
-3  
3
LSB  
LSB  
LSB  
Total Unadjusted Error for  
extended channel,  
No overload  
overload conditions on adjacent  
channel  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
41  
Electrical characteristics  
1
VDD = 3.3 V to 3.6 V, TA = –40 to +125 °C, unless otherwise specified and analog input voltage from VAGND to VAREF  
.
2
3
ADCClk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.  
During the sample time the input capacitance CS can be charged/discharged by the external source. The internal  
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the  
end of the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values  
for the sample clock tADC_S depend on programming.  
4
This parameter does not include the sample time tADC_S, but only the time for determining the digital result and the  
time to load the result register with the conversion result.  
5
6
7
20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC.  
See Figure 10.  
Does not include packaging and bonding capacitances  
3.15 Temperature sensor electrical characteristics  
Table 22. Temperature sensor electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
typical  
max  
Temperature  
monitoring range  
CC  
C
–40  
150  
°C  
CC C Sensitivity  
CC C Accuracy  
5.14  
10  
10  
mV/°C  
°C  
TJ = –40 to 25 °C  
TJ = –25 to 125 °C  
–10  
–10  
CC  
C
°C  
3.16 Flash memory electrical characteristics  
1
Table 23. Code flash program and erase specifications  
Initial  
Typical  
Value2  
(0 Cycles)  
Max4  
(100000 Unit  
Cycles)  
Max3  
(100  
Symbol  
Parameter  
Min Value  
Cycles)  
TDWPRG  
TBKPRG  
TER8K  
Double Word Program5  
22  
1.45  
0.2  
0.3  
0.3  
0.6  
0.8  
4.8  
50  
1.65  
0.4  
0.5  
0.6  
0.9  
1.3  
7.6  
10  
500  
33  
μs  
s
Bank Program (512 KB)5, 6  
Sector Erase (8KB)  
5.0  
5.0  
5.0  
5.0  
7.5  
55  
s
TER16K  
TER32K  
TER64K  
TER128K  
TER512K  
TPABT  
Sector Erase (16KB)  
Sector Erase (32KB)  
Sector Erase (64KB)  
Sector Erase (128KB)  
Bank Erase (512KB)  
Program Abort Latency  
Erase Abort Latency  
s
s
s
s
s
10  
μs  
μs  
TEABT  
30  
30  
MPC5604E Microcontroller Data Sheet, Rev. 6  
42  
NXP Semiconductors  
Electrical characteristics  
1
Table 23. Code flash program and erase specifications  
Initial  
Max3  
(100  
Typical  
Value2  
(0 Cycles)  
Max4  
(100000 Unit  
Cycles)  
Symbol  
Parameter  
Min Value  
Cycles)  
TEABT  
TEABT  
Erase Suspend Latency  
30  
30  
μs  
Erase Suspend Request Rate  
10  
ms  
Endurance (8KB, 16KB sectors)  
Endurance (32KB, 64KB sectors)  
Endurance (128KB sectors)  
100  
10  
1
NER  
TDR  
Kcycles  
Years  
Data Retention at 1K cycles  
Data Retention at 10K cycles  
Data Retention at 100K cycles  
20  
10  
5
1
2
TBC = To be confirmed  
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
3
4
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
The maximum program & erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
5
6
Actual hardware programming times. This does not include software overhead.  
Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will  
require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column).  
1
Table 24. Data flash program and erase specifications  
Initial  
Typical  
Value2  
(0 Cycles)  
Max4  
(100000 Unit  
Cycles)  
Max3  
(100  
Symbol  
Parameter  
Min Value  
Cycles)  
TDWPRG  
TBKPRG  
TER16K  
TER512K  
TPABT  
Word Program5  
30  
0.49  
0.7  
1.9  
TBC  
TBC  
TBC  
TBC  
12  
TBC  
TBC  
TBC  
TBC  
12  
μs  
Bank Program (64 KB)5, 6  
s
Sector Erase (16KB)  
s
s
Bank Erase (64KB)  
Program Abort Latency  
Erase Abort Latency  
μs  
TEABT  
TEABT  
TEABT  
NER  
30  
30  
μs  
Erase Suspend Latency  
Erase Suspend Request Rate  
Endurance (16KB sectors)  
30  
30  
μs  
10  
100  
ms  
K cycles  
Data Retention at 1K cycles  
Data Retention at 10K cycles  
Data Retention at 100K cycles  
20  
10  
1
Years  
@85C  
TDR  
1
2
TBC = To be confirmed  
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to  
change pending device characterization.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
43  
Electrical characteristics  
3
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.  
4
The maximum program & erase times occur after the specified number of program/erase cycles. These maximum  
values are characterized but not guaranteed.  
5
