TDA1023T [NXP]

Proportional-control triac triggering circuit; 比例控制双向可控硅触发电路
TDA1023T
型号: TDA1023T
厂家: NXP    NXP
描述:

Proportional-control triac triggering circuit
比例控制双向可控硅触发电路

可控硅
文件: 总19页 (文件大小:270K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA1023/T  
Proportional-control triac triggering  
circuit  
May 1991  
Product specification  
Supersedes data of August 1982  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
FEATURES  
APPLICATIONS  
Adjustable width of proportional range  
Adjustable hysteresis  
Panel heaters  
Temperature control  
Adjustable width of trigger pulse  
Adjustable repetition timing of firing burst  
Control range translation facility  
Fail safe operation  
GENERAL DESCRIPTION  
The TDA1023 is a bipolar integrated circuit for controlling  
triacs in a proportional time or burst firing mode. Permitting  
precise temperature control of heating equipment it is  
especially suited to the control of panel heaters.  
It generates positive-going trigger pulses but complies with  
regulations regarding mains waveform distortion and RF  
interference.  
Supplied from the mains  
Provides supply for external temperature bridge  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
MIN. TYP. MAX. UNIT  
supply voltage (derived from mains voltage)  
stabilized supply voltage for temperature bridge  
supply current (average value)  
trigger pulse width  
13.7  
8
V
VZ  
V
I16(AV)  
tw  
10  
200  
41  
mA  
µs  
s
Tb  
firing burst repetition time at CT = 68 µF  
output current  
(1)  
-IOH  
150  
+75  
mA  
°C  
Tamb  
operating ambient temperature range  
20  
Note  
1. Negative current is defined as conventional current flow out of a device. A negative output current is suited for  
positive triac triggering.  
ORDERING INFORMATION  
PACKAGE  
EXTENDED  
TYPE NUMBER  
PINS  
16  
PIN POSITION  
DIL  
MATERIAL  
plastic  
CODE  
SOT38(1)  
TDA1023  
TDA1023T  
16  
mini-pack  
plastic  
SO16; SOT109A(2)  
Note  
1. TDA1023: 16 DIL; plastic (SOT38); SOT38-1; 1996 November 27.  
2. TDA1023T: 16 mini-pack; plastic (SO16; SOT109A); SOT109-1; 1996 November 27.  
May 1991  
2
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
Fig.1 Block diagram.  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
Rpd  
n.c.  
Q
1
internal pull-down resistor  
not connected  
2
handbook, halfpage  
R
1
2
3
4
5
6
7
8
16 RX  
3
output  
pd  
HYS  
PR  
CI  
4
hysteresis control input  
proportional range control input  
control input  
15  
n.c.  
Q
n.c.  
5
14  
13  
12  
11  
10  
9
V
CC  
6
V
HYS  
PR  
CI  
EE  
TDA1023  
UR  
QR  
BR  
PW  
VZ  
7
unbuffered reference input  
output of reference buffer  
buffered reference input  
pulse width control input  
reference supply output  
TB  
8
V
Z
9
UR  
QR  
PW  
BR  
10  
11  
12  
TB  
firing burst repetition time control  
input  
MBA484  
VEE  
VCC  
n.c.  
RX  
13  
14  
15  
16  
ground  
positive supply  
not connected  
Fig.2 Pin configuration.  
external resistor connection  
May 1991  
3
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
FUNCTIONAL DESCRIPTION  
Control and reference inputs CI, BR and UR  
(pins 6, 9 and 7)  
The TDA1023 generates pulses to trigger a triac. These  
pulses coincide with the zero excursions of the mains  
voltage, thus minimizing RF interference and mains supply  
transients. In order to gate the load on and off, the trigger  
pulses occur in bursts thus further reducing mains supply  
pollution. The average power in the load is varied by  
modifying the duration of the trigger pulse burst in  
