SVF331R2N2CMK4R [NXP]

Standard JTAG;
SVF331R2N2CMK4R
型号: SVF331R2N2CMK4R
厂家: NXP    NXP
描述:

Standard JTAG

文件: 总125页 (文件大小:1963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number VYBRIDRSERIESEC  
Rev. 8, 01/2018  
NXP Semiconductors  
Data Sheet: Technical Data  
VYBRIDRSERIESEC  
VF3xxR, VF5xxR  
Features  
• Debug  
– Standard JTAG  
– 16-bit Trace port  
• Operating characteristics  
– Voltage range 3 V to 3.6 V  
– Temperature range(ambient) -40 °C to 85 °C  
• Timers  
– Motor control/general purpose timer (FTM)  
– Periodic Interrupt Timers (PITs)  
– Low-power timer (LPTMR0)  
– IEEE 1588 Timer per MAC interface (part of  
Ethernet Subsystem)  
• ARM® Cortex® A5 Core features  
– Up to 400 MHz ARM® Cortex® A5 core  
– 32 KB/32 KB I/D L1 Cache  
– 1.6 DMIPS/MHz based on ARMv7 architecture  
– NEON™ MPE (Media Processing Engine) Co-  
processor  
• Communications  
– Double Precision Floating Point Unit  
– 512 KB L2 cache (on selected part numbers only)  
– Six Universal asynchronous receivers/transmitters  
(UART)/Serial communications interface (SCI) with  
LIN, ISO7816, IrDA, and hardware flow control  
– Four Deserial Serial peripheral interface (DSPI)  
– Four Inter-Integrated Circuit (I2C) with SMBUS  
support  
– Dual USB OTG Controller + PHY  
– Dual 4/8 bit Secure Digital Host controller  
– Local Media Bus (MLB50)  
• ARM Cortex M4 Core features  
– Up to 133 MHz ARM Cortex M4  
– Integrated DSP capability  
– 64 KB Tightly Coupled Memory (TCM)  
– 16 KB/16 KB I/D L1 Cache  
– 1.25 DMIPS/MHz based on ARMv7 architecture  
• Clocks  
– Dual 10/100 Ethernet (IEEE 1588)  
– Dual FlexCAN3  
– 24 MHz crystal oscillator  
– 32 kHz crystal oscillator  
– Internal reference clocks (128 KHz and 24 MHz)  
– Phase Locked Loops (PLLs)  
– Low Jitter Digital PLLs  
• Security  
– ARM TrustZone including the TZ architecture  
– Secure Non-Volatile Storage (SNVS)  
– Real Time Clock  
• System debug, protection, and power management  
– Various stop, wait, and run modes to provide low  
power based on application needs  
– Real Time Integrity Checker (RTIC)  
– TrustZone Watchdog (TZ WDOG)  
– Trust Zone Address Space Controller  
– Random Number Generator  
– Hashing  
– Peripheral clock enable register can disable clocks to  
unused modules, thereby reducing currents  
– Low voltage warning and detect with selectable trip  
points  
– Illegal opcode and illegal address detection with  
programmable reset or processor exception response  
– Hardware CRC module to support fast cyclic  
redundancy checks (CRC)  
– 128-bit unique chip identifier  
– Hardware watchdog  
– External Watchdog Monitor (EWM)  
– Dual DMA controller with 32 channels (with  
DMAMUX)  
– Secure JTAG  
• Memory Interfaces  
– 8/16-bit DRAM Controller with support for  
LPDDR2/DDR3 - Up to 400 MHz (ECC supported  
for 8-bit only and not 16-bit)  
– 8/16-bit NAND Flash controller with ECC (ECC  
supported for 8-bit only and not 16-bit)  
– Dual Quad SPI with XIP (Execute-In-Place)  
– 8/16/32-bit External bus (Flexbus)  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Display and Video  
– Dual Display Control Unit (DCU) with support for color TFT display up to WVGA  
– Segmented LCD (3V Glass only) configurable as 40x4, 38x8, and 36x6  
– Video Interface Unit (VIU) for camera  
– Open VG Graphics Processing Unit (GPU)  
– VideoADC  
• Analog  
– Dual 12-bit SAR ADC with 1MS/s  
– Dual 12-bit DAC  
• Audio  
– Four Synchronous Audio Interface (SAI)  
– Enhanced Serial Audio Interface (ESAI)  
– Sony Philips Digital Interface (SPDIF), Rx and Tx  
– Asynchronous Sample Rate Converter (ASRC)  
• Human-Machine Interface (HMI)  
– GPIO pins with interrupt support, DMA request capability, digital glitch filter.  
– Hysteresis and configurable pull up/down device on all input pins  
– Configurable slew rate and drive strength on all output pins  
• On-Chip Memory  
– 512 KB On-chip SRAM with ECC  
– 1 MB On-chip graphics SRAM (no ECC). This depends on the part selected. Alternate configuration could be 512 KB  
graphics and 512 KB L2 cache.  
– 96 KB Boot ROM  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
2
NXP Semiconductors  
Table of Contents  
1
2
Ordering parts.....................................................................................5  
6.2.5.1  
Power Down Mode............................. 20  
1.1 Determining valid orderable parts ..........................................5  
Part identification...............................................................................5  
2.1 Description.............................................................................. 5  
2.2 Part Number Format................................................................5  
2.3 Part Numbers ..........................................................................6  
Terminology and guidelines...............................................................7  
3.1 Definition: Operating requirement..........................................7  
3.2 Definition: Operating behavior............................................... 8  
3.3 Definition: Attribute................................................................8  
3.4 Definition: Rating....................................................................8  
3.5 Result of exceeding a rating....................................................9  
3.6 Relationship between ratings and operating requirements......9  
3.7 Guidelines for ratings and operating requirements................. 10  
3.8 Definition: Typical value........................................................ 10  
3.9 Typical Value Conditions........................................................11  
Handling ratings.................................................................................11  
4.1 ESD handling ratings ............................................................. 11  
4.2 Thermal handling ratings........................................................ 12  
4.3 Moisture handling ratings........................................................12  
Operating Requirements.....................................................................12  
5.1 Thermal operating requirements............................................. 12  
General............................................................................................... 12  
6.1 AC electrical characteristics....................................................12  
6.2 Nonswitching electrical specifications ...................................13  
6.2.6  
EMC radiated emissions operating behaviors........ 21  
EMC Radiated Emissions Web Search Procedure  
boilerplate............................................................... 21  
Capacitance attributes............................................. 21  
6.2.7  
6.2.8  
7
8
I/O parameters....................................................................................22  
7.1 GPIO parameters.....................................................................22  
3
7.1.1  
Output Buffer Impedance measurement................. 24  
7.2 DDR parameters......................................................................24  
Power supplies and sequencing..........................................................28  
8.1 Power sequencing ...................................................................28  
8.2 Power supply...........................................................................29  
8.3 Absolute maximum ratings..................................................... 31  
8.4 Recommended operating conditions....................................... 32  
8.5 Recommended Connections for Unused Analog Interfaces... 33  
Peripheral operating requirements and behaviours............................34  
9.1 Analog..................................................................................... 34  
9
4
9.1.1  
9.1.2  
9.1.3  
12-bit ADC electrical characteristics......................34  
9.1.1.1  
9.1.1.2  
12-bit ADC operating conditions........34  
12-bit ADC characteristics..................35  
5
6
12-bit DAC electrical characteristics......................39  
9.1.2.1  
9.1.2.2  
12-bit DAC operating requirements....39  
12-bit DAC operating behaviors......... 39  
VideoADC Specifications.......................................43  
9.2 Display and Video interfaces.................................................. 45  
6.2.1  
VREG electrical specifications ..............................13  
9.2.1  
DCU Switching Specifications............................... 45  
6.2.1.1  
6.2.1.2  
6.2.1.3  
6.2.1.4  
6.2.1.5  
HPREG electrical characteristics........ 13  
LPREG electrical characteristics.........14  
ULPREG electrical characteristics......14  
WBREG electrical characteristics.......15  
External NPN Ballast.......................... 15  
9.2.1.1  
9.2.1.2  
Interface to TFT panels (DCU0/1)......45  
Interface to TFT LCD Panels—Pixel  
Level Timings..................................... 46  
Interface to TFT LCD panels—access  
level.....................................................47  
9.2.1.3  
6.2.2  
6.2.3  
LVD electrical specifications .................................17  
9.2.2  
9.2.3  
Video Input Unit timing..........................................48  
LCD driver electrical characteristics...................... 49  
6.2.2.1  
6.2.2.2  
Main Supply electrical characteristics 17  
LVD DIG characteristics.....................18  
9.3 Ethernet specifications............................................................ 50  
LDO electrical specifications .................................18  
9.3.1  
9.3.2  
9.3.3  
Ethernet Switching Specifications.......................... 50  
Receive and Transmit signal timing specifications 50  
Receive and Transmit signal timing specifications  
for MII interfaces.................................................... 51  
6.2.3.1  
6.2.3.2  
6.2.3.3  
LDO_1P1............................................ 18  
LDO_2P5............................................ 19  
LDO_3P0 ........................................... 19  
6.2.4  
6.2.5  
Power consumption operating behaviors................20  
USB PHY current consumption..............................20  
9.4 Audio interfaces...................................................................... 53  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
3
9.4.1  
Enhanced Serial Audio Interface (ESAI) Timing  
Parameters...............................................................53  
SPDIF Timing Parameters......................................55  
SAI/I2S Switching Specifications.......................... 56  
9.7.4  
9.7.5  
9.7.6  
Slow internal RC oscillator (128 KHz) electrical  
characteristics..........................................................84  
PLL1 and PLL2 (528 MHz System PLL)  
9.4.2  
9.4.3  
Electrical Parameters.............................................. 84  
PLL3 and PLL7 (480 MHz USB PLL) Electrical  
Parameters...............................................................84  
PLL5 (Ethernet PLL) Electrical Parameters...........85  
PLL4 (Audio PLL) Electrical Parameters...............85  
PLL6 (Video PLL) Electrical Parameters...............85  
9.5 Memory interfaces...................................................................58  
9.5.1  
9.5.2  
9.5.3  
9.5.4  
QuadSPI timing.......................................................58  
NAND flash controller specifications.....................61  
FlexBus timing specifications.................................64  
DDR controller specifications................................ 66  
9.7.7  
9.7.8  
9.7.9  
9.5.4.1  
9.5.4.2  
9.5.4.3  
9.5.4.4  
9.5.4.5  
9.5.4.6  
DDR3 Timing Parameters ..................66  
DDR3 Read Cycle...............................68  
DDR3 Write cycle...............................69  
LPDDR2 Timing Parameter................70  
LPDDR2 Read Cycle.......................... 71  
LPDDR2 Write Cycle......................... 72  
9.8 Debug specifications............................................................... 86  
9.8.1  
9.8.2  
JTAG electricals..................................................... 86  
Debug trace timing specifications...........................88  
10 Thermal attributes.............................................................................. 89  
10.1 Thermal attributes................................................................... 89  
11 Dimensions.........................................................................................90  
11.1 Obtaining package dimensions ...............................................90  
12 Pinouts................................................................................................91  
12.1 Pinouts.....................................................................................91  
12.2 Pinout diagrams.......................................................................103  
9.6 Communication interfaces.......................................................73  
9.6.1  
9.6.2  
MediaLB (MLB) DC Characteristics..................... 73  
MediaLB (MLB) Controller AC Timing Electrical  
Specifications..........................................................73  
DSPI timing specifications..................................... 75  
I2C timing...............................................................78  
SDHC specifications...............................................80  
USB PHY specifications.........................................81  
9.6.3  
9.6.4  
9.6.5  
9.6.6  
12.2.1  
12.2.2  
GPIO Mapping........................................................105  
Special Signal ........................................................ 109  
13 Power Supply Pins............................................................................. 111  
13.1 Power Supply Pins.................................................................. 111  
14 Functional Assignment Pins...............................................................112  
14.1 Functional Assignment Pins....................................................112  
15 Revision History.................................................................................121  
9.7 Clocks and PLL Specifications............................................... 81  
9.7.1  
9.7.2  
9.7.3  
24 MHz Oscillator Specifications...........................81  
32 KHz Oscillator Specifications........................... 82  
Fast internal RC oscillator (24 MHz) electrical  
characteristics..........................................................83  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
4
NXP Semiconductors  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web.  
1. To determine the orderable part numbers for this device, go to www.nxp.com and  
search the required part number. The part numbering format is described in the  
section that follows.  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Part Number Format  
The figure below represents the format of part number of this device.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
5
Part identification  
R
MK 2  
K1 C  
S V 3 1 1 R 3  
F
Tape & Reel  
R = Tape & Reel  
(Optional)  
Qualification Status  
P = engineering samples  
S = automotive qualified  
Speed (A5 core)  
2 = 266MHz  
4 = 400MHz  
Brand: V = Vybrid  
Series: F = current  
Family  
Package  
KU = 176LQFP  
3 = Standard  
MK = 364BGA  
5 = Advanced  
Core  
1 = Cortex A5  
2 = Cortex A5 + M4  
3 = M4 Primary  
Temp Spec  
C = -40 to +85C Ta  
Option  
K1 = 2N02G with VADC  
Graphics  
1 = No Open VG  
=
K2 3N02G with VADC  
2 = Open VG  
=
N2 3N02G with no VADC  
Version  
R = Auto  
Memory Option  
3 = Standard (1.5MB SRAM)  
2 = Optional (1MB SRAM and 512K L2 Cache)  
Figure 1. Part Number Format  
2.3 Part Numbers  
This table lists the part numbers on the device.  
Part Number  
SVF311R3K2CKU2  
SVF312R3K2CKU2  
SVF321R3K2CKU2  
SVF322R3K2CKU2  
SVF331R3K2CKU2  
SVF332R3K2CKU2  
Mask  
3N02G  
VADC  
YES  
Package  
Description  
A5-266, 176LQFP-EP  
LQFP-EP 176 24*24*1.6  
LQFP-EP 176 24*24*1.6  
LQFP-EP 176 24*24*1.6  
LQFP-EP 176 24*24*1.6  
LQFP-EP 176 24*24*1.6  
LQFP-EP 176 24*24*1.6  
3N02G  
3N02G  
3N02G  
3N02G  
3N02G  
YES  
YES  
YES  
YES  
YES  
A5-266, OpenVG GPU, 176LQFP-EP  
A5-266, M4, 176LQFP-EP  
A5-266, M4, OpenVG GPU, 176LQFP  
A5-266, M4 Primary, 176LQFP-EP  
A5-266, M4 Primary, OpenVG GPU,  
176LQFP-EP  
SVF511R3K2CMK4  
SVF512R3K2CMK4  
SVF521R3K2CMK4  
SVF522R2K2CMK4  
3N02G  
3N02G  
3N02G  
3N02G  
YES  
YES  
YES  
YES  
MAP 364 17*17*1.5 P0.8  
MAP 364 17*17*1.5 P0.8  
MAP 364 17*17*1.5 P0.8  
MAP 364 17*17*1.5 P0.8  
A5-400, 364BGA  
A5-400, OpenVG GPU, 364BGA  
A5-400, M4, 364BGA  
A5-400, M4, L2 Cache, OpenVG GPU,  
364BGA  
SVF522R3K2CMK4  
3N02G  
YES  
MAP 364 17*17*1.5 P0.8  
A5-400, M4, OpenVG GPU, 364BG  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
6
NXP Semiconductors  
Terminology and guidelines  
Description  
Part Number  
SVF531R3K2CMK4  
SVF532R2K2CMK4  
Mask  
3N02G  
VADC  
YES  
Package  
MAP 364 17*17*1.5 P0.8  
MAP 364 17*17*1.5 P0.8  
A5-400, M4 Primary, 364BG  
3N02G  
YES  
A5-400, M4 Primary, L2 Cache OpenVG  
GPU, 364BGA  
SVF532R3K2CMK4  
3N02G  
YES  
MAP 364 17*17*1.5 P0.8  
A5-400, M4 Primary, OpenVG GPU,  
364BGA  
SVF311R3N2CKU2  
SVF312R3N2CKU2  
SVF321R3N2CKU2  
SVF322R3N2CKU2  
SVF331R3N2CKU2  
SVF332R3N2CKU2  
3N02G  
3N02G  
3N02G  
3N02G  
3N02G  
3N02G  
NO  
NO  
NO  
NO  
NO  
NO  
LQFP-EP 176 24*24*1.6  
LQFP-EP 176 24*24*1.6  
LQFP-EP 176 24*24*1.6  
LQFP-EP 176 24*24*1.6  
LQFP-EP 176 24*24*1.6  
LQFP-EP 176 24*24*1.6  
A5-266, 176LQFP-EP  
A5-266, OpenVG GPU, 176LQFP-EP  
A5-266, M4, 176LQFP-EP  
A5-266, M4, OpenVG GPU, 176LQFP  
A5-266, M4 Primary, 176LQFP-EP  
A5-266, M4 Primary, OpenVG GPU,  
176LQFP-EP  
SVF511R3N2CMK4  
SVF512R3N2CMK4  
SVF521R3N2CMK4  
SVF522R2N2CMK4  
3N02G  
3N02G  
3N02G  
3N02G  
NO  
NO  
NO  
NO  
MAP 364 17*17*1.5 P0.8  
MAP 364 17*17*1.5 P0.8  
MAP 364 17*17*1.5 P0.8  
MAP 364 17*17*1.5 P0.8  
A5-400, 364BGA  
A5-400, OpenVG GPU, 364BGA  
A5-400, M4, 364BGA  
A5-400, M4, L2 Cache, OpenVG GPU,  
364BGA  
SVF522R3N2CMK4  
SVF531R3N2CMK4  
SVF532R2N2CMK4  
3N02G  
3N02G  
3N02G  
NO  
NO  
NO  
MAP 364 17*17*1.5 P0.8  
MAP 364 17*17*1.5 P0.8  
MAP 364 17*17*1.5 P0.8  
A5-400, M4, OpenVG GPU, 364BG  
A5-400, M4 Primary, 364BG  
A5-400, M4 Primary, L2 Cache OpenVG  
GPU, 364BGA  
SVF532R3N2CMK4  
3N02G  
NO  
MAP 364 17*17*1.5 P0.8  
A5-400, M4 Primary, OpenVG GPU,  
364BGA  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
3.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
7
Terminology and guidelines  
3.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of values  
for a technical characteristic that are guaranteed during operation if you meet the  
operating requirements and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
8
NXP Semiconductors  
Terminology and guidelines  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
3.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
9
Terminology and guidelines  
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
10  
NXP Semiconductors  
Handling ratings  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
3.9 Typical Value Conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
4 Handling ratings  
4.1 ESD handling ratings  
Symbol  
VHBM  
VCDM  
ILAT  
Description  
Min.  
-2000  
-500  
Max.  
2000  
500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
Latch-up Current at ambient temperature of 85 °C  
1
2
V
-100  
100  
mA  
1. Determined according to the AEC spec AEC-Q100-002 for HBM  
2. Determined according to AEC spec AEC-Q100-011  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
11  
Operating Requirements  
4.2 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
260  
245  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
Solder temperature, leaded  
1
2
TSDR  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
5 Operating Requirements  
5.1 Thermal operating requirements  
Table 1. Thermal operating requirements  
Symbol  
TA  
Description  
Min.  
–40  
Max.  
85  
Unit  
°C  
Ambient temperature  
Junction temperature  
TJ  
105  
°C  
6 General  
6.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
12  
NXP Semiconductors  
Nonswitching electrical specifications  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 2. Input signal measurement reference  
6.2 Nonswitching electrical specifications  
6.2.1 VREG electrical specifications  
6.2.1.1 HPREG electrical characteristics  
Table 2. HPREG electrical characteristics  
Parameters  
Power supply  
Min  
Typ  
3.3  
Max  
3.6  
Unit  
V
Comments  
-
3.0  
Current Consumption  
-
-
-
1.2  
1.5  
mA  
mA  
mA  
V
@ no load  
@ full load  
DC load current  
2.0  
2.5  
12001  
Output current capacity  
Output voltage @ no load  
Output voltage @ full load  
External decoupling cap  
600  
1.23  
1.21  
1.26  
1.20  
4.7  
V
-
μF  
-
0.05  
0.1  
Ohms  
ESR of external  
cap  
20  
mOhms  
dB  
Total effective  
PAD+PCB trace  
resistances  
PSRR with 4.7uF output cap  
@ DC @noload  
-48  
-40  
-20  
@ DC @full load  
@ worst case any frequency  
1. This is peak and not continuous maximum value.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
13  
VREG electrical specifications  
6.2.1.2 LPREG electrical characteristics  
Table 3. LPREG electrical characteristics  
Parameters  
Power supply  
Min  
3.0  
350  
-
Typ  
3.3  
Max  
Unit  
V
Comments  
3.6  
Current Consumption  
400  
500  
100  
1.22  
μA  
@ no load  
@ full load  
650  
200  
μA  
Output current capacity  
Output voltage @ no load  
Output voltage @ full load  
External decoupling cap  
mA  
V
DC load current  
1.240  
1.180  
4.7  
V
μF  
0.05  
0.1  
20  
Ohms  
mOhms  
ESR of external cap  
Total PAD+PCB trace  
resistance  
PSRR with 4.7uF output cap  
@ DC @noload  
-40  
-35  
-12  
dB  
@ DC @full load  
Worst case @ any frequency  
6.2.1.3 ULPREG electrical characteristics  
Table 4. ULPREG electrical characteristics  
Parameters  
Min  
3.0  
1.88  
-
Typ  
3.3  
Max  
3.6  
Unit  
V
Comments  
Power supply  
Current Consumption  
2.3  
2.86  
670  
20  
μA  
μA  
mA  
V
@ no load  
@ full load  
610  
Output current capacity  
DC load current  
Output voltage @ no load  
Output voltage @ full load  
PSRR with 500 pF output cap  
1.175  
1.125  
-20  
V
dB  
Worst case at any frequency  
across corners  
@ DC @noload  
-50  
-37  
-42  
-37  
-15  
dB  
@200KHz @noload  
@ DC @full load  
@200KHz @full load  
Worst case @ any frequency  
@ any load  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
14  
NXP Semiconductors  
VREG electrical specifications  
6.2.1.4 WBREG electrical characteristics  
Table 5. WBREG electrical characteristics  
Parameters  
Power supply  
Min  
Typ  
3.3  
2
Max  
3.6  
5
Unit  
V
Comments  
-
3
-
Current Consumption  
µA  
µA  
mA  
V
@ no load  
@ full load  
DC load current  
-
2
5
Output current capacity  
Output voltage @ no load  
Output voltage @ full load  
Output voltage programmability  
-
1
2
1.4  
1.398  
1.4  
1.425  
1.375  
1.4  
V
1.7  
V
16 steps of 25  
mV each  
6.2.1.5 External NPN Ballast  
The internal main regulator requires an external NPN ballast transistor to be connected as  
shown in the following figure as well as an external capacitance to be connected to the  
device in order to provide a stable 1.2V digital supply to the device. The HPREG design  
allows for collector voltage lower than VDDREG value. See AN4807 at www.nxp.com .  
NOTE  
To not overload BCTRL output, collector voltage should appear  
no later than VDDREG / VDD33 (3.3V).  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
15  
VREG electrical specifications  
Figure 3. External NPN Ballast connections  
Table 6. BCTRL OUTPUT specification  
Parameter  
Value  
Comments  
BCTRL OUTPUT specification  
20mA  
BCTRL driver can not drive more than  
20mA current  
Maximum pin voltage  
VDDREG-0.5V  
For Example, VDDREG =3.0V BCTRL  
should not exceed 2.5V.  
Table 7. Assumptions For calculations  
Parameter  
Value  
VDDREG  
3.0V to 3.6V with typical value of 3.3V  
0.85A @85 °C  
Max DC Collector current  
Emitter voltage  
1.2V to 1.25V  
Collector voltage  
Equal to VDDREG  
Table 8. General guidelines for selection of NPN ballast  
Symbol  
Parameters  
Value  
Unit  
Comments  
Hfe  
Minimum DC  
current gain (Beta)  
42.5  
As BCTRL pin can not drive more than  
20mA Minimum value of beta for a  
collector current of 0.85A comes out to  
be 42.5.  
PD (Junction to  
ambient)  
Minimum power  
dissipation @  
TA=85 °C  
2.04  
W
Assuming 0.85A collector current with  
Collector voltage of Ballast 3.6V(max)  
we get VCE= 3.6V-1.2V=2.4V So power  
dissipated is 2.4V*0.85A=2.04W . This  
should be met for junction to ambient  
power dissipation spec of ballast  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
16  
NXP Semiconductors  
LVD electrical specifications  
Table 8. General guidelines for selection of NPN ballast (continued)  
Symbol  
Parameters  
Value  
Unit  
Comments  
IcmaxDC peak  
Maximum peak DC  
collector current  
0.85  
A
1.2A and above capacity device  
preferable  
VBE  
Maximum voltage 1.25V for 0.85A @  
V
For a VDDREG of 3.0 V (min.), BCTRL  
pin can drive voltage up to VDDREG -  
0.5 V = 2.5 V. Since emitter of ballast is  
fixed at 1.25 V (max) if chosen ballast  
can supply 0.85 A collector current @ 85  
°C with a base-to-emitter voltage of 1.25  
V or lower, it is suitable for application.  
that BCTRL pin can  
drive  
85 °C  
Ft  
Unity current gain  
Frequency of  
Ballast  
50  
MHz  
Reducing the collector-to-emitter voltage drop lowers the ballast transistor heat  
dissipation. This can be implemented in two ways:  
1. By introducing series resistor or diode(s) between the collector and VDDREG  
(placed far enough from the transistor for proper cooling)  
2. By connecting the collector to a separate lower-voltage supply  
In both of the above cases the transistor has to stay away from the deep saturation region;  
otherwise, due to significant Hfe degradation, its base current exceeds the BCTRL output  
maximum value.  
