SSTUG32866EC/S,518 [NXP]

SSTUG32866 - 1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-1G RDIMM applications BGA 96-Pin;
SSTUG32866EC/S,518
型号: SSTUG32866EC/S,518
厂家: NXP    NXP
描述:

SSTUG32866 - 1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity for DDR2-1G RDIMM applications BGA 96-Pin

双倍数据速率 逻辑集成电路 触发器
文件: 总28页 (文件大小:151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SSTUG32866  
1.8 V 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer  
with parity for DDR2-1G RDIMM applications  
Rev. 01 — 29 June 2007  
Product data sheet  
1. General description  
The SSTUG32866 is a 1.8 V configurable register specifically designed for use on DDR2  
memory modules requiring a parity checking function. It is defined in accordance with the  
JEDEC standard for the SSTUG32866 registered buffer. The register is configurable  
(using configuration pins C0 and C1) to two topologies: 25-bit 1 : 1 or 14-bit 1 : 2, and in  
the latter configuration can be designated as Register A or Register B on the DIMM.  
The SSTUG32866 accepts a parity bit from the memory controller on its parity bit  
(PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs  
and indicates whether a parity error has occurred on its open-drain QERR pin  
(active LOW). The convention is even parity, that is, valid parity is defined as an even  
number of ones across the DIMM-independent data inputs combined with the parity input  
bit.  
The SSTUG32866 is packaged in a 96-ball, 6 × 16 grid, 0.8 mm ball pitch LFBGA  
package (13.5 mm × 5.5 mm).  
2. Features  
I Configurable register supporting DDR2 up to 800 MT/s Registered DIMM applications  
I Configurable to 25-bit 1 : 1 mode or 14-bit 1 : 2 mode  
I Controlled output impedance drivers enable optimal signal integrity and speed  
I Meets or exceeds SSTUG32866 JEDEC standard speed performance  
I Supports up to 550 MHz clock frequency of operation  
I Optimized pinout for high-density DDR2 module design  
I Chip-selects minimize power consumption by gating data outputs from changing state  
I Supports SSTL_18 data inputs  
I Checks parity on the DIMM-independent data inputs  
I Partial parity output and input allows cascading of two SSTUG32866s for correct parity  
error processing  
I Differential clock (CK and CK) inputs  
I Supports LVCMOS switching levels on the control and RESET inputs  
I Single 1.8 V supply operation (1.7 V to 2.0 V)  
I Available in 96-ball, 13.5 mm × 5.5 mm, 0.8 mm ball pitch LFBGA package  
3. Applications  
I 400 MT/s to 800 MT/s and higher DDR2 registered DIMMs desiring parity checking  
functionality  
 
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
4. Ordering information  
Table 1.  
Ordering information  
Solder process  
Type number  
Package  
Name  
Description  
Version  
SSTUG32866EC/G Pb-free (SnAgCu solder LFBGA96 plastic low profile fine-pitch ball grid array package; SOT536-1  
ball compound) 96 balls; body 13.5 × 5.5 × 1.05 mm  
SSTUG32866EC/S Pb-free (SnAgCu solder LFBGA96 plastic low profile fine-pitch ball grid array package; SOT536-1  
ball compound)  
96 balls; body 13.5 × 5.5 × 1.05 mm  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
SSTUG32866EC/G  
SSTUG32866EC/S  
Temperature range  
Tamb = 0 °C to +70 °C  
Tamb = 0 °C to +85 °C  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
2 of 28  
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
5. Functional diagram  
RESET  
CK  
CK  
SSTUG32866  
VREF  
DCKE  
1D  
C1  
QCKEA  
QCKEB  
(1)  
(1)  
R
DODT  
DCS  
CSR  
D2  
1D  
QODTA  
QODTB  
C1  
R
1D  
QCSA  
C1  
(1)  
QCSB  
R
0
1
1D  
Q2A  
C1  
(1)  
Q2B  
R
to 10 other channels  
(D3, D5, D6, D8 to D14)  
002aad081  
(1) Disabled in 1 : 1 configuration.  
Fig 1. Functional diagram of SSTUG32866; 1 : 2 Register A configuration with C0 = 0 and  
C1 = 1 (positive logic)  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
3 of 28  
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
RESET  
CK  
CK  
LPS0  
(internal node)  
Q2A, Q3A,  
Q5A, Q6A,  
Q8A to Q14A  
D2, D3, D5, D6,  
11  
CE  
D
D8 to D14  
VREF  
11  
D2, D3, D5, D6,  
D8 to D14  
11  
CLK  
R
11  
Q2B, Q3B,  
Q5B, Q6B,  
Q8B to Q14B  
D2, D3, D5, D6,  
D8 to D14  
11  
PARITY  
CHECK  
C1  
1
0
0
1
PPO  
D
D
D
CLK  
R
CLK  
R
CLK  
R
CE  
PAR_IN  
QERR  
C0  
CLK  
2-BIT  
COUNTER  
R
0
1
LPS1  
(internal node)  
D
CLK  
R
002aaa650  
Fig 2. Parity logic diagram for 1 : 2 Register A configuration (positive logic); C0 = 0, C1 = 1  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
4 of 28  
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
6. Pinning information  
6.1 Pinning  
SSTUG32866EC/G  
SSTUG32866EC/S  
ball A1  
index area  
1 2 3 4 5 6  
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
002aad082  
Transparent top view  
Fig 3. Pin configuration for LFBGA96  
1
DCKE  
D2  
2
3
4
5
QCKE  
Q2  
6
A
B
C
D
E
F
PPO  
D15  
D16  
QERR  
D17  
D18  
VREF  
GND  
V
DNU  
Q15  
Q16  
DNU  
Q17  
Q18  
C0  
DD  
GND  
D3  
V
V
Q3  
DD  
DD  
DODT  
D5  
GND  
GND  
QODT  
Q5  
V
V
DD  
DD  
D6  
GND  
GND  
Q6  
G
H
J
PAR_IN RESET  
V
V
C1  
DD  
DD  
CK  
CK  
DCS  
CSR  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
GND  
GND  
QCS  
n.c.  
Q8  
DNU  
n.c.  
V
V
DD  
DD  
K
L
D8  
GND  
GND  
Q19  
Q20  
Q21  
Q22  
Q23  
Q24  
D9  
V
V
Q9  
DD  
DD  
M
N
P
R
T
D10  
D11  
D12  
D13  
D14  
GND  
GND  
Q10  
Q11  
Q12  
Q13  
Q14  
V
V
DD  
DD  
GND  
GND  
V
V
V
DD  
DD  
DD  
VREF  
Q25  
002aab108  
Fig 4. Ball mapping, 1 : 1 register (C0 = 0, C1 = 0)  
Rev. 01 — 29 June 2007  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
5 of 28  
 