accordance with the voltage difference between the  
control input CI and the reference input, either UR or BR.  
For the control of room temperature (5 °C to 30 °C)  
optimum performance is obtained by using the translation  
circuit. The buffered reference input BR (pin 9) is used as  
a reference input whilst the output reference buffer QR (pin  
8) is connected to the unbuffered reference input UR  
(pin 7). This ensures that the range of room temperature is  
encompassed in most of the rotation of the potentiometer  
to give a linear temperature scale with accurate setting.  
Should the translation circuit not be required, the  
unbuffered reference input UR (pin 7) is used as a  
reference input. The buffered reference input BR (pin 9)  
must then be connected to the reference supply output VZ  
(pin 11).  
Power supply: VCC, RX and Vz (pins 14, 16 and 11)  
The TDA1023 is supplied from the AC mains via a resistor  
RD to the RX connection (pin 16); the VEE connection (pin  
13) is linked to the neutral line (see Fig.4a). A smoothing  
capacitor CS should be coupled between the VCC and VEE  
connections.  
For proportional power control the unbuffered reference  
input UR (pin 7) must be connected to the firing burst  
repetition time control input TB (pin 12).The buffered  
reference input BR (pin 9), which is in this instance  
inactive, must then be connected to the reference supply  
output VZ (pin 11).  
A rectifier diode is included between the RX and VCC  
connections whilst the DC supply voltage is limited by a  
chain of stabilizer diodes between the RX and VEE  
connections (see Fig.3).  
A stabilized reference voltage (VZ) is available at pin 11 to  
power an external temperature sensing bridge.  
Proportional range control input PR (pin 5)  
The output duty factor changes from 0% to 100% by a  
variation of 80 mV at the control input CI (pin 6) with the  
proportional range control input PR open. For temperature  
control this corresponds to a temperature difference of 1 K.  
Supply operation  
During the positive mains half-cycles the current through  
the external voltage dropping resistor RD charges the  
external smoothing capacitor CS until RX attains the  
stabilizing potential of the internal stabilizing diodes. RD  
should be selected to be capable of supplying the current  
By connecting the proportional range control input PR  
(pin 5) to ground the range may be increased to 400 mV,  
i.e. 5 K. Intermediate values may be obtained by  
connecting the PR input to ground via a resistor R5  
(see Table 1).  
ICC for the TDA1023, the average output current I3(AV)  
recharge the smoothing capacitor CS and provide the  
,
supply for an external temperature bridge. (see Figs 9 to  
12). Any excess current is by-passed by the internal  
stabilizer diodes. The maximum rated supply current,  
however, must not be exceeded.  
Hysteresis control input HYS (pin 4)  
With the hysteresis control input HYS (pin 4) open, the  
device has a built-in hysteresis of 20 mV. For temperature  
control this corresponds with 0.25 K.  
During the negative mains half-cycles external smoothing  
capacitor CS supplies the sum of the current demand  
described above. Its capacitance must be sufficiently high  
to maintain the supply voltage above the specified  
minimum.  
Hysteresis is increased to 320 mV, corresponding to 4 K,  
by grounding HYS (pin 4). Intermediate values are  
obtained by connecting pin 4 via resistor R4 to ground.  
