SPC5644AF0MMG3R [NXP]

Freescale 32-bit MCU, Power Arch, 4MB Flash, 80MHz, -40/+125degC, Automotive Grade, MAPBGA 208;
SPC5644AF0MMG3R
型号: SPC5644AF0MMG3R
厂家: NXP    NXP
描述:

Freescale 32-bit MCU, Power Arch, 4MB Flash, 80MHz, -40/+125degC, Automotive Grade, MAPBGA 208

文件: 总142页 (文件大小:1662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC5644A  
Rev. 7.1, 12/2014  
Freescale Semiconductor  
MPC5644A Microcontroller  
Datasheet  
This is the MPC5644A Datasheet set consisting of the following files:  
MPC5644A Datasheet Addendum (MPC5644A_AD), Rev. 1  
MPC5644A Datasheet (MPC5644A), Rev. 7  
© Freescale Semiconductor, Inc., 2014. All rights reserved.  
MPC5644A_AD  
Rev. 1, 12/2014  
Freescale Semiconductor  
Datasheet Addendum  
MPC5644A Microcontroller  
Datasheet Addendum  
Table of Contents  
Addendum List for Revision 7. . . . . . . . . . . . . . . . 2  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
This addendum describes corrections to the MPC5644A  
Microcontroller Datasheet, order number MPC5644A.  
For convenience, the addenda items are grouped by  
revision. Please check our website at  
1
2
http://www.freescale.com/powerarchitecture for the  
latest updates.  
The current version available of the MPC5644A  
Microcontroller Datasheet is Revision 7.  
© Freescale Semiconductor, Inc., 2014. All rights reserved.  
 
1 Addendum List for Revision 7  
4
Table 1. MPC5644A Rev 7 Addendum  
Location  
Description  
Section 3.11, “Temperature In “Temperature Sensor Electrical Characteristics” table, update the Min and Max value of  
Sensor Electrical  
Characteristics”,  
Page 90  
“Accuracy” parameter to -20oC and +20oC, respectively.  
2 Revision History  
Table 2 provides a revision history for this datasheet addendum document.  
Table 2. Revision History Table  
Rev. Number  
Substantive Changes  
Date of Release  
1.0  
Initial release.  
12/2014  
MPC5644A_AD, Rev. 1  
2
Freescale Semiconductor  
 
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address:freescale.com/SalesTermsandConditions.  
Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire,  
C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor  
Expert, QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of  
Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack,  
ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge,  
QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic  
are trademarks of Freescale Semiconductor, Inc. All other product or service names  
are the property of their respective owners.  
© 2014 Freescale Semiconductor, Inc.  
Document Number: MPC5644A_AD  
Rev. 1  
12/2014  
Freescale Semiconductor  
Data Sheet: Advance Information  
Document Number: MPC5644A  
Rev. 7, Jan 2012  
MPC5644A  
MPC5644A Microcontroller  
Data Sheet  
208 (17 x 17 mm)  
324 (23 x 23 mm)  
176 (24 x 24 mm)  
2 enhanced queued analog-to-digital converters  
(eQADCs)  
150 MHz e200z4 Power Architecture core  
Variable length instruction encoding (VLE)  
Forty 12-bit input channels (multiplexed on 2 ADCs);  
expandable to 56 channels with external multiplexers  
6 command queues  
Trigger and DMA support  
688 ns minimum conversion time  
Superscalar architecture with 2 execution units  
Up to 2 integer or floating point instructions per cycle  
Up to 4 multiply and accumulate operations per cycle  
Memory organization  
4 MB on-chip flash memory with ECC and Read  
While Write (RWW)  
192 KB on-chip SRAM with standby functionality  
(32 KB) and ECC  
8 KB instruction cache (with line locking),  
configurable as 2- or 4-way  
On-chip CAN/SCI/FlexRay Bootstrap loader with Boot  
Assist Module (BAM)  
Nexus  
Class 3+ for the e200z4 core  
Class 1 for the eTPU  
JTAG (5-pin)  
Development Trigger Semaphore (DTS)  
14 + 3 KB eTPU code and data RAM  
5 4 crossbar switch (XBAR)  
24-entry MMU  
External Bus Interface (EBI) with slave and master  
port  
Register of semaphores (32-bits) and an identification  
register  
Used as part of a triggered data acquisition protocol  
EVTO pin is used to communicate to the external tool  
Fail Safe Protection  
Clock generation  
Interrupts  
Serial channels  
16-entry Memory Protection Unit (MPU)  
CRC unit with 3 sub-modules  
Junction temperature sensor  
On-chip 4–40 MHz main oscillator  
On-chipFMPLL(frequency-modulatedphase-locked  
loop)  
Up to 120 general purpose I/O lines  
Configurable interrupt controller (with NMI)  
64-channel DMA  
Individually programmable as input, output or special  
function  
Programmable threshold (hysteresis)  
3 eSCI  
Power reduction mode: slow, stop and stand-by modes  
Flexible supply scheme  
3 DSPI (2 of which support downstream Micro  
Second Channel [MSC])  
3 FlexCAN with 64 messages each  
1 FlexRay module (V2.1) up to 10 Mbit/s with dual  
or single channel and 128 message objects and ECC  
5 V single supply with external ballast  
Multiple external supply: 5 V, 3.3 V and 1.2 V  
Packages  
176 LQFP  
208 MAPBGA  
324 TEPBGA  
1 eMIOS:  
1 eTPU2 (second generation eTPU)  
24 unified channels  
32 standard channels  
1 reaction module (6 channels with three outputs  
per channel)  
496-pin CSP (calibration tool only)  
This document contains information on a product under development. Freescale reserves  
the right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2009–2012. All rights reserved.  
Table of Contents  
1
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
3.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 67  
3.3.1 General notes for specifications at maximum  
1.1 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.4 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
1.4.1 e200z4 core. . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
1.4.2 Crossbar Switch (XBAR) . . . . . . . . . . . . . . . . . . .6  
1.4.3 eDMA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
1.4.4 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . .7  
1.4.5 Memory protection unit (MPU). . . . . . . . . . . . . . .8  
1.4.6 FMPLL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
1.4.7 SIU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.4.8 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.4.9 BAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
1.4.10 eMIOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.4.11 eTPU2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
1.4.12 Reaction module . . . . . . . . . . . . . . . . . . . . . . . .13  
1.4.13 eQADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
1.4.14 DSPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
1.4.15 eSCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
1.4.16 FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
1.4.17 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
1.4.18 System timers . . . . . . . . . . . . . . . . . . . . . . . . . .17  
1.4.19 Software watchdog timer (SWT) . . . . . . . . . . . .17  
1.4.20 Cyclic redundancy check (CRC) module. . . . . .18  
1.4.21 Error correction status module (ECSM). . . . . . .18  
1.4.22 External bus interface (EBI). . . . . . . . . . . . . . . .18  
1.4.23 Calibration EBI. . . . . . . . . . . . . . . . . . . . . . . . . .19  
1.4.24 Power management controller (PMC) . . . . . . . .19  
1.4.25 Nexus port controller . . . . . . . . . . . . . . . . . . . . .19  
1.4.26 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
1.4.27 Development Trigger Semaphore (DTS). . . . . .20  
1.5 MPC5644A series architecture . . . . . . . . . . . . . . . . . . .20  
1.5.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . .20  
1.5.2 Block summary . . . . . . . . . . . . . . . . . . . . . . . . .22  
Pinout and signal description . . . . . . . . . . . . . . . . . . . . . . . . .24  
2.1 176 LQFP pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
2.2 208 MAP BGA ballmap. . . . . . . . . . . . . . . . . . . . . . . . .26  
2.3 324 TEPBGA ballmap. . . . . . . . . . . . . . . . . . . . . . . . . .27  
2.4 Signal summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
2.5 Signal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
3.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .65  
3.2 Maximum ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
3.4 EMI (electromagnetic interference) characteristics . . . 71  
3.5 Electrostatic discharge (ESD) characteristics . . . . . . . 71  
3.6 Power management control (PMC) and power on reset  
(POR) electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 72  
3.6.1 Voltage regulator controller (VRC)  
electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . 75  
3.6.2 Regulator Example. . . . . . . . . . . . . . . . . . . . . . 76  
3.6.3 Recommended power transistors . . . . . . . . . . 77  
3.7 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . 77  
3.8 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . 78  
3.9 I/O pad current specifications . . . . . . . . . . . . . . . . . . . 85  
3.9.1 I/O pad VRC33 current specifications . . . . . . . . 86  
3.9.2 LVDS pad specifications. . . . . . . . . . . . . . . . . . 87  
3.10 Oscillator and PLLMRFM electrical characteristics . . . 88  
3.11 Temperature sensor electrical characteristics . . . . . . . 90  
3.12 eQADC electrical characteristics. . . . . . . . . . . . . . . . . 90  
3.13 Configuring SRAM wait states. . . . . . . . . . . . . . . . . . . 93  
3.14 Platform flash controller electrical characteristics . . . . 93  
3.15 Flash memory electrical characteristics. . . . . . . . . . . . 93  
3.16 AC specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
3.16.1 Pad AC specifications . . . . . . . . . . . . . . . . . . . 95  
3.17 AC timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
3.17.1 Reset and configuration pin timing. . . . . . . . . . 98  
3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 99  
3.17.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . 102  
3.17.4 External Bus Interface (EBI) and calibration  
bus interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
3.17.5 External interrupt timing (IRQ pin) . . . . . . . . . 110  
3.17.6 eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
3.17.7 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . .111  
3.17.8 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . .111  
3.17.9 eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . 118  
3.17.10FlexCAN system clock source. . . . . . . . . . . . 119  
Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . 120  
4.1.1 176 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120  
4.1.2 208 MAPBGA. . . . . . . . . . . . . . . . . . . . . . . . . 123  
4.1.3 324 TEPBGA . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127  
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . 128  
2
3
4
5
6
MPC5644A Microcontroller Data Sheet, Rev. 7  
2
Freescale Semiconductor  
1
Introduction  
1.1  
Document Overview  
This document provides electrical specifications, pin assignments, and package diagrams for the MPC5644A series of  
microcontroller units (MCUs). For functional characteristics, refer to the MPC5644A Microcontroller Reference Manual.  
1.2  
Description  
®
The microcontroller’s e200z4 host processor core is built on Power Architecture technology and designed specifically for  
embedded applications. In addition to the Power Architecture technology, this core supports instructions for digital signal  
processing (DSP).  
The MPC5644A has two levels of memory hierarchy consisting of 8 KB of instruction cache, backed by 192 KB on-chip SRAM  
and 4 MB of internal flash memory. The MPC5644A includes an external bus interface, and also a calibration bus that is only  
accessible when using the Freescale VertiCal Calibration System.  
This document describes the features of the MPC5644A and highlights important electrical and physical characteristics of the  
device.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
3
1.3  
Device comparison  
Table 1 summarizes the MPC5644A and compares it to the MPC5634M.  
Table 1. MPC5644A, MPC5634M and MPC5642A comparison  
Feature  
MPC5644A  
MPC5634M  
MPC5642A  
Process  
Core  
90 nm  
e200z4  
e200z3  
e200z4  
SIMD  
Yes  
VLE  
Yes  
Cache  
8 KB instruction  
No  
NMI & Critical Interrupt  
16 entry  
No  
8 KB instruction  
Non-Maskable Interrupt (NMI)  
MMU  
MPU  
24 entry  
16 entry  
5 4  
24 entry  
16 entry  
4 4  
Crossbar switch  
Core performance  
Windowing software watchdog  
Core Nexus  
SRAM  
3 4  
0–150 MHz  
0–80 MHz  
Yes  
0–150 MHz  
Class 3+  
192 KB  
Class 2+  
94 KB  
Class 3+  
128 KB  
2 MB  
Flash  
4 MB  
1.5 MB  
Flash fetch accelerator  
External bus  
Calibration bus  
DMA  
4 256-bit  
4 128-bit  
None  
16-bit (incl 32-bit muxed)  
16-bit (incl 32-bit muxed)  
64 ch.  
16-bit  
16-bit (incl 32-bit muxed)  
64 ch.  
32 ch.  
DMA Nexus  
Serial  
None  
3
2
3
eSCI_A  
Yes (MSC Uplink)  
eSCI_B  
Yes (MSC Uplink)  
eSCI_C  
Yes  
3
No  
2
Yes  
3
CAN  
CAN_A  
64 buf  
No  
CAN_B  
64 buf  
64 buf  
3
64 buf  
64 buf  
3
CAN_C  
32 buf  
2
SPI  
MPC5644A Microcontroller Data Sheet, Rev. 7  
4
Freescale Semiconductor  
 
Table 1. MPC5644A, MPC5634M and MPC5642A comparison (continued)  
Feature  
MPC5644A  
MPC5634M  
MPC5642A  
Micro Second Channel (MSC) bus  
downlink  
Yes  
DSPI_A  
DSPI_B  
DSPI_C  
DSPI_D  
No  
Yes (with LVDS)  
Yes (with LVDS)  
No  
Yes  
Yes  
Yes  
Yes  
FlexRay  
No  
System timers  
5 PIT channels  
4 STM channels  
1 Software Watchdog  
eMIOS  
eTPU  
24 ch.  
16 ch.  
32 ch. eTPU2  
14 KB  
3 KB  
24 ch.  
Code memory  
Data memory  
Interrupt controller  
ADC  
486 ch.1  
40 ch.  
307 ch.  
34 ch.  
Yes  
486 ch.1  
40 ch.  
ADC_A  
ADC_B  
Yes  
Temp sensor  
Yes  
Variable gain amp.  
Yes  
Decimation filter  
2
1
2
Sensor diagnostics  
Yes  
CRC  
Yes  
No  
Yes  
FMPLL  
Yes  
VRC  
Yes  
Supplies  
5 V, 3.3 V2  
5 V, 3.3 V3  
5 V, 3.3 V2  
Low-power modes  
Stop Mode  
Slow Mode  
Packages  
176 LQFP4  
208 MAPBGA4,5  
324 TEPBGA3246  
496-pin CSP7  
144 LQFP  
176 LQFP  
176 LQFP4  
208 MAPBGA4,5  
324 TEPBGA3246  
496-pin CSP7  
208 MAPBGA  
496-pin CSP7  
1
199 interrupt vectors are reserved.  
5 V single supply only for 176 LQFP.  
5 V single supply only for 144 LQFP.  
2
3
4
5
6
Pinout compatible with Freescale’s MPC5634M devices.  
Pinout compatible with Freescale’s MPC5534.  
Ballmap upwardly compatible with the standardized package ballmap used for various Freescale MPC5xxx family members, including  
MPC5554, MPC5567 and MPC5666.  
7
For Freescale VertiCal Calibration System only.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
5
 
 
 
 
 