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
1
DCKE  
D2  
2
3
4
5
6
A
B
C
D
E
F
PPO  
DNU  
DNU  
QERR  
n.c.  
VREF  
GND  
V
QCKEA QCKEB  
DD  
GND  
Q2A  
Q3A  
Q2B  
Q3B  
D3  
V
V
DD  
DD  
DODT  
D5  
GND  
GND  
QODTA QODTB  
V
V
Q5A  
Q6A  
Q5B  
Q6B  
DD  
DD  
D6  
n.c.  
GND  
GND  
G
H
J
PAR_IN RESET  
V
V
C1  
C0  
DD  
DD  
CK  
CK  
DCS  
CSR  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
GND  
GND  
QCSA  
n.c.  
QCSB  
n.c.  
V
V
DD  
DD  
K
L
D8  
GND  
GND  
Q8A  
Q8B  
D9  
V
V
Q9A  
Q9B  
DD  
DD  
M
N
P
R
T
D10  
D11  
D12  
D13  
D14  
GND  
GND  
Q10A  
Q11A  
Q12A  
Q13A  
Q14A  
Q10B  
Q11B  
Q12B  
Q13B  
V
V
DD  
DD  
GND  
GND  
V
V
V
DD  
DD  
DD  
VREF  
Q14B  
002aab109  
Fig 5. Ball mapping, 1 : 2 Register A (C0 = 0, C1 = 1)  
1
2
3
4
5
6
A
B
C
D
E
F
D1  
D2  
D3  
D4  
D5  
D6  
PPO  
DNU  
DNU  
QERR  
DNU  
DNU  
VREF  
GND  
V
Q1A  
Q2A  
Q3A  
Q4A  
Q5A  
Q6A  
C1  
Q1B  
Q2B  
Q3B  
Q4B  
Q5B  
Q6B  
C0  
DD  
GND  
V
V
DD  
DD  
GND  
GND  
V
V
DD  
DD  
GND  
GND  
G
H
J
PAR_IN RESET  
V
V
DD  
DD  
CK  
CK  
DCS  
CSR  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
GND  
GND  
QCSA  
n.c.  
QCSB  
n.c.  
V
V
DD  
DD  
K
L
D8  
GND  
GND  
Q8A  
Q9A  
Q10A  
Q8B  
Q9B  
Q10B  
D9  
V
V
DD  
DD  
M
N
P
R
T
D10  
DODT  
D12  
D13  
DCKE  
GND  
GND  
V
V
QODTA QODTB  
DD  
DD  
GND  
GND  
Q12A  
Q13A  
Q12B  
Q13B  
V
V
V
DD  
DD  
DD  
VREF  
QCKEA QCKEB  
002aab110  
Fig 6. Ball mapping, 1 : 2 Register B (C0 = 1, C1 = 1)  
Rev. 01 — 29 June 2007  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
6 of 28  
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
6.2 Pin description  
Table 3.  
Symbol  
GND  
Pin description  
Pin  
Type  
Description  
B3, B4, D3, D4, F3, F4, ground input  
H3, H4, K3, K4, M3,  
ground  
M4, P3, P4  
VDD  
A4, C3, C4, E3, E4,  
G3, G4, J3, J4, L3, L4,  
N3, N4, R3, R4, T4  
1.8 V nominal  
power supply voltage  
VREF  
CK  
A3, T3  
H1  
0.9 V nominal  
input reference voltage  
differential input positive master clock input  
differential input negative master clock input  
CK  
J1  
C0  
G6  
LVCMOS inputs Configuration control inputs; Register A or Register B and  
1 : 1 mode or 1 : 2 mode select.  
C1  
G5  
RESET  
G2  
LVCMOS input  
SSTL_18 input  
Asynchronous reset input (active LOW). Resets registers and  
disables VREF data and clock.  
Chip select inputs (active LOW). Disables D1 to D25[1]  
outputs switching when both inputs are HIGH.  
CSR  
J2  
DCS  
H2  
[2]  
D1 to D25  
SSTL_18 input  
SSTL_18 input  
SSTL_18 input  
SSTL_18 input  
Data input. Clocked in on the crossing of the rising edge of  
CK and the falling edge of CK.  
[2]  
[2]  
DODT  
DCKE  
PAR_IN  
The outputs of this register bit will not be suspended by the  
DCS and CSR control.  
The outputs of this register bit will not be suspended by the  
DCS and CSR control.  
G1  
Parity input. Arrives one clock cycle after the corresponding  
data input.  
[2]  
Q1 to Q25,  
Q1A to Q14A,  
Q1B to Q14B  
1.8 V CMOS  
outputs  
Data outputs that are suspended by the DCS and CSR  
control.[3]  
PPO  
A2  
1.8 V CMOS  
output  
Partial parity out. Indicates odd parity of inputs D1 to D25.[1]  
[2]  
QCS, QCSA,  
QCSB  
1.8 V CMOS  
output  
Data output that will not be suspended by the DCS and CSR  
control.  
[2]  
[2]  
QODT, QODTA,  
QODTB  
1.8 V CMOS  
output  
Data output that will not be suspended by the DCS and CSR  
control.  
QCKE,  
QCKEA,  
QCKEB  
1.8 V CMOS  
output  
Data output that will not be suspended by the DCS and CSR  
control.  
QERR  
D2  
open-drain  
output  
Output error bit (active LOW). Generated one clock cycle  
after the corresponding data output.  
[2]  
n.c.  
-
Not connected. Ball present but no internal connection to the  
die.  
[2]  
DNU  
-
Do not use. Inputs are in standby-equivalent mode and  
outputs are driven LOW.  
[1] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.  
Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.  
Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.  
[2] Depends on configuration. See Figure 4, Figure 5, and Figure 6 for ball number.  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
7 of 28  
 