6
Actual hardware programming times. This does not include software overhead.  
Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will  
require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column).  
Table 25. Flash read access timing  
Symbol  
C
Parameter  
Conditions1  
Max Unit  
Maximum working frequency for Code Flash at  
given number of WS in worst conditions  
2 wait states  
0 wait states  
66  
Fmax  
C
MHz  
18  
Maximum working frequency for Data Flash at  
given number of WS in worst conditions  
Fmax  
C
8 wait states  
66  
MHz  
1
VDD_HV = 3.3 V 10%, TA = 40 to 125 °C, unless otherwise specified  
3.17 NMI filter functional specification  
Table 26. NMI filter functional specification  
Pulse Width  
Value  
Units  
Maximum pulse width  
that is rejected  
40  
ns  
Minimum pulse width  
that is accepted  
205  
ns  
The pulses shorter than “Maximum pulse width that is rejected” are blocked. The Pulses wider than “Minimum pulse width that  
is passed” are allowed. When the pulses lengths are between they may be blocked or passed. This is due to tolerance of analog  
circuit.  
3.18 AC specifications  
3.18.1 Pad AC specifications  
Table 27 gives the AC electrical characteristics at 3.3 V (3.0 V < V  
< 3.6 V) operation.  
DD_HV_IO  
MPC5604E Microcontroller Data Sheet, Rev. 6  
44  
NXP Semiconductors  
Electrical characteristics  
Table 27. Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1)  
Rise/Fall1  
(ns)  
Load  
drive  
(pF)  
Symbol  
Parameter  
Unit  
Pad  
Min  
Typ  
Max  
25  
50  
3
3
40  
40  
40  
40  
40  
50  
75  
100  
4
ns  
ns  
Propagation delay from  
vdd/2 of internal signal  
to Pchannel / Nchannel  
switch on condition  
Tswitchon  
100  
200  
25  
3
ns  
3
ns  
4
ns  
50  
6
ns  
tr/tf  
Slope at rising/falling  
edge  
100  
200  
25  
10  
14  
0.01  
0.01  
0.01  
0.01  
1
ns  
Slow  
ns  
MHz  
MHz  
MHz  
MHz  
mA/ns  
mA/ns  
mA/ns  
mA/ns  
ns  
Frequency  
of  
Operation  
50  
2
Freq  
100  
200  
25  
2
2
2
Current  
Slew  
50  
2
Slew rate at rising edge  
of current  
100  
200  
25  
2
2
15  
15  
15  
15  
12  
25  
40  
70  
40  
20  
13  
7
Propagation delay from  
vdd/2 of internal signal  
to Pchannel / Nchannel  
switch on condition  
50  
1
ns  
Tswitchon  
100  
200  
25  
1
ns  
1
ns  
2
ns  
50  
4
ns  
tr/tf  
Slope at rising/falling  
edge  
100  
200  
25  
8
ns  
Medium  
14  
2.5  
2.5  
2.5  
2.5  
ns  
MHz  
MHz  
MHz  
MHz  
mA/ns  
mA/ns  
mA/ns  
mA/ns  
Frequency  
of  
Operation  
50  
Freq  
100  
200  
25  
7
Current  
Slew  
50  
7
Slew rate at rising edge  
of current  
100  
200  
7
7
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
45  
Electrical characteristics  
Table 27. Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1)  
Rise/Fall1  
Load  
drive  
(pF)  
Symbol  
Parameter  
Unit  
(ns)  
Pad  
Min  
Typ  
Max  
25  
50  
1
1
6
6
ns  
ns  
Propagation delay from  
vdd/2 of internal signal  
to Pchannel / Nchannel  
switch on condition  
Tswitchon  
100  
200  
25  
1
6
ns  
1
6
ns  
1
4
ns  
50  
1.5  
3
7
ns  
tr/tf  
Slope at rising/falling  
edge  
100  
200  
25  
12  
18  
72  
55  
40  
25  
40  
40  
40  
ns  
Fast  
5
ns  
3
MHz  
MHz  
MHz  
MHz  
mA/ns  
mA/ns  
mA/ns  
Frequency  
of  
Operation  
50  
Freq  
100  
200  
25  
50  
3
Current  
Slew  
Slew rate at rising edge  
of current  
100  
3
200  
3
40  
mA/ns  
Propagation delay from  
vdd/2 of internal signal  
to Pchannel / Nchannel  
switch on condition  
Tswitchon  
25  
1
8
ns  
tr/tf  
Slope at rising/falling  
edge  
25  
25  
25  
1
3
5
12  
1
ns  
ns  
ns  
TRise/TFall  
Delay at rising/falling  
edge  
Symmetric  
|TRise - TFall Delay between rising and  
falling edge  
0.05  
Frequency  
Freq  
of  
25  
25  
3
50  
25  
MHz  
Operation  
Current  
Slew  
Slew rate at rising edge  
of current  
mA/ns  
1
Slope at rising/falling edge  
MPC5604E Microcontroller Data Sheet, Rev. 6  
46  
NXP Semiconductors  
Electrical characteristics  
VDD_HV_IO/2  
Pad  
Data Input  
Rising  
Edge  
Falling  
Edge  
Output  
Delay  
Output  
Delay  
VOH  
VOL  
Pad  
Output  
Figure 13. Pad output delay  
3.19 AC timing characteristics  
3.19.1 Generic timing diagrams  
The generic timing diagrams in Figure 14 and Figure 15 apply to all I/O pins with pad types fast, slow and medium. See  