 
1.4  
Feature details  
e200z4 core  
1.4.1  
MPC5644A devices have a high performance e200z448n3 core processor:  
Dual issue, 32-bit Power Architecture embedded category CPU  
Variable Length Encoding Enhancements  
8 KB instruction cache: 2- or 4- way set associative instruction cache  
Thirty-two 64-bit general purpose registers (GPRs)  
Memory management unit (MMU) with 24-entry fully-associative translation look-aside buffer (TLB)  
Harvard Architecture: Separate instruction bus and load/store bus  
Vectored interrupt support  
Non-maskable interrupt input  
Critical Interrupt input  
New ‘Wait for Interrupt’ instruction, to be used with new low power modes  
Reservation instructions for implementing read-modify-write accesses  
Signal processing extension (SPE) APU  
Single Precision Floating point (scalar and vector)  
Nexus Class 3+ debug  
Process ID manipulation for the MMU using an external tool  
1.4.2  
Crossbar Switch (XBAR)  
The XBAR multiport crossbar switch supports simultaneous connections between five master ports and four slave ports. The  
crossbar supports a 32-bit address bus width and a 64-bit data bus width.  
The crossbar allows three concurrent transactions to occur from the master ports to any slave port but each master must access  
a different slave. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher  
priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher  
priority master completes its transactions. Requesting masters are treated with equal priority and are granted access to a slave  
port in round-robin fashion, based upon the ID of the last master to be granted access. The crossbar provides the following  
features:  
5 master ports  
— CPU instruction bus  
— CPU data bus  
— eDMA  
— FlexRay  
— External Bus Interface  
4 slave ports  
— Flash  
— Calibration and EBI bus  
— SRAM  
— Peripheral bridge  
32-bit internal address, 64-bit internal data paths  
MPC5644A Microcontroller Data Sheet, Rev. 7  
6
Freescale Semiconductor  
1.4.3  
eDMA  
The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data  
movements via 64 programmable channels, with minimal intervention from the host processor. The hardware  
micro-architecture includes a DMA engine which performs source and destination address calculations, and the actual data  
movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels.  
This implementation is utilized to minimize the overall block size. The eDMA module provides the following features:  
All data movement via dual-address transfers: read from source, write to destination  
Programmable source and destination addresses, transfer size, plus support for enhanced addressing modes  
Transfer control descriptor organized to support two-deep, nested transfer operations  
An inner data transfer loop defined by a “minor” byte transfer count  
An outer data transfer loop defined by a “major” iteration count  
Channel activation via one of three methods:  
— Explicit software initiation  
— Initiation via a channel-to-channel linking mechanism for continuous transfers  
— Peripheral-paced hardware requests (one per channel)  
Support for fixed-priority and round-robin channel arbitration  
Channel completion reported via optional interrupt requests  
One interrupt per channel, optionally asserted at completion of major iteration count  
Error termination interrupts optionally enabled  
Support for scatter/gather DMA processing  
Ability to suspend channel transfers by a higher priority channel  
1.4.4  
Interrupt controller  
The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests, suitable for statically  
scheduled hard real-time systems.  
For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor  
is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt  
request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that  
lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of  
interrupt request, the priority of each interrupt request is software configurable.  
When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority  
ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that  
all tasks which share the resource cannot preempt each other.  
The INTC provides the following features:  
9-bit vector addresses  
Unique vector for each interrupt request source  
Hardware connection to processor or read from register  
Each interrupt source can assigned a specific priority by software  
Preemptive prioritized interrupt requests to processor  
ISR at a higher priority preempts executing ISRs or tasks at lower priorities  
Automatic pushing or popping of preempted priority to or from a LIFO  
Ability to modify the ISR or task priority to implement the priority ceiling protocol for accessing shared resources  
Low latency—three clocks from receipt of interrupt request from peripheral to interrupt request to processor  
This device also includes a non-maskable interrupt (NMI) pin that bypasses the INTC and multiplexing logic.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
7
1.4.5  
Memory protection unit (MPU)  
The Memory Protection Unit (MPU) provides hardware access control for all memory references generated in a device. Using  
preprogrammed region descriptors, which define memory spaces and their associated access rights, the MPU concurrently  
monitors all system bus transactions and evaluates the appropriateness of each transfer. Memory references with sufficient  
access control rights are allowed to complete; references that are not mapped to any region descriptor or have insufficient rights  
are terminated with a protection error response.  
The MPU has these major features:  
Support for 16 memory region descriptors, each 128 bits in size  
— Specification of start and end addresses provide granularity for region sizes from 32 bytes to 4 GB  
— MPU is invalid at reset, thus no access restrictions are enforced  
— Two types of access control definitions: processor core bus master supports the traditional {read, write, execute}  
permissions with independent definitions for supervisor and user mode accesses; the remaining non-core bus  
1
masters (eDMA, FlexRay, and EBI ) support {read, write} attributes  
— Automatic hardware maintenance of the region descriptor valid bit removes issues associated with maintaining a  
coherent image of the descriptor  
— Alternate memory view of the access control word for each descriptor provides an efficient mechanism to  
1
dynamically alter the access rights of a descriptor only  
— For overlapping region descriptors, priority is given to permission granting over access denying as this approach  
provides more flexibility to system software  
Support for two XBAR slave port connections (SRAM and PBRIDGE)  
— For each connected XBAR slave port (SRAM and PBRIDGE), MPU hardware monitors every port access using  
the pre-programmed memory region descriptors  
— An access protection error is detected if a memory reference does not hit in any memory region or the reference  
is flagged as illegal in all memory regions where it does hit. In the event of an access error, the XBAR reference  
is terminated with an error response and the MPU inhibits the bus cycle being sent to the targeted slave device  
— 64-bit error registers, one for each XBAR slave port, capture the last faulting address, attributes, and detail  
information  
1.4.6  
FMPLL  
The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz crystal oscillator or external clock  
generator. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication  
factor, output clock divider ratio are all software configurable. The PLL has the following major features:  
Input clock frequency from 4 MHz to 40 MHz  
Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock  
Three modes of operation  
— Bypass mode with PLL off  
— Bypass mode with PLL running (default mode out of reset)  
— PLL normal mode  
Each of the three modes may be run with a crystal oscillator or an external clock reference  
Programmable frequency modulation  
— Modulation enabled/disabled through software  
— Triangle wave modulation up to 100 kHz modulation frequency  
— Programmable modulation depth (0% to 2% modulation depth)  
— Programmable modulation frequency dependent on reference frequency  
1. EBI not available on all packages and is not available, as a master, for customer.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
8
Freescale Semiconductor  
Lock detect circuitry reports when the PLL has achieved frequency lock and continuously monitors lock status to  
report loss of lock conditions  
Clock Quality Module  
— Detects the quality of the crystal clock and causes interrupt request or system reset if error is detected  
— Detects the quality of the PLL output clock; if error detected, causes system reset or switches system clock to  
crystal clock and causes interrupt request  
Programmable interrupt request or system reset on loss of lock  
Self-clocked mode (SCM) operation  
1.4.7  
SIU  
The MPC5644A SIU controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO),  
internal peripheral multiplexing, and the system reset operation. The reset configuration block contains the external pin boot  
configuration logic. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block  
provides uniform and discrete input/output control of the I/O pins of the MCU. The reset controller performs reset monitoring  
of internal and external reset sources, and drives the RSTOUT pin. Communication between the SIU and the e200z4 CPU core  
is via the crossbar switch. The SIU provides the following features:  
System configuration  
— MCU reset configuration via external pins  
— Pad configuration control for each pad  
— Pad configuration control for virtual I/O via DSPI serialization  
System reset monitoring and generation  
— Power-on reset support  
— Reset status register provides last reset source to software  
— Glitch detection on reset input  
— Software controlled reset assertion  
External interrupt  
— Rising or falling edge event detection  
— Programmable digital filter for glitch rejection  
— Critical Interrupt request  
— Non-Maskable Interrupt request  
GPIO  
— Centralized control of I/O and bus pins  
— Virtual GPIO via DSPI serialization (requires external deserialization device)  
— Dedicated input and output registers for setting each GPIO and Virtual GPIO pin  
Internal multiplexing  
— Allows serial and parallel chaining of DSPIs  
— Allows flexible selection of eQADC trigger inputs  
— Allows selection of interrupt requests between external pins and DSPI  
1.4.8  
Flash memory  
The MPC5644A provides up to 4 MB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be  
used to store instructions or data, or both. The flash module includes a Fetch Accelerator that optimizes the performance of the  
flash array to match the CPU architecture. The flash module interfaces the system bus to a dedicated flash memory array  
controller. For CPU ‘loads’, DMA transfers and CPU instruction fetch, it supports a 64-bit data bus width at the system bus port,  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
9
and 128- and 256-bit read data interfaces to flash memory. The module contains a prefetch controller which prefetches  
sequential lines of data from the flash array into the buffers. Prefetch buffer hits allow no-wait responses.  
The flash memory provides the following features:  
Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte, halfword, word and doubleword  
reads are supported. Only aligned word and doubleword writes are supported.  
Fetch Accelerator  
— Architected to optimize the performance of the flash  
— Configurable read buffering and line prefetch support  
— Four-entry 256-bit wide line read buffer  
— Prefetch controller  
Hardware and software configurable read and write access protections on a per-master basis  
Interface to the flash array controller pipelined with a depth of one, allowing overlapped accesses to proceed in parallel  
for interleaved or pipelined flash array designs  
Configurable access timing usable in a wide range of system frequencies  
Multiple-mapping support and mapping-based block access timing (0-31 additional cycles) usable for emulation of  
other memory types  
Software programmable block program/erase restriction control  
Erase of selected block(s)  
Read page size of 128 bits (four words)  
ECC with single-bit correction, double-bit detection  
Program page size of 128 bits (four words) to accelerate programming  
ECC single-bit error corrections are visible to software  
Minimum program size is two consecutive 32-bit words, aligned on a 0-modulo-8 byte address, due to ECC  
Embedded hardware program and erase algorithm  
Erase suspend, program suspend and erase-suspended program  
Shadow information stored in non-volatile shadow block  
Independent program/erase of the shadow block  
1.4.9  
BAM  
The BAM (Boot Assist Module) is a block of read-only memory that is programmed once by Freescale and is identical for all  
MPC5644A MCUs. The BAM program is executed every time the MCU is powered-on or reset in normal mode. The BAM  
supports different modes of booting. They are:  
Booting from internal flash memory  
Serial boot loading (A program is downloaded into RAM via eSCI or the FlexCAN and then executed)  
Booting from external memory on external bus  
The BAM also reads the reset configuration half word (RCHW) from internal flash memory and configures the MPC5644A  
hardware accordingly. The BAM provides the following features:  
Sets up MMU to cover all resources and mapping of all physical addresses to logical addresses with minimum address  
translation  
Sets up MMU to allow user boot code to execute as either Power Architecture embedded category (default) or as  
Freescale VLE code  
Location and detection of user boot code  
Automatic switch to serial boot mode if internal flash is blank or invalid  
Supports user programmable 64-bit password protection for serial boot mode  
Supports serial bootloading via FlexCAN bus and eSCI using Freescale protocol  
MPC5644A Microcontroller Data Sheet, Rev. 7  
10  
Freescale Semiconductor  
Supports serial bootloading via FlexCAN bus and eSCI with auto baud rate sensing  
Supports serial bootloading of either Power Architecture code (default) or Freescale VLE code  
Supports booting from calibration bus interface  
Supports censorship protection for internal flash memory  
Provides an option to enable the core watchdog timer  
Provides an option to disable the system watchdog timer  
1.4.10 eMIOS  
The eMIOS timer module provides the capability to generate or measure events in hardware.  
The eMIOS module features include:  
Twenty-four 24-bit wide channels  
3 channels’ internal timebases can be shared between channels  
1 Timebase from eTPU2 can be imported and used by the channels  
Global enable feature for all eMIOS and eTPU timebases  
Dedicated pin for each channel (not available on all package types)  
Each channel (0–23) supports the following functions:  
General-purpose input/output (GPIO)  
Single-action input capture (SAIC)  
Single-action output compare (SAOC)  
Output pulse-width modulation buffered (OPWMB)  
Input period measurement (IPM)  
Input pulse-width measurement (IPWM)  
Double-action output compare (DAOC)  
Modulus counter buffered (MCB)  
Output pulse width and frequency modulation buffered (OPWFMB)  
1.4.11 eTPU2  
The eTPU2 is an enhanced co-processor designed for timing control. Operating in parallel with the host CPU, the eTPU2  
processes instructions and real-time input events, performs output waveform generation, and accesses shared data without host  
intervention. Consequently, for each timer event, the host CPU setup and service times are minimized or eliminated. A powerful  
timer subsystem is formed by combining the eTPU2 with its own instruction and data RAM. High-level assembler/compiler  
and documentation allows customers to develop their own functions on the eTPU2.  
MPC5644A devices feature the second generation of the eTPU, called eTPU2. Enhancements of the eTPU2 over the standard  
eTPU include:  
The Timer Counter (TCR1), channel logic and digital filters (both channel and the external timer clock input  
[TCRCLK]) now have an option to run at full system clock speed or system clock / 2.  
Channels support unordered transitions: transition 2 can now be detected before transition 1. Related to this  
enhancement, the transition detection latches (TDL1 and TDL2) can now be independently negated by microcode.  
A new User Programmable Channel Mode has been added: the blocking, enabling, service request and capture  
characteristics of this channel mode can be programmed via microcode.  
Microinstructions now provide an option to issue Interrupt and Data Transfer requests selected by channel. They can  
also be requested simultaneously at the same instruction.  
Channel Flags 0 and 1 can now be tested for branching, in addition to selecting the entry point.  
Channel digital filters can be bypassed.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
11  
The eTPU2 includes these distinctive features:  
32 channels; each channel associated with one input and one output signal  
— Enhanced input digital filters on the input pins for improved noise immunity  
— Identical, orthogonal channels: each channel can perform any time function. Each time function can be assigned  
to more than one channel at a given time, so each signal can have any functionality.  
— Each channel has an event mechanism which supports single and double action functionality in various  
combinations. It includes two 24-bit capture registers, two 24-bit match registers, 24-bit greater-equal and  
equal-only comparators.  
— Input and output signal states visible from the host  
2 independent 24-bit time bases for channel synchronization:  
— First time base clocked by system clock with programmable prescale division from 2 to 512 (in steps of 2), or by  
output of second time base prescaler  
— Second time base counter can work as a continuous angle counter, enabling angle based applications to match  
angle instead of time  
— Both time bases can be exported to the eMIOS timer module  
— Both time bases visible from the host  
Event-triggered microengine:  
— Fixed-length instruction execution in two-system-clock microcycle  
— 14 KB of code memory (SCM)  
— 3 KB of parameter (data) RAM (SPRAM)  
— Parallel execution of data memory, ALU, channel control and flow control sub-instructions in selected  
combinations  
— 32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and subtraction, absolute value,  
bitwise logical operations on 24-bit, 16-bit, or byte operands, single-bit manipulation, shift operations, sign  
extension and conditional execution  
— Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned Multiply/MAC combinations,  
and unsigned 24-bit divide. The MAC/Divide unit works in parallel with the regular microcode commands.  
Resource sharing features support channel use of common channel registers, memory and microengine time:  
— Hardware scheduler works as a “task management” unit, dispatching event service routines by predefined,  
host-configured priority  
— Automatic channel context switch when a “task switch” occurs, that is, one function thread ends and another  
begins to service a request from other channel: channel-specific registers, flags and parameter base address are  
automatically loaded for the next serviced channel  
— SPRAM shared between host CPU and eTPU2, supporting communication either between channels and host or  
inter-channel  
— Hardware implementation of four semaphores support coherent parameter sharing between both eTPU engines  
— Dual-parameter coherency hardware support allows atomic access to two parameters by host  
Test and development support features:  
— Nexus Class 1 debug, supporting single-step execution, arbitrary microinstruction execution, hardware  
breakpoints and watchpoints on several conditions  
— Software breakpoints  
— SCM continuous signature-check built-in self test (MISC - multiple input signature calculator), runs concurrently  
with eTPU2 normal operation  
MPC5644A Microcontroller Data Sheet, Rev. 7  
12  
Freescale Semiconductor  
1.4.12 Reaction module  
The reaction module provides the ability to modulate output signals to manage closed loop control without CPU assistance. It  
works in conjunction with the eQADC and eTPU2 to increase system performance by removing the CPU from the current  
control loop.  
The reaction module has the following features:  
Six reaction channels  
Each channel output is a bus of three signals, providing ability to control 3 inputs.  
Each channel can implement a peak and hold waveform, making it possible to implement up to six independent peak  
and hold control channels  
Target applications include solenoid control for direct injection systems and valve control in automatic transmissions  
1.4.13 eQADC  
The enhanced queued analog to digital converter (eQADC) block provides accurate and fast conversions for a wide range of  
applications. The eQADC provides a parallel interface to two on-chip analog to digital converters (ADC), and a single master  
to single slave serial interface to an off-chip external device. Both on-chip ADCs have access to all the analog channels.  
The eQADC prioritizes and transfers commands from six command conversion command ‘queues’ to the on-chip ADCs or to  
the external device. The block can also receive data from the on-chip ADCs or from an off-chip external device into the six  
result queues, in parallel, independently of the command queues. The six command queues are prioritized with Queue_0 having  
the highest priority and Queue_5 the lowest. Queue_0 also has the added ability to bypass all buffering and queuing and abort  
a currently running conversion on either ADC and start a Queue_0 conversion. This means that Queue_0 will always have a  
deterministic time from trigger to start of conversion, irrespective of what tasks the ADCs were performing when the trigger  
occurred. The eQADC supports software and external hardware triggers from other blocks to initiate transfers of commands  
from the queues to the on-chip ADCs or to the external device. It also monitors the fullness of command queues and result  
queues, and accordingly generates DMA or interrupt requests to control data movement between the queues and the system  
memory, which is external to the eQADC.  
The ADCs also support features designed to allow the direct connection of high impedance acoustic sensors that might be used  
in a system for detecting engine knock. These features include differential inputs; integrated variable gain amplifiers for  
increasing the dynamic range; programmable pull-up and pull-down resistors for biasing and sensor diagnostics.  
The eQADC also integrates a programmable decimation filter capable of taking in ADC conversion results at a high rate,  
passing them through a hardware low pass filter, then down-sampling the output of the filter and feeding the lower sample rate  
results to the result FIFOs. This allows the ADCs to sample the sensor at a rate high enough to avoid aliasing of out-of-band  
noise; while providing a reduced sample rate output to minimize the amount DSP processing bandwidth required to fully  
process the digitized waveform.  
The eQADC provides the following features:  
Dual on-chip ADCs  
— 2 12-bit ADC resolution  
— Programmable resolution for increased conversion speed (12-bit, 10-bit, 8-bit)  
12-bit conversion time: 938 ns (1 M sample/sec)  
10-bit conversion time: 813 ns (1.2 M sample/second)  
8-bit conversion time: 688 ns (1.4 M sample/second)  
— Up to 10-bit accuracy at 500 KSample/s and 8-bit accuracy at 1 MSample/s  
— Differential conversions  
— Single-ended signal range from 0 to 5 V  
Variable gain amplifiers on differential inputs (1, 2, 4)  
— Sample times of 2 (default), 8, 64 or 128 ADC clock cycles  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
13  
— Provides time stamp information when requested  
— Allows time stamp information relative to eTPU clock sources, such as an angle clock  
— Parallel interface to eQADC CFIFOs and RFIFOs  
— Supports both right-justified unsigned and signed formats for conversion results  
40 single-ended input channels, expandable to 56 channels with external multiplexers (supports four external 8-to-1  
muxes)  
8 channels can be used as 4 pairs of differential analog input channels  
Differential channels include variable gain amplifier for improved dynamic range  
Differential channels include programmable pull-up and pull-down resistors for biasing and sensor diagnostics  
(200 k100 k5 k  
Additional internal channels for monitoring voltages (such as core voltage, I/O voltage, LVI voltages, etc.) inside the  
device  
An internal bandgap reference to allow absolute voltage measurements  
Silicon die temperature sensor  
— Provides temperature of silicon as an analog value  
— Read using an internal ADC analog channel  
— May be read with either ADC  
2 Decimation Filters  
— Programmable decimation factor (1 to 16)  
— Selectable IIR or FIR filter  
— Up to 4th order IIR or 8th order FIR  
— Programmable coefficients  
— Saturated or non-saturated modes  
— Programmable Rounding (Convergent; Two’s Complement; Truncated)  
— Prefill mode to precondition the filter before the sample window opens  
— Supports Multiple Cascading Decimation Filters to implement more complex filter designs  
— Optional Absolute Integrators on the output of Decimation Filters  
Full duplex synchronous serial interface to an external device  
— Free-running clock for use by an external device  
— Supports a 26-bit message length  
Priority based queues  
— Supports six queues with fixed priority. When commands of distinct queues are bound for the same ADC, the  
higher priority queue is always served first  
— Queue_0 can bypass all prioritization, buffering and abort current conversions to start a Queue_0 conversion a  
deterministic time after the queue trigger  
— Supports software and hardware trigger modes to arm a particular queue  
— Generates interrupt when command coherency is not achieved  
External hardware triggers  
— Supports rising edge, falling edge, high level and low level triggers  
— Supports configurable digital filter  
1.4.14 DSPI  
The deserial serial peripheral interface (DSPI) block provides a synchronous serial interface for communication between the  
MPC5644A MCU and external devices. The DSPI supports pin count reduction through serialization and deserialization of  
eTPU and eMIOS channels and memory-mapped registers. The channels and register content are transmitted using a SPI-like  
protocol. This SPI-like protocol is completely configurable for baud rate, polarity and phase, frame length, chip select assertion,  
MPC5644A Microcontroller Data Sheet, Rev. 7  
14  
Freescale Semiconductor  
etc. Each bit in the frame may be configured to serialize either eTPU channels, eMIOS channels or GPIO signals. The DSPI  
can be configured to serialize data to an external device that implements the Microsecond Bus protocol. There are three identical  
DSPI blocks on the MPC5644A MCU. The DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS)  
to improve high speed operation.  
DSPI module features include:  
Selectable LVDS pads working at 40 MHZ for SOUT and SCK pins for DSPI_B and DSPI_C  
3 sources of serialized data: eTPU_A, eMIOS output channels and memory-mapped register in the DSPI  
4 destinations for deserialized data: eTPU_A and eMIOS input channels, SIU external Interrupt input request,  
memory-mapped register in the DSPI  
32-bit DSI and TSB modes require 32 PCR registers, 32 GPO and GPI registers in the SIU to select either GPIO, eTPU  
or eMIOS bits for serialization  
The DSPI Module can generate and check parity in a serial frame  
1.4.15 eSCI  
Three enhanced serial communications interface (eSCI) modules provide asynchronous serial communications with peripheral  
devices and other MCUs, and include support to interface to Local Interconnect Network (LIN) slave devices. Each eSCI block  
provides the following features:  
Full-duplex operation  
Standard mark/space non-return-to-zero (NRZ) format  
13-bit baud rate selection  
Programmable 8-bit or 9-bit, data format  
Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to support the Microsecond bus  
standard  
Automatic parity generation  
LIN support  
— Autonomous transmission of entire frames  
— Configurable to support all revisions of the LIN standard  
— Automatic parity bit generation  
— Double stop bit after bit error  
— 10- or 13-bit break support  
Separately enabled transmitter and receiver  
Programmable transmitter output parity  
2 receiver wake-up methods:  
— Idle line wake-up  
— Address mark wake-up  
Interrupt-driven operation with flags  
Receiver framing error detection  
Hardware parity checking  
1/16 bit-time noise detection  
DMA support for both transmit and receive data  
— Global error bit stored with receive data in system RAM to allow post processing of errors  
1.4.16 FlexCAN  
The MPC5644A MCU includes three controller area network (FlexCAN) blocks. The FlexCAN module is a communication  
controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
15  
be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable  
operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. Each FlexCAN module contains 64  
message buffers.  
The FlexCAN modules provide the following features:  
Based on and including all existing features of the Freescale TouCAN module  
Full Implementation of the CAN protocol specification, Version 2.0B  
— Standard data and remote frames  
— Extended data and remote frames  
— Zero to eight bytes data length  
— Programmable bit rate up to 1 Mbit/s  
Content-related addressing  
64 message buffers of zero to eight bytes data length  
Individual Rx Mask Register per message buffer  
Each message buffer configurable as Rx or Tx, all supporting standard and extended messages  
Includes 1088 bytes of embedded memory for message buffer storage  
Includes 256-byte memory for storing individual Rx mask registers  
Full featured Rx FIFO with storage capacity for six frames and internal pointer handling  
Powerful Rx FIFO ID filtering, capable of matching incoming IDs against 8 extended, 16 standard or 32 partial (8 bits)  
IDs, with individual masking capability  
Selectable backwards compatibility with previous FlexCAN versions  
Programmable clock source to the CAN Protocol Interface, either system clock or oscillator clock  
Listen only mode capability  
Programmable loop-back mode supporting self-test operation  
3 programmable Mask Registers  
Programmable transmit-first scheme: lowest ID, lowest buffer number or highest priority  
Time Stamp based on 16-bit free-running timer  
Global network time, synchronized by a specific message  
Maskable interrupts  
Warning interrupts when the Rx and Tx Error Counters reach 96  
Independent of the transmission medium (an external transceiver is assumed)  
Multi-master concept  
High immunity to EMI  
Short latency time due to an arbitration scheme for high-priority messages  
Low power mode, with programmable wake-up on bus activity  
1.4.17 FlexRay  
The MPC5644A includes one dual-channel FlexRay module that implements the FlexRay Communications System Protocol  
Specification, Version 2.1 Rev A. Features include:  
Single channel support  
FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported  
128 message buffers, each configurable as:  
— Receive message buffer  
— Single buffered transmit message buffer  
— Double buffered transmit message buffer (combines two single buffered message buffer)  
2 independent receive FIFOs  
MPC5644A Microcontroller Data Sheet, Rev. 7  
16  
Freescale Semiconductor  
— 1 receive FIFO per channel  
— Up to 255 entries for each FIFO  
ECC support  
1.4.18 System timers  
The system timers include two distinct types of system timer:  
Periodic interrupts/triggers using the Periodic Interrupt Timer (PIT)  
Operating system task monitors using the System Timer Module (STM)  
1.4.18.1 Periodic interrupt timer (PIT)  
The PIT provides five independent timer channels, capable of producing periodic interrupts and periodic triggers. The PIT has  
no external input or output pins and is intended to provide system ‘tick’ signals to the operating system, as well as periodic  
triggers for eQADC queues. Of the five channels in the PIT, four are clocked by the system clock and one is clocked by the  
crystal clock. This one channel is also referred to as Real-Time Interrupt (RTI) and is used to wake up the device from low power  
stop mode.  
The following features are implemented in the PIT:  
5 independent timer channels  
Each channel includes 32-bit wide down counter with automatic reload  
4 channels clocked from system clock  
1 channel clocked from crystal clock (wake-up timer)  
Wake-up timer remains active when System STOP mode is entered; used to restart system clock after predefined  
time-out period  
Each channel optionally able to generate an interrupt request or a trigger event (to trigger eQADC queues) when timer  
reaches zero  
1.4.18.2 System timer module (STM)  
1
The System Timer Module (STM) is designed to implement the software task monitor as defined by AUTOSAR . It consists  
of a single 32-bit counter, clocked by the system clock, and four independent timer comparators. These comparators produce a  
CPU interrupt when the timer exceeds the programmed value.  
The following features are implemented in the STM:  
One 32-bit up counter with 8-bit prescaler  
Four 32-bit compare channels  
Independent interrupt source for each channel  
Counter can be stopped in debug mode  
1.4.19 Software watchdog timer (SWT)  
The Software Watchdog Timer (SWT) is a second watchdog module to complement the standard Power Architecture watchdog  
integrated in the CPU core. The SWT is a 32-bit modulus counter, clocked by the system clock or the crystal clock, that can  
provide a system reset or interrupt request when the correct software key is not written within the required time window.  
The following features are implemented:  
32-bit modulus counter  
Clocked by system clock or crystal clock  
1.AUTOSAR: AUTomotive Open System ARchitecture (see http://www.autosar.org)  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
17  
Optional programmable watchdog window mode  
Can optionally cause system reset or interrupt request on timeout  
Reset by writing a software key to memory mapped register  
Enabled out of reset  
Configuration is protected by a software key or a write-once register  
1.4.20 Cyclic redundancy check (CRC) module  
The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC features:  
Support for CRC-16-CCITT (x25 protocol):  
16  
12  
5
— X + X + X + 1  
Support for CRC-32 (Ethernet protocol):  
32  
26  
23  
22  
16  
12  
11  
10  
8
7
5
4
2
— X + X + X + X + X + X + X + X + X + X + X + X + X + X + 1  
Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency  
1.4.21 Error correction status module (ECSM)  
The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform  
configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes,  
and information on platform memory errors reported by error-correcting codes and/or generic access error information for  
certain processor cores.  
The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes  
these features:  
Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented  
For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the  
MPC5644A.  
The sources of the ECC errors are:  
Flash  
SRAM  
Peripheral RAM (FlexRay, CAN, eTPU2 Parameter RAM)  
1.4.22 External bus interface (EBI)  
The MPC5644A device features an external bus interface that is available in 324 TEPBGA and calibration packages.  
The EBI supports operation at frequencies of system clock /1, /2 and /4, with a maximum frequency support of 80 MHz.  
Customers running the device at 120 MHz or 132 MHz will use the /2 divider, giving an EBI frequency of 60 MHz or 66 MHz.  
Customers running the device at 80 MHz will be able to use the /1 divider to have the EBI run at the full 80 MHz frequency.  
Features include:  
1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V)  
Memory controller with support for various memory types  
16-bit data bus, up to 22-bit address bus  
Pin muxing included to support 32-bit muxed bus  
Selectable drive strength  
Configurable bus speed modes  
Bus monitor  
Configurable wait states  
MPC5644A Microcontroller Data Sheet, Rev. 7  
18  
Freescale Semiconductor  
1.4.23 Calibration EBI  
The Calibration EBI controls data transfer across the crossbar switch to/from memories or peripherals attached to the VertiCal  
connector in the calibration address space. The Calibration EBI is only available in the VertiCal Calibration System.  
Features include:  
1.8 V to 3.3 V ± 10% I/O (1.6 V to 3.6 V)  
Memory controller supports various memory types  
16-bit data bus, up to 22-bit address bus  
Pin muxing supports 32-bit muxed bus  
Selectable drive strength  
Configurable bus speed modes  
Bus monitor  
Configurable wait states  
1.4.24 Power management controller (PMC)  
The power management controller contains circuitry to generate the internal 3.3 V supply and to control the regulation of 1.2 V  
supply with an external NPN ballast transistor. It also contains low voltage inhibit (LVI) and power-on reset (POR) circuits for  
the 1.2 V supply, the 3.3 V supply, the 3.3 V/5 V supply of the closest I/O segment (VDDEH1) and the 5 V supply of the  
regulators (VDDREG).  
1.4.25 Nexus port controller  
The NPC (Nexus Port Controller) block provides real-time Nexus Class3+ development support capabilities for the MPC5644A  
Power Architecture-based MCU in compliance with the IEEE-ISTO 5001-2003 and 2010 standards. MDO port widths of 4 pins  
and 12 pins are available in all packages.  
1.4.26 JTAG  
The JTAGC (JTAG Controller) block provides the means to test chip functionality and connectivity while remaining transparent  
to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001  
standard. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant  
with the IEEE 1149.1-2001 standard and supports the following features:  
IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO)  
A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:  
— BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP  
A 5-bit instruction register that supports the additional following public instructions:  
— ACCESS_AUX_TAP_NPC  
— ACCESS_AUX_TAP_ONCE  
— ACCESS_AUX_TAP_eTPU  
— ACCESS_CENSOR  
3 test data registers to support JTAG Boundary Scan mode  
— Bypass register  
— Boundary scan register  
— Device identification register  
A TAP controller state machine that controls the operation of the data registers, instruction register and associated  
circuitry  
Censorship Inhibit Register  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
19  
— 64-bit Censorship password register  
— If the external tool writes a 64-bit password that matches the Serial Boot password stored in the internal flash  
shadow row, Censorship is disabled until the next system reset.  
1.4.27 Development Trigger Semaphore (DTS)  
MPC5644A devices include a system development feature, the Development Trigger Semaphore (DTS) module, that enables  
software to signal an external tool by driving a persistent (affected only by reset or an external tool) signal on an external device  
pin. There is a variety of ways this module can be used, including as a component of an external real-time data acquisition  
system  
1.5  
MPC5644A series architecture  
Block diagram  
1.5.1  
Figure 1 shows a top-level block diagram of the MPC5644A series.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
20  
Freescale Semiconductor  
Power ArchitectureTM  
e200z4  
Interrupt  
Controller  
JTAG  
Nexus Class 3+  
SPE  
Nexus  
IEEE-ISTO  
5001-2003/2010  
VLE  
MMU  
eDMA  
64 Channel  
8 KB I-cache  
FlexRay  
M4  
M0  
M1  
M6  
M7  
Crossbar Switch  
S0  
S1  
MPU  
S2  
S7  
Analog PLL  
4 MB  
Flash  
192 KB  
SRAM  
Voltage Regulator  
RCOSC  
XOSC  
Standby  
Regulator  
with Switch  
ECSM  
I/O Bridge  
3 KB Data eTPU2  
ADCi DEC  
x2  
eMIOS  
24  
Channel  
32  
RAM  
Channel  
14 KB Code  
Nexus  
VGA  
AMux  
RAM  
Class 1  
LEGEND  
ADC  
ADCi  
– Analog to Digital Converter  
– ADC interface  
JTAG  
MMU  
MPU  
PMC  
PIT  
– IEEE 1149.1 test controller  
– Memory Management Unit  
– Memory Protection Unit  
– Power Management Controller  
– Periodic Interrupt Timer  
AMux – Analog Multiplexer  
BAM  
CRC  
DEC  
DTS  
DSPI  
EBI  
– Boot Assist Module  
– Cyclic Redundancy Check unit  
– Decimation Filter  
– Development Trigger Semaphore  
– Deserial/Serial Peripheral Interface  
– External Bus Interface  
RCOSC – low-speed RC oscillator  
REACM – Reaction module  
SIU  
– System Integration Unit  
– Signal Processing Extension  
SPE  
ECSM – Error Correction Status Module  
eDMA – Enhanced Direct Memory Access  
eMIOS – Enhanced Modular Input Output System  
SRAM – Static RAM  
STM  
SWT  
VGA  
– System Timer Module  
– Software Watchdog Timer  
– Variable Gain Amplifier  
eSCI  
– Enhanced Serial Communications Interface  
eTPU2 – Second gen. Enhanced Time Processing Unit VLE  
– Variable Length (instruction) Encoding  
FlexCAN– Controller Area Network (FlexCAN)  
XOSC – XTAL Oscillator  
FMPLL – Frequency-Modulated Phase Locked Loop  
Figure 1. MPC5644A series block diagram  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
21  
1.5.2  
Block summary  
Table 2 summarizes the functions of the blocks present on the MPC5644A series microcontrollers.  
Table 2. MPC5644A series block summary  
Block  
Function  
Boot assist module (BAM)  
Block of read-only memory containing executable code that searches  
for user-supplied boot code and, if none is found, executes the BAM  
boot code resident in device ROM.  
Calibration Bus interface  
Transfers data across the crossbar switch to/from peripherals attached  
to the calibration system connector.  
Controller area network (FlexCAN)  
Crossbar switch (XBAR)  
Supports the standard CAN communications protocol.  
Internal busmaster.  
Cyclic redundancy check (CRC)  
Deserial serial peripheral interface (DSPI)  
CRC checksum generator.  
Provides a synchronous serial interface for communication with  
external devices.  
e200z4 core  
Executes programs and interrupt handlers.  
Enhanced direct memory access (eDMA)  
Performs complex data movements with minimal intervention from the  
core.  
Enhanced modular input-output system  
(eMIOS)  
Provides the functionality to generate or measure events.  
Enhanced queued analog-to-digital  
converter (eQADC)  
Provides accurate and fast conversions for a wide range of  
applications.  
Enhanced serial communication interface  
(eSCI)  
Provides asynchronous serial communication capability with  
peripheral devices and other microcontroller units.  
Enhanced time processor unit (eTPU2)  
Second-generation co-processor processes real-time input events,  
performs output waveform generation, and accesses shared data  
without host intervention.  
Error Correction Status Module (ECSM)  
The Error Correction Status Module supports a number of  
miscellaneous control functions for the platform, and includes registers  
for capturing information on platform memory errors if error-correcting  
codes (ECC) are implemented  
External bus interface (EBI)  
Enables expansion of internal bus to enable connection of external  
memory or peripherals.  
Flash memory  
FlexRay  
Provides storage for program code, constants, and variables.  
Provides high-speed distributed control for advanced automotive  
applications.  
Interrupt controller (INTC)  
JTAG controller  
Provides priority-based preemptive scheduling of interrupt requests.  
Provides the means to test chip functionality and connectivity while  
remaining transparent to system logic when not in test mode.  
Memory protection unit (MPU)  
Nexus port controller (NPC)  
Provides hardware access control for all memory references  
generated.  
Provides real-time development support capabilities in compliance  
with the IEEE-ISTO 5001-2003 standard.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
22  
Freescale Semiconductor  
 
Table 2. MPC5644A series block summary (continued)  
Function  
Block  
Reaction Module (REACM)  
Works in conjunction with the eQADC and eTPU2 to increase system  
performance by removing the CPU from the current control loop.  
System Integration Unit (SIU)  
Controls MCU reset configuration, pad configuration, external  
interrupt, general purpose I/O (GPIO), internal peripheral multiplexing,  
and the system reset operation.  
Static random-access memory (SRAM)  
System timers  
Provides storage for program code, constants, and variables.  
Includes periodic interrupt timer with real-time interrupt; output  
compare timer and system watchdog timer.  
Temperature sensor  
Provides the temperature of the device as an analog value.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
23  
2
Pinout and signal description  
This section contains the pinouts for all production packages for the MPC5644A family of devices.  
CAUTION  
Any pins labeled “NC” are to be left unconnected. Any connection to an external circuit or  
voltage may cause unpredictable device behavior or damage.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
24  
Freescale Semiconductor  
2.1  
176 LQFP pinout  
AN[18]  
1
VDD  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
AN[17]  
2
TMS  
AN[16]  
3
TDI  
AN[11] / ANZ  
4
MDO5 / ETPUA4_O / GPIO[76]  
AN[9] / ANX  
5
TCK  
VSS  
VDDA  
6
VSSA  
7
MDO4 / ETPUA2_O / GPIO[75]  
AN[39]  
8
VDDEH7A  
AN[8] / ANW  
9
MDO11 / ETPUA29_O / GPIO[82]  
VDDREG  
10  
TDO  
VRCCTL  
11  
GPIO[219]  
VSTBY  
12  
JCOMP  
VRC33  
13  
EVTO  
MCKO  
14  
NC  
176-Pin  
LQFP  
VSS  
15  
MSEO[0]  
NC  
16  
MSEO[1]  
MDO[0]  
17  
EVTI  
MDO[1]  
18  
VSS  
signal details:  
MDO[2]  
19  
DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108]  
MDO[3]  
DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104]  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
pin 21: ETPUA31 / DSPI_C_PCS[4] / ETPUA13_O / GPIO[145]  
pin 22: ETPUA30 / DSPI_C_PCS[3] / ETPUA11_O / GPIO[144]  
pin 23: ETPUA29 / DSPI_C_PCS[2] / RCH5_C / GPIO[143]  
pin 24: ETPUA28 / DSPI_C_PCS[1] / RCH5_B / GPIO[142]  
pin 25: ETPUA27 / IRQ[15] / DSPI_C_SOUT_LVDS+ / SOUTB / GPIO[141]  
pin 26: ETPUA26 / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140]  
pin 27: ETPUA25 / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139]  
pin 28: ETPUA24 / IRQ[12] / DSPI_C_SCK_LVDS- / GPIO[138]  
pin 30: ETPUA23 / IRQ[11] / ETPUA21_O / FR_A_TX_EN / GPIO[137]  
pin 32: ETPUA22 / IRQ[10] / ETPUA17_O / GPIO[136]  
pin 34: ETPUA21 / IRQ[9] / RCH0_C / FR_A_RX / GPIO[135]  
pin 35: ETPUA20 / IRQ[8] / RCH0_B / FR_A_TX / GPIO[134]  
pin 36: ETPUA19 / DSPI_D_PCS[4] / RCH5_A / GPIO[133]  
pin 37: ETPUA18 / DSPI_D_PCS[3] / RCH4_A / GPIO[132]  
pin 38: ETPUA17 / DSPI_D_PCS[2] / RCH3_A / GPIO[131]  
pin 39: ETPUA16 / DSPI_D_PCS[1] / RCH2_A / GPIO[130]  
pin 40: ETPUA15 / DSPI_B_PCS[5] / RCH1_A / GPIO[129]  
pin 42: ETPUA14 / DSPI_B_PCS[4] / ETPUA9_O / RCH0_A / GPIO[128]  
(see signal details, pin 21)  
(see signal details, pin 22)  
(see signal details, pin 23)  
(see signal details, pin 24)  
(see signal details, pin 25)  
(see signal details, pin 26)  
(see signal details, pin 27)  
(see signal details, pin 28)  
VSS  
DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103]  
DSPI_B_PCS[0] / DSPI_D_PCS[2] / GPIO[105]  
VDDEH6B  
DSPI_B_PCS[1] / DSPI_D_PCS[0] / GPIO[106]  
VSS  
DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107]  
DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102]  
DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109]  
DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110]  
(see signal details, pin 30)  
VDDEH1A  
(see signal details, pin 32)  
VDD  
(see signal details, pin 34)  
(see signal details, pin 35)  
(see signal details, pin 36)  
(see signal details, pin 37)  
(see signal details, pin 38)  
(see signal details, pin 39)  
(see signal details, pin 40)  
VDDEH1B  
VDD  
RSTOUT  
CAN_C_TX / DSPI_D_PCS3 / GPIO[87]  
SCI_A_TX / EMIOS13 / GPIO[89]  
SCI_A_RX / EMIOS15 / GPIO[90]  
CAN_C_RX / DSPI_D_PCS4 / GPIO[88]  
98  
RESET  
97  
VSS  
96  
VDDEH6A  
95  
VSS  
XTAL  
94  
93  
EXTAL / EXTCLK  
92  
(see signal details, pin 42)  
VSS  
VDDPLL  
VSS  
91  
90  
NIC  
CAN_B_RX / DSPI_C_PCS[4] / SCI_C_RX / GPIO[86]  
89  
Note: Pin 96 (VSS) should be tied low.  
Figure 2. 176-pin LQFP pinout (top view)  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
25  
2.2  
208 MAP BGA ballmap  
1
2
3
4
VDDA1  
AN21  
5
6
7
AN5  
8
9
10  
11  
12  
13  
MDO2  
14  
MDO0  
MDO1  
VSS  
15  
16  
VSS  
VSS  
AN9  
VSS  
VDD  
AN39  
AN11  
VSSA1  
AN0  
AN1  
AN4  
AN16  
AN2  
VRH  
AN22  
AN7  
AN24  
VRL  
AN27  
AN28  
AN32  
AN31  
VSSA0  
VDDA0  
AN33  
AN12-SDS  
AN13-SDO  
AN14-SDI  
VDDEH7  
VRC33  
VSS  
A
B
C
D
A
B
C
D
E
F
VDD  
AN8  
REFBYPC  
AN3  
AN25  
AN23  
AN30  
MDO3  
VDD  
VSTBY  
VRC33  
VSS  
AN17  
AN34  
AN18  
AN15-FCK  
VSS  
MSEO0  
EVTO  
EVTI  
TCK  
VDD  
VSS  
AN6  
AN35  
TMS  
TDI  
NC  
ETPUA30 ETPUA31  
ETPUA28 ETPUA29  
ETPUA24 ETPUA27  
ETPUA23 ETPUA22  
ETPUA20 ETPUA19  
ETPUA16 ETPUA15  
AN37  
VDD  
NC  
MSEO1  
JCOMP  
E
F
ETPUA26  
ETPUA25  
ETPUA17  
ETPUA14  
ETPUA7  
ETPUA6  
ETPUA1  
ETPUA0  
VSS  
AN36  
VDDEH6AB  
TDO  
MCKO  
DSPI_B_  
SOUT  
DSPI_B_  
PCS3  
DSPI_B_  
SIN  
DSPI_B_  
PCS0  
ETPUA21  
ETPUA18  
ETPUA13  
VDDEH1AB  
TCRCLKA  
ETPUA5  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G
H
J
G
H
J
DSPI_B_  
PCS4  
DSPI_B_  
PCS2  
DSPI_B_  
PCS1  
GPIO99  
DSPI_B_  
PCS5  
DSPI_B_  
SCK  
SCI_A_TX  
GPIO98  
RSTOUT  
WKPCFG  
BOOTCFG1  
NC  
CAN_C_TX SCI_A_RX  
VDDREG  
RESET  
VSS  
K
L
K
L
CAN_C_  
ETPUA12  
ETPUA10  
ETPUA8  
ETPUA3  
NC  
ETPUA11  
ETPUA9  
ETPUA4  
ETPUA2  
VSS  
SCI_B_TX  
RX  
SCI_B_RX  
PLLREF  
VRCCTL  
VSS  
M
N
P
R
T
M
N
P
R
T
MDO7_  
ETPUA19_O  
1
VDD  
GPIO207  
EMIOS4  
EMIOS1  
5
VRC33  
NC  
EMIOS2  
EMIOS6  
EMIOS9  
EMIOS10  
EMIOS8  
EMIOS11  
EMIOS13  
8
VDDEH4AB  
MDO11_  
EMIOS12  
MDO4_  
VRC33  
VSS  
EXTAL  
XTAL  
MDO8_  
VDD  
CAN_A_TX  
VDD  
NC  
ETPUA29_O ETPUA2_O ETPUA21_O  
MDO10_  
VDD  
GPIO206  
EMIOS0  
4
EMIOS3  
GPIO219  
6
EMIOS14  
EMIOS15  
9
EMIOS23  
MDO6_  
CAN_A_RX CAN_B_RX  
VDD  
VSS  
VDDPLL  
VSS  
ETPUA27_O  
MDO5_  
MDO9_  
ETPUA25_O  
VSS  
VDD  
NC  
CAN_B_TX  
12  
VDDE5  
13  
ENGCLK  
14  
VDD  
ETPUA4_O ETPUA13_O  
1
2
3
7
10 11  
15  
16  
1
This pin (N13) should be tied low.  
Figure 3. 208-pin MAPBGA package ballmap (viewed from above)  
2.3  
324 TEPBGA ballmap  
1
2
3
4
5
6
7
8
9
10  
VRH  
11  
A
B
C
VSS  
VDD  
VSS  
AN16  
VDD  
VSS  
AN17  
AN18  
VDD  
AN37  
AN36  
AN20  
VDDA1  
AN21  
AN0  
VSSA1  
AN4  
AN23  
AN5  
AN6  
AN25  
AN24  
AN7  
VRL  
VRC33  
AN11  
REFBYPC  
AN27  
AN30  
AN29  
AN9  
ANX  
AN1  
AN10  
ANY  
D
AN39  
AN38  
VSS  
VDD  
AN19  
AN2  
AN3  
AN22  
AN26  
AN28  
AN8  
ANW  
E
F
G
H
J
VSSA0  
VRCCTL  
MDO1  
CS2  
VDDA0  
MDO0  
MDO2  
OE  
VSTBY  
VDDREG  
MDO3  
MCKO  
CS0  
CS1  
CS3  
WE1  
WE0  
BDIP  
RD_WR  
VDDEH1AB  
ETPUA30  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
ETPUA31  
ETPUA27  
TA  
TS  
ETPUA26  
ETPUA29  
Figure 4. 324-pin TEPBGA package ballmap (northwest, viewed from above)  
M
N
ETPUA23  
ADDR13  
ADDR14  
ADDR18  
ADDR21  
ADDR25  
ADDR29  
ETPUA20  
ETPUA17  
ETPUA15  
VSS  
ETPUA24  
ADDR12  
ADDR15  
ADDR19  
ADDR22  
ADDR26  
VDDE-EH  
ETPUA19  
ETPUA16  
ETPUA14  
ETPUA13  
2
ETPUA25  
ETPUA22  
ADDR16  
VDDE-EH  
ADDR23  
ADDR27  
ADDR30  
ETPUA18  
VSS  
ETPUA28  
ETPUA21  
ADDR17  
ADDR20  
ADDR24  
ADDR28  
ADDR31  
VSS  
VDDE2  
VSS  
VDDE2  
VSS  
VSS  
VDDE5  
VRC33  
P
VSS  
VSS  
R
T
U
V
W
Y
VDDE5  
DATA0  
DATA1  
DATA2  
5
DATA6  
DATA5  
DATA4  
DATA3  
6
DATA10  
DATA9  
DATA8  
DATA7  
7
VDDE5  
DATA13  
DATA12  
DATA11  
8
DATA14  
DATA15  
ETPUA9  
CLKOUT  
9
ENGCLK  
ETPUA8  
ETPUA7  
ETPUA6  
10  
ETPUA4  
ETPUA3  
ETPUA2  
ETPUA5  
11  
VDD  
AA  
AB  
VDD  
ETPUA10  
ETPUA11  
4
ETPUA12  
3
1
Figure 5. 324-pin TEPBGA package ballmap (southwest, viewed from above)  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
VDD  
22  
VSS  
DSPI_A_  
PCS5  
DSPI_A_  
SOUT  
MDO8_  
ETPUA21_O ETPUA27_O  
MDO10_  
AN34  
AN33  
AN32  
AN31  
AN14-SDI  
AN13-SDO  
AN12-SDS  
AN35  
AN15-FCK  
GPIO207  
GPIO206  
GPIO204  
GPIO203  
GPIO99  
GPIO98  
VDDEH7  
VDD  
A
B
C
DSPI_A_  
PCS4  
MDO7_  
ETPUA19_O ETPUA2_O  
MDO4_  
MDO5_  
ETPUA4_O  
DSPI_A_SIN  
DSPI_A_SCK  
VSS  
VSS  
VDDEH7  
VDD  
DSPI_A_  
PCS1  
MDO6_  
ETPUA13_O ETPUA29_O  
MDO11_  
VSS  
VDDEH7  
DSPI_A_  
PCS0  
MDO9_  
VSS  
VDDEH7  
TMS  
TCK  
TDO  
TDI  
NC  
D
E
F
G
H
J
ETPUA25_O  
VDDEH7  
VDDEH7  
RDY  
JCOMP  
EVTO  
EVTI  
VSS  
NC  
MSEO0  
VSS  
MSEO1  
DSPI_B_SIN  
VDDEH7  
DSPI_B_  
SOUT  
DSPI_B_  
PCS3  
DSPI_B_  
PCS0  
DSPI_B_  
PCS1  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDDEH7  
VSS  
DSPI_B_  
PCS4  
DSPI_B_  
PCS2  
NC  
DSPI_B_SCK  
VSS  
K
L
DSPI_B_  
PCS5  
VSS  
NC  
NC  
Figure 6. 324-pin TEPBGA package ballmap (northeast, viewed from above)  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VRC33  
NC  
NC  
SCI_A_TX  
SCI_A_RX  
NC  
NC  
VSS  
VDDEH6AB  
NC  
M
N
CAN_C_TX  
NC  
RSTOUT  
NC  
RSTCFG  
RESET  
VSS  
P
R
1
VSS  
BOOTCFG0  
PLLCFG1  
CAN_C_RX  
VDD  
VSS  
T
VDDEH6AB  
SCI_C_RX  
SCI_C_TX  
CAN_A_RX  
VDDEH4AB  
CAN_A_TX  
19  
BOOTCFG1  
PLLREF  
CAN_B_RX  
VDD  
EXTAL  
XTAL  
U
V
ETPUA1  
ETPUA0  
EMIOS0  
TCRCLKA  
12  
EMIOS1  
EMIOS2  
EMIOS3  
EMIOS4  
13  
VDDEH4AB  
EMIOS5  
EMIOS6  
EMIOS7  
14  
EMIOS8  
EMIOS9  
EMIOS10  
EMIOS11  
15  
EMIOS15  
EMIOS14  
EMIOS13  
EMIOS12  
16  
EMIOS16  
EMIOS17  
EMIOS18  
EMIOS19  
17  
EMIOS23  
EMIOS22  
EMIOS21  
EMIOS20  
18  
VDDPLL  
CAN_B_TX  
VDD  
W
Y
VSS  
WKPCFG  
SCI_B_RX  
20  
VSS  
AA  
AB  
SCI_B_TX  
21  
VSS  
22  
1
This pin (T21) should be tied low.  
Figure 7. 324-pin TEPBGA package ballmap (southeast, viewed from above)  
2.4  
Signal summary  
Table 3. MPC5644A signal properties  
Status7  
Package pin #  
P
A
PCR  
I/O  
Voltage5 /  
Name  
Function1  
PA PCR4  
Type Pad Type6  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
GPIO  
EMIOS148  
GPIO[203]  
eMIOS channel  
GPIO  
P
G
01  
00  
203  
204  
206  
207  
O
I/O  
VDDEH7  
Slow  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
—/ Up  
— / Up  
— / Up  
— / Up  
A15  
D14  
C14  
B14  
EMIOS158  
GPIO[204]  
eMIOS channel  
GPIO  
P
G
01  
00  
O
I/O  
VDDEH7  
Slow  
GPIO[206] ETRIG0 GPIO / eQADC Trigger Input  
G
G
G
00  
00  
I/O9  
I/O9  
VDDEH7  
Slow10  
143 R4  
144 P5  
122 T6  
GPIO[207] ETRIG1 GPIO / eQADC Trigger Input  
VDDEH7  
Slow  
GPIO[219]  
GPIO  
21911 I/O  
VDDEH7  
MultiV12  
Reset / Configuration  
RESET  
External Reset Input  
External Reset Output  
P
P
P
01  
I
VDDEH6  
Slow  
RESET / Up  
RESET / Up  
97  
L16  
R22  
P21  
V21  
RSTOUT  
230  
208  
O
VDDEH6  
Slow  
RSTOUT /  
Down  
RSTOUT / Down 102 K15  
PLLREF  
IRQ[4]  
ETRIG2  
GPIO[208]  
FMPLL Mode Selection  
External Interrupt Request  
eQADC Trigger Input  
GPIO  
001  
I
I
I
VDDEH6  
Slow  
— / Up  
PLLREF / Up  
— / Up  
83  
M14  
A1 010  
A2 100  
G
000  
I/O  
PLLCFG113  
IRQ[5]  
DSPI_D_SOUT  
GPIO[209]  
209  
I
O
VDDEH6  
Medium  
— / Up  
U20  
External interrupt request  
DSPI D data output  
GPIO  
A1 010  
A2 100  
G
000  
I/O  
RSTCFG  
GPIO[210]  
RSTCFG  
GPIO  
P
G
01  
00  
210  
211  
I
VDDEH6  
Slow  
— / Down  
— / Down  
P22  
T20  
I/O  
BOOTCFG[0]  
IRQ[2]  
GPIO[211]  
Boot Config. Input  
External Interrupt Request  
GPIO  
P
A1  
G
01  
10  
00  
I
I
VDDEH6  
Slow  
BOOTCFG[0] /  
Down  
I/O  
 