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
[3] Data outputs = Q2, Q3, Q5, Q6, Q8 to Q25 when C0 = 0 and C1 = 0.  
Data outputs = Q2, Q3, Q5, Q6, Q8 to Q14 when C0 = 0 and C1 = 1.  
Data outputs = Q1 to Q6, Q8 to Q10, Q12, Q13 when C0 = 1 and C1 = 1.  
7. Functional description  
The SSTUG32866 is a 25-bit 1 : 1 or 14-bit 1 : 2 configurable registered buffer with parity,  
designed for 1.7 V to 2.0 V VDD operation.  
All clock and data inputs are compatible with the JEDEC standard for SSTL_18. The  
control and reset (RESET) inputs are LVCMOS. All data outputs are 1.8 V CMOS drivers  
that have been optimized to drive the DDR2 DIMM load, and meet SSTL_18  
specifications. The error (QERR) output is 1.8 V open-drain driver.  
The SSTUG32866 operates from a differential clock (CK and CK). Data are registered at  
the crossing of CK going HIGH, and CK going LOW.  
The C0 input controls the pinout configuration for the 1 : 2 pinout from A configuration  
(when LOW) to B configuration (when HIGH). The C1 input controls the pinout  
configuration from 25-bit 1 : 1 (when LOW) to 14-bit 1 : 2 (when HIGH).  
The SSTUG32866 accepts a parity bit from the memory controller on its parity bit  
(PAR_IN) input, compares it with the data received on the DIMM-independent D-inputs  
and indicates whether a parity error has occurred on its open-drain QERR pin  
(active LOW). The convention is even parity, that is, valid parity is defined as an even  
number of ones across the DIMM-independent data inputs combined with the parity input  
bit.  
When used as a single device, the C0 and C1 inputs are tied LOW. In this configuration,  
parity is checked on the PAR_IN input which arrives one cycle after the input data to which  
it applies. The Partial-Parity-Out (PPO) and QERR signals are produced three cycles after  
the corresponding data inputs.  
When used in pairs, the C0 input of the first register is tied LOW and the C0 input of the  
second register is tied HIGH. The C1 input of both registers are tied HIGH. Parity, which  
arrives one cycle after the data input to which it applies, is checked on the PAR_IN input of  
the first device. The PPO and QERR signals are produced on the second device three  
clock cycles after the corresponding data inputs. The PPO output of the first register is  
cascaded to the PAR_IN of the second register. The QERR output of the first register is  
left floating and the valid error information is latched on the QERR output of the second  
register.  
If an error occurs and the QERR output is driven LOW, it stays latched LOW for two clock  
cycles or until RESET is driven LOW. The DIMM-dependent signals (DCKE, DCS, DODT,  
and CSR) are not included in the parity check computation.  
The device supports low-power standby operation. When RESET is LOW, the differential  
input receivers are disabled, and undriven (floating) data, clock and reference voltage  
(VREF) inputs are allowed. In addition, when RESET is LOW all registers are reset, and  
all outputs are forced LOW. The LVCMOS RESET input must always be held at a valid  
logic HIGH or LOW level.  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
8 of 28  
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
The device also supports low-power active operation by monitoring both system chip  
select (DCS and CSR) inputs and will gate the Qn and PPO outputs from changing states  
when both DCS and CSR inputs are HIGH. If either DCS or CSR input is LOW, the Qn  
and PPO outputs will function normally. The RESET input has priority over the DCS and  
CSR control and when driven LOW will force the Qn and PPO outputs LOW, and the  
QERR output HIGH. If the DCS control functionality is not desired, then the CSR input can  
be hard-wired to ground, in which case, the setup time requirement for DCS would be the  
same as for the other Dn data inputs. To control the low-power mode with DCS only, then  