In general, the transistor must be selected such that its Vce saturation voltage is lower  
than the expected minimum Collector-Emitter voltage, and at the same time, the base  
current is less than 20 mA for the maximum expected collector current. More information  
can be found in collateral documentation at http://www.nxp.com  
6.2.2 LVD electrical specifications  
6.2.2.1 Main Supply electrical characteristics  
Table 9. LVD_MAIN supply electrical characteristics  
Main Supply LVD  
Parameters  
Min  
Typ  
Max  
Unit  
Comments  
Power supply  
3.0  
3.3  
3.6  
V
V
Upper voltage threshold  
(value @27oC)  
2.76  
2.915  
Lower voltage threshold  
(value @27oC)  
2.656  
3.3  
2.73  
V
Time constant of RC filter at  
LVD input (0.69*RC)  
μs  
3.3 V noise rejection at LVD  
comparator input  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
17  
LDO electrical specifications  
6.2.2.2 LVD DIG characteristics  
Table 10. LVD DIG electrical specifications [HPREG(RUN MODE) and LPREG(STOP  
MODE)]  
LVD DIG  
Min  
Typ  
Max  
Unit  
Comments  
Parameters  
Power supply  
3.0  
3.3  
3.6  
V
V
Upper voltage  
threshold  
1.135  
1.16  
1.185  
Lower voltage  
threshold  
1.105  
200  
1.13  
1.155  
V
Time constant of  
RC filter at LVD  
input  
ns  
1.2V noise rejection at the input of  
LVD comparator  
Table 11. LVD DIG electrical specifications [ULPREG(STANDBY  
MODE)]  
LVD DIG Parameters  
Power supply  
Min  
3.0  
Typ  
3.3  
Max  
3.6  
Unit  
V
Comments  
Upper voltage threshold  
Lower voltage threshold  
1.105  
1.075  
200  
1.13  
1.10  
1.155  
1.125  
V
V
Time constant of RC filter at  
LVD input  
ns  
1.2V noise rejection at the  
input of LVD comparator  
6.2.3 LDO electrical specifications  
6.2.3.1 LDO_1P1  
Table 12. LDO_1P1 parameters  
Specification  
VDDIO  
Min  
Typ  
Max  
Unit  
Comments  
IO supply  
3
3.3  
1.1  
3.6  
1.2  
150  
1.4  
V
VDD1P1_OUT  
I_out  
0.9  
-
V
Regulator output  
>= 300mV drop out  
mA  
V
Regulator output  
programming range  
0.8  
1.1  
Programmable in  
25mV steps  
Brownout Voltage 0.85  
0.94  
-
V
Brownout offset  
step  
0
175  
-
mV  
Programmable in  
25mV steps  
Minimum external  
decoupling  
1
-
µF  
low ESR  
capacitor  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
18  
NXP Semiconductors  
LDO electrical specifications  
For additional information, see the device reference manual.  
6.2.3.2 LDO_2P5  
Table 13. LDO_2P5 parameters  
Specification  
VDDIO  
Min  
Typ  
Max  
Unit  
Comments  
IO supply  
3
3.3  
2.5  
3.6  
V
VDD2P5_OUT  
I_out  
2.3  
-
2.6  
V
Regulator output  
@500mV drop out  
350  
2.75  
mA  
V
Regulator output  
programming range  
2.0  
2.5  
Programmable in  
25mV steps  
[P:][C:] Brownout  
Voltage  
2.25  
0
2.33  
V
Brownout offset  
step  
-
-
175  
-
mV  
µF  
Programmable in  
25mV steps  
Minimum external  
decoupling  
1
low ESR  
capacitor  
For additional information, see the reference manual.  
6.2.3.3 LDO_3P0  
Table 14. LDO_3P0 parameters  
Specification  
Min  
Typ  
Max  
Unit  
Comments  
Input OTG VBUS  
Supply  
4.4  
5.25  
5.25  
3.1  
V
Input HOST VBUS 4.4  
Supply  
V
VDD3P0_OUT  
2.9  
3.0  
V
Regulator output at  
default setting  
I_out  
-
50  
mA  
V
500 mV drop-out  
voltage  
Regulator output  
programming range  
2.625  
2.75  
0
3.4  
Programmable in  
25mV steps  
[P:][C:] Brownout  
Voltage  
2.85  
V
Brownout offset  
step  
-
-
175  
-
mV  
µF  
Programmable in  
25mV steps  
Minimum external  
decoupling  
1
low ESR  
capacitor  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
19  
LDO electrical specifications  
NOTE  
These values are with Anadig_REG_3P0[ENABLE_ILIMIT]=  
0 and Anadig_REG_3P0[ENABLE_LINREG]= 1. It is required  
to set these values before using USB.  
6.2.4 Power consumption operating behaviors  
Table 15. Power consumption operating behaviors  
Symbol  
Description  
Typ.1  
Max.2  
Unit  
Notes  
IDD_RUN  
Run mode current — All functionalities of the chip  
available  
400  
850  
mA  
IDD_WAIT  
Wait mode high frequency current at 3.3 V 10ꢀ  
80  
13  
500  
325  
mA  
mA  
3
4
IDD_LPRUN  
Low-power run mode current at 3.3 V 10ꢀ,  
24MHz operation, PLL Bypass.  
IDD_ULPRUN  
IDD_STOP  
Ultra-low-power run mode current at 3.3 V 10ꢀ  
Stop mode current at 3.3 V 10ꢀ  
12  
7
395  
300  
mA  
mA  
uA  
5
6
7
IDD_LPS2FIRC/IDD_LPS3FIRC Low power stop 2/low power stop 3 with FIRC  
enabled, current at 3.3 V 10ꢀ  
300  
1300  
IDD_LPS2/IDD_LPS3  
Low power stop 2/low power stop 3 with FIRC  
disabled, current at 3.3 V 10ꢀ  
50  
5
875  
45  
uA  
uA  
7
8
IDD_VBAT  
Battery backup mode  
1. The Typ numbers represent the average value taken from a matrix lot of parts across normal process variation at ambient  
temperature.  
2. The Max numbers represent the single worst case value taken from a matrix lot of parts across normal process variation at  
maximum temperature.  
3. CA5, CM4 cores halted  
4. 24MHz operation, PLL Bypass  
5. 32 kHz /128 kHz operation, PLL Off  
6. Lowest power mode with all power retained, RAM retention and LVD protection.  
7. Standby Mode. 64K and 16K RAM retention. ADCs/DACs optionally power-gated. RTC functional. Wakeup from interrupts.  
8. All supplies OFF, SRTC, 32kXOSC ON, tampers and monitors ON. 128k IRC optionally ON.  
6.2.5 USB PHY current consumption  
6.2.5.1 Power Down Mode  
Everything powered down, including the VBUS valid detectors, typ condition.  
Table 16. USB PHY Current Consumption in Normal Mode  
USBx_VBUS  
(3.0V)  
VDD33_LDOIN  
(2.5V)  
VDD33_LDOIN  
(1.1V)  
Avg  
Avg  
Avg  
Current  
5.1 μA  
1.7 μA  
<0.5 μA  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
20  
NXP Semiconductors  
LDO electrical specifications  
NOTE  
The currents on the 2.5 voltage regulator and 3.0 voltage  
regulator were identified to be the voltage divider circuits in the  
USB-specific level shifters.  
6.2.6 EMC radiated emissions operating behaviors  
Table 17. EMC radiated emissions operating behaviors  
Symbol  
Condition1  
Clocks  
Frequency  
band 2  
Level  
Unit  
(Typ)3  
VEME  
Device Configuration, test conditions and EM testing  
per standard IEC 61967-2; Supply voltages: VDD= 5.0 MHz FBUS  
V VDD33 = 3.3 V VDD15 = 1.5 V VDD12 = 1.2 V  
Temp = 25°C  
FCPU = 396 150 KHz –  
22  
24  
25  
dBμV  
50 MHz  
= 66 MHz  
External  
Crystal = 24  
MHz  
50 MHz –  
150 MHz  
150 MHz –  
500 MHz  
500–1000  
IEC level4  
20  
K
1. Measurements were made per IEC 61967-2 while the device was running basic application code.  
2. Measurements were performed on the BGA364 version of the device  
3. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from  
among the measured orientations in each frequency range.  
4. IEC Level Maximums: N ≤ 12dBmV, M ≤ 18dBmV, L ≤ 24dBmV, K ≤ 30dBmV, I ≤ 36dBmV, H ≤ 42dBmV  
6.2.7 EMC Radiated Emissions Web Search Procedure boilerplate  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
2. Perform a keyword search for “EMC design.”  
6.2.8 Capacitance attributes  
Table 18. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_A  
CIN_D  
Input capacitance:  
analog pins  
7
7
pF  
pF  
Input capacitance:  
digital pins  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
21  
I/O parameters  
7 I/O parameters  
7.1 GPIO parameters  
Table 19. GPIO DC operating conditions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
vddi1  
Core internal  
1.2  
V
supply voltage  
ovdd  
I/O output  
3
3.3  
3.6  
V
supply voltage  
1. This is internally controlled.  
Table 20. GPIO DC Electrical characteristics  
Symbol  
Parameter  
High-level  
output voltage  
Test condition  
Min  
Typ  
Max  
Unit  
Voh  
Ioh= -1mA  
ovdd-0.15  
V
VOH/VOL  
values are with  
respect to  
DSE=0011  
Vol  
Low-level output Iol= 1mA  
voltage  
0.15  
V
V
V
Vih 2  
Vil2  
High-Level DC  
input voltage  
0.7*ovdd  
0
ovdd  
Low-Level DC  
input voltage  
0.3*ovdd  
Vhys  
Vt+2, 3  
Input Hysteresis ovdd=3.3 V  
250  
mV  
V
Schmitt trigger  
VT+  
0.5*ovdd  
Vt-2, 3  
Iin4  
Schmitt trigger  
VT-  
0.5*ovdd  
1
V
Input current (no Vin = ovdd or 0 -1  
pull-up/down)  
uA  
uA  
Iin_22pu  
Input current  
(22KOhm PU)  
Vin = 0  
212  
1
Vin = ovdd  
Vin = 0  
Iin_47pu  
Iin_100pu  
Iin_100pd  
Input current  
(47KOhm PU)  
100  
1
Vin = ovdd  
Vin = 0  
Input current  
(100KOhm PU)  
50  
1
Vin = ovdd  
Vin = 0  
Input current  
1
(100KOhm PD)  
Vin = ovdd  
50  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
22  
NXP Semiconductors  
I/O parameters  
Unit  
Table 20. GPIO DC Electrical characteristics (continued)  
Symbol  
R_Keeper  
Parameter  
Test condition  
Min  
Typ  
Max  
Keeper Circuit  
Resistance  
Vin = 0.3 x  
OVDD VI = 0.7 x  
OVDD  
105  
175  
7
Ohm  
Issod  
Issop  
Sink current in  
open drain  
mode  
Vin = ovdd  
mA  
mA  
Sink/source  
current in Push  
Pull mode  
Vin = ovdd  
7
1. For details about Software MUX Pad Control Register DSE bit, see IOMUX Controller chapter of the device reference  
manual.  
2. To maintain a valid level, the transitioning edge of the input must sustain a constant slew rate (monotonic) from the current  
DC level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1ns to 1s. Vil and Vih do not  
apply when hysteresis is enabled.  
3. Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.  
4. Typ condition: typ model, 3.3V, and 25°C. Max condition: bcs model, 3.6V, and -40°C. Min condition: wcs model, 3.0V and  
85 °C. These values are for digital IO buffer cells.  
Table 21. GPIO AC Electrical Characteristics (3.3V power mode)  
Symbol  
tpr  
Parameter  
Drive strength1  
Slew  
rate  
Test conditions  
Min  
Max  
Unit  
IO Output Transition Max 1 1 1  
Times (PA1), rise/fall  
slow  
15pF Cload on pad, 1.70  
input edge rate 200ps  
1.81  
ns  
ns  
ns  
fast  
1.04  
1.18  
2.44  
1.79  
3.31  
2.61  
5.44  
5.18  
5.04  
3.10  
5.68  
3.55  
6.67  
4.11  
7.60  
6.10  
5.21  
3.28  
5.80  
3.71  
6.80  
High 1 0 1  
Medium 1 0 0  
Low 0 1 1  
slow  
fast  
2.30  
1.69  
slow  
fast  
3.07  
2.45  
slow  
fast  
5.13  
4.79  
tpo  
IO Output  
Propagation Delay  
(PA2), rise/fall  
Max 1 1 1  
slow  
fast  
15pF Cload on pad, 5.01  
input edge rate 200ps  
3.06  
High 1 0 1  
Medium 1 0 0  
Low 0 1 1  
slow  
fast  
5.55  
3.52  
slow  
fast  
6.37  
4.04  
slow  
fast  
7.39  
5.54  
tpv  
Output Enable to  
Output Valid Delay,  
rise/fall  
Max 1 1 1  
slow  
fast  
15pF Cload on pad, 5.12  
input edge rate  
200ps, 0->1, 1->0  
pad transitions  
3.18  
High 1 0 1  
slow  
fast  
5.72  
3.67  
6.55  
Medium 1 0 0  
slow  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
23  
I/O parameters  
Table 21. GPIO AC Electrical Characteristics (3.3V power mode) (continued)  
Symbol  
Parameter  
Drive strength1  
Slew  
rate  
Test conditions  
Min  
Max  
Unit  
fast  
4.06  
4.09  
Low 0 1 1  
slow  
7.80  
5.72  
8.19  
6.22  
1.31  
1.41  
fast  
tpi  
Input Pad  
without hysteresis  
with hysteresis  
-
-
150f Cload on, input 1.06  
ns  
Propagation Delay  
rise/fall  
edge rate from pad  
=1.2ns  
1.22  
1. The drive strengths are controlled by the DSE bit of the Software MUX Pad Control Register. For details, see IOMUX  
Controller chapter of the device reference manual.  
7.1.1 Output Buffer Impedance measurement  
Table 22. Output Buffer Average Impedance (3.3V power mode)  
Symbol  
Rdrv  
Parameter  
Drive strength1  
Min  
Typ  
Max  
Unit  
Output driver 0 0 1  
impedance  
116  
58  
39  
30  
24  
20  
150  
75  
50  
37  
30  
25  
220  
110  
73  
Ohm  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
58  
46  
38  
Extra drive strength  
1 1 1  
17  
20  
32  
1. The drive strengths are controlled by the DSE bit of the Software MUX Pad Control Register. For details, see IOMUX  
Controller chapter of the device reference manual.  
7.2 DDR parameters  
Table 23. DDR operating conditions  
Symbol  
vddi  
Parameter  
Min  
1.16  
Typ  
1.23  
1.5  
Max  
1.26  
Unit  
V
Core internal supply voltage  
ovdd  
I/O output supply voltage  
(DDR3 mode)  
1.425  
1.575  
V
ovdd  
I/O output supply voltage  
(LPDDR2 mode)  
1.14  
2.25  
1.2  
2.5  
1.26  
2.75  
V
V
vdd2p5  
I/O PD predriver and level  
shifters supply voltage  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
24  
NXP Semiconductors  
I/O parameters  
Notes  
Table 24. LPDDR2 mode DC Electrical characteristics  
Symbol  
Voh  
Parameter  
Test  
Min  
Typ  
Max  
Unit  
condition  
High-level  
output voltage  
0.9*ovdd  
V
V
V
Note that the  
JEDEC  
LPDDR2  
specification  
(JESD209_2B  
) supersedes  
any  
specification  
in this  
Vol  
Low-level  
output voltage  
0.1*ovdd  
Vref  
Input  
0.49*ovdd  
0.5*ovdd  
0.51*ovdd  
reference  
voltage  
Vih(dc)  
Vil(dc)  
DC input high  
voltage  
Vref+0.13  
ovss  
ovdd  
V
V
V
document.  
DC input low  
voltage  
Vref-0.13  
Note1  
Vih(diff)  
DC differential  
input logic  
high  
0.26  
Vil(diff)  
Iin2  
DC differential  
input logic low  
Note1  
-0.26  
2.5  
V
Input current Vin = ovdd or  
uA  
(no pull-up/  
down)  
0
Tri-state I/O  
supply  
Icc-ovdd  
Vin = ovdd or  
0
4
current2  
Tri-state  
Icc-vdd2p5  
Vi = vddi or 0  
1.5  
1
vdd2p5 supply  
current2  
Tri-state core Icc-vddi  
supply  
current2  
Driver unit  
(240 Ohm)  
calibration  
resolution  
Rres  
10  
Ohm  
1. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well  
as the limitations for overshoot and undershoot.  
2. Typ condition: typ model, 1.2 V, and 25 °C junction. Max condition: bcs model, 1.26V, and -40 °C. Min condition: wcs  
model, 1.14V, and Tj 125 °C.  
Table 25. DDR3 mode DC Electrical characteristics  
Symbol  
Voh  
Vol  
Parameter  
Test  
condition  
Min  
Typ  
Max  
Unit  
Notes  
High-level  
output voltage  
0.8*ovdd  
V
V
Note that the  
JEDEC  
JESD79_3E  
specification  
supersedes  
any  
Low-level  
output voltage  
Iol= 1mA  
0.2*ovdd  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
25  
I/O parameters  
Table 25. DDR3 mode DC Electrical characteristics (continued)  
Symbol  
Parameter  
Test  
Min  
Typ  
Max  
Unit  
Notes  
condition  
specification  
in this  
document  
Vref  
Input  
reference  
voltage  
0.49*ovdd  
0.5*ovdd  
0.51*ovdd  
V
Vih(dc)  
Vil(dc)  
DC input high  
voltage  
Vref+0.1  
ovss  
ovdd  
V
V
V
DC input low  
voltage  
Vref-0.1  
Note1  
Vih(diff)  
DC differential  
input logic  
high  
0.2  
Vil(diff)  
Vtt2  
DC differential  
input logic low  
Note1  
-0.2  
V
Termination  
voltage  
Vin = ovdd or 0.49*ovdd  
0
0.5*ovdd  
0.51*ovdd  
3
Iin3  
Input current Vi = 0 Vi =  
uA  
(no pullup/  
pulldown)  
ovdd  
Tri-state I/O  
supply  
Icc-ovdd  
Vin = ovdd or  
0
5
current3  
Tri-state  
Icc-vdd2p5  
Vi = vddi or 0  
1.5  
1
vdd2p5 supply  
current3  
Tri-state core Icc-vddi  
supply  
current3  
Driver unit  
(240 Ohm)  
calibration  
resolution  
Rres  
10  
Ohm  
1. The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well  
as the limitations for overshoot and undershoot.  
2. Vtt is expected to track ovdd/2.  
3. Typ condition: typ model, 1.5 V, and 25 °C. Max condition: bcs model, 1.575V, and -40 °C. Min condition: wcs model,  
1.425V, and max Tj °C 125 °C junction  
Table 26. LPDDR2 mode AC Electrical characteristics  
Symbol  
Vih(ac)  
Parameter  
Test condition  
Min  
Max  
Unit  
Notes  
AC input logic  
high  
Vref+0.22  
ovdd  
V
V
V
Note that the  
Jedec LPDDR2  
specification  
(JESD209-2B)  
supersedes any  
specification in  
this document.  
Vil(ac)  
AC input logic  
low  
Vref-0.22  
-
Vidh(ac)1  
AC differential  
input high  
voltage  
0.44  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
26  
NXP Semiconductors  
I/O parameters  
Table 26. LPDDR2 mode AC Electrical characteristics (continued)  
Symbol  
Vidl(ac)1  
Parameter  
Test condition  
Min  
Max  
Unit  
Notes  
AC differential  
input low voltage  
0.44  
0.12  
V
V
Vix(ac)2  
AC differential  
Relative to  
-0.12  
input crosspoint ovdd/2  
voltage  
Vpeak  
Varea  
Over/undershoot  
peak  
0.35  
0.3  
V
Over/undershoot at 800MHz data  
V*ns  
area (above  
ovdd or below  
ovss)  
rate  
tsr  
Single output  
slew rate  
0.4  
2
V/ns  
ns  
tskd  
Skew between  
pad rise/fall  
asymmetry +  
skew cased by  
SSN  
0.2  
1. Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is  
the “complementary” input signal. The Minimum value is equal to Vih(ac)-Vil(ac).  
2. The typical value of Vix(ac) is expected to be about 0.5*ovdd, and Vix(ac) is expected to track variation of ovdd. Vix(ac)  
indicates the voltage at which differential input signal must cross.  
Table 27. DDR3 mode AC Electrical characteristics  
Symbol  
Vih(ac)  
Parameter  
Test condition  
Min  
Max  
Unit  
Notes  
AC input logic  
high  
Vref+0.175  
ovdd  
V
V
V
Note that the  
JEDEC  
JESD79_3E  
specification  
supersedes any  
specification in  
this document  
Vil(ac)  
AC input logic  
low  
ovss  
0.35  
Vref-0.175  
-
Vidh(ac)1  
AC differential  
input high  
voltage  
Vidl(ac)1  
Vix(ac)2  
AC differential  
input low voltage  
0.35  
V
V
AC differential  
relative to  
Vref-0.15  
Vref+0.15  
input crosspoint ovdd/2  
voltage  
Vpeak  
Varea  
Over/undershoot  
peak  
0.4  
0.5  
V
Over/undershoot at 800 MHz data  
V*ns  
area (above  
ovdd or below  
ovss)  
rate  
tsr  
Single output  
slew rate  
0.4  
2
V/ns  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
27  
Power supplies and sequencing  
Table 27. DDR3 mode AC Electrical characteristics (continued)  
Symbol  
Parameter  
Test condition  
Min  
Max  
Unit  
Notes  
tskd  
Skew between  
pad rise/fall  
asymmetry +  
skew cased by  
SSN  
0.2  
ns  
1. Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is  
the “complementary” input signal. The Minimum value is equal to Vih(ac)-Vil(ac).  
2. The typical value of Vix(ac) is expected to be about 0.5*ovdd, and Vix(ac) is expected to track variation of ovdd. Vix(ac)  
indicates the voltage at which differential input signal must cross.  
8 Power supplies and sequencing  
8.1 Power sequencing  
Table 28. Power sequencing  
Power Supply (PKG Board Level  
Parameters  
Power  
Order  
Comment  
Level)  
Power Nets  
VBAT  
VBAT  
Battery supply in case of LDOIN  
fails  
NA  
VDD33_LDOIN  
VDDREG  
VDD33  
VDD33  
VDD33  
LDO input supply (LDO1P1,  
LDO2P5, LDO1P1_RTC)  
1
VDD33_LDOIN,VDDREG and  
VDD33 should come from a  
common supply source  
(represented as 3.3V SMPS in  
the Figure 4)  
Device PMU regulator and  
External ballast supply  
1
VDD33  
GPIO 3.3V IO supply, LCD Supply  
1
SDRAMC_VDD1P5 SDRAMC_VDD1P5 1.2/1.5 DDR Main IO supply  
NA  
In case the Ballast transistor’s  
collector is connected to the  
1.5V DRAM supply (instead of  
the 3.3V supply), turn this  
1.5V supply on before turning  
on the 3.3V.  
VDDA33_ADC  
VDDA33_ADC  
3.3V supply for ADC, DAC and IO  
segment  
1
VREFH_ADC  
VDDA33_AFE  
VDD12_AFE  
FA_VDD  
VREFH_ADC  
VDDA33_AFE  
VDD  
High Reference of ADC, DAC  
3.3V supply of AFE (Video ADC)  
1.2V supply for AFE (Video ADC)  
1
1
2
VDD  
Shorted with VDD at Board Level  
in 364BGA (Test pin only)  
NA  
VDD  
VDD  
1.2V core supply from External  
ballast  
2
USB0_VBUS 1  
USB1_VBUS 2  
USB_VBUS  
USB_VBUS  
VBUS supply for USB  
VBUS supply for USB  
NA  
NA  
1. Power sequencing of USB0_VBUS is independent of any other power supply.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
28  
NXP Semiconductors  
Power supplies and sequencing  
2. Power sequencing of USB1_VBUS is independent of any other power supply.  
NOTE  
NA stands for no sequencing needs, for example, the supply  
can come in any order.  
NOTE  
All supplies grouped together e.g. 1,2, others. These have no  
power sequencing restriction in between them.  
NOTE  
If none of the SDRAMC pins are connected on the board, the  
SDRAMC supply could be left floating.  
NOTE  
At power up, 1.2V supply will follow 3.3V supply. At power  
down, it should be checked that 1.2V falls before 3.3V.  
NOTE  
The standby current on USBx_VBUS is 300 - 500 uA. This is  
well below the 2.5 mA limit set by the USB 2.0 specification.  
This supply will be ON for applications that need to monitor the  
USB bus during standby. This supply can be turned-off during  
standby in applications that cannot tolerate the standby current  
and do not monitor the USB bus.  
8.2 Power supply  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
29  
Power supplies and sequencing  
10uF  
VDDA33_AFE  
BCTRL  
VDD  
4.7uF  
VDD  
VideoADC  
HPREG  
LPREG  
VDDREG  
PD1  
WELL  
*
WBREG  
48K  
16K  
3.3V  
ULPREG  
VDD33_LDOIN  
VDD33  
PD0  
DAC x 2  
12-bit SAR  
ADC x 2  
VDDA33_ADC  
VREFH_ADC  
eFUSE  
USB 0/1 PHY  
PLLs  
1.5V/1.2V DDR Supply  
SDRAMC_VDD1P5  
LDO2P5  
COIN  
cell  
SDRAMC_VDD2P5  
DDR IO  
PLLs  
DECAP_V25_LDO_OUT  
DECAP_V11_LDO_OUT  
LDO1P1  
Battery supply  
(See note)  
SNVS  
LDO  
SNVS  
LDO3P0  
USB_DCAP  
USB0_VBUS (5V)  
USB1_VBUS (5V)  
Figure 4. Power supply  
NOTE  
VBAT is the backup battery supply. If not required, then VBAT  
should be tied to VDDREG.  
NOTE  
WBREG is the Well Bias Regulator. Supplies PD1 WELL  
during well bias modes.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
30  
NXP Semiconductors  
Power supplies and sequencing  
8.3 Absolute maximum ratings  
NOTE  
These are the values above which device can get damaged.  