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
M15  
324  
BOOTCFG[1]  
IRQ[3]  
ETRIG3  
Boot Config. Input  
P
001  
212  
213  
I
I
I
VDDEH6  
Slow  
— / Down  
BOOTCFG[1] / 85  
Down  
U21  
External Interrupt Request  
eQADC Trigger Input  
GPIO  
A1 010  
A2 100  
G
GPIO[212]  
000  
I/O  
WKPCFG  
NMI  
DSPI_B_SOUT  
GPIO[213]  
Weak Pull Config. Input  
Non-Maskable Interrupt  
DSPI D data output  
GPIO  
P
001  
I
I
VDDEH6  
Medium  
— / Up  
WKPCFG / Up 86  
L15  
AA20  
A1 010  
A2 100  
G
O
I/O  
000  
External Bus Interface  
CS[0]  
ADDR[8]  
GPIO[0]  
External chip selects  
External address bus  
GPIO  
P
A1  
G
01  
10  
00  
0
1
2
O
I/O  
I/O  
VDDE2  
Fast  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
G1  
H1  
H2  
CS[1]  
ADDR9  
GPIO[1]  
External chip selects  
External address bus  
GPIO  
P
A1  
G
01  
10  
00  
O
I/O  
I/O  
VDDE2  
Fast  
CS[2]  
ADDR10  
WE[2]/BE[2]  
External chip selects  
External address bus  
Write/byte enable  
P
0001  
O
I/O  
O
VDDE2  
Fast  
A1 0010  
A2 0100  
A3 1000  
CAL_WE[2]/BE[2] Cal. bus write/byte enable  
O
GPIO[2]  
GPIO  
G
0000  
I/O  
CS[3]  
ADDR11  
WE[3]/BE[3]  
External chip selects  
External address bus  
Write/byte enable  
P
0001  
3
O
I/O  
O
VDDE2  
Fast  
— / Up  
— / Up  
H4  
A1 0010  
A2 0100  
A3 1000  
CAL_WE[3]/BE[3] Cal bus write/byte enable  
O
GPIO[3]  
GPIO  
G
0000  
I/O  
ADDR12  
GPIO[8]  
External address bus  
GPIO  
P
G
01  
00  
8
9
I/O  
I/O  
VDDE3  
Fast  
— / Up  
— / Up  
— / Up  
— / Up  
N2  
N1  
ADDR13  
WE[2]  
GPIO[9]  
External address bus  
Write/byte enable  
GPIO  
P
001  
I/O  
O
I/O  
VDDE3  
Fast  
A2 100  
G
000  
ADDR14  
WE[3]  
GPIO[10]  
External address bus  
Write/byte enables  
GPIO  
P
001  
10  
11  
I/O  
O
I/O  
VDDE3  
Fast  
— / Up  
— / Up  
— / Up  
— / Up  
P1  
P2  
A2 100  
G
000  
ADDR15  
GPIO[11]  
External address bus  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDE3  
Fast  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
ADDR16  
FR_A_TX  
DATA16  
External address bus  
Flexray TX data channel A  
External data bus  
GPIO  
P
001  
12  
13  
14  
15  
16  
17  
I/O  
O
I/O  
I/O  
VDDE-EH  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
P3  
P4  
R1  
R2  
R4  
T1  
A1 010  
A2 100  
G
GPIO[12]  
000  
ADDR17  
FR_A_TX_EN  
DATA17  
External address bus  
FlexRay ch. A TX data enable  
External data bus  
GPIO  
P
001  
I/O  
O
I/O  
I/O  
VDDE-EH  
Medium  
A1 010  
A2 100  
G
GPIO[13]  
000  
ADDR18  
FR_A_RX  
DATA18  
External address bus  
Flexray RX data ch. A  
External data bus  
GPIO  
P
001  
I/O  
I
I/O  
I/O  
VDDE-EH  
Medium  
A1 010  
A2 100  
G
GPIO[14]  
000  
ADDR19  
FR_B_TX  
DATA19  
External address bus  
Flexray TX data ch. B  
External data bus  
GPIO  
P
001  
I/O  
O
I/O  
I/O  
VDDE-EH  
Medium  
A1 010  
A2 100  
G
GPIO[15]  
000  
ADDR20  
FR_B_TX_EN  
DATA20  
External address bus  
Flexray TX data enable for ch. B A1 010  
External data bus  
GPIO  
P
001  
I/O  
O
I/O  
I/O  
VDDE-EH  
Medium  
A2 100  
G
GPIO[16]  
000  
ADDR21  
FR_B_RX  
DATA21  
External address bus  
Flexray RX data channel B  
External data bus  
GPIO  
P
001  
I/O  
I
I/O  
I/O  
VDDE-EH  
Medium  
A1 010  
A2 100  
G
GPIO[17]  
000  
ADDR22  
DATA22  
GPIO[18]  
External address bus  
External data bus  
GPIO  
P
001  
18  
19  
20  
21  
I/O  
I/O  
I/O  
VDDE-EH  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
T2  
T3  
T4  
U1  
A2 100  
G
000  
ADDR23  
DATA23  
GPIO[19]  
External address bus  
External data bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE-EH  
Medium  
A2 100  
G
000  
ADDR24  
DATA24  
GPIO[20]  
External address bus  
External data bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE-EH  
Medium  
A2 100  
G
000  
ADDR25  
DATA25  
GPIO[21]  
External address bus  
External data bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE-EH  
Medium  
A2 100  
000  
G
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
ADDR26  
DATA26  
GPIO[22]  
External address bus  
External data bus  
GPIO  
P
001  
22  
23  
24  
25  
26  
I/O  
I/O  
I/O  
VDDE-EH  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
U2  
U3  
U4  
V1  
V3  
A2 100  
G
P
000  
001  
ADDR27  
DATA27  
GPIO[23]  
External address bus  
External data bus  
GPIO  
I/O  
I/O  
I/O  
VDDE-EH  
Medium  
A2 100  
G
000  
ADDR28  
DATA28  
GPIO[24]  
External address bus  
External data bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE-EH  
Medium  
A2 100  
G
000  
ADDR29  
DATA29  
GPIO[25]  
External address bus  
External data bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE-EH  
Medium  
A2 100  
G
000  
ADDR30  
ADDR68  
DATA30  
GPIO[26]  
External address bus  
External address bus  
External data bus  
GPIO  
P
001  
I/O  
O
I/O  
I/O  
VDDE-EH  
Medium  
A1 010  
A2 100  
G
000  
ADDR31  
ADDR78  
DATA31  
GPIO[27]  
External address bus  
External address bus  
External data bus  
GPIO  
P
001  
27  
I/O  
O
I/O  
I/O  
VDDE-EH  
Medium  
— / Up  
— / Up  
V4  
A1 010  
A2 100  
G
000  
DATA0  
ADDR16  
GPIO[28]  
External data bus  
External address bus  
GPIO  
P
001  
28  
29  
30  
31  
32  
I/O  
I/O  
I/O  
VDDE5  
Fast  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
Y5  
A1 010  
G
000  
DATA1  
ADDR17  
GPIO[29]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
AA5  
AB5  
AB6  
AA6  
A1 010  
G
000  
DATA2  
ADDR18  
GPIO[30]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
A1 010  
G
000  
DATA3  
ADDR19  
GPIO[31]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
A1 010  
G
000  
DATA4  
ADDR20  
GPIO[32]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
A1 010  
000  
G
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
DATA5  
ADDR21  
GPIO[33]  
External data bus  
External address bus  
GPIO  
P
001  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
62  
I/O  
I/O  
I/O  
VDDE5  
Fast  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
Y6  
A1 010  
G
P
000  
001  
DATA6  
ADDR22  
GPIO[34]  
External data bus  
External address bus  
GPIO  
I/O  
I/O  
I/O  
VDDE5  
Fast  
W6  
AB7  
AA7  
Y7  
A1 010  
G
000  
DATA7  
ADDR23  
GPIO[35]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
A1 010  
G
000  
DATA8  
ADDR24  
GPIO[36]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
A1 010  
G
000  
DATA9  
ADDR25  
GPIO[37]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
A1 010  
G
000  
DATA10  
ADDR26  
GPIO[38]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
W7  
AB8  
AA8  
Y8  
A1 010  
G
000  
DATA11  
ADDR27  
GPIO[39]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
A1 010  
G
000  
DATA12  
ADDR28  
GPIO[40]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
A1 010  
G
000  
DATA13  
ADDR29  
GPIO[41]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
A1 010  
G
000  
DATA14  
ADDR30  
GPIO[42]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
W9  
Y9  
A1 010  
G
000  
DATA15  
ADDR31  
GPIO[43]  
External data bus  
External address bus  
GPIO  
P
001  
I/O  
I/O  
I/O  
VDDE5  
Fast  
A1 010  
G
000  
RD_WR  
GPIO[62]  
External read/write  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDE2  
Fast  
J4  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
BDIP  
GPIO[63]  
External burst data in progress  
GPIO  
P
G
01  
00  
63  
64  
65  
68  
69  
O
I/O  
VDDE2  
Fast  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
J3  
J2  
J1  
H3  
K3  
WE[0]/BE[0]  
GPIO[64]  
External write/byte enable  
GPIO  
P
G
01  
00  
O
I/O  
VDDE2  
Fast  
WE[1]/BE[1]  
GPIO[65]  
External write/byte enable  
GPIO  
P
G
01  
00  
O
I/O  
VDDE2  
Fast  
OE  
GPIO[68]  
External output enable  
GPIO  
P
G
01  
00  
O
I/O  
VDDE2  
Fast  
TS  
ALE  
GPIO[69]  
External transfer start  
Address latch enable  
GPIO[69]  
P
001  
I/O  
O
I/O  
VDDE2  
Fast  
A1 010  
G
000  
TA  
External transfer acknowledge  
External transfer start  
GPIO  
P
001  
70  
I/O  
O
I/O  
VDDE2  
Fast  
— / Up  
— / Up  
K2  
TS8  
A1 010  
G
GPIO[70]  
000  
Calibration Bus  
CAL_CS0  
Calibration chip select  
P
01  
336  
338  
O
VDDE12  
Fast  
— / —  
— / —  
CAL_CS2  
CAL_ADDR[10]  
CAL_WE[2]/BE[2] Calibration write/byte enable  
Calibration chip select  
Calibration address bus  
P
A
001  
010  
O
I/O  
O
VDDE12  
Fast  
A2 100  
CAL_CS3  
CAL_ADDR[11]  
CAL_WE[3]/BE[3] Calibration write/byte enable  
Calibration chip select  
Calibration address bus  
P
A
001  
010  
339  
O
I/O  
O
VDDE12  
Fast  
— / —  
A2 100  
CAL_ADDR[12] Calibration address bus  
P
A
01  
10  
340  
340  
340  
340  
345  
I/O  
O
VDDE12  
Fast  
— / —  
— / —  
— / —  
— / —  
— / —  
CAL_WE[2]/BE[2] Calibration write/byte enable  
CAL_ADDR[13] Calibration address bus  
P
A
01  
10  
I/O  
O
VDDE12  
Fast  
CAL_WE[3]/BE[3] Calibration write/byte enable  
CAL_ADDR[14]  
CAL_DATA[31]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[15]  
CAL_ALE  
Calibration address bus  
Calibration address latch enable A1  
P
01  
10  
I/O  
O
VDDE12  
Fast  
CAL_ADDR[16]  
CAL_DATA[16]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
CAL_ADDR[17]  
CAL_DATA[17]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
345  
345  
345  
345  
345  
345  
345  
345  
345  
345  
345  
345  
345  
345  
341  
341  
I/O  
I/O  
VDDE12  
Fast  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / Up  
— / Up  
CAL_ADDR[18]  
CAL_DATA[18]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[19]  
CAL_DATA[19]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[20]  
CAL_DATA[20]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[21]  
CAL_DATA[21]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[22]  
CAL_DATA[22]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[23]  
CAL_DATA[23]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[24]  
CAL_DATA[24]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[25]  
CAL_DATA[25]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[26]  
CAL_DATA[26]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[27]  
CAL_DATA[27]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[28]  
CAL_DATA[28]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[29]  
CAL_DATA[29]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_ADDR[30]  
CAL_DATA[30]  
Calibration address bus  
Calibration data bus  
P
A
01  
10  
I/O  
I/O  
VDDE12  
Fast  
CAL_DATA[0]  
Calibration data bus  
P
01  
I/O  
VDDE12  
Fast  
— / Up  
— / Up  
CAL_DATA[1]  
Calibration data bus  
P
01  
I/O  
VDDE12  
Fast  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
CAL_DATA[2]  
CAL_DATA[3]  
CAL_DATA[4]  
CAL_DATA[5]  
CAL_DATA[6]  
CAL_DATA[7]  
CAL_DATA[8]  
CAL_DATA[9]  
CAL_DATA[10]  
CAL_DATA[11]  
CAL_DATA[12]  
CAL_DATA[13]  
CAL_DATA[14]  
CAL_DATA[15]  
CAL_RD_WR  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration data bus  
Calibration read/write enable  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
01  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
341  
342  
342  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
VDDE12  
Fast  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / —  
— / —  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
VDDE12  
Fast  
CAL_WE[0]/BE[0] Calibration write/byte enable  
O
VDDE12  
Fast  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
CAL_WE[1]/BE[1] Calibration write/byte enable  
P
P
01  
01  
342  
342  
343  
O
O
VDDE12  
Fast  
— / —  
— / —  
— / —  
CAL_OE  
Calibration output enable  
VDDE12  
Fast  
CAL_TS  
CAL_ALE  
Calibration transfer start  
Address Latch Enable  
P
A
01  
10  
O
O
VDDE12  
Fast  
CAL_MDO[4]  
CAL_MDO[5]  
CAL_MDO[6]  
CAL_MDO[7]  
CAL_MDO[8]  
CAL_MDO[9]  
CAL_MDO[10]  
CAL_MDO[11]  
Calibration Nexus Message  
Data Out  
P
P
P
P
P
P
P
P
01  
01  
01  
01  
01  
01  
01  
01  
O
O
O
O
O
O
O
O
VDDE12  
Fast  
CAL_MDO[4] / —  
CAL_MDO[5] / —  
CAL_MDO[6] / —  
CAL_MDO[7] / —  
CAL_MDO[8] / —  
CAL_MDO[9] / —  
Calibration Nexus Message  
Data Out  
VDDE12  
Fast  
Calibration Nexus Message  
Data Out  
VDDE12  
Fast  
Calibration Nexus Message  
Data Out  
VDDE12  
Fast  
Calibration Nexus Message  
Data Out  
VDDE12  
Fast  
Calibration Nexus Message  
Data Out  
VDDE12  
Fast  
Calibration Nexus Message  
Data Out  
VDDE12  
Fast  
CAL_MDO[10] /  
Calibration Nexus Message  
Data Out  
VDDE12  
Fast  
CAL_MDO[11] /  
NEXUS  
EVTI  
Nexus event in  
P
P
P
P
P
01  
01  
01  
01  
231  
227  
I
VDDEH7  
— / Up  
EVTI / Up  
EVTO / —  
MCKO / —  
MDO[0] / —  
MDO[1] / —  
116 E15  
120 D15  
H20  
G20  
F1  
MultiV12,14  
EVTO  
Nexus event out  
O
O
O
O
VDDEH7  
MultiV12,14,15  
MCKO  
MDO016  
MDO116  
Nexus message clock out  
Nexus message data out  
Nexus message data out  
21911  
220  
VRC33  
Fast  
14  
17  
18  
F15  
A14  
B14  
VRC33  
Fast  
F3  
221  
VRC33  
Fast  
G2  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
19  
208  
A13  
324  
MDO216  
Nexus message data out  
Nexus message data out  
P
P
01  
01  
222  
223  
75  
O
O
VRC33  
Fast  
MDO[2] / —  
MDO[3] / —  
— / —  
G3  
MDO316  
VRC33  
Fast  
20  
B13  
G4  
MDO416  
Nexus message data out  
eTPU A channel (output only)  
GPIO[  
P
A1  
G
01  
10  
00  
O
O
VDDEH7  
126 P10  
129 T10  
135 T11  
136 N11  
137 P11  
139 T7  
B19  
ETPUA2_O8  
GPIO[75]  
MultiV12,14  
I/O  
MDO516  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
76  
77  
78  
79  
80  
81  
82  
O
O
VDDEH7  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
— / —  
B20  
C18  
B18  
A18  
D18  
A19  
C19  
ETPUA4_O8  
GPIO[76]  
MultiV12,14  
I/O  
MDO616  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
VDDEH7  
ETPUA13_O8  
GPIO[77]  
MultiV12,14  
I/O  
MDO716  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
VDDEH7  
ETPUA19_O8  
GPIO[78]  
MultiV12,14  
I/O  
MDO816  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
VDDEH7  
ETPUA21_O8  
GPIO[79]  
MultiV12,14  
I/O  
MDO916  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
VDDEH7  
ETPUA25_O8  
GPIO[80]  
MultiV12,14  
I/O  
MDO1016  
Nexus message data out  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
O
O
VDDEH7  
134 R10  
124 P9  
ETPUA27_O8  
GPIO[81]  
MultiV12,14  
I/O  
MDO1116  
Nexus message data out  
eTPU A channel (output only)  
GPIO[82]  
P
A1  
G
01  
10  
00  
O
O
VDDEH7  
ETPUA29_O8  
GPIO[82]  
MultiV12,14  
I/O  
MSEO[0]16  
MSEO[1]16  
RDY  
Nexus message start/end out  
Nexus message start/end out  
Nexus ready output  
P
P
P
01  
01  
01  
224  
225  
226  
O
O
O
VDDEH7  
MSEO[0] / —  
MSEO[1] / —  
118 C15  
117 E16  
G21  
G22  
G19  
MultiV12,14  
VDDEH7  
MultiV12,14  
VDDEH7  
MultiV12,14  
JTAG  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
TCK  
TDI  
JTAG test clock input  
P
P
P
P
P
01  
01  
01  
01  
01  
232  
228  
I
I
VDDEH7  
MultiV12  
TCK / Down  
TCK / Down  
TDI / Up  
128 C16  
130 E14  
123 F14  
131 D14  
D21  
D22  
E21  
E20  
F20  
JTAG test data input  
VDDEH7  
MultiV12  
TDI / Up  
TDO / Up  
TMS / Up  
TDO  
TMS  
JTAG test data output  
JTAG test mode select input  
JTAG TAP controller enable  
O
I
VDDEH7  
MultiV12  
TDO / Up  
TMS / Up  
VDDEH7  
MultiV12  
JCOMP  
I
VDDEH7  
MultiV12  
JCOMP / Down JCOMP / Down 121 F16  
FlexCAN  
CAN_A_TX  
SCI_A_TX  
GPIO[83]  
FlexCAN A TX  
eSCI A TX  
GPIO  
P
A1  
G
01  
10  
00  
83  
84  
85  
O
O
I/O  
VDDEH6  
Slow  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
81  
82  
88  
P12  
R12  
T12  
AB19  
Y19  
CAN_A_RX  
SCI_A_RX  
GPIO[84]  
FlexCAN A RX  
eSCI A RX  
GPIO  
P
A1  
G
01  
10  
00  
I
I
VDDEH6  
Slow  
I/O  
CAN_B_TX  
DSPI_C_PCS[3]  
SCI_C_TX  
FlexCAN B TX  
DSPI C peripheral chip select  
eSCI C TX  
P
001  
O
O
O
VDDEH6  
Slow  
Y22  
A1 010  
A2 100  
GPIO[85]  
GPIO  
G
000  
I/O  
CAN_B_RX  
DSPI_C_PCS[4]  
SCI_C_RX  
FlexCAN B RX  
DSPI C peripheral chip select  
eSCI C RX  
P
001  
86  
I
O
I
VDDEH6  
Slow  
— / Up  
— / Up  
89  
R13  
W21  
A1 010  
A2 100  
GPIO[86]  
GPIO  
G
000  
I/O  
CAN_C_TX  
DSPI_D_PCS[3]  
GPIO[87]  
FlexCAN C TX  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
87  
88  
O
O
I/O  
VDDEH6  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
101 K13  
P19  
V20  
CAN_C_RX  
DSPI_D_PCS[4]  
GPIO[88]  
FlexCAN C RX  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
I
O
I/O  
VDDEH6  
Slow  
98  
L14  
eSCI  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
SCI_A_TX  
eSCI A TX  
eMIOS channel  
GPIO  
P
A1  
G
01  
10  
00  
89  
90  
91  
92  
O
O
I/O  
VDDEH6  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
100 J14  
N20  
EMIOS138  
GPIO[89]  
SCI_A_RX  
EMIOS158  
GPIO[90]  
eSCI A RX  
eMIOS channel  
GPIO  
P
A1  
G
01  
10  
00  
I
O
I/O  
VDDEH6  
Medium  
99  
87  
84  
K14  
L13  
M13  
P20  
SCI_B_TX  
DSPI_D_PCS[1]  
GPIO[91]  
eSCI B TX  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH6  
Medium  
AB21  
AB20  
SCI_B_RX  
DSPI_D_PCS[5]  
GPIO[92]  
eSCI B RX  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
I
O
I/O  
VDDEH6  
Medium  
SCI_C_TX  
GPIO[244]  
eSCI C TX  
GPIO  
P
G
01  
00  
244  
245  
O
I/O  
VDDEH6  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
W19  
V19  
SCI_C_RX  
GPIO[245]  
eSCI C RX  
GPIO  
P
G
01  
00  
I
VDDEH6  
Medium  
I/O  
DSPI  
DSPI_A_SCK17  
DSPI_C_PCS[1]  
GPIO[93]  
A1  
G
10  
00  
93  
94  
95  
96  
97  
98  
O
I/O  
VDDEH7  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
C17  
B17  
A17  
D16  
C16  
C15  
DSPI C peripheral chip select  
GPIO  
DSPI_A_SIN17  
DSPI_C_PCS[2]  
GPIO[94]  
A1  
G
10  
00  
O
I/O  
VDDEH7  
Medium  
DSPI C peripheral chip select  
GPIO  
DSPI_A_SOUT17  
DSPI_C_PCS[5]  
GPIO[95]  
A1  
G
10  
00  
O
I/O  
VDDEH7  
Medium  
DSPI C peripheral chip select  
GPIO  
DSPI_A_PCS[0]17  
DSPI_D_PCS[2]  
GPIO[96]  
A1  
G
10  
00  
O
I/O  
VDDEH7  
Medium  
DSPI D peripheral chip select  
GPIO  
DSPI_A_PCS[1]17  
DSPI_B_PCS[2]  
GPIO[97]  
A1  
G
10  
00  
O
I/O  
VDDEH7  
Medium  
DSPI B peripheral chip select  
GPIO  
CS[2]  
DSPI_D_SCK  
GPIO[98]  
A1  
G
10  
00  
I/O  
I/O  
VDDEH7  
Medium  
141 J15  
SPI clock pin for DSPI module  
GPIO  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
CS[3]  
DSPI_D_SIN  
GPIO[99]  
A1  
G
10  
00  
99  
I
I/O  
VDDEH7  
Medium  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
142 H13  
B15  
B16  
A16  
K21  
H22  
J19  
J21  
J22  
K22  
J20  
K20  
L19  
DSPI D data input  
GPIO  
DSPI_A_PCS[4]17  
DSPI_D_SOUT  
GPIO[100]  
A1  
G
10  
00  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
O
I/O  
VDDEH7  
Medium  
DSPI D data output  
GPIO  
DSPI_A_PCS[5]17  
DSPI_B_PCS[3]  
GPIO[101]  
A1  
G
10  
00  
O
I/O  
VDDEH7  
Medium  
DSPI B peripheral chip select  
GPIO  
DSPI_B_SCK  
DSPI_C_PCS[1]  
GPIO[102]  
SPI clock pin for DSPI module  
DSPI C peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
I/O  
O
I/O  
VDDEH6  
Medium  
106 J16  
112 G15  
113 G13  
DSPI_B_SIN  
DSPI_C_PCS[2]  
GPIO[103]  
DSPI B data input  
DSPI C peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
I
O
I/O  
VDDEH6  
Medium  
DSPI_B_SOUT  
DSPI_C_PCS[5]  
GPIO[104]  
DSPI B data output  
DSPI C peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH6  
Medium  
DSPI_B_PCS[0]  
DSPI_D_PCS[2]  
GPIO[105]  
DSPI B peripheral chip select  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
I/O  
O
I/O  
VDDEH6  
Medium  
111  
G16  
DSPI_B_PCS[1]  
DSPI_D_PCS[0]  
GPIO[106]  
DSPI B peripheral chip select  
DSPI D peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
O
I/O  
I/O  
VDDEH6  
Medium  
109 H16  
107 H15  
114 G14  
105 H14  
104 J13  
DSPI_B_PCS[2]  
DSPI_C_SOUT  
GPIO[107]  
DSPI B peripheral chip select  
DSPI C data output  
GPIO  
P
A1  
G
01  
10  
00  
O
O
I/O  
VDDEH6  
Medium  
DSPI_B_PCS[3]  
DSPI_C_SIN  
GPIO[108]  
DSPI B peripheral chip select  
DSPI C data input  
GPIO  
P
A1  
G
01  
10  
00  
O
I
I/O  
VDDEH6  
Medium  
DSPI_B_PCS[4]  
DSPI_C_SCK  
GPIO[109]  
DSPI B peripheral chip select  
SPI clock pin for DSPI module  
GPIO  
P
A1  
G
01  
10  
00  
O
I/O  
I/O  
VDDEH6  
Medium  
DSPI_B_PCS[5]  
DSPI_C_PCS[0]  
GPIO[110]  
DSPI B peripheral chip select  
DSPI C peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
O
I/O  
I/O  
VDDEH6  
Medium  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Voltage5 /  
Name  
Function1  
PA PCR4  
Type Pad Type6  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
eQADC  
AN018  
DAN0+  
Single Ended Analog Input  
Positive Terminal Diff. Input  
P
P
P
P
P
P
P
P
P
P
01  
01  
I
I
VDDA  
Analog  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
AN[0] / —  
AN[1] / —  
AN[2] / —  
AN[3] / —  
AN[4] / —  
AN[5] / —  
AN[6] / —  
AN[7] / —  
AN[8] / —  
AN[9] / —  
172 B5  
171 A6  
170 D6  
169 C7  
168 B6  
167 A7  
166 D7  
165 C8  
C6  
C7  
D7  
D8  
B7  
B8  
C8  
C9  
E1  
C2  
AN118  
DAN0-  
Single Ended Analog Input  
Negative Terminal Diff. Input  
I
I
VDDA  
Analog  
AN218  
DAN1+  
Single Ended Analog Input  
Positive Terminal Diff. Input  
I
I
VDDA  
Analog  
AN318  
DAN1-  
Single Ended Analog Input  
Negative Terminal Diff. Input  
I
I
VDDA  
Analog  
AN418  
DAN2+  
Single Ended Analog Input  
Positive Terminal Diff. Input  
I
I
VDDA  
Analog  
AN518  
DAN2-  
Single Ended Analog Input  
Negative Terminal Diff. Input  
I
I
VDDA  
Analog  
AN618  
DAN3+  
Single Ended Analog Input  
Positive Terminal Diff. Input  
I
I
VDDA  
Analog  
AN718  
DAN3-  
Single Ended Analog Input  
Negative Terminal Diff. Input  
I
I
VDDA  
Analog  
AN8  
ANW  
Single-ended Analog Input  
Multiplexed Analog Input  
I
VDDA  
Analog  
9
5
B3  
A2  
AN9  
ANX  
Single-ended Analog Input  
External Multiplexed Analog  
Input  
I
I
VDDA  
Analog  
AN10  
ANY  
Single-ended Analog Input  
Multiplexed Analog Input  
P
P
P
01  
01  
I
I
VDDA  
Analog  
I / —  
I / —  
I / —  
AN[10] / —  
AN[11] / —  
AN[12] / —  
D1  
AN11  
ANZ  
Single-ended Analog Input  
Multiplexed Analog Input  
VDDA  
Analog  
4
A3  
C1  
AN12 - SDS  
MA0  
Single-ended Analog Input  
MUX Address 0  
eTPU A channel (output only)  
eQADC Serial Data Select  
001  
215  
I
O
O
I/O  
VDDEH719  
Medium  
148 A12  
C13  
A1 010  
A2 100  
G
ETPUA19_O8  
SDS  
000  
AN13 - SDO  
MA1  
Single-ended Analog Input  
MUX Address 1  
eTPU A channel (output only)  
eQADC Serial Data Out  
P
001  
216  
I
VDDEH719  
Medium  
I / —  
AN[13] / —  
147 B12  
B13  
A1 010  
A2 100  
G
O
O
O
ETPUA21_O8  
SDO  
000  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
AN14 - SDI  
MA2  
Single-ended Analog Input  
MUX Address 2  
eTPU A channel (output only)  
eQADC Serial Data In  
P
001  
217  
218  
I
VDDEH719  
Medium  
I / —  
AN[14] / —  
146 C12  
A13  
A14  
A1 010  
A2 100  
G
O
O
I
ETPUA27_O8  
SDI  
000  
AN15 - FCK  
FCK  
Single-ended Analog Input  
eQADC Free Running Clock  
eTPU A channel (output only)  
P
001  
I
O
O
VDDEH719  
Medium  
I / —  
AN[15] / —  
145 C13  
A1 010  
A2 100  
ETPUA29_O8  
AN16  
AN17  
AN18  
AN19  
AN20  
AN21  
AN22  
AN23  
AN24  
AN25  
AN26  
AN27  
AN28  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
P
P
P
P
P
P
P
P
P
P
P
P
P
I
I
I
I
I
I
I
I
I
I
I
I
I
VDDA  
Analog  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
AN[16] / —  
AN[17] / —  
AN[18] / —  
AN[19] / —  
AN[20] / —  
AN[21] / —  
AN[22] / —  
AN[23] / —  
AN[24] / —  
AN[25] / —  
AN[26] / —  
AN[27] / —  
AN[28] / —  
3
2
1
C6  
C4  
D5  
A3  
VDDA  
Analog  
A4  
VDDA  
Analog  
B4  
VDDA  
Analog  
D6  
C5  
B6  
VDDA  
Analog  
VDDA  
Analog  
173 B4  
161 B8  
160 C9  
159 D8  
158 B9  
VDDA  
Analog  
D9  
A8  
VDDA  
Analog  
VDDA  
Analog  
B9  
VDDA  
Analog  
A9  
VDDA  
Analog  
D10  
C10  
D11  
VDDA  
Analog  
157 A10  
156 B10  
VDDA  
Analog  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
AN29  
AN30  
AN31  
AN32  
AN33  
AN34  
AN35  
AN36  
AN37  
AN38  
AN39  
VRH  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Single-ended Analog Input  
Voltage Reference High  
Voltage Reference Low  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
I
I
I
I
I
I
I
I
I
I
I
I
I
I
VDDA  
Analog  
I / —  
AN[29] / —  
AN[30] / —  
AN[31] / —  
AN[32] / —  
AN[33] / —  
AN[34] / —  
AN[35] / —  
AN[36] / —  
AN[37] / —  
AN[38] / —  
AN[39] / —  
VRH  
C11  
B11  
D12  
C12  
B12  
A12  
D13  
B5  
VDDA  
Analog  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
155 D9  
154 D10  
153 C10  
152 C11  
151 C5  
150 D11  
174 F4  
175 E3  
VDDA  
Analog  
VDDA  
Analog  
VDDA  
Analog  
VDDA  
Analog  
VDDA  
Analog  
VDDA  
Analog  
VDDA  
Analog  
A5  
VDDA  
Analog  
8
D3  
VDDA  
Analog  
D2  
D2  
VDDA  
163 A8  
162 A9  
164 B7  
A10  
A11  
B10  
VRL  
VDDA  
VRL  
REFBYBC  
Reference Bypass Capacitor  
Input  
VDDA  
Analog  
REFBYPC  
eTPU2  
TCRCLKA  
IRQ[7]  
GPIO[113]  
eTPU A TCR clock  
External interrupt request  
GPIO  
P
A1  
G
01  
10  
00  
113  
I
I
VDDEH4  
Slow  
— / Up  
— / Up  
L4  
AB12  
I/O  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
61  
208  
N3  
324  
ETPUA0  
eTPU A channel  
P
001  
114  
I/O  
O
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
Y12  
ETPUA12_O8  
ETPUA19_O8  
GPIO[114]  
eTPU A channel (output only)  
eTPU A channel (output only)  
GPIO  
A1 010  
A2 100  
WKPCFG  
O
G
000  
I/O  
ETPUA1  
eTPU A channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
115  
116  
117  
I/O  
O
I/O  
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
60  
59  
M3  
P2  
P1  
N2  
W12  
AA11  
Y11  
ETPUA13_O8  
GPIO[115]  
ETPUA2  
eTPU A channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
I/O  
O
I/O  
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
ETPUA14_O8  
GPIO[116]  
ETPUA3  
eTPU A channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
I/O  
O
I/O  
VDDEH4  
Slow  
— / WKPCFG GPIO / WKPCFG 58  
ETPUA15_O8  
GPIO[117]  
ETPUA4  
eTPU A channel  
P
0001 118  
I/O  
O
O
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
56  
54  
W11  
ETPUA16_O8  
FR_B_TX  
GPIO[118]  
eTPU A channel (output only)  
Flexray TX data channel B  
GPIO  
A1 0010  
A3 1000  
G
0000  
I/O  
ETPUA5  
eTPU A channel  
eTPU A channel (output only)  
P
0001 119  
I/O  
O
O
O
I/O  
VDDEH4  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
M4  
L3  
AB11  
AB10  
AA10  
ETPUA17_O8  
A1 0010  
A2 0100  
DSPI_B_SCK_LV LVDS negative DSPI clock  
DS-  
FR_B_TX_EN  
GPIO[119]  
Flexray TX data enable for ch. B A3 1000  
GPIO  
G
0000  
ETPUA6  
eTPU A channel  
eTPU A channel (output only)  
P
0001 120  
I/O  
O
O
VDDEH4  
Medium +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
53  
52  
ETPUA18_O8  
A1 0010  
A2 0100  
A3 1000  
DSPI_B_SCK_LV LVDS positive DSPI clock  
DS+  
FR_B_RX  
GPIO[120]  
Flexray RX data channel B  
GPIO  
I
G
0000  
I/O  
ETPUA7  
eTPU A channel  
eTPU A channel (output only)  
P
0001 121  
I/O  
O
O
O
I/O  
VDDEH4  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
K3  
ETPUA19_O8  
A1 0010  
A2 0100  
A3 1000  
DSPI_B_SOUT_L LVDS negative DSPI data out  
VDS-  
eTPU A channel (output only)  
GPIO  
ETPUA6_O8  
GPIO[121]  
G
0000  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
51  
208  
N1  
324  
ETPUA8  
ETPUA20_O8  
DSPI_B_SOUT_L LVDS positive DSPI data out  
eTPU A channel  
P
001  
122  
I/O  
O
VDDEH4  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
Y10  
eTPU A channel (output only)  
A1 010  
A2 100  
WKPCFG  
O
VDS+  
GPIO  
G
000  
I/O  
GPIO[122]  
ETPUA9  
eTPU A channel  
P
001  
123  
124  
125  
126  
127  
I/O  
O
O
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
50  
49  
48  
47  
M2  
M1  
L2  
AA9  
AA4  
AB4  
AB3  
ETPUA21_O8  
RCH1_B  
eTPU A channel (output only)  
Reaction channel 1B  
GPIO  
A1 010  
A2 100  
G
GPIO[123]  
000  
I/O  
ETPUA10  
ETPUA22_O8  
RCH1_C  
eTPU A channel  
P
001  
I/O  
O
O
VDDEH1  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
eTPU A channel (output only)  
Reaction channel 1C  
GPIO  
A1 010  
A2 100  
G
GPIO[124]  
000  
I/O  
ETPUA11  
eTPU A channel  
P
001  
I/O  
O
O
VDDEH1  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
ETPUA23_O8  
RCH4_B  
eTPU A channel (output only)  
Reaction channel 4B  
GPIO  
A1 010  
A2 100  
G
GPIO[125]  
000  
I/O  
ETPUA12  
DSPI_B_PCS[1]  
RCH4_C  
eTPU A channel  
P
001  
I/O  
O
O
VDDEH1  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
L1  
DSPI B peripheral chip select  
Reaction channel 4C  
GPIO  
A1 010  
A2 100  
G
GPIO[126]  
000  
I/O  
ETPUA13  
DSPI_B_PCS[3]  
GPIO[127]  
eTPU A channel  
DSPI B peripheral chip select  
GPIO  
P
A1  
G
01  
10  
00  
I/O  
O
I/O  
VDDEH1  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
46  
42  
J4  
J3  
AB2  
AA2  
ETPUA14  
eTPU A channel  
P
0001 128  
I/O  
O
O
O
I/O  
VDDEH1  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI_B_PCS[4]  
ETPUA9_O8  
RCH0_A  
DSPI B peripheral chip select  
eTPU A channel (output only)  
Reaction channel 0A  
GPIO  
A1 0010  
A2 0100  
A3 1000  
GPIO[128]  
G
0000  
ETPUA15  
DSPI_B_PCS[5]  
RCH1_A  
eTPU A channel  
DSPI B peripheral chip select  
Reaction channel 1A  
GPIO  
P
001  
129  
130  
I/O  
O
O
VDDEH1  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
40  
39  
K2  
K1  
AA1  
Y2  
A1 010  
A2 100  
G
GPIO[129]  
000  
I/O  
ETPUA16  
DSPI_D_PCS[1]  
RCH2_A  
eTPU A channel  
P
001  
I/O  
O
O
VDDEH1  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI D peripheral chip select  
Reaction channel 2A  
GPIO  
A1 010  
A2 100  
G
GPIO[130]  
000  
I/O  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
38  
208  
H3  
324  
ETPUA17  
eTPU A channel  
P
001  
131  
132  
133  
I/O  
O
VDDEH1  
Slow  
— /  
WKPCFG  
— /  
Y1  
DSPI_D_PCS[2]  
RCH3_A  
GPIO[131]  
DSPI D peripheral chip select  
Reaction channel 3A  
GPIO  
A1 010  
A2 100  
G
WKPCFG  
O
I/O  
000  
ETPUA18  
eTPU A channel  
P
001  
I/O  
O
VDDEH1  
Slow  
— /  
WKPCFG  
— /  
37  
36  
35  
H4  
J2  
J1  
W3  
W2  
W1  
DSPI_D_PCS[3]  
RCH4_A  
GPIO[132]  
DSPI D peripheral chip select  
Reaction channel 4A  
GPIO  
A1 010  
A2 100  
G
WKPCFG  
O
I/O  
000  
ETPUA19  
eTPU A channel  
P
001  
I/O  
O
VDDEH1  
Slow  
— /  
WKPCFG  
— /  
DSPI_D_PCS[4]  
RCH5_A  
GPIO[133]  
DSPI D peripheral chip select  
Reaction channel 5A  
GPIO  
A1 010  
A2 100  
G
WKPCFG  
O
I/O  
000  
ETPUA20  
IRQ[8]  
RCH0_B  
FR_A_TX  
GPIO[134]  
eTPU A channel  
P
0001 134  
I/O  
I
VDDEH1  
Slow  
— /  
WKPCFG  
— /  
External interrupt request  
Reaction channel 0B  
Flexray TX data channel A  
GPIO  
A1 0010  
A2 0100  
A3 1000  
WKPCFG  
O
O
G
0000  
I/O  
ETPUA21  
IRQ[9]  
RCH0_C  
FR_A_RX  
GPIO[135]  
eTPU A channel  
External interrupt request  
Reaction channel 0C  
Flexray RX channel A  
GPIO  
P
0001 135  
I/O  
I
O
I
VDDEH1  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
34  
G4  
N4  
A1 0010  
A2 0100  
A3 1000  
G
0000  
I/O  
ETPUA22  
IRQ[10]  
eTPU A channel  
P
001  
136  
I/O  
I
O
VDDEH1  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
32  
30  
H2  
H1  
N3  
M1  
External interrupt request  
eTPU A channel (output only)  
GPIO  
A1 010  
A2 100  
G
ETPUA17_O8  
GPIO[136]  
000  
I/O  
ETPUA23  
IRQ[11]  
eTPU A channel  
P
0001 137  
I/O  
I
O
O
I/O  
VDDEH1  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
External interrupt request  
eTPU A channel (output only)  
Flexray ch. A TX enable  
GPIO  
A1 0010  
A2 0100  
A3 1000  
ETPUA21_O8  
FR_A_TX_EN  
GPIO[137]  
G
0000  
ETPUA24  
IRQ[12]  
eTPU A channel  
External interrupt request  
P
001  
138  
I/O  
I
O
VDDEH1  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
WKPCFG  
28  
G1  
M2  
A1 010  
A2 100  
DSPI_C_SCK_LV LVDS negative DSPI clock  
DS-  
GPIO  
G
000  
I/O  
GPIO[138]  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
27  
208  
G3  
324  
ETPUA25  
IRQ[13]  
DSPI_C_SCK_LV LVDS positive DSPI clock  
eTPU A channel  
P
001  
139  
140  
I/O  
I
O
VDDEH1  
Medium +  
LVDS  
— /  
WKPCFG  
— /  
M3  
L2  
L1  
External interrupt request  
A1 010  
A2 100  
G
WKPCFG  
DS+  
GPIO  
000  
I/O  
GPIO[139]  
ETPUA26  
IRQ[14]  
eTPU A channel  
External interrupt request  
P
001  
I/O  
I
O
VDDEH1  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
26  
25  
F3  
A1 010  
A2 100  
G
WKPCFG  
DSPI_C_SOUT_L LVDS negative DSPI data out  
VDS-  
GPIO  
000  
I/O  
GPIO[140]  
ETPUA27  
IRQ[15]  
eTPU A channel  
External interrupt request  
P
0001 141  
I/O  
I
O
VDDEH1  
Slow +  
LVDS  
— /  
WKPCFG  
— /  
G2  
A1 0010  
A2 0100  
A3 1000  
WKPCFG  
DSPI_C_SOUT_L LVDS positive DSPI data out  
VDS+  
DSPI_B_SOUT  
GPIO[141]  
DSPI data out  
GPIO  
O
G
0000  
I/O  
ETPUA28  
DSPI_C_PCS[1]  
RCH5_B  
eTPU A channel  
P
001  
142  
143  
144  
145  
I/O  
O
O
VDDEH1  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
24  
23  
22  
21  
F1  
F2  
E1  
E2  
M4  
L3  
L4  
K1  
DSPI C peripheral chip select  
Reaction channel 5B  
GPIO  
A1 010  
A2 100  
G
GPIO[142]  
000  
I/O  
ETPUA29  
DSPI_C_PCS[2]  
RCH5_C  
eTPU A channel  
P
001  
I/O  
O
O
VDDEH1  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI C peripheral chip select  
Reaction channel 5C  
GPIO  
A1 010  
A2 100  
G
GPIO[143]  
000  
I/O  
ETPUA30  
eTPU A channel  
P
001  
I/O  
O
O
VDDEH1  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI_C_PCS[3]  
ETPUA11_O8  
GPIO[144]  
DSPI C peripheral chip select  
eTPU A channel (output only)  
GPIO  
A1 010  
A2 100  
G
000  
I/O  
ETPUA31  
eTPU A channel  
P
001  
I/O  
O
O
VDDEH1  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
DSPI_C_PCS[4]  
ETPUA13_O8  
GPIO[145]  
DSPI C peripheral chip select  
eTPU A channel (output only)  
GPIO  
A1 010  
A2 100  
G
000  
I/O  
eMIOS  
EMIOS0  
eMIOS channel  
P
001  
179  
I/O  
O
O
VDDEH4  
Slow  
— / Up  
— / Up  
63  
T4  
AA12  
ETPUA0_O8  
ETPUA25_O8  
GPIO[179]  
eTPU A channel (output only)  
eTPU A channel (output only)  
GPIO  
A1 010  
A2 100  
G
000  
I/O  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
64  
208  
T5  
324  
EMIOS1  
eMIOS channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
180  
181  
I/O  
O
VDDEH4  
Slow  
— / Up  
— / Up  
— / Up  
— / Up  
W13  
Y13  
ETPUA1_O8  
GPIO[180]  
I/O  
EMIOS2  
eMIOS channel  
P
001  
I/O  
O
VDDEH4  
Slow  
65  
N7  
ETPUA2_O8  
RCH2_B  
eTPU A channel (output only)  
Reaction channel 2B  
GPIO  
A1 010  
A2 100  
O
GPIO[181]  
G
000  
I/O  
EMIOS3  
eMIOS channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
182  
183  
I/O  
O
I/O  
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
66  
67  
R6  
R5  
AA13  
AB13  
ETPUA3_O8  
GPIO[182]  
EMIOS4  
eMIOS channel  
P
001  
I/O  
O
O
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
ETPUA4_O8  
RCH2_C  
eTPU A channel (output only)  
Reaction channel 2C  
GPIO  
A1 010  
A2 100  
G
GPIO[183]  
000  
I/O  
EMIOS5  
eMIOS channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
184  
185  
186  
187  
I/O  
O
I/O  
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
Y14  
ETPUA5_O8  
GPIO[184]  
EMIOS6  
eMIOS channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
I/O  
O
I/O  
VDDEH4  
Slow  
— / Down  
— / Down  
— / Up  
— / Down  
— / Down  
— / Up  
68  
69  
70  
P7  
AA14  
AB14  
W15  
ETPUA6_O8  
GPIO[185]  
EMIOS7  
eMIOS channel  
eTPU A channel (output only)  
GPIO  
P
A1  
G
01  
10  
00  
I/O  
O
I/O  
VDDEH4  
Slow  
ETPUA7_O8  
GPIO[186]  
EMIOS8  
eMIOS channel  
eTPU A channel (output only)  
eSCI B TX  
P
001  
I/O  
O
O
VDDEH4  
Slow  
P8  
R7  
N8  
ETPUA8_O8  
SCI_B_TX  
GPIO[187]  
A1 010  
A2 100  
G
GPIO  
000  
I/O  
EMIOS9  
eMIOS channel  
eTPU A channel (output only)  
eSCI B RX  
P
001  
188  
189  
I/O  
O
I
VDDEH4  
Slow  
— / Up  
— / Up  
71  
73  
Y15  
ETPUA9_O8  
SCI_B_RX  
GPIO[188]  
A1 010  
A2 100  
G
GPIO  
000  
I/O  
EMIOS10  
DSPI_D_PCS[3]  
RCH3_B  
eMIOS channel  
P
001  
I/O  
O
O
VDDEH4  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
AA15  
DSPI D peripheral chip select  
Reaction channel 3B  
GPIO  
A1 010  
A2 100  
G
GPIO[189]  
000  
I/O  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
75  
208  
R8  
324  
EMIOS11  
eMIOS channel  
P
001  
190  
191  
I/O  
O
VDDEH4  
Medium  
— /  
WKPCFG  
— /  
AB15  
DSPI_D_PCS[4]  
RCH3_C  
GPIO[190]  
DSPI D peripheral chip select  
Reaction channel 3C  
GPIO  
A1 010  
A2 100  
G
WKPCFG  
O
I/O  
000  
EMIOS12  
eMIOS channel  
P
001  
I/O  
O
VDDEH4  
Medium  
— /  
WKPCFG  
— /  
76  
N10  
AB16  
DSPI_C_SOUT  
ETPUA27_O8  
GPIO[191]  
DSPI C data output  
eTPU A channel (output only)  
GPIO  
A1 010  
A2 100  
WKPCFG  
O
G
000  
I/O  
EMIOS13  
DSPI_D_SOUT  
GPIO[192]  
eMIOS channel  
DSPI D data output  
GPIO  
P
A1  
G
01  
10  
00  
192  
193  
I/O  
O
I/O  
VDDEH4  
Medium  
— /  
WKPCFG  
— /  
WKPCFG  
77  
78  
T8  
R9  
AA16  
Y16  
EMIOS14  
IRQ[0]  
eMIOS channel  
P
001  
I/O  
I
O
VDDEH4  
Slow  
— / Down  
— / Down  
— / Down  
— / Down  
External interrupt request  
eTPU A channel (output only)  
GPIO  
A1 010  
A2 100  
G
ETPUA29_O8  
GPIO[193]  
000  
I/O  
EMIOS15  
IRQ[1]  
GPIO[194]  
eMIOS channel  
External interrupt request  
GPIO  
P
A1  
G
01  
10  
00  
194  
I/O  
I
I/O  
VDDEH4  
Slow  
79  
T9  
W16  
EMIOS16  
GPIO[195]  
eMIOS channel  
GPIO  
P
G
01  
00  
195  
196  
197  
198  
199  
200  
201  
202  
I/O  
I/O  
VDDEH4  
Slow  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
— / Up  
W17  
Y17  
EMIOS17  
GPIO[196]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4  
Slow  
EMIOS18  
GPIO[197]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4  
Slow  
AA17  
AB17  
AB18  
AA18  
Y18  
EMIOS19  
GPIO[198]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
EMIOS20  
GPIO[199]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
EMIOS21  
GPIO[200]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4  
Slow  
— /  
WKPCFG  
— /  
WKPCFG  
EMIOS22  
GPIO[201]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4  
Slow  
— / Down  
— / Down  
EMIOS23  
GPIO[202]  
eMIOS channel  
GPIO  
P
G
01  
00  
I/O  
I/O  
VDDEH4  
Slow  
— / Down  
— / Down  
80  
R11  
W18  
Clock Synthesizer  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
93  
208  
P16  
324  
XTAL  
Crystal oscillator output  
P
01  
O
I
VDDEH6  
Analog  
V22  
U22  
AB9  
W10  
EXTAL  
EXTCLK  
Crystal oscillator input  
External clock input  
P
A
01  
10  
VDDEH6  
Analog  
92  
N16  
CLKOUT  
ENGCLK  
System clock output  
P
01  
229  
214  
O
O
VDDE5  
Fast  
CLKOUT  
ENGCLK  
Engineering clock output  
P
01  
VDDE5  
Fast  
T14  
Power / Ground  
VDDREG  
VRCCTL  
Voltage Regulator Supply  
I
5 V  
I / —  
VDDREG  
VRCCTL  
10  
K16  
N14  
F4  
F2  
Voltage Regulator Control  
Output  
O
O / —  
11  
VRC3320  
Internal regulator output  
O
3.3 V  
3.3 V  
5 V  
I/O / —  
VRC33  
13  
A15,D1, B1,  
N6, N12 M19, P11  
Input for external 3.3 V supply  
eQADC high reference voltage  
VDDA  
VSSA  
I
I
I / —  
I / —  
VDDA  
VSSA  
6
7
eQADC ground/low reference  
voltage  
VDDA021  
VSSA022  
eQADC high reference voltage  
I
I
5 V  
I / —  
I / —  
VDDA0  
VSSA0  
B11  
E3  
E2  
eQADC ground/low reference  
voltage  
A11  
VDDA121  
VSSA122  
eQADC high reference voltage  
I
I
5 V  
I / —  
I / —  
VDDA1  
VSSA1  
A4  
A5  
A6  
A7  
eQADC ground/low reference  
voltage  
VDDPLL  
VSTBY  
VDD  
FMPLL Supply Voltage  
I
I
I
1.2  
I / —  
I / —  
I / —  
VDDPLL  
VSTBY  
VDD  
91  
R16  
C1  
W22  
E4  
Power Supply for Standby RAM  
0.9 V - 6 V  
1.2 V  
12  
Core supply for input or  
decoupling  
33,  
45,  
62,  
B1, B16, A2, A20, A21,  
C2, D3, B3, C4, C22,  
E4, N5, D5, W20, Y4,  
103, P4, P13, Y21, AA3,  
132, R3,R14, AA22  
149, T2, T15  
176  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
324  
VDDE12  
External supply input for  
calibration bus interfaces  
I
I
I
1.8 V - 3.3 V  
1.8 V - 3.3 V  
1.8 V - 3.3 V  
I / —  
I / —  
I / —  
VDDE12  
VDDE224  
VDDE5  
VDDE223  
VDDE5  
External supply input for EBI  
interfaces  
M9, M10  
External supply input for  
ENGCLK, CLKOUT and EBI  
signals DATA[0:15]  
T13  
N11, W5, W8  
VDDE-EH  
External supply for EBI  
interfaces  
I
I
I
I
I
I
I
I
I
I
I
I
3.0 V - 5 V  
3.3 V - 5.0 V  
3.3 V - 5.0 V  
3.3 V - 5.0 V  
3.3 V - 5.0 V  
3.3 V - 5.0 V  
3.3 V - 5.0 V  
3.3 V - 5.0 V  
3.3 V - 5.0 V  
3.3 V - 5.0 V  
3.3 V - 5.0 V  
3.3 V - 5.0 V  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
I / —  
VDDE-EH  
VDDEH1A25  
VDDEH1B25  
VDDEH1AB25  
VDDEH426  
R3, V2  
VDDEH1A25  
VDDEH1B25  
VDDEH1AB25  
VDDEH426  
I/O Supply Input  
I/O Supply Input  
I/O Supply Input  
I/O Supply Input  
I/O Supply Input  
I/O Supply Input  
I/O Supply Input  
I/O Supply Input  
I/O Supply Input  
I/O Supply Input  
I/O Supply Input  
31  
41  
55  
74  
K4  
K4  
VDDEH4A26  
VDDEH4B26  
VDDEH4AB26  
VDDEH627  
VDDEH4A26  
VDDEH4B26  
VDDEH4AB26  
VDDEH627  
W14, AA19  
N9  
VDDEH6A27  
VDDEH6B27  
VDDEH6AB27  
VDDEH6A27  
VDDEH6B27  
VDDEH6AB27  
95  
110  
F13  
M22, U19  
Table 3. MPC5644A signal properties (continued)  
Status7  
Package pin #  
P
A
PCR  
I/O  
Type Pad Type6  
Voltage5 /  
Name  
Function1  
PA PCR4  
After  
Reset  
G2 Field3  
During Reset  
176  
208  
D12  
324  
VDDEH7  
I/O Supply Input  
I
3.3 V - 5.0 V  
I / —  
VDDEH7  
B22, C21,  
D15, D20,  
E19, F19,  
H19, J14  
VDDEH7A  
VDDEH7B  
VSS  
I/O Supply Input  
I/O Supply Input  
Ground  
I
I
I
3.3 V - 5.0 V  
3.3 V - 5.0 V  
I / —  
I / —  
I / —  
VDDEH7A  
VDDEH7B  
VSS  
125  
138  
15,  
29,  
43,  
57,  
72,  
90,  
94,  
96,  
A1, A16, A1, A22, B2,  
B2, B15, B21, C3, C20,  
C3,C14, D4, D17, D19,  
D4, D13, F21, H21, J9,  
G7, G8, J10, J11, J12,  
G9,  
G10,  
J13, K9, K10,  
K11, K12,  
H7, H8, K13, K14, L9,  
108, H9, H10, L10, L11, L12,  
115, J7, J8, L13, L14, L21,  
127, J9, J10, M11, M12,  
133, K7,  
M13, M14,  
140 K8, K9, N9, N10, N12,  
K10,  
M16,  
N13, N14,  
N21, P9, P10,  
N4,N13, P12, P13,  
P3, P14, P14, T19,  
R2,R15, T21, T22, W4,  
T1, T16 Y3, Y20,  
AA21, AB1,  
AB22  
1
2
For each pin in the table, each line in the Function column is a separate function of the pin. For all I/O pins the selection of primary pin function or  
secondary function or GPIO is done in the SIU except where explicitly noted. See the Signal details table for a description of each signal.  
The P/A/G column indicates the position a signal occupies in the muxing order for a pin—Primary, Alternate 1, Alternate 2, Alternate 3, or GPIO.  
Signals are selected by setting the PA field value in the appropriate PCR register in the SIU module. The PA field values are as follows: P - 0b0001,  
A1 - 0b0010, A2 - 0b0100, A3 - 0b1000, or G - 0b0000. Depending on the register, the PA field size can vary in length. For PA fields having fewer  
than four bits, remove the appropriate number of leading zeroes from these values.  
3
4
The Pad Configuration Register (PCR) PA field is used by software to select pin function.  
Values in the PCR No. column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR  
number. For example, PCR[190] refers to the SIU register named SIU_PCR190.  
5
The VDDE and VDDEH supply inputs are broken into segments. Each segment of slow I/O pins (VDDEH) may have a separate supply in the 3.3  
V to 5.0 V range (-10%/+5%). Each segment of fast I/O (VDDE) may have a separate supply in the 1.8 V to 3.3 V range (+/- 10%).  
6
7
See Table 4 for details on pad types.  
The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. Terminology is  
O - output, I - input, Up - weak pull up enabled, Down - weak pull down enabled, Low - output driven low, High - output driven high. A dash for the  
function in this column denotes that both the input and output buffer are turned off. The signal name to the left or right of the slash indicates the  
pin is enabled.  
8
9
Output only.  
When used as ETRIG, this pin must be configured as an input. For GPIO it can be configured either as an input or output.  
10 Maximum frequency is 50 kHz.  
11 The SIU_PCR219 register is unusual in that it controls pads for two separate device pins: GPIO[219] and MCKO. See the MPC5644A  
Microcontroller Reference Manual (SIU chapter) for details.  
12 Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function is selected, otherwise they are high swing.  
13 On 176 LQFP and 208 MAPBGA packages, this pin is tied low internally.  
14 Nexus multivoltage pads default to 5 V operation until the Nexus module is enabled.  
15 EVTO should be clamped to 3.3 V to prevent possible damage to external tools that only support 3.3 V.  
16 Do not connect pin directly to a power supply or ground.  
17 This signal name is used to support legacy naming.  
18 During and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are  
disabled when the system clock propagates through the device.  
19 For pins AN12-AN15, if the analog features are used the VDDEH7 input pins should be tied to VDDA because that segment must meet the VDDA  
specification to support analog input function.  
20 Do not use VRC33 to drive external circuits.  
21 VDDA0 and VDDA1 are shorted together internally in BGA packages. In the QFP package the two pads are double bonded on one pin called  
VDDA.  
22 VSSA0 and VSSA1 are shorted together internally in BGA packages. In the QFP package the two pads are double bonded on one pin called VSSA.  
23  
VDDE2 and VDDE3 are shorted together in all production packages.  
24  
VDDE2 and VDDE3 are shorted together in all production packages.  
25 VDDEH1A, VDDEH1B, and VDDEH1AB are shorted together in all production packages. The separation of the signal names is present to support  
legacy naming, however they should be considered as the same signal in this document.  
26 VDDEH4, VDDEH4A, VDDEH4B, and VDDEH4AB are shorted together in all production packages. The separation of the signal names is present  
to support legacy naming, however they should be considered as the same signal in this document.  
27 VDDEH6, VDDEH6A, VDDEH6B, and VDDEH6AB are shorted together in all production packages. The separation of the signal names is present  
to support legacy naming, however they should be considered as the same signal in this document.  
Table 4. Pad types  
Pad Type  
Name  
I/O Voltage Range  
Slow  
Medium  
Fast  
pad_ssr_hv  
pad_msr_hv  
pad_fc  
3.0V - 5.5 V  
3.0 V - 5.5 V  
3.0 V - 3.6 V  
MultiV1,2  
pad_multv_hv  
3.0 V - 5.5 V (high swing mode)  
3.0 V - 3.6 V (low swing mode)  
Analog  
LVDS  
pad_ae_hv  
pad_lo_lv  
0.0 - 5.5 V  
1
2
Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function  
is selected, otherwise they are high swing.  
VDDEH7 supply cannot be below 4.5 V when in low-swing mode.  
2.5  
Signal details  
Table 5. Signal details  
Signal  
Module or Function  
Description  
CLKOUT  
ENGCLK  
EXTAL  
Clock Generation  
Clock Generation  
Clock Generation  
MPC5644A clock output for the external/calibration bus interface  
Clock for external ASIC devices  
Input pin for an external crystal oscillator or an external clock  
source based on the value driven on the PLLREF pin at reset.  
PLLREF  
Clock Generation  
Reset/Configuration  
PLLREF is used to select whether the oscillator operates in xtal  
mode or external reference mode from reset. PLLREF=0 selects  
external reference mode. On the 324BGA package, PLLREF is  
bonded to the ball used for PLLCFG[0] for compatibility with  
MPC55xx devices .  
For the 176-pin QFP and 208-ball BGA packages:  
0: External reference clock is selected.  
1: XTAL oscillator mode is selected  
For the 324 ball BGA package:  
If RSTCFG is 0:  
0: External reference clock is selected.  
1: XTAL oscillator mode is selected.  
If RSTCFG is 1, XTAL oscillator mode is selected.  
Crystal oscillator input  
XTAL  
Clock Generation  
DSPI  
DSPI_B_SCK_LVDS-  
DSPI_B_SCK_LVDS+  
LVDS pair used for DSPI_B TSB mode transmission  
DSPI_B_SOUT_LVDS- DSPI  
DSPI_B_SOUT_LVDS+  
LVDS pair used for DSPI_B TSB mode transmission  
LVDS pair used for DSPI_C TSB mode transmission  
DSPI_C_SCK_LVDS-  
DSPI_C_SCK_LVDS+  
DSPI  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
57  
Table 5. Signal details (continued)  
Module or Function Description  
Signal  
DSPI_C_SOUT_LVDS- DSPI  
DSPI_C_SOUT_LVDS+  
LVDS pair used for DSPI_C TSB mode transmission  
PCS_B[0]  
PCS_C[0]  
PCS_D[0]  
DSPI_B - DSPI_D  
Peripheral chip select when device is in master mode—slave  
select when used in slave mode  
PCS_B[1:5]  
PCS_C[1:5]  
PCS_D[1:5]  
DSPI_B - DSPI_D  
DSPI_B - DSPI_D  
DSPI_B - DSPI_D  
DSPI_B - DSPI_D  
EBI  
Peripheral chip select when device is in master mode—not used  
in slave mode  
SCK_B  
SCK_C  
SCK_D  
DSPI clock—output when device is in master mode; input when  
in slave mode  
SIN_B  
SIN_C  
SIN_D  
DSPI data in  
SOUT_B  
SOUT_C  
SOUT_D  
DSPI data out  
ADDR[10:31]  
The ADDR[10:31] signals specify the physical address of the  
bus transaction.  
The 26 address lines correspond to bits 3-31 of the EBI’s 32-bit  
internal address bus.  
ADDR[15:31] can be used as Address and Data signals when  
configured appropriately for a multiplexed external bus. This  
allows 32-bit data operations, or 16-bit data operations without  
using DATA[0:15] signals.  
ALE  
EBI  
The Address Latch Enable (ALE) signal is used to demultiplex  
the address from the data bus. It is asserted while the least  
significant 16 bits of the address are present in the multiplexed  
address/data bus.  
BDIP  
EBI  
EBI  
BDIP is asserted to indicate that the master is requesting  
another data beat following the current one.  
CS[0:3]  
CSx is asserted by the master to indicate that this transaction is  
targeted for a particular memory bank on the Primary external  
bus.  
DATA[0:31]  
OE  
EBI  
EBI  
The DATA[0:31] signals contain the data to be transferred for the  
current transaction.  
OE is used to indicate when an external memory is permitted to  
drive back read data. External memories must have their data  
output buffers off when OE is negated. OE is only asserted for  
chip-select accesses.  
RD_WR  
EBI  
RD_WR indicates whether the current transaction is a read  
access or a write access.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
58  
Freescale Semiconductor  
Table 5. Signal details (continued)  
Signal  
Module or Function  
EBI  
Description  
TA  
TA is asserted to indicate that the slave has received the data  
(and completed the access) for a write cycle, or returned data for  
a read cycle. If the transaction is a burst read, TA is asserted for  
each one of the transaction beats. For write transactions, TA is  
only asserted once at access completion, even if more than one  
write data beat is transferred.  
TS  
EBI  
EBI  
EBI  
The Transfer Start signal (TS) is asserted by the MPC5644A to  
indicate the start of a transfer.  
WE[2:3]  
Write enables are used to enable program operations to a  
particular memory. WE[2:3] are only asserted for write accesses  
WE[0:3]/BE[0:3]  
Write enables are used to enable program operations to a  
particular memory. These signals can also be used as byte  
enables for read and write operation by setting the WEBS bit in  
the appropriate EBI Base Register (EBI_BRn). WE[0:3] are only  
asserted for write accesses. BE[0:3] are asserted for both read  
and write accesses  
eMIOS[0:23]  
AN[0:39]  
FCK  
eMIOS  
eQADC  
eQADC  
eQADC  
eMIOS I/O channels  
Single-ended analog inputs for analog-to-digital converter  
eQADC free running clock for eQADC SSI.  
MA[0:2]  
These three control bits are output to enable the selection for an  
external Analog Mux for expansion channels.  
REFBYPC  
SDI  
eQADC  
Bypass capacitor input  
Serial data in  
eQADC  
SDO  
eQADC  
Serial data out  
SDS  
eQADC  
Serial data select  
VRH  
eQADC  
Voltage reference high input  
Voltage reference low input  
eSCI receive  
VRL  
eQADC  
SCI_A_RX  
SCI_B_RX  
SCI_C_RX  
eSCI_A - eSCI_C  
SCI_A_TX  
SCI_B_TX  
SCI_C_TX  
eSCI_A - eSCI_C  
eTPU  
eSCI transmit  
ETPU_A[0:31]  
eTPU I/O channel  
RCH0_[A:C]  
RCH1_[A:C]  
RCH2_[A:C]  
RCH3_[A:C]  
RCH4_[A:C]  
RCH5_[A:C]  
eTPU2  
Reaction Module  
eTPU2 reaction channels. Used to control external actuators,  
e.g., solenoid control for direct injection systems and valve  
control in automatic transmissions  
TCRCLKA  
eTPU2  
Input clock for TCR time base  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
59  
Table 5. Signal details (continued)  
Module or Function Description  
Signal  
CAN_A_TX  
CAN_B_TX  
CAN_C_TX  
FlexCan_A -  
FlexCAN_C  
FlexCAN transmit  
CAN_A_RX  
CAN_B_RX  
CAN_C_RX  
FlexCAN_A -  
FlexCAN_C  
FlexCAN receive  
FR_A_RX  
FR_B_RX  
FlexRay  
FlexRay  
FlexRay  
FlexRay receive (Channels A, B)  
FlexRay transmit enable (Channels A, B)  
Flexray transmit (Channels A, B)  
FR_A_TX_EN  
FR_B_TX_EN  
FR_A_TX  
FR_B_TX  
JCOMP  
TCK  
JTAG  
JTAG  
JTAG  
JTAG  
JTAG  
Nexus  
Enables the JTAG TAP controller.  
Clock input for the on-chip test logic.  
TDI  
Serial test instruction and data input for the on-chip test logic.  
Serial test data output for the on-chip test logic.  
Controls test mode operations for the on-chip test logic.  
TDO  
TMS  
EVTI  
EVTI is an input that is read on the negation of RESET to enable  
or disable the Nexus Debug port. After reset, the EVTI pin is  
used to initiate program synchronization messages or generate  
a breakpoint.  
EVTO  
Nexus  
Nexus  
Nexus  
Output that provides timing to a development tool for a single  
watchpoint or breakpoint occurrence.  
MCKO  
MCKO is a free running clock output to the development tools  
which is used for timing of the MDO and MSEO signals.  
MDO[0:11]1  
Trace message output to development tools. This pin also  
indicates the status of the crystal oscillator clock following a  
power-on reset, when MDO[0] is driven high until the crystal  
oscillator clock achieves stability and is then negated.  
MSEO[0:1]1  
RDY  
Nexus  
Nexus  
Output pin—Indicates the start or end of the variable length  
message on the MDO pins  
Nexus Ready Output (RDY) is an output that indicates to the  
development tools the data is ready to be read from or written to  
the Nexus read/write access registers.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
60  
Freescale Semiconductor  
Table 5. Signal details (continued)  
Signal  
Module or Function  
SIU - Configuration  
Description  
BOOTCFG[0:1]  
Two BOOTCFG signals are implemented in MPC5644A MCUs.  
The BAM program uses the BOOTCFG0 bit to determine where  
to read the reset configuration word, and whether to initiate a  
FlexCAN or eSCI boot.  
The BOOTCFG1 pin is sampled during the assertion of the  
RSTOUT signal, and the value is used to update the RSR and  
the BAM boot mode  
See the MPC5644A Microcontroller Reference Manual for more  
information.  
The following values are for BOOTCFG[0:1}:  
00:Boot from internal flash memory  
01:FlexCAN/eSCI boot  
10:Boot from external memory using EBI  
11:Reserved  
Note: For the 176-pin QFP and 208-ball BGA packages  
BOOTCFG[0] is always 0 since the EBI interface is not available.  
WKPCFG  
SIU - Configuration  
The WKPCFG pin is applied at the assertion of the internal reset  
signal (assertion of RSTOUT), and is sampled 4 clock cycles  
before the negation of the RSTOUT pin.  
The value is used to configure whether the eTPU and eMIOS  
pins are connected to internal weak pull up or weak pull down  
devices after reset. The value latched on the WKPCFG pin at  
reset is stored in the Reset Status Register (RSR), and is  
updated for all reset sources except the Debug Port Reset and  
Software External Reset.  
0: Weak pulldown applied to eTPU and eMIOS pins at reset  
1: Weak pullup applied to eTPU and eMIOS pins at reset.  
ETRIG[2:3]  
SIU - eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx  
SIU - eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx  
GPIO[206] ETRIG0  
(Input)  
GPIO[207] ETRIG1  
(Input)  
SIU - eQADC Triggers External signal eTRIGx triggers eQADC CFIFOx  
IRQ[0:5]  
SIU - External Interrupts The IRQ[0:15] pins connect to the SIU IRQ inputs. IMUX Select  
IRQ[7:15]  
Register 1 is used to select the IRQ[0:15] pins as inputs to the  
IRQs.  
See the MPC5644A Microcontroller Reference Manual for more  
information.  
NMI  
SIU - External Interrupts Non-Maskable Interrupt  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
61  
Table 5. Signal details (continued)  
Signal  
GPIO[0:3]  
Module or Function  
Description  
SIU - GPIO  
SIU - Reset  
SIU - Reset  
SIU - Reset  
Configurable general purpose I/O pins. Each GPIO input and  
output is separately controlled by an 8-bit input (GPDI) or output  
(GPDO) register. Additionally, each GPIO pins is configured  
using a dedicated SIU_PCR register.  
GPIO[8:43]  
GPIO[62:65]  
GPIO[68:70]  
GPIO[75:145]  
GPIO[179:204]  
GPIO[208:213]  
GPIO[219]  
The GPIO pins are generally multiplexed with other I/O pin  
functions.  
GPIO[244:245]  
See The MPC5644A Microcontroller Reference Manual for more  
information.  
RESET  
The RESET pin is an active low input. The RESET pin is  
asserted by an external device during a power-on or external  
reset. The internal reset signal asserts only if the RESET pin  
asserts for 10 clock cycles. Assertion of the RESET pin while the  
device is in reset causes the reset cycle to start over.  
The RESET pin has a glitch detector which detects spikes  
greater than two clock cycles in duration that fall below the  
switch point of the input buffer logic of the VDDEH input pins.  
The switch point lies between the maximum VIL and minimum  
VIH specifications for the VDDEH input pins.  
RSTCFG  
Used to enable or disable the PLLREF and the BOOTCFG[0:1]  
configuration signals.  
0: Get configuration information from BOOTCFG[0:1] and  
PLLREF  
1: Use default configuration of booting from internal flash with  
crystal clock source  
Note: For the 176-pin QFP and 208-ball BGA packages  
RSTCFG is always 0, so PLLREF and BOOTCFG signals  
are used.  
RSTOUT  
The RSTOUT pin is an active low output that uses a push/pull  
configuration. The RSTOUT pin is driven to the low state by the  
MCU for all internal and external reset sources. There is a delay  
between initiation of the reset and the assertion of the RSTOUT  
pin.  
1
Do not connect pin directly to a power supply or ground.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
62  
Freescale Semiconductor  
Table 6. Power/ground segmentation  
Power Segment  
Voltage  
I/O Pins Powered by Segment  
VDDE2  
VDDE3  
VDDE5  
1.8 V - 3.3 V  
1.8 V - 3.3 V  
1.8 V - 3.3 V  
CS0, CS1, CS2, CS3,RD_WR, BDIP, WE0, WE1, OE, TS, TA  
ADDR12, ADDR13, ADDR14, ADDR15  
DATA0, DATA1, DATA2, DATA3, DATA4, DATA5, DATA6,  
DATA7, DATA8, DATA9, DATA10, DATA11, DATA12, DATA13,  
DATA14, DATA15, CLKOUT, ENGCLK  
VDDE12  
1.8 V - 3.3 V  
CAL_CS0, CAL_CS2, CAL_CS3 CAL_ADDR12,  
CAL_ADDR13, CAL_ADDR14, CAL_ADDR15,  
CAL_ADDR16, CAL_ADDR17, CAL_ADDR18,  
CAL_ADDR19, CAL_ADDR20, CAL_ADDR21,  
CAL_ADDR22, CAL_ADDR23, CAL_ADDR24,  
CAL_ADDR25, CAL_ADDR26, CAL_ADDR27,  
CAL_ADDR28, CAL_ADDR29, CAL_ADDR30, CAL_DATA0,  
CAL_DATA1, CAL_DATA2, CAL_DATA3, CAL_DATA4,  
CAL_DATA5, CAL_DATA6, CAL_DATA7, CAL_DATA8,  
CAL_DATA9, CAL_DATA10, CAL_DATA11, CAL_DATA12,  
CAL_DATA13, CAL_DATA14, CAL_DATA15, CAL_RD_WR,  
CAL_WE0, CAL_WE1, CAL_OE, CAL_TS  
VDDE-EH  
VDDEH1  
3.0 V - 5 V  
ADDR16, ADDR17, ADDR18, ADDR19, ADDR20, ADDR21,  
ADDR22, ADDR23, ADDR24, ADDR25, ADDR26, ADDR27,  
ADDR28, ADDR29, ADDR30, ADDR31  
3.3 V - 5.0 V  
ETPUA10, ETPUA11, ETPUA12, ETPUA13, ETPUA14,  
ETPUA15, ETPUA16, ETPUA17, ETPUA18, ETPUA19,  
ETPUA20, ETPUA21, ETPUA22, ETPUA23, ETPUA24,  
ETPUA25, ETPUA26, ETPUA27, ETPUA28, ETPUA29,  
ETPUA30, ETPUA31  
VDDEH4  
VDDEH6  
3.3 V - 5.0 V  
EMIOS0, EMIOS1, EMIOS2, EMIOS3, EMIOS4, EMIOS5,  
EMIOS6, EMIOS7, EMIOS8, EMIOS9, EMIOS10, EMIOS11,  
EMIOS12, EMIOS13, EMIOS14, EMIOS15, EMIOS16,  
EMIOS17, EMIOS18, EMIOS19, EMIOS20, EMIOS21,  
EMIOS22, EMIOS23, TCRCLKA, ETPUA0, ETPUA1,  
ETPUA2, ETPUA3, ETPUA4, ETPUA5, ETPUA6, ETPUA7,  
ETPUA8, ETPUA9, ETPUA0  
3.3 V - 5.0 V  
RESET, RSTOUT, PLLREF, PLLCFG1, RSTCFG,  
BOOTCFG0, BOOTCFG1, WKPCFG, CAN_A_TX,  
CAN_A_RX, CAN_B_TX, CAN_B_RX, CAN_C_TX,  
CAN_C_RX, SCI_A_TX, SCI_A_RX, SCI_B_TX, SCI_C_RX,  
DSPI_B_SCK, DSPI_B_SIN, DSPI_B_SOUT,  
DSPI_B_PCS[0], DSPI_B_PCS[1], DSPI_B_PCS[2],  
DSPI_B_PCS[3], DSPI_B_PCS[4], DSPI_B_PCS[5],  
SCI_B_RX, SCI_C_TX, EXTAL, XTAL  
VDDEH7  
3.3 V - 5.0 V  
EMIOS14, EMIOS 15, GPIO98, GPIO99, GPIO203, GPIO204,  
GPIO206, GPIO207, GPIO219, EVTI, EVTO, MDO4, MDO5,  
MDO6, MDO7, MDO8, MDO9, MDO10, MDO11, MSEO0,  
MSEO1, RDY, TCK, TDI, TDO, TMS, JCOMP, DSPI_A_SCK,  
DSPI_A_SIN, DSPI_A_SOUT, DSPI_A_PCS[0],  
DSPI_A_PCS[1], DSPI_A_PCS[4], DSPI_A_PCS[5],  
AN12-SDS, AN13-SDO, AN14-SDI, AN15-FCK  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
63  
Table 6. Power/ground segmentation  
Voltage I/O Pins Powered by Segment  
Power Segment  
VDDA  
5 V  
AN0, AN1, AN2, AN3, AN4, AN5, AN6, AN7, AN8, AN9, AN10,  
AN11, AN16, AN17, AN18, AN19, AN20, AN21, AN22, AN23,  
AN24, AN25, AN26, AN27, AN28, AN29, AN30, AN31, AN32,  
AN33, AN34, AN35, AN36, AN37, AN38, AN39, VRH, VRL,  
REFBYBC  
VRC331  
3.3 V  
MCKO, MDO0, MDO1, MDO2, MDO3  
Other Power Segments  
VDDREG  
VRCCTL  
VDDPLL  
VSTBY  
5 V  
1.2 V  
0.95–1.2 V  
(unregulated mode)  
2.0–5.5 V  
(regulated mode)  
VSS  
1
Do not use VRC33 to drive external circuits.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
64  
Freescale Semiconductor  
3
Electrical characteristics  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications for the MPC5644A series of MCUs.  
The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon  
these specifications will be met. Finalized specifications will be published after complete characterization and device  
qualifications have been completed.  
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller  
Characteristics is included in the Symbol column.  
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol  
“SR” for System Requirement is included in the Symbol column.  
3.1  
Parameter classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables where  
appropriate.  
Table 7. Parameter classifications  
Classification tag  
Tag description  
P
C
Those parameters are guaranteed during production testing on each individual device.  
Those parameters are achieved by the design characterization by measuring a statistically  
relevant sample size across process variations.  
T
Those parameters are achieved by design characterization on a small sample size from typical  
devices under typical conditions unless otherwise noted. All values shown in the typical column  
are within this category.  
D
Those parameters are derived mainly from simulations.  
NOTE  
The classification is shown in the column labeled “C” in the parameter tables where  
appropriate.  
3.2  
Maximum ratings  
1
Table 8. Absolute maximum ratings  
Value  
Symbol  
Parameter  
Conditions  
Unit  
min  
max  
VDD  
SR 1.2 V core supply voltage2  
SR Flash core voltage3,4  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
1.32  
3.6  
6
V
V
V
V
V
VFLASH  
VSTBY  
VDDPLL  
VRC33  
SR SRAM standby voltage5  
SR Clock synthesizer voltage  
1.32  
3.6  
SR Voltage regulator control  
input voltage4  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
65  
 