the CSR input should be pulled up to VDD through a pull-up resistor.  
To ensure defined outputs from the register before a stable clock has been supplied,  
RESET must be held in the LOW state during power-up.  
In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with  
respect to CK and CK. Therefore, no timing relationship can be guaranteed between the  
two. When entering reset, the register will be cleared and the Qn outputs will be driven  
LOW quickly, relative to the time to disable the differential input receivers. However, when  
coming out of reset, the register will become active quickly, relative to the time to enable  
the differential input receivers. As long as the data inputs are LOW, and the clock is stable  
during the time from the LOW-to-HIGH transition of RESET until the input receivers are  
fully enabled, the design of the SSTUG32866 must ensure that the outputs will remain  
LOW, thus ensuring no glitches on the output.  
7.1 Function table  
Table 4.  
Function table (each flip-flop)  
L = LOW voltage level; H = HIGH voltage level; X = don’t care; = LOW-to-HIGH transition; = HIGH-to-LOW transition.  
Inputs  
Outputs[1]  
RESET  
DCS  
CSR  
CK  
CK  
Dn, DODTn,  
DCKEn  
Qn  
QCS  
QODT,  
QCKE  
H
H
H
H
H
H
H
H
H
H
H
H
L
L
L
L
L
L
H
X
L
L
H
L
L
L
H
L
L
L or H  
L or H  
Q0  
L
Q0  
L
Q0  
L
L
H
H
H
L
L
H
X
L
H
L
H
L
L or H  
L or H  
Q0  
L
Q0  
H
Q0  
L
H
H
H
H
H
H
L
L or H  
L or H  
H
X
L
H
H
H
L
Q0  
Q0  
Q0  
Q0  
L
Q0  
H
Q0  
L
H
H
H
H
X
H
H
L or H  
L or H  
Q0  
L
Q0  
L
X or floating X or floating X or floating X or floating X or floating  
[1] Q0 is the previous state of the associated output.  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
9 of 28  
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
Table 5.  
Parity and standby function table  
L = LOW voltage level; H = HIGH voltage level; X = don’t care; = LOW-to-HIGH transition; = HIGH-to-LOW transition.  
Inputs  
Outputs[1]  
CK  
RESET  
DCS  
CSR  
CK  
of inputs = H PAR_IN[2]  
PPO[3]  
QERR[4]  
(D1 to D25)  
H
H
H
H
H
H
H
H
H
H
L
L
L
X
X
X
X
L
even  
odd  
L
L
H
L
H
L
L
even  
odd  
H
H
L
L
H
L
H
H
H
H
H
H
X
even  
odd  
L
L
H
H
L
L
L
L
even  
odd  
H
H
L
H
L
H
L
H
X
X
X
X
PPO0  
PPO0  
L
QERR0  
QERR0  
H
L or H  
L or H  
X
X or floating X or floating X or floating X or floating  
X or floating  
X or floating  
[1] PPO0 is the previous state of output PPO; QERR0 is the previous state of output QERR.  
[2] Data inputs = D2, D3, D5, D6, D8 to D25 when C0 = 0 and C1 = 0.  
Data inputs = D2, D3, D5, D6, D8 to D14 when C0 = 0 and C1 = 1.  
Data inputs = D1 to D6, D8 to D10, D12, D13 when C0 = 1 and C1 = 1.  
[3] PAR_IN arrives one clock cycle (C0 = 0), or two clock cycles (C0 = 1), after the data to which it applies.  
[4] This condition assumes QERR is HIGH at the crossing of CK going HIGH and CK going LOW. If QERR is LOW, it stays latched LOW for  
two clock cycles or until RESET is driven LOW.  
8. Limiting values  
Table 6.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
VI  
Parameter  
Conditions  
Min  
Max  
Unit  
V
supply voltage  
0.5  
0.5[1]  
0.5[1]  
+2.5  
input voltage  
receiver  
+2.5[2]  
VDD + 0.5[2]  
50  
V
VO  
output voltage  
driver  
V
IIK  
input clamping current  
output clamping current  
output current  
VI < 0 V or VI > VDD  
VO < 0 V or VO > VDD  
continuous; 0 V < VO < VDD  
-
-
-
-
mA  
mA  
mA  
mA  
IOK  
±50  
IO  
±50  
IDDC  
continuous current through  
each VDD or GND pin  
±100  
Tstg  
storage temperature  
65  
2
+150  
°C  
kV  
V
Vesd  
electrostatic discharge  
voltage  
Human Body Model (HBM); 1.5 k; 100 pF  
Machine Model (MM); 0 ; 200 pF  
-
-
200  
[1] The input and output negative voltage ratings may be exceeded if the input and output clamping current ratings are observed.  
[2] This value is limited to 2.5 V maximum.  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
10 of 28  
 