Refer to the recommended operating conditions table for  
intended use case values  
Table 29. Absolute maximum ratings  
Symbol  
Parameters  
Min  
-
Max  
5.25  
5.25  
3.6  
Unit  
V
USB0_VBUS  
USB1_VBUS  
USB_DCAP  
USB0_DP  
USB0_DN  
USB1_DP  
USB1_DN  
VBAT  
VBUS supply for USB  
VBUS supply for USB  
USB LDO 5V->3.3V Outpu  
USBx data line input voltage  
-
V
-0.3  
-0.3  
V
3.6  
V
Battery supply in case of LDOIN  
fails  
-0.3  
3.6  
V
VDD33_LDOIN  
LDO input supply  
-0.3  
-0.3  
-0.3  
3.6  
1.3  
3.6  
V
V
V
DECAP_V11_LDO_OUT  
DECAP_V25_LDO_OUT  
LDO 3.3V -> 1.1V Output  
LDO 3.3V -> 2.5 Output for PLL,  
DDR, EFUSE  
VDD33  
GPIO 3.3V IO supply  
-0.3  
-0.3  
3.6  
3.6  
V
V
VDDREG  
Device PMU regulator and  
External ballast supply  
VDDA33_ADC  
3.3V supply for ADC, DAC and IO  
segment  
-0.3  
3.6  
V
VREFH_ADC  
VDDA33_AFE  
VDD12_AFE  
FA_VDD  
3.3V supply of AFE (Video ADC)  
3.3V supply of AFE (Video ADC)  
1.2V supply for AFE (Video ADC)  
Test purpose only  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
3.6  
3.6  
V
V
V
V
V
V
V
1.3  
1.3  
VDD  
1.2V core supply  
1.3  
SDRAMC_VDD1P5  
SDRAMC_VDD2P5  
1.2/1.5 DDR Main IO supply  
1.975  
3.6  
2.5V DDR pre-drive supply  
DD2P5_LDO_OUT  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
31  
Power supplies and sequencing  
8.4 Recommended operating conditions  
Table 30. Recommended operating conditions  
Symbol  
Parameters  
Conditions  
Min  
Typ  
Max  
Unit  
USB0_VBUS  
VBUS supply for USB  
w.r.t USB0_GND  
4.4  
5
5.25  
V
USB1_VBUS  
USB_DCAP  
VBUS supply for USB  
w.r.t USB1_GND  
4.4  
5
3
5.25  
V
V
USB LDO 5V->3 V  
Output  
External DCAP (10uF  
termination for  
USBREG)  
VBAT  
Battery supply in case  
of LDOIN fails  
External CAP 0.1uF  
2.4  
3
3.3  
3.6  
3.6  
V
VDD33_LDOIN  
LDO input supply  
3.3  
1.1  
V
V
DECAP_V11_LDO_OU LDO 3.3V -> 1.1V  
Output  
Recommended  
External DCAP:  
T
1uF(Min) 10uF (Max)  
DECAP_V25_LDO_OU LDO 3.3V -> 2.5 Output  
Recommended  
External DCAP:  
1uF(Min) 10uF (Max)  
2.5  
V
T
for PLL, DDR pre-  
driver, EFUSE  
VDD33  
GPIO 3.3V IO supply  
External CAP (10uF)  
External CAP (10uF)  
3
3
3.3  
3.3  
3.6  
3.6  
V
V
VDDREG  
Device PMU regulator  
and External ballast  
supply  
VDDA33_ADC  
VREFH_ADC  
VREFL_ADC  
VDDA33_AFE  
VDD12_AFE  
FA_VDD  
3.3V supply for ADC,  
DAC and IO segment  
External CAP (10uF)  
3
3.3  
3.3  
0
3.6  
V
V
V
V
V
V
High reference voltage  
for ADC and DAC  
Relation with  
VDDDA33_ADC (1uF)  
2.5  
VDDA33_  
ADC  
Low reference voltage  
for ADC and DAC  
External CAP (10uF)  
3.3V supply of AFE  
(Video ADC)  
External CAP 10uF  
3
3.3  
1.23  
1.23  
3.6  
1.2V supply for AFE  
(Video ADC)  
1.16  
1.16  
1.26  
1.26  
For testing purpose  
only should be shorted  
to VDD on board.  
VDD1  
1.2V core supply  
4.7uF with a low ESR  
value (100 milliohms)  
1.16  
1.23  
1.26  
V
USB0_GND  
USB1_GND  
VSS_KEL0  
Ground supply for USB  
Ground supply for USB  
0
0
0
V
V
V
USB LDO ground  
output  
VSS  
VSS ground  
0
0
V
V
VSSA33_ADC  
Ground supply for ADC,  
DAC and IO segment  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
32  
NXP Semiconductors  
Power supplies and sequencing  
Table 30. Recommended operating conditions (continued)  
Symbol  
Parameters  
Conditions  
Min  
Typ  
Max  
Unit  
VSSA33_AFE  
Ground supply of AFE  
(Video ADC)  
0
V
VSS12_AFE  
Ground supply for AFE  
(Video ADC)  
0
V
SDRAMC_VDD1P5  
SDRAMC_VDD1P5  
SDRAMC_VDD2P5  
LPDDR2  
DDR3  
External CAP 10uF  
External CAP 10uF  
External CAP 10uF  
1.142  
1.425  
2.25  
1.2  
1.5  
2.5  
1.26  
1.575  
2.75  
V
V
V
2.5V DDR pre-drive  
supply  
DD2P5_LDO_OUT  
-
Maximum power supply  
ramp rate (Slew limit for  
power-up)  
-
0.1  
V/us  
1. For customer applications, this is governed by ballast output which is controlled by the device and appropriate voltage  
ranges are maintained.  
8.5 Recommended Connections for Unused Analog Interfaces  
NOTE  
There are two options to handle unused power pins:  
1. Connect all unused supplies to their respective voltage. To  
save the power, do not enable the module and/or do not  
enable clock gate to the module.  
2. Keep all unused supplies floating.  
If pin is shared by several peripheral, then all peripherals  
connected to multiplexer have to be powered. For example: if  
pin is shared by GPIO and ADC input and GPIO functionality  
is used, then ADC has to be powered due to internal structure of  
the multiplexer. Keep unused input signals grounded if power  
pins are powered. Keep unused input signals floating if power  
pins are floating. Keep unused output signals floating.  
Module  
Name  
Recommendation if Unused  
ADC  
VDDA33_ADC  
3.3V or float (Note: Powers both ADC  
and DAC)  
VREFH_ADC, VREFL_ADC  
VREFH_ADC same as VDDA33_ADC  
VREFL_ADC ground or float  
ADC0SE8, ADC0SE9, ADC1SE8,  
ADC1SE9  
Ground or float  
CCM  
DAC  
LVDS0P, LVDS0N  
DACO0, DACO1  
Float  
Float  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
33  
Peripheral operating requirements and behaviours  
Module  
Name  
Recommendation if Unused  
USB  
USB_DCAP, USB0_VBUS,  
USB1_VBUS  
Connect USBx_VBUS and USB_DCAP  
together and tie to ground through a 10K  
ohm resistor. Do NOT tie directly to  
ground, latch-up risk.  
USB0_GND, USB1_GND  
Ground  
Float  
USB0_VBUS_DETECT,  
USB1_VBUS_DETECT  
USB0_DM, USB0_DP, USB1_DM,  
USB1_DP  
Float  
Video ADC  
VDDA33_AFE  
VDD12_AFE  
3.3V or Float  
1.2V or Float  
Float  
VADC_AFE_BANDGAP  
VADCSE0, VADCSE1, VADCSE2,  
VADCSE3  
Ground or Float  
9 Peripheral operating requirements and behaviours  
9.1 Analog  
9.1.1 12-bit ADC electrical characteristics  
9.1.1.1 12-bit ADC operating conditions  
Table 31. 12-bit ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typ  
Max  
Unit  
Comment  
1
Supply voltage  
Absolute  
VDDAD  
2.5  
-
3.6  
V
-
-
Delta to VDDAD (VDD-  
VDDAD), 2  
ΔVDDAD  
-100  
0
100  
mV  
Ground voltage  
Delta to VSSAD (VSS-  
VSSAD)2  
ΔVSSAD  
-100  
0
100  
mV  
-
Ref Voltage High  
Ref Voltage Low  
Input Voltage  
-
VREFH  
VREFL  
VADIN  
CADIN  
RADIN  
1.5  
VDDAD  
VSSAD  
-
VDDAD  
VSSAD  
VREFH  
2
V
V
-
-
-
-
-
-
-
-
VSSAD  
-
VREFL  
V
Input Capacitance  
Input Resistance  
8/10/12 bit modes  
ADLPC=0, ADHSC=1  
ADLPC=0, ADHSC=0  
ADLPC=1, ADHSC=0  
-
-
-
-
1.5  
pF  
5
7
kohms  
kohms  
kohms  
12.5  
25  
15  
30  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
34  
NXP Semiconductors  
Analog  
Table 31. 12-bit ADC Operating Conditions (continued)  
Characteristic  
Conditions  
Symb  
Min  
Typ  
Max  
Unit  
Comment  
1
Analog Source  
Resistance  
12 bit mode fADCK  
40MHz ADLSMP=0,  
=
RAS  
-
-
1
kohms  
Tsamp=150  
ns  
ADSTS=10, ADHSC=1  
RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum  
Sample Time vs RAS  
ADC Conversion Clock ADLPC=0, ADHSC=1  
fADCK  
4
4
4
-
-
-
40  
30  
20  
MHz  
MHz  
MHz  
-
-
-
Frequency  
12 bit mode  
ADLPC=0, ADHSC=0  
12 bit mode  
ADLPC=1, ADHSC=0  
12 bit mode  
1. Typical values assume VDDAD = 3.3 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. DC potential difference  
Simplified input pin  
equivalent circuit  
ZADIN  
Pad  
leakage  
due to  
Simplified channel  
select circuit  
ZAS  
ADC SAR  
engine  
input  
protection  
RADIN  
RAS  
+
VADIN  
+
AS  
V
CAS  
RADIN  
RADIN  
RADIN  
Input pin  
Input pin  
Input pin  
CADIN  
Figure 5. 12-bit ADC Input Impedance Equivalency Diagram  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
35  
Analog  
9.1.1.2 12-bit ADC characteristics  
Table 32. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD  
)
Characteristic  
Conditions1  
Symb  
Min  
Typ 2  
Max  
Unit  
Comment  
Supply Current  
ADLPC=1, ADHSC=0  
ADLPC=0, ADHSC=0  
ADLPC=0, ADHSC=1  
IDDAD  
250  
µA  
ADLSMP=0  
ADSTS=10 ADCO=1  
350  
400  
Supply Current  
Stop, Reset, Module  
Off  
IDDAD  
0.01  
0.8  
µA  
ADC Asynchronous  
Clock Source  
ADHSC=0  
ADHSC=1  
fADACK  
10  
20  
2
MHz  
tADACK = 1/fADACK  
Sample Cycles  
Conversion Cycles  
Conversion Time  
ADLSMP=0,  
ADSTS=00  
Csamp  
Cconv  
Tconv  
cycles  
cycles  
µs  
ADLSMP=0,  
ADSTS=01  
4
6
ADLSMP=0,  
ADSTS=10  
ADLSMP=0,  
ADSTS=11  
8
ADLSMP=1,  
ADSTS=00  
12  
16  
20  
24  
28  
30  
32  
34  
38  
42  
46  
50  
0.7  
0.75  
ADLSMP=1,  
ADSTS=01  
ADLSMP=1,  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
ADLSMP=0  
ADSTS=00  
ADLSMP=0  
ADSTS=01  
ADLSMP=0  
ADSTS=10  
ADLSMP=0  
ADSTS=11  
ADLSMP=1  
ADSTS=00  
ADLSMP=1  
ADSTS=01  
ADLSMP=1  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
ADLSMP=0  
ADSTS=00  
Fadc=40 MHz  
ADLSMP=0  
ADSTS=01  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
36  
NXP Semiconductors  
Analog  
Table 32. 12-bit ADC Characteristics (VREFH = VDDAD, VREFL = VSSAD) (continued)  
Characteristic  
Conditions1  
Symb  
Min  
Typ 2  
Max  
Unit  
Comment  
ADLSMP=0  
ADSTS=10  
0.8  
ADLSMP=0  
ADSTS=11  
0.85  
0.95  
1.05  
1.15  
1.25  
ADLSMP=1  
ADSTS=00  
ADLSMP=1  
ADSTS=01  
ADLSMP=1  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
Total Unadjusted  
Error  
12 bit mode  
10 bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
TUE  
DNL  
INL  
EZS  
EFS  
EQ  
-2  
-
+5  
+2  
+1.5  
1.5  
1
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
LSB3  
With Max Averaging  
-0.5  
-
-0.25  
-
Differential Non-  
Linearity  
-
0.6  
0.5  
0.25  
2
Waiting for histogram  
method confirmation  
-
-
0.5  
4
Integral Non-Linearity  
Zero-Scale Error  
Full-Scale Error  
-
Waiting for histogram  
method confirmation  
-
1
2
-
0.5  
+1.0  
0.4  
0.1  
2
1
-
1.6  
0.8  
0.4  
3.5  
1
VADIN = VREFL With  
Max Averaging  
-
-
-
VADIN = VREFH With  
Max Averaging  
-
0.5  
0.25  
1 to 0  
0.5  
0.5  
10.7  
-
0.75  
Quantization Error  
-
-
-
Effective Number of  
Bits  
ENOB  
SINAD  
EIL  
10.1  
-
Bits  
dB  
Fin = 100Hz  
Signal to Noise plus  
Distortion  
See ENOB  
all modes  
SINAD = 6.02 x ENOB + 1.76  
IIn x RAS  
Input Leakage Error  
mV  
IIn = 400 nA leakage  
current  
Temperature Sensor  
Slope  
Across the full  
temperature range of  
the device  
m
--  
-
1.84  
696  
--  
-
mV/°C  
Temperature Sensor  
Voltage  
25°C  
VTEMP25  
mV  
1. All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD  
2. Typical values assume VDDAD = 3.3 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
37  
Analog  
3. 1 LSB = (VREFH - VREFL)/2N  
NOTE  
The ADC electrical spec would be met with the calibration  
enabled configuration.  
Figure 6. Minimum Sample Time Vs Ras (Cas = 2pF)  
Figure 7. Minimum Sample Time Vs Ras (Cas = 5pF)  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
38  
NXP Semiconductors  
Analog  
Figure 8. Minimum Sample Time Vs Ras (Cas = 10pF)  
9.1.2 12-bit DAC electrical characteristics  
9.1.2.1 12-bit DAC operating requirements  
Table 33. 12-bit DAC operating requirements  
Symbol  
Desciption  
Min.  
3.0  
Typ  
3.3  
3.3  
Max.  
Unit  
V
Notes  
VDDA33_ADC  
VREFH_ADC  
Supply voltage  
Reference voltage  
3.6  
2.5  
VDDA33_  
ADC  
V
1
2
CL  
IL  
Output load capacitance  
Output load current  
100  
1
pF  
mA  
1. User will need to set up DACx_STATCTRL [DACRFS]=1 to select the valid VREFH_ADC reference. When  
DACx_STATCTRL [DACRFS]=0, the DAC reference is connected to an internal ground node and is not a valid voltage  
reference. Note that the DAC and ADC share the VREFH_ADC reference simultaneously. )  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
9.1.2.2 12-bit DAC operating behaviors  
Table 34. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
100  
μA  
P
IDDA_DACH Supply current — high-power mode  
500  
15  
μA  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
10  
1
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
39  
Analog  
Table 34. 12-bit DAC operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
3
5
μs  
1
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)  
low-power mode  
μs  
1
5
1
high-power mode  
Vdacoutl DAC output voltage range low — high-speed  
mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
Integral non-linearity error — high speed  
mode  
8
1
LSB  
LSB  
2
3
DNL  
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
0.4  
0.1  
70  
0.8  
0.6  
ꢀFSR  
ꢀFSR  
dB  
4
4
PSRR Power supply rejection ratio, VDDA =3 V, T =  
25 C  
TCO  
TGE  
AC  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Offset aging coefficient  
3.7  
0.000421  
μV/C  
ꢀFSR/C  
μV/yr  
Ω
5
100  
250  
Rop  
SR  
Output resistance load = 3 kΩ  
Slew rate -80hF7Fh80h  
V/μs  
High power (SPHP  
Low power (SPLP  
Channel to channel cross talk  
)
1.7  
0.3  
70  
3
)
0.6  
CT  
dB  
1. Settling within 1 LSB  
2. The INL is measured for 0+100mV to VDACR−100 mV  
3. The DNL is measured for 0+100mV to VDACR−100 mV  
4. Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV  
5. VDDA = 3.3 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set  
to 0x800, Temp range from -40 °C to 85 °C  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
40  
NXP Semiconductors  
Analog  
Figure 9. INL error vs. digital code  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
41  
Analog  
Figure 10. DNL error vs. digital code  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
42  
NXP Semiconductors  
Analog  
Figure 11. Offset at half scale vs. temperature  
9.1.3 VideoADC Specifications  
This section describes the electrical specification and characteristics of the VideoADC  
Analog Front End.  
Table 35. VideoADC Specifications  
Symbol  
Description  
Supply voltage  
Min. Typ. Max. Unit  
Notes  
VDDA33_AFE  
3.0  
3.3  
3.6  
41  
V
Supply current  
mA  
V
VDDA12_AFE  
Vin  
Supply voltage  
1.1  
1.2  
1.26  
14  
Supply current  
mA  
Input signal voltage range  
0.5  
0
1.4  
V
External AC coupling  
10  
47  
nF  
The external AC coupling  
capacitance cannot be too large.  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
43  
Analog  
Table 35. VideoADC Specifications (continued)  
Symbol  
Description  
Bandgap voltage  
Min. Typ. Max. Unit  
0.6  
Notes  
VBG  
V
Bandgap voltage on  
VADC_AFE_BANDGAP pin. Pin  
should be decoupled with a 100nF  
capacitor  
VDDA33_AFE  
VSSA33_AFE  
VDD12_AFE  
VSS12_AFE  
100nF  
(See notes)  
100nF  
(See notes)  
VADC_AFE_BANDGAP  
100nF  
Band Gap  
Control  
Interface  
47nF  
VADCSE0  
VADCSE1  
VADCSE2  
Mux,  
Clamp  
and  
47nF  
To Video  
Decoder  
47nF  
ADC  
Correction  
VADCSE3  
47nF  
Filter  
Figure 12. VideoADC supply scheme  
Figure 13. VideoADC supply decoupling  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
44  
NXP Semiconductors  
Display and Video interfaces  
NOTE  
VideoADC 3.3V and 1.2V power supply pins should be  
decoupled to their respective grounds using low-ESR 100nF  
capacitors  
NOTE  
If possible, avoid using switched voltage regulators for the AFE  
power domains. Use linear voltage regulators instead.  
NOTE  
The 3.3V and 1.2V power domains should be separated from  
other circuitry on the board by inductors/beads to filter out high  
frequency noise.  
9.2 Display and Video interfaces  
9.2.1 DCU Switching Specifications  
9.2.1.1 Interface to TFT panels (DCU0/1)  
This section provides the LCD interface timing for a generic active matrix color TFT  
panel. In the figure below, signals are shown with positive polarity. The sequence of  
events for active matrix interface timing:  
• PCLK latches data into the panel on its positive edge (when positive polarity is  
selected). In active mode, PCLK runs continuously. This signal frequency could be  
from 5 to 66 MHz depending on the panel type.  
• HSYNC causes the panel to start a new line. It always encompasses at least one  
PCLK pulse.  
• VSYNC causes the panel to start a new frame. It always encompasses at least one  
HSYNC pulse.  
• DE acts like an output enable signal to the LCD panel. This output enables the data  
to be shifted onto the display. When disabled, the data is invalid and the trace is off.  
Figure 14. TFT LCD interface timing overview1  
1. In the figure, LD[23:0]” signal is “line data,” an aggregation of the DCU’s RGB signals—R[0:7], G[0:7] and B[0:7].  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
45  
DCU Switching Specifications  
VSYNC  
LINE  
n-1  
HSYNC  
LINE 1  
LINE 2  
LINE 3  
LINE 4  
LINE n  
HSYNC  
DE  
1
2
3
m-1  
m
PCLK  
LD[23:0]  
9.2.1.2 Interface to TFT LCD Panels—Pixel Level Timings  
This section provides the horizontal timing (timing of one line), including both the  
horizontal sync pulse and data. All parameters shown in the figure below are  
programmable. This timing diagram corresponds to positive polarity of the PCLK signal  
(meaning the data and sync signals change on the rising edge) and active-high polarity of  
the HSYNC, VSYNC and DE signals. The user can select the polarity of the HSYNC and  
VSYNC signals via the SYN_POL register, whether active-high or active-low. The  
default is active-high. The DE signal is always active-high. Pixel clock inversion and a  
flexible programmable pixel clock delay are also supported. They are programmed via  
the clock divide . The DELTA_X and DELTA_Y parameters are programmed via the  
DISP_SIZE register. The PW_H, BP_H and FP_H parameters are programmed via the  
HSYN PARA register. The PW_V, BP_V and FP_V parameters are programmed via the  
VSYN_PARA register.  
Table 36. LCD interface timing parameters—horizontal and vertical  
Symbol  
tPCP  
Characteristic  
Display pixel clock period  
Unit  
11.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tPWH  
tBPH  
tFPH  
tSW  
HSYNC pulse width  
HSYNC back porch width  
HSYNC front porch width  
Screen width  
PW_H * tPCP  
BP_H * tPCP  
FP_H * tPCP  
DELTA_X * tPCP  
tHSP  
tPWV  
tBPV  
tFPV  
tSH  
HSYNC (line) period  
VSYNC pulse width  
VSYNC back porch width  
VSYNC front porch width  
Screen height  
(PW_H + BP_H + FP_H + DELTA_X ) * tPCP  
PWV * tHSP  
BP_V * tHSP  
FP_V * tHSP  
DELTA_Y * tHSP  
tVSP  
VSYNC (frame) period  
(PW_V + BP_V + FP_V + DELTA_Y ) * tHSP  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
46  
NXP Semiconductors  
DCU Switching Specifications  
tHSP  
tPWH  
tPCP  
tBPH  
tSW  
tFPH  
Start  
of line  
PCLK  
LD[23:0]  
HSYNC  
DE  
Invalid Data  
1
2
3
Invalid Data  
DELTA_X  
Figure 15. Horizontal sync timing  
tVSP  
tPWV  
tHCP  
tBPV  
tSH  
tFPV  
Start of  
Frame  
HSYNC  
LD[23:0]  
(Line Data)  
Invalid Data  
1
2
3
Invalid Data  
DELTA_Y  
HSYNC  
DE  
Figure 16. Vertical sync pulse  
9.2.1.3 Interface to TFT LCD panels—access level  
This section provides the access level timing parameters of the LCD interface.  
Table 37. LCD Interface Timing Parameters1, 2, 3—Access Level  
Symbol  
tCKP  
tDV  
tDV  
tDV  
Description  
Min  
Max  
Unit  
Pixel Clock Period  
11.2  
_
_
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TFT interface data valid after pixel clock  
TFT interface HSYNC valid after pixel clock  
TFT interface VSYNC valid after pixel clock  
TFT interface DE valid after pixel clock  
4.4  
4.4  
4.4  
4.4  
_
_
_
tDV  
tHO  
_
TFT interface output hold time for data and control bits  
Relative skew between the data bits  
0
_
4.4  
1. The characteristics in this table are based on the assumption that data is output at +ve edge and displays latch data on -ve  
edg6  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
47  
DCU Switching Specifications  
2. Intra bit skew is less than 2 ns  
3. Load CL = 50 pf  
tHO  
tDV  
Figure 17. LCD Interface Timing Parameters—Access Level  
9.2.2 Video Input Unit timing  
This section provides the timing parameters of the Video Input Unit (VIU) interface.  
These are the clocking requirements of the VIU interface:  
• The platform bus clock must be 2.5x pixel clock  
• If the VIU3 does 2x horizontal upscaling, the ratio must be 3x  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
48  
NXP Semiconductors  
DCU Switching Specifications  
tSU  
tHO  
Figure 18. VIU Timing Parameters  
Table 38. VIU Timing Parameters  
Symbol  
fPIX_CK  
tDSU  
tDHD  
Characteristic  
Min Value  
Max Value  
Unit  
MHz  
VIU pixel clock frequency  
VIU data setup time  
VIU data hold time  
_
4
1
64  
_
ns  
ns  
_
9.2.3 LCD driver electrical characteristics  
This section provides LCD driver electrical specification at VDD33 = 3.3 V 10%.  
Table 39. LCD driver specifications  
Symbol  
Parameter  
Min  
Typical  
Max  
Unit  
VLCD  
ZBP/FP  
Voltage on VLCD (LCD supply) pin with  
respect to VSS  
0
_
VDD33 +  
0.3  
V
LCD output impedance  
(BP[n-1:0],FP[m-1:0]) for output levels  
VDDE, VSS  
_
5.0  
KΩ  
IBP/FP  
LCD output current (BP[n-1:0],FP[m-1:0]) for _  
outputs charge/discharge voltage levels  
VDDE2/3, VDDE1/2, VDDE/3)1  
25  
_
µA  
1. With PWR=10, BSTEN=0, and BSTAO=0  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
49  
Ethernet specifications  
9.3 Ethernet specifications  
9.3.1 Ethernet Switching Specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface. All Ethernet  
signals use pad type pad_fsr. The timing specifications described i the section assume a  
pad slew rate setting of 11 and a load of 50 pF2.  
9.3.2 Receive and Transmit signal timing specifications  
This section provides timing specs that meet the requirements for RMII interfaces for a  
range of transceiver devices.  
Table 40. Receive signal timing for RMII interfaces  
Characteristic  
RMII Mode  
Min Max  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
35ꢀ  
35ꢀ  
4
50  
MHz  
E3, E7  
E4, E8  
E1  
65ꢀ  
65ꢀ  
RMII_CLK period  
RMII_CLK pulse width low  
RMII_CLK period  
RXD[1:0], CVS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN valid  
RMII_CLK to TXD[1:0], TXEN invalid  
ns  
ns  
ns  
ns  
E2  
2
E6  
4
14  
E5  
Figure 19. RMII receive signal timing diagram  
2. These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11).  
When operating this interface at lower frequencies, increase the slew rate by using the 10, 01, or 00 setting to increase  
edge rise and fall times, thus reducing EMI.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
50  
NXP Semiconductors  
Ethernet specifications  
Figure 20. RMII transmit signal timing diagram  
NOTE  
See the most current device errata document when using the  
internally generated RXCLK and TXCLK clocks.  
t
CYC  
t
PWH  
RX_CLK  
(Input)  
t
t
S
H
RXDn,  
RX_DV,  
RX_ER  
(Input)  
(n = 0-3)  
Figure 21. MII receive signal timing diagram  
Table 41. Receive signal timing for MII interfaces  
Characteristic  
MII Mode  
Unit  
Min  
Typ  
40/400  
50  
Max  
RX_CLK clock period (100/10 MBPS) tCYC  
RX_CLK duty cycle, tPWH/tCYC  
ns  
45  
5
55  
Input setup time before RX_CLK  
Input setup time after RX_CLK  
tS  
tH  
ns  
ns  
5
9.3.3 Receive and Transmit signal timing specifications for MII  
interfaces  
This section provides timing specs that meet the requirements for MII interfaces for a  
range of transceiver devices.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
51  
Ethernet specifications  
t
CYC  
t
PWH  
RX_CLK  
(Input)  
t
t
S
H
RXDn,  
RX_DV,  
RX_ER  
(Input)  
(n = 0-3)  
Figure 22. MII receive signal timing diagram  
Table 42. Receive signal timing for MII interfaces  
Characteristic  
MII Mode  
Unit  
Min  
Typ  
40/400  
50  
Max  
RX_CLK clock period (100/10 MBPS) tCYC  
RX_CLK duty cycle, tPWH/tCYC  
ns  
45  
5
55  
Input setup time before RX_CLK  
Input hold time after RX_CLK  
ts  
th  
ns  
ns  
5
t
CYC  
t
PWH  
TX_CLK  
(Input)  
t
D
TXDn,  
TX_EN,  
TX_ER  
(Output)  
Note: Device pins applicable to MII interface are applicable to TMII interface,  
and operates at 50 MHz reference clock.  