1
Table 8. Absolute maximum ratings (continued)  
Value  
max  
Symbol  
Parameter  
Conditions  
Unit  
min  
VDDA  
SR Analog supply voltage5  
SR I/O supply voltage4,6  
SR I/O supply voltage5  
SR DC input voltage7  
Reference to VSSA  
–0.3  
–0.3  
–0.3  
–1.08  
5.5  
3.6  
5.5  
V
V
V
V
VDDE  
VDDEH  
VIN  
VDDEH powered I/O pads  
VDDEH  
+ 0.3 V9  
VDDE powered I/O pads  
–1.010  
VDDE  
+
0.3 V10  
VDDA powered I/O pads  
Reference to VRL  
–1.0  
–0.3  
5.5  
VDDREG  
SR Voltage regulator supply  
voltage  
5.5  
V
V
VRH  
SR Analog reference high  
voltage  
–0.3  
5.5  
V
SS – VSSA  
SR VSS differential voltage  
SR VREF differential voltage  
–0.1  
–0.3  
–0.3  
0.1  
5.5  
0.3  
V
V
V
V
RH – VRL  
VRL – VSSA  
SR VRL to VSSA differential  
voltage  
V
SSPLL – VSS SR VSSPLL to VSS differential  
–0.1  
–3  
0.1  
3
V
voltage  
IMAXD  
IMAXA  
TJ  
SR Maximum DC digital input  
current11  
Per pin, applies to all  
digital pins  
mA  
mA  
oC  
SR Maximum DC analog input  
current12  
Per pin, applies to all  
analog pins  
5
SR Maximum operating  
temperature range - die  
junction temperature  
–40.0  
150.0  
TSTG  
TSDR  
SR Storage temperature range  
–55.0  
150.0  
260.0  
oC  
oC  
SR Maximum solder  
temperature13  
MSL  
SR Moisture sensitivity level14  
3
1
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are  
stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima  
may affect device reliability or cause permanent damage to the device.  
2
3
Allowed 2 V for 10 hours cumulative time, remaining time at 1.2 V +10%.  
The VFLASH supply is connected to VRC33 in the package substrate. This specification applies to calibration  
package devices only.  
4
5
Allowed 5.3 V for 10 hours cumulative time, remaining time at 3.3 V +10%.  
Allowed 5.9 V for 10 hours cumulative time, remaining time at 5 V +10%.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
66  
Freescale Semiconductor  
 
 
6
7
All functional non-supply I/O pins are clamped to VSS and VDDE, or VDDEH  
.
AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative  
duration of 60 hours over the complete lifetime of the device (injection current not limited for this duration).  
8
9
Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met.  
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDEH  
supplies, if the maximum injection current specification is met (2 mA for all pins) and VDDEH is within the  
operating voltage specifications.  
10 Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies,  
if the maximum injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage  
specifications.  
11 Total injection current for all pins (including both digital and analog) must not exceed 25 mA.  
12 Total injection current for all analog input pins must not exceed 15 mA.  
13 Solder profile per IPC/JEDEC J-STD-020D.  
14 Moisture sensitivity per JEDEC test method A112.  
3.3  
Thermal characteristics  
1
Table 9. Thermal characteristics for 176-pin QFP  
Symbol  
RJA  
C
Parameter  
Conditions  
Value  
Unit  
CC D Junction-to-Ambient, Natural Convection2  
CC D Junction-to-Ambient, Natural Convection2  
CC D Junction-to-Moving-Air, Ambient2  
Single layer board - 1s  
Four layer board - 2s2p  
38  
31  
30  
°C/W  
°C/W  
°C/W  
RJA  
RJMA  
200 ft./min., single layer  
board - 1s  
RJMA  
CC D Junction-to-Moving-Air, Ambient2  
at 200 ft./min., four layer  
board - 2s2p  
25  
°C/W  
RJB  
RJCtop  
JT  
CC D Junction-to-Board3  
CC D Junction-to-Case4  
20  
5
°C/W  
°C/W  
°C/W  
CC D Junction-to-Package Top, Natural  
Convection5  
2
1
2
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board  
meets JEDEC specification for this package.  
3
4
5
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package.  
Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.  
Thermal characterization parameter indicating the temperature difference between the package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JT.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
67  
1
Table 10. Thermal characteristics for 208-pin MAPBGA  
Symbol  
RJA  
C
Parameter  
CC D Junction-to-Ambient, Natural Convection2,3 One layer board - 1s  
CC D Junction-to-Ambient, Natural Convection2,4 Four layer board - 2s2p  
Conditions  
Value  
Unit  
39  
24  
31  
°C/W  
°C/W  
°C/W  
RJA  
RJMA  
CC D Junction-to-Moving-Air, Ambient2,4  
at 200 ft./min., one layer  
board  
RJMA  
CC D Junction-to-Moving-Air, Ambient2,4  
at 200 ft./min., four layer  
board 2s2p  
20  
°C/W  
RJB  
RJC  
JT  
CC D Junction-to-board5  
Four layer board - 2s2p  
13  
6
°C/W  
°C/W  
°C/W  
CC D Junction-to-case6  
CC D Junction-to-package top natural convection7  
2
1
2
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
3
4
5
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
6
7
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate  
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter  
is written as Psi-JT.  
1
Table 11. Thermal characteristics for 324-pin TEPBGA  
Symbol  
RJA  
C
Parameter  
Conditions  
Value  
Unit  
CC D Junction-to-Ambient, Natural Convection2  
CC D Junction-to-Ambient, Natural Convection2  
CC D Junction-to-Moving-Air, Ambient2  
Single layer board - 1s  
Four layer board - 2s2p  
29  
19  
23  
°C/W  
°C/W  
°C/W  
RJA  
RJMA  
at 200 ft./min., single layer  
board  
RJMA  
CC D Junction-to-Moving-Air, Ambient2  
at 200 ft./min., four layer  
board 2s2p  
16  
°C/W  
RJB  
RJCtop  
JT  
CC D Junction-to-Board3  
CC D Junction-to-Case4  
10  
7
°C/W  
°C/W  
°C/W  
CC D Junction-to-Package Top, Natural  
Convection5  
2
1
2
Thermal characteristics are targets based on simulation that are subject to change per device characterization.  
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board  
meets JEDEC specification for this package.  
3
4
Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC  
specification for the specified package.  
Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate  
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
68  
Freescale Semiconductor  
 
5
Thermal characterization parameter indicating the temperature difference between the package top and the  
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization  
parameter is written as Psi-JT.  
3.3.1  
General notes for specifications at maximum junction temperature  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
* P )  
Eqn. 1  
J
A
JA  
D
where:  
o
T = ambient temperature for the package ( C)  
A
o
R
= junction-to-ambient thermal resistance ( C/W)  
JA  
P = power dissipation in the package (W)  
D
The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for  
estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a  
four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance  
is not a constant. The thermal resistance depends on the:  
Construction of the application board (number of planes)  
Effective size of the board which cools the component  
Quality of the thermal and electrical connections to the planes  
Power dissipated by adjacent components  
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package  
to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance  
between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.  
As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit  
board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:  
One oz. (35 micron nominal thickness) internal planes  
Components are well separated  
2
Overall power dissipation on the board is less than 0.02 W/cm  
The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the  
ambient temperature varies widely within the application. For many natural convection and especially closed box applications,  
the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the  
device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
* P )  
Eqn. 2  
J
B
JB  
D
where:  
o
T = board temperature for the package perimeter ( C)  
B
o
R
= junction-to-board thermal resistance ( C/W) per JESD51-8S  
JB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction  
temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to  
a board with internal planes.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
69  
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal  
resistance:  
R
= R  
+ R  
CA  
Eqn. 3  
JA  
JC  
where:  
o
R
R
R
= junction-to-ambient thermal resistance ( C/W)  
JA  
JC  
CA  
o
= junction-to-case thermal resistance ( C/W)  
o
= case to ambient thermal resistance ( C/W)  
R
is device related and is not affected by other factors. The thermal environment can be controlled to change the  
JC  
case-to-ambient thermal resistance, R  
. For example, change the air flow around the device, add a heat sink, change the  
CA  
mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding  
the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat  
sink to ambient. For most packages, a better model is required.  
A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the  
junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a  
substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the  
thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple  
estimations and for computational fluid dynamics (CFD) thermal models.  
To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization  
parameter () to determine the junction temperature by measuring the temperature at the top center of the package case using  
JT  
the following equation:  
T = T + (x P )  
Eqn. 4  
J
T
JT  
D
where:  
o
T = thermocouple temperature on top of the package ( C)  
T
o
= thermal characterization parameter ( C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests  
on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from  
the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling  
effects of the thermocouple wire.  
References:  
Semiconductor Equipment and Materials International  
3081 Zanker Road  
San Jose, CA 95134  
USA  
(408) 943-6900  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or  
303-397-7956.  
JEDEC specifications are available on the WEB at http://www.jedec.org.  
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine  
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.  
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications”, Electronic  
Packaging and Production, pp. 53-58, March 1998.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
70  
Freescale Semiconductor  
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application  
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.  
3.4  
EMI (electromagnetic interference) characteristics  
1
Table 12. EMI Testing Specifications  
Frequency  
Range  
Level  
(Max)  
Symbol  
Radiated  
emissions,  
electric field  
Parameter  
Conditions  
Clocks  
Unit  
VRE_TEM  
VDDREG = 5.25 V;  
TA = 25 °C  
16 MHz crystal 150 kHz – 50 MHz  
20  
20  
26  
26  
K
dBV  
40 MHz bus  
No PLL frequency  
50 – 150 MHz  
150 kHz – 30 MHz  
RBW 9 kHz, Step  
Size 5 kHz  
modulation  
150 – 500 MHz  
500 – 1000 MHz  
IEC Level  
30 MHz – 1 GHz -  
RBW 120 kHz, Step  
Size 80 kHz  
SAE Level  
3
16 MHz crystal 150 kHz– 50 MHz  
40 MHz bus  
50 – 150 MHz  
±2% PLL  
13  
13  
11  
13  
L
dBV  
frequency  
modulation  
150 – 500 MHz  
500 – 1000 MHz  
IEC Level  
SAE Level  
2
1
EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03 and IEC 61967-2.  
3.5  
Electrostatic discharge (ESD) characteristics  
1,2  
Table 13. ESD ratings  
Symbol  
Parameter  
Conditions  
Value  
Unit  
SR  
SR  
SR  
SR  
ESD for Human Body Model (HBM)  
HBM circuit description  
2000  
1500  
100  
500  
750  
1
V
R1  
C
pF  
V
ESD for field induced charge Model  
(FDCM)  
All pins  
Corner pins  
SR  
Number of pulses per pin  
Positive pulses (HBM)  
Negative pulses (HBM)  
1
SR  
Number of pulses  
1
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated  
Circuits.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
71  
2
Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification  
requirements, which includes the complete DC parametric and functional testing at room temperature and hot  
temperature.”  
3.6  
Power management control (PMC) and power on reset (POR)  
electrical specifications  
Table 14. PMC Operating Conditions and External Regulators Supply Voltage  
ID  
Name  
Parameter  
Min  
Typ  
Max  
Unit  
1
2
3
Jtemp SR — Junction temperature  
–40  
4.75  
1.262  
27  
5
150  
5.25  
1.32  
°C  
V
Vddreg  
Vdd  
SR — PMC 5 V supply voltage VDDREG  
SR — Core supply voltage 1.2 V VDD when external  
regulator is used without disabling the internal  
regulator (PMC unit turned on, LVI monitor  
active)1  
1.3  
V
3a  
SR — Core supply voltage 1.2 V VDD when external  
regulator is used with a disabled internal  
regulator (PMC unit turned-off, LVI monitor  
disabled)  
1.14  
1.2  
1.32  
V
4
5
Ivdd  
SR — Voltage regulator core supply maximum  
required DC output current  
400  
3.3  
mA  
V
Vdd33  
SR — Regulated 3.3 V supply voltage when external  
regulator is used without disabling the internal  
regulator (PMC unit turned-on, internal 3.3V  
regulator enabled, LVI  
3.45  
3.6  
monitor active)3  
5a  
6
SR — Regulated 3.3 V supply voltage when external  
regulator is used with a disabled internal  
regulator (PMC unit turned-off, LVI monitor  
disabled)  
3
3.3  
3.6  
V
SR — Voltage regulator 3.3 V supply maximum  
required DC output current  
80  
mA  
1
2
3
An internal regulator controller can be used to regulate core supply.  
The minimum supply required for the part to exit reset and enter in normal run mode is 1.28 V.  
An internal regulator can be used to regulate 3.3 V supply.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
72  
Freescale Semiconductor  
Table 15. PMC Electrical Characteristics  
ID  
Name  
VBG  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
1
CC C Nominal bandgap voltage  
reference  
1.219  
V
1a  
1b  
CC  
CC  
P
Untrimmed bandgap  
reference voltage  
VBG - 7%  
VBG  
VBG  
Vbg + 6%  
V
V
P
Trimmed bandgap  
reference voltage (5 V,  
27 °C)  
VBG  
-10mV  
VBG +  
10mV  
1c  
1d  
2
CC C Bandgap reference  
temperature variation  
100  
3000  
1.28  
ppm  
/°C  
CC C Bandgap reference supply  
voltage variation  
ppm  
/V  
Vdd  
CC C Nominal VDD core supply  
internal regulator target DC  
output voltage1  
V
2a  
2b  
CC  
P
Nominal VDD core supply  
internal regulator target DC  
output voltage variation at  
power-on reset  
Vdd - 6%  
Vdd  
Vdd  
Vdd + 10%  
Vdd + 3%  
V
CC  
P
Nominal VDD core supply  
internal regulator target DC  
output voltage variation  
after power-on reset  
Vdd - 10%2  
V
2c  
2d  
CC C Trimming step Vdd  
20  
mV  
mA  
Ivrcctl  
CC C Voltage regulator controller  
for core supply maximum  
DC output current  
20  
3
Lvi1p2  
CC C Nominal LVI for rising core  
supply3  
1.160  
1.200  
V
V
3a  
CC C Variation of LVI for rising  
core supply at power-on  
reset  
1.120  
1.280  
See note 4  
See note 4  
3b  
3c  
CC C Variation of LVI for rising  
core supply after power-on  
reset  
Lvi1p2 -  
3%  
Lvi1p2  
20  
Lvi1p2 +  
3%  
V
CC C Trimming step LVI core  
supply  
mV  
3d  
4
Lvi1p2_h CC C LVI core supply hysteresis  
Por1.2V_r CC C POR 1.2 V rising  
40  
mV  
V
0.709  
4a  
CC C POR 1.2 V rising variation Por1.2V_r- Por1.2V_r Por1.2V_r  
V
35%  
+ 35%  
4b Por1.2V_f CC C POR 1.2 V falling  
4c  
0.638  
V
V
CC C POR 1.2 V falling variation Por1.2V_f- Por1.2V_f Por1.2V_f+  
35%  
35%  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
73  
Table 15. PMC Electrical Characteristics (continued)  
ID  
Name  
Vdd33  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
5
CC C Nominal 3.3 V supply  
internal regulator DC output  
voltage  
3.39  
V
5a  
5b  
CC  
P
Nominal 3.3 V supply  
internal regulator DC output  
voltage variation at  
power-on reset  
Vdd33 -  
8.5%  
Vdd33  
Vdd33  
Vdd3 + 7% V  
See note 5  
CC  
P
Nominal 3.3 V supply  
internal regulator DC output  
voltage variation power-on  
reset  
Vdd33 -  
7.5%  
Vdd33 +  
7%  
V
With internal  
load up  
to Idd3p3  
5c  
5d  
CC D Voltage regulator 3.3 V  
output impedance at  
2
maximum DC load  
Idd3p3  
CC  
P
Voltage regulator 3.3 V  
maximum DC output  
current (internal regulator  
enabled)6  
807  
mA  
5e Vdd33 ILim CC C Voltage regulator 3.3 V DC  
current limit  
130  
mA  
V
6
Lvi3p3  
CC C Nominal LVI for rising 3.3 V  
supply  
3.090  
The Lvi3p3  
specs are also  
valid for the  
Vddeh LVI  
6a  
6b  
CC C Variation of LVI for rising  
3.3 V supply at power-on  
reset  
Lvi3p3 -  
6%  
Lvi3p3  
Lvi3p3  
Lvi3p3 +  
6%  
V
V
See note 8  
CC C Variation of LVI for rising  
3.3 V supply after power-on  
reset  
Lvi3p3 -  
3%  
Lvi3p3 +  
3%  
See note 8  
6c  
6d  
7
CC C Trimming step LVI 3.3 V  
20  
60  
mV  
mV  
V
Lvi3p3_h CC C LVI 3.3 V hysteresis  
Por3.3V_r CC C Nominal POR for rising  
3.3 V supply  
2.07  
The 3.3V POR  
specs are also  
valid for the  
VDDEH POR  
7a  
CC C Variation of POR for rising Por3.3V_r- Por3.3V_r Por3.3V_r  
V
V
V
V
3.3 V supply  
35%  
+ 35%  
7b Por3.3V_f CC C Nominal POR for falling  
3.3 V supply  
1.95  
7c  
CC C Variation of POR for falling Por3.3V_f- Por3.3V_f Por3.3V_f+  
3.3 V supply  
35%  
35%  
8
Lvi5p0  
CC C Nominal LVI for rising 5 V  
4.290  
VDDREG supply  
MPC5644A Microcontroller Data Sheet, Rev. 7  
74  
Freescale Semiconductor  
Table 15. PMC Electrical Characteristics (continued)  
ID  
Name  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
8a  
CC C Variation of LVI for rising  
5 V VDDREG supply at  
power-on reset  
Lvi5p0 -  
6%  
Lvi5p0  
Lvi5p0 +  
6%  
V
8b  
CC C Variation of LVI for rising  
5 V VDDREG supply  
Lvi5p0 -  
3%  
Lvi5p0  
Lvi5p0 +  
3%  
V
power-on reset  
8c  
8d  
9
CC C Trimming step LVI 5 V  
20  
60  
mV  
mV  
V
Lvi5p0_h CC C LVI 5 V hysteresis  
Por5V_r CC C Nominal POR for rising 5 V  
2.67  
VDDREG supply  
9a  
9b  
9c  
CC C Variation of POR for rising  
5 V VDDREG supply  
Por5V_r  
- 35%  
Por5V_r  
2.47  
Por5V_r  
+ 50%  
V
V
V
Por5V_f CC C Nominal POR for falling 5 V  
VDDREG supply  
CC C Variation of POR for falling  
5 V VDDREG supply  
Por5V_f  
- 35%  
Por5V_f  
Por5V_f  
+ 50%  
1
2
3
4
Using external ballast transistor.  
Min range is extended to 10% since Lvi1p2 is reprogrammed from 1.2 V to 1.16 V after power-on reset.  
LVI for falling supply is calculated as LVI rising – LVI hysteresis.  
Lvi1p2 tracks DC target variation of internal Vdd regulator. Minimum and maximum Lvi1p2 correspond to minimum  
and maximum Vdd DC target respectively.  
5
Minimum loading (<10 mA) for reading trim values from flash, powering internal RC oscillator, and IO consumption  
during POR.  
6
7
No external load is allowed, except for use as a reference for an external tool.  
This value is valid only when the internal regulator is bypassed. When the internal regulator is enabled, the  
maximum external load allowed on the Nexus pads is 30 pF at 40 MHz.  
8
Lvi3p3 tracks DC target variation of internal Vdd33 regulator. Minimum and maximum Lvi3p3 correspond to  
minimum and maximum Vdd33 DC target respectively.  
3.6.1  
Voltage regulator controller (VRC) electrical specifications  
Table 16. VRC electrical specifications  
Symbol  
Parameter  
Min.  
Max.  
Units  
Current can be sourced by VRCCTL at Tj:  
25 oC  
150 oC  
– 40 oC  
25 oC  
TBD  
TBD  
TBD  
mA  
mA  
1
IVRCCTL  
Required gain at Tj:  
1,3,4  
IDD IVRCCTL (fsys = fMAX  
)
BETA 2  
TBD  
TBD  
150 oC  
TBD  
1
IVRCCTL is measured at the following conditions: VDD = 1.35 V, VRC33 = 3.1 V, VVRCCTL = 2.2 V.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
75  
 