 
 
 
 
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
9. Recommended operating conditions  
Table 7.  
Recommended operating conditions  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
VDD  
Vref  
VT  
supply voltage  
1.7  
-
2.0  
reference voltage  
termination voltage  
input voltage  
0.49 × VDD  
0.50 × VDD 0.51 × VDD  
V
V
0
ref 0.040  
Vref  
Vref + 0.040  
V
VI  
-
-
VDD  
-
V
VIH(AC)  
AC HIGH-level input voltage  
data (Dn), CSR, and  
PAR_IN inputs  
Vref + 0.250  
V
VIL(AC)  
VIH(DC)  
VIL(DC)  
AC LOW-level input voltage  
DC HIGH-level input voltage  
DC LOW-level input voltage  
data (Dn), CSR, and  
PAR_IN inputs  
-
-
-
-
V
-
ref 0.250  
V
V
V
data (Dn), CSR, and  
PAR_IN inputs  
Vref + 0.125  
-
data (Dn), CSR, and  
PAR_IN inputs  
V
-
ref 0.125  
[1]  
[1]  
[2]  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
RESET, Cn  
RESET, Cn  
CK, CK  
0.65 × VDD  
-
-
-
V
V
V
-
0.35 × VDD  
VICR  
common mode input voltage  
range  
0.675  
1.125  
[2]  
VID  
IOH  
IOL  
differential input voltage  
HIGH-level output current  
LOW-level output current  
ambient temperature  
CK, CK  
600  
-
-
-
-
mV  
mA  
mA  
-
-
8  
8
Tamb  
operating in free air  
SSTUG32866EC/G  
SSTUG32866EC/S  
0
0
-
-
70  
85  
°C  
°C  
[1] The RESET and Cn inputs of the device must be held at valid levels (not floating) to ensure proper device operation.  
[2] The differential inputs must not be floating, unless RESET is LOW.  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
11 of 28  
 
 
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
10. Characteristics  
Table 8.  
Characteristics  
At recommended operating conditions (see Table 7); unless otherwise specified.  
Symbol  
VOH  
VOL  
II  
Parameter  
Conditions  
Min  
Typ  
Max  
-
Unit  
V
HIGH-level output voltage  
LOW-level output voltage  
input current  
IOH = 6 mA; VDD = 1.7 V  
IOL = 6 mA; VDD = 1.7 V  
all inputs; VI = VDD or GND; VDD = 2.0 V  
1.2  
-
-
-
-
-
-
-
0.5  
±5  
2
V
µA  
mA  
IDD  
supply current  
static Standby mode; RESET = GND;  
IO = 0 mA; VDD = 2.0 V  
static Operating mode; RESET = VDD  
IO = 0 mA; VDD = 2.0 V;  
VI = VIH(AC) or VIL(AC)  
;
-
-
-
40  
-
mA  
IDDD  
dynamic operating current per clock only; RESET = VDD  
;
16  
µA  
MHz  
VI = VIH(AC) or VIL(AC); CK and CK  
switching at 50 % duty cycle; IO = 0 mA;  
DD = 1.8 V  
V
per each data input, 1 : 1 mode;  
RESET = VDD; VI = VIH(AC) or VIL(AC)  
CK and CK switching at 50 % duty  
cycle; one data input switching at half  
clock frequency, 50 % duty cycle;  
IO = 0 mA; VDD = 1.8 V  
-
-
11  
19  
-
-
µA  
µA  
;
per each data input, 1 : 2 mode;  
RESET = VDD; VI = VIH(AC) or VIL(AC)  
;
CK and CK switching at 50 % duty  
cycle; one data input switching at half  
clock frequency, 50 % duty cycle;  
IO = 0 mA; VDD = 1.8 V  
Ci  
input capacitance  
output impedance  
data and CSR inputs;  
VI = Vref ± 250 mV; VDD = 1.8 V  
2.5  
2
-
-
-
3.5  
3
pF  
pF  
pF  
CK and CK inputs; VICR = 0.9 V;  
V
i(p-p) = 600 mV; VDD = 1.8 V  
RESET input; VI = VDD or GND;  
DD = 1.8 V  
3
4
V
[1]  
Zo  
instantaneous  
steady-state  
-
-
15  
53  
-
-
[1] Instantaneous is defined as within < 2 ns following the output data transition edge.  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
12 of 28  
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
Table 9.  
Timing requirements  
At recommended operating conditions (see Table 7), unless otherwise specified. See Section 11.1.  
Symbol Parameter  
fclock clock frequency  
tW  
Conditions  
Min  
Typ  
Max  
550  
-
Unit  
MHz  
ns  
-
-
-
-
-
-
pulse width  
CK, CK HIGH or LOW  
1
[1][2]  
[1][3]  
tACT  
tINACT  
tsu  
differential inputs active time  
differential inputs inactive time  
setup time  
-
10  
15  
-
ns  
-
ns  
DCS before CK, CK, CSR HIGH;  
CSR before CK, CK, DCS HIGH  
0.6  
ns  
DCS before CK, CK, CSR LOW  
0.5  
0.5  
-
-
-
-
ns  
ns  
DODT, DCKE and data (Dn) before CK,  
CK↓  
PAR_IN before CK, CK↓  
0.5  
0.4  
-
-
-
-
ns  
ns  
th  
hold time  
DCS, DODT, DCKE and data (Dn) after  
CK, CK↓  
PAR_IN after CK, CK↓  
0.4  
-
-
ns  
[1] This parameter is not necessarily production tested.  
[2] VREF must be held at a valid input voltage level and data inputs must be held LOW for a minimum time of tACT(max) after RESET is taken  
HIGH.  
[3] VREF, data and clock inputs must be held at valid levels (not floating) a minimum time of tINACT(max) after RESET is taken LOW.  
Table 10. Switching characteristics  
At recommended operating conditions (see Table 7), unless otherwise specified. See Section 11.1.  
Symbol Parameter  
Conditions  
Min  
550  
1.0  
Typ  
Max  
-
Unit  
MHz  
ns  
fmax  
maximum input clock frequency  
-
-
[1]  
tPDM  
peak propagation delay  
single bit switching;  
1.4  
from CKand CKto Qn  
tPD  
propagation delay  
LOW-to-HIGH delay  
HIGH-to-LOW delay  
from CKand CKto PPO  
from CKand CKto QERR  
from CKand CKto QERR  
from CKand CKto Qn  
0.5  
1.2  
1
-
-
-
-
1.7  
3
ns  
ns  
ns  
ns  
tLH  
tHL  
2.4  
1.5  
[1][2]  
tPDMSS  
simultaneous switching peak  
propagation delay  
-
tPHL  
HIGH-to-LOW propagation delay  
from RESETto Qn↓  
from RESETto PPO↓  
from RESETto QERR↑  
-
-
-
-
-
-
3
3
3
ns  
ns  
ns  
tPLH  
LOW-to-HIGH propagation delay  
[1] Includes 350 ps of test load transmission line delay.  
[2] This parameter is not necessarily production tested.  
Table 11. Data output edge rates  
At recommended operating conditions (see Table 7), unless otherwise specified. See Section 11.2.  
Symbol  
dV/dt_r  
dV/dt_f  
dV/dt_∆  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
rising edge slew rate  
falling edge slew rate  
from 20 % to 80 %  
from 80 % to 20 %  
1
1
-
-
-
-
4
4
1
V/ns  
V/ns  
V/ns  
absolute difference between dV/dt_r from 20 % or 80 %  
and dV/dt_f  
to 80 % or 20 %  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
13 of 28  
 