Figure 23. MII transmit signal timing diagram  
Table 43. Transmit signal timing for MII interfaces  
Characteristic  
MII Mode  
Typ  
Unit  
Min  
Max  
TX_CLK clock period (100/10 MBPS) tCYC  
TX_CLK duty cycle, tPWH/tCYC  
40/400  
50  
ns  
45  
2
55  
25  
Out delay from TX_CLK  
tD  
ns  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
52  
NXP Semiconductors  
Audio interfaces  
9.4 Audio interfaces  
9.4.1 Enhanced Serial Audio Interface (ESAI) Timing Parameters  
The ESAI consists of independent transmitter and receiver sections, each section with its  
own clock generator. The following table shows the interface timing values.  
Table 44. Enhanced Serial Audio Interface (ESAI) Timing  
No  
Characteristics  
Symbol  
Min  
30.0  
Max  
Condition1  
Unit  
1
Clock cycle2  
tSSICC  
master  
ns  
(4 × Tc)  
2
Clock high period:  
• master  
ns  
6
• slave  
(2 × Tc −  
9.0)  
15  
(2 × Tc)  
3
Clock low period:  
• master  
6 (2 × Tc −  
9.0)  
ns  
• slave  
15 (2 × Tc)  
4
5
6
7
8
9
FSR Input and Data Input setup time before SCKR  
(SCK in synchronous mode) falling edge  
6
15  
2
15  
6
Slave  
Master  
Slave  
Master  
Slave  
Master  
Slave  
Master  
Slave  
Master  
Slave  
Master  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
FSR Input and Data Input hold time after SCKR  
falling edge  
0
SCKT rising edge to FST out and Data out valid  
SCKT rising edge to FST out and Data out hold  
FST input setup time before SCKT falling edge  
FST input hold time after SCKT falling edge  
6
0
0
15  
2
0
10 HCKR/HCKT clock cycle  
15  
(2 x TC)  
11 HCKT input rising edge to SCKT output  
12 HCKR input rising edge to SCKR output  
18.0  
18.0  
ns  
ns  
1. SCKT(SCKT pin) = transmit clock SCKR(SCKR pin) = receive clock FST(FST pin) = transmit frame sync FSR(FSR pin) =  
receive frame sync HCKT(HCKT pin) = transmit high frequency clock HCKR(HCKR pin) = receive high frequency clock  
2. For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
53  
Audio interfaces  
1
2
3
SCKT  
(input/output)  
FST (bit) out  
6
FST (word) out  
Data out  
First bit  
Lastbit
9
FST (bit) in  
8
9
FST (word) in  
Figure 24. ESAI Transmitter Timing  
1
2
3
SCKR  
(input/output)  
FSR (bit) out  
FSR (word) out  
5
4
Data in  
FSR (bit) in  
First bit  
Last bit  
FSR (word) in  
Figure 25. ESAI Receiver Timing  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
54  
NXP Semiconductors  
Audio interfaces  
9.4.2 SPDIF Timing Parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase  
marking code. When encoding, the SPDIF data signal is modulated by a clock that is  
twice the bit rate of the data signal. Table and Figure below show SPDIF timing  
parameters for the Sony/Philips Digital Interconnect Format (SPDIF), including the  
timing of the modulating Rx clock (SRCK) for SPDIF in Rx mode and the timing of the  
modulating Tx clock (STCLK) for SPDIF in Tx mode.  
Table 45. SPDIF Timing Parameters  
Characteristic  
Symbol  
Timing Parameter Range  
Unit  
Min  
Max  
SPDIFIN Skew: asynchronous inputs, no specs apply  
0.7  
1.5  
ns  
ns  
SPDIFOUT output (Load = 50pf)  
• Skew  
• 1.5  
• 24.2  
• 31.3  
• Transition rising  
• Transition falling  
SPDIFOUT1 output (Load = 30pf) - Skew  
ns  
• Transition rising  
• Transition falling  
Refer Table 21  
Modulating Rx clock (SRCK) period  
SRCK high period  
srckp  
40  
16  
16  
40  
16  
16  
ns  
ns  
ns  
ns  
ns  
ns  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
SRCK low period  
Modulating Tx clock (STCLK) period  
STCLK high period  
STCLK low period  
Figure 26. SRCK Timing Diagram  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
55  
Audio interfaces  
Figure 27. STCLK Timing Diagram  
9.4.3 SAI/I2S Switching Specifications  
This section provides the AC timings for the SAI in master (clocks driven) and slave  
modes (clocks input). All timings are given for non-inverted serial clock polarity  
(SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP] = 0) and a non-inverted frame sync  
(SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock and/or the frame  
sync have been inverted, all the timings remain valid by inverting the clock signal  
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.  
Table 46. Master Mode SAI Timing  
Num  
Characteristic  
SAI_MCLK cycle time  
Min  
2 x tSYS  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
ns  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
40ꢀ  
60ꢀ  
MCLK period  
4 x tSYS  
ns  
SAI_BCLK pulse width high/low  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
40ꢀ  
0
60ꢀ  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
SAI_BCLK to SAI_TXD invalid  
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
15  
0
VF3xxR, VF5xxR, Rev. 8, 01/2018  
56  
NXP Semiconductors  
Audio interfaces  
S1  
S2  
S2  
I2S_MCLK (output)  
I2S_BCLK (output)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S3  
S4  
S4  
S5  
S6  
S10  
S9  
S7  
S8  
S7  
S8  
S9  
S10  
I2S_RXD  
Figure 28. SAI Timing — Master Modes  
Table 47. Slave Mode SAI Timing  
Num  
Characteristic  
Min  
4 x tSYS  
Max  
Unit  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
SAI_BCLK cycle time (input)  
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FS input hold after SAI_BCLK  
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
SAI_RXD setup before SAI_BCLK  
SAI_RXD hold after SAI_BCLK  
40ꢀ  
10  
2
60ꢀ  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
20  
10  
2
S11  
S12  
I2S_BCLK (input)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S12  
S15  
S16  
S13  
S14  
S15  
S16  
S15  
S16  
S17  
S18  
I2S_RXD  
Figure 29. SAI Timing — Slave Modes  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
57  
Memory interfaces  
9.5 Memory interfaces  
9.5.1 QuadSPI timing  
• All data is based on a negative edge data launch from the device and a negative edge  
data capture, as shown in the timing diagrams in this section. This corresponds to the  
N/1 sample point as shown in the reference manual QSPI section "Internal Sampling  
of Serial Flash Input Data."  
• Measurements are with a load of 35 pF on output pins. I/P Slew : 1ns  
• Timings assume a setting of 0x0000_000x for QSPI_SMPR register (see the  
reference manual for details).  
SDR mode  
Tck  
SCK  
Tcss  
Tcsh  
CS  
Tis  
Tih  
Data in  
Figure 30. QuadSPI Input/Read timing (SDR mode)  
Table 48. QuadSPI Input/Read timing (SDR mode)  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tis  
Tih  
Setup time for incoming data  
5.4  
0
ns  
ns  
Hold time requirement for incoming data  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
58  
NXP Semiconductors  
Memory interfaces  
Tck  
SCK  
CS  
Tcss  
Tcsh  
Toh  
Tov  
Data out  
Figure 31. QuadSPI Output/Write timing (SDR mode)  
Table 49. QuadSPI Output/Write timing (SDR mode)  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tov  
Output Data Valid  
Output Data Hold  
SCK clock period  
-
3.2  
ns  
Toh  
Tck  
0
-
-
ns  
80  
-
MHz  
Tcss  
Tcsh  
Chip select output setup time  
Chip select output hold time  
3
3
SCK clock cycles  
SCK clock cycles  
-
NOTE  
• Tcss and Tcsh are set by QuadSPI_FLSCH register, the  
minimum values of 3 shown are the register default values,  
refer to Reference Manual for further details.  
• The timing in the datasheet is based on default values for  
the QuadSPI-SMPR register and is the recommended  
setting for highest SCK frequency in SDR mode.  
• A negative time indicates the actual capture edge inside the  
device is earlier than clock appearing at pad.  
• Frequency calculator guideline (Max read frequency): Tck  
> (Flash access time)max + (Tis)max  
• A negative input hold time has no bearing on the maximum  
achievable operating frequency.  
DDR Mode  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
59  
Memory interfaces  
Tck  
SCK  
CS  
Tcss  
Tcsh  
Tih  
Tis  
Data in  
Figure 32. QuadSPI Input/Read timing (DDR mode)  
NOTE  
• The numbers are for a setting of 0x1 in register  
QuadSPI_SMPR[DDRSMP]  
• Read frequency calculations should be: Tck/2 > (flash  
access time) + Setup (Tis) -  
(QuadSPI_SMPR[DDRSMP])x Tck/4  
• Frequency calculator guideline (Max read frequency):  
Tck/2 > (Flash access time)max + (Tis)max -  
(QuadSPI_SMPR[DDRSMP]) x Tck/4  
• Hold timing: flash_access (min) + flash_data_valid (min) >  
Tck/2 + HOLD(Tih) + (QuadSPI_SMPR[DDRSMP])Tck/4  
Table 50. QuadSPI Input/Read timing (DDR mode)  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tis  
Tih  
Setup time for incoming data  
6.5  
0
ns  
ns  
Hold time requirement for incoming data  
NOTE  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
60  
NXP Semiconductors  
Memory interfaces  
Tck  
SCK  
CS  
Tcss  
Tcsh  
Tov  
Toh  
Data out  
Figure 33. QuadSPI Output/Write timing (DDR mode)  
Table 51. QuadSPI Output/Write timing (DDR mode)  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tov  
Output Data Valid  
Output Data Hold  
SCK clock period  
0
-
3.9  
45  
-
ns  
Toh  
Tck  
ns  
MHz  
Tcss  
Tcsh  
Chip select output setup time  
Chip select output hold time  
3
3
Clk(sck)  
Clk(sck)  
-
9.5.2 NAND flash controller specifications  
The NAND flash controller (NFC) implements the interface to standard NAND flash  
memory devices. This section describes the timing parameters of the NFC.  
In the following table:  
• TH is the flash clock high time and  
• TL is flash clock low time,  
which are defined as:  
TNFC = TH + TL  
NOTE  
See the CCM section of the product reference manual for  
further details on setting up the NFC clocks  
(CCM_CSCDR2[NFC_FRAC_DIV_EN + NFC_FRAC_DIV]  
and CCM_CSCDR3[NFC_PRE_DIV]).  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
61  
Memory interfaces  
Table 52. NFC specifications  
Num  
tCLS  
tCLH  
tCS  
Description  
Min.  
2TH + TL – 1  
TH + TL – 1  
2TH + TL – 1  
TH + TL  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
NFC_CLE setup time  
NFC_CLE hold time  
NFC_CEn setup time  
NFC_CEn hold time  
NFC_WP pulse width  
NFC_ALE setup time  
NFC_ALE hold time  
Data setup time  
tCH  
tWP  
tALS  
tALH  
tDS  
TL – 1  
2TH + TL  
TH + TL  
TL – 1  
tDH  
Data hold time  
TH – 1  
tWC  
tWH  
tRR  
Write cycle time  
TH + TL – 1  
TH – 1  
NFC_WE hold time  
Ready to NFC_RE low  
NFC_RE pulse width  
Read cycle time  
4TH + 3TL + 90  
TL + 1  
tRP  
tRC  
TL + TH – 1  
TH – 1  
tREH  
tIS  
NFC_RE high hold time  
Data input setup time  
11  
NFC_CLE  
tCLS  
tCS  
tCLH  
tCH  
NFC_CEn  
NFC_WE  
NFC_IOn  
tWP  
tDS  
tDH  
Figure 34. Command latch cycle timing  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
62  
NXP Semiconductors  
Memory interfaces  
NFC_ALE  
NFC_CEn  
NFC_WE  
NFC_IOn  
tALS  
tCS  
tALH  
tCH  
tWP  
tDS  
tDH  
address  
Figure 35. Address latch cycle timing  
tCS  
tCH  
tWC  
NFC_CEn  
NFC_WE  
NFC_IOn  
tWP  
tDS  
tWH  
tDH  
data  
data  
data  
Figure 36. Write data latch cycle timing  
tCH  
tRC  
tRP  
NFC_CEn  
NFC_RE  
NFC_IOn  
NFC_RB  
tREH  
tIS  
data  
data  
data  
tRR  
Figure 37. Read data latch cycle timing in Slow mode  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
63  
Memory interfaces  
tCH  
tRC  
tRP  
NFC_CEn  
tREH  
NFC_RE  
NFC_IOn  
NFC_RB  
tIS  
data  
data  
data  
tRR  
Figure 38. Read data latch cycle timing in Fast mode and EDO mode  
9.5.3 FlexBus timing specifications  
This section provides FlexBus timing parameters. All processor bus timings are  
synchronous; input setup/hold and output delay are given in respect to the rising edge of a  
reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal  
system bus frequency.  
The following timing numbers indicate when data is latched or driven onto the external  
bus, relative to the FlexBus output clock (FB_CLK). All other timing relationships can be  
derived from these values.  
All FlexBus signals use pad type pad_fsr. The following timing specifications assume a  
pad slew rate setting of 11 and a load of 50 pF3  
Table 53. FlexBus timing specifications  
Num  
Characteristic  
Frequency of operation  
Min  
Max  
Unit  
831 (with  
MHz  
Wait state)  
572 without  
Wait state ,  
-1  
FB1  
FB4  
FB5  
FB2  
FB3  
Clock Period  
Input setup  
Input hold  
12  
10.6  
0
6.4  
ns  
ns  
ns  
ns  
ns  
Output valid  
Output hold  
0
1. Freq = 1000/(11+ access time of external memory+ trace delay for clk and data)  
2. Freq = 1000/(17+access time of external memory)  
3. These timing parameters are specified assuming maximum operating frequency and the fastest pad slew rate setting (11).  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
64  
NXP Semiconductors  
Memory interfaces  
Figure 39. FlexBus read timing  
Figure 40. FlexBus write timing  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
65  
DDR controller specifications  
9.5.4 DDR controller specifications  
9.5.4.1 DDR3 Timing Parameters  
Figure 41. DDR3 Command and Address Timing Parameters  
NOTE  
RESET pin has a external weak pull DOWN requirement if  
DDR3 memory is NOT required to support content retention in  
the device low power modes where core voltage is off but  
DRAM voltage is on.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
66  
NXP Semiconductors  
DDR controller specifications  
NOTE  
RESET pin has a external weak pull UP requirement if DDR3  
memory is required to support content retention in the device  
low power modes where core voltage is off but DRAM voltage  
is on.  
NOTE  
CKE pin has a external weak pull down requirement.  
Table 54. DDR3 Timing Parameter  
ID  
Parameter  
Symbol  
CK = 400 MHz  
Unit  
Min  
Max  
DDR1  
DDR2  
DDR4  
CK clock high-level  
width  
tCH  
tCL  
tIS  
0.47  
0.53  
tCK  
tCK  
ps  
CK clock low-level  
width  
0.47  
440  
0.53  
-
CS, RAS, CAS,  
CKE, WE, ODT  
setup time  
DDR5  
CS, RAS, CAS,  
CKE, WE, ODT  
hold time  
tIH  
315  
-
ps  
DDR6  
DDR7  
Address output  
setup time  
tIS  
tIH  
440  
315  
-
-
ps  
ps  
Address output  
hold time  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
67  
DDR controller specifications  
9.5.4.2 DDR3 Read Cycle  
Figure 42. DDR3 Read Cycle  
Table 55. DDR3 Read Cycle  
ID  
Parameter  
Symbol  
CK = 400 MHz  
Max  
Unit  
Min  
DDR26  
Minimum required DQ valid  
window width  
-
750  
-
ps  
NOTE  
To receive the reported setup and hold values, read calibration  
should be performed in order to locate the DQS in the middle of  
DQ window.  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
68  
NXP Semiconductors  
DDR controller specifications  
9.5.4.3 DDR3 Write cycle  
Figure 43. DDR3 Write cycle  
Table 56. DDR3 Write cycle  
ID  
Parameter  
Symbol  
CK = 400 MHz  
Unit  
Min  
Max  
DDR17  
DDR18  
DDR21  
DQ and DQM setup time to DQS  
(differential strobe)  
tDS  
tDH  
240  
215  
ps  
ps  
DQ and DQM hold time to DQS  
(differential strobe)  
DQS latching rising transitions to  
associated clock edges  
tDQSS  
-0.25  
+0.25  
tCK  
DDR22  
DDR22  
DQS high level width  
DQS low level width  
tDQSH  
tDQSL  
0.45  
0.45  
0.55  
0.55  
tCK  
tCK  
NOTE  
To receive the reported setup and hold values, write calibration  
should be performed in order to locate the DQS in the middle of  
DQ window.  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
69  
DDR controller specifications  
9.5.4.4 LPDDR2 Timing Parameter  
Figure 44. LPDDR2 Command and Address timing parameter  
NOTE  
RESET pin has a external weak pull DOWN requirement if  
LPDDR2 memory is NOT required to support content retention  
in the device low power modes where core voltage is off but  
DRAM voltage is on.  
NOTE  
RESET pin has a external weak pull UP requirement if  
LPDDR2 memory is required to support content retention in the  
device low power modes where core voltage is off but DRAM  
voltage is on.  
NOTE  
CKE pin has a external weak pull down requirement.  
Table 57. LPDDR2 Timing Parameter  
ID  
Parameter  
Symbol  
CK = 400 MHz  
Unit  
Min  
Max  
LP1  
LP2  
LP3  
LP4  
LP3  
LP4  
SDRAM clock high-level width  
SDRAM clock LOW-level width  
CS, CKE setup time  
CS, CKE hold time  
tCH  
tCL  
tIS  
0.45  
0.45  
230  
230  
230  
230  
0.55  
tCK  
tCK  
ps  
0.55  
-
-
-
-
tIH  
tIS  
ps  
CA setup time  
ps  
CA hold time  
tIH  
ps  
NOTE  
All measurements are in reference to Vref level.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
70  
NXP Semiconductors  
DDR controller specifications  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF.  
9.5.4.5 LPDDR2 Read Cycle  
Figure 45. LPDDR2 Read cycle  
Table 58. LPDDR2 Read Cycle  
ID  
Parameter  
Symbol  
CK = 400 MHz  
Unit  
Min  
Max  
LP26  
Minimum required DQ valid  
window width for LPDDR2  
-
270  
-
ps  
NOTE  
To receive the reported setup and hold values, read calibration  
should be performed in order to locate the DQS in the middle of  
DQ window.  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
71  
DDR controller specifications  
9.5.4.6 LPDDR2 Write Cycle  
Figure 46. LPDDR3 Write Cycle  
Table 59. LPDDR2 Write Cycle  
ID  
Parameter  
Symbol  
CK = 400 MHz  
Unit  
Min  
Max  
LP17  
LP18  
LP21  
DQ and DQM setup time to DQS  
(differential strobe)  
tDS  
tDH  
220  
0.55  
ps  
ps  
DQ and DQM hold time to DQS  
(differential strobe)  
220  
0.55  
DQS latching rising transitions to  
associated clock edges  
tDQSS  
-0.25  
+0.25  
tCK  
LP22  
LP23  
DQS high level width  
DQS low level width  
tDQSH  
tDQSL  
0.4  
0.4  
-
-
tCK  
tCK  
NOTE  
To receive the reported setup and hold values, write calibration  
should be performed in order to locate the DQS in the middle of  
DQ window.  
NOTE  
All measurements are in reference to Vref level.  
NOTE  
Measurements were done using balanced load and 25 ohms  
resistor from outputs to VDD_REF.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
72  
NXP Semiconductors  
Communication interfaces  
9.6 Communication interfaces  
9.6.1 MediaLB (MLB) DC Characteristics  
The section lists the MediaLB 3-pin interface electrical characteristics.  
Table 60. MediaLB 3-Pin Interface Electrical DC Specifications  
Parameter  
Maximum input voltage  
Low level input threshold  
High level input threshold  
Low level output threshold  
High level output threshold  
Input leakage current  
Symbol  
Test Conditions  
Min  
Max  
3.6  
Unit  
V
V
V
V
V
VIL  
0.7  
VIH  
VOL  
VOH  
See Note1  
1.8  
IOL = –6 mA  
IOH = –6 mA  
0 < Vin < VDD  
0.4  
2.0  
10  
μA  
IL  
1. Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated  
and assumed by the customer.  
9.6.2 MediaLB (MLB) Controller AC Timing Electrical Specifications  
This section describes the timing electrical information of the MediaLB module.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
73  
Communication interfaces  
Figure 47. MediaLB 3-PinTiming  
Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed =  
256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold  
as listed below; unless otherwise noted.  
Table 61. MLB 256/512 Fs Timing Parameters  
Parameter  
Symbol  
Min  
Max  
25.6  
Unit  
MHz  
Comment  
MLBCLK operating frequency  
fmck  
11.264  
256xFs at 44.0 kHz,  
512xFs at 50.0 kHz  
MLBCLK rise time  
MLBCLK fall time  
MLBCLK low time1  
MLBCLK high time  
tmck  
tmck  
tmck  
tmck  
r
f
Refer Table 21  
ns  
ns  
ns  
ns  
ns  
VIL to V  
IH  
VIH to V  
IL  
l
30, 14  
30, 14  
3
256xFs, 512xFs  
256xFs, 512xFs  
h
MLBSIG/MLBDAT receiver input setup to  
MLBCLK falling  
tdsmcf  
tdhmcf  
tmcfdz  
tmdzh  
MLBSIG/MLBDAT receiver input hold from  
MLBCLK low  
2
0
2
16  
ns  
ns  
ns  
2
MLBSIG/MLBDAT output valid from  
MLBCLK low  
Bus output hold from MLBCLK low  
1. MLBCLK low/high time includes the pluse width variation.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
74  
NXP Semiconductors  
Communication interfaces  
2. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final  
driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the  
maximum load capacitance listed.  
Table 62. MLB 1024 Fs Timing Parameters  
Parameter  
Symbol  
Min  
Max  
51.2  
Unit  
MHz  
Comme  
nt  
MLBCLK Operating Frequency1  
fmck  
45.056  
1024xfs  
at 44.0  
kHz  
1024xfs  
at 50.0  
kHz  
MLBCLK rise time  
MLBCLK fall time  
MLBCLK low time  
MLBCLK high time  
fmckr  
fmckf  
tmckl  
tmckh  
tdsmcf  
Refer Table 21  
ns  
ns  
ns  
ns  
ns  
VIL to VIH  
VIH to V  
IL  
6.1  
9.3  
3
2
MLBSIG/MLBDAT receiver input setup  
to MLBCLK falling  
MLBSIG/MLBDAT receiver input hold  
from MLBCLK low  
tdhmcf  
tmcfdz  
tmdzh  
2
-
16  
ns  
ns  
ns  
MLBSIG/MLBDAT output valid from  
MLBCLK low  
3
Bus Hold from MLBCLK low  
2
1. The controller can shut off MLBCLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a  
runt pulse can occur on MLBCLK.  
2. MLBCLK low/high time includes the pluse width variation.  
3. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final  
driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the  
maximum load capacitance listed.  
9.6.3 DSPI timing specifications  
Table 63. DSPI timing  
No.  
Symbol  
tSCK  
Characteristic  
SCK Cycle Time  
Condition  
Min  
tSYS * 2  
Max  
Unit  
1
4
2
3
5
ns  
tSDC  
tCSC  
tASC  
tA  
SCK Clock Pulse Width  
CS to SCK Delay  
40ꢀ  
16  
60ꢀ  
tSCK  
ns  
Master  
Master  
After SCK Delay  
16  
ns  
Slave Access Time (SS active Slave  
to SOUT driven)  
15  
ns  
6
9
tDI  
Slave Disable Time (SS  
inactive to SOUT High-Z or  
invalid)  
Slave  
10  
ns  
ns  
tSUI  
Data Setup Time for Inputs  
Master  
9
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
75  
Communication interfaces  
Table 63. DSPI timing (continued)  
No.  
Symbol  
Characteristic  
Condition  
Slave  
Min  
Max  
Unit  
4
5
10  
11  
12  
tHI  
Data Hold Time for Inputs  
Master  
Slave  
0
ns  
ns  
ns  
2
tDV  
Data Valid (after SCK edge)  
for Outputs  
Master  
Slave  
0
10  
tHO  
Data Hold Time for Outputs  
Master  
Slave  
0
2
3
C S x  
1
4
S C K O u tp u t  
(C P O L = 0 )  
4
S C K O u tp u t  
(CP OL = 1 )  
1 0  
9
L a st D a ta  
F irst D a ta  
D a ta  
S IN  
1 2  
1 1  
F irst D a ta  
D a ta  
L a st D a ta  
S O U T  
Figure 48. DSPI classic SPI timing master, CPHA=0  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
76  
NXP Semiconductors  
Communication interfaces  
C S x  
S C K O u tp u t  
(C P O L = 0 )  
1 0  
S C K O u tp u t  
(CP OL = 1 )  
9
D a ta  
D a ta  
F irst D a ta  
L a st D a ta  
S IN  
1 2  
1 1  
S O U T  
L a st D a ta  
F irst D a ta  
Figure 49. DSPI classic SPI timing master, CPHA=1  
3
2
S S  
1
4
S C K In p u t  
(C P O L = 0 )  
4
S C K In p u t  
(C P O L = 1 )  
5
1 1  
1 2  
6
F irst D a ta  
D a ta  
L a st D a ta  
S O U T  
S IN  
9
1 0  
F irst D a ta  
D a ta  
L a st D a ta  
Figure 50. DSPI classic SPI timing slave, CPHA=0  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
77  
Communication interfaces  
S S  
S C K In p u t  
(C P O L = 0 )  
S C K In p u t  
(C P O L = 1 )  
1 1  
5
6
1 2  
L a st D a ta  
D a ta  
D a ta  
S O U T  
S IN  
F irst D a ta  
1 0  
9
L a st D a ta  
F irst D a ta  
Figure 51. DSPI classic SPI timing slave, CPHA=1  
9.6.4 I2C timing  
Table 64. I2C input timing specifications — SCL and SDA 1  
No.  
Parameter  
Min.  
Max.  
Unit  
1
Start condition hold time  
2
PER_CLK  
Cycle2  
2
Clock low time  
8
PER_CLK  
Cycle  
3
4
5
Bus free time between Start and Stop condition  
Data hold time  
4.7  
0.0  
4
μs  
μs  
Clock high time  
PER_CLK  
Cycle  
6
7
Data setup time  
0.0  
2
ns  
Start condition setup time (for repeated start condition only)  
PER_CLK  
Cycle  
8
Stop condition setup time  
2
PER_CLKCyc  
le  
1. I2C input timing is valid for Automotive and TTL inputs levels, hysteresis enabled, and an input edge rate no slower than 1  
ns (10ꢀ – 90ꢀ).  
2. PER_CLK is the IPG Clock which drives the I2C BIU and module clock inputs. Typically this is 66 MHz. See the Clocking  
Overview chapter in the device reference manual for more details.  