2
BETA represents the worst-case external transistor. It is measured on a per-part basis and calculated as  
(IDD IVRCCTL).  
Refer to Table 52 for the maximum operating frequency.  
3
4
Values are based on IDD from high-use applications as explained in the IDD Electrical Specification.  
3.6.2  
Regulator Example  
In designs where the MPC5644A microcontroller’s internal regulators are used, a ballast is required for generation of the 1.2 V  
internal supply. No ballast is required when an external 1.2 V supply is used.  
The resistor may or may not be  
required. This depends on the  
VDDREG  
allowable power dissipation of  
the npn bypass transistor  
device. The resistor may be  
Creg  
Rc  
used to limit the in-rush current  
at power on.  
The bypass transistor  
MUST be operated out  
of saturation region.  
Cc  
VRCCTL  
MCU  
Rb  
Keep parasitic inductance  
under 20nH  
Re  
VDD  
Mandatory decoupling  
capacitor network  
Cb  
VSS  
Ce  
Cd  
VRCCTL capacitor and resistor is required  
Figure 8. Core voltage regulator controller external components preferred configuration  
Table 17. MPC5644A External network specification  
External Network  
Min  
Typ  
Max  
Comment  
Parameter  
T1  
NJD2873 or BCP68  
only  
Cb  
Ce  
1.1 F  
3*2.35F+5F  
2.2F  
2.97F  
3*6.35F+13.5F  
50m  
X7R,-50%/+35%  
X7R, -50%/+35%  
3*4.7F+10F  
Equivalent ESR of 5m  
Ce capacitors  
Cd  
Rb  
4*50nF  
9  
4*100nF  
4*135nF  
X7R, -50%/+35%  
+/-10%  
10  
11  
MPC5644A Microcontroller Data Sheet, Rev. 7  
76  
Freescale Semiconductor  
 
 
Table 17. MPC5644A External network specification  
External Network  
Parameter  
Min  
Typ  
Max  
Comment  
Re  
0.252  
0.280  
10F  
0.308  
+/-10%  
Creg  
It depends on  
external Vreg.  
Cc  
Rc  
5F  
10F  
13.5F  
5.6  
X7R, -50%/+35%  
1.1  
May or may not be  
required. It depends  
on the allowable  
power dissipation of  
T1.  
3.6.3  
Recommended power transistors  
TM  
The following NPN transistors are recommended for use with the on-chip voltage regulator controller: ON Semiconductor  
BCP68T1 or NJD2873 as well as Philips Semiconductor BCP68. The collector of the external transistor is preferably  
TM  
connected to the same voltage supply source as the output stage of the regulator.  
Table 18. Recommended operating characteristics  
Symbol  
FE () DC current gain (Beta)  
PD Absolute minimum power dissipation  
Parameter  
Value  
Unit  
h
60 – 550  
W
>1.0  
(1.5 preferred)  
ICMaxDC Minimum peak collector current  
1.0  
A
mV  
V
VCESAT Collector-to-emitter saturation voltage  
200 – 6001  
VBE  
Base-to-emitter voltage  
0.4 – 1.0  
1
Adjust resistor at bipolar transistor collector for 3.3 V/5.0 V to avoid VCE < VCESAT  
.
3.7  
Power up/down sequencing  
There is no power sequencing required among power sources during power up and power down, in order to operate within  
specification.  
Although there are no power up/down sequencing requirements to prevent issues such as latch-up or excessive current spikes  
the state of the I/O pins during power up/down varies according to Table 19 for all pins with fast pads, and Table 20 for all pins  
with medium, slow, and multi-voltage pads.  
Table 19. Power sequence pin states (fast pads)  
VDDE  
VRC33  
VDD  
Pad State  
LOW  
VDDE  
VDDE  
VDDE  
X
X
X
LOW  
HIGH  
LOW  
VRC33  
VRC33  
LOW  
VDD  
HIGH IMPEDANCE  
FUNCTIONAL  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
77  
 
Table 20. Power sequence pin states (medium, slow, and multi-voltage pads)  
VDDEH  
VDD  
Pad State  
LOW  
VDDEH  
VDDEH  
X
LOW  
LOW  
VDD  
HIGH IMPEDANCE  
FUNCTIONAL  
3.8  
DC electrical specifications  
Table 21. DC electrical specifications  
Value  
typ  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
max  
VDD  
SR  
SR  
SR  
SR  
SR  
Core supply voltage  
I/O supply voltage  
I/O supply voltage  
I/O supply voltage  
1.14  
1.62  
3.0  
1.32  
3.6  
V
V
V
V
V
VDDE  
VDDEH  
VDDE-EH  
VRC33  
5.25  
5.25  
3.6  
3.0  
3.3 V regulated  
voltage1  
3.0  
VDDA  
VINDC  
SR  
SR  
SR  
Analog supply voltage  
Analog input voltage  
4.752  
VSSA-0.3  
–100  
5.25  
VDDA+0.3  
100  
V
V
VSS – VSSA  
VSS differential  
voltage  
mV  
VRL  
SR  
SR  
SR  
SR  
SR  
Analog reference low  
voltage  
VSSA  
–100  
VSSA+0.1  
100  
V
mV  
V
V
RL – VSSA  
VRL differential  
voltage  
VRH  
Analog reference high  
voltage  
VDDA-0.1  
4.75  
VDDA  
5.25  
V
RH – VRL  
VREF differential  
voltage  
V
VDDF  
Flash operating  
voltage3  
1.14  
1.32  
V
4
VFLASH  
SR  
SR  
Flash read voltage  
3.0  
3.6  
1.2  
V
V
VSTBY  
SRAM standby  
voltage  
Unregulated  
mode  
0.95  
Regulated  
mode  
2.0  
5.5  
Keep-out Range:  
1.2V–2V  
MPC5644A Microcontroller Data Sheet, Rev. 7  
78  
Freescale Semiconductor  
 
Table 21. DC electrical specifications (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
typ  
max  
VDDREG  
SR  
SR  
SR  
CC  
C
P
Voltage regulator  
supply voltage  
4.75  
5.25  
V
V
VDDPLL  
Clock synthesizer  
operating voltage  
1.14  
–100  
1.32  
VSSPLL  
VSS  
VSSPLL to VSS  
differential voltage  
100  
mV  
V
VIL_S  
Slow/medium I/O pad  
input low voltage  
Hysteresis  
enabled  
VSS-0.3  
0.35*VDDEH  
0.40*VDDEH  
0.35*VDDE  
0.40*VDDE  
0.8  
Hysteresis  
disabled  
VSS-0.3  
VIL_F  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
C
P
Fast pad I/O input low  
voltage  
Hysteresis  
enabled  
VSS-0.3  
V
V
V
V
V
V
V
Hysteresis  
disabled  
V
V
V
SS-0.3  
SS-0.3  
SS-0.3  
VIL_LS  
VIL_HS  
VIH_S  
VIH_F  
C
P
Multi-voltage I/O pad  
input low voltage in  
Hysteresis  
enabled  
Low-swing-mode5,6,7,  
8
Hysteresis  
disabled  
1.1  
C
P
Multi-voltage pad I/O  
input low voltage in  
high-swing-mode  
Hysteresis  
enabled  
VSS-0.3  
0.35 VDDEH  
0.4 VDDEH  
VDDEH+0.3  
VDDEH+0.3  
VDDE+0.3  
VDDE+0.3  
VDDEH+0.3  
Hysteresis  
disabled  
VSS-0.3  
C
P
Slow/medium pad I/O  
input high voltage9  
Hysteresis  
enabled  
0.65 VDDEH  
0.55 VDDEH  
0.65 VDDE  
0.58 VDDE  
2.5  
Hysteresis  
disabled  
C
P
Fast I/O input high  
voltage  
Hysteresis  
enabled  
Hysteresis  
disabled  
VIH_LS  
C
P
Multi-voltage pad I/O  
input high voltage in  
low-swing-mode5,6,7,8  
Hysteresis  
enabled  
Hysteresis  
disabled  
2.2  
VDDEH+0.3  
VIH_HS  
C
P
Multi-voltage I/O input  
high voltage in  
high-swing-mode  
Hysteresis  
enabled  
0.65 VDDEH  
0.55 VDDEH  
VDDEH+0.3  
VDDEH+0.3  
Hysteresis  
disabled  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
79  
Table 21. DC electrical specifications (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
typ  
max  
VOL_S  
CC  
CC  
CC  
P
P
P
Slow/medium pad I/O  
output low voltage9  
0.2*VDDEH  
V
V
V
VOL_F  
Fast I/O output low  
voltage9  
0.2*VDDE  
0.6  
VOL_LS  
Multi-voltage pad I/O  
output low voltage in  
low-swing  
mode5,6,7,8,9  
VOL_HS  
CC  
P
Multi-voltage pad I/O  
output low voltage in  
high-swing mode9  
0.2*VDDEH  
V
VOH_S  
VOH_F  
VOH_LS  
CC  
CC  
CC  
P
P
P
Slow/medium pad I/O  
output high voltage9  
0.8 VDDEH  
0.8 VDDE  
2.1  
V
V
V
Fast pad I/O output  
high voltage9  
Multi-voltage pad I/O  
output high voltage in  
low-swing mode5,6,7,8  
IOH_LS  
0.5 mA  
=
3.1  
3.7  
VOH_HS  
CC  
CC  
P
C
Multi-voltage pad I/O  
output high voltage in  
high-swing mode9  
0.8 VDDEH  
V
V
VHYS_S  
Slow/medium/multi-vo  
ltage I/O input  
hysteresis  
0.1 * VDDEH  
VHYS_F  
CC  
CC  
C
C
Fast I/O input  
hysteresis  
0.1 * VDDE  
0.25  
V
v
VHYS_LS  
Low-Swing-Mode  
hysteresis  
Multi-VoltageI/OInput enabled  
Hysteresis  
IDD+IDDPLL  
CC  
P
P
P
Operating current  
1.2 V supplies  
VDD at  
1.32 Vat 80  
MHz  
380  
400  
400  
mA  
mA  
mA  
VDD at  
1.32V  
at 120 MHz  
VDD at  
1.32V  
at 150 MHz  
MPC5644A Microcontroller Data Sheet, Rev. 7  
80  
Freescale Semiconductor  
Table 21. DC electrical specifications (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
typ  
max  
IDDSTBY  
CC  
CC  
T
T
P
Operating current  
0.95-1.2 V  
VSTBY at  
55 oC  
35  
100  
A  
A  
A  
Operating current  
2–5.5 V  
V
STBY at  
45  
25  
110  
90  
55 oC  
IDDSTBY27  
Operating current  
0.95-1.2 V  
VSTBY 27 oC  
P
Operating current  
2-5.5 V  
VSTBY 27 oC  
35  
100  
A  
IDDSTBY150  
CC  
P
P
P
Operating current  
0.95-1.2 V  
VSTBY  
790  
760  
2000  
2000  
15  
A  
A  
150 oC  
Operating current  
2–5.5 V  
V
STBY at  
150 oC  
IDDPLL  
CC  
CC  
Operating current  
1.2 V supplies  
VDDPLL  
80 MHz,  
VDD=1.2 V  
,
mA  
IDDSLOW  
IDDSTOP  
P
VDD low-power mode  
operating current at  
1.32 V  
Slow  
90  
mA  
mode10  
P
C
Stop mode11  
75  
60  
1 12  
IDD33  
CC  
CC  
Operating current  
3.3 V supplies  
VRC33  
,
mA  
mA  
IDDA  
IREF  
IDDREG  
P
P
Operating current  
5.0 V supplies  
VDDA  
30.0  
1.0  
Analog  
reference  
supply  
current  
(transient)  
C
D
D
D
D
D
D
D
VDDREG  
VDDEH1  
VDDEH4  
VDDEH6  
VDDEH7  
VDDE7  
7013  
IDDH1  
IDDH4  
IDDH6  
IDDH7  
IDD7  
CC  
Operating current  
VDDE14 supplies  
See note 14  
mA  
IDDH9  
IDD12  
VDDEH9  
VDDE12  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
81  
Table 21. DC electrical specifications (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
typ  
max  
IACT_S  
CC  
CC  
C
P
D
D
D
C
Slow/medium I/O  
weak pull up/down  
current15  
3.0 V –  
3.6 V  
15  
95  
A  
4.75 V –  
5.5 V  
35  
36  
34  
42  
10  
200  
120  
139  
158  
75  
IACT_F  
Fast I/O weak pull  
up/down current15  
1.62 V –  
1.98 V  
A  
A  
2.25 V –  
2.75 V  
3.0 V –  
3.6 V  
IACT_MV_PU  
CC  
Multi-voltage pad  
weak pullup current  
VDDE=  
3.0–3.6 V5,  
MultiV pad,  
high swing  
mode only  
P
C
4.75 V –  
5.25 V  
25  
10  
200  
60  
IACT_MV_PD  
CC  
Multivoltage pad weak  
pulldown current  
VDDE  
=
A  
3.0–3.6 V5,  
MultiV pad,  
high swing  
mode only  
P
P
T
P
P
4.75 V –  
5.25 V  
25  
200  
2.5  
IINACT_D  
CC  
SR  
SR  
I/O input leakage  
current16  
–2.5  
–1.0  
–250  
–150  
A  
mA  
nA  
IIC  
DC injection current  
(per pin)  
1.0  
IINACT_A  
Analog input current,  
channel off, AN[0:7]17  
250  
150  
Analog input current,  
channel off, all other  
analog pins17  
MPC5644A Microcontroller Data Sheet, Rev. 7  
82  
Freescale Semiconductor  
Table 21. DC electrical specifications (continued)  
Value  
typ  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
max  
CL  
CC  
D
D
D
D
D
D
D
Load capacitance  
(fast I/O)18  
DSC(PCR[8  
:9]) = 0b00  
10  
pF  
DSC(PCR[8  
:9]) = 0b01  
20  
30  
50  
7
DSC(PCR[8  
:9]) = 0b10  
DSC(PCR[8  
:9]) = 0b11  
CIN  
CC  
CC  
CC  
Input capacitance  
(digital pins)  
pF  
pF  
pF  
CIN_A  
Input capacitance  
(analog pins)  
10  
12  
CIN_M  
Input capacitance  
(digital and analog  
pins19  
)
RPUPD200K  
RPUPD100K  
RPUPD5K  
SR  
SR  
SR  
CC  
P
P
C
C
Weak Pull-Up/Down  
Resistance20, 200 k  
Option  
130  
65  
280  
140  
7.5  
2.5  
k  
k  
k  
%
Weak Pull-Up/Down  
Resistance20, 100 k  
Option  
Weak Pull-Up/Down  
5 V ± 5%  
supply  
1.4  
Resistance20  
,
5 kOption  
RPUPDMTCH  
Pull-up/Down  
Resistance matching  
ratios (100K/200K)  
Pull-up and  
pull-down  
resistances  
both  
–2.5  
enabled and  
settings are  
equal.  
TA (TL to  
TH)  
SR  
SR  
Operating  
temperature range -  
ambient (packaged)  
–40.0  
125.0  
25  
C  
Slew rate on power  
supply pins  
V/ms  
1
2
These specifications apply when VRC33 is supplied externally, after disabling the internal regulator (VDDREG = 0).  
ADC is functional with 4 V VDDA 4.75 V but with derated accuracy. This means the ADC will continue to function  
at full speed with no undesirable behavior, but the accuracy will be degraded.  
3
The VDDF supply is connected to VDD in the package substrate. This specification applies to calibration package  
devices only.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
83  
4
5
6
7
8
9
VFLASH is only available in the calibration package.  
Power supply for multi-voltage pads cannot be below 4.5 V when in low-swing mode.  
The slew rate (SRC) setting must be 0b11 when in low-swing mode.  
While in low-swing mode there are no restrictions in transitioning to high-swing mode.  
Pin in low-swing mode can accept a 5 V input.  
All VOL/VOH values 100% tested with ± 2 mA load except where noted.  
10 Bypass mode, system clock at 1 MHz (using system clock divider), PLL shut down, CPU running simple executive  
code, 4 x ADC conversion every 10 ms, 2 x PWM channels 1 kHz, all other modules stopped.  
11 Bypass mode, system clock at 1 MHz (using system clock divider), CPU stopped, PIT running, all other modules  
stopped.  
12 This current will be consumed for external regulation and internal regulation, when 3.3V regulator is switched off by  
shadow flash  
13 If 1.2V and 3.3V internal regulators are on,then iddreg=70mA  
If supply is external that is 3.3V internal regulator is off, then iddreg=15mA  
14 Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a  
particular I/O segment, and the voltage of the I/O segment. See Table 22 for values to calculate power dissipation for  
specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions  
for each pin on the segment.  
15 Absolute value of current, measured at VIL and VIH.  
16 Weak pull up/down inactive. Measured at VDDE = 3.6 V and VDDEH = 5.25 V. Applies to fast, slow, and medium pads.  
17 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half  
for each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to analog pads.  
18 Applies to CLKOUT, external bus pins, and Nexus pins.  
19 Applies to the FCK, SDI, SDO, and SDS pins.  
20 This programmable option applies only to eQADC differential input channels and is used for biasing and sensor  
diagnostics.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
84  
Freescale Semiconductor  
3.9  
I/O pad current specifications  
The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption  
is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 22 based on  
the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load  
parameters that fall outside the values given in Table 22.  
1
Table 22. I/O pad average I  
specifications  
DDE  
IDDE  
RMS  
(mA)  
Pad  
Type  
Period  
(ns)  
Load2 VDDE  
Drive/Slew  
Rate Select  
IDDE Avg  
(mA)3  
Symbol  
C
(pF)  
(V)  
Slow  
Medium  
Fast  
IDRV_SSR_HV  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
37  
130  
650  
840  
24  
50  
50  
50  
200  
50  
50  
50  
200  
50  
30  
20  
10  
50  
30  
20  
10  
50  
50  
50  
200  
30  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
3.6  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
5.5  
5.5  
5.5  
5.5  
5.5  
11  
01  
00  
00  
11  
01  
00  
00  
11  
10  
01  
00  
11  
10  
01  
00  
11  
01  
00  
00  
11  
9
2.5  
0.5  
1.5  
14  
IDRV_MSR_HV  
62  
5.3  
1.1  
3
317  
425  
10  
IDRV_FC  
22.7  
12.1  
8.3  
4.44  
12.5  
7.3  
5.42  
2.84  
9
68.3  
41.1  
27.7  
14.3  
31  
10  
10  
10  
10  
10  
18.6  
12.6  
6.4  
10  
10  
MultiV  
(High  
Swing  
Mode)  
IDRV_MULTV_  
20  
HV  
30  
6.1  
2.3  
5.8  
3.4  
117  
212  
30  
MultiV  
(Low  
IDRV_MULTV_  
HV  
Swing  
Mode)  
1
2
3
Numbers from simulations at best case process, 150 °C.  
All loads are lumped.  
Average current is for pad configured as output only.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
85  
 
3.9.1  
I/O pad VRC33 current specifications  
The power consumption of the V  
supply is dependent on the usage of the pins on all I/O segments. The power consumption  
RC33  
is the sum of all input and output pin V  
currents for all I/O segments. The output pin V  
current can be calculated from  
RC33  
RC33  
Table 23 based on the voltage, frequency, and load on all fast pad pins. The input pin V  
current can be calculated from  
RC33  
Table 23 based on the voltage, frequency, and load on all medium-speed pads. Use linear scaling to calculate pin currents for  
voltage, frequency, and load parameters that fall outside the values given in Table 23.  
1
Table 23. I/O pad V  
average I  
specifications  
Drive Select  
RC33  
DDE  
Period  
Load2  
(pF)  
IDD33 Avg  
(µA)  
IDD33 RMS  
(µA)  
Pad Type  
Symbol  
C
(ns)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
D
D
D
D
D
100  
200  
800  
800  
40  
50  
50  
11  
01  
00  
00  
11  
01  
00  
00  
11  
01  
00  
00  
11  
0.8  
0.04  
0.06  
0.009  
2.75  
0.11  
0.02  
0.01  
33.4  
33.4  
33.4  
33.4  
33.4  
235.7  
87.4  
47.4  
47  
Slow  
IDRV_SSR_HV  
50  
200  
50  
258  
100  
500  
500  
20  
50  
76.5  
56.2  
56.2  
35.4  
34.8  
33.8  
33.7  
34.9  
Medium  
IDRV_MSR_HV  
50  
200  
50  
30  
50  
MultiV3 (High  
Swing Mode)  
IDRV_MULTV_HV  
117  
212  
30  
50  
200  
30  
MultiV4 (Low  
Swing Mode)  
IDRV_MULTV_HV  
1
2
3
4
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.  
All loads are lumped.  
Average current is for pad configured as output only.  
In low swing mode, multi-voltage pads must operate in highest slew rate setting.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
86  
Freescale Semiconductor  
 
1
Table 24. V  
pad average DC current  
RC33  
Pad  
Type  
Period  
(ns)  
Load2  
(pF)  
VRC33  
(V)  
VDDE  
(V)  
Drive  
Select  
IDD33 Avg IDD33 RMS  
Symbol  
C
(µA)  
(µA)  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
10  
10  
10  
10  
10  
10  
10  
10  
50  
30  
20  
10  
50  
30  
20  
10  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
11  
10  
01  
00  
11  
10  
01  
00  
2.35  
1.75  
1.41  
1.06  
1.75  
1.32  
1.14  
0.95  
6.12  
4.3  
3.6  
3.43  
2.9  
3.6  
Fast  
IDRV_FC  
1.98  
1.98  
1.98  
1.98  
4.56  
3.44  
2.95  
2.62  
1
2
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.  
All loads are lumped.  
3.9.2  
LVDS pad specifications  
LVDS pads are implemented to support the MSC (Microsecond Channel) protocol which is an enhanced feature of the DSPI  
module. The LVDS pads are compliant with LVDS specifications and support data rates up to 50 MHz.  
Table 25. DSPI LVDS pad specification  
Min.  
Value  
Typ.  
Value  
Max.  
Value  
#
Characteristic  
Symbol  
C
Condition  
Unit  
Data Rate  
4
5
Data Frequency  
fLVDSCLK  
CC  
D
50  
MHz  
mV  
Driver Specs  
Differential output voltage  
VOD  
CC  
P
SRC=0b00  
or 0b11  
150  
400  
CC  
CC  
CC  
P
P
P
SRC=0b01  
SRC=0b10  
90  
320  
480  
1.39  
160  
1.06  
6
Common mode voltage  
(LVDS), VOS  
VOD  
1.2  
V
7
8
Rise/Fall time  
TR/TF  
TPLH  
CC  
CC  
D
D
2
4
ns  
ns  
Propagation delay (Low to  
High)  
9
Propagation delay (High to  
Low)  
TPHL  
CC  
CC  
D
D
4
4
ns  
ns  
10 Delay (H/L), sync Mode  
tPDSYNC  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
87  
 
Table 25. DSPI LVDS pad specification (continued)  
11 Delay, Z to Normal  
(High/Low)  
TDZ  
CC  
D
500  
100  
ns  
ns  
12 Diff Skew Itphla-tplhbI or  
Itplhb-tphlaI  
TSKEW  
CC  
D
0.5  
Termination  
13 Trans. Line (differential Zo)  
14 Temperature  
CC  
CC  
D
D
95  
105  
150  
–40  
C  
3.10 Oscillator and PLLMRFM electrical characteristics  
Table 26. PLLMRFM electrical specifications  
(VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
max  
fref_crystal CC  
fref_ext  
D
C
P
PLL reference frequency range1  
Crystal  
reference  
4
40  
MHz  
External  
reference  
4
4
80  
16  
fpll_in  
CC  
Phase detector input frequency range  
(after pre-divider)  
MHz  
fvco  
fsys  
fsys  
CC  
CC  
CC  
P
C
T
VCO frequency range  
256  
16  
4
512  
150  
40  
MHz  
MHz  
MHz  
On-chip PLL frequency2  
System frequency in bypass mode2  
Crystal  
reference  
P
External  
0
80  
reference  
tCYC  
CC  
CC  
D
D
D
P
T
System clock period  
Lower limit  
Upper limit  
1.6  
24  
1 / fsys  
3.7  
ns  
fLORL  
fLORH  
Loss of reference frequency window3  
MHz  
56  
fSCM  
CC  
CC  
Self-clocked mode frequency 4,5  
1.2  
–5  
72.25  
5
MHz  
CJITTER  
CLKOUT  
period  
Peak-to-peak (clock fSYS maximum  
edge to clock edge)  
% fCLKOUT  
jitter6,7,8,9  
T
T
Long-term jitter  
(avg. over 2 ms  
interval)  
–6  
6
ns  
tcst  
CC  
Crystal start-up time 10, 11  
10  
ms  
MPC5644A Microcontroller Data Sheet, Rev. 7  
88  
Freescale Semiconductor  
Table 26. PLLMRFM electrical specifications  
(VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued)  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
max  
VIHEXT  
CC  
CC  
CC  
T
T
EXTAL input high voltage  
Crystal Mode12  
Vxtal  
+ 0.4  
V
External  
VRC33  
/2 +  
0.4  
VRC33  
Reference12, 13  
VILEXT  
T
T
EXTAL input low voltage  
XTAL load capacitance10  
Crystal Mode12  
Vxtal -  
0.4  
V
External  
0
VRC33  
/2 -  
0.4  
Reference12, 13  
T
4 MHz  
8 MHz  
12 MHz  
16 MHz  
20 MHz  
40 MHz  
5
5
30  
26  
pF  
5
23  
5
19  
5
16  
5
8
tlpll  
tdc  
fLCK  
fUL  
fCS  
CC  
CC  
CC  
CC  
CC  
P
T
T
T
D
D
D
PLL lock time 10, 14  
200  
60  
s  
Duty cycle of reference  
Frequency LOCK range  
Frequency un-LOCK range  
Modulation Depth  
40  
–6  
–18  
±0.25  
–0.5  
%
6
% fsys  
% fsys  
% fsys  
18  
Center spread  
Down Spread  
±4.0  
–8.0  
100  
fDS  
fMOD  
CC  
Modulation frequency15  
kHz  
1
2
3
Considering operation with PLL not bypassed.  
All internal registers retain data at 0 Hz.  
“Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked  
mode.  
4
5
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside  
the fLOR window.  
fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in  
enhanced mode.  
6
7
This value is determined by the crystal manufacturer and board design.  
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum  
fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock  
signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency  
increase the CJITTER percentage for a given interval.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
89  
8
9
Proper PC board layout procedures must be followed to achieve specifications.  
Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and  
either fCS or fDS (depending on whether center spread or down spread modulation is enabled).  
10 This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for  
this PLL, load capacitors should not exceed these limits.  
11 Proper PC board layout procedures must be followed to achieve specifications.  
12 This parameter is guaranteed by design rather than 100% tested.  
13  
V
cannot exceed VRC33 in external reference mode.  
IHEXT  
14 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits  
in the synthesizer control register (SYNCR).  
15 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.  
3.11 Temperature sensor electrical characteristics  
Table 27. Temperature sensor electrical characteristics  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
typical  
max  
CC C Temperature  
monitoring range  
–40  
150  
°C  
CC C Sensitivity  
CC Accuracy  
6.3  
mV/°C  
°C  
P
TJ = –40 to 150 °C  
–10  
10  
3.12 eQADC electrical characteristics  
Table 28. eQADC conversion specifications (operating)  
Value  
Unit  
Symbol  
C
Parameter  
min  
max  
fADCLK  
SR  
CC  
CC  
SR  
D
ADC clock (ADCLK) frequency  
Conversion cycles  
2
2+13  
16  
128+14  
10  
MHz  
CC  
TSR  
ADCLK cycles  
C
Stop mode recovery time1  
s  
fADCLK  
ADC clock (ADCLK) frequency  
2
16  
mV  
1
Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to  
the time that the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
90  
Freescale Semiconductor  
 