 
 
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
10.1 Timing diagrams  
RESET  
DCS  
CSR  
CK  
m
m + 1  
m + 2  
m + 3  
m + 4  
CK  
t
t
h
su  
D1  
to  
D25  
t
PD  
CK to Q  
Q1  
to  
Q25  
t
t
h
su  
PAR_IN  
PPO  
t
PD  
CK to PPO  
t
t
PD  
PD  
CK to QERR  
CK to QERR  
QERR  
002aaa655  
Fig 7. Timing diagram for SSTUG32866 used as a single device; C0 = 0, C1 = 0  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
14 of 28  
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
RESET  
DCS  
CSR  
CK  
m
m + 1  
m + 2  
m + 3  
m + 4  
CK  
t
t
h
su  
D1  
to  
D14  
t
PD  
CK to Q  
Q1  
to  
Q14  
t
t
h
su  
PAR_IN  
PPO  
t
PD  
CK to PPO  
t
t
PD  
PD  
CK to QERR  
CK to QERR  
QERR  
(not used)  
002aaa656  
Fig 8. Timing diagram for the first SSTUG32866 (1 : 2 Register A configuration) device used in pair; C0 = 0,  
C1 = 1  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
15 of 28  
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
RESET  
DCS  
CSR  
CK  
m
m + 1  
m + 2  
m + 3  
m + 4  
CK  
t
t
h
su  
D1  
to  
D14  
t
PD  
CK to Q  
Q1  
to  
Q14  
t
t
h
su  
(1)  
PAR_IN  
t
PD  
CK to PPO  
PPO  
(not used)  
t
t
PD  
PD  
CK to QERR  
CK to QERR  
QERR  
002aaa657  
(1) PAR_IN is driven from PPO of the first SSTUG32866 device.  
Fig 9. Timing diagram for the second SSTUG32866 (1 : 2 Register B configuration) device used in pair;  
C0 = 1, C1 = 1  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
16 of 28  
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
11. Test information  
11.1 Parameter measurement information for data output load circuit  
VDD = 1.8 V ± 0.1 V.  
All input pulses are supplied by generators having the following characteristics:  
PRR 10 MHz; Zo = 50 ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.  
The outputs are measured one at a time with one transition per measurement.  
V
DD  
DUT  
delay = 350 ps  
= 50 Ω  
R
= 1000 Ω  
= 1000 Ω  
L
50 Ω  
Z
o
CK  
CK  
CK inputs  
OUT  
(1)  
= 30 pF  
C
L
R
L
test point  
R
L
= 100 Ω  
test point  
002aaa371  
(1) CL includes probe and jig capacitance.  
Fig 10. Load circuit, data output measurements  
LVCMOS  
V
DD  
0.5V  
0.5V  
RESET  
DD  
DD  
0 V  
t
t
ACT  
INACT  
90 %  
(1)  
DD  
I
10 %  
002aaa372  
(1) IDD tested with clock and data inputs held at VDD or GND, and IO = 0 mA.  
Fig 11. Voltage and current waveforms; inputs active and inactive times  
t
W
V
V
IH  
IL  
V
input  
V
V
ICR  
ID  
ICR  
002aaa373  
VID = 600 mV.  
VIH = Vref + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = Vref 250 mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS inputs.  
Fig 12. Voltage waveforms; pulse duration  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
17 of 28  
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
CK  
V
V
ICR  
ID  
CK  
t
t
h
su  
V
V
IH  
IL  
input  
V
ref  
V
ref  
002aaa374  
VID = 600 mV.  
Vref = 0.5VDD  
.
VIH = Vref + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = Vref 250 mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS inputs.  
Fig 13. Voltage waveforms; setup and hold times  
CK  
V
V
V
i(p-p)  
ICR  
ICR  
CK  
t
t
PHL  
PLH  
V
V
OH  
OL  
V
output  
T
002aaa375  
tPLH and tPHL are the same as tPD  
.
Fig 14. Voltage waveforms; propagation delay times (clock to output)  
LVCMOS  
V
V
V
V
IH  
RESET  
0.5V  
DD  
IL  
t
PHL  
OH  
OL  
output  
V
T
002aaa376  
tPLH and tPHL are the same as tPD  
.
VIH = Vref + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = Vref 250 mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS inputs.  
Fig 15. Voltage waveforms; propagation delay times (reset to output)  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
18 of 28  
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
11.2 Data output slew rate measurement information  
VDD = 1.8 V ± 0.1 V.  
All input pulses are supplied by generators having the following characteristics:  
PRR 10 MHz; Zo = 50 ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.  
V
DD  
R
DUT  
= 50  
L
OUT  
test point  
002aaa377  
(1)  
= 10 pF  
C
L
(1) CL includes probe and jig capacitance.  
Fig 16. Load circuit, HIGH-to-LOW slew measurement  
output  
V
OH  
80 %  
dv_f  
20 %  
V
OL  
dt_f  
002aaa378  
Fig 17. Voltage waveforms, HIGH-to-LOW slew rate measurement  
DUT  
OUT  
test point  
(1)  
= 10 pF  
C
L
R
L
= 50 Ω  
002aaa379  
(1) CL includes probe and jig capacitance.  
Fig 18. Load circuit, LOW-to-HIGH slew measurement  
dt_r  
V
V
OH  
80 %  
dv_r  
20 %  
output  
OL  
002aaa380  
Fig 19. Voltage waveforms, LOW-to-HIGH slew rate measurement  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
19 of 28  
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
11.3 Error output load circuit and voltage measurement information  
VDD = 1.8 V ± 0.1 V.  
All input pulses are supplied by generators having the following characteristics:  
PRR 10 MHz; Zo = 50 ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.  
V
DD  
R
DUT  
= 1 kΩ  
L
OUT  
test point  
002aaa500  
(1)  
= 10 pF  
C
L
(1) CL includes probe and jig capacitance.  
Fig 20. Load circuit, error output measurements  
LVCMOS  
V
DD  
RESET  
0.5V  
DD  
0 V  
t
PLH  
V
OH  
output  
waveform 2  
0.15 V  
0 V  
002aaa501  
Fig 21. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to  
RESET input.  
timing  
inputs  
V
i(p-p)  
V
V
ICR  
ICR  
t
HL  
V
V
DD  
OL  
output  
waveform 1  
0.5V  
DD  
002aaa502  
Fig 22. Voltage waveforms, open-drain output HIGH-to-LOW transition time with respect  
to clock inputs  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
20 of 28  
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
timing  
inputs  
V
V
i(p-p)  
V
ICR  
ICR  
t
LH  
V
OH  
output  
waveform 2  
0.15 V  
0 V  
002aaa503  
Fig 23. Voltage waveforms, open-drain output LOW-to-HIGH transition time with respect to  
clock inputs  
11.4 Partial parity out load circuit and voltage measurement information  
VDD = 1.8 V ± 0.1 V.  
All input pulses are supplied by generators having the following characteristics:  
PRR 10 MHz; Zo = 50 ; input slew rate = 1 V/ns ± 20 %, unless otherwise specified.  
DUT  
OUT  
test point  
(1)  
= 5 pF  
C
L
R
L
= 1 kΩ  
002aaa654  
(1) CL includes probe and jig capacitance.  
Fig 24. Partial parity out load circuit  
CK  
V
V
V
i(p-p)  
ICR  
ICR  
CK  
t
t
PHL  
PLH  
V
V
OH  
OL  
V
output  
T
002aaa375  
VT = 0.5VDD  
.
tPLH and tPHL are the same as tPD  
.
Vi(p-p) = 600 mV.  
Fig 25. Partial parity out voltage waveforms; propagation delay times with respect to clock  
inputs  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
21 of 28  
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
LVCMOS  
V
V
V
V
IH  
RESET  
output  
0.5V  
DD  
IL  
t
PHL  
OH  
OL  
V
T
002aaa376  
VT = 0.5VDD  
.
tPLH and tPHL are the same as tPD  
.
VIH = Vref + 250 mV (AC voltage levels) for differential inputs. VIH = VDD for LVCMOS inputs.  
VIL = Vref 250 mV (AC voltage levels) for differential inputs. VIL = GND for LVCMOS inputs.  
Fig 26. Partial parity out voltage waveforms; propagation delay times with respect to  
RESET input  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
22 of 28  
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
12. Package outline  
LFBGA96: plastic low profile fine-pitch ball grid array package; 96 balls; body 13.5 x 5.5 x 1.05 mm SOT536-1  
B
A
D
ball A1  
index area  
A
2
A
E
A
1
detail X  
e
1
C
1/2 e  
y
y
v M  
w M  
C
C
A B  
C
1
e
b
T
R
P
N
e
M
L
K
J
H
G
F
e
2
1/2 e  
E
D
C
B
A
ball A1  
index area  
1
2
3
4
5
6
X
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
UNIT  
A
A
b
e
e
e
v
w
y
y
1
D
E
1
2
1
2
max.  
0.41  
0.31  
1.2  
0.9  
0.51  
0.41  
5.6  
5.4  
13.6  
13.4  
mm  
1.5  
4
12  
0.1  
0.2  
0.8  
0.15  
0.1  
REFERENCES  
JEDEC JEITA  
OUTLINE  
VERSION  
EUROPEAN  
PROJECTION  
ISSUE DATE  
IEC  
00-03-04  
03-02-05  
SOT536-1  
Fig 27. Package outline SOT536-1 (LFBGA96)  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
23 of 28  
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
13. Soldering  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
13.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
13.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus PbSn soldering  
13.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
24 of 28  
 