Table 65. I2C output timing specifications — SCL and SDA 1, 2, 3, 4  
No.  
Parameter  
Min  
Max  
Unit  
1
Start condition hold  
time  
6
PER_CLK Cycle5  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
78  
NXP Semiconductors  
Communication interfaces  
Table 65. I2C output timing specifications — SCL and SDA 1, 2, 3, 4 (continued)  
No.  
Parameter  
Clock low time  
Min  
Max  
Unit  
PER_CLK Cycle  
μs  
2
3
10  
Bus free time between 4.7  
Start and Stop condition  
4
5
6
7
Data hold time  
Clock high time  
Data setup time  
7
PER_CLK Cycle  
PER_CLK Cycle  
PER_CLK Cycle  
PER_CLK Cycle  
10  
2
Start condition setup  
time (for repeated start  
condition only)  
20  
8
Stop condition setup  
time  
10  
PER_CLK Cycle  
1. All output timing is worst case and includes the mismatching of rise and fall times of the output pads.  
2. Output parameters are valid for CL = 25 pF, where CL is the external load to the device (lumped). The internal package  
capacitance is accounted for, and does not need to be subtracted from the 25 pF value.  
3. Timing is guaranteed to same drive capabilities for all signals, mixing of pad drives may reduce operating speedsand may  
cause incorrect operation.  
4. Programming the IBFD register (I2C bus Frequency Divider) with the maximum frequency results in the minimum output  
timings listed. The I2C interface is designed to scale the data transition time, moving it to the middle of the SCL low period.  
The actual position is affected by the pre-scale and division values programmed in the IBC field of the IBFD register.  
5. PER_CLK is the IPG Clock which drives the I2C BIU and module clock inputs. Typically this is 66 MHz. See the Clocking  
Overview chapter in the device reference manual for more details.  
Figure 52. I2C input/output timing  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
79  
Communication interfaces  
9.6.5 SDHC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface. A load of 50  
pF is assumed.  
Table 66. SDHC switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low speed)  
0
0
400  
25\50  
20\50  
400  
kHz  
MHz  
MHz  
kHz  
ns  
Clock frequency (SD\SDIO full speed\high speed)  
Clock frequency (MMC full speed\high speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
4
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
SD7  
SD8  
Input SDHC_DAT[3:0]  
Figure 53. SDHC timing  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
80  
NXP Semiconductors  
Clocks and PLL Specifications  
9.6.6 USB PHY specifications  
This section describes the USB-OTG PHY and the USB Host port PHY parameters.  
The USB PHY meets the electrical compliance requirements defined in the Universal  
Serial Bus Revision 2.0 OTG, USB Host with the amendments below (On-The-Go and  
Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to  
Host port).  
• USB ENGINEERING CHANGE NOTICE  
• Title: 5V Short Circuit Withstand Requirement Change  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
• USB ENGINEERING CHANGE NOTICE  
• Title: Pull-up/Pull-down resistors  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• USB ENGINEERING CHANGE NOTICE  
• Title: Suspend Current Limit Changes  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification  
• Revision 2.0 plus errata and ecn June 4, 2010  
• Battery Charging Specification (available from USB-IF)  
• Revision 1.2, December 7, 2010  
9.7 Clocks and PLL Specifications  
9.7.1 24 MHz Oscillator Specifications  
The system crystal oscillator consists of a Pierce-type structure running off the digital  
supply. A straight forward biased-inverter implementation is used. The crystal must be  
rated for a drive level of 250 μW or higher. An ESR (equivalent series resistance) of 80 Ω  
or less is recommended to achieve a gain margin of 5.  
Table 67. 24MHz external oscillator electrical characteristics  
Symbol  
Parameter  
Condition  
Value  
Typ  
Unit  
Min  
Max  
fosc  
Iosc  
tuposc  
Crystal oscillator range  
Startup current  
24  
MHz  
mA  
ms  
< 5  
< 5  
Oscillator startup time  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
81  
Clocks and PLL Specifications  
Table 67. 24MHz external oscillator electrical characteristics (continued)  
Symbol  
Parameter  
Condition  
Value  
Typ  
Unit  
Min  
Max  
CIN  
Input Capacitance  
EXTAL and XTAL pins  
9
pF  
V
VIH  
XTAL pin input high voltage  
0.8 x  
Vdd1  
Vdd  
+0.3  
VIL  
XTAL pin input low voltage  
Vss  
-0.3  
0.2 x  
Vdd  
V
1. VDD =1.1 V 10ꢀ, TA = -40 to +85 °C, unless otherwise specified.  
9.7.2 32 KHz Oscillator Specifications  
This block implements an amplifier that when combined with a suitable quartz crystal  
and external load capacitors implements a low power oscillator. It also implements a  
power mux such that it can be powered from either a ~3 V backup battery or VDDIO  
such as the oscillator consumes power from VDDIO when that supply is available and  
transitions to the back up battery when VDDIO is lost.  
In addition, if the clock monitor determines that the OSC32K is not present, then the  
source of the 32 K will automatically switch to the 128kHz internal RC clock divided by  
4.  
The OSC32k runs from vdd_rtc supply, generated inside OSC32k itself from VDDIO/  
VBAT. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary  
for chosen VDDIO range. Appropriate series resistor (Rs) must be used when connecting  
the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell.  
For example:  
• Average Discharge Voltage is 2.5 V  
• Maximum Charge Current is 0.6 mA  
For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k  
Table 68. OSC32K Main Characteristics  
Notes  
Min  
Typ  
Max  
FOSC  
This frequency is nominal and determined mainly by the  
crystal selected. 32.0 K would work as well.  
32.768 KHz  
Current  
The 4 μA is the consumption of the oscillator alone (OSC32k).  
4 μA  
consumption Total supply consumption will depend on what the digital  
portion of the RTC consumes. The ring oscillator consumes 1  
μA when ring oscillator is inactive, 20 μA when the ring  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
82  
NXP Semiconductors  
Clocks and PLL Specifications  
Table 68. OSC32K Main Characteristics (continued)  
Notes  
Min  
Typ  
Max  
oscillator is running. Another 1.5 μA is drawn from vdd_rtc in  
the power_detect block. So, the total current is 6.5 μA on  
vdd_rtc when the ring oscillator is not running.  
Bias resistor This the integrated bias resistor that sets the amplifier into a  
high gain state. Any leakage through the ESD network,  
external board leakage, or even a scope probe that is  
significant relative to this value will debias the amp. The  
debiasing will result in low gain, and will impact the circuit's  
ability to start up and maintain oscillations.  
14 MΩ  
Crystal Properties  
Cload  
Usually crystals can be purchased tuned for different Cloads.  
This Cload value is typically 1/2 of the capacitances realized  
on the PCB on either side of the quartz. A higher Cload will  
decrease oscillation margin, but increases current oscillating  
through the crystal  
12.5 pF  
50 kΩ  
ESR  
Equivalent series resistance of the crystal. Choosing a crystal  
with a higher value will decrease the oscillating margin.  
9.7.3 Fast internal RC oscillator (24 MHz) electrical characteristics  
This section describes a fast internal RC oscillator (FIRC). This is used as the default  
clock at the power-up of the device.  
Table 69. Fast internal oscillator electrical characteristics  
Symbol  
Parameter  
Condition1  
Value  
Typ  
Min  
Max  
Unit  
fRCM  
RC oscillator high frequency  
TA= 25 °C, trimmed  
TA= 25 °C, trimmed  
24  
MHz  
μA  
IRCMRUN  
RC oscillator high frequency  
current in running mode  
55  
IRCMPWD  
RCMTRIM  
RCMVAR  
RC oscillator high frequency  
current in power down mode  
TA= 25 °C  
TA= 25 °C  
100  
nA  
RC oscillator precision after  
trimming of fRC  
-1  
-5  
+1  
+5  
RC oscillator variation in  
temperature and supply with  
respect to fRC at TA = 55 °C in  
high frequency configuration  
1. VDD = 1.2 V , TA = -40 to +85 °C, unless otherwise specified.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
83  
Clocks and PLL Specifications  
9.7.4 Slow internal RC oscillator (128 KHz) electrical characteristics  
This section describes a slow internal RC oscillator (SIRC). This can be used as the  
reference clock for the RTC module.  
Table 70. Slow internal RC oscillator electrical characteristics  
Symbol  
Parameter  
Condition1  
Value  
Typ  
Min  
Max  
Unit  
fRCL  
IRCL  
RC oscillator low frequency  
TA= 25 °C, trimmed  
TA= 25 °C, trimmed  
128  
kHz  
μA  
RC oscillator low frequency  
current  
-1  
-5  
3.1  
RCLTRIM  
RC oscillator precision after  
trimming of fRCL  
TA= 25 °C  
+1  
+5  
RCLVAR 3  
RC oscillator variation in  
High frequency configuration  
temperature and supply with  
respect to fRC at TA = 55 °C in  
high frequency configuration  
1. VDD = 1.2 V , TA = -40 to +85 °C, unless otherwise specified.  
9.7.5 PLL1 and PLL2 (528 MHz System PLL) Electrical Parameters  
Table 71. PLL1 and PLL2 Electrical Parameters  
Parameter  
Value  
528 MHz PLL output  
Clock output range  
Reference clock  
Lock time  
24 MHz  
<7500 reference cycles  
<140ps  
Period jitter(p2p)  
Duty Cycle  
48.9ꢀ~51.7ꢀ PLL output  
9.7.6 PLL3 and PLL7 (480 MHz USB PLL) Electrical Parameters  
Table 72. PLL3 and PLL7 Electrical Parameters  
Parameter  
Value  
480 MHz PLL output  
Clock output range  
Reference clock  
Lock time  
24 MHz  
<425 reference cycles  
<140 ps  
Period jitter(p2p)  
Duty Cycle  
48.9ꢀ~51.7ꢀ PLL output  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
84  
NXP Semiconductors  
Clocks and PLL Specifications  
9.7.7 PLL5 (Ethernet PLL) Electrical Parameters  
Table 73. PLL5 Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
500 MHz  
24 MHz  
<7500 reference cycles  
<400ps @ 50 MHz  
45ꢀ~55ꢀ  
Cycle to cycle jitter (p2p)1  
Duty Cycle  
1. Jitter numbers are measured at divided PLL clock because high frequency cannot be brought-out IO pad.  
9.7.8 PLL4 (Audio PLL) Electrical Parameters  
Table 74. PLL4 Electrical Parameters  
Parameter  
Value  
650 MHz ~1.3 GHz  
Clock output range  
Reference clock  
Lock time  
24 MHz  
<7500 reference cycles  
<42ps @1128MHz  
<115ps@1128MHz  
43ꢀ~57ꢀ  
Long term jitter(RMS)  
Period jitter(p2p)1  
Duty Cycle  
1. Jitter numbers are measured at divided PLL clock because high frequency cannot be brought-out on IO pad.  
9.7.9 PLL6 (Video PLL) Electrical Parameters  
Table 75. PLL6 Electrical Parameters  
Parameter  
Value  
650 MHz ~1.3 GHz  
Clock output range  
Reference clock  
Lock time  
Long term jitter(RMS)1  
Period jitter(p2p)  
Duty Cycle  
24 MHz  
<7500 reference cycles  
<42ps @ 1128 MHz  
<130ps @960MHz  
43ꢀ~57ꢀ  
1. Jitter numbers are measured at divided PLL clock because high frequency cannot be brought-out on IO pad & at use case  
frequency.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
85  
Debug specifications  
9.8 Debug specifications  
9.8.1 JTAG electricals  
Table 76. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
-
-
-
25  
25  
25  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
20  
20  
20  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
Refer Table 21  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
8
1.3  
8
17  
17  
17  
17  
J6  
J7  
J8  
J9  
J10  
J11  
J12  
1.3  
TCLK low to TDO high-Z  
NOTE  
Input transition (1ns), output load (25 pf) and SRE (000), DSE  
(111), FSEL(011).  
J2  
J3  
J3  
TCLK (input)  
J4  
J4  
Figure 54. Test clock input timing  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
86  
NXP Semiconductors  
Debug specifications  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 55. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 56. Test Access Port timing  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
87  
Debug specifications  
9.8.2 Debug trace timing specifications  
Table 77. Debug trace operating behaviors  
Symbol  
Tcyc  
Twl  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Clock period  
50  
Low pulse width  
2
2
Twh  
Tr  
High pulse width  
Clock and data rise time  
Clock and data fall time Refer  
Data output valid  
Data output hold  
ns  
Refer Table 21  
ns  
Tf  
ns  
tDV  
tHO  
3
ns  
1
ns  
TRACECLK  
T
r
T
f
T
T
wh  
wl  
T
cyc  
Figure 57. TRACE_CLKOUT specifications  
traceoutput clock  
traceoutput data  
t
HO  
t
DV  
Figure 58. Trace data specifications  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
88  
NXP Semiconductors  
Thermal attributes  
10 Thermal attributes  
10.1 Thermal attributes  
This table shows the thermal attributes for the 176 LQFP package.  
Board type  
Symbol  
Description  
176 LQFP  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
50  
32  
40  
25  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
resistance, junction  
to ambient (natural  
convection)  
Four-layer (2s2p)  
Single-layer (1s)  
Four-layer (2s2p)  
RθJA  
Thermal  
1,3  
resistance, junction  
to ambient (natural  
convection)  
RθJMA  
Thermal  
1, 3  
1, 3  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJMA  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJB  
Thermal  
resistance, junction  
to board  
21  
12  
3
°C/W  
°C/W  
°C/W  
4
5
6
RθJCtop  
Thermal  
resistance, junction  
to case top  
ΨJT  
Thermal  
characterization  
parameter, junction  
to package top  
(natural  
convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance  
2. Per JEDEC JESD51-2 with the single layer board (JESD51-3) horizontal  
3. Per JEDEC JESD51-6 with the board (JESD51-7) horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
This table shows the thermal attributes for the 364 MAPBGA package.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
89  
Dimensions  
Board type  
Symbol  
Description  
364 MAPBGA  
Unit  
Notes  
Single-layer (1s)  
Four-layer (2s2p)  
Single-layer (1s)  
Four-layer (2s2p)  
RθJA  
Thermal  
45  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1,3  
resistance, junction  
to ambient (natural  
convection)  
RθJA  
Thermal  
28  
37  
24  
resistance, junction  
to ambient (natural  
convection)  
RθJMA  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJMA  
Thermal  
1,3  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJB  
RθJC  
ΨJT  
Thermal  
resistance, junction  
to board  
17  
10  
2
°C/W  
°C/W  
°C/W  
4
5
6
Thermal  
resistance, junction  
to case  
Thermal  
characterization  
parameter, junction  
to package top  
outside center  
(natural  
convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
11 Dimensions  
11.1 Obtaining package dimensions  
Package dimensions are provided in package drawing.  
To find a package drawing, go to www.nxp.com and perform a keyword search for the  
drawing’s document number:  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
90  
NXP Semiconductors  
Pinouts  
Package  
Document Number  
176-pin LQFP  
364 MAPBGA  
98ASA00452D  
98ASA00418D  
12 Pinouts  
12.1 Pinouts  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The IOMUX Controller Module is  
responsible for selecting which ALT functionality is available on each pin.  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
Y2  
ADC0SE8  
N/  
A
ADC0_SE8  
W2  
W3  
Y3  
34  
33  
31  
ADC0SE9  
ADC0_SE9  
ADC1_SE8  
ADC1_SE9  
VREFH_ADC  
VREFL_ADC  
ADC1SE8  
ADC1SE9  
W1  
U3  
V1  
VREFH_ADC  
VREFL_ADC  
VDDA33_  
ADC  
VDDA33_  
ADC  
V2  
32  
VSSA33_  
ADC  
VSSA33_  
ADC  
U1  
U2  
Y4  
U4  
W4  
V5  
V3  
29  
30  
35  
37  
40  
DACO0  
DACO0  
DACO1  
DACO1  
VADCSE0  
VADCSE1  
VADCSE2  
VADCSE3  
VADCSE0  
VADCSE1  
VADCSE2  
VADCSE3  
VDDA33_  
AFE  
VDDA33_  
AFE  
V4  
T5  
R5  
U5  
39  
36  
38  
41  
VSSA33_AFE  
VDD12_AFE  
VSS12_AFE  
VSSA33_AFE  
VDD12_AFE  
VSS12_AFE  
VADC_AFE_  
BANDGAP  
VADC_AFE_  
BANDGAP  
Y13  
W13  
Y12  
73  
72  
70  
EXTAL  
XTAL  
EXTAL  
XTAL  
EXTAL32  
EXTAL32  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
91  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
W12  
T4  
71  
28  
XTAL32  
XTAL32  
RESETB/  
RESETB/  
RESETB/  
RESET_OUT RESET_OUT  
RESET_OUT  
N5  
19  
PTA6  
PTA6  
RMII_  
CLKOUT  
RMII_CLKIN/  
MII0_TXCLK  
DCU1_  
TCON11  
DCU1_R2  
T3  
T1  
27  
23  
69  
TEST  
TEST  
Ext_POR  
TEST2  
V12  
DECAP_  
V11_LDO_  
OUT  
DECAP_  
V11_LDO_  
OUT  
T11  
65  
DECAP_  
V25_LDO_  
OUT  
DECAP_  
V25_LDO_  
OUT  
T2  
P5  
26  
24  
68  
BCTRL  
BCTRL  
VDDREG  
VDDREG  
T12  
VDD33_  
LDOIN  
VDD33_  
LDOIN  
V11  
U11  
W14  
Y14  
K4  
67  
66  
3
VSS  
VSS  
VSS_KEL0  
LVDS0P  
LVDS0N  
VSS_KEL0  
LVDS0P  
LVDS0N  
JTCLK/  
SWCLK  
JTCLK/  
SWCLK  
PTA8  
JTCLK/  
SWCLK  
DCU0_R0  
DCU0_R1  
DCU0_G0  
DCU0_G1  
MLBCLK  