Table 1 provides a set of values for R4 and R5 giving a  
fixed ratio between hysteresis and proportional range.  
Dissipation in resistor RD is halved by connecting a diode  
in series (see Fig.4b and 9 to 12). A further reduction in  
dissipation is possible by using a high quality dropping  
capacitor CD in series with a resistor RSD (see Figs 4c and  
14). Protection of the TDA1023 and the triac against  
mains-borne transients can be provided by connecting a  
suitable VDR across the mains input.  
May 1991  
4
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
Trigger pulse width control input PW (pin 10)  
The width of the trigger pulse may be adjusted to the value  
required for the triac by choosing the value of the external  
synchronization resistor RS between the trigger pulse  
width control input PW (pin 10) and the AC mains.  
The pulse width is inversely proportional to the input  
current (see Fig.13).  
Output Q (pin 3)  
Since the circuit has an open-emitter output it is capable of  
sourcing current. It is thus suited for generating  
positive-going trigger pulses. The output is current-limited  
and short-circuit protected. The maximum output current is  
150 mA and the output pulses are stabilized at 10 V for  
output currents up to that value.  
To minimize the total supply current and power dissipation,  
a gate resistor RG must be connected between the output  
Q and the triac gate to limit the output current to the  
minimum required by the triac (see Figs 5 to 8).  
Pull-down resistor Rpd (pin 1)  
The TDA1023 includes a 1.75 kpull-down resistor Rpd  
between pins 1 and 13 (VEE, ground connection) intended  
for use with sensitive triacs.  
LIMITING VALUES  
In accordance with the Absolute Maximum System (IEC 134)  
SYMBOL  
VCC  
PARAMETER  
DC supply voltage  
MIN.  
MAX.  
UNIT  
16  
V
Supply current  
I16(AV)  
I16(RM)  
I16(SM)  
VI  
average  
30  
100  
2
mA  
mA  
A
repetitive peak  
non-repetitive peak (tp < 50 µs)  
input voltage, all inputs  
input current  
16  
10  
16  
16  
V
I6, 7, 9, 10  
V1  
mA  
V
voltage on Rpd connection  
output voltage, Q, QR, VZ  
V3, 8, 11  
V
Output current  
-IOH(AV)  
-IOH(M)  
Ptot  
average  
30  
mA  
mA  
mW  
°C  
peak max. 300 µs  
700  
500  
total power dissipation  
storage temperature range  
operating ambient temperature range  
Tstg  
55  
20  
+150  
+75  
Tamb  
°C  
May 1991  
5
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
CHARACTERISTICS  
VCC = 11 to 16 V; Tamb = 20 to +75 °C unless otherwise specified  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
Supply  
VCC  
internally stabilized supply voltage at  
12  
13.7 15  
V
I
16 = 10 mA  
VCC/I16 variation with I16  
I16 supply current at V16-13 = 11 to 16 V;  
I10 = 1mA; f = 50 Hz; pin 11 open;  
6-13 > V7-13  
30  
mV/mA  
mA  
pins 4 and 5 open  
6
V
pins 4 and 5 grounded  
7.1  
mA  
Reference supply output VZ (pin 11) for external temperature bridge  
V11-13  
output voltage  
output current  
8
V
I11  
1
mA  
Control and reference inputs CI, BR and UR (pins 6, 9 and 7)  
V6-13  
I6, 7, 9  
input voltage to inhibit the output  
input current  
7.6  
V
V1 = 4 V  
2
µA  
Hysteresis control input HYS (pin 4)  
V6  
V6  
hysteresis  
hysteresis  
pin 4 open  
9
20  
40  
mV  
mV  
pin 4 grounded  
320  
Proportional control range input PR (pin 5)  
V6  
V6  
proportional range  
proportional range  
pin 5 open  
50  
80  
130  
mV  
mV  
pin 5 grounded  
400  
Pulse width control input PW (pin 10)  
tw pulse width  
I10(RMS) = 1mA; f = 50 Hz 100  
200  