Section 2.2, “Signal descriptions” for the pad type for each pin.  
CLKOUT  
VDD_HV_IOx/2  
A
B
I/O OUTPUTS  
VDD_HV_IOx/2  
A—Maximum output delay time  
B—Minimum output hold time  
Figure 14. Generic output delay/hold timing  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
47  
Electrical characteristics  
CLKOUT  
VDD_HV_IOx/2  
B
A
I/O INPUTS  
VDD_HV_IOx/2  
A—Minimum input setup time  
B—Minimum input hold time  
Figure 15. Generic Input setup/hold timing  
MPC5604E Microcontroller Data Sheet, Rev. 6  
48  
NXP Semiconductors  
Electrical characteristics  
3.19.2 RESET pin characteristics  
The MPC5604E implements a dedicated bidirectional RESET pin.  
Figure 16. Start-up reset requirements  
V
DD  
V
DDMIN  
RESET  
V
IH  
V
IL  
device reset forced by RESET  
device start-up phase  
Figure 17. Noise filtering on reset signal  
VRESET  
hw_rst  
‘1’  
V
DD  
V
IH  
V
IL  
‘0’  
filtered by  
lowpass filter  
unknown reset  
state  
filtered by  
hysteresis  
filtered by  
lowpass filter  
device under hardware reset  
W
W
FRST  
FRST  
W
NFRST  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
49  
Electrical characteristics  
Table 28. RESET electrical characteristics  
Value2  
Typ  
Symbol  
C
Parameter  
Conditions1  
Unit  
Min  
Max  
Input High Level CMOS  
(Schmitt Trigger)  
VIH  
VIL  
SR P  
SR P  
0.65VDD  
VDD+0.4  
V
V
Input low Level CMOS  
(Schmitt Trigger)  
0.4  
0.35VDD  
Input hysteresis CMOS  
(Schmitt Trigger)  
VHYS CC C  
0.1VDD  
0.1VDD  
12  
V
V
VOL CC P Output low level  
Push Pull, IOL = 3 mA,  
CL = 25 pF,  
Output transition time  
output pin3  
VDD = 3.3 V 10%  
MEDIUM configuration  
CL = 50 pF,  
Ttr  
CC D  
25  
40  
ns  
VDD = 3.3 V 10%  
CL = 100 pF,  
VDD = 3.3 V 10%  
RESET input filtered  
pulse  
WFRST SR P  
WNFRST SR P  
40  
ns  
ns  
µA  
RESET input not filtered  
pulse  
500  
10  
Weak pull-up current  
absolute value  
VDD = 3.3 V 10%  
|IWPU  
|
CC P  
150  
1
2
3
VDD = 3.3 V 10% / 5.0 V 10%, TA = 40 to 125 °C, unless otherwise specified  
All values need to be confirmed during device validation.  
CL includes device and package capacitance (CPKG < 5 pF).  
3.19.3 Nexus and JTAG timing  
1
Table 29. Nexus debug port timing  
Value  
No.  
Symbol  
C
Parameter  
Unit  
Min  
Typ  
Max  
1
tMCYC  
CC D MCKO Cycle Time  
2
8
tCYC  
ns  
2A  
tMCYCP CC D MCKO cycle period  
MCKO duty cycle  
15  
2B  
tMDC  
CC  
D
48  
52  
%
3
4
5
6
7
tMDOV  
CC D MCKO low to MDO data valid2  
–0.1  
–0.1  
–0.1  
50  
0.22  
0.22  
0.22  
tMCYC  
tMCYC  
tMCYC  
ns  
tMSEOV CC D MCKO low to MSEO data valid2  
tEVTOV  
tTCYC  
tTDC  
CC D MCKO low to EVTO data valid2  
CC D TCK cycle time  
CC D TCK Duty Cycle  
40  
60  
%
MPC5604E Microcontroller Data Sheet, Rev. 6  
50  
NXP Semiconductors  
Electrical characteristics  
1
Table 29. Nexus debug port timing (continued)  
Value  
Typ  
No.  
Symbol  
C
Parameter  
Min  
Unit  
Max  
tNTDIS  
tNTMSS CC D TMS data setup time  
tNTDIH CC D TDI data hold time  
tNTMSH CC D TMS data hold time  
CC D TDI data setup time  
0.2  
0.2  
0.1  
0.1  
25  
tTCYC  
tTCYC  
tTCYC  
tTCYC  
ns  
8
9
10  
11  
tTDOV  
tTDOV  
CC D TCK low to TDO data valid  
CC D TCK low to TDO data invalid  
0.1  
tTCYC  
1
2
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.  
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
2 A  
2B  
MCKO  
3
4
5
MDO  
MSEO  
EVTO  
Output Data Valid  
Figure 18. Nexus output timing  
7
TCK  
6
Figure 19. Nexus event trigger and test clock timings  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
51  
Electrical characteristics  
TCK  
8
9
TMS, TDI  
10  
11  
TDO  
Figure 20. Nexus TDI, TMS, TDO Timing  
3.19.4 GPIO timing  
The GPIO specifications for setup time and output valid relative to CLKOUT are the same for all pins on the device regardless  
of the primary pin function.  
Table 30. GPIO Timing  
No. Symbol  
Characteristic  
Min. Max. Unit  
GPIO Read Time  
GPIO Write Time  
tCYC  
1
2
tREAD  
5
6
tCYC  
tWRITE  
MPC5604E Microcontroller Data Sheet, Rev. 6  
52  
NXP Semiconductors  
Electrical characteristics  
3.19.5 External interrupt timing (IRQ pin)  
1
Table 31. External interrupt timing  
Parameter  
IRQ pulse width low  
No.  
Symbol  
C
Conditions  
Min Max Unit  
1
2
3
tIPWL  
tIPWH  
tICYC  
CC  
CC  
CC  
D
D
D
4
4
tCYC  
tCYC  
tCYC  
IRQ pulse width high  