K2  
K1  
L1  
4
5
JTDI  
JTDI  
PTA9  
JTDI  
RMII_  
CLKOUT  
RMII_CLKIN/  
MII0_TXCLK  
WDOG_b  
JTDO  
JTDO/  
TRACESWO  
PTA10  
PTA11  
PTA12  
PTA16  
PTA17  
PTA18  
PTA19  
PTA20  
JTDO  
EXT_AUDIO_  
MCLK  
ENET_TS_  
CLKIN  
MLBSIGNAL  
MLBDATA  
6
JTMS/  
SWDIO  
JTMS/  
SWDIO  
JTMS/  
SWDIO  
L3  
7
PTA12  
PTA16  
PTA17  
PTA18  
PTA19  
PTA20  
TRACECK  
TRACED0  
TRACED1  
TRACED2  
TRACED3  
TRACED4  
EXT_AUDIO_  
MCLK  
VIU_DATA13 I2C0_SCL  
VIU_DATA14 I2C0_SDA  
VIU_DATA15 I2C1_SCL  
VIU_DATA16 I2C1_SDA  
Y5  
Y6  
V6  
U6  
B18  
43  
44  
46  
47  
143  
USB0_  
VBUS_EN  
ADC1_SE0  
ADC1_SE1  
LCD29  
LCD30  
LCD31  
LCD32  
LCD33  
SAI2_TX_  
BCLK  
USB0_  
VBUS_OC  
USB0_SOF_  
PULSE  
ADC0_SE0  
FTM1_QD_  
PHA  
SAI2_TX_  
DATA  
ADC0_SE1  
FTM1_QD_  
PHB  
SAI2_TX_  
SYNC  
VIU_DATA17 QSPI1_A_  
SCK  
SCI3_TX  
DCU1_  
HSYNC/  
DCU1_  
TCON1  
D18  
145  
PTA21  
PTA21/  
MII0_RXCLK  
TRACED5  
SAI2_RX_  
BCLK  
SCI3_RX  
DCU1_  
VSYNC/  
DCU1_  
TCON2  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
92  
NXP Semiconductors  
Pinouts  
364  
MAP LQFP  
BGA  
176  
Pin Name  
Default  
ALT0  
ALT1  
TRACED6  
TRACED7  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
I2C2_SCL  
I2C2_SDA  
ALT7  
EzPort  
E17  
C17  
147  
148  
PTA22  
PTA22  
SAI2_RX_  
DATA  
DCU1_TAG/  
DCU1_  
TCON0  
PTA23  
PTA23  
SAI2_RX_  
SYNC  
DCU1_DE/  
DCU1_  
TCON3  
R16  
R17  
R19  
R20  
P20  
P18  
P17  
P16  
T6  
PTA24  
PTA25  
PTA26  
PTA27  
PTA28  
PTA29  
PTA30  
PTA31  
PTB0  
PTA24  
PTA25  
PTA26  
PTA27  
PTA28  
PTA29  
PTA30  
PTA31  
PTB0  
TRACED8  
TRACED9  
TRACED10  
TRACED11  
TRACED12  
TRACED13  
TRACED14  
TRACED15  
FTM0_CH0  
FTM0_CH1  
FTM0_CH2  
FTM0_CH3  
FTM0_CH4  
FTM0_CH5  
FTM0_CH6  
FTM0_CH7  
FTM1CH0  
FTM1CH1  
SCI0_TX  
USB1_  
VBUS_EN  
SDHC1_CLK  
DCU1_  
TCON4  
USB1_  
VBUS_OC  
SDHC1_CMD DCU1_  
TCON5  
SAI3_TX_  
BCLK  
SDHC1_  
DAT0  
DCU1_  
TCON6  
SAI3_RX_  
BCLK  
SDHC1_  
DAT1  
DCU1_  
TCON7  
SAI3_RX_  
DATA  
ENET1_  
1588_TMR0  
SCI4_TX  
SCI4_RX  
SCI4_RTS  
SCI4_CTS  
LCD34  
SDHC1_  
DAT2  
DCU1_  
TCON8  
SAI3_TX_  
DATA  
ENET1_  
1588_TMR1  
SDHC1_  
DAT3  
DCU1_  
TCON9  
SAI3_RX_  
SYNC  
ENET1_  
1588_TMR2  
I2C3_SCL  
SCI3_TX  
SCI3_RX  
SAI3_TX_  
SYNC  
ENET1_  
1588_TMR3  
I2C3_SDA  
49  
50  
51  
53  
54  
55  
56  
166  
121  
123  
159  
164  
ADC0_SE2  
ADC0_SE3  
ADC1_SE2  
ADC1_SE3  
SCI1_TX  
TRACECTL  
SAI2_RX_  
BCLK  
VIU_DATA18 QSPI1_A_  
CS0  
T7  
PTB1  
RCON30  
RCON31  
PTB1  
RCON30  
LCD35  
SAI2_RX_  
DATA  
VIU_DATA19 QSPI1_A_  
DATA3  
V7  
PTB2  
PTB2  
RCON31  
LCD36  
SAI2_RX_  
SYNC  
VIU_DATA20 QSPI1_A_  
DATA2  
W7  
Y7  
PTB3  
PTB3  
EXTRIG  
LCD37  
VIU_DATA21 QSPI1_A_  
DATA1  
PTB4  
PTB4  
ADC0_SE4  
ADC1_SE4  
LCD38  
VIU_FID  
VIU_DATA22 QSPI1_A_  
DATA0  
Y8  
PTB5  
PTB5  
SCI1_RX  
LCD39  
VIU_DE  
VIU_DATA23 QSPI1_A_  
DQS  
W8  
D13  
J16  
J19  
B15  
D14  
PTB6  
PTB6  
SCI1_RTS  
SCI1_CTS  
QSPI0_A_  
CS1  
LCD40  
FB_CLKOUT  
VIU_HSYNC  
SCI2_TX  
SCI2_RX  
DCU1_R6  
DCU1_R7  
PTB7  
PTB7  
QSPI0_B_  
CS1  
LCD41  
VIU_VSYNC  
PTB8  
PTB8  
FTM1_QD_  
PHA  
VIU_DE  
VIU_DE  
PTB9  
PTB9  
FTM1_QD_  
PHB  
PTB10  
PTB11  
PTB10  
PTB11  
DCU0_  
TCON4  
CKO1  
CKO2  
ENET_TS_  
CLKIN  
SCI0_RX  
DCU0_  
TCON5  
SNVS_  
ALARM_  
OUT_B  
ENET0_  
1588_TMR0  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
93  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
E13  
D15  
B14  
A14  
C14  
A15  
B12  
165  
156  
162  
161  
163  
160  
171  
PTB12  
NMI  
PTB12  
SCI0_RTS  
SCI0_CTS  
CAN0_RX  
CAN0_TX  
CAN1_RX  
CAN1_TX  
SPI0_PCS1  
SPI0_PCS5  
SPI0_PCS4  
DCU0_  
TCON6  
FB_AD1  
FB_AD0  
NMI  
ENET0_  
1588_TMR1  
PTB13  
PTB14  
PTB15  
PTB16  
PTB17  
PTB18  
PTB13  
PTB14  
PTB15  
PTB16  
PTB17  
PTB18  
DCU0_  
TCON7  
TRACECTL  
I2C0_SCL  
I2C0_SDA  
I2C1_SCL  
I2C1_SDA  
DCU0_  
TCON8  
DCU1_PCLK  
DCU0_  
TCON9  
VIU_PIX_  
CLK  
DCU0_  
TCON10  
DCU0_  
TCON11  
EXT_AUDIO_  
MCLK  
VIU_DATA9  
CCM_OBS0  
C13  
A13  
E12  
D12  
V10  
T10  
T9  
167  
169  
173  
172  
61  
PTB19  
PTB19  
PTB20  
PTB21  
PTB22  
SPI0_PCS0  
SPI0_SIN  
VIU_DATA10 CCM_OBS1  
VIU_DATA11 CCM_OBS2  
VIU_DATA12 DCU1_PCLK  
PTB20  
LCD42  
LCD43  
PTB21  
SPI0_SOUT  
SPI0_SCK  
USB0_GND  
USB0_DP  
PTB22  
VIU_FID  
USB0_GND  
USB0_DP  
USB0_DM  
USB0_VBUS  
USB_DCAP  
63  
62  
USB0_DM  
USB0_VBUS  
USB_DCAP  
W11  
Y10  
Y11  
60  
59  
64  
USB0_  
VBUS_  
DETECT  
USB0_  
VBUS_  
DETECT  
Y9  
W9  
V9  
USB1_GND  
USB1_DP  
USB1_GND  
USB1_DP  
USB1_DM  
USB1_VBUS  
USB1_DM  
USB1_VBUS  
W10  
U9  
USB1_  
VBUS_  
DETECT  
USB1_  
VBUS_  
DETECT  
L4  
L5  
8
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
PTC0  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
RMII0_MDC/  
MII0_MDC  
FTM1CH0  
SPI0_PCS3  
SPI0_PCS2  
ESAI_SCKT  
ESAI_FST  
SDHC0_CLK  
VIU_DATA0  
RCON18  
RCON19  
RCON20  
DCU0_R0  
DCU0_R1  
DCU0_G0  
9
RMII0_MDIO/ FTM1CH1  
MII0_MDIO  
SDHC0_CMD VIU_DATA1  
M5  
M3  
L2  
11  
12  
14  
15  
RMII0_CRS_  
DV  
SCI1_TX  
ESAI_SDO0  
ESAI_SDO1  
SDHC0_  
DAT0  
VIU_DATA2  
VIU_DATA3  
VIU_DATA4  
VIU_DATA5  
RMII0_RXD1/ SCI1_RX  
MII0_RXD[1]  
SDHC0_  
DAT1  
RMII0_RXD0/ SCI1_RTS  
MII0_RXD[0]  
SPI1_PCS1  
SPI1_PCS0  
ESAI_SDO2/  
ESAI_SDI3  
SDHC0_  
DAT2  
M1  
RMII0_RXER/ SCI1_CTS  
MII0_RXER  
ESAI_SDO3/  
ESAI_SDI2  
SDHC0_  
DAT3  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
94  
NXP Semiconductors  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
N1  
N2  
N4  
16  
17  
18  
PTC6  
PTC6  
RMII0_TXD1/  
MII0_TXD[1]  
SPI1_SIN  
ESAI_SDO5/  
ESAI_SDI0  
SDHC0_WP  
VIU_DATA6  
VIU_DATA7  
VIU_DATA8  
DCU0_G1  
DCU0_B0  
DCU0_B1  
PTC7  
PTC8  
PTC7  
PTC8  
RMII0_TXD0/  
MII0_TXD[0]  
SPI1_SOUT  
SPI1_SCK  
ESAI_SDO4/  
ESAI_SDI1  
RMII0_TXEN/  
MII0_TXEN  
T15  
U15  
P4  
PTC9  
PTC9  
RMII1_MDC  
RMII1_MDIO  
ESAI_SCKT  
ESAI_FST  
MLBCLK  
PTC10  
PTC11  
PTC10  
PTC11  
MLBSIGNAL  
MLBDATA  
RMII1_CRS_  
DV  
ESAI_SDO0  
P3  
P1  
R1  
P2  
R3  
R4  
PTC12  
PTC13  
PTC14  
PTC15  
PTC16  
PTC17  
PTC12  
PTC13  
PTC14  
PTC15  
PTC16  
PTC17  
RMII1_RXD1  
RMII1_RXD0  
RMII1_RXER  
RMII1_TXD1  
RMII1_TXD0  
RMII1_TXEN  
ESAI_SDO1  
SAI2_TX_  
BCLK  
ESAI_SDO2/  
ESAI_SDI3  
SAI2_RX_  
BCLK  
ESAI_SDO3/  
ESAI_SDI2  
SCI5_TX  
SCI5_RX  
SCI5_RTS  
SCI5_CTS  
SAI2_RX_  
DATA  
ADC0_SE6  
ADC0_SE7  
ADC1_SE6  
ESAI_SDO5/  
ESAI_SDI0  
SAI2_TX_  
DATA  
ESAI_SDO4/  
ESAI_SDI1  
SAI2_RX_  
SYNC  
ADC1_SE7  
SAI2_TX_  
SYNC  
USB1_SOF_  
PULSE  
B10  
D9  
DDR_A[15]  
DDR_A[14]  
DDR_A[13]  
DDR_A[12]  
DDR_A[11]  
DDR_A[10]  
DDR_A[9]  
DDR_A[8]  
DDR_A[7]  
DDR_A[6]  
DDR_A[5]  
DDR_A[4]  
DDR_A[3]  
DDR_A[2]  
DDR_A[1]  
DDR_A[0]  
DDR_BA[2]  
DDR_BA[1]  
DDR_BA[0]  
DDR_CAS_b  
DDR_CKE[0]  
DDR_A15  
DDR_A14  
DDR_A13  
DDR_A12  
DDR_A11  
DDR_A10  
DDR_A9  
A10  
C10  
D10  
D7  
B9  
A11  
A7  
DDR_A8  
DDR_A7  
A9  
DDR_A6  
B6  
DDR_A5  
A6  
DDR_A4  
B7  
DDR_A3  
A8  
DDR_A2  
C11  
C7  
DDR_A1  
DDR_A0  
D8  
DDR_BA2  
DDR_BA1  
DDR_BA0  
DDR_CAS_b  
DDR_CKE0  
C9  
C8  
B4  
A5  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
95  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
A2  
B2  
DDR_CLK[0]  
DDR_CLK0  
DDR_CLK_  
b[0]  
DDR_CLK_  
b0  
C5  
DDR_CS_  
b[0]  
DDR_CS_b0  
D2  
H2  
C1  
G1  
E2  
H1  
D1  
J1  
DDR_D[15]  
DDR_D[14]  
DDR_D[13]  
DDR_D[12]  
DDR_D[11]  
DDR_D[10]  
DDR_D[9]  
DDR_D15  
DDR_D14  
DDR_D13  
DDR_D12  
DDR_D11  
DDR_D10  
DDR_D9  
DDR_D[8]  
DDR_D8  
G3  
C3  
J3  
DDR_D[7]  
DDR_D7  
DDR_D[6]  
DDR_D6  
DDR_D[5]  
DDR_D5  
F3  
G4  
D4  
H3  
F4  
G2  
J4  
DDR_D[4]  
DDR_D4  
DDR_D[3]  
DDR_D3  
DDR_D[2]  
DDR_D2  
DDR_D[1]  
DDR_D1  
DDR_D[0]  
DDR_D0  
DDR_DQM[1]  
DDR_DQM[0]  
DDR_DQS[1]  
DDR_DQS[0]  
DDR_DQM1  
DDR_DQM0  
DDR_DQS1  
DDR_DQS0  
E1  
D3  
F1  
DDR_DQS_  
b[1]  
DDR_DQS_  
b1  
E3  
DDR_DQS_  
b[0]  
DDR_DQS_  
b0  
A4  
C6  
DDR_RAS_b  
DDR_WE_b  
DDR_ODT[0]  
DDR_ODT[1]  
DDR_VREF  
DDR_ZQ  
DDR_RAS_b  
DDR_WE_b  
DDR_ODT0  
DDR_ODT1  
DDR_VREF  
DDR_ZQ  
C4  
B1  
G5  
A3  
D6  
DDR_RESET  
PTD31  
DDR_RESET  
FB_AD31  
J20  
H20  
H18  
H17  
H16  
PTD31  
NF_IO15  
NF_IO14  
NF_IO13  
NF_IO12  
NF_IO11  
FTM3_CH0  
FTM3_CH1  
FTM3_CH2  
FTM3_CH3  
FTM3_CH4  
SPI2_PCS1  
SPI2_PCS0  
SPI2_SIN  
PTD30  
PTD30  
PTD29  
PTD28  
PTD27  
FB_AD30  
PTD29  
FB_AD29  
PTD28  
FB_AD28  
I2C2_SCL  
I2C2_SDA  
SPI2_SOUT  
SPI2_SCK  
PTD27  
FB_AD27  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
96  
NXP Semiconductors  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
G16  
G18  
G19  
G20  
PTD26  
PTD26  
FB_AD26  
FB_AD25  
FB_AD24  
FB_AD23  
NF_IO10  
NF_IO9  
NF_IO8  
NF_IO7  
FTM3_CH5  
FTM3_CH6  
FTM3_CH7  
SDHC1_WP  
PTD25  
PTD24  
PTD23  
PTD25  
PTD24  
124  
PTD23/  
MII0_  
RXDATA[3]  
FTM2CH0  
FTM2CH1  
ENET0_  
1588_TMR0  
SDHC0_  
DAT4  
SCI2_TX  
SCI2_RX  
DCU1_R3  
DCU1_R4  
F20  
126  
PTD22  
PTD22/  
MII0_  
FB_AD22  
NF_IO6  
ENET0_  
1588_TMR1  
SDHC0_  
DAT5  
RXDATA[2]  
F19  
F17  
F16  
E18  
128  
129  
130  
131  
PTD21  
PTD20  
PTD19  
PTD18  
PTD21/  
MII0_CRS  
FB_AD21  
FB_AD20  
FB_AD19  
FB_AD18  
NF_IO5  
NF_IO4  
NF_IO3  
NF_IO2  
ENET0_  
1588_TMR2  
SDHC0_  
DAT6  
SCI2_RTS  
SCI2_CTS  
DCU1_R5  
DCU1_R0  
DCU1_R1  
DCU1_G0  
PTD20/  
MII0_COL  
ENET0_  
1588_TMR3  
SDHC0_  
DAT7  
PTD19  
PTD18  
ESAI_SCKR  
ESAI_FSR  
I2C0_SCL  
I2C0_SDA  
FTM2_QD_  
PHA  
MII0_  
TXDATA[3]  
FTM2_QD_  
PHB  
MII0_  
TXDATA[2]  
E20  
D20  
Y17  
132  
133  
86  
PTD17  
PTD16  
PTD0  
PTD17  
PTD16  
PTD0  
FB_AD17  
FB_AD16  
NF_IO1  
NF_IO0  
SCI2_TX  
ESAI_HCKR  
ESAI_HCKT  
I2C1_SCL  
I2C1_SDA  
FB_AD15  
MII0_TXERR  
DCU1_G1  
DCU1_G2  
QSPI0_A_  
SCK  
SPDIF_  
EXTCLK  
Y18  
V18  
Y19  
W19  
W20  
V20  
V19  
U17  
U18  
U20  
T20  
T19  
T18  
87  
88  
89  
90  
91  
92  
93  
94  
97  
98  
99  
100  
101  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
PTD8  
PTD9  
PTD10  
PTD11  
PTD12  
PTD13  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
PTD8  
PTD9  
PTD10  
PTD11  
PTD12  
PTD13  
QSPI0_A_  
CS0  
SCI2_RX  
SCI2_RTS  
SCI2_CTS  
FB_AD14  
FB_AD13  
FB_AD12  
FB_AD11  
FB_AD10  
FB_AD9  
FB_AD8  
FB_AD7  
FB_AD6  
FB_AD5  
FB_AD4  
FB_AD3  
FB_AD2  
SPDIF_IN1  
QSPI0_A_  
DATA3  
SPI1_PCS3  
SPI1_PCS2  
SPI1_PCS1  
SPI1_PCS0  
SPI1_SIN  
SPDIF_OUT1  
QSPI0_A_  
DATA2  
SPDIF_  
PLOCK  
QSPI0_A_  
DATA1  
SPDIF_  
SRCLK  
QSPI0_A_  
DATA0  
QSPI0_A_  
DQS  
QSPI0_B_  
SCK  
SPI1_SOUT  
SPI1_SCK  
QSPI0_B_  
CS0  
FB_CLKOUT  
SPI3_PCS1  
SPI3_PCS0  
SPI3_SIN  
QSPI0_B_  
DATA3  
SAI1_TX_  
SYNC  
DCU1_B0  
DCU1_B1  
QSPI0_B_  
DATA2  
QSPI0_B_  
DATA1  
QSPI0_B_  
DATA0  
SPI3_SOUT  
SPI3_SCK  
QSPI0_B_  
DQS  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
97  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
A19  
A18  
B17  
A17  
U8  
141  
142  
149  
150  
57  
PTB23  
PTB23  
SAI0_TX_  
BCLK  
SCI1_TX  
SCI1_RX  
SCI1_RTS  
SCI1_CTS  
FB_MUXED_ FB_TS_b  
ALE  
SCI3_RTS  
SCI3_CTS  
DCU1_G3  
DCU1_G4  
DCU1_G5  
DCU1_G6  
DCU1_G7  
DCU1_B6  
DCU1_B7  
DCU1_B2  
DCU1_B3  
DCU1_B4  
DCU1_B5  
DCU1_B6  
PTB24  
PTB25  
PTB26  
PTB27  
PTB28  
PTC26  
PTC27  
PTC28  
PTC29  
PTC30  
PTC31  
PTE0  
PTB24  
PTB25  
PTB26  
PTB27  
PTB28  
PTC26  
PTC27  
PTC28  
PTC29  
PTC30  
PTC31  
PTE0  
SAI0_RX_  
BCLK  
FB_MUXED_ NF_WE_b  
TSIZ0  
SAI0_RX_  
DATA  
FB_CS1_b  
FB_CS0_b  
FB_OE_b  
FB_RW_b  
FB_TA_b  
NF_CE0_b  
RCON21  
RCON22  
RCON23  
RCON24  
RCON25  
RCON26  
RCON27  
RCON28  
RCON29  
BOOTMOD1  
SAI0_TX_  
DATA  
RCON21  
RCON22  
RCON23  
RCON24  
RCON25  
RCON26  
RCON27  
RCON28  
RCON29  
NF_CE1_b  
SAI0_RX_  
SYNC  
FB_MUXED_ NF_RE_b  
TBST_b  
A16  
D16  
E16  
E15  
C16  
T8  
151  
153  
154  
155  
152  
58  
SAI0_TX_  
SYNC  
SAI1_TX_  
BCLK  
SPI0_PCS5  
SPI0_PCS4  
SPI0_PCS3  
SPI0_PCS2  
SPI1_PCS2  
NF_RB_b  
SAI1_RX_  
BCLK  
FB_BE3_b  
FB_BE2_b  
FB_BE1_b  
FB_CS3_b  
FB_CS2_b  
NF_ALE  
NF_CLE  
SAI1_RX_  
DATA  
SAI1_TX_  
DATA  
FB_MUXED_  
TSIZ1  
SAI1_RX_  
SYNC  
FB_MUXED_ FB_TSIZ0  
BE0_b  
ADC0_SE5  
ADC1_SE5  
W5  
42  
SAI1_TX_  
SYNC  
N16  
103  
DCU0_  
HSYNC/  
DCU0_  
TCON1  
BOOTMOD1  
BOOTMOD0  
LCD0  
LCD1  
N18  
104  
PTE1  
BOOTMOD0  
PTE1  
DCU0_  
VSYNC/  
DCU0_  
TCON2  
N19  
Y15  
105  
77  
PTE2  
PTE3  
PTE2  
PTE3  
DCU0_PCLK  
LCD2  
LCD3  
DCU0_TAG/  
DCU0_  
TCON0  
N20  
106  
PTE4  
PTE4  
DCU0_DE/  
DCU0_  
LCD4  
TCON3  
T16  
W16  
M20  
M19  
M17  
M16  
L16  
80  
PTE5  
PTE6  
PTE7  
PTE8  
PTE9  
PTE10  
PTE11  
PTE12  
PTE5  
PTE6  
PTE7  
PTE8  
PTE9  
PTE10  
PTE11  
PTE12  
DCU0_R0  
DCU0_R1  
DCU0_R2  
DCU0_R3  
DCU0_R4  
DCU0_R5  
DCU0_R6  
DCU0_R7  
LCD5  
LCD6  
LCD7  
LCD8  
LCD9  
LCD10  
LCD11  
LCD12  
81  
109  
110  
111  
112  
113  
114  
RCON0  
RCON1  
RCON2  
RCON3  
RCON4  
RCON5  
RCON0  
RCON1  
RCON2  
RCON3  
RCON4  
RCON5  
L17  
SPI1_PCS3  
LPT_ALT0  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
98  
NXP Semiconductors  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
Y16  
W15  
L18  
L20  
K20  
K19  
K18  
A12  
V16  
W17  
J17  
78  
76  
PTE13  
PTE13  
DCU0_G0  
DCU0_G1  
DCU0_G2  
DCU0_G3  
DCU0_G4  
DCU0_G5  
DCU0_G6  
DCU0_G7  
DCU0_B0  
DCU0_B1  
DCU0_B2  
DCU0_B3  
DCU0_B4  
DCU0_B5  
DCU0_B6  
DCU0_B7  
LCD13  
PTE14  
PTE15  
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
PTE24  
PTE25  
PTE26  
PTE27  
PTE28  
PTA7  
PTE14  
PTE15  
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
PTE24  
PTE25  
PTE26  
PTE27  
PTE28  
PTA7  
LCD14  
LCD15  
LCD16  
LCD17  
LCD18  
LCD19  
LCD20  
LCD21  
LCD22  
LCD23  
LCD24  
LCD25  
LCD26  
LCD27  
LCD28  
115  
116  
117  
118  
119  
170  
79  
RCON6  
RCON6  
RCON7  
RCON8  
RCON9  
RCON10  
RCON11  
RCON7  
RCON8  
RCON9  
RCON10  
RCON11  
I2C0_SCL  
I2C0_SDA  
EWM_in  
84  
122  
134  
135  
137  
138  
120  
75  
RCON12  
RCON13  
RCON14  
RCON15  
RCON16  
RCON17  
RCON12  
RCON13  
RCON14  
RCON15  
RCON16  
RCON17  
D19  
C19  
C20  
B20  
K16  
V15  
I2C1_SCL  
I2C1_SDA  
EWM_out  
VIU_PIX_  
CLK  
T14  
U14  
T13  
EXT_  
TAMPER0  
EXT_  
TAMPER0  
EXT_  
TAMPER1  
EXT_  
TAMPER1  
EXT_  
EXT_  
TAMPER2/  
EXT_WM0_  
TAMPER_IN  
TAMPER2/  
EXT_WM0_  
TAMPER_IN  
U13  
EXT_  
EXT_  
TAMPER3/  
EXT_WM0_  
TAMPER_  
OUT  
TAMPER3/  
EXT_WM0_  
TAMPER_  
OUT  
U12  
U10  
EXT_  
EXT_  
TAMPER4/  
EXT_WM1_  
TAMPER_IN  
TAMPER4/  
EXT_WM1_  
TAMPER_IN  
EXT_  
EXT_  
TAMPER5/  
EXT_WM1_  
TAMPER_  
OUT  
TAMPER5/  
EXT_WM1_  
TAMPER_  
OUT  
G7  
J7  
2
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
22  
48  
85  
L7  
H8  
K8  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
99  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
M8  
P8  
102  
125  
136  
174  
1
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
G9  
N9  
H10  
P10  
G11  
N11  
H12  
P12  
G13  
J13  
L13  
N13  
H14  
K14  
M14  
P14  
A1  
A20  
B3  
13  
20  
25  
45  
B5  
B8  
B11  
B13  
B16  
B19  
C2  
D17  
E5  
E8  
E11  
E14  
E19  
F2  
G17  
H4  
J2  
J18  
M2  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
100  
NXP Semiconductors  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
M4  
M18  
R2  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R18  
U7  
U19  
V13  
W6  
V17  
Y1  
Y20  
H19  
L19  
P19  
J5  
SDRAMC_  
VDD2P5  
SDRAMC_  
VDD2P5  
E6  
E10  
E4  
SDRAMC_  
VDD2P5  
SDRAMC_  
VDD2P5  
SDRAMC_  
VDD2P5  
SDRAMC_  
VDD2P5  
SDRAMC_  
VDD1P5  
SDRAMC_  
VDD1P5  
D5  
F5  
SDRAMC_  
VDD1P5  
SDRAMC_  
VDD1P5  
SDRAMC_  
VDD1P5  
SDRAMC_  
VDD1P5  
H5  
K5  
SDRAMC_  
VDD1P5  
SDRAMC_  
VDD1P5  
SDRAMC_  
VDD1P5  
SDRAMC_  
VDD1P5  
E7  
SDRAMC_  
VDD1P5  
SDRAMC_  
VDD1P5  
E9  
SDRAMC_  
VDD1P5  
SDRAMC_  
VDD1P5  
D11  
SDRAMC_  
VDD1P5  
SDRAMC_  
VDD1P5  
K3  
N3  
10  
21  
52  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
V8  
C12  
C15  
U16  
K17  
83  
95  
108  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
101  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
N17  
T17  
C18  
F18  
W18  
H7  
127  
140  
146  
158  
168  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD33  
VDD33  
VDD33  
VDD33  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K7  
74  
82  
96  
107  
M7  
P7  
G8  
J8  
L8  
139  
N8  
H9  
157  
175  
176  
J9  
K9  
L9  
M9  
P9  
G10  
J10  
K10  
L10  
M10  
N10  
H11  
J11  
K11  
L11  
M11  
P11  
G12  
J12  
K12  
L12  
M12  
N12  
H13  
K13  
M13  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
102  
NXP Semiconductors  
Pinouts  
364  
176  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP LQFP  
BGA  
P13  
G14  
J14  
L14  
N14  
N7  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
FA_VDD  
VBAT  
VSS  
FA_VDD  
VBAT  
VSS  
V14  
FLG  
12.2 Pinout diagrams  
NOTE  
The 176 LQFP parts are not pin compatible between the F and  
R series families devices.  