600  
300  
960  
µs  
Firing burst repetition time control input TB (pin 12)  
firing burst repetition time, ratio to  
capacitor CT  
TbCT  
320  
ms/µF  
Output of reference buffer QR (pin 8)  
output voltage at input voltage:  
V8-13  
V8-13  
V8-13  
V9-13 = 1.6 V  
V9-13 = 4.8 V  
V9-13 = 8 V  
3.2  
4.8  
6.4  
V
V
V
Output Q (pin 3)  
VOH  
output voltage HIGH  
output current HIGH  
IOH = 150 mA  
10  
V
IOH  
150  
mA  
Internal pull-down resistor Rpd (pin 1)  
Rpd  
resistance to VEE  
1
1.75  
3
kΩ  
May 1991  
6
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
Table 1 Adjustment of proportional range and hysteresis. Combinations of resistor values giving  
hysteresis > 14 proportional range.  
Proportional range  
Proportional range resistor  
Minimum hysteresis  
Maximum hysteresis resistor  
R5  
R4  
mV  
80  
kΩ  
mV  
kΩ  
open  
3.3  
1.1  
0.43  
0
20  
40  
open  
9.1  
160  
240  
320  
400  
60  
4.3  
80  
2.7  
100  
1.8  
Table 2 Timing capacitor values CT  
Effective DC value  
Marked AC specification  
Catalogue number(1)  
µF  
µF  
V
68  
47  
33  
22  
15  
10  
47  
33  
22  
15  
10  
6.8  
25  
40  
25  
40  
25  
40  
2222 016 90129  
- - 90131  
- 015 90102  
- - 90101  
- - 90099  
- - 90098  
Note  
1. Special electrolytic capacitors recommended for use with the TDA1023.  
RX  
handbook, halfpage  
16  
14  
V
CC  
11  
V
STABILIZER  
13  
Z
V
MBA483  
EE  
Fig.3 Internal supply connections.  
May 1991  
7
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
load  
(heater)  
R
SD  
AC mains  
voltage  
V
RX  
16  
CC  
U
V
S
14  
R
G
Q
C
3
S
TDA1023  
13  
V
EE  
MBA470  
a.  
D1  
D
load  
(heater)  
R
AC mains  
voltage  
V
RX  
16  
CC  
U
V
S
14  
R
G
Q
C
3
TDA1023  
S
13  
V
EE  
MBA482  
b.  
R
SD  
C
D
load  
(heater)  
BAW62  
D2  
BAW62  
D1  
AC mains  
voltage  
U
V
V
S
RX  
CC  
14  
16  
R
G
Q
C
3
TDA1023  
S
13  
V
EE  
MBA469  
c.  
Fig.4 Alternative supply arrangements.  
8
May 1991  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
Fig.5 VS = 110 V, 50 Hz.  
Fig.6 VS = 220 V, 50 Hz.  
May 1991  
9
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
Fig.7 VS = 240 V, 50Hz.  
Fig.8 VS = 380 V, 50 Hz.  
May 1991  
10  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
Fig.9 VS = 110 V.  
Fig.10 VS = 220 V.  
May 1991  
11  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
Fig.11 VS = 240 V.  
Fig.12 VS = 380 V.  
May 1991  
12  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
Fig.14 Nominal value of voltage dropping capacitor  
CD and power PRSD dissipated in a voltage  
dropping resistor RSD as a function of  
Fig.13 Synchronization resistor Rs as a function of  
required trigger pulse width tw with a mains  
voltage Vs as a parameter.  
average supply current I16 (AV) with the  
mains supply voltage VS as a parameter.  
May 1991  
13  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
D1  
load  
(heater)  
line  
R
D
R
S
AC mains  
voltage  
V
triac  
RX  
CC  
PW  
10  
U
R
G
R1  
R
V
Z
14  
16  
Q
R
V
S
11  
6
3
1
CI  
TDA1023  
C
S
neutral  
pd  
BR  
9
13  
8
7
4
5
12  
TB  
C1  
V
QR  
UR  
HYS PR  
θ
EE  
NTC  
R
p
C
T
MBA513  
Conditions:- Mains supply; VS = 220 V; Temperature range = 5 to 30 °C.  
BT139 data at Tj = 25 °C; Vgt < 1.5 V; Igt > 70 mA; IL < 60 mA  
Fig.15 The TDA1023/T used in a 1200 to 2000 W heater with triac BT139. For component values see Table 3.  
May 1991  
14  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
Table 3 Temperature controller component values (see Fig.15). Notes 1, 2  
SYMBOL  
PARAMETER  
trigger pulse width  
REMARKS  
see BT139 data sheet  
see Fig.13  
VALUE  
tw  
75 µs  
RS  
RG  
synchronization resistor  
gate resistor  
180 kΩ  
110 Ω  
see Fig.6  
I3(AV)  
R4  
max. average gate current  
hysteresis resistor  
see Fig.8  
4.1 mA  
n.c.  
see Table 1  
R5  
proportional band resistor  
min. required supply current  
mains dropping resistor  
power dissipated in RD  
timing capacitor (eff. value)  
voltage dependent resistor  
rectifier diode  
see Table 1  
n.c.  
I16(AV)  
RD  
11.1 mA  
6.2 kΩ  
4.6 W  
see Fig.10  
PRD  
CT  
see Fig.10  
see Table 2  
68 µF  
VDR  
D1  
cat. no. 2322 593 62512  
250 V AC  
BYW56  
18.7 kΩ  
22 kΩ  
R1  
resistor to pin 11  
1% tolerance  
RNTC  
Rp  
NTC thermistor (at 25 °C)  
potentiometer  
B = 4200 K cat no. 2322 642 12223  
22 kΩ  
C1  
capacitor between pins 6 and 9  
smoothing capacitor  
47 nF  
CS  
220 µF; 16 V  
If RD and D1 are replaced by CD and RSD  
CD  
mains dropping capacitor  
series dropping resistor  
power dissipated in RSD  
voltage dependent resistor  
470 nF  
390 Ω  
RSD  
PRSD  
VDR  
see Fig.14  
0.6 W  
cat. no. 2322 594 62512  
250 V AC  
Notes  
1. ON/OFF control: pin 12 connected to pin 13.  
2. If translation circuit is not required: slider of Rp to pin 7; pin 8 open; pin 9 connected to pin 11.  
May 1991  
15  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
PACKAGE OUTLINES  
DIP16: plastic dual in-line package; 16 leads (300 mil); long body  
SOT38-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
max.  
max.  
min.  
max.  
1.40  
1.14  
0.53  
0.38  
0.32  
0.23  
21.8  
21.4  
6.48  
6.20  
3.9  
3.4  
8.25  
7.80  
9.5  
8.3  
4.7  
0.51  
3.7  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.2  
0.021  
0.015  
0.013  
0.009  
0.86  
0.84  
0.32  
0.31  
0.055  
0.045  
0.26  
0.24  
0.15  
0.13  
0.37  
0.33  
inches  
0.19  
0.020  
0.15  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-10-02  
95-01-19  
SOT38-1  
050G09  
MO-001AE  
May 1991  
16  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
D
E
A
X
c
y
H
v
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.050  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.020  
0.028  
0.012  
inches  
0.069  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-23  
97-05-22  
SOT109-1  
076E07S  
MS-012AC  
May 1991  
17  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
SOLDERING  
Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
DIP  
SOLDERING BY DIPPING OR BY WAVE  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
SO  
REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
May 1991  
18  
Philips Semiconductors  
Product specification  
Proportional-control triac triggering circuit  
TDA1023/T  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
May 1991  
19  

相关型号:

TDA1023T-T

IC SPECIALTY ANALOG CIRCUIT, PDSO16, Analog IC:Other
NXP

TDA1024

A MAIN-ZERO TRIAC-TRIGGERING CIRCUIT
NXP

TDA1024N

IC SPECIALTY ANALOG CIRCUIT, PDIP8, Analog IC:Other
NXP

TDA1024N

Analog Circuit, PDIP8
PHILIPS

TDA1028

Multiplexers/Switches, BIPolar, PDIP16
PHILIPS

TDA1029

Signal-sources switch
NXP

TDA1029N

Multiplexers/Switches, BIPolar, PDIP16,
PHILIPS

TDA1029N

IC 8-CHANNEL, AUDIO/VIDEO SWITCH, PDIP16, PLASTIC, SOT-38, DIP-16, Multiplexer or Switch
NXP

TDA1030

TV SOUND POWER AMPLIFIER
YOUDA

TDA1035

Tonkanaischaltung fur Fernsehempfanger
ETC

TDA1037

AF POWER AMPLIFIER IC WITH THERMAL SHUTDOWN
INFINEON

TDA1044

Consumer Circuit, Bipolar, PDIP14,
TDK