Table 29. eQADC single ended conversion specifications (operating)  
Value  
Symbol  
C
Parameter  
Unit  
min  
max  
OFFNC  
CC  
CC  
CC  
C
C
C
C
T
Offset error without calibration  
0
–4  
160  
4
Counts  
Counts  
Counts  
Counts  
mA  
OFFWC  
GAINNC  
Offset error with calibration  
Full scale gain error without calibration  
Full scale gain error with calibration  
Disruptive input injection current 1, 2, 3, 4  
Incremental error due to injection current5,6  
Total unadjusted error (TUE) at 8 MHz  
Total unadjusted error at 16 MHz  
–160  
–4  
0
GAINWC CC  
4
IINJ  
EINJ  
CC  
CC  
CC  
CC  
–3  
3
T
–4  
4
Counts  
Counts  
Counts  
TUE8  
TUE16  
C
C
–4  
46  
–8  
8
1
Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog  
inputs greater then VRH and 0x0 for values less then VRL. Other channels are not affected by non-disruptive  
conditions.  
2
3
Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions  
within the limit do not affect device reliability or cause permanent damage.  
Input must be current limited to the value specified. To determine the value of the required current-limiting  
resistor, calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use  
the larger of the calculated values.  
4
5
6
Condition applies to two adjacent pins at injection limits.  
Performance expected with production silicon.  
All channels have same 10 k< Rs < 100 k; Channel under test has Rs=10 k; IINJ=IINJMAX,IINJMIN  
Table 30. eQADC differential ended conversion specifications (operating)  
Value  
Symbol  
GAINVGA11  
C
Parameter  
Unit  
min  
max  
CC  
CC  
Variable gain amplifier accuracy (gain=1)2  
C
INL  
8 MHz  
ADC  
–4  
–8  
4
8
Counts  
3
CC  
CC  
CC  
C
C
C
16 MHz  
ADC  
Counts  
Counts  
Counts  
DNL  
8 MHz  
ADC  
–34  
–34  
34  
34  
16 MHz  
ADC  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
91  
 
 
Table 30. eQADC differential ended conversion specifications (operating) (continued)  
Value  
Symbol  
C
Parameter  
Unit  
min  
max  
GAINVGA21  
CC  
CC  
Variable gain amplifier accuracy (gain=2)2  
D
INL  
8 MHz  
ADC  
–5  
–8  
–3  
–3  
5
8
3
3
Counts  
Counts  
Counts  
Counts  
CC  
CC  
CC  
D
D
D
16 MHz  
ADC  
DNL  
8 MHz  
ADC  
16 MHz  
ADC  
GAINVGA41  
CC  
CC  
Variable gain amplifier accuracy (gain=4)2  
D
INL  
8 MHz  
ADC  
–7  
–8  
–4  
–4  
7
Counts  
Counts  
Counts  
Counts  
V
CC  
CC  
CC  
CC  
D
D
D
C
16 MHz  
ADC  
8
DNL  
8 MHz  
ADC  
4
16 MHz  
ADC  
4
DIFFmax  
DIFFmax2  
DIFFmax4  
DIFFcmv  
Maximum  
PREGAIN  
differential voltage set to 1X  
(VRH - VRL)/2  
(DANx+ - DANx-) or  
setting  
(DANx- - DANx+)5  
CC  
CC  
CC  
C
C
C
PREGAIN  
set to 2X  
setting  
(VRH - VRL)/4  
(VRH - VRL)/8  
V
V
V
PREGAIN  
set to 4X  
setting  
Differential input  
Common mode  
voltage (DANx- +  
DANx+)/25  
(VRH + VRL)/2 - 5% (VRH + VRL)/2 + 5%  
1
2
Applies only to differential channels.  
Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of 1, 2, or 4.  
Settings are for differential input only. Tested at 1 gain. Values for other settings are guaranteed by as indicated.  
3
4
5
At VRH – VRL = 5.12 V, one LSB = 1.25 mV.  
Guaranteed 10-bit mono tonicity.  
Voltages between VRL and VRH will not cause damage to the pins. However, they may not be converted accurately if the  
differential voltage is above the maximum differential voltage. In addition, conversion errors may occur if the common mode  
voltage of the differential signal violates the Differential Input common mode voltage specification.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
92  
Freescale Semiconductor  
 
 
 
3.13 Configuring SRAM wait states  
Use the SWSC field in the ECSM_MUDCR register to specify an additional wait state for the device SRAM. By default, no  
wait state is added.  
Table 31. Cutoff frequency for additional SRAM wait state  
1
SWSC Value  
98  
0
1
153  
1
Max frequencies including 2% PLL FM.  
Please see the device reference manual for details.  
3.14 Platform flash controller electrical characteristics  
1,2  
Table 32. APC, RWSC, WWSC settings vs. frequency of operation  
Max. Flash Operating  
APC4  
RWSC4  
WWSC  
Frequency (MHz)3  
20 MHz  
61 MHz  
90 MHz  
123 MHz  
153 MHz  
0b000  
0b001  
0b010  
0b011  
0b100  
0b000  
0b001  
0b010  
0b011  
0b100  
0b11  
0b11  
0b11  
0b11  
0b11  
1
APC, RWSC and WWSC are fields in the flash memory BIUCR register used to  
specify wait states for address pipelining and read/write accesses. Illegal  
combinations exist—all entries must be taken from the same row.  
2
3
4
TBD: To Be Defined.  
Max frequencies including 2% PLL FM.  
APC must be equal to RWSC.  
3.15 Flash memory electrical characteristics  
1
Table 33. Flash program and erase specifications  
Min. Typical Initial  
Value Value  
#
Symbol  
C
Parameter  
Max3 Unit  
Max2  
1
2
3
Tdwprogram CC  
Tpprogram CC  
T16kpperase CC  
P
P
P
Double Word (64 bits) Program Time  
Page Program Time  
38  
45  
500  
500  
s  
s  
1604  
16 KB Block Pre-program and Erase  
Time  
270  
1000  
5000  
ms  
5
T64kpperase CC  
P
64 KB Block Pre-program and Erase  
Time  
800  
1800  
5000  
ms  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
93  
 
 
 
 
 
1
Table 33. Flash program and erase specifications  
Min. Typical Initial  
Value Value  
#
Symbol  
C
Parameter  
Max3 Unit  
7500 ms  
Max2  
6
T128kpperase CC  
P
128 KB Block Pre-program and Erase  
Time  
1500  
3000  
2600  
7
T256kpperase CC  
P
256 KB Block Pre-program and Erase  
Time  
5200 15000 ms  
8
9
Tpsrt  
Tesrt  
SR  
SR  
Program suspend request rate5  
Erase suspend request rate 6  
100  
10  
s  
ms  
1
2
3
Typical program and erase times assume nominal supply values and operation at 25 oC. All times are subject to  
change pending device characterization.  
Initial factory condition: < 100 program/erase cycles, 25 oC, typical supply voltage, 80 MHz minimum system  
frequency.  
The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is  
characterized but not guaranteed.  
4
5
6
Page size is 128 bits (4 words).  
Time between program suspend resume and the next program suspend request.  
Time between erase suspend resume and the next erase suspend request.  
Table 34. Flash module life  
Value  
Symbol  
C
Parameter  
Conditions  
Unit  
min  
typ  
P/E  
CC  
CC  
CC  
C
Number of program/erase  
cycles per block for 16 KB,  
48 KB, and 64 Kbyte  
blocks over the operating  
temperature range (TJ)  
100,000  
P/E  
cycles  
P/E  
C
C
Number of program/erase  
cycles per block for  
128 Kbyte and 256 Kbyte  
blocks over the operating  
temperature range (TJ)  
1,000  
100,000  
P/E  
cycles  
Data  
Retention  
Minimum data retention at  
85 C average ambient  
temperature1  
Blocks with 0 – 1,000  
P/E cycles  
20  
10  
5
years  
years  
years  
Blocks with 1,001 –  
10,000 P/E cycles  
Blocks with 10,001 –  
100,000 P/E cycles  
1
Ambient temperature averaged over duration of application, not to exceed product operating temperature range.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
94  
Freescale Semiconductor  
3.16 AC specifications  
3.16.1 Pad AC specifications  
1
Table 35. Pad AC specifications (5.0 V)  
Output Delay (ns)2,3  
Low-to-High /  
Rise/Fall Edge (ns)3,4  
SRC/DSC  
MSB,LSB  
Drive Load  
(pF)  
Name  
C
High-to-Low  
Min  
Max  
Min  
Max  
Medium5,6,7  
CC  
D
4.6/3.7  
12/12  
2.2/2.2  
7/7  
50  
118  
109  
01  
N/A  
CC  
CC  
CC  
D
D
D
12/13  
69/71  
28/34  
152/165  
19/18  
5.6/6  
34/35  
4.4/4.3  
15/15  
74/74  
14/14  
50  
50  
50  
00  
Slow7,10  
7.3/5.7  
118  
109  
01  
N/A  
CC  
CC  
CC  
D
D
D
26/27  
137/142  
4.1/3.6  
61/69  
13/13  
72/74  
34/34  
164/164  
8/8  
50  
50  
50  
320/330  
10.3/8.9  
00  
MultiV11  
(High Swing Mode)  
3.28/2.98  
N/A  
118  
109  
01  
CC  
CC  
CC  
D
D
D
8.38/6.11  
16/12.9  
5.48/4.81  
11/11  
63/63  
50  
50  
30  
61.7/10.4 92.2/24.3 42.0/12.2  
2.31/2.34 7.62/6.33 1.26/1.67  
00  
MultiV  
6.5/4.4  
118  
(Low Swing Mode)  
Fast12  
pad_i_hv13  
pull_hv  
N/A  
CC  
CC  
D
D
0.5/0.5  
NA  
1.9/1.9  
6000  
0.3/0.3  
±1.5/1.5  
0.5  
50  
N/A  
N/A  
5000/5000  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are  
simulated at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH  
2
3
4
5
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output  
pads  
6
7
Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.  
Output delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect  
to system clock.  
8
9
Can be used on the tester.  
This drive select value is not supported. If selected, it will be approximately equal to 11.  
10 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.  
11 Selectable high/low swing IO pad with selectable slew in high swing mode only.  
12 Fast pads are 3.3 V pads.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
95  
 
 
 
 
 
13 Stand alone input buffer. Also has weak pull-up/pull-down.  
Table 36. Pad AC specifications (V  
1
= 3.3 V)  
DDE  
Output Delay (ns)2,3  
Low-to-High /  
Rise/Fall Edge (ns)3,4  
SRC/DSC  
Drive Load  
(pF)  
Pad Type  
C
High-to-Low  
Min  
Max  
Min  
Max  
MSB,LSB  
Medium5,6,7  
CC  
CC  
D
D
5.8/4.4  
16/13  
18/17  
46/49  
2.7/2.1  
10/10  
34/34  
50  
118  
11.2/8.6  
200  
N/A  
109  
01  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
14/16  
27/27  
37/45  
69/82  
6.5/6.7  
15/13  
38/38  
53/46  
5.5/4.1  
21/16  
19/19  
43/43  
50  
200  
50  
83/86  
200/210  
270/285  
27/28  
86/86  
00  
11  
113/109  
9.2/6.9  
30/23  
120/120  
20/20  
200  
50  
Slow7,10  
81/87  
63/63  
200  
N/A  
109  
01  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
31/31  
58/52  
80/90  
144/155  
415/415  
533/540  
3.7/3.1  
46/49  
15.4/15.4  
32/26  
42/42  
82/85  
50  
200  
50  
162/168  
216/205  
80/82  
190/190  
250/250  
10/10  
00  
106/95  
200  
30  
MultiV7,11  
(High Swing Mode)  
118  
37/37  
200  
N/A  
109  
01  
CC  
CC  
CC  
CC  
D
D
D
D
32  
72  
15/15  
46/46  
50  
200  
50  
210  
295  
100/100  
134/134  
00  
200  
MultiV  
Not a valid operational mode  
(Low Swing Mode)  
Fast  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
2.5/2.5  
1.2/1.2  
1.2/1.2  
10  
20  
30  
50  
0.5  
50  
00  
01  
2.5/2.5  
2.5/2.5  
2.5/2.5  
3/3  
1.2/1.2  
10  
1.2/1.2  
118  
N/A  
N/A  
pad_i_hv12  
pull_hv  
0.5/0.5  
NA  
0.4/0.4  
±1.5/1.5  
5000/5000  
6000  
1
These are worst case values that are estimated from simulation and not tested. The values in the table are  
simulated at VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V, VDDEH = 3 V to 3.6 V, TA = TL to TH.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
96  
Freescale Semiconductor  
 
2
3
4
5
This parameter is supplied for reference and is not guaranteed by design and not tested.  
Delay and rise/fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization before qualification rather than 100% tested.  
In high swing mode, high/low swing pad Vol and Voh values are the same as those of the slew controlled output  
pads  
6
7
Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.  
Output delay is shown in Figure 9. Add a maximum of one system clock to the output delay for delay with respect  
to system clock.  
8
9
Can be used on the tester.  
This drive select value is not supported. If selected, it will be approximately equal to 11.  
10 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pullup/pulldown.  
11 Selectable high/low swing IO pad with selectable slew in high swing mode only.  
12 Stand alone input buffer. Also has weak pull-up/pull-down.  
VDDE/2  
Pad  
Data Input  
Rising  
Edge  
Output  
Delay  
Falling  
Edge  
Output  
Delay  
V
OH  
Pad  
Output  
V
OL  
Figure 9. Pad output delay  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
97  
 
3.17 AC timing  
3.17.1 Reset and configuration pin timing  
1
Table 37. Reset and Configuration Pin Timing  
#
Characteristic  
Symbol  
Min  
Max  
Unit  
1
2
3
4
RESET Pulse Width2  
tRPW  
tGPW  
tRCSU  
tRCH  
10  
2
tcyc  
tcyc  
tcyc  
tcyc  
RESET Glitch Detect Pulse Width  
PLLREF, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid  
PLLREF, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid  
10  
0
1
2
Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.14 V to 1.32 V, TA = TL to TH.  
RESET pulse width is measured from 50% of the falling edge to 50% of the rising edge.  
2
RESET  
1
RSTOUT  
3
BOOTCFG  
WKPCFG  
4
Figure 10. Reset and Configuration Pin Timing  
MPC5644A Microcontroller Data Sheet, Rev. 7  
98  
Freescale Semiconductor  
3.17.2 IEEE 1149.1 interface timing  
1
Table 38. JTAG pin AC electrical characteristics  
Min.  
Value  
Max.  
Value  
#
Symbol  
tJCYC  
C
Characteristic  
TCK Cycle Time  
Unit  
1
2
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
D
D
D
D
100  
40  
5
60  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tJDC  
TCK Clock Pulse Width  
3
tTCKRISE  
TCK Rise and Fall Times (40% - 70%)  
TMS, TDI Data Setup Time  
TMS, TDI Data Hold Time  
4
tTMSS, TDIS  
TMSH, tTDIH  
tTDOV  
tTDOI  
t
222  
22  
50  
50  
5
t
25  
0
6
TCK Low to TDO Data Valid  
TCK Low to TDO Data Invalid  
TCK Low to TDO High Impedance  
JCOMP Assertion Time  
7
8
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
100  
40  
9
10  
11  
12  
JCOMP Setup Time to TCK Low  
TCK Falling Edge to Output Valid  
tBSDVZ  
TCK Falling Edge to Output Valid out  
of High Impedance  
13  
14  
15  
tBSDHZ  
tBSDST  
tBSDHT  
CC  
CC  
CC  
D
D
D
TCK Falling Edge to Output High  
Impedance  
50  
ns  
ns  
ns  
Boundary Scan Input Valid to TCK  
Rising Edge  
253  
253  
TCK Rising Edge to Boundary Scan  
Input Invalid  
1
JTAG timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to  
Low-Swing mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10, SRC = 0b11. These specifications apply to JTAG  
boundary scan only. See Table 39 for functional specifications.  
2
3
Pad delay is 8–10 ns. Remainder includes TCK pad delay, clock tree delay logic delay and TDO output pad delay.  
For 20 MHz TCK.  
NOTE  
The Nexus/JTAG Read/Write Access Control/Status Register (RWCS) write (to begin a  
read access) or the write to the Read/Write Access Data Register (RWD) (to begin a write  
access) does not actually begin its action until 1 JTAG clock (TCK) after leaving the JTAG  
Update-DR state. This prevents the access from being performed and therefore will not  
signal its completion via the READY (RDY) output unless the JTAG controller receives an  
additional TCK. In addition, EVTI is not latched into the device unless there are clock  
transitions on TCK.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
99  
 
The tool/debugger must provide at least one TCK clock for the EVTI signal to be  
recognized by the MCU. When using the RDY signal to indicate the end of a Nexus  
read/write access, ensure that TCK continues to run for at least 1 TCK after leaving the  
Update-DR state. This can be just a TCK with TMS low while in the Run-Test/Idle state or  
by continuing with the next Nexus/JTAG command. Expect the affect of EVTI and RDY  
to be delayed by edges of TCK. Note: RDY is not available in all packages of all devices.  
TCK  
2
3
2
1
3
Figure 11. JTAG test clock input timing  
MPC5644A Microcontroller Data Sheet, Rev. 7  
100  
Freescale Semiconductor  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 12. JTAG test access port timing  
TCK  
10  
JCOMP  
9
Figure 13. JTAG JCOMP timing  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
101  
TCK  
11  
13  
Output  
Signals  
12  
Output  
Signals  
14  
15  
Input  
Signals  
Figure 14. JTAG boundary scan timing  
3.17.3 Nexus timing  
1
Table 39. Nexus debug port timing  
#
Symbol  
tMCYC  
tMCYC  
tMDC  
C
Characteristic  
MCKO Cycle Time  
Min. Value Max. Value  
Unit  
1
1a  
2
CC  
CC  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
D
D
D
D
D
D
22,3  
254  
40  
8
tCYC  
ns  
Absolute Minimum MCKO Cycle Time  
MCKO Duty Cycle  
60  
%
3
tMDOV  
tMSEOV  
tEVTOV  
tEVTIPW  
MCKO Low to MDO Data Valid5  
MCKO Low to MSEO Data Valid5  
MCKO Low to EVTO Data Valid5  
EVTI Pulse Width  
- 0.1  
- 0.1  
- 0.1  
4.0  
0.35  
0.35  
0.35  
tMCYC  
tMCYC  
tMCYC  
tTCYC  
tMCYC  
tCYC  
ns  
4
6
7
8
tEVTOPW CC  
EVTO Pulse Width  
1
9
tTCYC  
tTCYC  
tTDC  
CC  
CC  
CC  
TCK Cycle Time  
46,7  
1008  
40  
9a  
10  
Absolute Minimum TCK Cycle Time  
TCK Duty Cycle  
60  
%
MPC5644A Microcontroller Data Sheet, Rev. 7  
102  
Freescale Semiconductor  
1
Table 39. Nexus debug port timing (continued)  
Characteristic Min. Value Max. Value  
TDI Data Setup Time  
#
Symbol  
tNTDIS  
C
Unit  
11  
12  
13  
14  
15  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
5
ns  
ns  
ns  
ns  
ns  
tNTDIH  
tNTMSS  
tNTMSH  
TDI Data Hold Time  
TMS Data Setup Time  
TMS Data Hold Time  
25  
5
25  
TDO propagation delay from falling  
edge of TCK  
19.5  
16  
CC  
D
TDO hold time with respect to TCK  
falling edge (minimum TDO  
propagation delay)  
5.25  
ns  
1
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing  
specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to Low-Swing  
mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10.  
2
3
4
Achieving the absolute minimum MCKO cycle time may require setting the MCKO divider to more than its minimum  
setting (NPC_PCR[MCKO_DIV] depending on the actual system frequency being used.  
This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the  
Absolute minimum MCKO period specification.  
This may require setting the MCO divider to more than its minimum setting (NPC_PCR[MCKO_DIV]) depending on  
the actual system frequency being used.  
5
6
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.  
Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that  
is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system  
frequency being used.  
7
8
This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the  
Absolute minimum TCK period specification.  
This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability  
of the design (system frequency / 4) depending on the actual system frequency being used.  
1
2
MCKO  
3
4
6
MDO  
MSEO  
EVTO  
Output Data Valid  
Figure 15. Nexus output timing  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
103  
TCK  
EVTI  
EVTO  
7
8
7
8
9
Figure 16. Nexus event trigger and test clock timings  
TCK  
11  
13  
12  
14  
TMS, TDI  
15  
16  
TDO  
Figure 17. Nexus TDI, TMS, TDO timing  
MPC5644A Microcontroller Data Sheet, Rev. 7  
104  
Freescale Semiconductor  
N
Table 40. Nexus debug port operating frequency  
Nexus Pin Usage  
Max. Operating  
Frequency  
Package Nexus Width Nexus Routing  
CAL_MDO[4:1  
1]  
MDO[0:3]  
MDO[4:11]  
176 LQFP Reduced port Route to MDO2 Nexus Data Out  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
40 MHz3  
40 MHz5,6  
40 MHz3  
40 MHz5,6  
40 MHz3  
208 BGA mode1  
[0:3]  
324 BGA  
Full port  
Route to MDO2 Nexus Data Out Nexus Data Out  
mode4  
[0:3]  
[4:11]  
GPIO  
496 CSP Reduced port Route to MDO2 Nexus Data Out  
mode1  
[0:3]  
Full port  
mode4  
Route to MDO2 Nexus Data Out Nexus Data Out  
[0:3]  
[4:11]  
GPIO  
Route to  
Cal Nexus Data  
Out [0:3]  
Cal Nexus Data  
Out [4:11]  
CAL_MDO7  
1
2
3
NPC_PCR[FPM] = 0  
NPC_PCR[NEXCFG] = 0  
The Nexus AUX port runs up to 40 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency is  
greater than 40 MHz.  
4
5
NPC_PCR[FPM] = 1  
Set the NPC_PCR[MCKO_DIV] to divide by two if the system frequency is between 40 MHz and 80 MHz inclusive.  
Set the NPC_PCR[MCKO_DIV] to divide by four if the system frequency is greater than 80 MHz.  
6
7
Pad restrictions limit the Maximum Operation Frequency in these configurations  
NPC_PCR[NEXCFG] = 1  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
105  
 
 
 
 
 
3.17.4 External Bus Interface (EBI) and calibration bus interface timing  
Table 41. External Bus Interface maximum operating frequency  
Port  
Width  
Multiplexed  
Mode  
ADDR[12:15]  
Pin Usage  
ADDR[16:31]  
Pin Usage  
DATA[0:15]  
Pin Usage  
Max. Operating  
Frequency  
16-bit  
Yes  
ADDR[12:15]  
GPIO  
ADDR[16:31]  
DATA[0:15]  
66 MHz1  
16-bit  
32-bit  
No  
ADDR[12:15]  
ADDR[12:15]  
ADDR[16:31]  
DATA[0:15]  
DATA[0:15]  
33 MHz2,3  
33 MHz2,3  
Yes  
ADDR[16:31]  
DATA[16:31]  
1
2
3
Set SIU_ECCR[EBDF] to divide by two or divide by four if the system frequency is greater than 66 MHz.  
System Frequency must be 132 MHz and SIU_ECCR[EBDF] set to divide by four.  
Pad restrictions limit the maximum operating frequency.  
Table 42. Calibration bus interface maximum operating frequency  
Port  
Width  
Multiplexed CAL_ADDR[12:15] CAL_ADDR[16:30] CAL_DATA[0:15]  
Max. Operating  
Frequency  
Mode  
Pin Usage  
Pin Usage  
Pin Usage  
16-bit  
Yes  
GPIO  
GPIO  
CAL_ADDR[12:30]  
CAL_DATA[0:15]  
66 MHz1  
16-bit  
32-bit  
No  
CAL_ADDR[12:15] CAL_ADDR[16:30]  
CAL_DATA[0:15]  
66 MHz1  
66 MHz1  
Yes  
CAL_WE[2:3]  
CAL_ADDR[16:30]  
CAL_DATA[16:30]  
CAL_ADDR[0:15]  
CAL_DATA[0:15]  
CAL_DATA[31]  
1
Set SIU_ECCR[EBDF] to divide by two or divide by four if the system frequency is greater than 66 MHz  
1
Table 43. External bus interface (EBI) and calibration bus operation timing  
66 MHz (ext. bus)2  
#
Symbol  
C
Characteristic  
CLKOUT Period  
Unit  
Notes  
Min  
Max  
1
TC  
CC  
P
15.2  
ns Signals are  
measured at 50%  
VDDE  
.
2
3
4
5
tCDC CC  
tCRT CC  
tCFT CC  
tCOH CC  
D
D
D
D
CLKOUT duty cycle  
CLKOUT rise time  
CLKOUT fall time  
45%  
55%  
3
TC  
ns  
ns  
ns  
3
CLKOUT Posedge to Output Signal  
Invalid or High Z(Hold Time)  
1.3  
• ADDR[8:31]  
• CS[0:3]  
• DATA[0:31]  
• OE  
• RD_WR  
• TS  
• WE[0:3]/BE[0:3]  
MPC5644A Microcontroller Data Sheet, Rev. 7  
106  
Freescale Semiconductor  
 
 
 
 
1
Table 43. External bus interface (EBI) and calibration bus operation timing (continued)  
66 MHz (ext. bus)2  
#
Symbol  
C
Characteristic  
Unit  
Notes  
Min  
Max  
6
tCOV CC  
D
CLKOUT Posedge to Output Signal Valid  
(Output Delay)  
9
ns  
ADDR[8:31]  
CS[0:3]  
DATA[0:31]  
OE  
RD_WR  
TS  
WE[0:3]/BE[0:3]  
7
8
9
tCIS CC  
tCIH CC  
tAPW CC  
D
D
Input Signal Valid to CLKOUT Posedge  
(Setup Time)  
6.0  
1.0  
ns  
ns  
DATA[0:31]  
CLKOUT Posedge to Input Signal Invalid  
(Hold Time)  
DATA[0:31]  
ALE Pulse Width4  
ALE Negated to Address Invalid4  
D
D
6.5  
1.55  
ns  
ns  
10 tAAI CC  
1
External Bus and Calibration bus timing specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V,  
VDDE = 3 V to 3.6 V (unless stated otherwise), TA = TL to TH, and CL = 30 pF with DSC = 0b10.  
2
The external bus is limited to half the speed of the internal bus. The maximum external bus frequency is 66 MHz  
for 16-bit muxed mode and 33 MHz for non-muxed mode. For The EBI division factor should be set accordingly  
based on the internal frequency being used.  
3
4
5
Refer to Fast Pad timing in Table 35 and Table 36 (different values for 1.8 V vs. 3.3 V).  
Measured at 50% of ALE.  
When CAL_TS pad is used for CAL_ALE function the hold time is 1 ns instead of 1.5 ns.  
Voh_f  
VDDE/2  
Vol_f  
CLKOUT  
2
3
2
4
1
Figure 18. CLKOUT timing  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
107  
 
VDDE/2  
CLKOUT  
6
5
VDDE/2  
5
OUTPUT  
BUS  
VDDE/2  
6
5
5
OUTPUT  
SIGNAL  
VDDE/2  
6
OUTPUT  
SIGNAL  
VDDE/2  
Figure 19. Synchronous output timing  
MPC5644A Microcontroller Data Sheet, Rev. 7  
108  
Freescale Semiconductor  
CLKOUT  
VDDE/2  
7
8
INPUT  
BUS  
VDDE/2  
7
8
INPUT  
SIGNAL  
VDDE/2  
Figure 20. Synchronous input timing  
System Clock  
CLKOUT  
ALE  
TS  
A/D  
DATA  
ADDR  
9
10  
Figure 21. ALE signal timing  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
109  
3.17.5 External interrupt timing (IRQ pin)  
1
Table 44. External interrupt timing  
#
Characteristic  
IRQ Pulse Width Low  
Symbol  
Min  
Max  
Unit  
1
2
3
tIPWL  
tIPWH  
tICYC  
3
3
6
tcyc  
tcyc  
tcyc  
IRQ Pulse Width High  
IRQ Edge to Edge Time2  
1
2
IRQ timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL  
to TH.  
Applies when IRQ pins are configured for rising edge or falling edge events, but not both.  
IRQ  
2
1
3
Figure 22. External Interrupt Timing  
3.17.6 eTPU timing  
1
Table 45. eTPU timing  
#
Characteristic  
eTPU Input Channel Pulse Width  
eTPU Output Channel Pulse Width  
Symbol  
Min  
Max  
Unit  
1
2
tICPW  
4
22  
tcyc  
tcyc  
tOCPW  
1
2
eTPU timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V,  
TA = TL to TH, and CL = 200 pF with SRC = 0b00.  
This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include  
the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).  
MPC5644A Microcontroller Data Sheet, Rev. 7  
110  
Freescale Semiconductor  
3.17.7 eMIOS timing  
1
Table 46. eMIOS timing  
Characteristic  
Min.  
Value  
Max.  
Value  
#
Symbol  
C
Unit  
1
2
tMIPW  
CC  
CC  
D
D
eMIOS Input Pulse Width  
eMIOS Output Pulse Width  
4
1
tCYC  
tCYC  
tMOPW  
1
eMIOS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH, and CL =  
50 pF with SRC = 0b00.  
3.17.8 DSPI timing  
DSPI channel frequency support for the MPC5644A MCU is shown in Table 47. Timing specifications are in Table 48.  
Table 47. DSPI channel frequency support  
Max. Usable  
Frequency  
(MHz)  
SystemClock  
(MHz)  
DSPI Use  
Mode  
Notes  
150  
120  
LVDS  
Non-LVDS  
LVDS  
37.5  
18.75  
40  
Use sysclock /4 divide ratio.  
Use sysclock /8 divide ratio.  
Use sysclock /3 divide ratio. Gives 33/66 duty cycle. Use DSPI  
configuration DBR=0b1 (double baud rate), BR=0b0000 (scaler  
value 2) and PBR=0b01 (prescaler value 3).  
Non-LVDS  
LVDS  
20  
40  
20  
Use sysclock /6 divide ratio.  
Use sysclock /2 divide ratio.  
Use sysclock /4 divide ratio.  
80  
Non-LVDS  
1,2  
Table 48. DSPI timing  
Characteristic  
#
Symbol  
C
Condition  
Min.  
Max.  
Unit  
1
2
3
4
5
tSCK  
tCSC  
tASC  
tSDC  
tA  
CC  
CC  
CC  
CC  
CC  
D
D
D
D
D
SCK Cycle Time3,4,5  
PCS to SCK Delay6  
After SCK Delay8  
SCK Duty Cycle  
24.4 ns  
227  
2.9 ms  
ns  
ns  
ns  
ns  
219  
(½tSC)–2 (½tSC)+2  
Slave Access Time  
25  
(SS active to SOUT driven)  
6
tDIS  
CC  
D
Slave SOUT Disable Time  
(SS inactive to SOUT High-Z or  
invalid)  
25  
ns  
7
8
tPCSC CC  
tPASC CC  
D
D
PCSx to PCSS time  
PCSS to PCSx time  
410  
511  
ns  
ns  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
111  
 
 
 
1,2  
Table 48. DSPI timing (continued)  
#
Symbol  
tSUI CC  
C
Characteristic  
Condition  
Min.  
Max.  
Unit  
9
Data Setup Time for Inputs  
VDDEH=4.5–5.5 V  
D
D
D
D
D
D
Master (MTFE = 0)  
20  
23.5  
2
ns  
VDDEH=3–3.6 V  
Slave  
Master (MTFE = 1, CPHA = 0)12  
Master (MTFE = 1, CPHA = 1)  
8
VDDEH=4.5–5.5 V  
VDDEH=3–3.6 V  
20  
23.5  
10  
tHI  
CC  
Data Hold Time for Inputs  
D
D
D
D
Master (MTFE = 0)  
Slave  
-4  
7
ns  
Master (MTFE = 1, CPHA = 0)12  
Master (MTFE = 1, CPHA = 1)  
21  
-4  
11  
tSUO  
CC  
Data Valid (after SCK edge)  
D
D
D
D
D
D
D
Master (MTFE = 0)  
Slave  
VDDEH=4.5–5.5 V  
VDDEH=3–3.6 V  
VDDEH=4.5–5.5 V  
VDDEH=3–3.6 V  
5
ns  
6.3  
25  
27  
21  
5
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
VDDEH=4.5–5.5 V  
VDDEH=3–3.6 V  
6.3  
12  
tHO  
CC  
Data Hold Time for Outputs  
VDDEH=4.5–5.5 V  
D
D
D
D
D
D
Master (MTFE = 0)  
Slave  
–5  
–7.5  
5.5  
3
ns  
VDDEH=3 –3.6 V  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
VDDEH=4.5–5.5 V  
VDDEH=3–3.6 V  
–5  
–7.5  
1
All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on medium-speed pads. DSPI signals using  
slow pads have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3 to 3.6 V and  
VDDEH = 4.5 to 5.5 V, TA = TL to TH, and CL = 50 pF with SRC = 0b11.  
2
3
Data is verified at fSYS = 102 MHz and 153 MHz (100 MHz and 150 MHz + 2% frequency modulation).  
The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are  
calculated based on two MPC5644A devices communicating over a DSPI link.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
112  
Freescale Semiconductor  
4
5
The actual minimum SCK cycle time is limited by pad performance.  
For DSPI channels using LVDS output operation, up to 40 MHz SCK cycle time is supported. For non-LVDS output,  
maximum SCK frequency is 20 MHz. Appropriate clock division must be applied.  
6
7
8
9
The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK].  
Timing met when pcssck = 3(01), and cssck =2 (0000).  
The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].  
Timing met when ASC = 2 (0000), and PASC = 3 (01).  
10 Timing met when pcssck = 3.  
11 Timing met when ASC = 3.  
12 This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10.  
2
3
PCSx  
1
4
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
10  
9
Last Data  
SIN  
First Data  
First Data  
Data  
Data  
12  
11  
Last Data  
SOUT  
Note: Refer to Table 48 for the numbers.  
Figure 23. DSPI classic SPI timing — master, CPHA = 0  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
113  
PCSx  
SCK Output  
(CPOL=0)  
10  
SCK Output  
(CPOL=1)  
9
Data  
Data  
First Data  
Last Data  
SIN  
12  
11  
SOUT  
Last Data  
First Data  
Note: Refer to Table 48 for the numbers.  
Figure 24. DSPI classic SPI timing — master, CPHA = 1  
3
2
SS  
1
4
SCK Input  
(CPOL=0)  
4
SCK Input  
(CPOL=1)  
5
11  
12  
Data  
6
First Data  
Last Data  
SOUT  
SIN  
9
10  
Data  
Last Data  
First Data  
Note: Refer to Table 48 for the numbers.  
Figure 25. DSPI classic SPI timing — slave, CPHA = 0  
MPC5644A Microcontroller Data Sheet, Rev. 7  
114  
Freescale Semiconductor  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
Data  
Data  
SOUT  
SIN  
First Data  
10  
9
Last Data  
First Data  
Note: Refer to Table 48 for the numbers.  
Figure 26. DSPI classic SPI timing — slave, CPHA = 1  
3
PCSx  
4
1
2
SCK Output  
(CPOL=0)  
4
SCK Output  
(CPOL=1)  
9
10  
SIN  
First Data  
12  
Last Data  
Last Data  
Data  
11  
SOUT  
First Data  
Data  
Note: Refer to Table 48 for the numbers.  
Figure 27. DSPI modified transfer format timing — master, CPHA = 0  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
115  
PCSx  
SCK Output  
(CPOL=0)  
SCK Output  
(CPOL=1)  
10  
9
SIN  
Last Data  
First Data  
Data  
12  
Data  
11  
First Data  
Last Data  
SOUT  
Note: Refer to Table 48 for the numbers.  
Figure 28. DSPI modified transfer format timing — master, CPHA = 1  
3
2
SS  
1
SCK Input  
(CPOL=0)  
4
4
SCK Input  
(CPOL=1)  
12  
11  
6
5
First Data  
9
Data  
Data  
Last Data  
10  
SOUT  
SIN  
Last Data  
First Data  
Note: Refer to Table 48 for the numbers.  
Figure 29. DSPI modified transfer format timing — slave, CPHA =0  
MPC5644A Microcontroller Data Sheet, Rev. 7  
116  
Freescale Semiconductor  
SS  
SCK Input  
(CPOL=0)  
SCK Input  
(CPOL=1)  
11  
5
6
12  
Last Data  
First Data  
10  
Data  
Data  
SOUT  
SIN  
9
First Data  
Last Data  
Note: Refer to Table 48 for the numbers.  
Figure 30. DSPI modified transfer format timing — slave, CPHA =1  
8
7
PCSS  
PCSx  
Note: Refer to Table 48 for the numbers.  
Figure 31. DSPI PCS strobe (PCSS) timing  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
117  
3.17.9 eQADC SSI timing  
1
Table 49. eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)  
CLOAD = 25 pF on all outputs. Pad drive strength set to maximum.  
#
Symbol  
C
Rating  
Min  
Typ  
Max  
Unit  
1
1
2
3
4
5
6
fFCK CC  
tFCK CC  
tFCKHT CC  
tFCKLT CC  
tSDS_LL CC  
tSDO_LL CC  
tDVFE CC  
D
D
D
D
D
D
D
FCK Frequency 2, 3  
1/17  
12  
fSYS_CLK  
tSYS_CLK  
ns  
FCK Period (tFCK = 1/ fFCK  
Clock (FCK) High Time  
Clock (FCK) Low Time  
SDS Lead/Lag Time  
SDO Lead/Lag Time  
)
2
17  
9* tSYS_CLK 6.5  
8* tSYS_CLK 6.5  
7.5  
tSYS_CLK 6.5  
tSYS_CLK 6.5  
ns  
-7.5  
-7.5  
1
ns  
7.5  
ns  
Data Valid from FCK Falling Edge  
(tFCKLT+tSDO_LL  
ns  
)
7
8
tEQ SU CC  
D
D
eQADC Data Setup Time (Inputs)  
eQADC Data Hold Time (Inputs)  
22  
1
ns  
ns  
_
tEQ_HO CC  
1
SS timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.5 V to 5.5 V, TA = TL to TH, and CL = 50 pF with  
SRC = 0b00.  
2
3
Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays.  
FCK duty is not 50% when it is generated through the division of the system clock by an odd number.  
1
2
3
FCK  
SDS  
4
5
4
5
25th  
6
1st (MSB)  
2nd  
26th  
SDO  
External Device Data Sample at  
FCK Falling Edge  
8
7
1st (MSB)  
2nd  
25th  
26th  
SDI  
eQADC Data Sample at  
FCK Rising Edge  
Figure 32. eQADC SSI timing  
MPC5644A Microcontroller Data Sheet, Rev. 7  
118  
Freescale Semiconductor  
3.17.10 FlexCAN system clock source  
Table 50. FlexCAN engine system clock divider threshold  
#
Symbol  
Characteristic  
Value  
Unit  
1
FCAN_TH  
FlexCAN engine system clock threshold  
100  
MHz  
Table 51. FlexCAN engine system clock divider  
System Frequency  
Required SIU_SYSDIV[CAN_SRC] Value  
<= FCAN_TH  
> FCAN_TH  
01,2  
12,3  
1
Divides system clock source for FlexCAN engine by 1.  
2
3
System clock is only selected for FlexCAN when CAN_CR[CLK_SRC] = 1.  
Divides system clock source for FlexCAN engine by 2.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
119  
 
4
Packages  
4.1  
4.1.1  
Package mechanical data  
176 LQFP  
MPC5644A Microcontroller Data Sheet, Rev. 7  
120  
Freescale Semiconductor  
Figure 33. 176 LQFP package mechanical drawing (part 1)  
Figure 34. 176 LQFP package mechanical drawing (part 2)  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
121  
Figure 35. 176 LQFP package mechanical drawing (part 3)  
MPC5644A Microcontroller Data Sheet, Rev. 7  
122  
Freescale Semiconductor  
4.1.2  
208 MAPBGA  
Figure 36. 208 MAPBGA package mechanical drawing (part 1)  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
123  
Figure 37. 208 MAPBGA package mechanical drawing (part 2)  
MPC5644A Microcontroller Data Sheet, Rev. 7  
124  
Freescale Semiconductor  
4.1.3  
324 TEPBGA  
Figure 38. 324 BGA package mechanical drawing (part 1)  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
125  
Figure 39. 324 BGA package mechanical drawing (part 2)  
MPC5644A Microcontroller Data Sheet, Rev. 7  
126  
Freescale Semiconductor  
5
Ordering information  
Table 52 shows the orderable part numbers for the MPC5644A series.  
Table 52. Orderable part number summary  
Speed  
(MHz)  
Part number  
SPC5643AF0MLU3  
Flash/SRAM  
Package  
3 MB/192 KB  
3 MB/192 KB  
3 MB/192 KB  
3 MB/192 KB  
3 MB/192 KB  
3 MB/192 KB  
3 MB/192 KB  
3 MB/192 KB  
3 MB/192 KB  
4 MB/192 KB  
4 MB/192 KB  
4 MB/192 KB  
4 MB/192 KB  
4 MB/192 KB  
4 MB/192 KB  
4 MB/192 KB  
4 MB/192 KB  
4 MB/192 KB  
176LQFP (Pb free)  
208MAPBGA(Pb free)  
324PBGA (Pb free)  
176LQFP (Pb free)  
80  
80  
SPC5643AF0MMG3  
SPC5643AF0MVZ3  
SPC5643AF0MLU2  
SPC5643AF0MMG2  
SPC5643AF0MVZ2  
SPC5643AF0MLU1  
SPC5643AF0MMG1  
SPC5643AF0MVZ1  
SPC5644AF0MLU3  
SPC5644AF0MMG3  
SPC5644AF0MVZ3  
SPC5644AF0MLU2  
SPC5644AF0MMG2  
SPC5644AF0MVZ2  
SPC5644AF0MLU1  
SPC5644AF0MMG1  
SPC5644AF0MVZ1  
80  
120  
120  
120  
150  
150  
150  
80  
208MAPBGA (Pb free)  
324PBGA (Pb free)  
176LQFP (Pb free)  
208MAPBGA (Pb free)  
324PBGA (Pb free)  
176 LQFP (Pb free)  
208 MAPBGA (Pb free)  
324 TEPBGA (Pb free)  
176 LQFP (Pb free)  
208 MAPBGA (Pb free)  
324 TEPBGA (Pb free)  
176 LQFP (Pb free)  
208 MAPBGA (Pb free)  
324 TEPBGA (Pb free)  
80  
80  
120  
120  
120  
150  
150  
150  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
127  
 
Figure 40. Product code structure  
Example code:  
SPC  
5644A  
F0  
M
VZ  
1
Qualification Status  
Product Family  
ATMC Fab and Mask Revision  
Temperature Range  
Package  
Maximum Frequency  
Qualification Status  
MPC = Industrial qualified  
SPC = Automotive qualified  
PC = Prototype  
Fab and Mask Revision  
F = ATMC  
0 = Revision  
Package Code  
LU = 176 LQFP  
MG = 208 MAPBGA  
VZ = 324 TEPBGA  
Temperature spec.  
Product  
5644A= MPC5644A family  
M = –40 °C to 125 °C  
Maximum Frequency  
1 = 150 MHz  
2 = 120 MHz  
3 = 80 MHz  
6
Document revision history  
Table 53 summarizes revisions to this document.  
Table 53. Revision history  
Substantive changes  
Revision  
Date  
Rev. 1  
4/2008  
Initial release  
MPC5644A Microcontroller Data Sheet, Rev. 7  
128  
Freescale Semiconductor  
 
Table 53. Revision history (continued)  
Revision  
Date  
Substantive changes  
Rev. 2  
11/2009  
Maximum device speed is 145 MHz (was 150 MHz)  
16-entry Memory Protection Unit (MPU). Was incorrectly listed as 8-entry.  
Feature details section added  
Changes to signal summary table:  
• Added ANY function to AN[10]  
• Added ANW function to AN[8]  
Changes to 208 ball BGA ballmap:  
• A12 is AN12-SDS (was AN12)  
• A15 is VRC33 (was VDD33)  
• B12 is AN13-SDO (was AN13)  
• C12 is AN14SDI (was AN14)  
• C13 is AN15-FCK (was AN15)  
• D1 is VRC33 (was VDD33)  
• F13 is VDDEH6AB (was VDDEH6)  
• H13 is GPIO99 (was PCSA3)  
• J15 is GPIO98 (was PCSA2)  
• K4 is now VDDEH1AB (was VDDEH1)  
• N6 is now VRC33 (was VDD33)  
• N9 is VDDEH4AB (was VDDEH4)  
• N12 is now VRC33 (was VDD33)  
• P6 is now NC  
• T13 is VDDE5 (was NC)  
Rev. 2  
11/2009  
(cont.)  
Recommended operating characteristics for power transistor updated  
Pad current specifications updated  
LVDS pad specifications updated. SRC does not apply to common mode voltage.  
Temperature sensor electrical characteristics added  
eQADC electrical characteristics updated with VGA gain specs  
Pad AC specifications updated  
Definition for RDY signal added to signal details  
VSTBY maximum is 5.5 V (was listed incorrectly as 6.0 V)  
I
MAXA maximum is 5 mA (was TBD)  
Analog differential input functions added to AN0–AN7 in signal summary  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
129  
Table 53. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 3  
04/2010  
Changes to Signal Properties table (changes apply to Revision 2 and later devices:  
EBI changes:  
• WE_BE[2] (A2) and CAL_WE_BE[2] (A3) signals added to CS[2] (PCR 2)  
• WE_BE[3] (A2) and CAL_WE_BE[3] (A3) signals added to CS[3] (PCR 3)  
Calibration bus changes:  
• CAL_WE[2]/BE[2] (A2) signal added to CAL_CS[2] (PCR 338)  
• CAL_WE[3]/BE[3] (A2) signal added to CAL_CS[3] (PCR 339)  
• CAL_ALE (A1) added to CAL_ADDR[15] (PCR 340)  
eQADC changes:  
• AN[8] and AN[38] pins swapped. AN[8] Is now on pins 9 (176-pin), B3 (208-ball) and  
E1 (324-ball). AN[8] was on D3 (324-ball) on previous devices. AN[38] Is now on D3  
(324-ball). AN[38] was on pins 9 (176-pin), B3 (208-ball) and E1 (324-ball) on previous  
devices.  
• ANZ function added to AN11 pin  
Reaction channels added to eTPU2:  
• RCH0_A (A3) added to ETPU_A[14] (PCR 128)  
• RCH0_B (A2) added to ETPU_A[20] (PCR 134)  
• RCH0_C (A2) added to ETPU_A[21] (PCR 135)  
• RCH1_A (A2) added to ETPU_A[15] (PCR 129)  
• RCH1_B (A2) added to ETPU_A[9] (PCR 123)  
• RCH1_C (A2) added to ETPU_A[10] (PCR 124)  
• RCH2_A (A2) added to ETPU_A[16] (PCR 130)  
• RCH3_A (A2) added to ETPU_A[17] (PCR 131  
• RCH4_A (A2) added to ETPU_A[18] (PCR 132))  
• RCH4_B (A2) added to ETPU_A[11] (PCR 125)  
• RCH4_C (A2) added to ETPU_A[12] (PCR 126)  
• RCH5_A (A2) added to ETPU_A[19] (PCR 133)  
• RCH5_B (A2) added to ETPU_A[28] (PCR 142)  
• RCH5_C (A2) added to ETPU_A[29] (PCR 143)  
Reaction channels added to eMIOS:  
• RCH2_B (A2) added to EMIOS[2] (PCR 181)  
• RCH2_C (A2) added to EMIOS[4] (PCR 183)  
• RCH3_B (A2) added to EMIOS[10] (PCR 189)  
• RCH3_C (A2) added to EMIOS[11] (PCR 190)  
Pad changes:  
• ETPUA16 (PCR 130) has Medium (was Slow) pad  
• ETPUA17 (PCR 131) has Medium (was Slow) pad  
• ETPUA18 (PCR 132) has Medium (was Slow) pad  
• ETPUA19 (PCR 133) has Medium (was Slow) pad  
• ETPUA25 (PCR 139) has Slow+LVDS (was Medium+LVDS) pads  
Signal Details table updated:  
• Added eTPU2 reaction channels  
• Changed IRQ[0:15] to two ranges, excluding IRQ6, which does not exist on this device  
• Changed TCR_A to TCRCLKA (TCR_A is the pin name, not the signal name)  
• Changed WE_BE[0:1] to WE_BE[0:3] (2 new signals added to Rev. 2). Also changed  
notation from “WE_BE[n]” to “WE[n]/BE[n]” to be consistent.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
130  
Freescale Semiconductor  
Table 53. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 3  
(cont)  
04/2010  
Changes to Power/ground segmentation table:  
• ADDR[20:21] removed from VDDE2 segment; they are in VDDE-EH  
• CAL_CS1 removed from VDDE12 segment (there is no CAL_CS1 on this device)  
• CAL_EVTO and CAL_MCKO removed from VDDE12 segment. Those pins do not  
exist  
• VDDE-VDDEH renamed to VDDE-EH  
• EMIOS24 removed from VDDEH segment. That pin does not exist.  
• ETPUA[0:9] added to VDDEH4 segment  
• Renamed TCR_A in VDDEH4 segment to TCRCLKA.  
• EXTAL and XTAL added to VDDEH6 segment  
• AN15-FCK added to VDDEH7 segment  
• GPIO98, GPIO99, GPIO206, GPIO207 and GPIO219 added to VDDEH7 segment.  
• MSEO1 added to VDDEH7 segment  
• Power segment VDDEH1A renamed to VDDEH1  
Changes to 176-pin package pinout:  
• Changed pin 9 from AN38 to AN8.  
• Added note that pin 96 (VSS) should be tied low.  
Changes to 208-ball package ballmap:  
• Changed ball B3 from AN38 to AN8.  
• Added note that ball N13 (VSS) should be tied low.  
324-ball package ballmap updated for Rev. 2 silicon:  
• AN8 was on ball D3; it is now on E1  
• AN38 was on ball E1; it is now on D3  
Changes to features list:  
• Correction: there are 6 reaction channels (was noted as 5)  
• Development Trigger Semaphore (DTS) added to features list and feature details  
• FlexRay module now has 128 message buffers (was 64) and ECC support  
Added note after JTAG pin AC electrical characteristics table detailing JTAG EVTI and  
RDY signal clocking with TCK. This affects debuggers.  
Part numbers and part number decoder updated.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
131  
Table 53. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 3  
(cont)  
04/2010  
Added information to AC timings section:  
• New section added: Reset and configuration pin timing  
• New section added: External interrupt timing (IRQ pin)  
• New section added: eTPU timing  
• Added Nexus debug port operating frequency table to Nexus timings section  
• Added external bus interface maximum operating frequency table and calibration bus  
interface maximum operation frequency table  
• Added FlexCAN system clock source section  
Changes to Power management control (PMC) and power on reset (POR) electrical  
specifications:  
• Max value for parameter 2 (vddreg) is 5.25 V (was 5.5 V)  
Updated “Core voltage regulator controller external components preferred configuration”  
diagram.  
Changes to DC electrical specifications table:  
• Slew rate on power supply pins (system requirement) changed to 25 V/ms (was  
50 V/ms)  
Throughout the document the maximum frequency is now 150 MHz (was 145 MHz)  
Changes to DC electrical specifications:  
• Parameter classifications added  
• VDDREG max value changed to 5.25 V (was 5.5 V)  
• VOH_LS min value changed to 2.0 V (was 2.7 V) with a load current of 0.5 mA  
• VOL_LS max value changed to 0.6 V (was 0.2*VDDEH) with load current of 2 mA  
• VINDC min value changed to VSSA-0.3 (was VSSA-1.0)  
• VINDC max value changed to VDDA+0.3 (was VDDA+1.0)  
Added new section: Configuring SRAM wait states  
VRCCTL external circuit updated.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
132  
Freescale Semiconductor  
Table 53. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 4  
08/2010  
Updates to Nexus timings:  
• tMDOV max value changed to 0.35 (was 0.2)  
• tMSEOV max value changed to 0.35 (was 0.2)  
• tEVTOV max value changed to 0.35 (was 0.2)  
Updates to DC electrical specifications:  
• VSTBY min value changed to 0.95 V (was 0.9 V)  
• VSTBY has two ranges—for regulated mode and unregulated mode  
Correction to PLLMRFM electrical specifications:  
• VDDPLL range is from 1.08 V to 3.6 V (was 3.0 V to 3.6 V.  
Updates to pad AC specifications:  
• Specs with drive load = 200 pF deleted. DSC (drive strength control) values range from  
10 – 50 pF.  
• I/O pad average IDDE specifications updated (fast pad specs only)  
• I/O pad VRC33 average IDDE specifications (fast pad specs only)  
Updates to Reset and configuration pin timings:  
• Footnote added: RESET pulse width is measured from 50% of the falling edge to 50%  
of the rising edge.  
• Timings are specified at VDD = 1.14 V to 1.32 V (was 1.08 V to 1.32 V).  
Updates to EBI timings:  
• Note added to tAAI: When CAL_TS is used as CAL_ALE the hold time is 1 ns instead  
of 1.5 ns.  
• Correction: maximum calibration bus interface operating frequency is 66 MHz for all  
port configurations.  
• VDDE range in footnote 1 corrected to read, “External Bus and Calibration bus timing  
specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6  
V (unless stated otherwise)” (VDDE range was 1.62 V to 3.6 V)  
Correction to IEEE 1149.1 timings:  
• SRC value in footnote 1 corrected to read, “JTAG timing specified at VDD = 1.14 V to  
1.32 V, VDDEH = 4.5 V to 5.5 V with multi-voltage pads programmed to Low-Swing  
mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10, SRC = 0b11.” (SRC value was  
0b00)  
Correction to External interrupt timing (IRQ pin) timings:  
• Timings are specified at VDD = 1.14 V to 1.32 V (was 1.08 V to 1.32 V).  
Update to DSPI timings:  
• Some of the timing parameters can vary depending on the value of VDDE. For these  
parameters, ranges are now defined for two ranges of VDDE  
.
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
133  
Table 53. Revision history (continued)  
Revision  
Date  
Substantive changes  
Rev. 4  
(cont)  
08/2010  
Change in signal name notation for DSPI, CAN and SCI signals:  
DSPI:  
PCS_x[n] is now DSPI_x_PCS[n]  
SOUT_x is now DSPI_x_SOUT  
SIN_x is now DSPI_x_SIN  
SCK_x is now DSPI_x_SCK  
CAN:  
CNTXx is now CAN_x_TX  
CNRXx is now CAN_x_RX  
SCI:  
RXDx is now SCI_x_RX  
TXDx is now SCI_x_TX  
Updates to DC electrical specifications:  
• Slew rate on power supply pins specification changed to 25 V/ms (was 50 V/ms)  
VOH_LS min spec changed to 2.0 V at 0.5 mA (was 2.7 V at 0.5 mA)  
Updated I/O pad current specifications  
Updated I/O pad VRC33 current specifications  
Corrections to Nexus timing:  
• Maximum Nexus debug port operating frequency is 40 MHz in all configurations  
To route Nexus to MDO, clear NPC_PCR[NEXCFG] (formerly this was documented as  
NPC_PCR[CAL]  
To route Nexus to CAL_MDO, set NPC_PCR[NEXCFG]=1 (formerly this was  
documented as NPC_PCR[CAL]  
MPC5644A Microcontroller Data Sheet, Rev. 7  
134  
Freescale Semiconductor  
Table 53. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 5  
2/2011  
• Minor editorial updates.  
• Re-organized the first few subsections of the “Overview” section.  
• Added ECSM to the block diagram.  
• Added information on the REACM, SIU, and ECS modules to the “Block summary”  
section.  
• Added DATA[0:15] to VDDE5 in the “signal properties” table.  
• Updated VSTBY parameters in the “Power/ground segmentation” table.  
• Updated the parameter symbols and classifications throughout the document.  
• Updated footnote instances in the “Absolute maximum ratings” table.  
• Removed IMAXA footnote in the “Absolute Maximum Ratings” table.  
• Updated the format of the “EMI (electromagnetic interference) characteristics” table.  
• Removed the footnote on VDDREG in the “Power management control (PMC) and  
power on reset (POR) electrical specifications” table.  
• Updated values for Vbg, Idd3p3, Por3.3V_r, Por3.3V_f, Por5V_r, and Por5V_f in the  
“PMC electrical characteristics” table.  
• Updated “Bandgap reference supply voltage variation” in the “PMC Electrical  
Characteristics” table.  
• Updated VCESAT and VBEin the “Recommended power transistors” operating  
characteristics” table.  
• Updated VIH_LS in the “DC electrical specifications” table.  
• Updated the VOH_LS min value in the “DC electrical specifications” table.  
• Updated IDDSTBY and IDDSTBY150 in the “DC electrical specifications” table.  
• Updated the IDDA/IREF/IDDREG max value in the “DC electrical specifications” table.  
• Updated IACT_F, IACT_MV_PU, IACT_MV_PD, RPUPD5K, RPUPDMTCH, and footnotes in the  
“DC electrical specifications” table.  
• Updated Medium pad type IDD33 values in the “I/O pad VRC33 average IDDE  
specifications” table.  
• Updated values for VOD in the “DSPI LVDS pad specification” table.  
• Removed the footnotes from the “DSPI LVDS pad specifications” table.  
• Removed the redundant “XTAL Load Capacitance” parameter instance from the  
“PLLMRFM electrical specifications” table.  
• Updated footnotes in the “PLLMRFM electrical specifications” table.  
• Updated values for OFFNC and GAINNC in the “eQADC conversion specifications  
(operating)” table.  
• Added DIFFmax, DIFFmax2, DIFFmax4, and DIFFcmv parameters to the “eQADC  
conversion specifications (operating)” table.  
• Added the maximum operating frequency values in the “Cutoff frequency for additional  
SRAM wait state” table.  
• Updated multiple entries in the “APC, RWSC, WWSC settings vs. frequency of  
operation” table.  
• Removed footnote in the “APC, RWSC, WWSC settings vs. frequency of operation”  
table.  
• Changed the voltage in the “Pad AC specifications” table title from 4.5 V to 5.0 V.  
• Added the maximum LH/HL output delay values for pad type MultiV in the “Pad AC  
specifications (VDDE = 3.3 V)” table.  
Rev. 6  
• Rev. 6 not published.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
135  
Table 53. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 7  
01/2012  
• Minor editorial changes.  
• In MPC5644A feature list, moved “24 unified channels” after “1 x eMIOS”.  
• In Table 3MPC5644A signal properties/Column “Name” updated the following rows:  
DSPI_D_SCK /GPIO [98] -Changed “-” to CS[2]  
DSPI_D_SIN /GPIO[99] -Changed “-” to CS[3].  
• In Table 11Thermal characteristics for 324-pin TEPBGA/ Column “Value” added  
conditional text.  
• In Table 21DC electrical specifications made the following changes:  
-For the value “VOL_S” parameter changed from “Slow/ medium/multi-voltage pad I/O  
output low voltage” to “Slow/medium pad I/O output low voltage”.  
-Added a new row for “IDDSTBY27”.  
-For row “IDDSTBY(operating current 0.95 -1.2V)” added max value “100” and changed  
typ value from “125” to “35”.  
-For row “IDDSTBY (operating current 2 - 5.5V)” added max value “110” and changed typ  
value from “135” to “45”.  
-For symbol “IDDSTBY 150(operating current 0.95 -1.2V)” added max value “2000”,  
changed typ value from “1050” to “790”,C cell changed from “T” to “P” and for symbol  
“IDDSTBY (operating current 2 - 5.5V)” added max value “2000”, changed typ value from  
“1050” to “760”, C cell changed from “T” to “P”.  
-Removed note 9 and note 10 (Characterization based capability) from symbol  
“VOL_HS .  
• Splitted Table 28eQADC conversion specifications (operating)into Table 29eQADC  
single ended conversion specifications (operating) and Table 30eQADC differential  
ended conversion specifications (operating).  
• In Table 30 eQADC differential ended conversion specifications (operating)made the  
following changes:  
-Added the note of DIFFcmv on all of the DIFF specs.  
-Min value changed from (VRH-VRL)/2-5% to (VRH+VRL)/2-5 % and max value  
changed from (VRH-VRL)/2+5 % to (VRH+VRL)/2+5 %for DIFFcmv.  
• In Table 31 Cutoff frequency for additional SRAM wait statemade the following  
changes:  
-Added note “Max frequencies including 2% PLL FM”.  
-Max operating frequency changed from “96” to “98” and “150” to “153”.  
• In Section 3.13, “Configuring SRAM wait states, changed text from “MPC5644A  
Microcontroller Reference Manual “ to “device reference manual”.  
• In Table 32APC, RWSC, WWSC settings vs. frequency of operation,  
- Added note for “Max Flash Operating Frequency(MHz).  
- Changed values from 30, 60,120, 150 to 20,61,123, 153 respectively in Max Flash  
Operating Frequency (MHz).  
• In Table 33,aFlash program and erase specificationsdded two parameter “Tpsrt” and  
Tesrt”.  
• In Table 41External Bus Interface maximum operating frequency, replacedthe <=  
symbol in notes with   
• Added note “Refer to table DSPI timing for the numbers” in all the figures under  
Section 3.17.8, “DSPI timing .  
• In Table 52Orderable part number summary, changed LBGA208 to MAPBGA and  
changed all packages to 123XXXX format.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
136  
Freescale Semiconductor  
Table 53. Revision history (continued)  
Substantive changes  
Revision  
Date  
Rev. 7  
(cont.)  
01/12  
• Added Table 17MPC5644A External network specification.  
• Updated Figure 8.  
• Changed External Network Parameter Ce min value to “3*2.35F+5F” from  
“2*2.35F+5F” in Table 17MPC5644A External network specification.  
• Changed Trans. Line (differential Zo) unit to from W in Table 25DSPI LVDS  
pad specification.  
MPC5644A Microcontroller Data Sheet, Rev. 7  
Freescale Semiconductor  
137  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Semiconductor was negligent regarding the design or manufacture of the part.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Beijing 100022  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009–2012. All rights reserved.  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MPC5644A  
Rev. 7  
Jan 2012  

相关型号:

SPC5644AF0MVZ1

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5644AF0MVZ2

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC5644AF0MVZ3

MPC5644A Microcontroller Data Sheet
FREESCALE

SPC564A70B4

Up to 4 multiply and accumulate operations per cycle
STMICROELECTR

SPC564A70CAL176

SPC564Axx microcontroller family calibration and emulation system
STMICROELECTR

SPC564A70L7

Up to 4 multiply and accumulate operations per cycle
STMICROELECTR

SPC564A74B4

Up to 4 multiply and accumulate operations per cycle
STMICROELECTR

SPC564A74L7

Up to 4 multiply and accumulate operations per cycle
STMICROELECTR

SPC564A80B4

Up to 4 multiply and accumulate operations per cycle
STMICROELECTR

SPC564A80CAL176

SPC564Axx microcontroller family calibration and emulation system
STMICROELECTR

SPC564A80L7

Up to 4 multiply and accumulate operations per cycle
STMICROELECTR

SPC564AADPT324S

SPC563Mxx, SPC564Axx microcontroller family evaluation board
STMICROELECTR