NOTE  
If tamper detection is not required, the tamper pins must be tied  
to ground.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
103  
Pinouts  
VSS  
VDD  
1
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PTD17  
PTD18  
PTD19  
PTD20  
PTD21  
VDD33  
PTD22  
VDD  
2
JTCLK/SWCLK  
JTDI  
3
4
JTDO  
5
JTMS/SWDIO  
PTA12  
6
7
PTC0  
8
PTC1  
9
PTD23  
PTB9  
VDD33  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
PTC2  
PTE23  
PTB8  
PTC3  
VSS  
PTE28  
PTE19  
PTE18  
PTE17  
PTE16  
PTE15  
PTE12  
PTE11  
PTE10  
PTE9  
PTC4  
PTC5  
PTC6  
PTC7  
PTC8  
PTA6  
VSS  
VDD33  
VDD  
FLG  
Ext_POR  
VDDREG  
VSS  
PTE8  
PTE7  
VDD33  
VSS  
BCTRL  
TEST  
PTE4  
RESETB/RESET_OUT  
DACO0  
PTE2  
PTE1  
DACO1  
PTE0  
VDDA33_ADC  
VSSA33_ADC  
VREFL_ADC  
VREFH_ADC  
VADCSE0  
VDD12_AFE  
VADCSE1  
VSS12_AFE  
VSSA33_AFE  
VDDA33_AFE  
VADC_AFE_BANDGAP  
PTC31  
VDD  
PTD13  
PTD12  
PTD11  
PTD10  
PTD9  
VSS  
98  
97  
96  
95  
VDD33  
PTD8  
PTD7  
PTD6  
PTD5  
PTD4  
PTD3  
94  
93  
92  
91  
PTA16  
90  
PTA17  
89  
Figure 59. 176 LQFP Pinout Diagram  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
104  
NXP Semiconductors  
Pinouts  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
B
C
D
E
F
VSS  
DDR_  
CLK[0]  
DDR_ZQ  
DDR_  
RAS_b  
DDR_  
CKE[0]  
DDR_A[4] DDR_A[7] DDR_A[2] DDR_A[6] DDR_A[13] DDR_A[8]  
PTE20  
PTB20  
PTB15  
PTB17  
PTB28  
PTB26  
PTB24  
PTB23  
VSS  
A
B
C
D
E
F
DDR_  
ODT[1]  
DDR_  
CLK_b[0]  
VSS  
DDR_  
CAS_b  
VSS  
DDR_A[5] DDR_A[3]  
VSS  
DDR_A[9] DDR_A[15]  
VSS  
PTB18  
VDD33  
PTB22  
PTB21  
VSS  
PTB14  
PTB16  
PTB11  
VSS  
PTB10  
VDD33  
PTB13  
PTC28  
VSS  
PTB25  
PTA23  
VSS  
PTA20  
VDD33  
PTA21  
PTD18  
VDD33  
PTD25  
PTD29  
VSS  
VSS  
PTE25  
PTE24  
VSS  
PTE27  
PTE26  
PTD16  
PTD17  
PTD22  
PTD23  
PTD30  
PTD31  
PTE17  
PTE16  
PTE7  
DDR_D[13]  
VSS  
DDR_D[6]  
DDR_  
ODT[0]  
DDR_  
CS_b[0]  
DDR_  
WE_b  
DDR_A[0] DDR_BA[0] DDR_BA[1] DDR_A[12] DDR_A[1]  
PTB19  
PTB7  
PTC29  
PTC26  
PTC27  
PTD19  
PTD26  
PTD27  
PTB8  
DDR_D[9] DDR_D[15]  
DDR_  
DQS[0]  
DDR_  
D[2]  
SDRAMC_  
VDD1P5  
DDR_  
RESET  
DDR_A[10] DDR_BA[2] DDR_A[14]  
DDR_  
A[11]  
SDRAMC_  
VDD1P5  
DDR_  
DQS[1]  
DDR_  
D[11]  
DDR_  
DQS_b[0]  
SDRAMC_  
VDD1P5  
VSS  
SDRAMC_ SDRAMC_  
VSS  
SDRAMC_ SDRAMC_  
VSS  
PTB12  
PTA22  
PTD20  
VSS  
VDD2P5  
VDD1P5  
VDD1P5  
VDD2P5  
DDR_  
DQS_b[1]  
VSS  
DDR_D[4]  
DDR_  
D[0]  
SDRAMC_  
VDD1P5  
PTD21  
PTD24  
VSS  
G
H
J
DDR_  
D[12]  
DDR_  
DQM[1]  
DDR_  
D[7]  
DDR_  
D[3]  
DDR_  
VREF  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
G
H
J
DDR_  
D[10]  
DDR_  
D[14]  
DDR_  
D[1]  
VSS  
SDRAMC_  
VDD1P5  
PTD28  
PTE23  
VDD33  
PTE12  
PTE9  
DDR_D[8]  
JTDO  
VSS  
JTDI  
DDR_D[5]  
VDD33  
PTA12  
PTC3  
DDR_  
DQM[0]  
SDRAMC_  
VDD2P5  
VDD  
PTB9  
PTE18  
VSS  
K
L
JTCLK/  
SWCLK  
SDRAMC_  
VDD1P5  
VSS  
PTE28  
PTE11  
PTE10  
PTE0  
PTE19  
PTE15  
VSS  
K
L
JTMS  
/SWDIO  
PTC4  
VSS  
PTC0  
VSS  
PTC1  
PTC2  
VDD  
M
N
P
R
T
PTC5  
PTC6  
VSS  
PTE8  
PTE2  
VSS  
M
N
P
R
T
PTC7  
PTC15  
VSS  
VDD33  
PTC12  
PTC16  
TEST  
PTC8  
PTC11  
PTC17  
PTA6  
FA_VDD  
VSS  
VDD33  
PTA30  
PTA25  
VDD33  
PTD8  
PTE1  
PTE4  
PTC13  
PTC14  
TEST2  
DACO0  
VDDREG  
PTA31  
PTA24  
PTE5  
PTA29  
VSS  
PTA28  
PTA27  
PTD11  
PTD10  
PTD6  
VSS12_  
AFE  
PTA26  
PTD12  
VSS  
DECAP_  
V25_LDO  
_OUT  
RESETB  
/RESET_  
OUT  
EXT_TAMPER2  
/EXT_WM0_  
TAMPER_IN  
BCTRL  
DACO1  
VDD12_  
AFE  
PTB0  
PTA19  
PTA18  
VSS  
PTB1  
VSS  
PTC30  
PTB27  
VDD33  
PTB6  
USB0_DM USB0_DP  
VDD33_  
LDOIN  
EXT_  
TAMPER0  
PTC9  
PTC10  
PTA7  
PTD13  
PTD9  
VADC_  
AFE_  
BANDGAP  
USB1_  
EXT_TAMPER4  
/EXT_WM1_  
TAMPER_IN  
EXT_TAMPER3  
/EXT_WM0_  
TAMPER_OUT  
EXT_TAMPER5  
U
V
W
Y
VREFL_  
ADC  
VADCSE1  
VSS_KEL0  
VSS  
EXT_  
TAMPER1  
VDD33  
PTE21  
PTE6  
U
V
W
Y
/EXT_WM1_  
VBUS_  
TAMPER_OUT  
DETECT  
DECAP_  
V11_LDO_  
OUT  
VDDA33_ VSSA33_ VDDA33_ VSSA33_ VADCSE3  
ADC ADC AFE AFE  
PTB2  
PTB3  
USB1_DM  
USB1_DP  
USB0_  
GND  
VSS  
VBAT  
VSS  
PTD2  
PTD7  
PTD4  
VREFH_ ADC0SE9 ADC1SE8 VADCSE2  
ADC  
PTC31  
USB1_  
VBUS  
USB0_  
VBUS  
XTAL32  
XTAL  
LVDS0P  
PTE14  
PTE22  
VDD33  
PTD5  
USB0_  
VBUS_  
DETECT  
VSS  
1
ADC0SE8 ADC1SE9 VADCSE0  
PTA16  
5
PTA17  
6
PTB4  
7
PTB5  
8
USB1_GND  
9
USB_  
DCAP  
EXTAL32  
12  
EXTAL  
13  
LVDS0N  
14  
PTE3  
15  
PTE13  
16  
PTD0  
17  
PTD1  
18  
PTD3  
19  
VSS  
20  
2
3
4
10  
11  
Figure 60. 364-pin BGA package ballmap  
12.2.1 GPIO Mapping  
Table 78. RGPIO versus Pins  
RGPIO  
In GPIO module  
Corresponding Pin  
on the chip  
IOMUX register name  
IOMUX register  
address  
RGPIO[0]  
PORT0[0]  
PTA6  
IOMUXC_PTA6  
40048000  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
105  
Pinouts  
Table 78. RGPIO versus Pins (continued)  
RGPIO  
In GPIO module  
Corresponding Pin  
on the chip  
IOMUX register name  
IOMUX register  
address  
RGPIO[1]  
RGPIO[2]  
PORT0[1]  
PORT0[2]  
PORT0[3]  
PORT0[4]  
PORT0[5]  
PORT0[6]  
PORT0[7]  
PORT0[8]  
PORT0[9]  
PORT0[10]  
PORT0[11]  
PORT0[12]  
PORT0[13]  
PORT0[14]  
PORT0[15]  
PORT0[16]  
PORT0[17]  
PORT0[18]  
PORT0[19]  
PORT0[20]  
PORT0[21]  
PORT0[22]  
PORT0[23]  
PORT0[24]  
PORT0[25]  
PORT0[26]  
PORT0[27]  
PORT0[28]  
PORT0[29]  
PORT0[30]  
PORT0[31]  
PORT1[0]  
PORT1[1]  
PORT1[2]  
PORT1[3]  
PORT1[4]  
PORT1[5]  
PORT1[6]  
PORT1[7]  
PTA8  
PTA9  
IOMUXC_PTA8  
IOMUXC_PTA9  
IOMUXC_PTA10  
IOMUXC_PTA11  
IOMUXC_PTA12  
IOMUXC_PTA16  
IOMUXC_PTA17  
IOMUXC_PTA18  
IOMUXC_PTA19  
IOMUXC_PTA20  
IOMUXC_PTA21  
IOMUXC_PTA22  
IOMUXC_PTA23  
IOMUXC_PTA24  
IOMUXC_PTA25  
IOMUXC_PTA26  
IOMUXC_PTA27  
IOMUXC_PTA28  
IOMUXC_PTA29  
IOMUXC_PTA30  
IOMUXC_PTA31  
IOMUXC_PTB0  
IOMUXC_PTB1  
IOMUXC_PTB2  
IOMUXC_PTB3  
IOMUXC_PTB4  
IOMUXC_PTB5  
IOMUXC_PTB6  
IOMUXC_PTB7  
IOMUXC_PTB8  
IOMUXC_PTB9  
IOMUXC_PTB10  
IOMUXC_PTB11  
IOMUXC_PTB12  
IOMUXC_PTB13  
IOMUXC_PTB14  
IOMUXC_PTB15  
IOMUXC_PTB16  
IOMUXC_PTB17  
40048004  
40048008  
4004800C  
40048010  
40048014  
40048018  
4004801C  
40048020  
40048024  
40048028  
4004802C  
40048030  
40048034  
40048038  
4004803C  
40048040  
40048044  
40048048  
4004804C  
40048050  
40048054  
40048058  
4004805C  
40048060  
40048064  
40048068  
4004806C  
40048070  
40048074  
40048078  
4004807C  
40048080  
40048084  
40048088  
4004808C  
40048090  
40048094  
40048098  
4004809C  
RGPIO[3]  
PTA10  
PTA11  
PTA12  
PTA16  
PTA17  
PTA18  
PTA19  
PTA20  
PTA21  
PTA22  
PTA23  
PTA24  
PTA25  
PTA26  
PTA27  
PTA28  
PTA29  
PTA30  
PTA31  
PTB0  
RGPIO[4]  
RGPIO[5]  
RGPIO[6]  
RGPIO[7]  
RGPIO[8]  
RGPIO[9]  
RGPIO[10]  
RGPIO[11]  
RGPIO[12]  
RGPIO[13]  
RGPIO[14]  
RGPIO[15]  
RGPIO[16]  
RGPIO[17]  
RGPIO[18]  
RGPIO[19]  
RGPIO[20]  
RGPIO[21]  
RGPIO[22]  
RGPIO[23]  
RGPIO[24]  
RGPIO[25]  
RGPIO[26]  
RGPIO[27]  
RGPIO[28]  
RGPIO[29]  
RGPIO[30]  
RGPIO[31]  
RGPIO[32]  
RGPIO[33]  
RGPIO[34]  
RGPIO[35]  
RGPIO[36]  
RGPIO[37]  
RGPIO[38]  
RGPIO[39]  
PTB1  
PTB2  
PTB3  
PTB4  
PTB5  
PTB6  
PTB7  
PTB8  
PTB9  
PTB10  
PTB11  
PTB12  
PTB13  
PTB14  
PTB15  
PTB16  
PTB17  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
106  
NXP Semiconductors  
Pinouts  
Table 78. RGPIO versus Pins (continued)  
RGPIO  
In GPIO module  
Corresponding Pin  
on the chip  
IOMUX register name  
IOMUX register  
address  
400480A0  
400480A4  
400480A8  
400480AC  
400480B0  
400480B4  
400480B8  
400480BC  
400480C0  
400480C4  
400480C8  
400480CC  
400480D0  
400480D4  
400480D8  
400480DC  
400480E0  
400480E4  
400480E8  
400480EC  
400480F0  
400480F4  
400480F8  
400480FC  
40048100  
40048104  
40048108  
4004810C  
40048110  
40048114  
40048118  
4004811C  
40048120  
40048124  
40048128  
4004812C  
40048130  
40048134  
40048138  
RGPIO[40]  
RGPIO[41]  
RGPIO[42]  
RGPIO[43]  
RGPIO[44]  
RGPIO[45]  
RGPIO[46]  
RGPIO[47]  
RGPIO[48]  
RGPIO[49]  
RGPIO[50]  
RGPIO[51]  
RGPIO[52]  
RGPIO[53]  
RGPIO[54]  
RGPIO[55]  
RGPIO[56]  
RGPIO[57]  
RGPIO[58]  
RGPIO[59]  
RGPIO[60]  
RGPIO[61]  
RGPIO[62]  
RGPIO[63]  
RGPIO[64]  
RGPIO[65]  
RGPIO[66]  
RGPIO[67]  
RGPIO[68]  
RGPIO[69]  
RGPIO[70]  
RGPIO[71]  
RGPIO[72]  
RGPIO[73]  
RGPIO[74]  
RGPIO[75]  
RGPIO[76]  
RGPIO[77]  
RGPIO[78]  
PORT1[8]  
PORT1[9]  
PORT1[10]  
PORT1[11]  
PORT1[12]  
PORT1[13]  
PORT1[14]  
PORT1[15]  
PORT1[16]  
PORT1[17]  
PORT1[18]  
PORT1[19]  
PORT1[20]  
PORT1[21]  
PORT1[22]  
PORT1[23]  
PORT1[24]  
PORT1[25]  
PORT1[26]  
PORT1[27]  
PORT1[28]  
PORT1[29]  
PORT1[30]  
PORT1[31]  
PORT2[0]  
PORT2[1]  
PORT2[2]  
PORT2[3]  
PORT2[4]  
PORT2[5]  
PORT2[6]  
PORT2[7]  
PORT2[8]  
PORT2[9]  
PORT2[10]  
PORT2[11]  
PORT2[12]  
PORT2[13]  
PORT2[14]  
PTB18  
PTB19  
PTB20  
PTB21  
PTB22  
PTC0  
IOMUXC_PTB18  
IOMUXC_PTB19  
IOMUXC_PTB20  
IOMUXC_PTB21  
IOMUXC_PTB22  
IOMUXC_PTC0  
IOMUXC_PTC1  
IOMUXC_PTC2  
IOMUXC_PTC3  
IOMUXC_PTC4  
IOMUXC_PTC5  
IOMUXC_PTC6  
IOMUXC_PTC7  
IOMUXC_PTC8  
IOMUXC_PTC9  
IOMUXC_PTC10  
IOMUXC_PTC11  
IOMUXC_PTC12  
IOMUXC_PTC13  
IOMUXC_PTC14  
IOMUXC_PTC15  
IOMUXC_PTC16  
IOMUXC_PTC17  
IOMUXC_PTD31  
IOMUXC_PTD30  
IOMUXC_PTD29  
IOMUXC_PTD28  
IOMUXC_PTD27  
IOMUXC_PTD26  
IOMUXC_PTD25  
IOMUXC_PTD24  
IOMUXC_PTD23  
IOMUXC_PTD22  
IOMUXC_PTD21  
IOMUXC_PTD20  
IOMUXC_PTD19  
IOMUXC_PTD18  
IOMUXC_PTD17  
IOMUXC_PTD16  
PTC1  
PTC2  
PTC3  
PTC4  
PTC5  
PTC6  
PTC7  
PTC8  
PTC9  
PTC10  
PTC11  
PTC12  
PTC13  
PTC14  
PTC15  
PTC16  
PTC17  
PTD31  
PTD30  
PTD29  
PTD28  
PTD27  
PTD26  
PTD25  
PTD24  
PTD23  
PTD22  
PTD21  
PTD20  
PTD19  
PTD18  
PTD17  
PTD16  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
107  
Pinouts  
Table 78. RGPIO versus Pins (continued)  
RGPIO  
In GPIO module  
Corresponding Pin  
on the chip  
IOMUX register name  
IOMUX register  
address  
RGPIO[79]  
RGPIO[80]  
RGPIO[81]  
RGPIO[82]  
RGPIO[83]  
RGPIO[84]  
RGPIO[85]  
RGPIO[86]  
RGPIO[87]  
RGPIO[88]  
RGPIO[89]  
RGPIO[90]  
RGPIO[91]  
RGPIO[92]  
RGPIO[93]  
RGPIO[94]  
RGPIO[95]  
RGPIO[96]  
RGPIO[97]  
RGPIO[98]  
RGPIO[99]  
RGPIO[100]  
RGPIO[101]  
RGPIO[102]  
RGPIO[103]  
RGPIO[104]  
RGPIO[105]  
RGPIO[106]  
RGPIO[107]  
RGPIO[108]  
RGPIO[109]  
RGPIO[110]  
RGPIO[111]  
RGPIO[112]  
RGPIO[113]  
RGPIO[114]  
RGPIO[115]  
RGPIO[116]  
RGPIO[117]  
PORT2[15]  
PORT2[16]  
PORT2[17]  
PORT2[18]  
PORT2[19]  
PORT2[20]  
PORT2[21]  
PORT2[22]  
PORT2[23]  
PORT2[24]  
PORT2[25]  
PORT2[26]  
PORT2[27]  
PORT2[28]  
PORT2[29]  
PORT2[30]  
PORT2[31]  
PORT3[0]  
PORT3[1]  
PORT3[2]  
PORT3[3]  
PORT3[4]  
PORT3[5]  
PORT3[6]  
PORT3[7]  
PORT3[8]  
PORT3[9]  
PORT3[10]  
PORT3[11]  
PORT3[12]  
PORT3[13]  
PORT3[14]  
PORT3[15]  
PORT3[16]  
PORT3[17]  
PORT3[18]  
PORT3[19]  
PORT3[20]  
PORT3[21]  
PTD0  
PTD1  
PTD2  
PTD3  
PTD4  
PTD5  
PTD6  
PTD7  
PTD8  
PTD9  
PTD10  
PTD11  
PTD12  
PTD13  
PTB23  
PTB24  
PTB25  
PTB26  
PTB27  
PTB28  
PTC26  
PTC27  
PTC28  
PTC29  
PTC30  
PTC31  
PTE0  
IOMUXC_PTD0  
IOMUXC_PTD1  
IOMUXC_PTD2  
IOMUXC_PTD3  
IOMUXC_PTD4  
IOMUXC_PTD5  
IOMUXC_PTD6  
IOMUXC_PTD7  
IOMUXC_PTD8  
IOMUXC_PTD9  
IOMUXC_PTD10  
IOMUXC_PTD11  
IOMUXC_PTD12  
IOMUXC_PTD13  
IOMUXC_PTB23  
IOMUXC_PTB24  
IOMUXC_PTB25  
IOMUXC_PTB26  
IOMUXC_PTB27  
IOMUXC_PTB28  
IOMUXC_PTC26  
IOMUXC_PTC27  
IOMUXC_PTC28  
IOMUXC_PTC29  
IOMUXC_PTC30  
IOMUXC_PTC31  
IOMUXC_PTE0  
IOMUXC_PTE1  
IOMUXC_PTE2  
IOMUXC_PTE3  
IOMUXC_PTE4  
IOMUXC_PTE5  
IOMUXC_PTE6  
IOMUXC_PTE7  
IOMUXC_PTE8  
IOMUXC_PTE9  
IOMUXC_PTE10  
IOMUXC_PTE11  
IOMUXC_PTE12  
4004813C  
40048140  
40048144  
40048148  
4004814C  
40048150  
40048154  
40048158  
4004815C  
40048160  
40048164  
40048168  
4004816C  
40048170  
40048174  
40048178  
4004817C  
40048180  
40048184  
40048188  
4004818C  
40048190  
40048194  
40048198  
4004819C  
400481A0  
400481A4  
400481A8  
400481AC  
400481B0  
400481B4  
400481B8  
400481BC  
400481C0  
400481C4  
400481C8  
400481CC  
400481D0  
400481D4  
PTE1  
PTE2  
PTE3  
PTE4  
PTE5  
PTE6  
PTE7  
PTE8  
PTE9  
PTE10  
PTE11  
PTE12  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
108  
NXP Semiconductors  
Pinouts  
Table 78. RGPIO versus Pins (continued)  
RGPIO  
In GPIO module  
Corresponding Pin  
on the chip  
IOMUX register name  
IOMUX register  
address  
400481D8  
400481DC  
400481E0  
400481E4  
400481E8  
400481EC  
400481F0  
400481F4  
400481F8  
400481FC  
40048200  
40048204  
40048208  
4004820C  
40048210  
40048214  
40048218  
RGPIO[118]  
RGPIO[119]  
RGPIO[120]  
RGPIO[121]  
RGPIO[122]  
RGPIO[123]  
RGPIO[124]  
RGPIO[125]  
RGPIO[126]  
RGPIO[127]  
RGPIO[128]  
RGPIO[129]  
RGPIO[130]  
RGPIO[131]  
RGPIO[132]  
RGPIO[133]  
RGPIO[134]  
PORT3[22]  
PORT3[23]  
PORT3[24]  
PORT3[25]  
PORT3[26]  
PORT3[27]  
PORT3[28]  
PORT3[29]  
PORT3[30]  
PORT3[31]  
PORT4[0]  
PORT4[1]  
PORT4[2]  
PORT4[3]  
PORT4[4]  
PORT4[5]  
PORT4[6]  
PTE13  
PTE14  
PTE15  
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
PTE24  
PTE25  
PTE26  
PTE27  
PTE28  
PTA7  
IOMUXC_PTE13  
IOMUXC_PTE14  
IOMUXC_PTE15  
IOMUXC_PTE16  
IOMUXC_PTE17  
IOMUXC_PTE18  
IOMUXC_PTE19  
IOMUXC_PTE20  
IOMUXC_PTE21  
IOMUXC_PTE22  
IOMUXC_PTE23  
IOMUXC_PTE24  
IOMUXC_PTE25  
IOMUXC_PTE26  
IOMUXC_PTE27  
IOMUXC_PTE28  
IOMUXC_PTA7  
12.2.2 Special Signal  
Table 79. Special Signal Considerations  
Special Signal  
Comments  
DDR_VREF  
DDR_ZQ  
When using DDR_VREF with DDR I/O, the nominal reference  
voltage must be half of the SDRAMC_VDD1P5 supply. The  
user must tie DDR_VREF to a precision external resistor  
divider. Shunt each resistor with a closely-mounted 0.1 μF  
capacitor.  
DRAM calibration resistor 240 Ω 1ꢀ used as reference during  
DRAM output buffer driver calibration should be connected  
between this pad and GND  
DECAP_V25_LDO_OUT  
DCAP_V25_LDO_OUT can be tied to SDRAMC_VDD2P5 to  
provide the predriver supply for the DDR I/O segment.  
SDRAMC_VDD1P5 requires an external regulated supply. If  
SDRAMC_VDD2P5 uses an external 2.5V supply, do NOT tie  
it to DCAP_V25_LDO_OUT.  
EXT_POR, TEST  
Factory use only, tie to ground..  
EXT_TAMPER0, EXT_TAMPER1, EXT_TAMPER2,  
EXT_TAMPER3, EXT_TAMPER4, EXT_TAMPER5  
Security related tamper detection inputs, if not in use they  
must be tied to ground.  
FA_VDD  
Factory use only, tie to VDD.  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
109  
Pinouts  
Table 79. Special Signal Considerations (continued)  
Special Signal  
Comments  
JTCLK, JTDI, JTDO, JTMS  
For JTAG the use of external resistors is unnecessary.  
However, if external resistors are used, the user must ensure  
that the on-chip pull-up/down configuration is matched. For  
example, do not use an external pull down on an input that  
has on-chip pull-up. JTDO is configured with a keeper circuit  
such that the floating condition is eliminated if an external pull  
resistor is not present. An external pull resistor on JTDO is  
detrimental and should be avoided.  
LVDS0N, LVDS0P  
Not recommended for application use, intended for clock  
observation purposes during debug only.  
RESETB/RESET_OUT  
Active low input used to generate a system wide reset (except  
the SRTC). A glitch filter is include to help prevent  
unexpected resets, a minimum pulse width of 125 nsecs is  
required to guarantee a reset is detected.  
XTAL, EXTAL  
A 24.0 MHz fundamental mode crystal should be connected  
between XTAL and EXTAL. The crystal must be rated for a  
drive level of 250 μW or higher. An ESR (equivalent series  
resistance) of 80 Ω or less is recommended. This clock is  
used as a reference for USB, so there are strict frequency  
tolerance and jitter requirements. The crystal can be  
eliminated if an external 24 MHz oscillator is available in the  
system. In this case, XTAL must be directly driven by the  
external oscillator and EXTAL floated. The XTAL signal level  
must swing from ~0.8 x DECAP_V11_ LDO_OUT to ~0.2 V.  
XTAL32, EXTAL32  
If the user wishes to configure XTAL32 and EXTAL32 as an  
RTC oscillator, a 32.768 kHz crystal, (≤50 kΩ ESR, 10 pF  
load) should be connected between XTAL32 and EXTAL32.  
Keep in mind the capacitors implemented on either side of the  
crystal are about twice the crystal load capacitor. To hit the  
exact oscillation frequency, the board capacitors need to be  
reduced to account for board and chip parasitics. The  
integrated oscillation amplifier is self biasing, but relatively  
weak. Care must be taken to limit parasitic leakage from  
XTAL32 and EXTAL32 to either power or ground (>100 MΩ).  
This will debias the amplifier and cause a reduction of startup  
margin. Typically XTAL32 and EXTAL32 should bias to  
approximately 0.5 V. If it is desired to feed an external low  
frequency clock into XTAL32 the EXTAL32 pin should be left  
floating or driven with a complimentary signal. The logic level  
of this forcing clock should not exceed DECAP_V11_  
LDO_OUT level and the frequency should be <100 kHz under  
typical conditions. In the case where the SIRC is used, it is  
recommended to connect XTAL32 to ground and leave  
EXTAL32 floating.  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
110  
NXP Semiconductors  
Power Supply Pins  
13 Power Supply Pins  
13.1 Power Supply Pins  
Table 80. Power Supply Pins  
Supply Rail Name  
DECAP_V11_ LDO_OUT  
DECAP_V25_ LDO_OUT  
364 MAP BGA  
176 LQFP (R-series ONLY)  
69  
Comment  
On-chip 1.1V LDO output  
V12  
T11  
65  
On-chip 2.5V LDO output  
(Intended to supply DRAM IO  
when required)  
FA_VDD  
N7  
Factory Use Only (Connect to  
VDD, internally bonded in  
LQFP)  
SDRAMC_ VDD1P5  
D5, D11, E4, E7, E9, F5, H5, DRAM not supported in LQFP 1.5V DDR3 DRAM Supply  
K5  
(1.2V for LPDDR2)  
SDRAMC_ VDD2P5  
USB_DCAP  
E6, E10, J5  
Y10  
DRAM not supported in LQFP 2.5V DRAM Supply  
59  
On-chip 3V LDO output  
(Intended to be fed by  
external USB VBUS supply)  
USB0_GND  
V10  
Y9  
61  
USB1_GND  
USB1 not supported in LQFP  
41  
VADC_AFE_ BANDGAP  
VBAT  
U5  
Video ADC Bandgap Output  
V14  
VBAT not supported in LQFP On-chip SNVS regulator  
battery back-up supply option  
VDD  
G7, G9, G11, G13, H8, H10, 2, 22, 48, 85, 102, 125, 136, 1.2V Core Supply (Internally  
H12, H14, J7, J13, K8, K14,  
L7, L13, M8, M14, N9, N11,  
N13, P8, P10, P12, P14  
174  
Regulated)  
VDD33  
C12, C15, C18, F18, K3, K17, 10, 21, 52, 83, 95, 108, 127, 3.3V IO Supply  
N3, N17, T17, U16, V8, W18 140, 146, 158, 168  
VDDA33_ADC  
VDD12_AFE  
VDDA33_AFE  
VDD33_ LDOIN  
V1  
31  
36  
40  
68  
3.3V Analog To Digital  
convertor supply  
T5  
1.2V Analog Front End supply  
for Video ADC  
V3  
T12  
3.3V Analog Front End supply  
for Video ADC  
On-chip 2.5V LDO, 1.1V LDO  
and SNVS regulators input  
supply  
VDDREG  
P5  
24  
On-chip HPREG, LPREG,  
WBREG and ULPREG  
regulators input supply  
VREFH_ADC  
VREFL_ADC  
W1  
U3  
34  
33  
ATD High Voltage Reference  
ATD Low Voltage Reference  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
111  
Functional Assignment Pins  
Table 80. Power Supply Pins (continued)  
Supply Rail Name  
364 MAP BGA  
176 LQFP (R-series ONLY)  
Comment  
VSS  
A1, A20, B3, B5, B8, B11,  
1, 13, 20, 25, 45, 67, 74, 82, Ground. Connect "Flag pad  
B13, B16, B19, C2, D17, E5, 96, 107, 139, 144, 157, 175, (FLG)" to the internal GND  
E8, E11, E14, E19, F2, G8,  
G10, G12, G14, G17, H4, H7,  
H9, H11, H13, H19, J2, J8,  
J9, J10, J11, J12, J14, J18,  
K7, K9, K10, K11, K12, K13,  
L8, L9, L10, L11, L12, L14,  
L19, M2, M4, M7, M9, M10,  
M11, M12, M13, M18, N8,  
N10, N12, N14, P7, P9, P11,  
P13, P19, R2, R18, U7, U19,  
V11, V13, V17, W6, Y1, Y20  
176, FLG  
plane with numerous vias—for  
both electrical and thermal  
purposes.  