 
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
13.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 28) than a PbSn process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 12 and 13  
Table 12. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 13. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 28.  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
25 of 28  
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 28. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
14. Abbreviations  
Table 14. Abbreviations  
Acronym  
CMOS  
DDR  
Description  
Complementary Metal Oxide Semiconductor  
Double Data Rate  
DIMM  
LVCMOS  
PPO  
Dual In-line Memory Module  
Low Voltage Complementary Metal Oxide Semiconductor  
Partial-Parity-Out  
PRR  
Pulse Repetition Rate  
RDIMM  
SSTL  
Registered Dual In-line Memory Module  
Stub Series Terminated Logic  
15. Revision history  
Table 15. Revision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
SSTUG32866_1  
20070629  
Product data sheet  
-
-
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
26 of 28  
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
16. Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of a NXP Semiconductors product can reasonably be expected to  
16.2 Definitions  
result in personal injury, death or severe property or environmental damage.  
NXP Semiconductors accepts no liability for inclusion and/or use of NXP  
Semiconductors products in such equipment or applications and therefore  
such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
16.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
16.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
17. Contact information  
For additional information, please visit: http://www.nxp.com  
For sales office addresses, send an email to: salesaddresses@nxp.com  
SSTUG32866_1  
© NXP B.V. 2007. All rights reserved.  
Product data sheet  
Rev. 01 — 29 June 2007  
27 of 28  
 
 
 
 
 
 
SSTUG32866  
NXP Semiconductors  
1.8 V DDR2-1G configurable registered buffer with parity  
18. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2
3
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 3  
4
4.1  
5
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7  
7
7.1  
8
Functional description . . . . . . . . . . . . . . . . . . . 8  
Function table . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 10  
Recommended operating conditions. . . . . . . 11  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 12  
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . 14  
9
10  
10.1  
11  
11.1  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 17  
Parameter measurement information for  
data output load circuit . . . . . . . . . . . . . . . . . . 17  
Data output slew rate measurement  
information . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Error output load circuit and voltage  
measurement information. . . . . . . . . . . . . . . . 20  
Partial parity out load circuit and voltage  
11.2  
11.3  
11.4  
measurement information. . . . . . . . . . . . . . . . 21  
12  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 23  
13  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Introduction to soldering . . . . . . . . . . . . . . . . . 24  
Wave and reflow soldering . . . . . . . . . . . . . . . 24  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 25  
13.1  
13.2  
13.3  
13.4  
14  
15  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 26  
16  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 27  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 27  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
16.1  
16.2  
16.3  
16.4  
17  
18  
Contact information. . . . . . . . . . . . . . . . . . . . . 27  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2007.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 29 June 2007  
Document identifier: SSTUG32866_1  
 

相关型号:

SSTUG32868

1.8 V 28-bit 1 : 2 configurable registered buffer with parity for DDR2-1G RDIMM applications
NXP

SSTUG32868ET

1.8 V 28-bit 1 : 2 configurable registered buffer with parity for DDR2-1G RDIMM applications
NXP

SSTUG32868ET/G,518

SSTUG32868 - 1.8 V 28-bit 1 : 2 configurable registered buffer with parity for DDR2-1G RDIMM applications BGA 176-Pin
NXP

SSTUG32868ET/S,518

SSTUG32868 - 1.8 V 28-bit 1 : 2 configurable registered buffer with parity for DDR2-1G RDIMM applications BGA 176-Pin
NXP

SSTUG32868ETS

1.8 V 28-bit 1 : 2 configurable registered buffer with parity for DDR2-1G RDIMM applications
NXP

SSTUG32868G

1.8 V 28-bit 1 : 2 configurable registered buffer with parity for DDR2-1G RDIMM applications
NXP

SSTUH32864

1.8 V high output drive configurable registered buffer for DDR2 RDIMM applications
NXP

SSTUH32864EC

1.8 V high output drive configurable registered buffer for DDR2 RDIMM applications
NXP

SSTUH32864EC,518

SSTUH32864 - 1.8 V high output drive configurable registered buffer for DDR2 RDIMM applications BGA 96-Pin
NXP

SSTUH32864EC,551

SSTUH32864 - 1.8 V high output drive configurable registered buffer for DDR2 RDIMM applications BGA 96-Pin
NXP

SSTUH32864EC,557

SSTUH32864 - 1.8 V high output drive configurable registered buffer for DDR2 RDIMM applications BGA 96-Pin
NXP

SSTUH32864EC/G

1.8 V high output drive configurable registered buffer for DDR2 RDIMM applications
NXP