IRQ edge to edge time2  
4+N3  
1
2
3
IRQ timing specified at fSYS = 64 MHz and VDD_HV_IOx = 3.0 V, TA = TL to TH, and CL = 200 pF with SRC = 0b00.  
Applies when IRQ pins are configured for rising edge or falling edge events, but not both.  
N = ISR time to clear the flag  
IRQ  
1
2
3
Figure 21. External interrupt timing  
3.19.6 FlexCAN timing  
1
Table 32. FlexCAN timing  
Num  
Characteristic  
Symbol Min. Value Max. Value  
Unit  
1
2
CTNX Output Valid after CLKOUT Rising Edge (Output Delay)  
CNRX Input Valid to CLKOUT Rising Edge (Setup Time)  
tCANOV  
tCANSU  
26.0  
9.8  
ns  
ns  
1
FlexCAN timing specified at fSYS = 64 MHz, VDD = 1.35 V to 1.65 V, VDDEH = 3.0 V to 5.5 V, VRC33 and  
VDDPLL = 3.0 V to 3.6 V, TA = TL to TH, and CL = 50 pF with SRC = 0b00.  
3.19.7 LINFlex timing  
Minimum design target for interface frequency is 2 MBit/s.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
53  
Electrical characteristics  
3.19.8 DSPI timing  
Table 33. DSPI timing  
Conditions  
No. Symbol  
C
Parameter  
Min  
Max  
Unit  
Master (MTFE = 0)  
62.5  
128  
31.25  
16  
1
tSCK CC  
D
DSPI cycle time  
Slave (MTFE = 0)  
ns  
Master (MTFE = 1,CPHA=1)  
2
3
4
5
tCSC CC  
tASC CC  
tSDC CC  
D
D
D
D
CS to SCK delay  
After SCK delay  
SCK duty cycle  
Slave access time  
ns  
ns  
16  
0.4 * tSCK 0.6 * tSCK ns  
tA  
CC  
SS active to SOUT valid  
40  
10  
ns  
ns  
SS inactive to SOUT High-Z or  
invalid  
6
tDIS CC  
D
Slave SOUT disable time  
7
8
tPCSC CC  
tPASC CC  
D
D
PCSx to PCSS time  
PCSS to PCSx time  
13  
13  
12  
2
ns  
ns  
Master (MTFE = 0)  
Slave  
9
tSUI CC  
D
D
D
D
Data setup time for inputs  
Data hold time for inputs  
Data valid (after SCK edge)  
Data hold time for outputs  
ns  
ns  
ns  
ns  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Master (MTFE = 0)  
Slave  
NA1  
NA1  
NA1  
NA1  
12  
–5  
4
10  
tHI  
CC  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Master (MTFE = 0)  
Slave  
–5  
4
33  
11 tSUO CC  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
Master (MTFE = 0)  
Slave  
–2  
6
11  
12 tHO CC  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
–2  
1
This mode is not feasible at 32 MHz.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
54  
NXP Semiconductors  
Electrical characteristics  
2
3
PCSx  
1
4
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
10  
9
Last Data  
SIN  
First Data  
Data  
Data  
12  
11  
First Data  
Last Data  
SOUT  
Figure 22. DSPI classic SPI timing — Master, CPHA = 0  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL=1)  
9
First Data  
Data  
Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Figure 23. DSPI classic SPI timing — Master, CPHA = 1  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
55  
Electrical characteristics  
3
2
SS  
1
4
SCK Input  
(CPOL=0)  
4
SCK Input  
(CPOL=1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
9
10  
Data  
Last Data  
First Data  
SIN  
Figure 24. DSPI classic SPI timing — Slave, CPHA = 0  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Figure 25. DSPI classic SPI timing — Slave, CPHA = 1  
MPC5604E Microcontroller Data Sheet, Rev. 6  
56  
NXP Semiconductors  
Electrical characteristics  
3
PCSx  
4
1
2
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
9
10  
SIN  
First Data  
Last Data  
Last Data  
Data  
12  
11  
SOUT  
First Data  
Data  
Figure 26. DSPI modified transfer format timing — Master, CPHA = 0  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Figure 27. DSPI modified transfer format timing — Master, CPHA = 1  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
57  
Electrical characteristics  
3
2
SS  
1
SCK Input  
(CPOL=0)  
4
4
SCK Input  
(CPOL=1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
Last Data  
First Data  
SIN  
Figure 28. DSPI modified transfer format timing — Slave, CPHA = 0  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Figure 29. DSPI modified transfer format timing — Slave, CPHA = 1  
MPC5604E Microcontroller Data Sheet, Rev. 6  
58  
NXP Semiconductors  
Electrical characteristics  
8
7
PCSS  
PCSx  
Figure 30. DSPI PCS Strobe (PCSS) timing  
3.19.9 Video interface timing  
Table 34 details the MPC5604E’s video encoder block’s pixel input clocking requirement.  
Table 34. Input pixel clock characteristics  
No.  
Parameter  
Min  
Max  
Unit  
PDI Clock Period  
10  
50  
2
50  
2
ns  
%
1
2
PDI Clock Duty Cycle  
Input setup time  
3
4
5
ns  
ns  
ns  
Input Hold Time  
2
Input Pixel Clock Slew Rate  
VCLKIN  
1
3
4
VID_DATA[15:0]  
VID_LINE_V  
Input Data Valid  
VID_FRAME_V  
Figure 31. Video interface timing  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
59  
Electrical characteristics  
3.19.10 Fast ethernet interface  
MII signals use CMOS signal levels compatible with devices operating at either 5.0 V or 3.3 V. Signals are not TTL compatible.  
They follow the CMOS electrical characteristics.  
3.19.10.1 MII receive signal timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)  
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency  
requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency.  
Table 35. MII receive signal timing  
No.  
Parameter  
Min  
Max  
Unit  
1
2
3
4
Rx Clock Period  
40  
5
60  
ns  
ns  
ns  
%
RXD[3:0], RX_DV, RX_ER to RX_CLK setup  
RX_CLK to RXD[3:0], RX_DV, RX_ER hold  
Rx Clock Duty Cycle  
5
40  
4
RX_CLK (input)  
1
RXD[3:0] (inputs)  
RX_DV  
RX_ER  
2
3
Figure 32. MII receive signal timing diagram  
3.19.10.2 MII transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)  
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency  
requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency.  
The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of  
TX_CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs.  
Refer to the Ethernet chapter for details of this option and how to enable it.  
1
Table 36. MII transmit signal timing  
No.  
Parameter  
Min  
Max  
Unit  
5
6
7
8
TX Clock Period  
40  
5
25  
60  
ns  
ns  
ns  
%
TX_CLK to TXD[3:0], TX_EN, TX_ER invalid  
TX_CLK to TXD[3:0], TX_EN, TX_ER valid  
TX Clock Duty Cycle  
40  
1
Output pads configured with SRC = 0b11.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
60  
NXP Semiconductors  
Electrical characteristics  
TX_CLK (input)  
6
TXD[3:0] (outputs)  
TX_EN  
TX_ER  
7
Figure 33. MII transmit signal timing diagram  
3.19.10.3 MII async inputs signal timing (CRS and COL)  
1
Table 37. MII async inputs signal timing  
No.  
Parameter  
CRS, COL minimum pulse width  
Min  
Max  
Unit  
9
1.5  
TX_CLK period  
1
Output pads configured with SRC = 0b11.  
CRS, COL  
9
Figure 34. MII async inputs timing diagram  
3.19.10.4 MII serial management channel timing (MDIO and MDC)  
The FEC functions correctly with a maximum MDC frequency of 5 MHz.  
Table 38. MII serial management channel timing (MDIO and MDC)  
No.  
Parameter  
MDIO Input delay setup  
Min  
Max  
Unit  
1
2
3
4
5
6
28  
0
25  
60  
ns  
ns  
ns  
ns  
ns  
%
MDIO Input delay hold  
MDIO Output delay valid  
MDIO Output delay Invalid  
MDC clock period  
0
100  
40  
MDC Duty Cycle  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
61  
Electrical characteristics  
3.19.11 I2C timing  
2
Table 39. I C SCL and SDA input timing specifications  
Value  
No.  
Symbol  
Parameter  
Unit  
Min Max  
1
2
4
6
7
8
9
D Start condition hold time  
D Clock low time  
2
8
IP bus cycle1  
IP bus cycle1  
ns  
D Data hold time  
0.0  
4
D Clock high time  
D Data setup time  
IP bus cycle1  
0.0  
2
ns  
D Start condition setup time (for repeated start condition only)  
D Stop condition setup time  
IP bus cycle1  
IP bus cycle1  
2
1
Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device. It is equal to the system clock  
(Sys_clk).  
2
Table 40. I C SCL and SDA output timing specifications  
Value  
No.  
Symbol  
Parameter  
Unit  
Min Max  
11  
21  
33  
41  
51  
61  
71  
81  
91  
D Start condition hold time  
D Clock low time  
6
IP bus cycle2  
IP bus cycle1  
ns  
10  
7
D SCL/SDA rise time  
D Data hold time  
99.6  
IP bus cycle1  
D SCL/SDA fall time  
D Clock high time  
10  
2
99.5  
ns  
IP bus cycle1  
IP bus cycle1  
IP bus cycle1  
IP bus cycle1  
D Data setup time  
D Start condition setup time (for repeated start condition only)  
D Stop condition setup time  
20  
10  
1
Programming IBFD (I2C bus Frequency Divider) with the maximum frequency results in the minimum output timings  
listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period.  
The actual position is affected by the prescale and division values programmed in IFDR.  
2
3
Inter Peripheral Clock is the clock at which the I2C peripheral is working in the device.  
Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL  
or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
62  
NXP Semiconductors  
Electrical characteristics  
2
6
5
SCL  
3
1
8
4
7
9
SDA  
2
Figure 35. I C input/output timing  
3.19.12 SAI timing  
All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device.  
Table 41. Master Mode SAI Timing  
Value  
No.  
Parameter  
Unit  
Min  
Max  
Operating voltage  
2.7  
3.6  
V
S1  
SAI_MCLK cycle time  
31.25  
45%  
62.5  
ns  
S2  
S3  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
55%  
MCLK period  
ns  
S4  
S5  
SAI_BCLK pulse width high/low  
SAI_BCLK to SAI_FS output valid  
45%  
55%  
15  
BCLK period  
ns  
ns  
ns  
S6  
S7  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
0
15  
S8  
S9  
SAI_BCLK to SAI_TXD invalid  
0
ns  
ns  
ns  
SAI_RXD/SAI_FS input setup before SAI_BCLK 28  
S10 SAI_RXD/SAI_FS input hold after SAI_BCLK  
0
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
63  
Electrical characteristics  
Figure 36. SAI timing master modes  
Table 42. Slave Mode SAI Timing  
Value  
No.  
Parameter  
Unit  
Min  
Max  
Operating voltage  
2.7  
80  
45%  
10  
2
3.6  
V
S11 SAI_BCLK cycle time (input)  
ns  
S12 SAI_BCLK pulse width high/low (input)  
S13 SAI_FS input setup before SAI_BCLK  
S14 SAI_FS input hold after SAI_BCLK  
S15 SAI_BCLK to SAI_TXD/SAI_FS output valid  
S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid  
S17 SAI_RXD setup before SAI_BCLK  
S18 SAI_RXD hold after SAI_BCLK  
55%  
BCLK period  
ns  
ns  
ns  
ns  
0
28  
10  
2
ns  
ns  
MPC5604E Microcontroller Data Sheet, Rev. 6  
64  
NXP Semiconductors  
Electrical characteristics  
Figure 37. SAI timing slave modes  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
65  
Package mechanical data  
4
Package mechanical data  
4.1  
100 LQFP mechanical outline drawing  
MPC5604E Microcontroller Data Sheet, Rev. 6  
66  
NXP Semiconductors  
Package mechanical data  
Figure 38. 100 LQFP package mechanical drawing (part 1)  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
67  
Package mechanical data  
Figure 39. 100 LQFP package mechanical drawing (part 2)  
MPC5604E Microcontroller Data Sheet, Rev. 6  
68  
NXP Semiconductors  
Package mechanical data  
Figure 40. 100 LQFP package mechanical drawing (part 3)  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
69  
Package mechanical data  
4.2  
64 LQFP mechanical outline drawing  
Figure 41. 64 LQFP package mechanical drawing (part 1)  
MPC5604E Microcontroller Data Sheet, Rev. 6  
70  
NXP Semiconductors  
Package mechanical data  
Figure 42. 64LQFP package mechanical drawing (part 2)  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
71  
Package mechanical data  
Figure 43. 64LQFP package mechanical drawing (part 3)  
MPC5604E Microcontroller Data Sheet, Rev. 6  
72  
NXP Semiconductors  
Ordering information  
5
Ordering information  
0
MPC  
E
E F1  
LH  
M
R
56  
4
Qualification status  
Automotive platform (56 = Power architecture in 90 nm)  
Core version (0 = e200z0h)  
Config  
Product (E = Family)  
EEPROM (E = Data Flash)  
Optional fields  
Temperature spec  
Package code (LH = 64LQFP)  
Tape and Reel (R = Tape and reel)  
Optional fields  
Qualification status  
M = MC status  
Config  
4 = SAI + ENET + MJPEG  
3 = SAI + ENET  
F = ATMC  
1 = Maskset revision 1  
S = Auto qualified  
P = PC status  
2 = Maskset revision 2  
Tempearture spec  
C = - 40 to 85 oC  
V = - 40 to 105 oC  
M = - 40 to 125 oC  
Figure 44. Commercial product code structure  
Table 43. Orderable part number summary  
Part number1  
Flash/SRAM Package  
Speed  
64 MHz  
Key Features  
SPC5604EEF2MLH and SPC5604EEF2MLHR  
SPC5603EEF2MLH and SPC5603EEF2MLHR  
SAI + ENET + MJPEG  
SAI + ENET  
512K / 96K 64 LQFP  
1
All packaged devices are PPC, rather than MPC or SPC, until product qualifications are complete.  
The unpackaged device prefix is PCC, rather than SCC, until product qualification is complete.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
73  
Document revision history  
6
Document revision history  
Table 44. Revision history  
Substantive changes  
Revision  
Date  
1
15 Feb 2011 Initial Release  
• In the Recommended operating conditions table, changed the external supply voltage changed  
from 1.14 V to 1.15 V  
• Added a footnote in the Device Summary table  
2
13 June 2011  
• Changed the description of VDD_HV_S_BALLAST0 in the Supply pins table  
• Editorial changes and improvements  
• In the Low voltage monitor electrical characteristics table, changed the marking of VPORUP from  
P to D  
• In the DC electrical characteristics table, changed the IOL of the Medium, low level output  
voltage to 2 mA. From the same table, removed VOL_SYM and VOH_SYM. Revised the IPU and IPD  
• In the Main oscillator electrical characteristics table, changed the minimum value of  
transconductance to 4 mA/V  
• In the 16 MHz RC oscillator electrical characteristics table, changed the marking of fRC from P  
to C and revised its minimum and value.  
• In the ADC conversion characteristics table, changed the minimum and maximum value of TUE  
from TBD to -3 and 3  
3
1 Nov 2011  
• In the Pin muxing table, C5 port ABS[2] assignment changed from SIUL to MC_RGM  
• IRevised the 64-pin and 100-pin package pinouts and added a footnote.  
• In the Supply pins table, revised the description of ADC0 pins  
• In the Supply pins table, added a column Port Pin and renamed the Symbol column  
• IRemoved Power Supply segment table  
• In the Pin Muxing table, clarified the peripherals in the following port pins: C5, A3, A8, A10, A12,  
A15, C3, C4, C5, C6, C12  
• In the Low voltage monitor electrical characteristics table, changed the maximum value of  
VMLVDDOK_H  
• In the ADC conversion characteristics, changed the ADC sampling time to 500 ns  
• Inserted values for TBDs in the table EMI Testing Specifications  
• From Supply Pins table, removed VVD_HV_ADV0  
• In the PLLMRFM electrical specifications table, added the value of Self-clocked mode frequency  
• In the ADC conversion characteristics table, added the value of INJ  
3.1  
4
2 Dec 2011  
23 Jan 2012  
• System Pin table, swapped the description of XTAL and EXTAL  
On the first page:  
• added 32 external interrupts for 100-pin LQFP and updated 22 external interrupts for 64-pin  
LQFP.  
• changed "8 input channels" to "7 input channels".  
• changed "4 internal connection..." to "3 internal connection...".  
• Removed “1 x VGate Current”.  
• In Table 1., “Device summary”, removed VGate current from the equation for ADC (10-bit).  
• In Figure 1., “MPC5604E block diagram”: changed "4+4 channels" to "4+3 channels".  
• Updated Table 2., “Supply pins”.  
5
03 Feb 2015  
• In Table 4., “Pin muxing”, function of port pins B4, B13, B14, B15, C0, C1, C9, C15, D8, D13,  
D14, and E2 changed from GPIO to GPI.  
• Added new section - Section 5, “Ordering information”.  
• In Figure 2., “64-pin LQFP pinout (top view)”, changed VSS (pin 47) to VSS_HV.  
• In Figure 3., “100-pin LQFP pinout (top view)”, changed VSS (pin 74) to VSS_HV.  
• Updated “optional fields” entries in Figure 44., “Commercial product code structure”.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
74  
NXP Semiconductors  
Document revision history  
Table 44. Revision history (continued)  
Substantive changes  
Revision  
Date  
• Changed the DS document from Advanced Information to Technical Data  
• Updated Figure 44., “Commercial product code structure” and Table 43., “Orderable part  
number summary”.  
5.1  
27 Jan 2016  
• In Table 14., “Low voltage monitor electrical characteristics”, changed the max value of  
VMLVDDOK_H from 1.235 V to 1.135 V  
• In Table 41., “Master Mode SAI Timing”  
For SAI_MCLK changed the Min cycle time from 40 to 31.25.  
Changed the minimal value of SAI_BCLK cycle time from 80 to 62.5.  
Updated unit of SAI_BCLK cycle time from BCLK period to ns.  
Updated unit of SAI_BCLK pulse width high/low from ns to BCLK period.  
• In Table 19., “PLLMRFM electrical specifications (VDDPLL = 3.0 V to 3.6 V, VSS = VSSPLL = 0 V,  
TA = TL to TH)” changed the following:  
Changed the name from fFMPLLOUT to fFMPLL_0PCS changed the Max value to 128  
Added PLL output frequecy parameter row  
Changed the frequency of fVCO Min range from 20 MHz to 256 MHz and Max range from  
150 MHz to 512 MHz  
16 October  
2019  
6
Changed the Min value of System clock period parameter to 1/fsys  
Changed the name of Self-clocked mode frequency to Self-clocked mode  
frequency(VCO free running frequency)  
Updated the row for CJITTER  
• In section 3.8.1.2, “External voltage regulation mode”, under Figure 5., “External Regulation  
Mode”, added the following note:  
In external regulation mode, POR_B pin should be used to control the power on RESET  
for the device. POR_B should be kept low (asserted) as long as the input supplies are  
unstable or below the specified operating range. Failure to do so may lead to unexpected  
device operation and erratic reset recovery.  
• Added section 3.17, “NMI filter functional specification”  
• In Section Table 43., “Orderable part number summary”, changed the part number to  
SPC5604EEF2MLH and SPC5604EEF2MLHR” and “SPC5603EEF2MLH and  
SPC5603EEF2MLHR”.  
MPC5604E Microcontroller Data Sheet, Rev. 6  
NXP Semiconductors  
75  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits based on the  
information in this document. NXP reserves the right to make changes without further  
notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
NXP makes no warranty, representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does NXP assume any liability arising out of  
the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation consequential or incidental damages. ÅgTypicalÅh  
parameters that may be provided in NXP data sheets and/or specifications can and do  
vary in different applications, and actual performance may vary over time. All operating  
parameters, including Ågtypicals,Åh must be validated for each customer application  
by customer's technical experts. NXP does not convey any license under its patent  
rights nor the rights of others. NXP sells products pursuant to standard terms and  
conditions of sale, which can be found at the following address:  
nxp.com/support  
nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject  
tounidentified vulnerabilities. Customers are responsible for the design and operation  
of their applications and products to reduce the effect of these vulnerabilities on  
customerÅfs applications and products, and NXP accepts no liability for any  
vulnerability that is discovered. Customers should implement appropriate design and  
operating safeguards to minimize the risks associated with their applications and  
products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,  
COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,  
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,  
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK,  
SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale,  
the Freescale logo, AltiVec, C.5, CodeTEST, CodeWarrior, ColdFire, ColdFire+,  
C.Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT,  
PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,  
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast,  
BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine,  
SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other  
product or service names are the property of their respective owners. AMBA, Arm,  
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,  
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME,  
ULINK-PLUS, ULINKpro, ÉþVision, Versatile are trademarks or registered trademarks  
of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology  
may be protected by any or all of patents, copyrights, designs and trade secrets. All  
rights reserved. Oracle and Java are registered trademarks of Oracle and/or its  
affiliates. The Power Architecture and Power.org word marks and the Power and  
Power.org logos and related marks are trademarks and service marks licensed by  
Power.org.  
© 2019 NXP B.V.  
Document Number: MPC5604E  
Rev. 6  
11/2019  

相关型号:

SPC5604EEF2MLHR

MPC5604E Microcontroller
NXP

SPC5604PEF0MLL7R

microcontroller units (MCUs)
FREESCALE

SPC5604PEF0MLQ7R

microcontroller units (MCUs)
FREESCALE

SPC5604PEF0VLL7R

microcontroller units (MCUs)
FREESCALE

SPC5604PEF0VLQ7R

microcontroller units (MCUs)
FREESCALE

SPC5604PEF1MLL4

RISC Microcontroller
NXP

SPC5604PEF1MLQ6

Freescale 32-bit MCU, Power Arch core, 512KB Flash, 64MHz, -40/+125degC, Automotive Grade, QFP 144
NXP

SPC5604PFF0MLL7R

microcontroller units (MCUs)
FREESCALE

SPC5604PFF0MLQ7R

microcontroller units (MCUs)
FREESCALE

SPC5604PFF0VLL7R

microcontroller units (MCUs)
FREESCALE

SPC5604PFF0VLQ7R

microcontroller units (MCUs)
FREESCALE

SPC5604PGF1MLL6

MPC5602P Microcontroller Data Sheet
FREESCALE