VSSA33_ADC  
VSS12_AFE  
VSSA33_AFE  
VSS_KEL0  
V2  
32  
38  
39  
66  
ATD Ground  
R5  
V4  
Video ADC Ground  
Video ADC Ground  
U11  
Ground (VSS and VSS_KEL0  
are NOT connected internally)  
14 Functional Assignment Pins  
14.1 Functional Assignment Pins  
Table 81. Functional Assignment Pins  
Signal  
Name  
364 MAP  
BGA  
176 LQFP  
(R-series  
ONLY)  
Power  
Group  
Pad Type  
Default  
Mode  
(Reset)  
Default  
Function  
Input/  
Output  
Value  
ADC0SE8  
ADC0SE9  
ADC1SE8  
ADC1SE9  
Y2  
W2  
W3  
Y3  
VDDA33_A Analog  
DC  
ADC0SE8  
ADC0SE9  
ADC1SE8  
ADC1SE9  
VDDA33_A Analog  
DC  
VDDA33_A Analog  
DC  
VDDA33_A Analog  
DC  
BCTRL  
DACO0  
T2  
U1  
26  
29  
VDDREG Analog  
BCTRL  
DACO0  
VDDA33_A Analog  
DC  
DACO1  
U2  
C7  
30  
VDDA33_A Analog  
DC  
DACO1  
DDR_A[0]  
SDRAMC_ DDR  
VDD2P5  
DDR_A[0]  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
112  
NXP Semiconductors  
Functional Assignment Pins  
Table 81. Functional Assignment Pins  
(continued)  
Signal  
Name  
364 MAP  
BGA  
176 LQFP  
(R-series  
ONLY)  
Power  
Group  
Pad Type  
Default  
Mode  
(Reset)  
Default  
Function  
Input/  
Output  
Value  
DDR_A[1]  
DDR_A[2]  
DDR_A[3]  
DDR_A[4]  
DDR_A[5]  
DDR_A[6]  
DDR_A[7]  
DDR_A[8]  
DDR_A[9]  
DDR_A[10]  
DDR_A[11]  
DDR_A[12]  
DDR_A[13]  
DDR_A[14]  
DDR_A[15]  
DDR_BA[0]  
DDR_BA[1]  
DDR_BA[2]  
C11  
A8  
SDRAMC_ DDR  
VDD2P5  
DDR_A[1]  
DDR_A[2]  
DDR_A[3]  
DDR_A[4]  
DDR_A[5]  
DDR_A[6]  
DDR_A[7]  
DDR_A[8]  
DDR_A[9]  
DDR_A[10]  
DDR_A[11]  
DDR_A[12]  
DDR_A[13]  
DDR_A[14]  
DDR_A[15]  
DDR_BA[0]  
DDR_BA[1]  
DDR_BA[2]  
SDRAMC_ DDR  
VDD2P5  
B7  
SDRAMC_ DDR  
VDD2P5  
A6  
SDRAMC_ DDR  
VDD2P5  
B6  
SDRAMC_ DDR  
VDD2P5  
A9  
SDRAMC_ DDR  
VDD2P5  
A7  
SDRAMC_ DDR  
VDD2P5  
A11  
B9  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
D7  
D10  
C10  
A10  
D9  
B10  
C8  
C9  
D8  
B4  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
DDR_CAS_  
b
SDRAMC_ DDR  
VDD2P5  
DDR_CAS_  
b
DDR_CKE[0  
]
A5  
SDRAMC_ DDR  
VDD2P5  
DDR_CKE[0 —  
]
DDR_CLK[0  
]
A2  
SDRAMC_ DDR  
VDD2P5  
DDR_CLK[0 —  
]
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
113  
Functional Assignment Pins  
Table 81. Functional Assignment Pins  
(continued)  
Signal  
Name  
364 MAP  
BGA  
176 LQFP  
(R-series  
ONLY)  
Power  
Group  
Pad Type  
Default  
Mode  
(Reset)  
Default  
Function  
Input/  
Output  
Value  
DDR_CLK_  
b[0]  
B2  
C5  
F4  
H3  
D4  
G4  
F3  
J3  
SDRAMC_ DDR  
VDD2P5  
DDR_CLK_  
b[0]  
DDR_CS_b[  
0]  
SDRAMC_ DDR  
VDD2P5  
DDR_CS_b[ —  
0]  
DDR_D[0]  
DDR_D[1]  
DDR_D[2]  
DDR_D[3]  
DDR_D[4]  
DDR_D[5]  
DDR_D[6]  
DDR_D[7]  
DDR_D[8]  
DDR_D[9]  
DDR_D[10]  
DDR_D[11]  
DDR_D[12]  
DDR_D[13]  
DDR_D[14]  
DDR_D[15]  
SDRAMC_ DDR  
VDD2P5  
DDR_D[0]  
DDR_D[1]  
DDR_D[2]  
DDR_D[3]  
DDR_D[4]  
DDR_D[5]  
DDR_D[6]  
DDR_D[7]  
DDR_D[8]  
DDR_D[9]  
DDR_D[10]  
DDR_D[11]  
DDR_D[12]  
DDR_D[13]  
DDR_D[14]  
DDR_D[15]  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
C3  
G3  
J1  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
D1  
H1  
E2  
G1  
C1  
H2  
D2  
J4  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
SDRAMC_ DDR  
VDD2P5  
DDR_DQM[  
0]  
SDRAMC_ DDR  
VDD2P5  
DDR_DQM[  
0]  
DDR_DQM[  
1]  
G2  
D3  
SDRAMC_ DDR  
VDD2P5  
DDR_DQM[  
1]  
DDR_DQS[  
0]  
SDRAMC_ DDR  
VDD2P5  
DDR_DQS[  
0]  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
114  
NXP Semiconductors  
Functional Assignment Pins  
Table 81. Functional Assignment Pins  
(continued)  
Signal  
Name  
364 MAP  
BGA  
176 LQFP  
(R-series  
ONLY)  
Power  
Group  
Pad Type  
Default  
Mode  
(Reset)  
Default  
Function  
Input/  
Output  
Value  
DDR_DQS_  
b[0]  
E3  
E1  
F1  
C4  
B1  
A4  
D6  
G5  
C6  
A3  
SDRAMC_ DDR  
VDD2P5  
DDR_DQS_ —  
b[0]  
DDR_DQS[  
1]  
SDRAMC_ DDR  
VDD2P5  
DDR_DQS[  
1]  
DDR_DQS_  
b[1]  
SDRAMC_ DDR  
VDD2P5  
DDR_DQS_ —  
b[1]  
DDR_ODT[0  
]
SDRAMC_ DDR  
VDD2P5  
DDR_ODT[0 —  
]
DDR_ODT[1  
]
SDRAMC_ DDR  
VDD2P5  
DDR_ODT[1 —  
]
DDR_RAS_  
b
SDRAMC_ DDR  
VDD2P5  
DDR_RAS_  
b
DDR_RESE  
T
SDRAMC_ DDR  
VDD2P5  
DDR_RESE —  
T
DDR_VREF  
DDR_WE_b  
DDR_ZQ  
SDRAMC_ DDR  
VDD2P5  
DDR_VREF —  
SDRAMC_ DDR  
VDD2P5  
DDR_WE_b —  
SDRAMC_ DDR  
VDD2P5  
DDR_ZQ  
EXT_POR  
T1  
23  
VDD33  
VBAT  
GPIO  
EXT_POR  
EXT_TAMP  
ER0  
T14  
Analog  
EXT_TAMP  
ER0  
EXT_TAMP  
ER1  
U14  
T13  
VBAT  
VBAT  
Analog  
Analog  
EXT_TAMP  
ER1  
EXT_TAMP  
ER2/  
EXT_TAMP  
ER2/  
EXT_WM0_  
TAMPER_I  
N
EXT_WM0_  
TAMPER_I  
N
EXT_TAMP  
ER3/  
EXT_WM0_  
TAMPER_  
OUT  
U13  
U12  
U10  
VBAT  
VBAT  
VBAT  
Analog  
Analog  
Analog  
EXT_TAMP  
ER3/  
EXT_WM0_  
TAMPER_  
OUT  
EXT_TAMP  
ER4/  
EXT_WM1_  
TAMPER_I  
N
EXT_TAMP  
ER4/  
EXT_WM1_  
TAMPER_I  
N
EXT_TAMP  
ER5/  
EXT_TAMP  
ER5/  
EXT_WM1_  
TAMPER_  
OUT  
EXT_WM1_  
TAMPER_  
OUT  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
115  
Functional Assignment Pins  
Table 81. Functional Assignment Pins  
(continued)  
Signal  
Name  
364 MAP  
BGA  
176 LQFP  
(R-series  
ONLY)  
Power  
Group  
Pad Type  
Default  
Mode  
(Reset)  
Default  
Function  
Input/  
Output  
Value  
EXTAL  
Y13  
Y12  
K4  
73  
70  
3
DECAP_V1 Analog  
EXTAL  
1_  
LDO_OUT  
EXTAL32  
DECAP_V1 Analog  
EXTAL32  
JTAG  
1_  
LDO_OUT  
JTCLK/  
SWCLK  
VDD33  
GPIO  
ALT1  
Input  
100K PU  
JTDI  
K2  
K1  
L1  
4
5
6
VDD33  
VDD33  
VDD33  
GPIO  
GPIO  
GPIO  
ALT1  
ALT1  
ALT1  
JTAG  
JTAG  
JTAG  
Input  
100K PU  
JTDO  
Disabled  
Input  
JTMS/  
100K PU  
SWDIO  
LVDS0P  
W14  
Y14  
DECAP_V2 Analog  
LVDS0P  
LVDS0N  
5_  
LDO_OUT  
LVDS0N  
DECAP_V2 Analog  
5_  
LDO_OUT  
PTA6  
PTA7  
N5  
V15  
L3  
19  
75  
7
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT3  
ALT3  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
RCON30  
RCON31  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
PTA12  
PTA16  
PTA17  
PTA18  
PTA19  
PTA20  
PTA21  
PTA22  
PTA23  
PTA24  
PTA25  
PTA26  
PTA27  
PTA28  
PTA29  
PTA30  
PTA31  
PTB0  
Y5  
43  
44  
46  
47  
143  
145  
147  
148  
Y6  
V6  
U6  
B18  
D18  
E17  
C17  
R16  
R17  
R19  
R20  
P20  
P18  
P17  
P16  
T6  
49  
50  
51  
PTB1  
T7  
Disabled  
Disabled  
PTB2  
V7  
Input  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
116  
NXP Semiconductors  
Functional Assignment Pins  
Table 81. Functional Assignment Pins  
(continued)  
Signal  
Name  
364 MAP  
BGA  
176 LQFP  
(R-series  
ONLY)  
Power  
Group  
Pad Type  
Default  
Mode  
(Reset)  
Default  
Function  
Input/  
Output  
Value  
PTB3  
PTB4  
W7  
Y7  
53  
54  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
GPIO  
ALT0  
GPIO  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT3  
ALT3  
ALT3  
ALT3  
ALT3  
ALT3  
ALT7  
ALT7  
ALT7  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
GPIO  
PTB5  
Y8  
55  
GPIO  
PTB6  
W8  
D13  
J16  
J19  
B15  
D14  
E13  
D15  
B14  
A14  
C14  
A15  
B12  
C13  
A13  
E12  
D12  
A19  
A18  
B17  
A17  
U8  
56  
GPIO  
PTB7  
166  
121  
123  
159  
164  
165  
156  
162  
161  
163  
160  
171  
167  
169  
173  
172  
141  
142  
149  
150  
57  
GPIO  
PTB8  
GPIO  
PTB9  
GPIO  
PTB10  
PTB11  
PTB12  
PTB13  
PTB14  
PTB15  
PTB16  
PTB17  
PTB18  
PTB19  
PTB20  
PTB21  
PTB22  
PTB23  
PTB24  
PTB25  
PTB26  
PTB27  
PTB28  
PTC0  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Disabled  
Disabled  
GPIO  
Input  
GPIO  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
RCON21  
RCON22  
RCON23  
RCON18  
RCON19  
RCON20  
GPIO  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
A16  
L4  
151  
8
Input  
Input  
PTC1  
L5  
9
Input  
PTC2  
M5  
11  
Input  
PTC3  
M3  
12  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
PTC4  
L2  
14  
GPIO  
PTC5  
M1  
15  
GPIO  
PTC6  
N1  
16  
GPIO  
PTC7  
N2  
17  
GPIO  
PTC8  
N4  
18  
GPIO  
PTC9  
T15  
U15  
GPIO  
PTC10  
GPIO  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
117  
Functional Assignment Pins  
Table 81. Functional Assignment Pins  
(continued)  
Signal  
Name  
364 MAP  
BGA  
176 LQFP  
(R-series  
ONLY)  
Power  
Group  
Pad Type  
Default  
Mode  
(Reset)  
Default  
Function  
Input/  
Output  
Value  
PTC11  
PTC12  
PTC13  
PTC14  
PTC15  
PTC16  
PTC17  
PTC26  
PTC27  
PTC28  
PTC29  
PTC30  
PTC31  
PTD0  
P4  
P3  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
GPIO  
ALT0  
GPIO  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT3  
ALT3  
ALT3  
ALT3  
ALT3  
ALT3  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
GPIO  
P1  
GPIO  
R1  
GPIO  
P2  
GPIO  
R3  
GPIO  
R4  
GPIO  
D16  
E16  
E15  
C16  
T8  
153  
154  
155  
152  
58  
RCON24  
RCON25  
RCON26  
RCON27  
RCON28  
RCON29  
GPIO  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
Input  
Input  
Input  
W5  
42  
Input  
Y17  
Y18  
V18  
Y19  
W19  
W20  
V20  
V19  
U17  
U18  
U20  
T20  
T19  
T18  
D20  
E20  
E18  
F16  
F17  
F19  
F20  
G20  
G19  
G18  
86  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
PTD1  
87  
GPIO  
PTD2  
88  
GPIO  
PTD3  
89  
GPIO  
PTD4  
90  
GPIO  
PTD5  
91  
GPIO  
PTD6  
92  
GPIO  
PTD7  
93  
GPIO  
PTD8  
94  
GPIO  
PTD9  
97  
GPIO  
PTD10  
PTD11  
PTD12  
PTD13  
PTD16  
PTD17  
PTD18  
PTD19  
PTD20  
PTD21  
PTD22  
PTD23  
PTD24  
PTD25  
98  
GPIO  
99  
GPIO  
100  
101  
133  
132  
131  
130  
129  
128  
126  
124  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
118  
NXP Semiconductors  
Functional Assignment Pins  
Table 81. Functional Assignment Pins  
(continued)  
Signal  
Name  
364 MAP  
BGA  
176 LQFP  
(R-series  
ONLY)  
Power  
Group  
Pad Type  
Default  
Mode  
(Reset)  
Default  
Function  
Input/  
Output  
Value  
PTD26  
PTD27  
PTD28  
PTD29  
PTD30  
PTD31  
PTE0  
G16  
H16  
H17  
H18  
H20  
J20  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
VDD33  
GPIO  
ALT0  
GPIO  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT2  
ALT2  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT3  
ALT3  
ALT3  
ALT3  
ALT3  
ALT3  
ALT0  
ALT0  
ALT3  
ALT3  
ALT3  
ALT3  
ALT3  
ALT3  
ALT0  
ALT0  
ALT3  
ALT3  
ALT3  
ALT3  
ALT3  
ALT3  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
N16  
N18  
N19  
Y15  
N20  
T16  
W16  
M20  
M19  
M17  
M16  
L16  
L17  
Y16  
W15  
L18  
L20  
K20  
K19  
K18  
A12  
V16  
W17  
J17  
103  
104  
105  
77  
BMODE1  
BMODE0  
GPIO  
Disabled  
Disabled  
PTE1  
Input  
PTE2  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
PTE3  
GPIO  
PTE4  
106  
80  
GPIO  
PTE5  
GPIO  
PTE6  
81  
GPIO  
PTE7  
109  
110  
111  
112  
113  
114  
78  
RCON0  
RCON1  
RCON2  
RCON3  
RCON4  
RCON5  
GPIO  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
PTE8  
Input  
PTE9  
Input  
PTE10  
PTE11  
PTE12  
PTE13  
PTE14  
PTE15  
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
PTE24  
PTE25  
PTE26  
PTE27  
PTE28  
Input  
Input  
Input  
Disabled  
Disabled  
Input  
76  
GPIO  
115  
116  
117  
118  
119  
170  
79  
RCON6  
RCON7  
RCON8  
RCON9  
RCON10  
RCON11  
GPIO  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Input  
Input  
Input  
Input  
Input  
Disabled  
Disabled  
Input  
84  
GPIO  
122  
134  
135  
137  
138  
120  
28  
RCON12  
RCON13  
RCON14  
RCON15  
RCON16  
RCON17  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
D19  
C19  
C20  
B20  
K16  
T4  
Input  
Input  
Input  
Input  
Input  
RESETB/  
RESET_OU  
T
RESETB/  
RESET_OU  
T
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
119  
Functional Assignment Pins  
Table 81. Functional Assignment Pins  
(continued)  
Signal  
Name  
364 MAP  
BGA  
176 LQFP  
(R-series  
ONLY)  
Power  
Group  
Pad Type  
Default  
Mode  
(Reset)  
Default  
Function  
Input/  
Output  
Value  
TEST  
T3  
T9  
27  
62  
63  
60  
VDD33  
GPIO  
TEST  
USB0_DM  
USB0_DP  
USB_DCAP Analog  
USB_DCAP Analog  
USB_DCAP Analog  
USB0_DM  
USB0_DP  
T10  
W11  
USB0_VBU  
S
USB0_VBU  
S
USB0_VBU  
S_ DETECT  
Y11  
64  
USB_DCAP Analog  
USB0_VBU  
S_ DETECT  
USB1_DM  
USB1_DP  
V9  
W9  
USB_DCAP Analog  
USB_DCAP Analog  
USB_DCAP Analog  
USB1_DM  
USB1_DP  
USB1_VBU  
S
W10  
USB1_VBU  
S
USB1_VBU  
S_ DETECT  
U9  
Y4  
USB_DCAP Analog  
USB1_VBU  
S_ DETECT  
VADCSE0  
VADCSE1  
VADCSE2  
VADCSE3  
35  
VDDA33_A Analog  
VADCSE0  
VADCSE1  
VADCSE2  
VADCSE3  
DC /  
VDD12_AF  
E /  
VADC_AFE  
_BANDGAP  
?
U4  
W4  
V5  
37  
VDDA33_A Analog  
DC /  
VDD12_AF  
E /  
VADC_AFE  
_BANDGAP  
?
VDDA33_A Analog  
DC /  
VDD12_AF  
E /  
VADC_AFE  
_BANDGAP  
?
VDDA33_A Analog  
DC /  
VDD12_AF  
E /  
VADC_AFE  
_BANDGAP  
?
XTAL  
W13  
W12  
72  
71  
DECAP_V1 Analog  
XTAL  
1_  
LDO_OUT  
XTAL32  
DECAP_V1 Analog  
XTAL32  
1_  
LDO_OUT  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
120  
NXP Semiconductors  
Revision History  
15 Revision History  
The following table provides a revision history for this document.  
Table 82. Revision History  
Rev.  
No.  
Date  
Substantial Changes  
Rev 1  
Rev 2  
12/2011 Initial release  
2/2012  
Updated feature list  
Updated VREG electrical specifications  
Updated LDO_1P1, LDO2P5 tables  
Updated DDR IO parameters  
Added DDR memory controller parameters  
Updated Power sequencing table  
Added Power supply diagram  
Updated Recommended operating conditions  
Replaced DryIce Tamper Electrical Specifications with Voltage and temperature monitor electrical  
specifications  
Updated VideoADC electricals. Updated VideoADC supply scheme diagram. Added VideoADC  
supply_decoupling diagram  
Added QuadSPI DDR mode electrical specifications  
Updated Fast internal RC oscillator table  
Updated Slow internal RC oscillator table  
Updated Pinouts section  
Rev 3  
4/2012  
Updated device name throughout the document  
Minor editorial updates in the feature list  
Updated VREG electrical specifications  
Updated LDO electrical specifications  
Updated Power consumption operating behaviors table  
Added USB PHY Current Consumption table  
Updated GPIO parameters  
Updated DDR parameters  
Updated Power sequencing  
Updated Power supply figure  
Updated Recommended operating conditions table  
Removed Reset specifications  
Updated 12-bit DAC operating requirements  
Added a note in 12-bit ADC operating conditions section  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
121  
Revision History  
Table 82. Revision History (continued)  
Rev.  
No.  
Date  
Substantial Changes  
Updated VideoADC Specifications table  
Updated LCD driver specifications table  
QuadSPI timing- Replaced VDDE with VDD33  
Added notes in DDR3 Timing Parameters and LPDD2 Timing Parameters sections.  
Updated 24MHz external oscillator electrical characteristics table  
Updated OSC32K Main Characteristics table  
Updated Document Number for 144-pin LQFP  
Changed pin-name from EXT_POR to TEST2, VBAT to VBB  
Updated Pinouts section  
Updated GPIO Mapping  
Rev 4  
8/2012  
Updated Part identification  
Editorial changes in USB PHY Current Consumption in Normal Mode, GPIO AC Electrical  
Characteristics (3.3V power mode)  
Updated Power sequencing table  
Updated Power supply diagram  
Updated AC electrical specification of following modules: DCU, 12-bit DAC, Ethernet, Enhanced Serial  
Audio Interface (ESAI), SAI/I2S, Flexbus, MLB, DSPI, 24MHz External Oscillator, JTAG, Debug, ESAI,  
QSPI  
Updated Thermal Attributes for 364 MAPBGA  
Updated document number for 176-pin LQFP and 364 MAPBGA  
Updated VREG specifications  
Added WBREG specifications  
Updated Recommended operating conditions table  
Updated DAC INL and DNL charts  
Updated Pinouts  
Rev 5  
4/2013  
• Removed references to VF1xxR and refernces to F100 and 144 LQFP and 256 MAPBGA  
• Replaced references to Auto and IMM by R-series and F-series respectively  
• In the feature list, the ARM Core frequency changed to 500 MHz for F-series  
• In the feature list, changed the DRAM controller frequency  
• Updated Part Nummbering format  
• Clarified the Fields table as per Marketing  
• Sample numbers updated  
• From the VREG electrical specifications tables, deleted pre-trimming rows and comments  
• .In the HPREG electrical characteristics table, add footnote on maximum Output Current Capacity  
• In the ULPREG electrical characteristics table, clarified max value of Output voltage @ no load  
and min value of Output voltage @ full load  
• In the WBREG electrical characteristics table, clarified max value of Output voltage @ no load and  
min value of Output voltage @ full load  
• In the LVD electrical specifications table, added typ. values of Upper voltage threshold (value  
@27oC) and Lower voltage threshold (value @27oC)  
• In the LVD DIG electrical specifications table, removed pretrimming values and clarified other  
values  
• Updated LVD DIG electrical specifications values  
• Updated LDO_1P1 tables  
Table continues on the next page...  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
122  
NXP Semiconductors  
Revision History  
Table 82. Revision History (continued)  
Rev.  
No.  
Date  
Substantial Changes  
• Updated LDO_2P5 table  
• Updated Power consumption operating behaviors tables  
• Updated Absolute maximum ratings table  
• Removed Temperature Voltage Monitor section to security RM  
• Updated VideoADC Specifications table  
Rev 6  
1/2014  
• Added QuadSPI electricals  
• Changed VBB references to VBAT  
• In the feature list, clarified that ECC supported for 8-bit mode only, not 16-bit.  
• Revised the part number format  
• Revised the field table  
• Added Absolute Maximum Rating table, which was madde non_cust in the previous version  
• In the Power Consumption Operating Behavior table, Revised min and max value of IDD_LPS3  
and IDD_LPS2. Removed IDD_LPS1 row  
• In the USB PHY Current Consumption table, removed the Normal Mode  
• In the Power Sequence table, revised the Power UP/ Down Order column for USB0_VBUs and  
USB1_VBUS  
• In the Recommended operating conditions table, revised the min value of VBAT. Revised the min  
value of VREFH_ADC Revised the min and max values of SDRAMC_VDD1P5  
• In the Recommended Connections for Unused Analog Interfaces section, added the notes.  
Revised the Recommendation if Unused column  
• In the 12-bit ADC operating conditions, revised Conditions for Ground voltage. Revised min Ref  
High Voltage  
• In the 12-bit DAC operating requirements, revised the min and max value of VREFH_ADC  
• In the SDHC switching specifications, revised the max value of SD6  
• In the 24MHz external oscillator electrical characteristics table, revised the min value of VIH and  
max value of VIL  
Rev 7  
11/2014  
• Updated list of security features on page 1.  
• In "Part number format" figure, updated explanation for '1'.  
• In "Fields" table, updated definition of 'R'.  
• In "Part Numbers" table, added parts SVF331R3K1CKU2, SVF531R3K1CMK4, and  
SVF532R2K1CMK4.  
• In "External NPN ballast" section, updated recommendations for transistor selection.  
• In "DDR parameters" section, updated table footnotes regarding typical condition.  
• In "Power sequencing" table, added comment regarding SDRAMC_VDD1P5: "In case the Ballast  
transistor’s collector is connected to the 1.5 V DRAM supply (instead of the 3.3 V supply), turn this  
1.5 V supply on before turning on the 3.3V."  
• In "VideoADC specifications" table, added supply current values.  
• In "Receive and Transmit signal timing specifications," added the following note: "See the most  
current errata document when using the internally generated RXCLK and TXCLK clocks."  
• Updated "QuadSPI timing" section, presenting data based on a negative edge data launch from  
the device and a negative edge data capture; updated the figure, "QuadSPI Input/Read timing  
(SDR mode)"; updated the table, "QuadSPI Input/Read timing (SDR mode)."  
• For the "SDHC switching specifcations" table, added the statement, "A load of 50 pF is assumed";  
updated max value for SD6, SDHC output delay (output valid).  
• In the "24 MHz oscillator specifications" section, added the statement, "The crystal must be rated  
for a drive level of 250 μW or higher. An ESR (equivalent series resistance) of 80 Ω or less is  
recommended to achieve a gain margin of 5."  
• In "Pinouts" section, for the 176LQFP package, added information about exposed pad on the  
bottom side.  
• In "Special Signal Considerations" table, added that a "fundamental-mode" crystal should be  
connected between XTAL and EXTAL; updated maximum drive level of crystal rating to 250 μW.  
Rev 8  
01/2018  
• Throughout: Updated references to company website  
• In the "Part number format" figure, updated the "Option" box with mask options  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
NXP Semiconductors  
123  
Revision History  
Table 82. Revision History  
Rev.  
No.  
Date  
Substantial Changes  
• Deleted the "Fields" section  
• Updated part numbers in "Part numbers" section  
• In "Power consumption operating behaviors" section, updated descriptions and footnotes for  
IDD_LPS3 and IDD_LPS2  
• In "Absolute maximum ratings" table, added rows for USB0_DP, USB0_DN, USB1_DP, and  
USB1_DN  
• In the table, "12-bit ADC characteristics (VREFH = VDDAD, VREFL = VSSAD)":  
• Changed mentions of "Temp Sensor" to "Temperature Sensor"  
• Added footnotes 2 and 3  
• In the table, "12-bit DAC operating behaviors," in footnote 5, changed "VDDA = 3.0 V" to "VDDA  
3.3 V"  
=
• In "Video Input Unit timing" section, added clocking requirements after introduction  
• Updated "QuadSPI timing" section  
• For "NFC specifications" section:  
• Changed title to "NAND flash controller specifications"  
• In the note, specified that the reader should see the CCM section of the product reference  
manual for more information  
• Changed title of the figure "Read data latch cycle timing in non-fast mode" to "Read data  
latch cycle timing in Slow mode"  
• Changed title of the figure "Read data latch cycle timing in fast mode" to "Read data latch  
cycle timing in Fast mode and EDO mode"  
• In the table footnotes in the "I2C timing" section, updated the frequency of the PER_CLK, from 83  
MHz to 66 MHz  
• In the "Pinouts" table, for L5, changed RMII0_MDIO/MII0_MDC to RMII0_MDIO/ MII0_MDIO  
VF3xxR, VF5xxR, Rev. 8, 01/2018  
124  
NXP Semiconductors  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document. NXP reserves the right to make changes  
without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of  
its products for any particular purpose, nor does NXP assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be  
validated for each customer application by customer's technical experts. NXP  
does not convey any license under its patent rights nor the rights of others. NXP  
sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, I2C BUS, Freescale, the Freescale logo, and Vybrid are  
trademarks of NXP B.V. All other product or service names are the property of  
their respective owners. Arm, Cortex, and TrustZone are registered trademarks  
of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. NEON is a  
trademark of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All  
rights reserved.  
© 2012-2013, 2017 NXP B.V.  
Document Number VYBRIDRSERIESEC  
Revision 8, 01/2018  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX